WO2023113061A1 - Sub-hogel-based holographic stereogram printing method - Google Patents

Sub-hogel-based holographic stereogram printing method Download PDF

Info

Publication number
WO2023113061A1
WO2023113061A1 PCT/KR2021/019024 KR2021019024W WO2023113061A1 WO 2023113061 A1 WO2023113061 A1 WO 2023113061A1 KR 2021019024 W KR2021019024 W KR 2021019024W WO 2023113061 A1 WO2023113061 A1 WO 2023113061A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
slm
holographic stereogram
diffuser
generating
Prior art date
Application number
PCT/KR2021/019024
Other languages
French (fr)
Korean (ko)
Inventor
홍지수
홍성희
김영민
정진수
이병효
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2023113061A1 publication Critical patent/WO2023113061A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0476Holographic printer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0439Recording geometries or arrangements for recording Holographic Optical Element [HOE]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/14Diffuser, e.g. lens array, random phase mask

Definitions

  • the present invention relates to holographic printing, and more particularly, to a method for performing holographic stereogram printing based on a sub-hogel rather than a hogel.
  • the rendered image in charge of each hogel is optically imaged and displayed at an infinite distance, and the hologram printed in the stereogram method in this way can be said to show a three-dimensional image in the light field method as a whole.
  • the complex field h (m,n), which should be recorded in the (m,n )th hogel represents the rendered image of the (m,n)th hogel as c(m,n ), and when the random phase applied thereto is ⁇ rand.(m, n) , it is as follows.
  • Figure 2 shows the structure of the optical engine of the holographic stereogram printer to transmit such a complex field as object light to each hogel.
  • the image to be displayed by each hogel is projected onto the SLM (Spatial Light Modulator), and the projected image is imaged on the diffuser surface through a 4f-system consisting of two lenses with a focal length of f 1 . do.
  • SLM Surface Light Modulator
  • the diffuser serves to apply a random phase to the image of the SLM, and again, this diffuser surface is reduced by a reduction factor of (f 3 /f 2 ) through a 4f-system composed of two lenses with focal lengths of f 2 and f 3 It becomes.
  • an appropriate spatial filter may be selectively placed on the intermediate Fourier plane as needed, and through this, various noises such as DC noise may be removed to improve image quality.
  • this reduced image is Fourier transformed by a lens with a focal length of f 4 and transmitted to the surface of the holographic medium, and the original target complex field can be transmitted as a hogel.
  • the number of hogels determines the spatial resolution of the light field image, and the resolution of the SLM image recorded in each hogel. determines each resolution of the light field image.
  • each resolution of the light field image is allocated excessively high, and in order to secure the spatial resolution of the light field image, hogels must be printed as many as the number of desired spatial resolutions, which increases the holographic printing recording time. .
  • the present invention was made to solve the above problems, and an object of the present invention is to shorten the holographic printing recording time, and in holographic stereogram printing, one SLM image can print several subhogels It is to provide a way to be in charge and record.
  • a holographic stereogram printer includes a modulator for generating a Spatial Light Modulated Image (SLM) image; A front-end optical system for imaging the generated SLM image to the diffuser; a diffuser that scatters the imaged SLM image; a 2D lens array generating a multi-view SLM image from the scattered SLM image; and a rear-end optical system for incidentally generating multi-viewpoint SLM images onto a holographic medium.
  • SLM Spatial Light Modulated Image
  • the 2D lens array may generate multi-view SLM images such that the SLM images of each view are incident on sub-hogels of different hogels in a holographic medium.
  • the SLM image may consist of sub-hogels at the same location in different hogels.
  • the 2D lens array may be spaced apart from the diffuser by a focal distance of each lens constituting the 2D lens array.
  • the size of the 2D lens array may be the same as that of the SLM image.
  • the number of viewpoints in the x and y directions of the multi-view image generated by the 2D lens array may be Mx,My.
  • Angular resolutions in the x and y directions that can be expressed by each sub-hogel constituting one hogel may be 1/Mx,1/My.
  • the SLM image may be configured by mapping the (nx,ny) th pixel in the (mx,my) th rendered image to the (mx,my) th pixel in the (nx,ny) th SLM image.
  • a holographic stereogram printing method includes generating an SLM image; imaging the generated SLM image to a diffuser; scattering the imaged SLM image; generating a multi-view SLM image from the scattered SLM image; Incidentally, the generated multi-viewpoint SLM image is projected onto a holographic medium.
  • a holographic stereogram printer includes a modulator for generating an SLM image in which rendered images are divided into subhogel units; A front-end optical system for imaging the generated SLM image to the diffuser; a diffuser that scatters the imaged SLM image; a 2D lens array for generating multi-view SLM images separated by subhogel units from the scattered SLM images; and a rear-end optical system for incidentally generating multi-viewpoint SLM images onto a holographic medium.
  • a holographic stereogram method includes generating a Spatial Light Modulated Image (SLM) image in which rendered images are divided into subhogel units; imaging the generated SLM image to a diffuser; scattering the imaged SLM image; generating a multi-view SLM image divided into subhogel units from the scattered SLM image; Incidentally, the generated multi-viewpoint SLM image is projected onto a holographic medium.
  • SLM Spatial Light Modulated Image
  • holographic stereogram printing in holographic stereogram printing, several subhogels can be recorded with one SLM image, thereby recognizing each resolution of the 3D image to be displayed.
  • the hologram printing time can be greatly shortened without deterioration in performance.
  • information of SLM (Spatial Light Modulator) recorded in one hogel in the existing holographic stereogram printer is divided into several sub-hogels and recorded, so that one SLM Among this expressible light field information, a method for allocating the excessive amount of information of each resolution by dividing it by the spatial resolution is presented.
  • SLM Spatial Light Modulator
  • FIG. 3 shows the relationship between images before and after the last lens of the optical engine of the Hogel-based holographic stereogram.
  • the image of the diffuser image is reduced by the reduction magnification of the reduction optical system, and the lens is placed at a distance equal to the focal length of the lens, and the holographic medium is placed at a distance equal to the focal length behind the lens.
  • Light emitted from each pixel of the reduced diffuser image is superimposed and recorded as parallel light in the Hogel area on the graphic medium surface, which means that optical Fourier transformation takes place.
  • the light emitted from each pixel on the image plane of the reduced diffuser should be divided by the number of sub-hogels for each angle to send different information. do.
  • the image on the diffuser surface must be given in the form of a multi-view image.
  • FIG. 6 the structure of an optical engine of a holographic stereogram printer according to an embodiment of the present invention is shown in FIG. 6 .
  • the holographic stereogram printer according to an embodiment of the present invention divides one SLM image (Spatial Light Modulated Image) into desired subhogels to record a holographic stereogram.
  • SLM image Spatial Light Modulated Image
  • the holographic stereogram printer according to an embodiment of the present invention performing such a function includes the SLM 110, the front optical system 120, the diffuser 130, the 2D lens array 140, and the rear optical system. (150).
  • the SLM 110 generates an SLM image (holographic fringe pattern) that is a spatial light modulated image.
  • the front optical system 120 is a 4f-system composed of two lenses having a focal length f 1 , and images the SLM image generated by the SLM 110 on the surface of the diffuser 130 .
  • the diffuser 130 serves to scatter the imaged SLM image, that is, to apply a random phase to the SLM image.
  • the 2D lens array 140 generates a multi-view SLM image from the SLM image scattered by the diffuser 130 .
  • the rear optical system 150 is an optical system that records the multi-viewpoint SLM image generated by the 2D lens array 140 by entering it into the holographic medium 200, and is a 4f-system composed of two lenses with focal lengths f 2 and f 3 . , a spatial filter, and a lens with a focal length of f 4 .
  • the 2D lens array 140 has the same size as the SLM image and the diffuser image.
  • the 2D lens array 140 is spaced apart from the diffuser 130 by f LA , which is the focal length of each lens of the 2D lens array 140, so that a multi-view image showing different information for each angle can be implemented.
  • the size of each lens constituting the 2D lens array 140 in the x and y directions is Ax and Ay
  • the size of each pixel of the SLM image imaged on the diffuser 130 in the x and y directions is px
  • Mx,My are also the number of viewpoints in the x,y directions of the multi-view image generated by the 2D lens array 140, and the number of subhogels divided from one hogel in the holographic medium 200 in the x,y directions is also
  • each resolution in the x and y directions that each subhogel can express becomes 1/Mx,1/My, and decreases in inverse proportion as Mx and My increase.
  • FIG. 7 is a diagram illustrating a method of generating a rendering image to be applied to the SLM 110 generating the SLM image in the holographic stereogram printer according to an embodiment of the present invention.
  • a hogel on which one SLM image is recorded has (Mx ⁇ My) number of (Mx ⁇ My) number of image information each having (Nx,Ny) number of pixels in x and y directions. Since they are sub-hogels, the image rendering system first needs to render the images that these sub-hogels are in charge of. Next, it is necessary to map the rendered images into SLM images each having (MxNx,MyNy) pixels in the x and y directions.
  • the SLM image is regarded as tiled with (Nx ⁇ Ny) images having (Mx ⁇ My) pixels, and each of them is indexed with a lowercase index.
  • the mapping method is to map the (nx,ny)th pixel in the (mx,my)th subhogel rendering image to the (mx,my)th pixel in the (nx,ny)th SLM image of the SLM tiling image.
  • the recording time is (1/Mx) without deteriorating the overall cognitive image quality in holographic stereogram printing It is reduced by ⁇ (1/My).
  • a 2D lens array was added to the holographic stereogram printer to generate multi-viewpoint images from the SLM images, and the generated SLM images at each viewpoint were recorded on the subhogels of different hogels in a holographic medium.
  • the SLM image generated by the SLM was configured to consist of sub-hogels at the same location in different hogels.
  • the hologram printing time is greatly shortened while there is no cognitive performance degradation for each resolution of the hologram image to be displayed.
  • the technical spirit of the present invention can also be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment.
  • technical ideas according to various embodiments of the present invention may be implemented in the form of computer readable codes recorded on a computer readable recording medium.
  • the computer-readable recording medium may be any data storage device that can be read by a computer and store data.
  • the computer-readable recording medium may be ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, and the like.
  • computer readable codes or programs stored on a computer readable recording medium may be transmitted through a network connected between computers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)

