WO2023113098A1 - Microalga image continuous measurement apparatus - Google Patents

Microalga image continuous measurement apparatus Download PDF

Info

Publication number
WO2023113098A1
WO2023113098A1 PCT/KR2022/001233 KR2022001233W WO2023113098A1 WO 2023113098 A1 WO2023113098 A1 WO 2023113098A1 KR 2022001233 W KR2022001233 W KR 2022001233W WO 2023113098 A1 WO2023113098 A1 WO 2023113098A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
sample
ultrasonic
unit
flow cell
Prior art date
Application number
PCT/KR2022/001233
Other languages
French (fr)
Korean (ko)
Inventor
김종락
장수현
백지원
유광태
백승철
Original Assignee
주식회사 유앤유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유앤유 filed Critical 주식회사 유앤유
Publication of WO2023113098A1 publication Critical patent/WO2023113098A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • the present invention relates to a microalgae image continuous measuring device, and more particularly, when a microalgae sample is injected to obtain a high-resolution microalgae image, the aggregates of microalgae are dispersed through a dilution solvent and an ultrasonic disperser, and the dispersed By passing the microalgae sample through the flow cell, a high-resolution microalgae image can be obtained, and the microalgae sample can continuously pass through the flow cell by a transfer pump to continuously acquire a plurality of microalgae images , It relates to a microalgae image continuous measuring device.
  • phytoplankton are photosynthetic microscopic organisms of water quality, and exist everywhere, such as seas, rivers, and lakes, in an environment where the water temperature is higher than the appropriate temperature and light exists.
  • algae cyanobacteria
  • various species such as green algae and diatoms, which are progressive organisms.
  • rivers and lakes when algae proliferate excessively and cause hydration, a unique odor occurs, causing problems in the water treatment process.
  • microcystin Since it secretes toxic substances harmful to the human body, such as, there is a problem of causing health and environmental problems.
  • These algae groups sometimes differ in dominant species depending on the region, environment, and season, and it is important to secure a DB for each of these algae groups in order to properly manage and monitor the water quality and environment of a lake or river.
  • Conventional algae monitoring technology mainly uses light having a plurality of wavelengths to a sample containing algae, such as Korean Patent Registration No. 10-1898712, Korean Patent Publication No. 2012-0133974, and Korean Patent Registration No. 10-0917030.
  • There is a method of analyzing the wavelengths generated by algae by irradiation and there is a method of detecting chromaticity, temperature, and illuminance as in Korean Patent No. 10-1928919, and a method of detecting DNA extracted from algae as in Korean Patent No. 10-1683379.
  • There is a method of analyzing, and a method of photographing algae images with a microscope such as in Korean Patent Registration No. 10-2100197.
  • the method of detecting the wavelength, chromaticity, temperature, and illuminance of light has limitations in discriminating species because the main purpose is to analyze the amount of algae generated, and only the level classified by color can be analyzed in classification.
  • species classification DNA analysis extracted from algae or algae images magnified through a microscope are classified according to the experimenter's judgment.
  • 1,738 species of diatoms, 1,308 species of freshwater green algae, 686 species of flagella, and 239 species of cyanobacteria were found. There are time and cost issues and the possibility of recognition errors.
  • the present invention relates to a microalgae image continuous measuring device, and more particularly, when a microalgae sample is injected to obtain a high-resolution microalgae image, the aggregates of microalgae are dispersed through a dilution solvent and an ultrasonic disperser, and the dispersed By passing the microalgae sample through the flow cell, a high-resolution microalgae image can be obtained, and the microalgae sample can continuously pass through the flow cell by a transfer pump to continuously acquire a plurality of microalgae images aims to
  • the present invention is an apparatus for continuously measuring microalgae images, comprising: a filter unit for removing contaminants included in microalgae samples; a dilution unit supplying a solvent to the microalgae sample to control the turbidity of the microalgae; An ultrasonic disperser for dispersing the microalgae by irradiating ultrasonic waves to the microalgae sample with ultrasonic intensity for each type of microalgae for pretreatment of the microalgae sample; a flow cell through which the microalgae sample to which ultrasonic wave is applied by the ultrasonic disperser flows; a microscope for continuously photographing the microalgae sample inside the flow cell; and a transfer pump transferring the microalgae sample from the filter unit to the flow cell.
  • the dilution unit a turbidimeter for measuring the turbidity of the microalgae sample; A dilution solvent capable of diluting the microalgae sample based on the turbidity measured by the turbidimeter; and a dilution chamber for diluting the microalgae sample using the dilution solvent, wherein the dilution solvent includes distilled water, and may optionally further include a chemical agent for fixing the microalgae.
  • the ultrasonic diffuser a calibration step of deriving a device driving value for the energy unit or the input energy unit corresponding to the input tide;
  • a device driving step of driving the ultrasonic diffuser with the device driving value derived in the calibration step; may be performed.
  • the calibration step may include: a first measuring step of driving the ultrasonic diffuser with a first device driving value, applying ultrasonic waves to a reference medium, and measuring first change information of the temperature of the reference medium; a second measurement step of driving the ultrasonic diffuser with a second device driving value, applying ultrasonic waves to the reference medium, and measuring second change information of the temperature of the reference medium; a first derivation step of deriving a first energy unit for a first device driving value based on the first change information; a second derivation step of deriving a second energy unit for a second device drive value based on the second change information; and deriving relationship information between the device drive value and the energy unit based on the regression information including the first device drive value, the second device drive value, the first energy unit, and the second energy unit.
  • the ultrasonic wave in the device driving step, is irradiated to the microalgae sample for a predetermined time with the ultrasonic intensity derived in the calibration step to disperse flocs, which are microalgal aggregates.
  • the flow cell includes one or more flow passages, and each of the one or more flow passages includes an inlet passage formed in a vertical direction, an intermediate passage extending horizontally from the inlet passage, and an intermediate passage extending from the inlet passage. It includes an outlet passage extending in a vertical direction, and an inner surface of the intermediate passage is coated with nanomaterials to alleviate the problem of residual algae attachment.
  • the intermediate flow passage the inlet side intermediate flow passage having a first width; a middle-side intermediate passage extending from the inlet-side intermediate passage and having a second width; and an outlet-side intermediate passage extending from the middle-side intermediate passage and having a third width, wherein the second width may be greater than the first width and the third width.
  • the microscope the lighting unit; a stage unit disposed below the lighting unit and having a through hole therein; and a lens unit located below the stage unit and movable up and down, wherein the flow cell is seated on an upper surface of the stage unit, and the lens unit can be inserted into the through hole.
  • microalgal floes can be minimized through sample dilution and cell fixation automation based on the turbidity of the microalgal sample, thereby achieving an effect of stably measuring the image.
  • the possibility of algae contacting the flow path can be reduced by nano-coating the inner surface of the flow cell flow path, thereby alleviating the problem of remaining algae adhesion and preventing contamination by long-term monitoring.
  • the pretreatment method through the ultrasonic disperser it is possible to exhibit the effect of increasing the single cell recovery rate and solving the efficiency and time problems compared to the conventional pretreatment method using chemicals and heat treatment.
  • the intensity of the ultrasonic diffuser can be standardized through the calibration step, and through this, cross-validation between laboratories can be implemented.
  • the health of the aquatic ecosystem can be secured through real-time monitoring of streams, etc., and the quality of purified water can be improved by monitoring the intake source, thereby contributing to securing water quality stability.
  • the present invention it is possible to analyze the species of microalgae by water area, and it is possible to detect or prevent the occurrence of algae in advance through real-time monitoring.
  • FIG. 1 schematically shows an apparatus for continuously measuring microalgae images according to an embodiment of the present invention.
  • FIG. 2 shows an image of microalgae according to a pretreatment method according to an embodiment of the present invention.
  • Figure 3 shows microalgae images according to the intensity of the ultrasonic disperser for irradiating ultrasonic waves to microalgae samples according to an embodiment of the present invention.
  • FIG. 5 shows a graph for calculating relationship information between a device drive value and an energy unit in a calibration step according to an embodiment of the present invention.
  • FIG. 6 shows an actual photograph and a schematic diagram of a flow cell according to an embodiment of the present invention.
  • FIG. 7 schematically shows a structural diagram of a flow path in a flow cell according to an embodiment of the present invention.
  • FIG 8 shows images of microalgae according to the height of the flow cell passage according to an embodiment of the present invention.
  • FIG 9 shows images of microalgae according to the shape of a flow path in a flow cell according to an embodiment of the present invention.
  • FIG 10 schematically shows the structure of an inverted microscope according to an embodiment of the present invention.
  • Example “Example”, “example”, “aspect”, “exemplary”, etc., used herein should not be construed as preferring or advantageous to any aspect or design being described over other aspects or designs.
  • the terms ' ⁇ unit', 'component', 'module', 'system', 'interface', etc. used below generally mean a computer-related entity, and for example, hardware, hardware It may mean a combination of and software, software.
  • first and second may be used to describe various components, but the components are not limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
  • the terms and/or include any combination of a plurality of related recited items or any of a plurality of related recited items.
  • FIG. 1 schematically shows an apparatus for continuously measuring microalgae images according to an embodiment of the present invention.
  • an apparatus for continuously measuring microalgae images comprising: a filter unit 100 for removing contaminants included in microalgae samples; A dilution unit 110 for supplying a solvent to the microalgae sample to adjust the turbidity of the microalgae; An ultrasonic disperser 120 for dispersing the microalgae by irradiating ultrasonic waves to the microalgae sample at ultrasonic intensity for each type of microalgae for pretreatment of the microalgae sample; a flow cell 130 through which the microalgae sample to which ultrasonic wave is applied by the ultrasonic disperser 120 flows; a microscope for continuously photographing the microalgae sample inside the flow cell 130; and a transfer pump 140 for transferring the microalgae sample from the filter unit 100 to the flow cell 130.
  • the dilution unit 110 a turbidimeter for measuring the turbidity of the microalgae sample; A dilution solvent capable of diluting the microalgae sample based on the turbidity measured by the turbidimeter; and a dilution chamber for diluting the microalgae sample using the dilution solvent, wherein the dilution solvent includes distilled water, and may optionally further include a chemical agent for fixing the microalgae.
  • the first step of the pretreatment steps for dispersing flocs which are microalgae aggregates present in the microalgae sample, is performed, and the microalgae sample is filtered using a microsieve filter.
  • the microsieve filter is a mesh filter having a pore size of several tens of ⁇ m to several thousand ⁇ m, and removes contaminants present in the microalgae sample. Unlike algae cultures, samples obtained from water sources require a process of removing contaminants and dilution.
  • the microsieve filter may be used by removing foreign substances according to the characteristics of the algae or by adjusting the pore size so that only algae having a target size or smaller may be introduced into the flow cell 130 .
  • a microsieve filter with a pore size of 1000 ⁇ m can be used to prevent foreign substances from entering the flow cell 130, and a microsieve filter with a pore size of 50 ⁇ m can prevent microalgae colonies. Can be used to disperse into entities.
  • an additional pretreatment step may be performed to compensate for this.
  • the additional pretreatment step includes a dilution step and an ultrasonic dispersion step, which will be described in detail later.
  • the second step of the pretreatment step for dispersing the floc in the microalgae sample is performed, and after measuring the turbidity of the microalgae sample, a dilution solvent is used based on the measured turbidity to reduce the microalgae Samples can be diluted.
  • the turbidity of the microalgae sample may be measured by a turbidity meter provided in the dilution unit 110.
  • the turbidimeter can measure the turbidity of the microalgae sample by irradiating the microalgae sample with light and comparing the degree of reflection or scattering of the light transmitted through the sample by the dispersed particles with a standard solution.
  • the dilution unit 110 may adjust the amount of the dilution solvent injected into the dilution chamber provided. As an embodiment of the present invention, it is preferable to inject the dilution solvent into the dilution chamber so that the turbidity of the microalgae sample is less than 200 NTU, and distilled water is used as the dilution solvent.
  • a chemical agent may be selectively included in the dilution solvent to fix the algae in the microalgae sample.
  • Formaldehyde and the like may be used as the chemical agent, and as an embodiment of the present invention, a chemical agent such as KOH (potassium hydroxide) or NaOH (sodium hydroxide) may be additionally used to disperse the flocs in the microalgae sample. .
  • the dilution solvent may be automatically injected into the dilution chamber through an automated system without operator intervention. As shown in FIG. 1 , the dilution solvent is contained in a separate dilution solvent storage tank and may be injected into the dilution chamber through the transfer pump 140 .
  • the transfer pump 140 may be injected into the dilution chamber through the transfer pump 140 .
  • the ultrasonic disperser 120 is a device used in the last step of the pretreatment step of dispersing the flocs in the microalgal sample by irradiating the microalgal sample with ultrasonic waves.
  • Algae dispersal pretreatment techniques include chemical treatment techniques and heat treatment techniques in addition to techniques using ultrasonic waves.
  • an ultrasonic technique that showed excellent results in terms of dispersal time and single cell recovery rate was adopted in the single cell recovery rate experiment conducted by the present invention. .
  • a detailed comparison between the pretreatment technique using ultrasonic waves and the pretreatment technique without using ultrasonic waves will be described later.
  • the ultrasonic diffuser 120 by performing a calibration step in the ultrasonic diffuser 120, it is possible to derive an energy unit corresponding to the injected microalgae sample or a device driving value for the input energy unit. That is, the optimal ultrasonic intensity corresponding to the microalgae sample can be derived to maximize the dispersing effect of microalgae, and since the energy unit is a standardized value, cross-verification with other laboratories can be implemented. Details of the calibration step will be described later.
  • the flow cell 130 includes a plurality of thin flow passages, and the microalgae sample that has undergone the pretreatment process can flow through the flow passages.
  • Microalgae images can be obtained for algae samples.
  • the width of the channel is preferably set to 50 ⁇ m to 1000 ⁇ m in order to capture images of microalgae of various sizes. Details of the flow cell 130 will be described later.
  • the transfer pump 140 is positioned between the filter unit 100 and the dilution unit 110 and between the dilution solvent and the dilution chamber to help transfer the microalgae sample or the dilution solvent.
  • a micro pump may be used as the transfer pump 140 to precisely control the amount of the microalgal sample flowing into the flow cell 130.
  • the flow rate and flow rate of the microalgal sample transferred through the micropump can be adjusted according to the size and shape of the passage in the flow cell 130.
  • the micro pump refers to a fluid device capable of transferring a minute flow rate of 1 ⁇ l or less per minute.
  • the operating state of the transfer pump 140 may be controlled through pump control software.
  • pump control software Through the pump control software, it is possible to control the flowing amount of the microalgae sample or dilution solvent, control the operation of the syringe, and control the continuous operation of the pump.
  • the transfer pump 140 Once the transfer pump 140 is set through the pump control software, it can automatically transfer the microalgae sample and the dilution solvent to the dilution chamber, the ultrasonic disperser 120, and the flow cell 130 by the set amount, In measuring the microalgae image, it is possible to exert an effect of increasing efficiency.
  • the microalgae image continuous measuring device automatically performs a preprocessing step when only the microalgal sample is initially injected, and then the sample is transferred to the flow cell 130, and the An image of the microalgae sample may be automatically measured in the flow cell 130.
  • An embodiment of the microalgae image continuous measuring device that is automatically performed is as follows.
  • the microalgae sample When the microalgae sample is injected into the microalgae image continuous measuring device, the microalgae sample is transferred to the filter unit 100 by the transfer pump 140, and contaminants and foreign substances present in the microalgae sample are removed. .
  • the microalgal sample that has passed through the filter unit 100 is automatically transferred to the dilution chamber of the dilution unit 110 by the transfer pump 140, and the turbidimeter automatically measures the microalgal sample in the dilution chamber. Measure the turbidity.
  • the dilution unit 110 automatically calculates the amount of dilution solvent required to dilute the microalgae sample based on the measured turbidity, and based on the calculated amount of the dilution solvent, the microalgae sample is pre-set Dilute below turbidity.
  • the microalgae sample that has passed through the dilution unit 110 is transferred to the ultrasonic disperser 120 by the transfer pump 140, and in the ultrasonic disperser 120, based on the preset ultrasonic intensity and ultrasonic irradiation time, Ultrasound is irradiated to the microalgae sample transferred to the ultrasonic disperser 120.
  • microalgal sample that has completed the pretreatment step in the ultrasonic disperser 120 is transferred to the flow cell 130 by the transfer pump 140, and the microalgal sample is continuously imaged in the flow cell 130 can be filmed
  • the movement of the microalgae sample by the transfer pump 140 is automatically operated according to a predetermined value.
  • FIG. 2 shows an image of microalgae according to a pretreatment method according to an embodiment of the present invention.
  • FIG. 2 (a) shows a microalgae image of a microalgae sample using a chemical treatment technique among algal dispersal pretreatment techniques
  • FIG. 2 (b) shows microalgae microalgae using an ultrasonic irradiation technique among algal dispersal pretreatment techniques
  • An image of the microalgae of the sample is shown.
  • algae spraying pretreatment techniques can be largely divided into single pretreatment techniques and complex pretreatment techniques.
  • the single pretreatment technique includes a chemical treatment technique, a heat treatment technique, and an ultrasonic technique
  • the complex pretreatment technique is a technique in which two or more of the single pretreatment techniques are mixed.
  • the dispersion effect is increased compared to a single pretreatment technique, but time and cost may also increase.
  • FIG. 2 A plurality of experiments were performed to derive the optimal pretreatment technique for the present invention, and in FIG. 2, as an embodiment of the present invention, the single cell recovery rate of the pretreatment technique using ultrasound and the pretreatment technique without ultrasound Show an image showing the difference.
  • the alga used in the experiment corresponding to FIG. 2 is Chlorella vulgaris, and in the plurality of experiments, a plurality of algae including Chlorella vulgaris were conducted, but this is not shown separately.
  • Figure 2 (a) is an embodiment of the present invention, a microscopic image of Chlorella vulgaris using a chemical treatment technique, and a 0.01M sodium hydroxide solution was used in the experiment. As shown in (a) of FIG. 2, although it seems to be relatively well dispersed in the 6th and 8th regions, there are flocs that are not properly dispersed, as indicated by the red circles in the 19th and 21st regions. can confirm that
  • FIG. 2 (b) is an embodiment of the present invention, a microscopic image of Chlorella vulgaris using an ultrasonic technique, and in the experiment, ultrasonic waves were irradiated for 20 seconds at an ultrasonic intensity of 200 kJ / L. As shown in (b) of FIG. 2, it can be confirmed that the algae are evenly dispersed in the entire area as a result of using the ultrasonic technique.
  • an ultrasonic treatment technique having a high dispersion effect is used.
  • the intensity of the ultrasonic wave and the ultrasonic irradiation time at which the dispersion effect is best for the microalgae are different, and to compensate for this, in the present invention, the optimal ultrasonic intensity according to the type of microalgae through the calibration step And the ultrasonic irradiation time can be derived.
  • Figure 3 shows microalgae images according to the intensity of the ultrasonic disperser 120 for irradiating ultrasonic waves to microalgae samples according to an embodiment of the present invention.
  • FIG. 3 shows an image of microalgae when the microalgae sample is irradiated with an ultrasonic intensity of 0.004 W/ml.
  • Figure 3 (b) shows a microalgae image when the microalgae sample is irradiated with an ultrasonic intensity of 0.08 W / ml.
  • Figure 3 (c) shows a microalgae image when the microalgae sample is irradiated with an ultrasonic intensity of 0.3 W / ml.
  • FIG. 3 as an embodiment of the present invention, it can be confirmed that the algae dispersion effect appears well as the ultrasonic wave is irradiated to the microalgae sample at a strong ultrasonic intensity, and in the case of FIG. 3 (c), a single The cell recovery rate was determined to be about 90%.
  • the single cell recovery rate in the case of using the complex pretreatment technique using both the chemical treatment technique and the ultrasonic treatment technique, the single cell recovery rate can be measured higher than the ultrasonic treatment technique, but the single cell recovery rate is high even when only the ultrasonic treatment technique is used. Since this has been measured, in the present invention, considering cost and time issues, a single pretreatment technique of only sonication is used.
  • the ultrasonic diffuser 120 includes a calibration step of deriving an energy unit corresponding to the input tidal current or a device driving value for the input energy unit;
  • a device driving step of driving the ultrasonic diffuser 120 with the device driving value derived in the calibration step; may be performed, and the calibration step drives the ultrasonic diffuser 120 with the first device driving value, a first measurement step (S100.1) of applying ultrasonic waves to and measuring first change information of the temperature of the reference medium;
  • the ultrasonic intensity for each type of microalgae can be derived.
  • the calibration step is a step of standardizing the device driving value of the ultrasonic diffuser 120 through a calorimetric method.
  • the method using the conventional ultrasonic disperser 120 even if the ultrasonic disperser 120 is operated with the same device driving value, the result value is different as the laboratory environment, equipment used, and processing container are changed, and thus the same Even if the sample was conducted in the same experiment method, the result value was different, resulting in a problem of low reliability of the experiment.
  • the present invention by performing a calibration step, a more rigorous comparison is possible through standardized power no matter which laboratory conducts the experiment, and the reliability of the experiment is improved through cross-laboratory cross-validation (Round Robin Test).
  • the reference medium preferably as an embodiment of the present invention, may be a microalgal sample diluted by the dilution unit 110.
  • FIG. 5 shows a graph for calculating relationship information between a device drive value and an energy unit in a calibration step according to an embodiment of the present invention.
  • the ultrasonic diffuser 120 performs a device driving step of driving the ultrasonic diffuser 120 with the device driving value derived in the calibration step, and in the device driving step, the calibration Depending on the device driving value derived in the step, ultrasonic waves may be irradiated to the microalgae sample for a predetermined time with ultrasonic intensity to disperse flocs, which are aggregates of microalgae.
  • a measurement step (S100.1 to S100.N or less, S100) and a derivation step (S110.1 to S110.N or less, S110) are performed, and the measurement step ( S100) is sequentially performed from the first measuring step (S100.1) to the Nth measuring step (S100.N), and the derivation step (S110) is performed corresponding to the measuring step.
  • a device drive value is set and the ultrasonic diffuser 120 is driven with the device drive value, the ultrasonic diffuser 120 applies ultrasonic waves to a reference medium, and according to the irradiation time of the reference medium to which the ultrasonic waves are applied, the ultrasonic diffuser 120 is driven. Record the change information about the changed temperature of the reference medium.
  • FIG. 5 show graphs for the measurement step (S100), and (a) and (b) of FIG. 5 are results performed in different laboratories, respectively. is shown graphically.
  • the temperature change according to the ultrasonic irradiation time was recorded.
  • the second device drive value was set to 20% and the second measurement step (S100.2) was performed, and the sixth device drive value was sequentially set to 100%. Up to 6 measurement steps (S100.6) were performed.
  • the temperature change according to the ultrasonic irradiation time was recorded by experimenting twice with one device driving value.
  • the first change information was obtained by setting the first device drive value to 20%, and sequentially in the fifth measurement step (S100.5), the fifth device drive value was set to 100%.
  • fifth change information is acquired.
  • the sixth device driving value is set to 20% again Then, the 6th change information is obtained, and the 10th change information is obtained after sequentially setting the 10th device drive value to 100% in the 10th measurement step (S100.10).
  • the energy unit applied to the reference medium can be obtained by substituting the three conditions information into the following equation (1).
  • Equation (1) above can be derived by transforming the relational expression between heat quantity and specific heat. Since the unit of heat quantity is J (Joule), and dividing J by time (s) is W (Watt), both sides of the relational expression between heat quantity and specific heat are divided by unit time to obtain Equation (1).
  • (c) and (d) of FIG. 5 show graphs for the derivation step (S110) corresponding to (a) and (b) of FIG. 5, respectively.
  • each blue point is an energy unit derived based on the change information when the ultrasonic diffuser 120 is driven with the device drive value as the y value is recorded as the x value.
  • a relational expression between the device driving value and the energy unit may be derived through the relational information between the device driving value and the energy unit.
  • the regression information may correspond to a relational expression between the device drive value and energy, and the accuracy of the regression information may be determined through a coefficient of determination (R 2 ) for the relational expression. .
  • the coefficient of determination increases when the number of measurement steps (S100) is increased in the calibration step. That is, as the value of N in FIG. 4 increases, an accurate correlation between the device driving value and the energy unit can be obtained.
  • the value of N may be increased through repeated measurement.
  • 'N n x number of iterations'.
  • the value of N may be increased by further subdividing the level of the device driving value, that is, by increasing the value of n.
  • 'N n'.
  • the coefficient of determination is 0.9981 when the N value is 5
  • the result of the coefficient of determination is 0.9997 when the N value is 10.
  • the experiment when the experiment is performed by converting the ultrasonic intensity applied to the sample into an energy level through the calibration step, the experiment can be conducted and recorded at a standardized energy level without affecting the laboratory environment.
  • the energy transmitted to the microalgae sample can be quantified and standardized, so that the optimum ultrasonic intensity that can maximize the dispersion effect according to the type of microalgae or the source of the microalgae sample can be obtained. It can be derived and by applying the optimal ultrasonic intensity derived from the laboratory environment to the microalgae image continuous measurement device, it is possible to exert an effect of stably obtaining a high-resolution microalgae image.
  • microalgae can be found as data information on the optimal ultrasonic intensity for each laboratory is accumulated.
  • FIG. 6 shows an actual photograph and a blueprint of a flow cell 130 according to an embodiment of the present invention
  • FIG. 7 schematically shows a structural diagram of a flow path in the flow cell 130 according to an embodiment of the present invention. .
  • the flow cell 130 includes one or more flow passages, and each of the one or more flow passages includes an inlet passage 131 formed in a vertical direction and a horizontal inlet passage 131. and an outlet passage 133 extending in a vertical direction from the middle passage 132, and the inner surface of the middle passage 132 is provided to alleviate the problem of remaining algae adhesion. coated with nanomaterials.
  • FIG. 6(a) is an actual photograph of an actual flow cell 130 having different channel widths
  • FIG. 6(b) is a picture of the flow cell 130 shown in FIG. 6(a). It shows the blueprint. 7 shows the structure of a flow path located inside the flow cell 130.
  • one flow cell 130 includes two or more flow paths. Each flow path has a different width and is characterized by a technical feature that microalgae samples flowing through the flow path can be photographed at different magnifications in one flow cell 130. Images can be taken.
  • each flow passage forms an intermediate passage 132 extending horizontally from the inlet passage 131.
  • the microalgae sample flows through and the microalgae sample is discharged through the outlet passage 133 extending in the vertical direction from the intermediate passage 132.
  • the inlet passage 131 and the outlet passage 133 are open in the same direction.
  • the flow cell 130 uses a PDMS material for the PDMS chip, which is a part including the flow path, and the lower part of the PDMS chip is made of slide glass.
  • the PDMS material is a colorless polymer material similar to silicon and has excellent formability, so it is used in various fields such as biology, medicine, pharmacy, material engineering and mechanical engineering.
  • a structure in which a slide glass is attached to the lower end of the PDMS chip may be manufactured.
  • the PDMS chip may be manufactured with a height of 4.5 mm, preferably with a horizontal length of 63 mm and a vertical length of 20.5 mm, and depending on the laboratory environment and the size of the flow path, it may be larger or larger than that. It can also be produced in small shapes.
  • the inner surface of the passage is coated with nanomaterials.
  • microalgae may adhere to the inner surface of the flow path and block the flow path.
  • the remaining algae are coated by coating the inner surface of the flow path It alleviates the adhesion problem and allows the microalgae sample to pass through the flow cell 130 well.
  • FIG 8 shows images of microalgae according to the height of the flow cell passage according to an embodiment of the present invention.
  • the height of the passage means the height of the intermediate passage 132 with reference to FIG. 7 .
  • the height of the flow path is an important setting factor in microalgae image capture. As shown in FIG. 8, when the height of the flow path is higher than a certain height, the amount of light transmitted to the microalgae sample is reduced, and the microscope focuses difficulties may arise. However, if the height of the flow path is lower than a certain height, the microalgae sample may not flow smoothly in the flow path and the flow path may be clogged. To solve the problem, if the flow rate is increased in the flow cell 130 The resolution of the microalgae image may be lowered.
  • the height of the passage is preferably set to less than 50 ⁇ m, and more preferably, the height of the passage may be set to 20 to 30 ⁇ m.
  • FIG 9 shows images of microalgae according to the shape of a flow path in the flow cell 130 according to an embodiment of the present invention.
  • the middle passage 132 includes an inlet-side middle passage 132.1 having a first width; a middle-side intermediate passage 132.2 extending from the inlet-side intermediate passage 132.1 and having a second width; and an outlet-side intermediate passage 132.3 extending from the middle-side intermediate passage 132.2 and having a third width, and the second width may be greater than the first and third widths.
  • FIG. 9 Schematically, (a) of FIG. 9 is an embodiment of the present invention, which is a line-shaped intermediate flow path 132 used in a conventional experiment; And a microscope image when the intermediate flow path 132 is used;
  • FIG. 9 (b) is an embodiment of the present invention having a first to third width and a form used in the present invention a middle flow path (132); and a microscope image when the intermediate flow path 132 is used.
  • the middle flow passage 132 is a part for photographing the microalgae sample flowing in the flow cell 130 through a microscope.
  • the straight intermediate flow path 132 used in the conventional experiment is easy to manufacture and has low cost, and has advantages in terms of maintenance and is widely used.
  • the height of the intermediate flow path 132 is preferably low do.
  • the intermediate flow path 132 of the form shown in FIG. 9 (b) was manufactured.
  • Korean Patent Registration No. 10-2100197 also used a flow cell 130 in the form of varying the width of the flow path of the part to be photographed, but in the above registered patent, by performing the process of injecting chemicals into the flow cell 130 , The size of the flow cell 130 is large and the structure is complicated compared to the present invention. Due to this feature, the function of taking images of microalgae at various magnifications through two or more flow channels having various widths in one flow cell 130, which is a technical feature of the present invention, is implemented in the registered patent has a hard point.
  • the flow cell 130 of the registered patent has a complicated structure and is expensive to manufacture, unsuitable for obtaining high-resolution images, and difficult to maintain. As shown in (b) of FIG.
  • the flow cell 130 having a flow path used in the present invention has improved the above-mentioned problems, and through this, it is possible to take images of microalgae efficiently.
  • FIG. 10 schematically shows the structure of a microscope 200 according to an embodiment of the present invention.
  • the microscope 200 the lighting unit 210; a stage unit 220 disposed below the lighting unit 210 and having a through hole therein; and a lens unit 230 located below the stage unit 220 and movable up and down, wherein the flow cell 130 is seated on the upper surface of the stage unit 220, and the lens unit 230 may be introduced into the through hole.
  • an inverted microscope is used in the present invention.
  • the microscope can be largely classified into an upright microscope and an inverted microscope.
  • the upright microscope has an objective lens positioned above the stage 220, and the inverted microscope has an objective lens positioned below the stage 220. has a positioning form.
  • the upright microscope has an advantage in observing a slide sample because the lighting unit 210 is located at the bottom of the stage unit 220 and the objective lens is located at the top of the stage unit 220, and the inverted microscope has the lighting unit 210 is located at the top of the stage unit 220, and the objective lens is located at the bottom of the stage unit 220, so that the lower end of the sample is photographed, so it is suitable for photographing the sample contained in the culture medium.
  • an objective lens with a maximum magnification of 40 is used.
  • an image of microalgae flowing in the flow path inside the flow cell 130 seated on the stage unit 220 and as an embodiment of the present invention, by using the objective lens, an image of microalgae less than 10 ⁇ m in size can also be measured.
  • the lighting unit 210 is located on top of the stage unit 220 and emits light downward from the top of the inverted microscope.
  • the lens unit 230 photographs the inside of the flow cell 130 receiving light from the lighting unit 210 .
  • the lens unit 230 can capture the intermediate flow path 132 located inside the flow cell 130, and more specifically, referring to FIG. 9, the second width of the intermediate flow path 132 A sample of microalgae flowing in the middle side intermediate passage 132.2 is photographed.
  • the working distance becomes shorter, which may cause difficulty in focusing. That is, when the upright microscope is used in the present invention, since the flow path is located at the bottom of the PDMS chip of the flow cell 130, the thickness of the flow cell 130 can reduce the working distance when a high-magnification lens is used. Since the problem of exceeding occurs, the present invention uses the inverted microscope in consideration of structural and functional features.
  • the working distance means the vertical distance between the surface of the objective lens and the slide glass when focus is achieved. Therefore, by using the inverted microscope, a higher magnification objective lens can be used than when using an upright microscope, and through this, microalgae images can be stably captured.
  • the stage part 220 is located in the middle of the inverted microscope, that is, between the lighting part 210 and the lens part 230, and is a part for placing the flow cell 130 thereon.
  • two flow cells 130 can be placed on the stage unit 220, and a lens unit 230 capable of taking pictures of each flow cell 130 and a camera are provided on the stage unit ( 220) to be installed on the lower part respectively.
  • the lens unit 230 may have objective lenses of different magnifications, each objective lens is connected to the camera, and the camera is connected to the computer, so that the microalgae image captured through the camera is It is collected by an image analysis program installed on the computer.
  • the two flow cells 130 may include a plurality of passages having different widths therein, and through the plurality of passages, different magnifications may be obtained for one microalgae sample. It is possible to exert the effect of acquiring the image of microalgae.
  • the stage part 220 includes a through hole therein, and the flow cell 130 is seated on top of the through hole.
  • the slide glass of the flow cell 130 is seated facing the lens unit 230, and the flow cell 130 is mounted on the stage unit (not shown) through a fixing device (not shown) included in the stage unit 220. 220) can be fixed.
  • a small movement of the transfer pump 140 can be controlled through the fixing device, so that a clear image of microalgae can be obtained.
  • the middle side intermediate flow passage 132.2 inside the flow cell 130 may be installed to be placed in the center of the through hole.
  • the lens unit 230 can install two or more objective lenses of one microscope 200, and each objective lens can use a different magnification, so that birds having different sizes can be photographed simultaneously, or the same For an algae of the same size, it may be photographed widely through one low magnification objective lens so that many algae cells can come out, or a plurality of algae cells may be photographed in detail one by one using a high magnification objective lens. Also, the lens unit 230 may move up and down to focus, and to focus, the lens unit 230 may be inserted into the through hole.
  • microalgal floes can be minimized through sample dilution and cell fixation automation based on the turbidity of the microalgal sample, thereby achieving an effect of stably measuring the image.
  • the possibility of algae contacting the flow path can be reduced by nano-coating the inner surface of the flow cell flow path, thereby alleviating the problem of remaining algae adhesion and preventing contamination by long-term monitoring.
  • the pretreatment method through the ultrasonic disperser it is possible to exhibit the effect of increasing the single cell recovery rate and solving the efficiency and time problems compared to the conventional pretreatment method using chemicals and heat treatment.
  • the intensity of the ultrasonic diffuser can be standardized through the calibration step, and through this, cross-validation between laboratories can be implemented.
  • the health of the aquatic ecosystem can be secured through real-time monitoring of streams, etc., and the quality of purified water can be improved by monitoring the intake source, thereby contributing to securing water quality stability.
  • the present invention it is possible to analyze the species of microalgae by water area, and it is possible to detect or prevent the occurrence of algae in advance through real-time monitoring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