Abstract

A sub-hogel-based holographic stereogram printing method is provided. A holographic stereogram printer according to an embodiment of the present invention comprises: a modulator for generating an SLM image; a front-end optical system for imaging the generated SLM image on a diffuser; the diffuser for scattering the imaged SLM image; a 2D lens array for generating a multi-view SLM image from the scattered SLM image; and a rear-end optical system for inputting the generated multi-view SLM image into a holographic medium. Therefore, several sub-hogels can be recorded using one SLM image in holographic stereogram printing, and thus hologram printing time can be greatly reduced even without decreasing cognitive performance with respect to respective resolutions of a three-dimensional image to be shown.

Description

서브 호겔 기반 홀로그래픽 스테레오그램 프린팅 방법Subhogel-based holographic stereogram printing method
본 발명은 홀로그래픽 프린팅에 관한 것으로, 더욱 상세하게는 호겔 기반이 아닌 서브 호겔 기반으로 홀로그래픽 스테레오그램 프린팅을 수행하는 방법에 관한 것이다.The present invention relates to holographic printing, and more particularly, to a method for performing holographic stereogram printing based on a sub-hogel rather than a hogel.
기존의 홀로그래픽 스테레오그램 프린팅은 도 1과 같이 각각의 호겔이 표현 가능한 회절각을 가지며, 이 회절각을 화각으로 하여, 디스플레이하고자 하는 대상 3차원 물체가 보이는 장면을 렌더링한 후, 이 렌더링된 영상을 호겔을 통해 보여주게 된다.Existing holographic stereogram printing has a diffraction angle that each hogel can express as shown in FIG. is shown through the hogel.
조금 더 구체적으로는 각 호겔이 담당하는 렌더링된 영상을 무한대의 거리에 광학적으로 이미징하여 보여주며, 이와 같은 방식으로 스테레오그램 방식으로 프린팅 된 홀로그램은, 전체적으로 라이트필드의 방식으로 3차원 영상을 보여준다고 할 수 있다.More specifically, the rendered image in charge of each hogel is optically imaged and displayed at an infinite distance, and the hologram printed in the stereogram method in this way can be said to show a three-dimensional image in the light field method as a whole. can
이를 홀로그래픽 기록 방식을 통해 구현하기 위해서 (m,n)번째 호겔에 기록되어야 하는 complex field h(m,n)는, (m,n)번째 호겔이 담당하는 렌더링된 이미지를 c(m,n)라 하고, 이에 인가되는 랜덤 위상(random phase)을 φrand.(m,n)라 할 때, 다음과 같다.In order to implement this through the holographic recording method, the complex field h (m,n), which should be recorded in the (m,n )th hogel, represents the rendered image of the (m,n)th hogel as c(m,n ), and when the random phase applied thereto is φ rand.(m, n) , it is as follows.
Figure PCTKR2021019024-appb-img-000001
Figure PCTKR2021019024-appb-img-000001
이 때
Figure PCTKR2021019024-appb-img-000002
는 2차원 푸리에 변환(Fourier transform) 연산자이다.
At this time
Figure PCTKR2021019024-appb-img-000002
is a two-dimensional Fourier transform operator.
도 2는 이와 같은 complex field를 각 호겔에 물체광으로써 전달하기 위한 홀로그래픽 스테레오그램 프린터의 광학 엔진 구조를 보여준다. 각 호겔이 보여주게될 영상은 SLM(Spatial Light Modulator, 공간광변조기)에 띄워주게 되며, 이렇게 띄워진 영상은 초점거리 f1인 렌즈 두 개로 구성된 4f-시스템을 통해 디퓨저(diffuser) 면에 이미징되게 된다.Figure 2 shows the structure of the optical engine of the holographic stereogram printer to transmit such a complex field as object light to each hogel. The image to be displayed by each hogel is projected onto the SLM (Spatial Light Modulator), and the projected image is imaged on the diffuser surface through a 4f-system consisting of two lenses with a focal length of f 1 . do.
디퓨저는 SLM의 영상에 랜덤 위상을 인가하는 역할을 하게 되며, 다시 이 디퓨저 면은 초점거리 f2 및 f3인 렌즈 두 개로 구성된 4f-시스템을 통해 (f3/f2)의 축소 배율로 축소되게 된다.The diffuser serves to apply a random phase to the image of the SLM, and again, this diffuser surface is reduced by a reduction factor of (f 3 /f 2 ) through a 4f-system composed of two lenses with focal lengths of f 2 and f 3 It becomes.
이 때 중간의 Fourier plane에는 필요에 따라 적절한 공간 필터(spatial filter)를 선택적으로 놓을 수 있는데, 이를 통해 영상 품질을 높이기 위해 DC 노이즈 등 여러 가지 노이즈들을 제거할 수 있다.At this time, an appropriate spatial filter may be selectively placed on the intermediate Fourier plane as needed, and through this, various noises such as DC noise may be removed to improve image quality.
최종적으로 이렇게 축소된 영상은 초점거리 f4인 렌즈에 의해 푸리에 변환 되어 홀로그래픽 매질 면에 전달되게 되고, 원래의 목적했던 complex field를 호겔로써 전달할 수 있게 된다.Finally, this reduced image is Fourier transformed by a lens with a focal length of f 4 and transmitted to the surface of the holographic medium, and the original target complex field can be transmitted as a hogel.
하지만 이렇게 기록할 경우, SLM 한 개의 정보량이 호겔 하나에 매핑이 되게 되는데, 이렇게 제작된 홀로그램의 경우, 호겔의 개수가 라이트필드 영상의 공간적 해상도를 결정하고, 각각의 호겔에 기록되는 SLM 영상의 해상도가 라이트필드 영상의 각 해상도를 결정하게 된다.However, when recording in this way, the amount of information of one SLM is mapped to one hogel. In the case of a hologram produced in this way, the number of hogels determines the spatial resolution of the light field image, and the resolution of the SLM image recorded in each hogel. determines each resolution of the light field image.
이 경우, 라이트필드 영상의 각 해상도가 과하게 높게 할당되게 되며, 라이트필드 영상의 공간적 해상도를 확보하기 위해서는 결국 호겔을 원하는 공간적 해상도의 개수 만큼 프린팅해야 하는데, 이로 인해 홀로그래픽 프린팅 기록 시간이 길어지게 된다.In this case, each resolution of the light field image is allocated excessively high, and in order to secure the spatial resolution of the light field image, hogels must be printed as many as the number of desired spatial resolutions, which increases the holographic printing recording time. .
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 홀로그래픽 프린팅 기록 시간을 단축하기 위한 방안으로, 홀로그래픽 스테레오그램 프린팅에 있어 하나의 SLM 영상이 여러 개의 서브 호겔을 담당하여 기록할 수 있도록 하는 방법을 제공함에 있다.The present invention was made to solve the above problems, and an object of the present invention is to shorten the holographic printing recording time, and in holographic stereogram printing, one SLM image can print several subhogels It is to provide a way to be in charge and record.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 홀로그래픽 스테레오그램 프린터는, SLM 영상(Spatial Light Modulated image)을 생성하는 변조기; 생성된 SLM 영상을 디퓨저에 이미징 시키는 전단 광학계; 이미징된 SLM 영상을 산란시키는 디퓨저; 산란된 SLM 영상으로부터 다시점의 SLM 영상을 생성하는 2D 렌즈 어레이; 생성된 다시점의 SLM 영상을 홀로그래픽 매질에 입사시키는 후단 광학계;를 포함한다.According to one embodiment of the present invention for achieving the above object, a holographic stereogram printer includes a modulator for generating a Spatial Light Modulated Image (SLM) image; A front-end optical system for imaging the generated SLM image to the diffuser; a diffuser that scatters the imaged SLM image; a 2D lens array generating a multi-view SLM image from the scattered SLM image; and a rear-end optical system for incidentally generating multi-viewpoint SLM images onto a holographic medium.
2D 렌즈 어레이는, 각 시점의 SLM 영상이 홀로그래픽 매질에서 서로 다른 호겔의 서브 호겔에 각각 입사되도록, 다시점의 SLM 영상을 생성할 수 있다.The 2D lens array may generate multi-view SLM images such that the SLM images of each view are incident on sub-hogels of different hogels in a holographic medium.
SLM 영상은, 서로 다른 호겔들에서 동일 위치의 서브 호겔들로 구성될 수 있다.The SLM image may consist of sub-hogels at the same location in different hogels.
2D 렌즈 어레이는, 2D 렌즈 어레이를 구성하는 각 렌즈의 초점 거리 만큼 디퓨저와 떨어져 배치되어 있을 수 있다.The 2D lens array may be spaced apart from the diffuser by a focal distance of each lens constituting the 2D lens array.
2D 렌즈 어레이의 크기는, SLM 영상의 크기와 동일할 수 있다.The size of the 2D lens array may be the same as that of the SLM image.
2D 렌즈 어레이를 구성하는 각 렌즈에 포함되는 픽셀의 x,y 방향의 개수는 Mx(=Ax/px),My(=Ay/py)이고, Ax,Ay는 2D 렌즈 어레이를 구성하는 각 렌즈의 x,y 방향의 크기이며, px,py는 디퓨저에 이미징된 SLM 영상의 각 픽셀의 x,y 방향의 크기일 수 있다.The number of pixels in the x and y directions included in each lens constituting the 2D lens array is Mx(=Ax/px),My(=Ay/py), and Ax,Ay is the number of each lens constituting the 2D lens array. It is the size in the x,y direction, and px,py may be the size in the x,y direction of each pixel of the SLM image imaged by the diffuser.
2D 렌즈 어레이에 의해 생성되는 다시점 영상의 x,y 방향의 시점 개수는 Mx,My일 수 있다.The number of viewpoints in the x and y directions of the multi-view image generated by the 2D lens array may be Mx,My.
하나의 호겔을 구성할 다수의 각 서브 호겔이 표현할 수 있는 x,y 방향 각 해상도는 1/Mx,1/My일 수 있다.Angular resolutions in the x and y directions that can be expressed by each sub-hogel constituting one hogel may be 1/Mx,1/My.
SLM 영상은, (mx,my) 번째 렌더링 영상에서 (nx,ny) 번째 픽셀을, (nx,ny) 번째 SLM 영상에서 (mx,my) 번째 픽셀로 매핑하여 구성할 수 있다.The SLM image may be configured by mapping the (nx,ny) th pixel in the (mx,my) th rendered image to the (mx,my) th pixel in the (nx,ny) th SLM image.
한편, 본 발명의 다른 실시예에 따른, 홀로그래픽 스테레오그램 프린팅 방법은, SLM 영상을 생성하는 단계; 생성된 SLM 영상을 디퓨저에 이미징 시키는 단계; 이미징된 SLM 영상을 산란시키는 단계; 산란된 SLM 영상으로부터 다시점의 SLM 영상을 생성하는 단계; 생성된 다시점의 SLM 영상을 홀로그래픽 매질에 입사시키는 단계;를 포함한다.Meanwhile, a holographic stereogram printing method according to another embodiment of the present invention includes generating an SLM image; imaging the generated SLM image to a diffuser; scattering the imaged SLM image; generating a multi-view SLM image from the scattered SLM image; Incidentally, the generated multi-viewpoint SLM image is projected onto a holographic medium.
한편, 본 발명의 다른 실시예에 따른, 홀로그래픽 스테레오그램 프린터는, 렌더링 영상이 서브 호겔 단위로 구분되어 있는 SLM 영상을 생성하는 변조기; 생성된 SLM 영상을 디퓨저에 이미징 시키는 전단 광학계; 이미징된 SLM 영상을 산란시키는 디퓨저; 산란된 SLM 영상으로부터 서브 호겔 단위로 구분되는 다시점의 SLM 영상을 생성하는 2D 렌즈 어레이; 생성된 다시점의 SLM 영상을 홀로그래픽 매질에 입사시키는 후단 광학계;를 포함한다.Meanwhile, a holographic stereogram printer according to another embodiment of the present invention includes a modulator for generating an SLM image in which rendered images are divided into subhogel units; A front-end optical system for imaging the generated SLM image to the diffuser; a diffuser that scatters the imaged SLM image; a 2D lens array for generating multi-view SLM images separated by subhogel units from the scattered SLM images; and a rear-end optical system for incidentally generating multi-viewpoint SLM images onto a holographic medium.