The present invention relates to a microalga image continuous measurement apparatus and, more specifically, to a microalga image continuous measurement apparatus which disperses a microalga aggregate through a dilute solvent and an ultrasonic homogenizer when a microalga sample is injected in order to acquire a high-resolution microalga image and allows the dispersed microalga sample to pass through a flow cell, and thus can acquire a high-resolution microalga image, and enables the microalga sample to continuously pass through the flow cell by means of a transfer pump, and thus can continuously acquire a plurality of microalga images.

Description

미세조류이미지 연속 측정장치Microalgae image continuous measuring device
본 발명은 미세조류이미지 연속 측정장치에 관한 것으로서, 보다 상세하게는 고해상도의 미세조류이미지를 획득하기 위해 미세조류샘플을 주입하면 희석용매와 초음파분산기를 통해 미세조류의 응집체를 분산시키고, 분산된 상기 미세조류샘플을 플로우셀에 통과시킴으로써 고해상도의 미세조류이미지를 획득할 수 있으며, 상기 미세조류샘플은 이송펌프에 의해 지속적으로 플로우셀을 통과할 수 있어 복수의 미세조류이미지를 연속적으로 획득할 수 있는, 미세조류이미지 연속 측정장치에 관한 것이다.The present invention relates to a microalgae image continuous measuring device, and more particularly, when a microalgae sample is injected to obtain a high-resolution microalgae image, the aggregates of microalgae are dispersed through a dilution solvent and an ultrasonic disperser, and the dispersed By passing the microalgae sample through the flow cell, a high-resolution microalgae image can be obtained, and the microalgae sample can continuously pass through the flow cell by a transfer pump to continuously acquire a plurality of microalgae images , It relates to a microalgae image continuous measuring device.
최근 지구환경이 급격히 악화되고 있고, 수중으로 유입되는 유해물질의 양이 증가되고 있으며, 이에 따른 안전한 수자원 확보에 대한 요구가 사회적으로 요구되고 있다.Recently, the global environment is rapidly deteriorating, and the amount of harmful substances flowing into the water is increasing, and accordingly, there is a social demand for securing safe water resources.
특히, 부유성 조류(phytoplankton)는 광합성을 하는 수질 미세 생물로서, 적정수온 이상과 빛이 존재하는 환경에서는 바다, 하천, 호수 등 어디에나 존재하고, 이러한 조류는 박테리아성 원핵생물 조류인 cyanobateria(또는 bluegreen algae, 남세균)를 비롯해 진행생물인 녹조류, 규조류 등 다양한 종이 존재하고, 하천이나 호수에서는 조류가 과대 번식하여 수화현상을 일으키면 특유의 악취가 발생하여 수처리 공정에서 문제를 발생시키며, 일부 남조류의 경우 microcystin과 같은 인체에 유해한 독성물질을 분비하기 때문에 보건환경 문제도 발생시키는 문제점이 있다. In particular, phytoplankton are photosynthetic microscopic organisms of water quality, and exist everywhere, such as seas, rivers, and lakes, in an environment where the water temperature is higher than the appropriate temperature and light exists. algae, cyanobacteria), as well as various species such as green algae and diatoms, which are progressive organisms. In rivers and lakes, when algae proliferate excessively and cause hydration, a unique odor occurs, causing problems in the water treatment process. In the case of some blue-green algae, microcystin Since it secretes toxic substances harmful to the human body, such as, there is a problem of causing health and environmental problems.
이러한 조류 군은 지역, 환경 및 계절에 따라 우점종을 달리하기도 하며, 호수나 하천의 수질 및 환경을 제대로 관리하고 모니터링하기 위해서는 이들 조류 군 각각에 대한 DB를 확보하는 것이 중요하다. These algae groups sometimes differ in dominant species depending on the region, environment, and season, and it is important to secure a DB for each of these algae groups in order to properly manage and monitor the water quality and environment of a lake or river.
이에 따라 다양한 조류 모니터링 장치 및 방법에 대한 연구가 이루어지고 있다. 종래의 조류 모니터링 기술로는 대한민국 등록특허 제10-1898712호, 대한민국 공개특허 제2012-0133974호, 대한민국 등록특허 제10-0917030호 등과 같이 주로, 조류가 포함된 시료에 복수의 파장을 갖는 빛을 조사하여 조류들이 발생시키는 파장을 분석하는 방식이 있으며, 대한민국 등록특허 제10-1928919호와 같이 색도, 온도, 조도를 검출하는 방식, 대한민국 등록특허 제10-1683379호와 같이 조류로부터 추출된 DNA를 분석하는 방식, 대한민국 등록특허 제10-2100197호와 같이 현미경으로 조류 이미지를 촬영하는 방법 등이 있다.Accordingly, research on various algae monitoring devices and methods is being conducted. Conventional algae monitoring technology mainly uses light having a plurality of wavelengths to a sample containing algae, such as Korean Patent Registration No. 10-1898712, Korean Patent Publication No. 2012-0133974, and Korean Patent Registration No. 10-0917030. There is a method of analyzing the wavelengths generated by algae by irradiation, and there is a method of detecting chromaticity, temperature, and illuminance as in Korean Patent No. 10-1928919, and a method of detecting DNA extracted from algae as in Korean Patent No. 10-1683379. There is a method of analyzing, and a method of photographing algae images with a microscope, such as in Korean Patent Registration No. 10-2100197.
빛의 파장, 색도, 온도, 조도를 검출하는 방식은 조류의 발생량 분석을 주 목적으로 하고, 분류에서 있어서는 색상으로 구분되는 수준만을 분석할 수 있기 때문에 종을 판별하는 데는 한계가 있다. 종 분류를 위해서는 조류로부터 추출된 DNA 분석 또는 현미경을 통해 확대된 조류 이미지를 실험자의 판단으로 구분하는 방식을 사용하고 있다. 하지만, 2015년 구축된 국립생물자원관 자생생물 종목록 기준 미세조류는 규조류 1,738종, 담수녹조류 1,308 종, 편모조류 686 종, 남조류 239 종으로 DNA 분석법은 시간이 너무 오래 걸리며, 현미경을 통한 분석 방식 역시 시간, 비용 문제와 인식오류의 가능성이 있다.The method of detecting the wavelength, chromaticity, temperature, and illuminance of light has limitations in discriminating species because the main purpose is to analyze the amount of algae generated, and only the level classified by color can be analyzed in classification. For species classification, DNA analysis extracted from algae or algae images magnified through a microscope are classified according to the experimenter's judgment. However, based on the National Institute of Biological Resources’ native species list established in 2015, 1,738 species of diatoms, 1,308 species of freshwater green algae, 686 species of flagella, and 239 species of cyanobacteria were found. There are time and cost issues and the possibility of recognition errors.
한편, 최근에는 인공지능 알고리즘을 이용하여 이미지를 학습하고 객체를 분류하는 기술에 대한 연구가 이루어지고 있다. 딥러닝을 통한 이미지 분류는 높은 정확도를 가지고 많은 양의 이미지를 분석할 수 있다는 장점이 있지만, 이를 위해서는 충분한 학습량이 요구되며, 일반적으로 한가지 객체를 분류하기 위해서는 학습에 최소 2000장 이상의 이미지가 필요하다고 알려져 있다.On the other hand, recently, research on a technique for learning images and classifying objects using artificial intelligence algorithms has been conducted. Image classification through deep learning has the advantage of being able to analyze a large amount of images with high accuracy, but a sufficient amount of learning is required for this. It is known.
따라서, 조류 군 각각에 대한 DB를 확보하기 위해서 하천 혹은 상수원에서 채취한 샘플을 이용하여 수천장의 고해상도 미세조류이미지 파일을 종래의 기술보다 빠르게 획득할 수 있는 장치 등에 관한 발명이 요구되는 실정이다.Therefore, in order to secure a DB for each group of algae, there is a need for an invention related to a device capable of acquiring thousands of high-resolution microalgae image files faster than conventional techniques using samples taken from rivers or water sources.
본 발명은 미세조류이미지 연속 측정장치에 관한 것으로서, 보다 상세하게는 고해상도의 미세조류이미지를 획득하기 위해 미세조류샘플을 주입하면 희석용매와 초음파분산기를 통해 미세조류의 응집체를 분산시키고, 분산된 상기 미세조류샘플을 플로우셀에 통과시킴으로써 고해상도의 미세조류이미지를 획득할 수 있으며, 상기 미세조류샘플은 이송펌프에 의해 지속적으로 플로우셀을 통과할 수 있어 복수의 미세조류이미지를 연속적으로 획득할 수 있는 것을 목적으로 한다.The present invention relates to a microalgae image continuous measuring device, and more particularly, when a microalgae sample is injected to obtain a high-resolution microalgae image, the aggregates of microalgae are dispersed through a dilution solvent and an ultrasonic disperser, and the dispersed By passing the microalgae sample through the flow cell, a high-resolution microalgae image can be obtained, and the microalgae sample can continuously pass through the flow cell by a transfer pump to continuously acquire a plurality of microalgae images aims to
상기와 같은 과제를 해결하기 위하여, 본 발명은 미세조류이미지 연속 측정장치로서, 미세조류샘플에 포함된 협잡물을 제거하는 필터부; 상기 미세조류샘플에 용매를 공급하여 상기 미세조류의 탁도를 조절하는 희석부; 상기 미세조류샘플의 전처리를 위한 미세조류 종류별 초음파세기로 상기 미세조류샘플에 초음파를 조사하여 상기 미세조류를 분산시키는 초음파분산기; 상기 초음파분산기에 의하여 초음파가 가해진 상기 미세조류샘플이 흐르는 플로우셀; 상기 플로우셀 내부의 상기 미세조류샘플을 연속적으로 촬영하는 현미경; 및 상기 미세조류샘플을 상기 필터부에서 상기 플로우셀까지 이송시키는 이송펌프;를 포함하는 미세조류이미지 연속 측정장치를 제공한다.In order to solve the above problems, the present invention is an apparatus for continuously measuring microalgae images, comprising: a filter unit for removing contaminants included in microalgae samples; a dilution unit supplying a solvent to the microalgae sample to control the turbidity of the microalgae; An ultrasonic disperser for dispersing the microalgae by irradiating ultrasonic waves to the microalgae sample with ultrasonic intensity for each type of microalgae for pretreatment of the microalgae sample; a flow cell through which the microalgae sample to which ultrasonic wave is applied by the ultrasonic disperser flows; a microscope for continuously photographing the microalgae sample inside the flow cell; and a transfer pump transferring the microalgae sample from the filter unit to the flow cell.
본 발명의 일 실시예에서는, 상기 희석부는, 상기 미세조류샘플의 탁도를 측정하기 위한 탁도계; 상기 탁도계에서 측정된 탁도를 기반으로 상기 미세조류샘플을 희석시킬 수 있는 희석용매; 및 상기 희석용매를 사용하여 상기 미세조류샘플을 희석시키는 희석챔버;를 포함하고, 상기 희석용매는 증류수를 포함하고, 선택적으로 미세조류의 고정을 위해 화학적 에이전트를 더 포함할 수 있다.In one embodiment of the present invention, the dilution unit, a turbidimeter for measuring the turbidity of the microalgae sample; A dilution solvent capable of diluting the microalgae sample based on the turbidity measured by the turbidimeter; and a dilution chamber for diluting the microalgae sample using the dilution solvent, wherein the dilution solvent includes distilled water, and may optionally further include a chemical agent for fixing the microalgae.
본 발명의 일 실시예에서는, 상기 초음파분산기는, 입력된 조류에 상응하는 에너지단위 혹은 입력된 에너지단위에 대한 장치구동값을 도출하는 캘리브레이션 단계; 상기 캘리브레이션 단계에서 도출된 장치구동값으로 초음파분산기를 구동하는 장치구동단계;를 수행할 수 있다.In one embodiment of the present invention, the ultrasonic diffuser, a calibration step of deriving a device driving value for the energy unit or the input energy unit corresponding to the input tide; A device driving step of driving the ultrasonic diffuser with the device driving value derived in the calibration step; may be performed.
본 발명의 일 실시예에서는, 상기 캘리브레이션 단계는, 제1장치구동값으로 초음파분산기를 구동하여, 기준매체에 초음파를 가하고, 상기 기준매체 온도의 제1변화정보를 측정하는 제1측정단계; 제2장치구동값으로 초음파분산기를 구동하여, 기준매체에 초음파를 가하고, 상기 기준매체 온도의 제2변화정보를 측정하는 제2측정단계; 상기 제1변화정보에 기초하여 제1장치구동값에 대한 제1에너지단위를 도출하는 제1도출단계; 상기 제2변화정보에 기초하여 제2장치구동값에 대한 제2에너지단위를 도출하는 제2도출단계; 및 상기 제1장치구동값, 제2장치구동값, 제1에너지단위, 및 제2에너지단위를 포함하는 회귀정보에 기초하여, 장치구동값과 에너지단위의 관계정보를 도출하는 단계;를 포함하고, 상기 장치구동값과 에너지단위의 관계정보에 근거하여 미세조류 종류별 초음파세기를 도출할 수 있다.In one embodiment of the present invention, the calibration step may include: a first measuring step of driving the ultrasonic diffuser with a first device driving value, applying ultrasonic waves to a reference medium, and measuring first change information of the temperature of the reference medium; a second measurement step of driving the ultrasonic diffuser with a second device driving value, applying ultrasonic waves to the reference medium, and measuring second change information of the temperature of the reference medium; a first derivation step of deriving a first energy unit for a first device driving value based on the first change information; a second derivation step of deriving a second energy unit for a second device drive value based on the second change information; and deriving relationship information between the device drive value and the energy unit based on the regression information including the first device drive value, the second device drive value, the first energy unit, and the second energy unit. , It is possible to derive the ultrasonic intensity for each type of microalgae based on the relational information between the device driving value and the energy unit.
본 발명의 일 실시예에서는, 상기 장치구동단계에서는, 상기 캘리브레이션 단계에서 도출한 초음파세기로 기설정된 시간동안 상기 미세조류샘플에 초음파를 조사하여 미세조류 응집체인 플록(floc)을 분산시킬 수 있다.In one embodiment of the present invention, in the device driving step, the ultrasonic wave is irradiated to the microalgae sample for a predetermined time with the ultrasonic intensity derived in the calibration step to disperse flocs, which are microalgal aggregates.
본 발명의 일 실시예에서는, 상기 플로우셀은 1 이상의 유로를 포함하고, 상기 1 이상의 유로 각각은, 수직방향으로 형성된 입구유로, 상기 입구유로에서 수평방향으로 연장되는 중간유로, 및 상기 중간유로에서 수직방향으로 연장되는 출구유로를 포함하고, 상기 중간유로의 내부면은 잔여 조류 부착 문제를 완화하기 위해 나노물질로 코팅되어 있다.In one embodiment of the present invention, the flow cell includes one or more flow passages, and each of the one or more flow passages includes an inlet passage formed in a vertical direction, an intermediate passage extending horizontally from the inlet passage, and an intermediate passage extending from the inlet passage. It includes an outlet passage extending in a vertical direction, and an inner surface of the intermediate passage is coated with nanomaterials to alleviate the problem of residual algae attachment.
본 발명의 일 실시예에서는, 상기 중간유로는, 제1너비를 갖는 입구측중간유로; 상기 입구측중간유로로부터 연장되고, 제2너비를 갖는 중간측중간유로; 상기 중간측중간유로로부터 연장되고, 제3너비를 갖는 출구측중간유로;를 포함하고, 상기 제2너비는 상기 제1너비 및 제3너비보다 크게 할 수 있다.In one embodiment of the present invention, the intermediate flow passage, the inlet side intermediate flow passage having a first width; a middle-side intermediate passage extending from the inlet-side intermediate passage and having a second width; and an outlet-side intermediate passage extending from the middle-side intermediate passage and having a third width, wherein the second width may be greater than the first width and the third width.
본 발명의 일 실시예에서는, 상기 현미경은, 조명부; 조명부 하측에 배치되고, 내부에 관통홀이 형성된 스테이지부; 및 상기 스테이지부 하측에 위치하고, 상하로 이동할 수 있는 렌즈부;를 포함하고, 상기 플로우셀은 상기 스테이지부 상면에 안착되고, 상기 렌즈부가 상기 관통 홀 내부로 인입될 수 있다.In one embodiment of the present invention, the microscope, the lighting unit; a stage unit disposed below the lighting unit and having a through hole therein; and a lens unit located below the stage unit and movable up and down, wherein the flow cell is seated on an upper surface of the stage unit, and the lens unit can be inserted into the through hole.
본 발명의 일 실시예에 따르면, 미세조류샘플의 탁도에 기반한 샘플 희석 및 세포 고정 자동화를 통해 미세조류 플록을 최소화하여 안정적으로 이미지를 측정할 수 있는 효과를 발휘할 수 있다.According to one embodiment of the present invention, microalgal floes can be minimized through sample dilution and cell fixation automation based on the turbidity of the microalgal sample, thereby achieving an effect of stably measuring the image.
본 발명의 일 실시예에 따르면, 종래의 일자 모양을 가진 플로우셀 유로에 너비변화를 줌으로써, 조류의 흐름을 원활히 하고, 안정적인 이미지를 측정할 수 있는 효과를 발휘할 수 있다.According to one embodiment of the present invention, by giving a change in width to a flow cell flow path having a conventional straight line shape, it is possible to achieve an effect of facilitating the flow of algae and measuring stable images.
본 발명의 일 실시예에 따르면, 플로우셀 유로 내부면을 나노코팅하여 조류의 유로 접촉 가능성을 낮출 수 있고, 이를 통해 잔여 조류 부착문제를 완화시키고 장시간 모니터링에 의한 오염을 방지할 수 있는 효과를 발휘할 수 있다. According to one embodiment of the present invention, the possibility of algae contacting the flow path can be reduced by nano-coating the inner surface of the flow cell flow path, thereby alleviating the problem of remaining algae adhesion and preventing contamination by long-term monitoring. can
본 발명의 일 실시예에 따르면, 자동화시스템을 통해 전처리과정 및 촬영과정을 수행함으로써, 미세조류이미지를 획득하는 데 있어서 효율성을 높이는 효과를 발휘할 수 있다.According to one embodiment of the present invention, by performing a pre-processing process and a photographing process through an automated system, it is possible to exert an effect of increasing efficiency in acquiring microalgae images.
본 발명의 일 실시예에 따르면, 초음파분산기를 통한 전처리방법을 통해, 종래의 약품 및 열처리에 의한 전처리 방법에 비해 단일세포 회수율을 증가시키고 효율 및 시간 문제를 해결하는 효과를 발휘할 수 있다.According to one embodiment of the present invention, through the pretreatment method through the ultrasonic disperser, it is possible to exhibit the effect of increasing the single cell recovery rate and solving the efficiency and time problems compared to the conventional pretreatment method using chemicals and heat treatment.
본 발명의 일 실시예에 따르면, 캘리브레이션 단계를 통해 초음파 분산기의 세기를 표준화할 수 있고, 이를 통해 실험실간 교차 검증을 구현할 수 있는 효과를 발휘할 수 있다.According to an embodiment of the present invention, the intensity of the ultrasonic diffuser can be standardized through the calibration step, and through this, cross-validation between laboratories can be implemented.
본 발명의 일 실시예에 따르면, 하천 등 실시간 감시를 통해 수생태계의 건강성을 확보하고, 취수원 감시에 의한 정수 수질 향상으로 수질 안정성 확보에 기여하는 효과를 발휘할 수 있다. According to an embodiment of the present invention, the health of the aquatic ecosystem can be secured through real-time monitoring of streams, etc., and the quality of purified water can be improved by monitoring the intake source, thereby contributing to securing water quality stability.