한편, 본 발명의 다른 실시예에 따른, 홀로그래픽 스테레오그램 방법은, 렌더링 영상이 서브 호겔 단위로 구분되어 있는 SLM 영상(Spatial Light Modulated image)을 생성하는 단계; 생성된 SLM 영상을 디퓨저에 이미징 시키는 단계; 이미징된 SLM 영상을 산란시키는 단계; 산란된 SLM 영상으로부터 서브 호겔 단위로 구분되는 다시점의 SLM 영상을 생성하는 단계; 생성된 다시점의 SLM 영상을 홀로그래픽 매질에 입사시키는 단계;를 포함한다.Meanwhile, a holographic stereogram method according to another embodiment of the present invention includes generating a Spatial Light Modulated Image (SLM) image in which rendered images are divided into subhogel units; imaging the generated SLM image to a diffuser; scattering the imaged SLM image; generating a multi-view SLM image divided into subhogel units from the scattered SLM image; Incidentally, the generated multi-viewpoint SLM image is projected onto a holographic medium.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 홀로그래픽 스테레오그램 프린팅에 있어 하나의 SLM 영상으로 여러 개의 서브 호겔을 기록할 수 있도록 함으로써, 보여주고자 하는 3차원 영상의 각 해상도에 대해 인지적 성능 저하 없이도 홀로그램 프린팅 시간을 크게 단축시킬 수 있게 된다.As described above, according to the embodiments of the present invention, in holographic stereogram printing, several subhogels can be recorded with one SLM image, thereby recognizing each resolution of the 3D image to be displayed. The hologram printing time can be greatly shortened without deterioration in performance.
도 1. 기존 홀로그래픽 스테레오그램 프린팅을 위한 3차원 영상 표현 범위 및 렌더링 방법1. 3D image expression range and rendering method for conventional holographic stereogram printing
도 2. 기존 홀로그래픽 스테레오그램 프린팅을 위한 광학 엔진의 구조Figure 2. Structure of an optical engine for conventional holographic stereogram printing
도 3. 호겔 기록 방식Figure 3. Hogel recording method
도 4,5. 본 발명의 실시예에 따른 서브 호겔 기반 기록 방식Fig. 4,5. Subhogel-based recording method according to an embodiment of the present invention
도 6. 본 발명의 일 실시예에 따른 서브 호겔 기반 홀로그래픽 스테레오그램 프린터의 광학엔진 구조Figure 6. Optical engine structure of a subhogel-based holographic stereogram printer according to an embodiment of the present invention
도 7. 서브 호겔 기반 홀로그래픽 스테레오그램 프린팅을 위한 영상 매핑 방법7. Image mapping method for subhogel-based holographic stereogram printing
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
본 발명의 실시예에서는 기존 홀로그래픽 스테레오그램 프린터에서 SLM(Spatial Light Modulator)의 정보가 하나의 호겔(hogel)로 기록되던 것을, 여러 개의 서브 호겔(sub-hogel)로 나누어 기록함으로써, 하나의 SLM이 표현 가능한 라이트필드 정보 중, 과도한 각 해상도의 정보량을 공간 해상도에 나누어 할당할 수 있는 방법을 제시한다. In the embodiment of the present invention, information of SLM (Spatial Light Modulator) recorded in one hogel in the existing holographic stereogram printer is divided into several sub-hogels and recorded, so that one SLM Among this expressible light field information, a method for allocating the excessive amount of information of each resolution by dividing it by the spatial resolution is presented.
그렇게 함으로써, 각 해상도는 여전히 인지적으로 큰 문제가 없으면서, SLM 한 개로 여러 개의 서브 호겔을 기록할 수 있게 되고, 이는 결국 프린팅 시간을 줄일 수 있게 되는 장점으로 이어진다.By doing so, it is possible to record several subhogels with one SLM while still not having a big cognitive problem for each resolution, which eventually leads to the advantage of reducing the printing time.
도 3은 호겔 기반의 홀로그래픽 스테레오그램의 광학 엔진의 마지막 렌즈 전후의 영상들의 관계에 대해 보여주고 있다. 마지막 렌즈 전에는 디퓨저 영상이 축소 광학계의 축소 배율로 축소된 영상이 이미징되게 되며, 이로부터 렌즈 초점거리만큼 떨어진 곳에 렌즈를 배치시키고, 다시 렌즈 뒤 초점 거리 만큼의 거리에 홀로그래픽 매질을 배치시키면, 홀로그래픽 매질면 위의 호겔 영역에 축소된 디퓨저 영상의 각 픽셀에서 발산한 빛들이 평행광으로써 중첩되어 기록되게 되며, 이는 곧 광학적으로 푸리에 변환이 일어나는 것을 의미하게 된다.3 shows the relationship between images before and after the last lens of the optical engine of the Hogel-based holographic stereogram. Before the last lens, the image of the diffuser image is reduced by the reduction magnification of the reduction optical system, and the lens is placed at a distance equal to the focal length of the lens, and the holographic medium is placed at a distance equal to the focal length behind the lens. Light emitted from each pixel of the reduced diffuser image is superimposed and recorded as parallel light in the Hogel area on the graphic medium surface, which means that optical Fourier transformation takes place.
하지만 이러한 호겔을 여러 개의 서브 호겔들로 나누고자 한다면, 도 4나 도 5와 같이, 축소된 디퓨저 영상 면의 각 픽셀에서 발산하는 빛이 각도 별로 서브 호겔 개수 만큼 나누어져 서로 다른 정보를 보낼 수 있어야 한다. 이를 위해서는 디퓨저 면에서의 영상이 다시점 영상의 형태로 주어져야 한다.However, if you want to divide these hogels into several sub-hogels, as shown in FIG. 4 or 5, the light emitted from each pixel on the image plane of the reduced diffuser should be divided by the number of sub-hogels for each angle to send different information. do. To this end, the image on the diffuser surface must be given in the form of a multi-view image.
이를 위한 본 발명의 일 실시예에 따른 홀로그래픽 스테레오그램 프린터의 광학엔진 구조를 도 6에 제시하였다. 본 발명의 실시예에 따른 홀로그래픽 스테레오그램 프린터는 하나의 SLM 영상(Spatial Light Modulated image)을 원하는 서브 호겔들로 나누어 홀로그래픽 스테레오그램을 기록한다.For this purpose, the structure of an optical engine of a holographic stereogram printer according to an embodiment of the present invention is shown in FIG. 6 . The holographic stereogram printer according to an embodiment of the present invention divides one SLM image (Spatial Light Modulated Image) into desired subhogels to record a holographic stereogram.
이와 같은 기능을 수행하는 본 발명의 실시예에 따른 홀로그래픽 스테레오그램 프린터는, 도시된 바와 같이, SLM(110), 전단 광학계(120), 디퓨저(130), 2D 렌즈 어레이(140) 및 후단 광학계(150)를 포함하여 구성된다.As shown, the holographic stereogram printer according to an embodiment of the present invention performing such a function includes the SLM 110, the front optical system 120, the diffuser 130, the 2D lens array 140, and the rear optical system. (150).
SLM(110)은 공간광변조된 영상인 SLM 영상(홀로그래픽 프린지 패턴)을 생성한다. 전단 광학계(120)는 초점거리 f1인 렌즈 두 개로 구성된 4f-시스템으로, SLM(110)에 의해 생성된 SLM 영상을 디퓨저(130) 면에 이미징 시킨다.The SLM 110 generates an SLM image (holographic fringe pattern) that is a spatial light modulated image. The front optical system 120 is a 4f-system composed of two lenses having a focal length f 1 , and images the SLM image generated by the SLM 110 on the surface of the diffuser 130 .
디퓨저(130)는 이미징된 SLM 영상을 산란, 즉, SLM 영상에 랜덤 위상을 인가하는 역할을 한다. 2D 렌즈 어레이(140)는 디퓨저(130)에서 산란된 SLM 영상으로부터 다시점의 SLM 영상을 생성한다.The diffuser 130 serves to scatter the imaged SLM image, that is, to apply a random phase to the SLM image. The 2D lens array 140 generates a multi-view SLM image from the SLM image scattered by the diffuser 130 .
후단 광학계(150)는 2D 렌즈 어레이(140)에서 생성된 다시점의 SLM 영상을 홀로그래픽 매질(200)에 입사시켜 기록시키는 광학계로, 초점거리 f2 및 f3인 렌즈 두 개로 구성된 4f-시스템과 공간 필터(spatial filter) 그리고 초점거리 f4인 렌즈로 구성된다.The rear optical system 150 is an optical system that records the multi-viewpoint SLM image generated by the 2D lens array 140 by entering it into the holographic medium 200, and is a 4f-system composed of two lenses with focal lengths f 2 and f 3 . , a spatial filter, and a lens with a focal length of f 4 .
2D 렌즈 어레이(140)는 SLM 영상, 디퓨저 영상과 동일한 크기이다. 2D 렌즈 어레이(140)는 2D 렌즈 어레이(140)의 각 렌즈의 초점거리인 fLA 만큼 디퓨저(130)와 떨어져 배치되어 있어, 각도 별로 다른 정보를 보여주는 다시점 영상을 구현할 수 있다.The 2D lens array 140 has the same size as the SLM image and the diffuser image. The 2D lens array 140 is spaced apart from the diffuser 130 by f LA , which is the focal length of each lens of the 2D lens array 140, so that a multi-view image showing different information for each angle can be implemented.
이 때, 2D 렌즈 어레이(140)를 구성하는 각 렌즈의 x,y 방향의 크기를 Ax,Ay라 하고, 디퓨저(130)에 이미징된 SLM 영상의 각 픽셀의 x,y 방향의 크기를 px,py라고 하면, 2D 렌즈 어레이(140)를 구성하는 각 렌즈에 포함되는 픽셀의 x,y 방향의 개수는 Mx(=Ax/px),My(=Ay/py)가 된다.At this time, the size of each lens constituting the 2D lens array 140 in the x and y directions is Ax and Ay, and the size of each pixel of the SLM image imaged on the diffuser 130 in the x and y directions is px, Assuming py, the number of pixels included in each lens constituting the 2D lens array 140 in the x and y directions is Mx(=Ax/px) and My(=Ay/py).
Mx,My는 2D 렌즈 어레이(140)에 의해 생성되는 다시점 영상의 x,y 방향의 시점 개수이기도 하며, 홀로그래픽 매질(200)에서 하나의 호겔로부터 분할되는 서브 호겔의 x,y 방향의 개수이기도 하다.Mx,My are also the number of viewpoints in the x,y directions of the multi-view image generated by the 2D lens array 140, and the number of subhogels divided from one hogel in the holographic medium 200 in the x,y directions is also
그 결과 각 서브 호겔이 표현할 수 있는 x,y 방향 각 해상도는 1/Mx,1/My가 되어, Mx,My가 커질수록 그에 반비례하여 줄어들게 된다.As a result, each resolution in the x and y directions that each subhogel can express becomes 1/Mx,1/My, and decreases in inverse proportion as Mx and My increase.
도 7은 본 발명의 실시예에 따른 홀로그래픽 스테레오그램 프린터에서 SLM 영상을 생성하는 SLM(110)으로 인가할 렌더링 영상을 생성하는 방법을 나타낸 도면이다.7 is a diagram illustrating a method of generating a rendering image to be applied to the SLM 110 generating the SLM image in the holographic stereogram printer according to an embodiment of the present invention.
본 발명의 실시예에 따른 홀로그래픽 스테레오그램 프린터에서 하나의 SLM 영상이 기록하게 되는 호겔은 x,y 방향으로 각각 (Nx,Ny) 개의 픽셀을 갖는 영상 정보를 표현할 수 있는 (Mx×My) 개의 서브 호겔들이므로, 일단 영상 렌더링 시스템이 이 서브 호겔들이 담당하는 영상들을 렌더링해 줄 필요가 있다. 다음 이렇게 렌더링된 영상들을 x,y 방향으로 각각 (MxNx,MyNy) 개의 픽셀을 갖는 SLM 영상으로 매핑해 줄 필요가 있다.In the holographic stereogram printer according to an embodiment of the present invention, a hogel on which one SLM image is recorded has (Mx×My) number of (Mx×My) number of image information each having (Nx,Ny) number of pixels in x and y directions. Since they are sub-hogels, the image rendering system first needs to render the images that these sub-hogels are in charge of. Next, it is necessary to map the rendered images into SLM images each having (MxNx,MyNy) pixels in the x and y directions.