본 발명의 일 실시예에 따르면, 수역별 미세조류 종 분석이 가능하며, 실시간 모니터링을 통해 녹조 발생을 조기에 감지하거나 미리 예방할 수 있는 효과를 발휘할 수 있다.According to one embodiment of the present invention, it is possible to analyze the species of microalgae by water area, and it is possible to detect or prevent the occurrence of algae in advance through real-time monitoring.
도 1은 본 발명의 일 실시예에 따른 미세조류이미지 연속 측정장치를 개략적으로 도시한다.1 schematically shows an apparatus for continuously measuring microalgae images according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따라 전처리방법에 따른 미세조류 이미지를 도시한다.2 shows an image of microalgae according to a pretreatment method according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따라 미세조류샘플에 초음파를 조사하는 초음파분산기의 세기에 따른 미세조류 이미지를 도시한다.Figure 3 shows microalgae images according to the intensity of the ultrasonic disperser for irradiating ultrasonic waves to microalgae samples according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 캘리브레이션 단계에서의 수행단계들을 개략적으로 도시한다.4 schematically illustrates steps performed in a calibration step according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 캘리브레이션 단계에서 장치구동값과 에너지단위의 관계정보를 산출하기 위한 그래프를 도시한다.5 shows a graph for calculating relationship information between a device drive value and an energy unit in a calibration step according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 플로우셀의 실제 사진 및 설계도를 도시한다.6 shows an actual photograph and a schematic diagram of a flow cell according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 플로우셀 내 유로의 구조도를 개략적으로 도시한다.7 schematically shows a structural diagram of a flow path in a flow cell according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따라 플로우셀 유로의 높이에 따른 미세조류이미지를 도시한다.8 shows images of microalgae according to the height of the flow cell passage according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따라 플로우셀 내 유로의 모양에 따른 미세조류 이미지를 도시한다.9 shows images of microalgae according to the shape of a flow path in a flow cell according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 도립식 현미경의 구조를 개략적으로 도시한다. 10 schematically shows the structure of an inverted microscope according to an embodiment of the present invention.
이하에서는, 다양한 실시예들 및/또는 양상들이 이제 도면들을 참조하여 개시된다. 하기 설명에서는 설명을 목적으로, 하나이상의 양상들의 전반적 이해를 돕기 위해 다수의 구체적인 세부사항들이 개시된다. 그러나, 이러한 양상(들)은 이러한 구체적인 세부사항들 없이도 실행될 수 있다는 점 또한 본 발명의기술 분야에서 통상의 지식을 가진 자에게 인식될 수 있을 것이다. 이후의 기재 및 첨부된 도면들은 하나 이상의 양상들의 특정한 예시적인 양상들을 상세하게 기술한다. 하지만, 이러한 양상들은 예시적인 것이고 다양한 양상들의 원리들에서의 다양한 방법들 중 일부가 이용될 수 있으며, 기술되는 설명들은 그러한 양상들 및 그들의 균등물들을 모두 포함하고자 하는 의도이다.In the following, various embodiments and/or aspects are disclosed with reference now to the drawings. In the following description, for purposes of explanation, numerous specific details are set forth in order to facilitate a general understanding of one or more aspects. However, it will also be appreciated by those skilled in the art that such aspect(s) may be practiced without these specific details. The following description and accompanying drawings describe in detail certain illustrative aspects of one or more aspects. However, these aspects are exemplary and some of the various methods in principle of the various aspects may be used, and the described descriptions are intended to include all such aspects and their equivalents.
또한, 다양한 양상들 및 특징들이 다수의 디바이스들, 컴포넌트들 및/또는 모듈들 등을 포함할 수 있는 시스템에 의하여 제시될 것이다. 다양한 시스템들이, 추가적인 장치들, 컴포넌트들 및/또는 모듈들 등을 포함할 수 있다는 점 그리고/또는 도면들과 관련하여 논의된 장치들, 컴포넌트들, 모듈들 등 전부를 포함하지 않을 수도 있다는 점 또한 이해되고 인식되어야 한다. Moreover, various aspects and features will be presented by a system that may include a number of devices, components and/or modules, and the like. It should also be noted that various systems may include additional devices, components and/or modules, and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. It must be understood and recognized.
본 명세서에서 사용되는 "실시예", "예", "양상", "예시" 등은 기술되는 임의의 양상 또는 설계가 다른 양상 또는 설계들보다 양호하다거나, 이점이 있는 것으로 해석되지 않을 수도 있다. 아래에서 사용되는 용어들 '~부', '컴포넌트', '모듈', '시스템', '인터페이스' 등은 일반적으로 컴퓨터 관련 엔티티(computer-related entity)를 의미하며, 예를 들어, 하드웨어, 하드웨어와 소프트웨어의 조합, 소프트웨어를 의미할 수 있다."Example", "example", "aspect", "exemplary", etc., used herein should not be construed as preferring or advantageous to any aspect or design being described over other aspects or designs. . The terms '~unit', 'component', 'module', 'system', 'interface', etc. used below generally mean a computer-related entity, and for example, hardware, hardware It may mean a combination of and software, software.
또한, "포함한다" 및/또는 "포함하는"이라는 용어는, 해당 특징 및/또는 구성요소가 존재함을 의미하지만, 하나 이상의 다른 특징, 구성요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는 것으로 이해되어야 한다.Also, the terms "comprises" and/or "comprising" mean that the feature and/or element is present, but excludes the presence or addition of one or more other features, elements and/or groups thereof. It should be understood that it does not.
또한, 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.In addition, terms including ordinal numbers, such as first and second, may be used to describe various components, but the components are not limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention. The terms and/or include any combination of a plurality of related recited items or any of a plurality of related recited items.
또한, 본 발명의 실시예들에서, 별도로 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석In addition, in the embodiments of the present invention, unless otherwise defined, all terms used herein, including technical or scientific terms, are generally understood by those of ordinary skill in the art to which the present invention belongs. has the same meaning as Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the meaning in the context of the related art.
되어야 하며, 본 발명의 실시예에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.It should be, unless it is clearly defined in the embodiments of the present invention, it is not to be interpreted in an ideal or excessively formal meaning.
도 1은 본 발명의 일 실시예에 따른 미세조류이미지 연속 측정장치를 개략적으로 도시한다.1 schematically shows an apparatus for continuously measuring microalgae images according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 미세조류이미지 연속 측정장치로서, 미세조류샘플에 포함된 협잡물을 제거하는 필터부(100); 상기 미세조류샘플에 용매를 공급하여 상기 미세조류의 탁도를 조절하는 희석부(110); 상기 미세조류샘플의 전처리를 위한 미세조류 종류별 초음파세기로 상기 미세조류샘플에 초음파를 조사하여 상기 미세조류를 분산시키는 초음파분산기(120); 상기 초음파분산기(120)에 의하여 초음파가 가해진 상기 미세조류샘플이 흐르는 플로우셀(130); 상기 플로우셀(130) 내부의 상기 미세조류샘플을 연속적으로 촬영하는 현미경; 및 상기 미세조류샘플을 상기 필터부(100)에서 상기 플로우셀(130)까지 이송시키는 이송펌프(140);를 포함하는 미세조류이미지 연속 측정장치를 제공한다.As shown in FIG. 1, an apparatus for continuously measuring microalgae images, comprising: a filter unit 100 for removing contaminants included in microalgae samples; A dilution unit 110 for supplying a solvent to the microalgae sample to adjust the turbidity of the microalgae; An ultrasonic disperser 120 for dispersing the microalgae by irradiating ultrasonic waves to the microalgae sample at ultrasonic intensity for each type of microalgae for pretreatment of the microalgae sample; a flow cell 130 through which the microalgae sample to which ultrasonic wave is applied by the ultrasonic disperser 120 flows; a microscope for continuously photographing the microalgae sample inside the flow cell 130; and a transfer pump 140 for transferring the microalgae sample from the filter unit 100 to the flow cell 130.
한편, 상기 희석부(110)는, 상기 미세조류샘플의 탁도를 측정하기 위한 탁도계; 상기 탁도계에서 측정된 탁도를 기반으로 상기 미세조류샘플을 희석시킬 수 있는 희석용매; 및 상기 희석용매를 사용하여 상기 미세조류샘플을 희석시키는 희석챔버;를 포함하고, 상기 희석용매는 증류수를 포함하고, 선택적으로 미세조류의 고정을 위해 화학적 에이전트를 더 포함할 수 있다.On the other hand, the dilution unit 110, a turbidimeter for measuring the turbidity of the microalgae sample; A dilution solvent capable of diluting the microalgae sample based on the turbidity measured by the turbidimeter; and a dilution chamber for diluting the microalgae sample using the dilution solvent, wherein the dilution solvent includes distilled water, and may optionally further include a chemical agent for fixing the microalgae.
구체적으로, 상기 필터부(100)에서는 미세조류샘플 내에 존재하는 미세조류 응집체인 플록을 분산시키기 위한 전처리단계 중 첫번째 단계가 수행되며, 마이크로시브(Microsieve) 필터를 사용하여 미세조류샘플을 필터링한다. 상기 마이크로시브 필터는 기공 크기가 수십 ㎛ 내지 수천 ㎛인 메시(Mesh)형 필터로 상기 미세조류샘플 내에 존재하는 협잡물을 제거한다. 조류 배양종과 달리 취수원에서 취득한 시료는 협잡물 제거과정 및 희석과정이 필수적으로 요구된다. 상기 마이크로시브 필터는 조류의 특성에 따라 이물질을 제거하거나 혹은 타겟 크기 이하의 조류만 플로우셀(130)로 유입될 수 있도록 기공 크기를 조절하여 사용될 수 있다.Specifically, in the filter unit 100, the first step of the pretreatment steps for dispersing flocs, which are microalgae aggregates present in the microalgae sample, is performed, and the microalgae sample is filtered using a microsieve filter. The microsieve filter is a mesh filter having a pore size of several tens of μm to several thousand μm, and removes contaminants present in the microalgae sample. Unlike algae cultures, samples obtained from water sources require a process of removing contaminants and dilution. The microsieve filter may be used by removing foreign substances according to the characteristics of the algae or by adjusting the pore size so that only algae having a target size or smaller may be introduced into the flow cell 130 .
본 발명의 일 실시예에 따르면, 1000 ㎛의 기공 크기를 가진 마이크로시브 필터는 플로우셀(130) 내의 이물질 유입 방지를 위해 사용될 수 있고, 50 ㎛의 기공 크기를 가진 마이크로시브 필터는 미세조류 군체를 개체로 분산시키기 위해 사용될 수 있다. 본 발명의 다른 실시예에 따르면, 작은 기공 크기를 가진 마이크로시브 필터를 사용하더라도 개체 분산 효과가 뚜렷하게 나타나지 않을 수 있고, 이를 보완하기 위해 추가적인 전처리단계를 수행할 수 있다. 상기 추가적인 전처리단계로는 희석단계 및 초음파분산단계가 있으며, 이에 대한 자세한 사항은 후술하도록 한다.According to one embodiment of the present invention, a microsieve filter with a pore size of 1000 μm can be used to prevent foreign substances from entering the flow cell 130, and a microsieve filter with a pore size of 50 μm can prevent microalgae colonies. Can be used to disperse into entities. According to another embodiment of the present invention, even if a microsieve filter having a small pore size is used, the object dispersion effect may not appear clearly, and an additional pretreatment step may be performed to compensate for this. The additional pretreatment step includes a dilution step and an ultrasonic dispersion step, which will be described in detail later.
상기 희석부(110)에서는 상기 미세조류샘플 내의 플록을 분산시키기 위한 전처리단계 중 두번째 단계가 수행되며, 상기 미세조류샘플의 탁도를 측정한 뒤, 측정된 탁도를 토대로 희석용매를 사용하여 상기 미세조류샘플을 희석시킬 수 있다. In the dilution unit 110, the second step of the pretreatment step for dispersing the floc in the microalgae sample is performed, and after measuring the turbidity of the microalgae sample, a dilution solvent is used based on the measured turbidity to reduce the microalgae Samples can be diluted.
상기 미세조류샘플의 탁도는 상기 희석부(110)에 구비된 탁도계에 의해 측정될 수 있다. 구체적으로, 상기 탁도계는 상기 미세조류샘플에 빛을 조사하여 상기 샘플에 투과되는 빛이 분산입자에 의하여 반사 또는 산란되는 정도를 표준액과 비교하는 방식으로 상기 미세조류샘플의 탁도를 측정할 수 있다. The turbidity of the microalgae sample may be measured by a turbidity meter provided in the dilution unit 110. Specifically, the turbidimeter can measure the turbidity of the microalgae sample by irradiating the microalgae sample with light and comparing the degree of reflection or scattering of the light transmitted through the sample by the dispersed particles with a standard solution.
상기 탁도계를 통해 측정된 상기 미세조류샘플의 탁도에 기초하여, 상기 희석부(110)에서는 구비된 희석챔버로 주입되는 희석용매의 양을 조절할 수 있다. 본 발명의 일 실시예로서, 상기 미세조류샘플의 탁도는 200NTU 미만이 되도록 상기 희석용매를 상기 희석챔버에 주입하는 것이 바람직하며, 희석용매로는 증류수를 사용한다.Based on the turbidity of the microalgae sample measured through the turbidimeter, the dilution unit 110 may adjust the amount of the dilution solvent injected into the dilution chamber provided. As an embodiment of the present invention, it is preferable to inject the dilution solvent into the dilution chamber so that the turbidity of the microalgae sample is less than 200 NTU, and distilled water is used as the dilution solvent.
한편, 본 발명의 일 실시예로서, 상기 미세조류샘플 내의 조류의 고정을 위해서 선택적으로 화학적 에이전트를 상기 희석용매에 포함시켜 사용할 수 있다. 상기 화학적 에이전트로는 포름알데히드 등이 사용될 수 있으며, 본 발명의 일 실시예로서 상기 미세조류샘플 내의 플록을 분산시키기 위해 KOH(수산화칼륨) 혹은 NaOH(수산화나트륨)과 같은 화학적 에이전트를 추가적으로 사용할 수 있다.Meanwhile, as an embodiment of the present invention, a chemical agent may be selectively included in the dilution solvent to fix the algae in the microalgae sample. Formaldehyde and the like may be used as the chemical agent, and as an embodiment of the present invention, a chemical agent such as KOH (potassium hydroxide) or NaOH (sodium hydroxide) may be additionally used to disperse the flocs in the microalgae sample. .
본 발명의 다른 실시예로서, 상기 희석용매는 자동화 시스템을 통해 작업자의 조작없이 자동적으로 희석챔버로 주입될 수 있다. 상기 희석용매는 도 1에 도시된 바와 같이, 별도의 희석용매 저장조에 담겨있으며, 이송펌프(140)를 통해 상기 희석챔버로 주입될 수 있다. 상술한 바와 같은 자동화 시스템을 통해 상기 미세조류샘플의 오염을 방지할 수 있고, 측정 방법의 효율을 높일 수 있는 효과를 기대할 수 있다.As another embodiment of the present invention, the dilution solvent may be automatically injected into the dilution chamber through an automated system without operator intervention. As shown in FIG. 1 , the dilution solvent is contained in a separate dilution solvent storage tank and may be injected into the dilution chamber through the transfer pump 140 . Through the automated system as described above, contamination of the microalgae sample can be prevented, and the effect of increasing the efficiency of the measurement method can be expected.
상기 초음파분산기(120)는 상기 미세조류샘플에 초음파를 조사함으로써, 상기 미세조류샘플 내의 플록을 분산시키는 전처리 단계 중 마지막 단계에서 사용되는 장치이다.The ultrasonic disperser 120 is a device used in the last step of the pretreatment step of dispersing the flocs in the microalgal sample by irradiating the microalgal sample with ultrasonic waves.
조류 분산화 전처리기법에는 초음파를 사용하는 기법 외에 화학적처리기법 및 열처리기법 등이 있으나, 본 발명에서는 자체적으로 실시한 단일세포 회수율 실험에서 분산 시간 및 단일세포 회수율 측면에서 우수한 결과를 보인 초음파사용기법을 채택하였다. 초음파를 사용한 전처리기법과 초음파를 사용하지 않은 전처리기법과의 상세한 비교는 후술하도록 한다.Algae dispersal pretreatment techniques include chemical treatment techniques and heat treatment techniques in addition to techniques using ultrasonic waves. However, in the present invention, an ultrasonic technique that showed excellent results in terms of dispersal time and single cell recovery rate was adopted in the single cell recovery rate experiment conducted by the present invention. . A detailed comparison between the pretreatment technique using ultrasonic waves and the pretreatment technique without using ultrasonic waves will be described later.
한편, 상기 초음파분산기(120)에서는 캘리브레이션 단계를 수행함으로써, 주입된 미세조류샘플에 상응하는 에너지단위 혹은 입력된 에너지단위에 대한 장치구동값을 도출할 수 있다. 즉, 미세조류의 분산효과를 최대한으로 발휘할 수 있도록 상기 미세조류샘플에 해당하는 최적의 초음파세기를 도출할 수 있고, 상기 에너지단위는 표준화된 수치이므로, 타 실험실과의 교차검증을 구현할 수 있다. 상기 캘리브레이션 단계에 대한 자세한 사항은 후술하도록 한다.On the other hand, by performing a calibration step in the ultrasonic diffuser 120, it is possible to derive an energy unit corresponding to the injected microalgae sample or a device driving value for the input energy unit. That is, the optimal ultrasonic intensity corresponding to the microalgae sample can be derived to maximize the dispersing effect of microalgae, and since the energy unit is a standardized value, cross-verification with other laboratories can be implemented. Details of the calibration step will be described later.
상기 플로우셀(130)은 복수의 얇은 유로를 포함하고 있으며, 상기 유로를 통해 전처리과정을 거친 상기 미세조류샘플이 흐를 수 있고, 상기 유로를 통해 흐르는 미세조류샘플을 현미경을 통하여 촬영함으로써, 해당 미세조류샘플에 대한 미세조류이미지를 획득할 수 있다. 본 발명의 일 실시예로서, 상기 유로의 너비는 다양한 크기의 미세조류이미지를 촬영하기 위해서 50 ㎛ 내지 1000 ㎛로 설정하는 것이 바람직하다. 상기 플로우셀(130)에 대한 자세한 사항은 후술하도록 한다.The flow cell 130 includes a plurality of thin flow passages, and the microalgae sample that has undergone the pretreatment process can flow through the flow passages. Microalgae images can be obtained for algae samples. As an embodiment of the present invention, the width of the channel is preferably set to 50 μm to 1000 μm in order to capture images of microalgae of various sizes. Details of the flow cell 130 will be described later.
상기 이송펌프(140)는 필터부(100)와 희석부(110) 사이 및 희석용매와 희석챔버 사이에 위치하여 미세조류샘플 혹은 희석용매의 이송을 도울 수 있다. 상기 이송펌프(140)는 플로우셀(130)로 흘러 들어가는 상기 미세조류샘플의 양을 정밀하게 조절할 수 있도록 마이크로 펌프를 사용할 수 있다. 상기 마이크로 펌프를 통해 이송되는 상기 미세조류샘플의 유속 및 유량은 상기 플로우셀(130) 내의 유로의 크기 및 형태에 따라 조절 가능하다. 상기 마이크로 펌프는, 1분당 1 ㎕ 이하의 미소 유량을 이송시킬 수 있는 유체 디바이스를 의미한다.The transfer pump 140 is positioned between the filter unit 100 and the dilution unit 110 and between the dilution solvent and the dilution chamber to help transfer the microalgae sample or the dilution solvent. A micro pump may be used as the transfer pump 140 to precisely control the amount of the microalgal sample flowing into the flow cell 130. The flow rate and flow rate of the microalgal sample transferred through the micropump can be adjusted according to the size and shape of the passage in the flow cell 130. The micro pump refers to a fluid device capable of transferring a minute flow rate of 1 µl or less per minute.