매핑 방법 설명의 용이성을 위해 SLM 영상을 (Mx×My) 개의 픽셀을 갖는 (Nx×Ny) 개의 영상이 타일링 된 것으로 보고, 이들을 각각 소문자 인덱스로 인덱싱 한다. 그러면, 매핑 방법은 (mx,my) 번째 서브 호겔 렌더링 영상에서 (nx,ny) 번째 픽셀을, SLM 타일링 영상 중 (nx,ny) 번째 SLM 영상에서 (mx,my) 번째 픽셀로 매핑하는 것이라 할 수 있다.For ease of explanation of the mapping method, the SLM image is regarded as tiled with (Nx×Ny) images having (Mx×My) pixels, and each of them is indexed with a lowercase index. Then, the mapping method is to map the (nx,ny)th pixel in the (mx,my)th subhogel rendering image to the (mx,my)th pixel in the (nx,ny)th SLM image of the SLM tiling image. can
이와 같이 생성된 SLM 영상을 도 6에 제시한 홀로그래픽 스테레오그램 프린터를 통해 홀로그래픽 매질(200)에 기록해주는 경우, 한번의 기록시에 (Nx×Ny)의 각 해상도를 갖는 (Mx×My) 개의 서브 호겔들을 한 번에 기록해줄 수 있게 된다.When the SLM image thus generated is recorded on the holographic medium 200 through the holographic stereogram printer shown in FIG. 6, (Mx×My) having each resolution of (Nx×Ny) at one time You can record the dog's subhogels at once.
영상 각 해상도에 대한 관찰자 인지 성능을 저하시키지 않는 한도 내에서 (Mx×My) 값을 정하면, 홀로그래픽 스테레오그램 프린팅에 있어 전체적으로 인지적 영상 품질은 저하되지 않으면서도, 기록 시간이 (1/Mx)×(1/My) 만큼 줄어들게 된다.If the (Mx×My) value is determined within the limit of not degrading the observer's cognitive performance for each image resolution, the recording time is (1/Mx) without deteriorating the overall cognitive image quality in holographic stereogram printing It is reduced by ×(1/My).
지금까지, 서브 호겔 기반 홀로그래픽 스테레오그램 프린팅 방법에 대해 바람직한 실시예를 들어 상세히 설명하였다.So far, the sub-hogel-based holographic stereogram printing method has been described in detail with a preferred embodiment.
위 실시예에서는 홀로그래픽 스테레오그램 프린팅에 있어, 하나의 SLM이 하나의 호겔을 담당하여 기록하던 기존의 프린팅 방식과 달리, 하나의 SLM이 여러 개의 서브 호겔을 기록할 수 있는 홀로그래픽 프린팅 방법을 제시하였다.In the above embodiment, in holographic stereogram printing, unlike the existing printing method in which one SLM was responsible for recording one hogel, a holographic printing method in which one SLM can record several sub hogels is presented. did
구체적으로 홀로그래픽 스테레오그램 프린터에 2D 렌즈 어레이를 추가하여 SLM 영상으로부터 다시점 영상을 생성하고, 생성된 각 시점의 SLM 영상이 홀로그래픽 매질에서 서로 다른 호겔의 서브 호겔에 각각 기록되도록 하였다.Specifically, a 2D lens array was added to the holographic stereogram printer to generate multi-viewpoint images from the SLM images, and the generated SLM images at each viewpoint were recorded on the subhogels of different hogels in a holographic medium.
또한 SLM에 의해 생성되는 SLM 영상은 서로 다른 호겔들에서 동일 위치의 서브 호겔들로 구성되도록 구성하였다.In addition, the SLM image generated by the SLM was configured to consist of sub-hogels at the same location in different hogels.
이를 통해, 보여주고자 하는 홀로그램 영상의 각 해상도에 대해 인지적 성능 저하는 없으면서도, 홀로그램 프린팅 시간은 크게 단축되도록 하였다.Through this, the hologram printing time is greatly shortened while there is no cognitive performance degradation for each resolution of the hologram image to be displayed.
한편, 본 실시예에 따른 장치와 방법의 기능을 수행하게 하는 컴퓨터 프로그램을 수록한 컴퓨터로 읽을 수 있는 기록매체에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다. 또한, 본 발명의 다양한 실시예에 따른 기술적 사상은 컴퓨터로 읽을 수 있는 기록매체에 기록된 컴퓨터로 읽을 수 있는 코드 형태로 구현될 수도 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터에 의해 읽을 수 있고 데이터를 저장할 수 있는 어떤 데이터 저장 장치이더라도 가능하다. 예를 들어, 컴퓨터로 읽을 수 있는 기록매체는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광디스크, 하드 디스크 드라이브, 등이 될 수 있음은 물론이다. 또한, 컴퓨터로 읽을 수 있는 기록매체에 저장된 컴퓨터로 읽을 수 있는 코드 또는 프로그램은 컴퓨터간에 연결된 네트워크를 통해 전송될 수도 있다.Meanwhile, it goes without saying that the technical spirit of the present invention can also be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment. In addition, technical ideas according to various embodiments of the present invention may be implemented in the form of computer readable codes recorded on a computer readable recording medium. The computer-readable recording medium may be any data storage device that can be read by a computer and store data. For example, the computer-readable recording medium may be ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, and the like. In addition, computer readable codes or programs stored on a computer readable recording medium may be transmitted through a network connected between computers.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, although the preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the specific embodiments described above, and the technical field to which the present invention belongs without departing from the gist of the present invention claimed in the claims. Of course, various modifications are possible by those skilled in the art, and these modifications should not be individually understood from the technical spirit or perspective of the present invention.

Claims (12)

  1. SLM 영상(Spatial Light Modulated image)을 생성하는 변조기;a modulator generating a Spatial Light Modulated Image (SLM) image;
    생성된 SLM 영상을 디퓨저에 이미징 시키는 전단 광학계;A front-end optical system for imaging the generated SLM image to the diffuser;
    이미징된 SLM 영상을 산란시키는 디퓨저;a diffuser that scatters the imaged SLM image;
    산란된 SLM 영상으로부터 다시점의 SLM 영상을 생성하는 2D 렌즈 어레이;a 2D lens array generating a multi-view SLM image from the scattered SLM image;
    생성된 다시점의 SLM 영상을 홀로그래픽 매질에 입사시키는 후단 광학계;를 포함하는 것을 특징으로 하는 홀로그래픽 스테레오그램 프린터.A holographic stereogram printer comprising a rear optical system for incidentally generating multi-viewpoint SLM images onto a holographic medium.
  2. 청구항 1에 있어서,The method of claim 1,
    2D 렌즈 어레이는,2D lens array,
    각 시점의 SLM 영상이 홀로그래픽 매질에서 서로 다른 호겔의 서브 호겔에 각각 입사되도록, 다시점의 SLM 영상을 생성하는 것을 특징으로 하는 홀로그래픽 스테레오그램 프린터.A holographic stereogram printer, characterized in that it generates multi-view SLM images such that the SLM images of each view are incident on sub hogels of different hogels in a holographic medium.
  3. 청구항 2에 있어서,The method of claim 2,
    SLM 영상은,For SLM images,
    서로 다른 호겔들에서 동일 위치의 서브 호겔들로 구성되는 것을 특징으로 하는 홀로그래픽 스테레오그램 프린터.A holographic stereogram printer, characterized in that it is composed of sub-hogels in the same position in different hogels.
  4. 청구항 1에 있어서,The method of claim 1,
    2D 렌즈 어레이는,2D lens array,
    2D 렌즈 어레이를 구성하는 각 렌즈의 초점 거리 만큼 디퓨저와 떨어져 배치되어 있는 것을 특징으로 하는 홀로그래픽 스테레오그램 프린터.A holographic stereogram printer, characterized in that it is disposed away from the diffuser by the focal length of each lens constituting the 2D lens array.
  5. 청구항 4에 있어서,The method of claim 4,
    2D 렌즈 어레이의 크기는,The size of the 2D lens array is
    SLM 영상의 크기와 동일한 것을 특징으로 하는 홀로그래픽 스테레오그램 프린터.A holographic stereogram printer, characterized in that the size of the SLM image is the same.
  6. 청구항 5에 있어서,The method of claim 5,
    2D 렌즈 어레이를 구성하는 각 렌즈에 포함되는 픽셀의 x,y 방향의 개수는 Mx(=Ax/px),My(=Ay/py)이고,The number of pixels in the x and y directions included in each lens constituting the 2D lens array is Mx(=Ax/px),My(=Ay/py),
    Ax,Ay는 2D 렌즈 어레이를 구성하는 각 렌즈의 x,y 방향의 크기이며,Ax,Ay is the size of each lens constituting the 2D lens array in the x and y directions,
    px,py는 디퓨저에 이미징된 SLM 영상의 각 픽셀의 x,y 방향의 크기인 것을 특징으로 하는 홀로그래픽 스테레오그램 프린터.px, py is a holographic stereogram printer, characterized in that the size of each pixel in the x, y direction of the SLM image imaged on the diffuser.
  7. 청구항 6에 있어서,The method of claim 6,
    2D 렌즈 어레이에 의해 생성되는 다시점 영상의 x,y 방향의 시점 개수는 Mx,My인 것을 특징으로 하는 홀로그래픽 스테레오그램 프린터.A holographic stereogram printer, characterized in that the number of views in the x, y directions of the multi-view image generated by the 2D lens array is Mx, My.
  8. 청구항 6에 있어서,The method of claim 6,
    하나의 호겔을 구성할 다수의 각 서브 호겔이 표현할 수 있는 x,y 방향 각 해상도는 1/Mx,1/My인 것을 특징으로 하는 홀로그래픽 스테레오그램 프린터.A holographic stereogram printer, characterized in that the angular resolution in the x and y directions that can be expressed by each subhogel constituting one hogel is 1/Mx,1/My.
  9. 청구항 1에 있어서,The method of claim 1,
    SLM 영상은,For SLM images,
    (mx,my) 번째 렌더링 영상에서 (nx,ny) 번째 픽셀을, (nx,ny) 번째 SLM 영상에서 (mx,my) 번째 픽셀로 매핑하여 구성하는 것을 특징으로 하는 홀로그래픽 스테레오그램 프린터.A holographic stereogram printer characterized in that it is configured by mapping the (nx,ny) th pixel in the (mx,my) th rendered image to the (mx,my) th pixel in the (nx,ny) th SLM image.
  10. SLM 영상(Spatial Light Modulated image)을 생성하는 단계;Generating a Spatial Light Modulated Image (SLM) image;
    생성된 SLM 영상을 디퓨저에 이미징 시키는 단계;imaging the generated SLM image to a diffuser;
    이미징된 SLM 영상을 산란시키는 단계;scattering the imaged SLM image;
    산란된 SLM 영상으로부터 다시점의 SLM 영상을 생성하는 단계;generating a multi-view SLM image from the scattered SLM image;
    생성된 다시점의 SLM 영상을 홀로그래픽 매질에 입사시키는 단계;를 포함하는 것을 특징으로 하는 홀로그래픽 스테레오그램 프린팅 방법.A holographic stereogram printing method comprising the steps of incident the generated multi-viewpoint SLM image onto a holographic medium.
  11. 렌더링 영상이 서브 호겔 단위로 구분되어 있는 SLM 영상(Spatial Light Modulated image)을 생성하는 변조기;a modulator for generating a Spatial Light Modulated Image (SLM) image in which the rendered image is divided into subhogel units;
    생성된 SLM 영상을 디퓨저에 이미징 시키는 전단 광학계;A front-end optical system for imaging the generated SLM image to the diffuser;
    이미징된 SLM 영상을 산란시키는 디퓨저;a diffuser that scatters the imaged SLM image;
    산란된 SLM 영상으로부터 서브 호겔 단위로 구분되는 다시점의 SLM 영상을 생성하는 2D 렌즈 어레이;a 2D lens array for generating multi-view SLM images separated by subhogel units from the scattered SLM images;
    생성된 다시점의 SLM 영상을 홀로그래픽 매질에 입사시키는 후단 광학계;를 포함하는 것을 특징으로 하는 홀로그래픽 스테레오그램 프린터.A holographic stereogram printer comprising a rear optical system for incidentally generating multi-viewpoint SLM images onto a holographic medium.
  12. 렌더링 영상이 서브 호겔 단위로 구분되어 있는 SLM 영상(Spatial Light Modulated image)을 생성하는 단계;generating a Spatial Light Modulated Image (SLM) image in which the rendered image is divided into subhogel units;
    생성된 SLM 영상을 디퓨저에 이미징 시키는 단계;imaging the generated SLM image to a diffuser;
    이미징된 SLM 영상을 산란시키는 단계;scattering the imaged SLM image;
    산란된 SLM 영상으로부터 서브 호겔 단위로 구분되는 다시점의 SLM 영상을 생성하는 단계;generating a multi-view SLM image divided into subhogel units from the scattered SLM image;
    생성된 다시점의 SLM 영상을 홀로그래픽 매질에 입사시키는 단계;를 포함하는 것을 특징으로 하는 홀로그래픽 스테레오그램 방법.A holographic stereogram method comprising the step of incident the generated multi-viewpoint SLM image onto a holographic medium.
PCT/KR2021/019024 2021-12-13 2021-12-15 Sub-hogel-based holographic stereogram printing method WO2023113061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0177360 2021-12-13
KR1020210177360A KR102586660B1 (en) 2021-12-13 2021-12-13 Sub hogel based holographic stereogram printing method