또한, 상기 이송펌프(140)는 펌프제어 소프트웨어를 통해 펌프의 동작상태가 제어될 수 있다. 상기 펌프제어 소프트웨어를 통하여 상기 미세조류샘플 혹은 희석용매의 흐르는 양, 시린지의 동작제어, 및 펌프의 연속 동작제어가 가능하다. 상기 이송펌프(140)는 상기 펌프제어 소프트웨어를 통해 한 번 설정해 두면, 자동적으로 미세조류샘플 및 희석용매를 설정된 양만큼 희석챔버, 초음파분산기(120) 및 플로우셀(130)로 이송시킬 수 있으므로, 상기 미세조류이미지를 측정하는 데 있어 효율성을 높일 수 있는 효과를 발휘할 수 있다. In addition, the operating state of the transfer pump 140 may be controlled through pump control software. Through the pump control software, it is possible to control the flowing amount of the microalgae sample or dilution solvent, control the operation of the syringe, and control the continuous operation of the pump. Once the transfer pump 140 is set through the pump control software, it can automatically transfer the microalgae sample and the dilution solvent to the dilution chamber, the ultrasonic disperser 120, and the flow cell 130 by the set amount, In measuring the microalgae image, it is possible to exert an effect of increasing efficiency.
상술한 바와 같이, 본 발명의 일 실시예로서, 상기 미세조류이미지 연속 측정장치는 처음에 미세조류샘플만 주입하면 자동으로 전처리단계를 수행한 후 상기 플로우셀(130)로 샘플이 이송되고, 상기 플로우셀(130)에서 상기 미세조류샘플에 대한 이미지가 자동으로 측정될 수 있다. 자동으로 수행되는 상기 미세조류이미지 연속 측정장치의 일 실시 예는 다음과 같다. As described above, as an embodiment of the present invention, the microalgae image continuous measuring device automatically performs a preprocessing step when only the microalgal sample is initially injected, and then the sample is transferred to the flow cell 130, and the An image of the microalgae sample may be automatically measured in the flow cell 130. An embodiment of the microalgae image continuous measuring device that is automatically performed is as follows.
상기 미세조류샘플을 상기 미세조류이미지 연속 측정장치에 주입하면, 상기 미세조류샘플이 이송펌프(140)에 의해 상기 필터부(100)로 이송되어 상기 미세조류샘플 내에 존재하는 협잡물 및 이물질이 제거된다. When the microalgae sample is injected into the microalgae image continuous measuring device, the microalgae sample is transferred to the filter unit 100 by the transfer pump 140, and contaminants and foreign substances present in the microalgae sample are removed. .
상기 필터부(100)를 통과한 상기 미세조류샘플은 이송펌프(140)에 의하여 자동적으로 상기 희석부(110)의 희석챔버로 이송되고, 상기 탁도계는 자동으로 상기 희석챔버 내의 상기 미세조류샘플의 탁도를 측정한다. 상기 희석부(110)에서는 측정된 상기 탁도에 기반하여 상기 미세조류샘플을 희석시키는 데 필요한 희석용매의 양을 자동으로 산출하며, 상기 산출한 희석용매의 양을 바탕으로 상기 미세조류샘플을 기설정된 탁도 이하로 희석시킨다.The microalgal sample that has passed through the filter unit 100 is automatically transferred to the dilution chamber of the dilution unit 110 by the transfer pump 140, and the turbidimeter automatically measures the microalgal sample in the dilution chamber. Measure the turbidity. The dilution unit 110 automatically calculates the amount of dilution solvent required to dilute the microalgae sample based on the measured turbidity, and based on the calculated amount of the dilution solvent, the microalgae sample is pre-set Dilute below turbidity.
상기 희석부(110)를 통과한 상기 미세조류샘플은 상기 이송펌프(140)에 의해 상기 초음파분산기(120)로 이송되고, 상기 초음파분산기(120)에서는 기설정된 초음파세기 및 초음파조사시간에 기초하여 상기 초음파분산기(120)로 이송된 상기 미세조류샘플에 초음파를 조사한다. The microalgae sample that has passed through the dilution unit 110 is transferred to the ultrasonic disperser 120 by the transfer pump 140, and in the ultrasonic disperser 120, based on the preset ultrasonic intensity and ultrasonic irradiation time, Ultrasound is irradiated to the microalgae sample transferred to the ultrasonic disperser 120.
상기 초음파분산기(120)에서 전처리단계를 마친 상기 미세조류샘플은 이송펌프(140)에 의해 상기 플로우셀(130)로 이송되며, 상기 플로우셀(130)에서 상기 미세조류샘플에 대한 이미지를 연속해서 촬영할 수 있다.The microalgal sample that has completed the pretreatment step in the ultrasonic disperser 120 is transferred to the flow cell 130 by the transfer pump 140, and the microalgal sample is continuously imaged in the flow cell 130 can be filmed
상기 이송펌프(140)에 의한 상기 미세조류샘플의 이동은 모두 기설정된 값에 따라 자동으로 동작한다. The movement of the microalgae sample by the transfer pump 140 is automatically operated according to a predetermined value.
도 2는 본 발명의 일 실시예에 따라 전처리방법에 따른 미세조류 이미지를 도시한다.2 shows an image of microalgae according to a pretreatment method according to an embodiment of the present invention.
개략적으로, 도 2의 (a)는 조류 분산화 전처리기법 중 화학적처리기법을 사용한 미세조류샘플의 미세조류이미지를 도시하고, 도 2의 (b)는 조류 분산화 전처리기법 중 초음파조사기법을 사용한 미세조류샘플의 미세조류이미지를 도시한다.Schematically, FIG. 2 (a) shows a microalgae image of a microalgae sample using a chemical treatment technique among algal dispersal pretreatment techniques, and FIG. 2 (b) shows microalgae microalgae using an ultrasonic irradiation technique among algal dispersal pretreatment techniques An image of the microalgae of the sample is shown.
구체적으로, 조류 분사화 전처리기법은 크게 단일 전처리기법과 복합 전처리기법으로 구분될 수 있다. 상기 단일 전처리기법에는 화학적처리기법, 열처리기법, 및 초음파사용기법 등이 있으며, 복합 전처리기법으로는 상기 단일 전처리기법 중 2가지 이상의 기법을 혼용하는 기법이다. 일반적으로는, 복합 전처리기법의 경우 단일 전처리기법에 비해 분산효과는 증가하지만, 시간 및 비용도 같이 증가할 수 있다. Specifically, algae spraying pretreatment techniques can be largely divided into single pretreatment techniques and complex pretreatment techniques. The single pretreatment technique includes a chemical treatment technique, a heat treatment technique, and an ultrasonic technique, and the complex pretreatment technique is a technique in which two or more of the single pretreatment techniques are mixed. In general, in the case of a complex pretreatment technique, the dispersion effect is increased compared to a single pretreatment technique, but time and cost may also increase.
본 발명을 위해 최적의 전처리기법을 도출하는 복수의 실험을 수행하였고, 도 2에서는 이를 통해 본 발명의 일 실시예로서, 초음파를 사용하는 전처리기법과 초음파를 사용하지 않는 전처리기법의 단일세포 회수율의 차이를 보여주는 이미지를 도시한다. 도 2에 해당하는 실험에 사용된 조류는 클로렐라 불가리스(Chlorella vulgaris)이며, 상기 복수의 실험에서는 클로렐라 불가리스를 포함하는 복수의 조류에 대해 진행하였으나, 이에 대해서는 따로 도시하지 않는다.A plurality of experiments were performed to derive the optimal pretreatment technique for the present invention, and in FIG. 2, as an embodiment of the present invention, the single cell recovery rate of the pretreatment technique using ultrasound and the pretreatment technique without ultrasound Show an image showing the difference. The alga used in the experiment corresponding to FIG. 2 is Chlorella vulgaris, and in the plurality of experiments, a plurality of algae including Chlorella vulgaris were conducted, but this is not shown separately.
도 2의 (a)는 본 발명의 일 실시예로서, 화학적처리기법을 사용한 클로렐라 불가리스의 현미경 이미지이며, 해당 실험에서는 0.01M의 수산화나트륨 용액을 사용하였다. 도 2의 (a)에 도시된 바와 같이, 6번 및 8번 영역에서는 비교적 분산이 잘 된 것으로 보이나, 19번 및 21번 영역에서 빨간색 원으로 표시된 부분과 같이 분산이 제대로 되지 않은 플록이 존재하는 것을 확인할 수 있다.Figure 2 (a) is an embodiment of the present invention, a microscopic image of Chlorella vulgaris using a chemical treatment technique, and a 0.01M sodium hydroxide solution was used in the experiment. As shown in (a) of FIG. 2, although it seems to be relatively well dispersed in the 6th and 8th regions, there are flocs that are not properly dispersed, as indicated by the red circles in the 19th and 21st regions. can confirm that
도 2의 (b)는 본 발명의 일 실시예로서, 초음파사용기법을 사용한 클로렐라 불가리스의 현미경 이미지이며, 해당 실험에서는 200kJ/L의 초음파세기로 20초간 초음파를 조사하였다. 도 2의 (b)에 도시된 바와 같이, 초음파사용기법을 사용한 결과 전 영역에서 고르게 조류가 분산된 것을 확인할 수 있다. Figure 2 (b) is an embodiment of the present invention, a microscopic image of Chlorella vulgaris using an ultrasonic technique, and in the experiment, ultrasonic waves were irradiated for 20 seconds at an ultrasonic intensity of 200 kJ / L. As shown in (b) of FIG. 2, it can be confirmed that the algae are evenly dispersed in the entire area as a result of using the ultrasonic technique.
상술한 바에 근거하여, 본 발명에서는 분산효과가 높은 초음파처리기법을 사용한다. 다만, 미세조류 종류에 따라 상기 미세조류에 대해 분산효과가 가장 잘 나타나는 초음파의 세기 및 초음파 조사 시간이 상이하고, 이를 보완하기 위해 본 발명에서는 상기 캘리브레이션 단계를 통해 미세조류 종류에 따른 최적의 초음파세기 및 초음파 조사 시간을 도출할 수 있다. Based on the foregoing, in the present invention, an ultrasonic treatment technique having a high dispersion effect is used. However, according to the type of microalgae, the intensity of the ultrasonic wave and the ultrasonic irradiation time at which the dispersion effect is best for the microalgae are different, and to compensate for this, in the present invention, the optimal ultrasonic intensity according to the type of microalgae through the calibration step And the ultrasonic irradiation time can be derived.
도 3은 본 발명의 일 실시예에 따라 미세조류샘플에 초음파를 조사하는 초음파분산기(120)의 세기에 따른 미세조류이미지를 도시한다.Figure 3 shows microalgae images according to the intensity of the ultrasonic disperser 120 for irradiating ultrasonic waves to microalgae samples according to an embodiment of the present invention.
개략적으로, 도 3의 (a)는 0.004 W/ml의 초음파세기로 미세조류샘플을 조사하였을 때의 미세조류이미지를 도시한다. 도 3의 (b)는 0.08 W/ml의 초음파세기로 미세조류샘플을 조사하였을 때의 미세조류이미지를 도시한다. 도 3의 (c)는 0.3 W/ml의 초음파세기로 미세조류샘플을 조사하였을 때의 미세조류이미지를 도시한다.Schematically, (a) of FIG. 3 shows an image of microalgae when the microalgae sample is irradiated with an ultrasonic intensity of 0.004 W/ml. Figure 3 (b) shows a microalgae image when the microalgae sample is irradiated with an ultrasonic intensity of 0.08 W / ml. Figure 3 (c) shows a microalgae image when the microalgae sample is irradiated with an ultrasonic intensity of 0.3 W / ml.
구체적으로, 본 발명의 일 실시예로서 도 3을 참고하여, 강한 초음파의 세기로 상기 미세조류샘플에 초음파를 조사할수록 조류분산효과가 잘 나타나는 것을 확인할 수 있으며, 도 3의 (c)의 경우 단일세포 회수율이 약 90%정도로 측정되었다. 본 발명의 다른 실시예로서, 약품처리기법 및 초음파처리기법을 동시에 사용한 복합 전처리기법을 사용한 경우 단일세포 회수율이 초음파처리기법보다 높게 측정될 수 있으나, 상기 초음파처리기법만 사용한 경우에도 높은 단일세포 회수율이 측정되었기에 본 발명에서는 비용 및 시간 문제를 고려하여, 초음파처리만 하는 단일 전처리기법을 사용하도록 한다.Specifically, referring to FIG. 3 as an embodiment of the present invention, it can be confirmed that the algae dispersion effect appears well as the ultrasonic wave is irradiated to the microalgae sample at a strong ultrasonic intensity, and in the case of FIG. 3 (c), a single The cell recovery rate was determined to be about 90%. As another embodiment of the present invention, in the case of using the complex pretreatment technique using both the chemical treatment technique and the ultrasonic treatment technique, the single cell recovery rate can be measured higher than the ultrasonic treatment technique, but the single cell recovery rate is high even when only the ultrasonic treatment technique is used. Since this has been measured, in the present invention, considering cost and time issues, a single pretreatment technique of only sonication is used.
도 4는 본 발명의 일 실시예에 따른 캘리브레이션 단계에서의 수행단계들을 개략적으로 도시한다.4 schematically illustrates steps performed in a calibration step according to an embodiment of the present invention.
도 4에 도시된 바와 같이, 상기 초음파분산기(120)는, 입력된 조류에 상응하는 에너지단위 혹은 입력된 에너지단위에 대한 장치구동값을 도출하는 캘리브레이션 단계; 상기 캘리브레이션 단계에서 도출된 장치구동값으로 초음파분산기(120)를 구동하는 장치구동단계;를 수행할 수 있으며, 상기 캘리브레이션 단계는, 제1장치구동값으로 초음파분산기(120)를 구동하여, 기준매체에 초음파를 가하고, 상기 기준매체 온도의 제1변화정보를 측정하는 제1측정단계(S100.1); 제2장치구동값으로 초음파분산기(120)를 구동하여, 기준매체에 초음파를 가하고, 상기 기준매체 온도의 제2변화정보를 측정하는 제2측정단계(S100.2); 상기 제1변화정보에 기초하여 제1장치구동값에 대한 제1에너지단위를 도출하는 제1도출단계(S110.1); 상기 제2변화정보에 기초하여 제2장치구동값에 대한 제2에너지단위를 도출하는 제2도출단계(S110.2); 및 상기 제1장치구동값, 제2장치구동값. 제1에너지단위, 및 제2에너지단위를 포함하는 회귀정보에 기초하여, 장치구동값과 에너지단위의 관계정보를 도출하는 단계;를 포함하고, 상기 장치구동값과 에너지단위의 관계정보에 근거하여 미세조류 종류별 초음파세기를 도출할 수 있다.As shown in FIG. 4, the ultrasonic diffuser 120 includes a calibration step of deriving an energy unit corresponding to the input tidal current or a device driving value for the input energy unit; A device driving step of driving the ultrasonic diffuser 120 with the device driving value derived in the calibration step; may be performed, and the calibration step drives the ultrasonic diffuser 120 with the first device driving value, a first measurement step (S100.1) of applying ultrasonic waves to and measuring first change information of the temperature of the reference medium; A second measuring step (S100.2) of driving the ultrasonic diffuser 120 with the second device driving value, applying ultrasonic waves to the reference medium, and measuring second change information of the reference medium temperature; a first derivation step (S110.1) of deriving a first energy unit for a first device driving value based on the first change information; a second derivation step of deriving a second energy unit for a second device drive value based on the second change information (S110.2); and the first device driving value and the second device driving value. Based on the regression information including the first energy unit and the second energy unit, deriving relationship information between the device drive value and the energy unit; including, based on the relationship information between the device drive value and the energy unit The ultrasonic intensity for each type of microalgae can be derived.
구체적으로, 상기 캘리브레이션 단계는 열량학적(calorimetric) 방법을 통해 초음파분산기(120)의 장치구동값을 표준화하는 단계이다. 종래의 초음파분산기(120)를 사용하던 방식에서는, 같은 장치구동값으로 초음파분산기(120)를 작동시키더라도 실험실 환경, 사용장비, 및 처리 용기 등이 달라짐에 따라 결과값이 달라졌고, 그로 인해 같은 시료를 같은 실험방식으로 진행을 하더라도 결과값이 상이하여 실험의 신뢰도가 떨어지는 문제가 발생하였다. 이러한 문제를 해결하기 위하여 본 발명에서는 캘리브레이션 단계를 수행함으로써, 어느 실험실에서 실험을 진행하더라도 표준화 된 파워를 통해 보다 더 엄밀한 비교가 가능하고, 실험실간 교차 검증(Round Robin Test)을 통해 실험의 신뢰도를 향상시킬 수 있는 효과를 발휘할 수 있다. 또한, 미세조류샘플에 가해지는 초음파의 세기가 너무 강한 경우, 조류 세포가 파괴될 수 있으므로, 상기 캘리브레이션 단계를 수행함으로써, 미세조류의 종류에 따라 상기 미세조류의 분산효과를 최대로 기대할 수 있는 장치구동값을 찾을 수 있다. 상기 기준매체는, 바람직하게는 본 발명의 일 실시예로서, 상기 희석부(110)에 의해 희석된 미세조류샘플일 수 있다.Specifically, the calibration step is a step of standardizing the device driving value of the ultrasonic diffuser 120 through a calorimetric method. In the method using the conventional ultrasonic disperser 120, even if the ultrasonic disperser 120 is operated with the same device driving value, the result value is different as the laboratory environment, equipment used, and processing container are changed, and thus the same Even if the sample was conducted in the same experiment method, the result value was different, resulting in a problem of low reliability of the experiment. In order to solve this problem, in the present invention, by performing a calibration step, a more rigorous comparison is possible through standardized power no matter which laboratory conducts the experiment, and the reliability of the experiment is improved through cross-laboratory cross-validation (Round Robin Test). It can exert an effect that can be improved. In addition, if the intensity of the ultrasonic wave applied to the microalgae sample is too strong, since the algae cells may be destroyed, by performing the calibration step, according to the type of microalgae, the dispersion effect of the microalgae can be expected to be maximized Device drive value can be found. The reference medium, preferably as an embodiment of the present invention, may be a microalgal sample diluted by the dilution unit 110.
도 5는 본 발명의 일 실시예에 따른 캘리브레이션 단계에서 장치구동값과 에너지단위의 관계정보를 산출하기 위한 그래프를 도시한다.5 shows a graph for calculating relationship information between a device drive value and an energy unit in a calibration step according to an embodiment of the present invention.
도 5에 도시된 바와 같이, 상기 초음파분산기(120)는, 상기 캘리브레이션 단계에서 도출된 장치구동값으로 초음파분산기(120)를 구동하는 장치구동단계;를 수행하며, 상기 장치구동단계에서는, 상기 캘리브레이션 단계에서 도출한 장치구동값에 따라 초음파세기로 기설정된 시간동안 상기 미세조류샘플에 초음파를 조사하여 미세조류 응집체인 플록(floc)을 분산시킬 수 있다. As shown in FIG. 5, the ultrasonic diffuser 120 performs a device driving step of driving the ultrasonic diffuser 120 with the device driving value derived in the calibration step, and in the device driving step, the calibration Depending on the device driving value derived in the step, ultrasonic waves may be irradiated to the microalgae sample for a predetermined time with ultrasonic intensity to disperse flocs, which are aggregates of microalgae.
구체적으로, 도 4를 참고하여, 상기 캘리브레이션 단계에서는 측정단계(S100.1 내지 S100.N 이하, S100)와 도출단계(S110.1 내지 S110.N 이하, S110)가 수행되며, 상기 측정단계(S100)는 순차적으로 제1측정단계(S100.1) 내지 제N측정단계(S100.N)까지 수행하게 되며, 상기 도출단계(S110)는 상기 측정단계에 상응하여 수행하게 된다. 상기 측정단계에서는 장치구동값을 설정하여 상기 장치구동값으로 초음파분산기(120)를 구동하고, 상기 초음파분산기(120)는 기준매체에 초음파를 가하며, 초음파가 가해진 상기 기준매체의 조사시간에 따라 상기 기준매체의 변화한 온도에 대한 변화정보를 기록한다. Specifically, referring to FIG. 4, in the calibration step, a measurement step (S100.1 to S100.N or less, S100) and a derivation step (S110.1 to S110.N or less, S110) are performed, and the measurement step ( S100) is sequentially performed from the first measuring step (S100.1) to the Nth measuring step (S100.N), and the derivation step (S110) is performed corresponding to the measuring step. In the measuring step, a device drive value is set and the ultrasonic diffuser 120 is driven with the device drive value, the ultrasonic diffuser 120 applies ultrasonic waves to a reference medium, and according to the irradiation time of the reference medium to which the ultrasonic waves are applied, the ultrasonic diffuser 120 is driven. Record the change information about the changed temperature of the reference medium.
본 발명의 일 실시예로서, 도 5의 (a) 및 (b)는 상기 측정단계(S100)에 대한 그래프를 도시하였으며, 도 5의 (a) 및 (b)는 각각 다른 실험실에서 수행한 결과를 그래프로 도시한 것이다. As an embodiment of the present invention, (a) and (b) of FIG. 5 show graphs for the measurement step (S100), and (a) and (b) of FIG. 5 are results performed in different laboratories, respectively. is shown graphically.
도 5의 (a)를 보면, 제1장치구동값을 10%로 설정한 뒤 초음파 조사시간에 따른 온도변화를 기록하였다. 제1측정단계(S100.1)를 마친 후 제2장치구동값을 20%로 설정하여 제2측정단계(S100.2)를 수행하였고, 순차적으로 제6장치구동값을 100%로 설정하여 제6측정단계(S100.6)까지 수행하였다. Referring to (a) of FIG. 5, after setting the first device drive value to 10%, the temperature change according to the ultrasonic irradiation time was recorded. After the first measurement step (S100.1) was completed, the second device drive value was set to 20% and the second measurement step (S100.2) was performed, and the sixth device drive value was sequentially set to 100%. Up to 6 measurement steps (S100.6) were performed.
도 5의 (b)의 경우에는, 하나의 장치구동값으로 2번씩 실험하여 초음파 조사시간에 따른 온도변화를 기록한 것이다. 도 5의 (b)에서는 제1장치구동값을 20%로 설정하여 제1변화정보를 획득하였으며, 순차적으로 제5측정단계(S100.5)에서는 제5장치구동값을 100%로 설정한 뒤, 제5변화정보를 획득한다. 제5변화정보를 얻어낸 이후, 제1측정단계(S100.1) 내지 제5측정단계(S100.5)에서 사용한 기준매체와 동일한 기준매체를 사용하여 다시 제6장치구동값을 20%로 설정한 뒤 제6변화정보를 획득하고, 순차적으로 제10측정단계(S100.10)에서 제10장치구동값을 100%로 설정한 뒤 제10변화정보를 획득한다.In the case of (b) of FIG. 5, the temperature change according to the ultrasonic irradiation time was recorded by experimenting twice with one device driving value. In (b) of FIG. 5, the first change information was obtained by setting the first device drive value to 20%, and sequentially in the fifth measurement step (S100.5), the fifth device drive value was set to 100%. , fifth change information is acquired. After obtaining the fifth change information, using the same reference medium as the reference medium used in the first measurement step (S100.1) to the fifth measurement step (S100.5), the sixth device driving value is set to 20% again Then, the 6th change information is obtained, and the 10th change information is obtained after sequentially setting the 10th device drive value to 100% in the 10th measurement step (S100.10).
상기 도출단계(S110)에서는, 상기 측정단계(S100)를 통해 얻은 변화정보; 및 실험 초기 조건에 따른 기준매체의 질량과 비열정보;에 기초하여 상기 장치구동값과 에너지단위(Pac)의 관계정보를 도출할 수 있다. 상기 도출단계(S110)에서는 상기 3가지 조건정보를 하기 식 (1)에 대입함으로써, 상기 기준매체에 가해진 에너지단위를 구할 수 있다.In the deriving step (S110), the change information obtained through the measuring step (S100); and mass and specific heat information of the reference medium according to the initial conditions of the experiment. In the deriving step (S110), the energy unit applied to the reference medium can be obtained by substituting the three conditions information into the following equation (1).
Figure PCTKR2022001233-appb-I000001
- 식 (1)
Figure PCTKR2022001233-appb-I000001
- formula (1)
상기 식 (1)은 열량과 비열 사이의 관계식을 변형함으로써 도출할 수 있다. 상기 열량의 단위는 J(Joule)이며, J를 시간(s)으로 나누면 W(Watt)이므로, 상기 열량과 비열 사이의 관계식의 양변은 단위시간으로 나눔으로써 상기 식 (1)을 얻을 수 있다. Equation (1) above can be derived by transforming the relational expression between heat quantity and specific heat. Since the unit of heat quantity is J (Joule), and dividing J by time (s) is W (Watt), both sides of the relational expression between heat quantity and specific heat are divided by unit time to obtain Equation (1).
본 발명의 일 실시예로서, 도 5의 (c) 및 (d)는 각각 도 5의 (a) 및 (b)에 상응하는 도출단계(S110)에 대한 그래프를 도시한 것이다. As an embodiment of the present invention, (c) and (d) of FIG. 5 show graphs for the derivation step (S110) corresponding to (a) and (b) of FIG. 5, respectively.
도 5의 (c)와 (d)를 보면, 각각의 파란색 점은 장치구동값을 y 값으로 두고 상기 장치구동값으로 초음파분산기(120)를 구동하였을 때의 변화정보를 기반으로 도출한 에너지단위를 x 값으로 하여 기록한 것이다. 5 (c) and (d), each blue point is an energy unit derived based on the change information when the ultrasonic diffuser 120 is driven with the device drive value as the y value is recorded as the x value.
상기 장치구동값과 에너지단위의 관계정보를 통해 상기 장치구동값과 에너지단위 사이의 관계식을 도출할 수 있다. 구체적으로, 도 4를 참고하여, 상기 회귀정보는 상기 장치구동값과 에너지사이의 관계식에 해당할 수 있으며, 상기 관계식에 대해서는 결정계수(R2)를 통해 상기 회귀정보의 정확도를 판별할 수 있다. A relational expression between the device driving value and the energy unit may be derived through the relational information between the device driving value and the energy unit. Specifically, referring to FIG. 4 , the regression information may correspond to a relational expression between the device drive value and energy, and the accuracy of the regression information may be determined through a coefficient of determination (R 2 ) for the relational expression. .
본 발명의 일 실시예로서, 도 5를 참고하면, 캘리브레이션 단계에서 측정단계(S100)의 횟수를 증가시키면 결정계수가 증가하는 것을 추가적으로 확인할 수 있다. 즉, 도 4에서의 N의 값이 커질수록 상기 장치구동값과 에너지단위 사이의 정확한 상관관계식을 얻을 수 있다. 구체적으로, 도 5의 (b) 및 (d)와 같이 상기 장치구동값의 수준을 n개로 세분화한 뒤 반복측정을 통해 N의 값을 키울 수 있다. 여기서, 'N = n x 반복횟수'이다. 본 발명의 다른 실시예로서, 상기 장치구동값의 수준을 더욱 세분화하여, 즉 상기 n의 값을 증가시킴으로써 N의 값을 키울 수도 있다. 여기서, 'N = n'이다. As an embodiment of the present invention, referring to FIG. 5 , it can be further confirmed that the coefficient of determination increases when the number of measurement steps (S100) is increased in the calibration step. That is, as the value of N in FIG. 4 increases, an accurate correlation between the device driving value and the energy unit can be obtained. Specifically, as shown in (b) and (d) of FIG. 5, after subdividing the level of the device driving value into n, the value of N may be increased through repeated measurement. Here, 'N = n x number of iterations'. As another embodiment of the present invention, the value of N may be increased by further subdividing the level of the device driving value, that is, by increasing the value of n. Here, 'N = n'.
다만, 도 5의 (c)의 경우 N값이 5일 때 결정계수가 0.9981이며, 도 5의 (d)의 경우 N값이 10일 때 결정계수가 0.9997인 결과를 확인할 수 있으므로, 상기 측정단계(S100)에서 n의 값을 4 이상으로 하는 것이 바람직하며, 효율성측면을 고려하여 n의 값을 4 내지 6으로 설정하는 것이 더 바람직하다.However, in the case of (c) of FIG. 5, the coefficient of determination is 0.9981 when the N value is 5, and in the case of (d) of FIG. 5, the result of the coefficient of determination is 0.9997 when the N value is 10. In (S100), it is preferable to set the value of n to 4 or more, and it is more preferable to set the value of n to 4 to 6 in consideration of efficiency.
이와 같이, 캘리브레이션 단계를 통해서 시료에 가해진 초음파세기를 에너지준위로 환산하여 실험을 진행하게 되면, 실험실 환경에 영향없이 표준화된 에너지준위로 실험을 진행 및 기록할 수 있다. In this way, when the experiment is performed by converting the ultrasonic intensity applied to the sample into an energy level through the calibration step, the experiment can be conducted and recorded at a standardized energy level without affecting the laboratory environment.
또한, 실제 조류를 전처리하는 경우, 미세조류샘플에 전달되는 에너지를 정량화 및 표준화할 수 있으므로, 미세조류 종류 혹은 상기 미세조류샘플의 취득원에 따라 분산효과를 최대로 발휘할 수 있는 최적의 초음파세기를 도출할 수 있고 실험실 환경에서 도출해낸 상기 최적의 초음파세기를 상기 미세조류이미지 연속 측정장치에 적용함으로써, 고해상도의 미세조류이미지를 안정적으로 획득할 수 있는 효과를 발휘할 수 있다. In addition, when the actual algae are pretreated, the energy transmitted to the microalgae sample can be quantified and standardized, so that the optimum ultrasonic intensity that can maximize the dispersion effect according to the type of microalgae or the source of the microalgae sample can be obtained. It can be derived and by applying the optimal ultrasonic intensity derived from the laboratory environment to the microalgae image continuous measurement device, it is possible to exert an effect of stably obtaining a high-resolution microalgae image.
한편, 본 발명의 일 실시예로서, 상기 실험실 별 상기 최적의 초음파세기에 대한 데이터정보가 축적됨에 따라 미세조류의 추가적인 특성을 알아낼 수 있다.On the other hand, as an embodiment of the present invention, additional characteristics of microalgae can be found as data information on the optimal ultrasonic intensity for each laboratory is accumulated.
도 6은 본 발명의 일 실시예에 따른 플로우셀(130)의 실제 사진 및 설계도를 도시하며, 도 7은 본 발명의 일 실시예에 따른 플로우셀(130) 내 유로의 구조도를 개략적으로 도시한다.6 shows an actual photograph and a blueprint of a flow cell 130 according to an embodiment of the present invention, and FIG. 7 schematically shows a structural diagram of a flow path in the flow cell 130 according to an embodiment of the present invention. .
도 6 및 도 7에 도시된 바와 같이, 상기 플로우셀(130)은 1 이상의 유로를 포함하고, 상기 1 이상의 유로 각각은, 수직방향으로 형성된 입구유로(131), 상기 입구유로(131)에서 수평방향으로 연장되는 중간유로(132), 및 상기 중간유로(132)에서 수직방향으로 연장되는 출구유로(133)를 포함하고, 상기 중간유로(132)의 내부면은 잔여 조류 부착 문제를 완화하기 위해 나노물질로 코팅되어 있다.As shown in FIGS. 6 and 7 , the flow cell 130 includes one or more flow passages, and each of the one or more flow passages includes an inlet passage 131 formed in a vertical direction and a horizontal inlet passage 131. and an outlet passage 133 extending in a vertical direction from the middle passage 132, and the inner surface of the middle passage 132 is provided to alleviate the problem of remaining algae adhesion. coated with nanomaterials.
개략적으로, 도 6의 (a)는 서로 다른 유로의 너비를 가지는 실제 플로우셀(130)의 실제 사진이며, 도 6의 (b)는 도 6의 (a)에 도시된 플로우셀(130)의 설계도를 도시한 것이다. 도 7은 상기 플로우셀(130) 내부에 위치하는 유로의 구조를 도시한 것이다.Schematically, FIG. 6(a) is an actual photograph of an actual flow cell 130 having different channel widths, and FIG. 6(b) is a picture of the flow cell 130 shown in FIG. 6(a). It shows the blueprint. 7 shows the structure of a flow path located inside the flow cell 130.
구체적으로, 도 6에 도시된 바와 같이 하나의 플로우셀(130)은 2 이상의 유로를 포함하고 있다. 각각의 유로는 너비가 상이하여 하나의 플로우셀(130)에서 서로 다른 배율로 상기 유로를 흐르는 미세조류샘플을 촬영할 수 있는 것을 기술적 특징으로 하며, 상기 기술적특징에 의해 미세조류의 크기에 따른 안정적이 이미지 촬영이 가능하다. 또한 도 7에 도시된 바와 같이, 각각의 유로는 수직방향으로 형성된 입구유로(131)를 통해 상기 미세조류샘플이 유입되면, 상기 입구유로(131)에서 수평방향으로 연장되는 중간유로(132)를 통해 상기 미세조류샘플이 흐르게 되고, 상기 중간유로(132)에서 수직방향으로 연장되는 출구유로(133)를 통해 상기 미세조류샘플이 배출되는 방식으로 운용된다. 상기 입구유로(131) 및 출구유로(133)는 같은 방향으로 뚫려있다. Specifically, as shown in FIG. 6 , one flow cell 130 includes two or more flow paths. Each flow path has a different width and is characterized by a technical feature that microalgae samples flowing through the flow path can be photographed at different magnifications in one flow cell 130. Images can be taken. In addition, as shown in FIG. 7, when the microalgae sample is introduced through the inlet passage 131 formed in the vertical direction, each flow passage forms an intermediate passage 132 extending horizontally from the inlet passage 131. The microalgae sample flows through and the microalgae sample is discharged through the outlet passage 133 extending in the vertical direction from the intermediate passage 132. The inlet passage 131 and the outlet passage 133 are open in the same direction.
도 7을 참고하여, 상기 플로우셀(130)은 유로를 포함하고 있는 부분인 PDMS칩은 PDMS소재를 사용하고, 상기 PDMS칩 하단부는 슬라이드 글라스로 구성된다. 상기 PDMS소재는 무색의 고분자물질로 실리콘과 유사하며, 성형성이 우수하여 생물학, 의학, 약학, 재료공학 및 기계공학 등 다양한 분야에 걸쳐 활용된다. 상기 PDMS소재의 내구성이 떨어진다는 단점을 보완하기 위하여 상기 PDMS칩 하단부에 슬라이드 글라스를 부착시킨 구조로 제작할 수 있다. 상기 PDMS칩은 본 발명의 일 실시예로서, 4.5mm의 높이로 제작될 수 있고, 가로길이는 63mm, 세로길이는 20.5mm로 제작되는 것이 바람직하며, 실험실 환경 및 유로의 크기에 따라 그보다 크거나 작은 형태로도 제작 가능하다. Referring to FIG. 7 , the flow cell 130 uses a PDMS material for the PDMS chip, which is a part including the flow path, and the lower part of the PDMS chip is made of slide glass. The PDMS material is a colorless polymer material similar to silicon and has excellent formability, so it is used in various fields such as biology, medicine, pharmacy, material engineering and mechanical engineering. In order to compensate for the disadvantage of poor durability of the PDMS material, a structure in which a slide glass is attached to the lower end of the PDMS chip may be manufactured. As an embodiment of the present invention, the PDMS chip may be manufactured with a height of 4.5 mm, preferably with a horizontal length of 63 mm and a vertical length of 20.5 mm, and depending on the laboratory environment and the size of the flow path, it may be larger or larger than that. It can also be produced in small shapes.
또한, 상기 유로 내부면은 나노물질로 코팅된다. 미세조류샘플이 상기 플로우셀(130) 내부를 저속으로 통과하는 경우 상기 유로 내부면에 미세조류가 유착되어 유로를 막아버리는 문제가 발생할 수 있으므로, 상술한 바와 같이 상기 유로 내부면을 코팅함으로써 잔여 조류 부착 문제를 완화시키고, 상기 미세조류샘플이 상기 플로우셀(130)을 잘 통과할 수 있도록 한다.In addition, the inner surface of the passage is coated with nanomaterials. When the microalgae sample passes through the inside of the flow cell 130 at low speed, microalgae may adhere to the inner surface of the flow path and block the flow path. As described above, the remaining algae are coated by coating the inner surface of the flow path It alleviates the adhesion problem and allows the microalgae sample to pass through the flow cell 130 well.
도 8은 본 발명의 일 실시예에 따라 플로우셀 유로의 높이에 따른 미세조류이미지를 도시한다.8 shows images of microalgae according to the height of the flow cell passage according to an embodiment of the present invention.
구체적으로, 상기 유로의 높이는, 도 7을 참고하여, 상기 중간유로(132)의 높이를 의미한다. 상기 유로의 높이는 미세조류이미지 촬영에 있어서 중요한 설정 요소로, 도 8에 도시된 바와 같이 유로의 높이가 일정 높이보다 높아지는 경우, 미세조류샘플로 투과되는 빛의 양이 적어지고, 현미경으로 초점을 맞추는 데 어려움이 발생할 수 있다. 하지만 유로의 높이가 일정 높이보다 낮아지는 경우, 미세조류샘플이 유로 내에서 원활히 흐르지 못해 상기 유로가 막히는 문제가 발생할 수 있으며, 상기 문제를 해결하기 위해 플로우셀(130) 내에서 유속을 빠르게 하는 경우 미세조류이미지의 해상도가 낮아질 수 있다.Specifically, the height of the passage means the height of the intermediate passage 132 with reference to FIG. 7 . The height of the flow path is an important setting factor in microalgae image capture. As shown in FIG. 8, when the height of the flow path is higher than a certain height, the amount of light transmitted to the microalgae sample is reduced, and the microscope focuses difficulties may arise. However, if the height of the flow path is lower than a certain height, the microalgae sample may not flow smoothly in the flow path and the flow path may be clogged. To solve the problem, if the flow rate is increased in the flow cell 130 The resolution of the microalgae image may be lowered.
도 8을 참고하여 본 발명의 일 실시예로서, 20 ㎛, 50 ㎛, 및 80 ㎛ 높이의 유로에 미세조류샘플을 통과시켜 촬영한 이미지를 도시하고, 유로의 높이가 20 ㎛인 경우 인식 가능한 수준의 초점이 확보되는 것을 확인할 수 있다. 도 8에 도시된 복수의 미세조류이미지에 근거하여 상기 유로의 높이는 50 ㎛ 미만으로 설정하는 것이 바람직하며, 더 바람직하게는 20 ㎛ 내지 30 ㎛로 상기 유로의 높이를 설정할 수 있다. 상술한 유로의 높이가 낮아 플로우 셀 내부에서 상기 미세조류샘플이 원활히 흐르지 않는 문제는, 유로의 너비를 조절함으로써 해결할 수 있다. Referring to FIG. 8, as an embodiment of the present invention, an image taken by passing a microalgae sample through a channel having a height of 20 μm, 50 μm, and 80 μm is shown, and the height of the channel is 20 μm. Recognizable level It can be seen that the focus of Based on the plurality of images of microalgae shown in FIG. 8, the height of the passage is preferably set to less than 50 μm, and more preferably, the height of the passage may be set to 20 to 30 μm. The above-mentioned problem that the microalgae sample does not flow smoothly inside the flow cell due to the low height of the passage can be solved by adjusting the width of the passage.
도 9는 본 발명의 일 실시예에 따라 플로우셀(130) 내 유로의 모양에 따른 미세조류 이미지를 도시한다.9 shows images of microalgae according to the shape of a flow path in the flow cell 130 according to an embodiment of the present invention.
도 9에 도시된 바와 같이, 상기 중간유로(132)는, 제1너비를 갖는 입구측중간유로(132.1); 상기 입구측중간유로(132.1)로부터 연장되고, 제2너비를 갖는 중간측중간유로(132.2); 상기 중간측중간유로(132.2)로부터 연장되고, 제3너비를 갖는 출구측중간유로(132.3);를 포함하고, 상기 제2너비는 상기 제1너비 및 제3너비보다 크게 할 수 있다. As shown in FIG. 9 , the middle passage 132 includes an inlet-side middle passage 132.1 having a first width; a middle-side intermediate passage 132.2 extending from the inlet-side intermediate passage 132.1 and having a second width; and an outlet-side intermediate passage 132.3 extending from the middle-side intermediate passage 132.2 and having a third width, and the second width may be greater than the first and third widths.
개략적으로, 도 9의 (a)는 본 발명의 일 실시예로서 종래의 실험에서 사용하던 일자형 모양의 중간유로(132); 및 상기 중간유로(132)를 사용하였을 때의 현미경 이미지;를 도시한 것이고, 도 9의 (b)는 본 발명의 일 실시예로서 제1너비 내지 제3너비를 가지며 본 발명에서 사용하는 형태의 중간유로(132); 및 상기 중간유로(132)를 사용하였을 때의 현미경 이미지;를 도시한다. Schematically, (a) of FIG. 9 is an embodiment of the present invention, which is a line-shaped intermediate flow path 132 used in a conventional experiment; And a microscope image when the intermediate flow path 132 is used; FIG. 9 (b) is an embodiment of the present invention having a first to third width and a form used in the present invention a middle flow path (132); and a microscope image when the intermediate flow path 132 is used.
구체적으로, 중간유로(132)는 현미경을 통해 플로우셀(130) 내에서 흐르는 미세조류샘플을 촬영하는 부분이다. 도 9의 (a)에 도시된 바와 같이 종래의 실험에서 사용하던 일자형 모양의 중간유로(132)는 제작이 용이하여 비용이 적게 들고, 유지보수 측면에서도 장점을 가져 보편적으로 사용되었다. 하지만 고해상도의 미세조류이미지를 확보하기 위해서는, 미세조류샘플이 플로우셀(130) 내의 중간유로(132)에서 저속으로 흐르는 것이 바람직하며, 초점확보를 위해서는 상기 중간유로(132)의 높이가 낮은 것이 바람직하다. 반면, 도 9의 (a)에서 도시된 일자형 모양의 중간유로(132)는, 유로의 높이를 낮게 제작하였을 때 저속으로 미세조류샘플이 흐르는 경우 조류의 흐름이 원활히 이루어지지 않고, 조류의 원활한 흐름을 위해서 고속으로 상기 미세조류샘플을 흐르게 하거나 일정 수준보다 높은 유로의 높이를 가지는 플로우셀(130)을 사용하게 되면, 도 8을 참고하여, 고해상도의 이미지를 안정적으로 획득하는 데 어려움이 발생한다. Specifically, the middle flow passage 132 is a part for photographing the microalgae sample flowing in the flow cell 130 through a microscope. As shown in (a) of FIG. 9 , the straight intermediate flow path 132 used in the conventional experiment is easy to manufacture and has low cost, and has advantages in terms of maintenance and is widely used. However, in order to secure a high-resolution microalgae image, it is preferable that the microalgae sample flow at a low speed in the intermediate flow path 132 in the flow cell 130, and to secure the focus, the height of the intermediate flow path 132 is preferably low do. On the other hand, in the straight-line intermediate flow path 132 shown in (a) of FIG. 9, when the height of the flow path is low and the microalgae sample flows at a low speed, the flow of algae is not smooth, and the flow of algae is smooth. When the microalgae sample is flowed at high speed or the flow cell 130 having a flow path height higher than a certain level is used for this purpose, it is difficult to stably obtain a high-resolution image with reference to FIG. 8 .
상술한 바와 같은 문제를 해결하기 위해서, 본 발명에선, 도 9의 (b)에 도시된 바와 같은 형태의 중간유로(132)를 제작하였다. 대한민국 등록특허 제10-2100197호에서도 촬영되는 부분의 유로의 너비를 달리하는 형태의 플로우셀(130)을 사용하였으나, 상기 등록특허에서는 플로우셀(130) 내에서 화학약품을 주입하는 과정을 수행함으로써, 본 발명에 비해 플로우셀(130)의 크기가 크고 구조가 복잡하다. 이와 같은 특징으로 인해, 본 발명에서 기술적 특징으로 하고 있는, 하나의 플로우셀(130)에 다양한 너비를 가진 2 이상의 유로를 통해 다양한 배율로 미세조류이미지를 촬영할 수 있는 기능을 상기 등록특허에서는 구현하기 힘든 점을 가지고 있다. 또한 상기 등록특허의 플로우셀(130)은 구조가 복잡하여 제작비용이 많이 들고, 고해상도의 이미지를 획득하는 데에도 부적합하며 유지보수가 어려운 반면, 도 9의 (b)에서 도시된 바와 같이, 본 발명에서 사용하고 있는 유로를 가진 플로우셀(130)은 상술한 문제점들을 개선하였고, 이를 통해 효율적인 미세조류이미지 촬영이 가능하다.In order to solve the problem as described above, in the present invention, the intermediate flow path 132 of the form shown in FIG. 9 (b) was manufactured. Korean Patent Registration No. 10-2100197 also used a flow cell 130 in the form of varying the width of the flow path of the part to be photographed, but in the above registered patent, by performing the process of injecting chemicals into the flow cell 130 , The size of the flow cell 130 is large and the structure is complicated compared to the present invention. Due to this feature, the function of taking images of microalgae at various magnifications through two or more flow channels having various widths in one flow cell 130, which is a technical feature of the present invention, is implemented in the registered patent has a hard point. In addition, the flow cell 130 of the registered patent has a complicated structure and is expensive to manufacture, unsuitable for obtaining high-resolution images, and difficult to maintain. As shown in (b) of FIG. The flow cell 130 having a flow path used in the present invention has improved the above-mentioned problems, and through this, it is possible to take images of microalgae efficiently.
도 10은 본 발명의 일 실시예에 따른 현미경(200)의 구조를 개략적으로 도시한다.10 schematically shows the structure of a microscope 200 according to an embodiment of the present invention.
도 10에 도시된 바와 같이, 본 발명의 일 실시예에서는, 상기 현미경(200)은, 조명부(210); 조명부(210) 하측에 배치되고, 내부에 관통홀이 형성된 스테이지부(220); 및 상기 스테이지부(220) 하측에 위치하고, 상하로 이동할 수 있는 렌즈부(230);를 포함하고, 상기 플로우셀(130)은 상기 스테이지부(220) 상면에 안착되고, 상기 렌즈부(230)가 상기 관통 홀 내부로 인입될 수 있다.As shown in Figure 10, in one embodiment of the present invention, the microscope 200, the lighting unit 210; a stage unit 220 disposed below the lighting unit 210 and having a through hole therein; and a lens unit 230 located below the stage unit 220 and movable up and down, wherein the flow cell 130 is seated on the upper surface of the stage unit 220, and the lens unit 230 may be introduced into the through hole.
구체적으로, 도 10에 도시된 바와 같이 본 발명에서는 도립식 현미경을 사용한다. 현미경은 크게 정립식 현미경과 도립식 현미경으로 구분할 수 있으며, 상기 정립식 현미경은 대물렌즈가 스테이지부(220) 위에 위치하는 형태를 가지고, 상기 도립식 현미경은 대물렌즈가 스테이지부(220) 아래에 위치하는 형태를 가진다.Specifically, as shown in FIG. 10, an inverted microscope is used in the present invention. The microscope can be largely classified into an upright microscope and an inverted microscope. The upright microscope has an objective lens positioned above the stage 220, and the inverted microscope has an objective lens positioned below the stage 220. has a positioning form.
상기 정립식 현미경은 조명부(210)가 스테이지부(220) 하단에 위치하고, 대물렌즈가 스테이지부(220) 상단에 위치하기 때문에 슬라이드 샘플을 관찰하는데 장점을 가지며, 상기 도립식 현미경은 조명부(210)가 스테이지부(220) 상단에 위치하고, 대물렌즈가 스테이지부(220) 하단에 위치하여, 샘플의 하단부를 촬영하기 때문에 배양액에 담겨 있는 샘플을 촬영하는데 적합하다. The upright microscope has an advantage in observing a slide sample because the lighting unit 210 is located at the bottom of the stage unit 220 and the objective lens is located at the top of the stage unit 220, and the inverted microscope has the lighting unit 210 is located at the top of the stage unit 220, and the objective lens is located at the bottom of the stage unit 220, so that the lower end of the sample is photographed, so it is suitable for photographing the sample contained in the culture medium.
한편, 상기 렌즈부(230)에서는 고배율 및 고해상도의 대물렌즈를 사용하는 것이 바람직하며, 본 발명에서는 최대 40배율의 대물렌즈를 사용한다. 이를 통해 스테이지부(220)에 안착된 플로우셀(130) 내부의 유로에 흐르는 미세조류이미지를 촬영할 수 있으며, 본 발명의 일 실시예로서 상기 대물렌즈를 사용함으로써 크기가 10 ㎛ 미만의 미세조류이미지의 측정도 가능하다.On the other hand, it is preferable to use a high-magnification and high-resolution objective lens in the lens unit 230, and in the present invention, an objective lens with a maximum magnification of 40 is used. Through this, it is possible to take an image of microalgae flowing in the flow path inside the flow cell 130 seated on the stage unit 220, and as an embodiment of the present invention, by using the objective lens, an image of microalgae less than 10 μm in size can also be measured.
상기 조명부(210)는 상기 스테이지부(220) 상단에 위치하며, 상기 도립식 현미경 상단에서 아래방향으로 빛을 조사한다. 상기 조명부(210)에서 발광하는 빛이 상기 플로우셀(130)을 투과하면 상기 렌즈부(230)에서는 상기 조명부(210)에서 빛을 받은 상기 플로우셀(130)의 내부를 촬영한다. 자세하게는, 상기 렌즈부(230)는 상기 플로우셀(130) 내부에 위치한 중간유로(132)를 촬영할 수 있으며, 더 자세하게는, 도 9를 참고하여, 상기 중간유로(132) 중 제2너비를 가지는 중간측중간유로(132.2)에 흐르는 미세조류샘플을 촬영한다.The lighting unit 210 is located on top of the stage unit 220 and emits light downward from the top of the inverted microscope. When light emitted from the lighting unit 210 passes through the flow cell 130 , the lens unit 230 photographs the inside of the flow cell 130 receiving light from the lighting unit 210 . In detail, the lens unit 230 can capture the intermediate flow path 132 located inside the flow cell 130, and more specifically, referring to FIG. 9, the second width of the intermediate flow path 132 A sample of microalgae flowing in the middle side intermediate passage 132.2 is photographed.
한편, 상기 렌즈부(230)에서 사용하는 대물렌즈의 배율이 고배율이 될수록 작동거리가 짧아져 초점을 맞추기 어려워지는 문제가 발생할 수 있다. 즉, 상기 정립식 현미경을 본 발명에서 사용하는 경우, 유로가 상기 플로우셀(130)의 PDMS칩 바닥부에 위치하기 때문에, 고배율의 렌즈를 사용하는 경우 플로우셀(130)의 두께가 작동거리를 초과하는 문제가 발생하므로, 본 발명에서는 구조적 및 기능적 특징을 고려하여 상기 도립식 현미경을 사용한다. 상기 작동거리란, 초점이 맞았을 때 대물렌즈 표면과 슬라이드 글라스 사이의 수직 거리를 의미한다. 따라서, 상기 도립식 현미경을 사용함으로써 정립식 현미경을 사용하는 경우보다 고배율 대물렌즈를 사용할 수 있고, 이를 통해 안정적으로 미세조류이미지를 촬영할 수 있다.On the other hand, as the magnification of the objective lens used in the lens unit 230 increases, the working distance becomes shorter, which may cause difficulty in focusing. That is, when the upright microscope is used in the present invention, since the flow path is located at the bottom of the PDMS chip of the flow cell 130, the thickness of the flow cell 130 can reduce the working distance when a high-magnification lens is used. Since the problem of exceeding occurs, the present invention uses the inverted microscope in consideration of structural and functional features. The working distance means the vertical distance between the surface of the objective lens and the slide glass when focus is achieved. Therefore, by using the inverted microscope, a higher magnification objective lens can be used than when using an upright microscope, and through this, microalgae images can be stably captured.
상기 스테이지부(220)는 상기 도립식 현미경의 중간부분, 즉 상기 조명부(210)와 상기 렌즈부(230) 사이에 위치하며, 상기 플로우셀(130)을 올려놓기 위한 부분이다. 도 10에 도시된 바와 같이, 상기 스테이지부(220) 위에 2개의 플로우셀(130)을 올려놓을 수 있고, 각각의 플로우셀(130)을 촬영할 수 있는 렌즈부(230) 및 카메라가 스테이지부(220) 하단부에 각각 설치되도록 한다. 상기 렌즈부(230)는 각각 다른 배율의 대물렌즈를 구비할 수 있으며, 각각의 대물렌즈는 상기 카메라와 각각 연결되어 있고, 상기 카메라는 컴퓨터와 연결되어 있어, 카메라를 통해 촬영된 미세조류이미지는 상기 컴퓨터에 설치된 이미지 분석 프로그램으로 수집된다. 또한, 본 발명의 일 실시예로서, 상기 2개의 플로우셀(130)은 내부에 서로 다른 너비를 가진 복수의 유로를 포함할 수 있고, 상기 복수의 유로를 통해 하나의 미세조류샘플에 대해서도 다른 배율의 미세조류이미지를 획득할 수 있는 효과를 발휘할 수 있다.The stage part 220 is located in the middle of the inverted microscope, that is, between the lighting part 210 and the lens part 230, and is a part for placing the flow cell 130 thereon. As shown in FIG. 10, two flow cells 130 can be placed on the stage unit 220, and a lens unit 230 capable of taking pictures of each flow cell 130 and a camera are provided on the stage unit ( 220) to be installed on the lower part respectively. The lens unit 230 may have objective lenses of different magnifications, each objective lens is connected to the camera, and the camera is connected to the computer, so that the microalgae image captured through the camera is It is collected by an image analysis program installed on the computer. In addition, as an embodiment of the present invention, the two flow cells 130 may include a plurality of passages having different widths therein, and through the plurality of passages, different magnifications may be obtained for one microalgae sample. It is possible to exert the effect of acquiring the image of microalgae.
상기 스테이지부(220)는 내부에 관통홀을 포함하고 있으며, 상기 관통홀 상단에 상기 플로우셀(130)이 안착되도록 되어 있다. 상기 플로우셀(130)의 슬라이드 글라스가 상기 렌즈부(230)를 향하도록 안착되며, 상기 스테이지부(220)에 포함된 고정장치(미도시)를 통해 상기 플로우셀(130)을 상기 스테이지부(220)에 고정시켜 놓을 수 있다. 상기 고정장치를 통해 상기 이송펌프(140)에 의한 작은 움직임을 제어할 수 있어 선명한 미세조류이미지를 획득할 수 있다. 본 발명의 일 실시예로서, 바람직하게는 상기 플로우셀(130) 내부의 상기 중간측중간유로(132.2)가 관통홀 정중앙에 놓이도록 설치될 수 있다.The stage part 220 includes a through hole therein, and the flow cell 130 is seated on top of the through hole. The slide glass of the flow cell 130 is seated facing the lens unit 230, and the flow cell 130 is mounted on the stage unit (not shown) through a fixing device (not shown) included in the stage unit 220. 220) can be fixed. A small movement of the transfer pump 140 can be controlled through the fixing device, so that a clear image of microalgae can be obtained. As an embodiment of the present invention, preferably, the middle side intermediate flow passage 132.2 inside the flow cell 130 may be installed to be placed in the center of the through hole.
상기 렌즈부(230)는 하나의 현미경(200)의 2개 이상의 대물렌즈를 설치할 수 있으며, 각각의 대물렌즈는 다른 배율을 사용할 수 있음으로써, 다른 크기를 갖는 조류를 동시에 촬영할 수 있으며, 혹은 같은 크기의 조류에 대해서 하나의 저배율 대물렌즈를 통해 많은 조류세포가 나올 수 있도록 넓게 촬영할 수도 있고, 고배율 대물렌즈를 이용하여 복수의 조류세포 하나하나를 자세하게 촬영할 수도 있다. 또한, 상기 렌즈부(230)는 상하로 움직여 초점을 맞출 수 있고, 초점을 맞추기 위해 상기 렌즈부(230)는 상기 관통홀 내부로 인입될 수 있다.The lens unit 230 can install two or more objective lenses of one microscope 200, and each objective lens can use a different magnification, so that birds having different sizes can be photographed simultaneously, or the same For an algae of the same size, it may be photographed widely through one low magnification objective lens so that many algae cells can come out, or a plurality of algae cells may be photographed in detail one by one using a high magnification objective lens. Also, the lens unit 230 may move up and down to focus, and to focus, the lens unit 230 may be inserted into the through hole.
본 발명의 일 실시예에 따르면, 미세조류샘플의 탁도에 기반한 샘플 희석 및 세포 고정 자동화를 통해 미세조류 플록을 최소화하여 안정적으로 이미지를 측정할 수 있는 효과를 발휘할 수 있다.According to one embodiment of the present invention, microalgal floes can be minimized through sample dilution and cell fixation automation based on the turbidity of the microalgal sample, thereby achieving an effect of stably measuring the image.
본 발명의 일 실시예에 따르면, 종래의 일자 모양을 가진 플로우셀 유로에 너비변화를 줌으로써, 조류의 흐름을 원활히 하고, 안정적인 이미지를 측정할 수 있는 효과를 발휘할 수 있다.According to one embodiment of the present invention, by giving a change in width to a flow cell flow path having a conventional straight line shape, it is possible to achieve an effect of facilitating the flow of algae and measuring stable images.
본 발명의 일 실시예에 따르면, 플로우셀 유로 내부면을 나노코팅하여 조류의 유로 접촉 가능성을 낮출 수 있고, 이를 통해 잔여 조류 부착문제를 완화시키고 장시간 모니터링에 의한 오염을 방지할 수 있는 효과를 발휘할 수 있다. According to one embodiment of the present invention, the possibility of algae contacting the flow path can be reduced by nano-coating the inner surface of the flow cell flow path, thereby alleviating the problem of remaining algae adhesion and preventing contamination by long-term monitoring. can
본 발명의 일 실시예에 따르면, 자동화시스템을 통해 전처리과정 및 촬영과정을 수행함으로써, 미세조류이미지를 획득하는 데 있어서 효율성을 높이는 효과를 발휘할 수 있다.According to one embodiment of the present invention, by performing a pre-processing process and a photographing process through an automated system, it is possible to exert an effect of increasing efficiency in acquiring microalgae images.
본 발명의 일 실시예에 따르면, 초음파분산기를 통한 전처리방법을 통해, 종래의 약품 및 열처리에 의한 전처리 방법에 비해 단일세포 회수율을 증가시키고 효율 및 시간 문제를 해결하는 효과를 발휘할 수 있다.According to one embodiment of the present invention, through the pretreatment method through the ultrasonic disperser, it is possible to exhibit the effect of increasing the single cell recovery rate and solving the efficiency and time problems compared to the conventional pretreatment method using chemicals and heat treatment.
본 발명의 일 실시예에 따르면, 캘리브레이션 단계를 통해 초음파 분산기의 세기를 표준화할 수 있고, 이를 통해 실험실간 교차 검증을 구현할 수 있는 효과를 발휘할 수 있다.According to an embodiment of the present invention, the intensity of the ultrasonic diffuser can be standardized through the calibration step, and through this, cross-validation between laboratories can be implemented.
본 발명의 일 실시예에 따르면, 하천 등 실시간 감시를 통해 수생태계의 건강성을 확보하고, 취수원 감시에 의한 정수 수질 향상으로 수질 안정성 확보에 기여하는 효과를 발휘할 수 있다. According to an embodiment of the present invention, the health of the aquatic ecosystem can be secured through real-time monitoring of streams, etc., and the quality of purified water can be improved by monitoring the intake source, thereby contributing to securing water quality stability.
본 발명의 일 실시예에 따르면, 수역별 미세조류 종 분석이 가능하며, 실시간 모니터링을 통해 녹조 발생을 조기에 감지하거나 미리 예방할 수 있는 효과를 발휘할 수 있다.According to one embodiment of the present invention, it is possible to analyze the species of microalgae by water area, and it is possible to detect or prevent the occurrence of algae in advance through real-time monitoring.
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 장치, 구조, 장치, 회로 등의 구성 요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성 요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해여야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is only exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. For example, the described techniques may be performed in a different order than the described method, and/or the described devices, structures, devices, circuits, etc. may be combined or combined in a different form than the described method, or other components may be used. Or even if it is replaced or substituted by equivalents, appropriate results can be achieved. Therefore, the true technical protection scope of the present invention should be defined by the technical spirit of the attached claims.

Claims (8)

  1. 미세조류이미지 연속 측정장치로서,Microalgae image continuous measuring device,
    미세조류샘플에 포함된 협잡물을 제거하는 필터부;A filter unit for removing contaminants included in the microalgae sample;
    상기 미세조류샘플에 용매를 공급하여 상기 미세조류의 탁도를 조절하는 희석부;a dilution unit supplying a solvent to the microalgae sample to control the turbidity of the microalgae;
    상기 미세조류샘플의 전처리를 위한 미세조류 종류별 초음파세기로 상기 미세조류샘플에 초음파를 조사하여 상기 미세조류를 분산시키는 초음파분산기;An ultrasonic disperser for dispersing the microalgae by irradiating ultrasonic waves to the microalgae sample with ultrasonic intensity for each type of microalgae for pretreatment of the microalgae sample;
    상기 초음파분산기에 의하여 초음파가 가해진 상기 미세조류샘플이 흐르는 플로우셀;a flow cell through which the microalgae sample to which ultrasonic wave is applied by the ultrasonic disperser flows;
    상기 플로우셀 내부의 상기 미세조류샘플을 연속적으로 촬영하는 현미경; 및a microscope for continuously photographing the microalgae sample inside the flow cell; and
    상기 미세조류샘플을 상기 필터부에서 상기 플로우셀까지 이송시키는 이송펌프;를 포함하는 미세조류이미지 연속 측정장치.Microalgae image continuous measurement device comprising a; transfer pump for transferring the microalgae sample from the filter unit to the flow cell.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 희석부는,The dilution part,
    상기 미세조류샘플의 탁도를 측정하기 위한 탁도계; A turbidimeter for measuring the turbidity of the microalgae sample;
    상기 탁도계에서 측정된 탁도를 기반으로 상기 미세조류샘플을 희석시킬 수 있는 희석용매; 및A dilution solvent capable of diluting the microalgae sample based on the turbidity measured by the turbidimeter; and
    상기 희석용매를 사용하여 상기 미세조류샘플을 희석시키는 희석챔버;를 포함하고,A dilution chamber for diluting the microalgae sample using the dilution solvent;
    상기 희석용매는 증류수를 포함하고, 선택적으로 미세조류의 고정을 위해 화학적 에이전트를 더 포함할 수 있는, 미세조류이미지 연속 측정장치.The dilution solvent includes distilled water, and may optionally further include a chemical agent for immobilizing microalgae, microalgae image continuous measuring device.
  3. 청구항 1에 있어서,The method of claim 1,
    상기 초음파분산기는,The ultrasonic disperser,
    입력된 조류에 상응하는 에너지단위 혹은 입력된 에너지단위에 대한 장치구동값을 도출하는 캘리브레이션 단계;A calibration step of deriving an energy unit corresponding to the input current or a device driving value for the input energy unit;
    상기 캘리브레이션 단계에서 도출된 장치구동값으로 초음파분산기를 구동하는 장치구동단계;를 수행하는 미세조류이미지 연속 측정장치.Microalgae image continuous measurement device for performing; device driving step of driving the ultrasonic diffuser with the device driving value derived in the calibration step.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 캘리브레이션 단계는,In the calibration step,
    제1장치구동값으로 초음파분산기를 구동하여, 기준매체에 초음파를 가하고, 상기 기준매체 온도의 제1변화정보를 측정하는 제1측정단계;a first measurement step of driving the ultrasonic diffuser with a first device driving value, applying ultrasonic waves to a reference medium, and measuring first change information of the temperature of the reference medium;
    제2장치구동값으로 초음파분산기를 구동하여, 기준매체에 초음파를 가하고, 상기 기준매체 온도의 제2변화정보를 측정하는 제2측정단계;a second measurement step of driving the ultrasonic diffuser with a second device driving value, applying ultrasonic waves to the reference medium, and measuring second change information of the temperature of the reference medium;
    상기 제1변화정보에 기초하여 제1장치구동값에 대한 제1에너지단위를 도출하는 제1도출단계;a first derivation step of deriving a first energy unit for a first device driving value based on the first change information;
    상기 제2변화정보에 기초하여 제2장치구동값에 대한 제2에너지단위를 도출하는 제2도출단계; 및a second derivation step of deriving a second energy unit for a second device drive value based on the second change information; and
    상기 제1장치구동값, 제2장치구동값, 제1에너지단위, 및 제2에너지단위를 포함하는 회귀정보에 기초하여, 장치구동값과 에너지단위의 관계정보를 도출하는 단계;를 포함하고,Based on the regression information including the first device drive value, the second device drive value, the first energy unit, and the second energy unit, deriving relationship information between the device drive value and the energy unit; Including,
    상기 장치구동값과 에너지단위의 관계정보에 근거하여 미세조류 종류별 초음파세기를 도출하는, 미세조류이미지 연속 측정장치.Microalgae image continuous measuring device for deriving the ultrasonic intensity for each type of microalgae based on the relational information between the device drive value and the energy unit.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 장치구동단계에서는,In the device driving step,
    상기 캘리브레이션 단계에서 도출한 초음파세기로 기설정된 시간동안 상기 미세조류샘플에 초음파를 조사하여 미세조류 응집체인 플록(floc)을 분산시키는, 미세조류이미지 연속 측정장치.Microalgae image continuous measurement device for dispersing microalgae aggregate floc by irradiating ultrasonic waves to the microalgae sample for a predetermined time with the ultrasonic intensity derived in the calibration step.
  6. 청구항 1에 있어서, The method of claim 1,
    상기 플로우셀은 1 이상의 유로를 포함하고,The flow cell includes one or more flow paths,
    상기 1 이상의 유로 각각은, Each of the one or more flow passages,
    수직방향으로 형성된 입구유로, 상기 입구유로에서 수평방향으로 연장되는 중간유로, 및 상기 중간유로에서 수직방향으로 연장되는 출구유로를 포함하고,An inlet passage formed in a vertical direction, a middle passage extending horizontally from the inlet passage, and an outlet passage extending vertically from the middle passage,
    상기 중간유로의 내부면은 잔여 조류 부착 문제를 완화하기 위해 나노물질로 코팅되어 있는 미세조류이미지 연속 측정장치.Microalgae image continuous measuring device wherein the inner surface of the intermediate flow path is coated with nanomaterials to alleviate the residual algae adhesion problem.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 중간유로는,The middle flow path,
    제1너비를 갖는 입구측중간유로;an inlet-side intermediate passage having a first width;
    상기 입구측중간유로로부터 연장되고, 제2너비를 갖는 중간측중간유로;a middle-side intermediate passage extending from the inlet-side intermediate passage and having a second width;
    상기 중간측중간유로로부터 연장되고, 제3너비를 갖는 출구측중간유로;를 포함하고,An outlet-side intermediate passage extending from the middle-side intermediate passage and having a third width;
    상기 제2너비는 상기 제1너비 및 제3너비보다 큰, 미세조류이미지 연속 측정장치.The second width is greater than the first width and the third width, microalgae image continuous measuring device.
  8. 청구항 1에 있어서,The method of claim 1,
    상기 현미경은,The microscope,
    조명부; lighting unit;
    조명부 하측에 배치되고, 내부에 관통홀이 형성된 스테이지부; 및a stage unit disposed below the lighting unit and having a through hole therein; and
    상기 스테이지부 하측에 위치하고, 상하로 이동할 수 있는 렌즈부;를 포함하고,A lens unit located below the stage unit and movable up and down; includes,
    상기 플로우셀은 상기 스테이지부 상면에 안착되고, 상기 렌즈부는 상기 관통 홀 내부로 인입될 수 있는, 미세조류이미지 연속 측정장치.The flow cell is seated on the upper surface of the stage part, and the lens part can be introduced into the through hole, microalgae image continuous measuring device.
PCT/KR2022/001233 2021-12-16 2022-01-24 Microalga image continuous measurement apparatus WO2023113098A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210181039A KR102390074B1 (en) 2021-12-16 2021-12-16 The Apparatus for Continuously Monitoring Image of Microalgae
KR10-2021-0181039 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023113098A1 true WO2023113098A1 (en) 2023-06-22

Family

ID=81451745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001233 WO2023113098A1 (en) 2021-12-16 2022-01-24 Microalga image continuous measurement apparatus

Country Status (2)

Country Link
KR (1) KR102390074B1 (en)
WO (1) WO2023113098A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175893A (en) * 1997-09-11 1999-03-23 Masao Karube Determination of concentration of phytoplankton
JP2009192450A (en) * 2008-02-18 2009-08-27 Public Works Research Institute Method of measuring phytoplankton
KR20200020412A (en) * 2018-08-17 2020-02-26 (주)엠큐빅 Continuous monitoring device of micro algae using flow cell
JP2020525276A (en) * 2017-06-30 2020-08-27 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Method and apparatus for manipulating objects
KR20210127410A (en) * 2020-04-14 2021-10-22 경북대학교 산학협력단 Particle analysis system using Newtonian fluid and non-Newtonian fluid

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917030B1 (en) 2007-07-18 2009-09-10 (주)세진에스아이 wireless monitoring system of alga
KR101224855B1 (en) 2011-05-31 2013-01-22 (주)제이엠이엔비 Apparatus for measuring algae using multi wavelength source of light
JP2016095259A (en) * 2014-11-17 2016-05-26 横河電機株式会社 Plankton measurement system and plankton measurement method
KR101683379B1 (en) 2015-05-29 2016-12-06 이화여자대학교 산학협력단 Portable algae detecting apparatus
KR101664965B1 (en) * 2015-06-19 2016-10-25 (주) 휴마스 Flotage Automatic Pretreatment Apparatus for Analysis of Water Sampler
KR101898712B1 (en) 2018-04-10 2018-09-13 (주)테크윈시스템 Integrating monitering system using soak type phycocyanin sensor
KR101928919B1 (en) 2018-09-27 2018-12-13 재단법인 한국환경산업연구원 Real-time algae monitoring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175893A (en) * 1997-09-11 1999-03-23 Masao Karube Determination of concentration of phytoplankton
JP2009192450A (en) * 2008-02-18 2009-08-27 Public Works Research Institute Method of measuring phytoplankton
JP2020525276A (en) * 2017-06-30 2020-08-27 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Method and apparatus for manipulating objects
KR20200020412A (en) * 2018-08-17 2020-02-26 (주)엠큐빅 Continuous monitoring device of micro algae using flow cell
KR20210127410A (en) * 2020-04-14 2021-10-22 경북대학교 산학협력단 Particle analysis system using Newtonian fluid and non-Newtonian fluid

Also Published As

Publication number Publication date
KR102390074B1 (en) 2022-04-25

Similar Documents

Publication Publication Date Title
JP6420297B2 (en) Analyzing and sorting objects in fluids
JP2022022281A (en) Methods, systems and kits for in-pen assays
US9109197B2 (en) Device for concentrating and separating cells
EP2414539B1 (en) Apparatus and method for sorting cells and other biological particulates
US20090081773A1 (en) Microfluidic apparatus for manipulating imaging and analyzing cells of a cytological specimen
Chawla et al. Integrating impedance-based growth-rate monitoring into a microfluidic cell culture platform for live-cell microscopy
US20060073076A1 (en) Cell analyzing and segregating device
WO2009039284A1 (en) Systems and methods for high-throughput detection and sorting
WO2006123137A1 (en) Cell analysis
CN109266717A (en) A kind of method and apparatus by single cell analysis detection bacterium drug resistance
WO2023113098A1 (en) Microalga image continuous measurement apparatus
KR20210094583A (en) Apparatus and method for detection of microdroplets in cells
WO2015157976A1 (en) Cell analysis method, system and apparatus
Zhang et al. Assessment of microplastics using microfluidic approach
Wu et al. Multi-MHz laser-scanning single-cell fluorescence microscopy by spatiotemporally encoded virtual source array
WO2004019005A1 (en) Droplet operation device
CN212800383U (en) Rapid detection system
WO2022047683A1 (en) Rapid testing system and method
US11726084B2 (en) High-throughput imaging platform
WO2011081434A2 (en) Quantitative analysis method of apoptosis using light absorption image analysis of each cell
CN112410206A (en) Rapid detection system and method
CN210700168U (en) Detachable plankton micro-fluidic chip for high-power microscopic image acquisition
KR20230052671A (en) The Preprocessing Apparatus for Apparatus for Continuously Monitoring Image of Microalgae
JP2010525342A (en) Analytical apparatus for optically analyzing a medium using at least one imager
WO2017057966A1 (en) Cell imaging device and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907571

Country of ref document: EP

Kind code of ref document: A1