Publications (1)

Publication Number Publication Date
WO2023113061A1 true WO2023113061A1 (en) 2023-06-22

Family

ID=86774512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019024 WO2023113061A1 (en) 2021-12-13 2021-12-15 Sub-hogel-based holographic stereogram printing method

Country Status (2)

Country Link
KR (1) KR102586660B1 (en)
WO (1) WO2023113061A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197246A (en) * 2007-02-09 2008-08-28 Fujifilm Corp Hologram creating method and hologram creating apparatus
JP2010197916A (en) * 2009-02-27 2010-09-09 Dainippon Printing Co Ltd Projection type video display device and video display method
EP1131681B1 (en) * 1998-11-18 2014-01-01 Zebra Imaging, Inc. Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms
KR20160030034A (en) * 2014-09-05 2016-03-16 전자부품연구원 3D Image System and Display Method using the Hologram and Multiview Image
CN207731088U (en) * 2017-11-28 2018-08-14 深圳盟云全息文化有限公司 A kind of hologram image producing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000259070A (en) * 1999-03-10 2000-09-22 Hamamatsu Photonics Kk Hologram forming device and method therefor
JP2001350395A (en) * 2000-06-08 2001-12-21 Sony Corp Holographic stereogram exposure device and method, and holographic stereogram forming system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1131681B1 (en) * 1998-11-18 2014-01-01 Zebra Imaging, Inc. Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms
JP2008197246A (en) * 2007-02-09 2008-08-28 Fujifilm Corp Hologram creating method and hologram creating apparatus
JP2010197916A (en) * 2009-02-27 2010-09-09 Dainippon Printing Co Ltd Projection type video display device and video display method
KR20160030034A (en) * 2014-09-05 2016-03-16 전자부품연구원 3D Image System and Display Method using the Hologram and Multiview Image
CN207731088U (en) * 2017-11-28 2018-08-14 深圳盟云全息文化有限公司 A kind of hologram image producing device

Also Published As

Publication number Publication date
KR102586660B1 (en) 2023-10-10
KR20230089033A (en) 2023-06-20

Similar Documents

Publication Publication Date Title
JP3476114B2 (en) Stereoscopic display method and apparatus
EP0497292B1 (en) Display having diffraction grating pattern
EP0520179B1 (en) Autostereoscopic photography system with electronically interpolated images
Okoshi Three-dimensional imaging techniques
NL8202934A (en) DEVICE FOR DISPLAYING THREE-DIMENSIONAL IMAGES.
EP1953702A2 (en) Apparatus and method for generating CG image for 3-D display
US6567095B2 (en) Three-dimensional image texture mapping
KR20080090366A (en) Three dimensional image display device
US5812313A (en) Method of providing a magnified image of a periodical image pattern
CN1229659C (en) 3-D HLCD system and method of making
WO2019139234A1 (en) Apparatus and method for removing distortion of fisheye lens and omni-directional images
US6614552B2 (en) Producing visual images
NL2019189B1 (en) Interference light field reconstruction using sparsely distributed light points
CN108141580B (en) Integrated image processing device and vehicle lamp using the same
CN109769110B (en) Method and device for generating 3D asteroid dynamic graph and portable terminal
WO2023113061A1 (en) Sub-hogel-based holographic stereogram printing method
CN1162732C (en) Display device
KR102551957B1 (en) 3D Image Rendering Method for Holographic Printer
CN1333485A (en) Holograph printing system and stereo holograph
CN1317718A (en) 3D full-figure technique
WO1992008164A1 (en) Cellular images and associated apparatus and processing method
US4509818A (en) Hologram synthesis
WO2010087587A2 (en) Image data obtaining method and apparatus therefor
WO2019112096A1 (en) Viewpoint image mapping method for integrated imaging system using hexagonal lens
WO2023106437A1 (en) Uncopiable hologram qr code

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE