WO2023113015A1 - Vinyl-based polymer and active energy ray curable composition containing same - Google Patents

Vinyl-based polymer and active energy ray curable composition containing same Download PDF

Info

Publication number
WO2023113015A1
WO2023113015A1 PCT/JP2022/046423 JP2022046423W WO2023113015A1 WO 2023113015 A1 WO2023113015 A1 WO 2023113015A1 JP 2022046423 W JP2022046423 W JP 2022046423W WO 2023113015 A1 WO2023113015 A1 WO 2023113015A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
meth
structural unit
group
vinyl
Prior art date
Application number
PCT/JP2022/046423
Other languages
French (fr)
Japanese (ja)
Inventor
克信 望月
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Publication of WO2023113015A1 publication Critical patent/WO2023113015A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification

Definitions

  • the present invention provides an active energy ray-curable composition which, when irradiated with an active energy ray, gives a cured product with excellent breaking strength and excellent adhesion to a substrate after alkali development, and which has excellent alkali solubility in unexposed areas. and a vinyl polymer that gives the composition.
  • active energy ray-curable compositions using active energy rays such as ultraviolet rays, visible rays, electron beams, and X-rays have excellent workability such as coating and have properties such as high curing speed.
  • active energy rays such as ultraviolet rays, visible rays, electron beams, and X-rays
  • photoresists such as ultraviolet rays, visible rays, electron beams, and X-rays
  • Acrylic polymers are widely used as the main component of active energy ray-curable compositions for such applications.
  • Active energy ray-curable compositions containing acrylic polymers are described, for example, in Patent Documents 1 to 6 below.
  • Patent Document 1 discloses a main chain containing (A-1) an ethylenically unsaturated group and a carboxyl group for use in a photosensitive film, a photosensitive film with a support, a printed wiring board, and a semiconductor device.
  • Patent Document 2 for example, for forming a colored pattern in a color filter substrate for a liquid crystal display device, a sensor substrate for a touch panel, or the like, at least a coloring material, an acrylic copolymer and an organic solvent are contained, and the acrylic copolymer is , at least a structure having an ethylenically unsaturated group in the side chain, a structure having a tertiary amino group in the side chain and/or a structure having a quaternary ammonium salt in the side chain, and a structure having a carboxyl group in the side chain , having a structure having an aromatic ring, a base value of 5 to 70 mmol / 100 g, an acid value of 50 to 120 mg KOH / g, and a weight average molecular weight in terms of polystyrene by gel permeation chromatography of 5,000 to 30,000.
  • a colorant dispersion characterized by:
  • Patent Document 4 discloses, for example, (1) an alkali-soluble acrylic polymer and/or methacrylic polymer having a carboxyl group, and (2) a C ⁇ C unsaturated (3) a crosslinked elastic polymer in the form of fine particles having an average particle size of 5 ⁇ m or less;
  • a resin composition for insulating material which contains a polymerization initiator capable of initiating polymerization of double bonds.
  • Patent Document 5 discloses (A) component for forming an optical film used as a polarizer protective film or the like: a (meth)acrylate polymer having a functional group in a side chain capable of reacting with a carboxyl group or a hydroxyl group ( a1) [hereinafter referred to as "polymer (a1)”] and compound (a2) which is a compound having a carboxyl group or hydroxyl group and (meth)acryloyl group and has a number average molecular weight of 180 or more [hereinafter referred to as "compound (a2) A (meth)acrylate polymer having a (meth)acryloyl group in the side chain, which is a reactant with "", and / or (B) component: compound (a2) and a monomer copolymerizable therewith A (meth)acrylate polymer (b1) having a carboxyl group or a hydroxyl group in a side chain obtained by copolymerizing a compound (b2) having
  • an unsaturated double bond-containing oligomer (a2 ) (hereinafter referred to as “unsaturated oligomer (a2)”)-modified (meth)acrylate polymer (A) (hereinafter referred to as “component (A)”).
  • component (A) a reaction of a structural unit derived from a (meth)acrylate-based monomer (a1-1) having no reactive group, an epoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, etc.
  • a copolymer (a1) (hereinafter referred to as "copolymer (a1)") containing a structural unit derived from a (meth)acrylate monomer (a1-2) having a reactive group, the reactive group It is described that it can be a reaction product of an unsaturated oligomer (a2) having a group that reacts with the reactive group and an ethylenically unsaturated group.
  • a light emitting element and a sealing layer are sequentially laminated on a substrate, and a contact hole is formed in the sealing layer via a wiring base layer if necessary. is provided.
  • the patterning of contact holes is usually performed by photolithography including exposure using ultraviolet rays or the like and alkali development. In such photolithography, it is desired to form a cured resin pattern that has excellent adhesiveness to the base of the sealing layer or wiring underlayer, and that has excellent breaking strength and film retention properties.
  • the object of the present invention is to provide a cured product (
  • An object of the present invention is to provide an active energy ray-curable composition which gives a cured film) and has excellent alkali solubility in unexposed areas, and a vinyl polymer which gives the composition.
  • the present inventors have found that (a1) a structural unit derived from at least one selected from styrene and ⁇ -methylstyrene, and (a2) an alkyl acrylate derived from an alkyl acrylate having 2 or more carbon atoms in the alkyl group of the ester moiety. (a3) a structural unit derived from a vinyl compound having a carboxy group, and (a4) a structural unit having a (meth)acryloyl group in a side chain as essential structural units. It has now been found that the above problems are solved using the composition.
  • a vinyl polymer containing the following structural units (a1), (a2), (a3), (a4) and (a5) and having a (meth)acryloyl group in a side chain The content ratios of the structural units (a1), (a2), (a3), (a4) and (a5) are 20 to 82% by mass and 10 to 72%, respectively, when the total of these units is 100% by mass. % by mass, 5 to 67% by mass, 3 to 65% by mass, and 0 to 30% by mass.
  • the vinyl polymer according to item 1 which has a number average molecular weight of 1,000 to 10,000 as determined by gel permeation chromatography. 3.
  • the vinyl polymer according to item 1 or 2 wherein the structural unit (a2) contains a structural unit derived from an alkyl acrylate having an alkyl group in the ester moiety with 4 to 18 carbon atoms. 4.
  • the vinyl-based polymer according to the item. 5 An active energy ray-curable composition containing the vinyl polymer according to any one of items 1 to 4 above. 6. 6.
  • (meth)acrylate means acrylate and/or methacrylate.
  • (meth)acryloyl means acryloyl and/or methacryloyl.
  • (meth)acrylic means acrylic and/or methacrylic.
  • weight average molecular weight (Mw)” and “number average molecular weight (Mn)” are standard polystyrene conversion values by gel permeation chromatography (GPC).
  • the vinyl polymer of the present invention contains the structural unit (a3), it has excellent alkali solubility.
  • a film (uncured film) formed using the active energy ray-curable composition containing the vinyl polymer of the present invention is irradiated with an active energy ray, it has excellent breaking strength and can be applied to the base material after alkali development. It is possible to obtain a cured film excellent in adhesion and film retention.
  • the unexposed portion of the film (uncured film) contains the vinyl polymer as it is, it is efficiently removed by alkali development. Therefore, it is possible to suitably perform pattern formation using active energy rays.
  • the active energy ray-curable composition of the present invention can be used in interlayer insulating films, planarizing films, surface protective films, spacers, and colored layers of color filters in liquid crystal, organic EL, and other display devices.
  • Color resist used pixel forming materials such as black matrix, materials for forming a patterned cured resin layer having contact holes arranged around the electrodes of the touch panel; materials for insulating between wirings of flexible printed circuit boards in semiconductors, It is suitable as a pattern forming material such as an interlayer insulating film forming material, a planarizing film, a photoresist, a solder resist, an etching resist, and the like.
  • the present invention includes the following structural units (a1), (a2), (a3), (a4) and (a5) in a specific ratio, and by including the structural unit (a4), (meta) A vinyl polymer having an acryloyl group and an active energy ray-curable composition containing the vinyl polymer.
  • the structural unit (a1) is a structural unit derived from at least one selected from styrene and ⁇ -methylstyrene.
  • the structural unit (a1) contained in the vinyl polymer of the present invention can be of one type or two types.
  • the content ratio of the structural unit (a1) is the structural unit contained in the vinyl polymer of the present invention, since water resistance and alkali resistance of the cured product can be obtained when the active energy ray-curable composition is cured.
  • the total content of (a1), (a2), (a3), (a4) and (a5) is 100% by mass, it is 20 to 82% by mass, preferably 25 to 75% by mass, and further It is preferably 35 to 70% by mass.
  • the structural unit (a2) is a structural unit derived from an alkyl acrylate in which the alkyl group in the ester moiety has 2 or more carbon atoms.
  • the structural unit (a2) contained in the vinyl-based polymer of the present invention can be of one kind or two or more kinds.
  • alkyl acrylates in which the number of carbon atoms in the alkyl group of the ester moiety is 2 or more include ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, n-pentyl acrylate, n-hexyl acrylate, n-heptyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, n-nonyl acrylate, isononyl acrylate, decyl acrylate, undecyl acrylate, lauryl acrylate, tridecyl acrylate, tetradecyl acrylate, pentadecyl acrylate, hexadecyl acrylate, heptadecyl acrylate
  • structural unit (a2) contains a structural unit derived from an alkyl acrylate having an alkyl group in the ester moiety with 4 to 18 carbon atoms (hereinafter referred to as “structural unit (a2-1)”)
  • structural unit (a2-1) a structural unit derived from an alkyl acrylate having an alkyl group in the ester moiety with 4 to 18 carbon atoms
  • the lower limit of the content of the structural unit (a2-1) is preferably 25% by mass, more preferably 55% by mass, based on the total amount of the structural unit (a2).
  • the content ratio of the structural unit (a2) is such that the active energy ray-curable composition has excellent adhesion to substrates, wiring, etc., and furthermore, when the composition is cured, the cured product has breaking strength (especially, flexibility)
  • the total content of the structural units (a1), (a2), (a3), (a4) and (a5) contained in the vinyl polymer of the present invention is 100% by mass, In addition, it is 10 to 72% by mass, preferably 12 to 60% by mass, more preferably 15 to 40% by mass.
  • the structural unit (a3) is a structural unit derived from a vinyl compound having a carboxy group.
  • the structural unit (a3) contained in the vinyl-based polymer of the present invention may be of one kind or two or more kinds.
  • Vinyl compounds having a carboxyl group include (meth)acrylic acid, ethacrylic acid, crotonic acid, cinnamic acid, maleic acid monoester, fumaric acid monoester, itaconic acid monoester, maleic acid, fumaric acid, itaconic acid, (meth) ) acrylic acid, monohydroxyethyl phthalate acrylate, ⁇ -carboxy-polycaprolactone monoacrylate, (meth) acryloyloxyethyl succinate, (meth) acryloyloxyethyl hexahydrophthalate, (meth) acryloyloxyethyl phthalate, (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, ⁇ -carboxyethyl acrylate, phthalic anhydride adduct of pentaerythritol triacrylate, succinic anhydride adduct of pentaeryth
  • the content of the structural unit (a3) gives a vinyl polymer with excellent alkali solubility, and when the active energy ray-curable composition containing this vinyl polymer is cured, the cured product has water resistance.
  • the structural units (a1), (a2), (a3), (a4) and (a5) contained in the vinyl polymer of the present invention, since they provide alkali resistance and facilitate pattern formation by photolithography. is 5 to 67% by mass, preferably 6 to 40% by mass, more preferably 6 to 25% by mass, when the total content of 100% by mass.
  • the structural unit (a4) is at least one structural unit selected from structural units represented by the general formula (1) and structural units represented by the general formula (2).
  • the structural unit (a4) contained in the vinyl-based polymer of the present invention may be of one type or two or more types.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a hydrogen atom or a methyl group
  • R 3 is a hydrogen atom or a methyl group
  • R 4 is a hydrocarbon group having 2 to 4 carbon atoms
  • R 5 is a hydrogen atom or a methyl group. be.
  • R 4 is preferably an ethylene group.
  • the content ratio of the structural unit (a4) is included in the vinyl polymer of the present invention because the active energy ray-curable composition has excellent adhesion to substrates, wiring, etc., and excellent curability with active energy rays.
  • the total content of the structural units (a1), (a2), (a3), (a4) and (a5) is 100% by mass, it is 3 to 65% by mass, preferably 5 to 50% by mass %, more preferably 10 to 45% by mass.
  • the vinyl-based polymer of the present invention comprises the structural units (a1), (a2), (a3) and (a4), or the structural units (a1), (a2), (a3) and (a4). ) and (a5).
  • the structural unit (a5) is a structural unit other than the structural units (a1), (a2), (a3) and (a4), and is not particularly limited, but is preferably a structural unit derived from a vinyl compound.
  • monomers forming the structural unit (a5) include alkyl methacrylate and methyl acrylate having an ester moiety containing an aliphatic hydrocarbon group, and (meth)acryl having an ester moiety containing an alicyclic hydrocarbon group.
  • Alkyl acids (meth)acrylic acid aromatic esters having ester moieties containing aromatic hydrocarbon groups, hydroxyl group-containing vinyl compounds, amino group-containing vinyl compounds, vinyl cyanide compounds (acrylonitrile, methacrylonitrile, etc.), unsaturated Acid anhydrides, maleimide compounds, alkyl (meth)acrylates having ester moieties containing alkoxyalkyl groups, halogen-containing vinyl compounds (vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, etc.), vinylsilane compounds (trimethoxy vinylsilane, triethoxyvinylsilane, methyldimethoxyvinylsilane, methyldiethoxyvinylsilane, dimethylmethoxysilane, etc.), vinyl ester compounds (vinyl acetate, vinyl propionate, etc.), vinyl ether compounds (methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, cyclohexy
  • the upper limit of the content of the structural unit (a5) is the structural units (a1), (a2), (a3), (a4) and
  • the total content of (a5) is 100% by mass, it is preferably 30% by mass, more preferably 15% by mass.
  • the number of (meth)acryloyl groups per molecule of the vinyl polymer of the present invention is such that when the active energy ray-curable composition is cured, the flexibility of the cured product, the adhesion to the substrate, the tensile physical properties and the residual properties. It is preferably from 1 to 20, more preferably from 2 to 10, since film properties can be obtained.
  • the average number of (meth)acryloyl groups per molecule of the vinyl polymer of the present invention is preferably 1.0-20, more preferably 2.0-10. If the average number of the (meth)acryloyl groups is too small, the curability will be poor and the residual film property during alkali development will be poor, making it impossible to obtain a desired pattern.
  • the number average molecular weight (Mn) of the vinyl polymer of the present invention is preferably 1,000 to 10,000, more preferably 2,000 to 8,500, because pattern formation by photolithography is easy. , particularly preferably 2,500 to 6,000.
  • Mn number average molecular weight
  • the number average molecular weight of the vinyl polymer is 1,000 or more, outgassing due to uncured components in the cured product after exposure can be reduced, and undercuts are less likely to occur in the formed pattern shape.
  • the number average molecular weight exceeds 10,000, the compatibility with polyfunctional (meth)acrylates and photopolymerization initiators tends to decrease.
  • the weight average molecular weight (Mw) of the vinyl polymer of the present invention is not particularly limited, but is preferably 3,000 to 100,000, more preferably 4,000 to 20,000.
  • Mw weight average molecular weight
  • the weight-average molecular weight of the vinyl-based polymer is 4,000 or more, the linearity of the formed pattern is improved.
  • the weight-average molecular weight of the vinyl-based polymer exceeds 20,000, development residues tend to occur during alkali development.
  • the (meth)acryloyl equivalent of the vinyl polymer of the present invention provides flexibility, adhesion to substrates, tensile physical properties and film retention properties of the cured product when the active energy ray-curable composition is cured. Therefore, it is preferably 300 to 4,000 g/eq, more preferably 600 to 2,000 g/eq.
  • the glass transition point of the vinyl-based polymer of the present invention is preferably 0° C. because the flexibility of the cured product and the adhesion to the substrate can be obtained when the active energy ray-curable composition is cured. ⁇ 100°C, more preferably 0°C to 70°C, still more preferably 20°C to 60°C.
  • the acid value of the vinyl polymer of the present invention is preferably 25-300 mgKOH/g, more preferably 40-150 mgKOH/g, in order to facilitate pattern formation by photolithography.
  • the acid value is preferably 25-300 mgKOH/g, more preferably 40-150 mgKOH/g, in order to facilitate pattern formation by photolithography.
  • the method for producing the vinyl-based polymer of the present invention is not particularly limited, and a method such as suspension polymerization, emulsion polymerization, solution polymerization or bulk polymerization of a monomer that provides a predetermined structural unit can be applied. can.
  • a method such as suspension polymerization, emulsion polymerization, solution polymerization or bulk polymerization of a monomer that provides a predetermined structural unit can be applied.
  • bulk polymerization and solution polymerization are preferred because they are easy to produce and do not contain impurities such as emulsifiers in the polymer solution.
  • a vinyl polymer (hereinafter referred to as "vinyl polymer (P1)") containing a structural unit represented by the general formula (1) (hereinafter referred to as “structural unit (a4-1)”)
  • structural unit (a4-1) a monomer that gives the structural unit (a1) (styrene or ⁇ -methylstyrene), a monomer that gives the structural unit (a2) (alkyl acrylate), and a unit that gives the structural unit (a3)
  • a monomer mixture containing a monomer (vinyl compound having a carboxyl group) and, if necessary, a monomer giving the structural unit (a5) is polymerized to obtain a copolymer (hereinafter referred to as "precursor polymer X” ), and then react this precursor polymer X with a (meth)acrylate containing an epoxy group (hereinafter referred to as “epoxy group-containing (meth)acrylate”), that is, a part of the structure in the precursor
  • the vinyl polymer (P1) is prepared by applying the bulk polymerization method described in, for example, JP-A-57-502171, JP-A-59-6207, JP-A-60-215007, etc. It can be produced by producing a polymer X and then reacting this precursor polymer X with an epoxy group-containing (meth)acrylate in the presence of a catalyst.
  • bulk polymerization for the precursor polymer X is performed by filling a pressurizable reactor with a solvent, setting it to a predetermined temperature under pressure, and then adding each monomer, or, if necessary, a polymerization solvent or A monomer mixture consisting of a polymerization initiator is supplied to a reactor at a constant supply rate, and an amount of polymer solution corresponding to the supply amount of the monomer mixture is withdrawn.
  • Precursor polymer X is preferably 20 to 82 % by weight, 10 to 72% by weight, 8 to 70% by weight and 0 to 30% by weight, more preferably 25 to 75% by weight, 12 to 60% by weight, 13 to 63% by weight and 0 to 15% by weight It is a copolymer containing
  • the reaction of the precursor polymer X and the epoxy group-containing (meth)acrylate can be carried out in the presence of a catalyst in an organic solvent such as ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, etc. If the acrylate is liquid, the reaction can be carried out without solvent.
  • the reaction temperature is usually selected from the range of 60°C to 120°C.
  • Epoxy group-containing (meth)acrylates include glycidyl (meth)acrylate, methylglycidyl (meth)acrylate, 4-hydroxybutyl acrylate glycidyl ether, 3,4-epoxycyclohexylmethyl (meth)acrylate and the like.
  • the ratio of the amounts of the precursor polymer X and the epoxy group-containing (meth)acrylate to be used is preferably 0.1 to 1 mol of the epoxy group-containing (meth)acrylate per 1 mol of the carboxy group of the precursor polymer X. It is set to 0.9 mol, more preferably 0.4 to 0.75 mol.
  • Catalysts include tetrabutylammonium bromide, tetrabutylammonium chloride, tetramethylammonium bromide, tetramethylammonium chloride, triphenylphosphine, tributylphosphine, 1,8-diazabicyclo[5,4,0]-7-undecene, 1, 4-diazabicyclo[2,2,2]octane and the like.
  • the amount of the catalyst used is usually about 0.5 to 5% by mass with respect to the total amount thereof.
  • a vinyl polymer (hereinafter referred to as "vinyl polymer (P2)") containing a structural unit represented by the general formula (2) (hereinafter referred to as “structural unit (a4-2)")
  • structural unit (a4-2) a structural unit represented by the general formula (2)
  • a monomer that gives the structural unit (a1) styrene or ⁇ -methylstyrene
  • structural unit (a2) alkyl acrylate
  • a unit that gives the structural unit (a3) Polymerizing a monomer mixture containing a monomer (a vinyl compound having a carboxyl group), a hydroxy group-containing vinyl compound, and optionally a monomer giving the structural unit (a5) to obtain a copolymer (hereinafter referred to as (referred to as "precursor polymer Y”), and then reacting this precursor polymer Y with a (meth)acrylate containing an isocyanate group (hereinafter referred to as "isocyanate group-containing (meth
  • the vinyl polymer (P2) is obtained by producing a precursor polymer Y in the same manner as the precursor polymer X, and optionally in the presence of a catalyst for forming a urethane bond, by combining the precursor polymer Y with an isocyanate group. It can be produced by reacting the contained (meth)acrylate.
  • the reaction temperature is usually selected from the range of 60°C to 100°C.
  • Examples of the hydroxy group-containing vinyl compound used for forming the precursor polymer Y include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, polyethylene glycol mono (meth)acrylate, polypropylene glycol mono(meth)acrylate, polybutylene glycol mono(meth)acrylate, poly(ethylene glycol-propylene glycol) mono(meth)acrylate, polyethylene glycol-polypropylene glycol mono(meth)acrylate, poly(ethylene) glycol-tetramethylene glycol) mono(meth)acrylate, polyethylene glycol-polytetramethylene glycol mono(meth)acrylate and the like.
  • the total of the structural unit (a1), the structural unit (a2), the structural unit (a3), the structural unit derived from the hydroxy group-containing vinyl compound, and the structural unit (a5) is 100% by mass.
  • reaction between the precursor polymer Y and the isocyanate group-containing (meth)acrylate can be carried out in an organic solvent such as hydrocarbon, ketone, ester, ether, etc. in the presence of a catalyst.
  • isocyanate group-containing (meth)acrylates examples include 2-(meth)acryloyloxyethyl isocyanate, (meth)acryloylisocyanate, 1,1-bis(acryloyloxymethyl)ethylisocyanate, and the like.
  • the ratio of the amount of the precursor polymer Y and the isocyanate group-containing (meth)acrylate used is preferably 0.9 to 0.9 to 1 mol of the isocyanate group of the isocyanate group-containing (meth)acrylate. It is set to be 1.1 mol.
  • Catalysts for forming urethane bonds include organic tin compounds such as dibutyltin dichloride; Fatty acid salts of tin compounds; organic tin compounds such as dimethyltin bis(isooctylthioglycolic acid ester) salts, dimethyltin bis(isooctylthioglycolic acid ester) salts, dioctyltin bis(isooctylthioglycolic acid ester) salts Thioglycolic acid ester salts; tin carboxylates such as tin octoate and tin decanoate; bismuth carboxylates; titanium complexes; From the viewpoint of the reactivity of the precursor polymer Y and the isocyanate group-containing (meth)acrylate, the amount of the catalyst used is usually about 0.01 to 0.1% by mass with respect to the total amount thereof.
  • the vinyl polymer of the present invention can be cured with active energy rays such as ultraviolet rays, visible rays, electron beams and X-rays.
  • active energy rays such as ultraviolet rays, visible rays, electron beams and X-rays.
  • the vinyl polymer of the present invention is an active energy ray-curable composition containing it together with a photopolymerization initiator used according to the type of active energy ray, other polyfunctional polymer, etc.
  • the alkali dissolution rate when a film (uncured film) made of the vinyl polymer of the present invention is brought into contact with a 2.38% by mass tetramethylammonium hydroxide aqueous solution at 23° C. is preferably 40 nm/sec or more, and more Preferably, it can be 60 nm/sec or more.
  • the alkali dissolution rate By setting the alkali dissolution rate to 40 nm/sec or more, it can be used as an active energy ray-curable composition without any problem, and a desired pattern can be obtained after alkali development.
  • the active energy ray-curable composition of the present invention is a composition containing the vinyl polymer of the present invention (hereinafter referred to as "vinyl polymer (A)").
  • vinyl polymer (A) the vinyl polymer of the present invention
  • photopolymerization initiators, other polyfunctional polymers, surfactants, polymerization inhibitors, light resistance improvers, fine particles, and liquid media from the viewpoint of coatability on substrates, wiring, etc. be able to.
  • the photopolymerization initiator is not particularly limited as long as it is excited by energy such as ultraviolet rays, visible rays, and near-infrared rays to generate radicals and at least promote radical polymerization of the vinyl polymer of the present invention.
  • Photopolymerization initiators include benzyl dimethyl ketal, benzyl, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one.
  • Benzophenone compounds bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl-(2,4,6-trimethylbenzoyl)phenylphosphinate, Acylphosphine oxide compounds such as bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide; thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone, 1-chloro-4 -thioxanthone compounds such as propylthioxanthone, 3-[3,4-dimethyl-9-oxo-9H-thioxanthon-2-yl]oxy]-2-hydroxypropyl-N,N,N-trimethylammonium chloride and fluorothioxanthone ; acridone
  • the content of the photopolymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 1 to 6 parts by mass, when the content of the vinyl polymer (A) is 100 parts by mass.
  • polyfunctional polymer examples include polyfunctional (meth)acrylates, aromatic polyvinyl compounds, diallyl compounds, allyl (meth)acrylate, and dicyclopentenyl (meth)acrylate. Among these, polyfunctional (meth)acrylates are preferred.
  • Polyfunctional (meth)acrylates include glycerol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, tri- or tetra-(meth)acrylate of pentaerythritol, tri- or tetra-(meth)acrylate of ditrimethylolpropane, and diglycerin.
  • Polyol poly (meth) acrylates such as tri or tetra (meth) acrylate of dipentaerythritol, tri, tetra, penta or hexa (meth) acrylate of dipentaerythritol; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, polybutylene glycol di(meth)acrylate
  • Poly(meth)acrylates of polyol alkylene oxide adducts di(meth)acrylates having a bisphenol skeleton such as ethylene oxide-modified di(meth)acrylates of bisphenol A and di(meth)acrylates of bisphenol A; tricyclodecanedimethylol di Di (meth) acrylate having an alicyclic skeleton such as (meth) acrylate; Ethylene oxide-modified diacrylate of isocyanuric acid, ⁇ -caprolactone modified tris ((meth) acryloxyethyl) isocyanurate skeleton such as isocyanurate ( meth) acrylate; urethane (meth) acrylate having a polyester skeleton; urethane (meth) acrylate having a polycarbonate skeleton; epoxy (meth) acrylate; polyether (meth) acrylate; Acrylates; polybasic acid-modified tetra-, penta- or he
  • the content ratio thereof is preferably 10 to 200 when the content of the vinyl polymer (A) is 100 parts by mass. parts by mass, more preferably 50 to 150 parts by mass.
  • surfactant various surfactants such as fluorine-based surfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone surfactants can be used to improve the coating properties. Fluorosurfactants are preferred for the reason that they can be improved.
  • fluorosurfactants include Megafac F171, F172, F173, F176, F177, F141, F142, F143, F144, R30, R41, R40LM, F437, F475, F479, F482, F554, F-557, F568, F780 (manufactured by DIC Corporation), Florard FC430, FC431, FC171 (manufactured by Sumitomo 3M), Surflon S-382, S-386, S-242, S-243, S-420 , S-431, S-611, S-47, S-651, S-656 (manufactured by AGC Co., Ltd.), PF636, PF656, PF6320, PF6520, PF7002, PF-151N (manufactured by OMNOVA) , Unidyne DSN-403N, DS-101, DS-202, DS-401, DS-403, DSN-403N, NS-1602, NS-1602
  • the active energy ray-curable composition of the present invention contains a surfactant
  • its content is preferably 0.001 to 0.2% by mass, preferably 0.0015 to 0.0015% by mass, based on the total solid content of the composition. 0.1% by mass is more preferable, and 0.002 to 0.05% by mass is even more preferable.
  • the content of the surfactant is within the above range, the application properties of the active energy ray-curable composition are good, and the occurrence of coating unevenness and striations can be more effectively suppressed.
  • polymerization inhibitor examples include hydroquinone, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4'-thiobis(3-methyl-6-t-butylphenol). , 2,2′-methylenebis(4-methyl-6-t-butylphenol), phenothiazine, 2-mercaptobenzimidazole and the like.
  • UV absorbers include 2-(2'-hydroxy-5-methylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-di-t-butylphenyl)benzotriazole, 2-(2 '-Hydroxy-3'-t-butyl-5'-methylphenyl)benzotriazole compounds such as benzotriazole; 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-iso- Triazine compounds such as octyloxyphenyl)-s-triazine; 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'- dihydroxy-4-methoxybenzophenone, 2,4,4'-trihydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2,3,4,
  • fine particles fine particles having a particle diameter of about 1 to 100 ⁇ m made of metal, inorganic compound, rubber or resin can be used.
  • inorganic compounds include oxides of silicon, aluminum, zirconium, titanium, zinc, lead, germanium, indium, tin, antimony, cerium, lithium and the like, composite oxides thereof, calcium carbonate, bentonite and the like.
  • the rubber or resin may consist of a crosslinked polymer.
  • the above liquid medium is usually an organic solvent, for example, hydrocarbons such as n-hexane, benzene, toluene, xylene, ethylbenzene, cyclohexane; butanol, isobutyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, 2-(methoxymethoxy)ethanol, 2-isopropoxyethanol, 2-butoxyethanol, 2-isopentyloxyethanol, 2-hexyloxyethanol, 2-phenoxyethanol , 2-benzyloxyethanol, furfuryl alcohol, tetrahydrofurfuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, propylene glycol monomethyl Alcoholic solvents such as ether; tetrahydrofuran, dioxane, ethylene glycol dimethyl ether,
  • organic solvents can be used alone or in combination of two or more.
  • the active energy ray-curable composition of the present invention contains a liquid medium, its content is appropriately selected depending on the application and is not particularly limited.
  • 100 parts by mass of the vinyl polymer (A), or the vinyl polymer (A) and the polyfunctional polymer When the total amount is 100 parts by mass, it is preferably 20 to 400 parts by mass, more preferably 40 to 200 parts by mass.
  • the active energy ray-curable composition of the present invention can be produced by mixing the raw material components such as the vinyl polymer (A) using various mixers and dispersers.
  • the active energy ray-curable composition of the present invention is particularly suitable for producing electronic components having a patterned cured resin layer on a substrate, wiring, or the like.
  • Substrates for electronic parts include plate substrates made of soda glass, alkali-free glass, Pyrex (registered trademark) glass, quartz glass, etc. used in liquid crystal display elements, etc., and (transparent) conductive films on the surfaces of these substrates. , photoelectric conversion element substrates (silicon substrates, etc.) used in solid-state imaging devices and the like, color filter substrates, and the like.
  • a step of forming a film (uncured film) on the surface of a substrate using an active energy ray-curable composition (hereinafter referred to as “film formation step"), a step of irradiating an active energy ray through a mask or scanning exposure without using a mask (hereinafter referred to as "exposure step”), using an alkaline aqueous solution (hereinafter also referred to as "developer”), A method of sequentially providing a step of developing the exposed film (hereinafter referred to as a “development step”) can be applied.
  • an active energy ray-curable composition containing no photopolymerization initiator can be used in the film formation step.
  • the active-energy-ray-curable composition containing a photoinitiator is used in a film formation process.
  • a conventionally known coating method using a bar coater, applicator, doctor blade, knife coater, comma coater, reverse roll coater, die coater, lip coater, gravure coater, micro gravure coater, etc.
  • drying under reduced pressure or heating is performed to remove the organic solvent in the composition to form a film (uncured film).
  • the film thickness is appropriately selected depending on the application.
  • the cured resin is a crosslinked resin formed based on a (meth)acryloyl group in the side chain of the structural unit (a4) of the vinyl polymer (A) contained in the active energy ray-curable composition.
  • the active energy rays used in the exposure step are ultraviolet rays, visible rays, electron beams, or X-rays.
  • Ultraviolet rays can be applied using an irradiation device having a light source such as a high-pressure mercury lamp, a metal halide lamp, an ultraviolet (UV) electrodeless lamp, a light emitting diode (LED), an ultraviolet laser, or the like.
  • the electron beam can be applied using an electron curtain type, broad beam linear filament type, or scanning electron beam accelerator.
  • the active energy ray ultraviolet rays are preferable because a cured resin can be formed in a short time and with low energy irradiation.
  • the dose, irradiation amount, irradiation intensity, etc. of the ultraviolet rays are appropriately selected according to the application.
  • a developer alkaline aqueous solution
  • the unexposed areas are dissolved and removed, leaving the exposed areas (cured resin insoluble in the alkaline aqueous solution).
  • the developer include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, diethylamine, monoethanolamine, diethanolamine, and triethanolamine.
  • aqueous solution of .0]-5-nonene or the like can be used.
  • This developer may contain, for example, a water-soluble organic solvent such as methanol or ethanol, an antifoaming agent, a surfactant, and the like.
  • the development conditions are not particularly limited. In the development process, a shower development method, a spray development method, a dip (immersion) development method, a puddle (liquid puddle) development method, or the like can be applied.
  • the film is usually washed with water, dried, etc., and can be heat-treated if necessary.
  • the activation energy when a 2.38% tetramethylammonium hydroxide aqueous solution (23 ° C.) was sprayed at 0.15 MPa on the cured film formed by irradiating the radiation under the conditions described later in [Example], the film thickness
  • the retention can be preferably 86% or higher, more preferably 91% or higher, and even more preferably 94% or higher.
  • Solid content A predetermined amount of the polymer solution was placed in a ventilation dryer, dried at 150°C for 1 hour, and the solid content was determined from the weight loss.
  • Example 1-1 While maintaining the temperature of a pressurized stirred tank reactor equipped with an oil jacket at 221 ° C. and keeping the internal pressure of the reactor constant as a pressurized state, 53 parts of styrene (hereinafter referred to as “St”) and acrylic acid 22 parts of n-butyl (hereinafter referred to as “BA”), 25 parts of acrylic acid (hereinafter referred to as “AA”), 20 parts of methyl ethyl ketone (hereinafter referred to as "MEK”) as an organic solvent, and a polymerization initiator
  • a monomer mixture consisting of 0.1 parts of di-tert-butyl peroxide "Perhexyl D” (trade name, hereinafter referred to as "DTBP”) manufactured by NOF Corporation, at a constant supply rate (48 g / min) Continuous supply was started from the raw material tank to the reactor, and the polymerization reaction proceeded with a residence time of 12 minutes (see Table 1).
  • the reaction liquid corresponding to the supplied amount of the monomer mixture was continuously withdrawn from the outlet of the reactor and recovered.
  • the reaction temperature was once lowered, but a temperature rise was observed due to the heat of polymerization. Therefore, by controlling the temperature of the oil jacket, the reaction temperature was kept at 226° C. to 228° C. (described as 227° C. in Table 1).
  • the point at which the temperature of the liquid in the reactor stabilized after the start of supply of the monomer mixture was set as the starting point for collecting the reaction liquid, and the reaction was continued for 37 minutes.
  • the supplied amount of the monomer mixture was 1.78 kg
  • the recovered amount of the reaction liquid was 1.78 kg.
  • copolymer p- 1 a (meth)acrylate polymer having a carboxyl group obtained 1.36 kg. Then, the weight average molecular weight (Mw) and glass transition temperature (Tg) of the obtained copolymer p-1 were measured (see Table 1).
  • TPP triphenylphosphine
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the polymer solution was added with 4-hydroxy-2,2,6,6 in an amount corresponding to 1000 ppm with respect to the vinyl polymer A-1.
  • -Tetramethylpiperidine-1-oxyl was added and dissolved, and then the organic solvent was removed at 80°C under reduced pressure to use the product obtained.
  • Examples 1-2 to 1-13 and Comparative Examples 1-1 to 1-4 The same operations as in Example 1-1 were performed except that the types and amounts of raw materials used for production were as shown in Tables 1, 2, 3 and 4 to obtain precursor polymers p-2 to p -10 and pp-1 to pp-4 and vinyl polymers A-2 to A-13 and AA-1 to AA-4 were obtained (see Tables 1 to 4).
  • AMS in Table 1 is ⁇ -methylstyrene
  • AN in Table 2 is acrylonitrile
  • HA in Table 3
  • TDA is tetradecyl acrylate.
  • MAA is methacrylic acid and "MMA” in Table 4 is methyl methacrylate.
  • Examples 1-14 While maintaining the temperature of a pressurized stirred tank reactor equipped with an oil jacket at 221° C. and keeping the internal pressure of the reactor constant as a pressurized state, 53 parts of St, 22 parts of BA, 25 parts of AA, A monomer mixture consisting of 13 parts of 2-hydroxyethyl methacrylate (hereinafter referred to as "HEMA"), 20 parts of MEK, and 0.1 part of DTBP was added to the raw material tank at a constant supply rate (48 g / min). Continuous supply to the reactor was started from this point, and the polymerization reaction proceeded with a residence time of 12 minutes (see Table 3). Then, the reaction liquid corresponding to the supplied amount of the monomer mixture was continuously withdrawn from the outlet of the reactor and recovered.
  • HEMA 2-hydroxyethyl methacrylate
  • the reaction temperature was once lowered, but a temperature rise was observed due to the heat of polymerization. Therefore, by controlling the temperature of the oil jacket, the reaction temperature was kept at 226° C. to 228° C. (227° C. shown in Table 3). The point at which the temperature of the liquid in the reactor stabilized after the start of supply of the monomer mixture was set as the starting point for collecting the reaction liquid, and the reaction was continued for 37 minutes. As a result, the supplied amount of the monomer mixture was 1.78 kg, and the recovered amount of the reaction liquid was 1.78 kg.
  • the reaction liquid is introduced into a thin film evaporator to separate volatile components such as unreacted monomers, and a (meth)acrylate polymer having a hydroxyl group and a carboxy group (hereinafter referred to as "copolymerization"), which is a precursor polymer.
  • a (meth)acrylate polymer having a hydroxyl group and a carboxy group hereinafter referred to as "copolymerization”
  • Mw weight average molecular weight
  • Tg glass transition temperature
  • a polymer solution containing coalescence A-14 was obtained. Then, in the same manner as in Example 1-1, the solid content, number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained vinyl polymer A-14, acid value, methacryloyl equivalent, per molecule The average value of methacryloyl groups and the glass transition temperature (Tg) were measured (see Table 3).
  • Examples 1-15 Instead of 2-methacryloyloxyethyl isocyanate used in Example 1-14, 14.1 parts of 2-acryloyloxyethyl isocyanate "Karenzu AOI" (trade name) manufactured by Showa Denko Materials Co., Ltd. was used, and a catalyst was used. A polymer solution containing a vinyl polymer A-15 containing a structural unit having an acryloyl group in a side chain was obtained in the same manner as in Example 1-14, except that the amount was changed to 0.011 parts. rice field.
  • Example 2-1 75.6 parts of the solution of the vinyl polymer A-1 obtained in Example 1-1 (75.6 parts of the polymer solution containing 50 parts of the vinyl polymer and 25.6 parts of butyl acetate);
  • An active energy ray-curable composition was prepared by mixing 50 parts of a functional acrylate, 5 parts of a photoinitiator, and 30 parts of butyl acetate (see Table 5). After that, a cured product was produced using this active energy ray-curable composition, and tensile physical properties, substrate adhesion, film retention properties, and alkali solubility (uncured film) were evaluated. These results are also shown in Table 5.
  • Tensile physical properties As a base film, a PET film “Lumirror T-60” manufactured by Toray Industries, Inc. (trade name, film thickness: 100 ⁇ m) was prepared, and a bar coater #0 was used to coat the surface of the film after drying. The active energy ray-curable composition was applied to a thickness of 30-40 ⁇ m. Then, the coating film was dried (90° C., 10 minutes) using a ventilation dryer to obtain a laminated film having a film (uncured film).
  • a PET film “Lumirror T-60” manufactured by Toray Industries, Inc. (trade name, film thickness: 100 ⁇ m) was prepared, and a bar coater #0 was used to coat the surface of the film after drying. The active energy ray-curable composition was applied to a thickness of 30-40 ⁇ m. Then, the coating film was dried (90° C., 10 minutes) using a ventilation dryer to obtain a laminated film having a film (uncured film).
  • the UVA illuminance was adjusted to 500 mW/cm 2 and the irradiation amount per time was adjusted to 800 mJ/cm 2 in an air atmosphere with a condensing type.
  • the laminated film was passed twice on a conveyor, and the film was irradiated with ultraviolet rays to form a cured film.
  • the film having the cured film was cut into strips having a width of 1 cm, and the cured film was peeled off from the base film.
  • a tensile tester "Autograph AGS-J" (trade name) manufactured by Shimadzu Corporation, the elongation at break and the strength at break at a tensile speed of 5 mm/min were measured.
  • the laminate was passed twice on a conveyer to irradiate the film with ultraviolet rays to form a cured film.
  • the copper plate with the cured film was immersed in a 2.38% tetramethylammonium hydroxide aqueous solution (23° C.) for 5 minutes, then washed with running ultrapure water for 1 minute, and then blown with nitrogen. Dried.
  • the cured film after alkali treatment was subjected to a cross-cut peeling test according to JIS K 5600-5-6 to evaluate adhesion to the substrate. 100/100 was given when all of the 100 grids were in close contact with each other.
  • Vinyl polymer (A) and (AA) are applied to the surface of a copper plate "C1020" (trade name) manufactured by Engineering Test Service Co., Ltd. using a spin coater so that the film thickness after drying is 4.0 ⁇ m. A butyl acetate solution or a precursor active energy ray-curable composition was applied. Then, the coating film was dried (90° C., 10 minutes) using an air drier to obtain a laminate having a film (uncured film).
  • Examples 2-2 to 2-15 and Comparative Examples 2-1 to 2-4 Preparation of an active energy ray-curable composition, preparation of a cured product, and evaluation were carried out in the same manner as in Example 2-1, except that the vinyl polymer used was as shown in Tables 5 and 6. (See Tables 5 and 6).
  • Examples 2-1 to 2-15 exhibited excellent breaking strength in terms of tensile properties, whereas Comparative Example 2-2 exhibited insufficient flexibility, and sample cracking occurred in the tensile test. measurement was not possible due to Examples 2-1 to 2-15 exhibited excellent adhesion to the substrate, whereas Comparative Example 2-2 exhibited insufficient adhesion.
  • the film remaining properties after alkali development were excellent, while in Comparative Examples 2-1 and 2-4, the results were inferior.
  • Examples 2-1 to 2-5 development was possible within the predetermined time of 1 minute, whereas in Comparative Example 2-3 development was not possible within the predetermined time. , the alkali solubility was insufficient.
  • the vinyl-based polymer of the present invention is used for interlayer insulating films, planarizing films, surface protective films, spacers, colored layers of color filters, color resists used in colored layers of color filters, and pixel formation such as black matrices in display devices such as liquid crystal and organic EL.
  • Materials materials for forming a patterned cured resin layer having contact holes arranged around electrodes of a touch panel; materials for insulating between wirings of flexible printed circuit boards in semiconductors, materials for forming interlayer insulating films, planarizing films, photo It is suitable as a raw material component of an active energy ray-curable composition useful as a pattern-forming material such as a resist, solder resist, etching resist, and the like.
  • the active energy ray-curable composition of the present invention can also be used as a coating agent or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A vinyl-based polymer according to the present invention: includes a structural unit derived from at least one selected from styrene and α-methylstyrene, a structural unit derived from an alkyl acrylate having two or more carbon atoms in an alkyl group at an ester portion thereof, a structural unit derived from a vinyl compound having a carboxy group, and at least one selected from structural units represented by general formula (1) and structural units represented by general formula (2); optionally has another structural unit in addition; and has a (meth)acryloyl group in a side chain thereof. The active energy ray curable composition according to the present invention contains said vinyl-based polymer. [Chem. 1]

Description

ビニル系重合体及びそれを含む活性エネルギー線硬化性組成物Vinyl polymer and active energy ray-curable composition containing the same
 本発明は、活性エネルギー線照射により、破断強度に優れ、アルカリ現像後の基材への密着性に優れた硬化物を与え、未露光部のアルカリ溶解性に優れた活性エネルギー線硬化性組成物及び該組成物を与えるビニル系重合体に関する。 The present invention provides an active energy ray-curable composition which, when irradiated with an active energy ray, gives a cured product with excellent breaking strength and excellent adhesion to a substrate after alkali development, and which has excellent alkali solubility in unexposed areas. and a vinyl polymer that gives the composition.
 従来、紫外線、可視光線、電子線、X線等の活性エネルギー線を利用する活性エネルギー線硬化性組成物は、塗工等の作業性に優れ、硬化速度が高い等の性質を有することから、フォトレジスト、顔料分散レジスト、液晶表示装置用スペーサー、接着剤、コーティング剤、封止剤、賦形剤等として広く用いられている。このような用途の活性エネルギー線硬化性組成物の主成分として、アクリル系重合体が広く用いられている。アクリル系重合体を含有する活性エネルギー線硬化性組成物は、例えば、以下の特許文献1~6に記載されている。 Conventionally, active energy ray-curable compositions using active energy rays such as ultraviolet rays, visible rays, electron beams, and X-rays have excellent workability such as coating and have properties such as high curing speed. Widely used as photoresists, pigment-dispersed resists, spacers for liquid crystal display devices, adhesives, coating agents, sealants, excipients, and the like. Acrylic polymers are widely used as the main component of active energy ray-curable compositions for such applications. Active energy ray-curable compositions containing acrylic polymers are described, for example, in Patent Documents 1 to 6 below.
 特許文献1には、感光性フィルム、支持体付き感光性フィルム、プリント配線板、及び半導体装置への利用のための、(A-1)エチレン性不飽和基及びカルボキシル基を含有し、主鎖のガラス転移温度が150℃以上である(メタ)アクリル共重合体、(A-2)エチレン性不飽和基及びカルボキシル基を含有し、主鎖のガラス転移温度が-20℃以下である(メタ)アクリル共重合体、(B)平均粒径が0.5μm以上2.5μm以下である無機充填材、(C)光重合開始剤、及び(D)エポキシ樹脂、を含有する感光性樹脂組成物であって、(A-1)成分及び(A-2)成分の重量平均分子量が、それぞれ30000以下であり、(B)成分の含有量が、感光性樹脂組成物の固形分全体を100質量%とした場合、60質量%以上85質量%以下である感光性樹脂組成物が開示されている。 Patent Document 1 discloses a main chain containing (A-1) an ethylenically unsaturated group and a carboxyl group for use in a photosensitive film, a photosensitive film with a support, a printed wiring board, and a semiconductor device. A (meth)acrylic copolymer having a glass transition temperature of 150°C or higher, (A-2) containing an ethylenically unsaturated group and a carboxyl group, and having a main chain glass transition temperature of -20°C or lower (meth) ) an acrylic copolymer, (B) an inorganic filler having an average particle size of 0.5 μm or more and 2.5 μm or less, (C) a photopolymerization initiator, and (D) an epoxy resin. wherein the weight average molecular weights of component (A-1) and component (A-2) are each 30,000 or less, and the content of component (B) is 100 mass of the total solid content of the photosensitive resin composition. %, a photosensitive resin composition having a content of 60% by mass or more and 85% by mass or less is disclosed.
 特許文献2には、例えば、液晶表示装置用カラーフィルター基板、タッチパネル用センサー基板等における着色パターンの形成のための、少なくとも着色材、アクリル共重合体および有機溶剤を含有し、アクリル共重合体が、少なくとも、側鎖にエチレン性不飽和基を有する構造と、側鎖に3級アミノ基を有する構造および/または側鎖に4級アンモニウム塩を有する構造と、側鎖にカルボキシル基を有する構造と、芳香環を有する構造を有し、塩基価が5~70mmol/100g、かつ酸価が50~120mgKOH/g、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算重量平均分子量が、5,000~30,000であることを特徴とする着色材分散液が開示されている。 In Patent Document 2, for example, for forming a colored pattern in a color filter substrate for a liquid crystal display device, a sensor substrate for a touch panel, or the like, at least a coloring material, an acrylic copolymer and an organic solvent are contained, and the acrylic copolymer is , at least a structure having an ethylenically unsaturated group in the side chain, a structure having a tertiary amino group in the side chain and/or a structure having a quaternary ammonium salt in the side chain, and a structure having a carboxyl group in the side chain , having a structure having an aromatic ring, a base value of 5 to 70 mmol / 100 g, an acid value of 50 to 120 mg KOH / g, and a weight average molecular weight in terms of polystyrene by gel permeation chromatography of 5,000 to 30,000. Disclosed is a colorant dispersion characterized by:
 特許文献3には、例えば、多層プリント配線板の製造に用いられる、(1)カルボキシル基を有するアルカリ可溶性のアクリル系重合体および/またはメタクリル系重合体、(2)C=C不飽和二重結合を1個以上有する重合性化合物、(3)前記重合性化合物(2)の紫外線重合開始剤、(4)紫外線重合の増感剤、(5)前記重合性化合物(2)の熱重合開始剤、(6)カルボキシル基を含有し粒径が1μm未満の微粒子状の架橋弾性重合体および(7)粒径が1~10μmの微粒子状物質からなる組成物であって、該組成物の硬化物は薬剤に不溶性であるが、該硬化物中の前記微粒子状物質(7)は前記薬剤に可溶性である絶縁用樹脂組成物が開示されている。 Patent Document 3 describes, for example, (1) an alkali-soluble acrylic polymer and/or methacrylic polymer having a carboxyl group, (2) a C=C unsaturated double A polymerizable compound having one or more bonds, (3) an ultraviolet polymerization initiator for the polymerizable compound (2), (4) a sensitizer for ultraviolet polymerization, and (5) thermal polymerization initiation for the polymerizable compound (2) (6) a finely divided crosslinked elastic polymer containing a carboxyl group and having a particle size of less than 1 μm; A resin composition for insulation is disclosed in which the product is insoluble in the drug, but the particulate matter (7) in the cured product is soluble in the drug.
 特許文献4には、例えば、多層プリント配線板の層間絶縁材料として用いられる、(1)カルボキシル基を有するアルカリ可溶性のアクリル系重合体および/またはメタクリル系重合体、(2)C=C不飽和二重結合を1個以上有する重合性化合物、(3)平均粒径が5μm以下の微粒子状の架橋弾性重合体、並びに(4)加熱および/または活性エネルギー線の照射によって前記C=C不飽和二重結合の重合を開始させ得る重合開始剤を配合してなる絶縁材料用樹脂組成物が開示されている。 Patent Document 4 discloses, for example, (1) an alkali-soluble acrylic polymer and/or methacrylic polymer having a carboxyl group, and (2) a C═C unsaturated (3) a crosslinked elastic polymer in the form of fine particles having an average particle size of 5 μm or less; A resin composition for insulating material is disclosed which contains a polymerization initiator capable of initiating polymerization of double bonds.
 特許文献5には、偏光子保護フィルム等として用いられる光学フィルムの形成のための、(A)成分:カルボキシル基又は水酸基と反応可能な官能基を側鎖に有する(メタ)アクリレート系重合体(a1)〔以下、「重合体(a1)」という〕と、カルボキシル基又は水酸基及び(メタ)アクリロイル基を有する化合物であって数平均分子量180以上の化合物(a2)〔以下、「化合物(a2)」という〕との反応物である側鎖に(メタ)アクリロイル基を有する(メタ)アクリレート系重合体、及び/又は、(B)成分:化合物(a2)とこれと共重合可能な単量体を共重合して得られるカルボキシル基又は水酸基を側鎖に有する(メタ)アクリルレート系重合体(b1)とカルボキシル基又は水酸基と反応可能な官能基及び(メタ)アクリロイル基を有する化合物(b2)の反応物である側鎖に(メタ)アクリロイル基を有する(メタ)アクリレート系重合体を含む活性エネルギー線硬化型組成物が開示されている。 Patent Document 5 discloses (A) component for forming an optical film used as a polarizer protective film or the like: a (meth)acrylate polymer having a functional group in a side chain capable of reacting with a carboxyl group or a hydroxyl group ( a1) [hereinafter referred to as "polymer (a1)"] and compound (a2) which is a compound having a carboxyl group or hydroxyl group and (meth)acryloyl group and has a number average molecular weight of 180 or more [hereinafter referred to as "compound (a2) A (meth)acrylate polymer having a (meth)acryloyl group in the side chain, which is a reactant with "", and / or (B) component: compound (a2) and a monomer copolymerizable therewith A (meth)acrylate polymer (b1) having a carboxyl group or a hydroxyl group in a side chain obtained by copolymerizing a compound (b2) having a functional group capable of reacting with a carboxyl group or a hydroxyl group and a (meth)acryloyl group discloses an active energy ray-curable composition containing a (meth)acrylate polymer having a (meth)acryloyl group in a side chain, which is a reactant of the above.
 また、特許文献6には、例えば、接着剤、コーティング材、インキ、フィルムの成形材料等に用いられる、ガラス転移温度(Tg)が-30~-90℃の不飽和二重結合含有オリゴマー(a2)(以下、「不飽和オリゴマー(a2)」という)で変性された(メタ)アクリレート系重合体(A)(以下、「成分(A)」という)を含む活性エネルギー線硬化性組成物が開示されており、成分(A)として、反応性基を有しない(メタ)アクリレート系単量体(a1-1)に由来する構成単位と、エポキシ基、カルボキシル基、ヒドロキシル基及びイソシアネート基等の反応性基を有する(メタ)アクリレート系単量体(a1-2)に由来する構成単位とを含む共重合体(a1)(以下、「共重合体(a1)」という)に、前記反応性基を介して、前記反応基に反応する基と、エチレン性不飽和基とを有する不飽和オリゴマー(a2)との反応物とすることができることが記載されている。 Further, in Patent Document 6, for example, an unsaturated double bond-containing oligomer (a2 ) (hereinafter referred to as “unsaturated oligomer (a2)”)-modified (meth)acrylate polymer (A) (hereinafter referred to as “component (A)”). As a component (A), a reaction of a structural unit derived from a (meth)acrylate-based monomer (a1-1) having no reactive group, an epoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, etc. A copolymer (a1) (hereinafter referred to as "copolymer (a1)") containing a structural unit derived from a (meth)acrylate monomer (a1-2) having a reactive group, the reactive group It is described that it can be a reaction product of an unsaturated oligomer (a2) having a group that reacts with the reactive group and an ethylenically unsaturated group.
特開2018-165799JP 2018-165799 WO13/175978WO13/175978 特開平10-182758Japanese Patent Laid-Open No. 10-182758 特開平10-147685Japanese Patent Laid-Open No. 10-147685 特開2014-115538JP 2014-115538 特開2021-105170JP 2021-105170
 例えば、液晶表示素子又は有機EL素子を利用したタッチパネルディスプレイでは、基板の上に、発光素子及び封止層が、順次積層され、封止層には、必要により配線下地層を介して、コンタクトホールが設けられる。コンタクトホールのパターニングは、通常、紫外線等を用いた露光と、アルカリ現像とを含むフォトリソグラフィーにより行われている。このようなフォトリソグラフィーにおいては、封止層又は配線下地層のベースに対して優れた密着性を有し、破断強度及び残膜性に優れた硬化樹脂パターンの形成が望まれている。 For example, in a touch panel display using a liquid crystal display element or an organic EL element, a light emitting element and a sealing layer are sequentially laminated on a substrate, and a contact hole is formed in the sealing layer via a wiring base layer if necessary. is provided. The patterning of contact holes is usually performed by photolithography including exposure using ultraviolet rays or the like and alkali development. In such photolithography, it is desired to form a cured resin pattern that has excellent adhesiveness to the base of the sealing layer or wiring underlayer, and that has excellent breaking strength and film retention properties.
 本発明の課題は、紫外線、可視光線、電子線、X線等の活性エネルギー線の照射により、破断強度に優れ、アルカリ現像後の基材への密着性及び残膜性に優れた硬化物(硬化膜)を与え、未露光部のアルカリ溶解性に優れた活性エネルギー線硬化性組成物及び該組成物を与えるビニル系重合体を提供することである。 The object of the present invention is to provide a cured product ( An object of the present invention is to provide an active energy ray-curable composition which gives a cured film) and has excellent alkali solubility in unexposed areas, and a vinyl polymer which gives the composition.
 本発明者は、(a1)スチレン及びα-メチルスチレンから選ばれた少なくとも1種に由来する構造単位と、(a2)エステル部のアルキル基の炭素原子数が2以上であるアクリル酸アルキルに由来する構造単位と、(a3)カルボキシ基を有するビニル化合物に由来する構造単位と、(a4)側鎖に(メタ)アクリロイル基を有する構造単位とを必須構成単位として含むビニル系重合体を含有する組成物を用いると、上記課題が解決されたことを見い出した。 The present inventors have found that (a1) a structural unit derived from at least one selected from styrene and α-methylstyrene, and (a2) an alkyl acrylate derived from an alkyl acrylate having 2 or more carbon atoms in the alkyl group of the ester moiety. (a3) a structural unit derived from a vinyl compound having a carboxy group, and (a4) a structural unit having a (meth)acryloyl group in a side chain as essential structural units. It has now been found that the above problems are solved using the composition.
 本発明は、以下に示される。
1.下記の構造単位(a1)、(a2)、(a3)、(a4)及び(a5)を含み、側鎖に(メタ)アクリロイル基を有するビニル系重合体であって、
 上記構造単位(a1)、(a2)、(a3)、(a4)及び(a5)の含有割合は、これらの合計を100質量%とした場合に、それぞれ、20~82質量%、10~72質量%、5~67質量%、3~65質量%及び0~30質量%であるビニル系重合体。
(a1)スチレン及びα-メチルスチレンから選ばれた少なくとも1種に由来する構造単位
(a2)エステル部のアルキル基の炭素原子数が2以上であるアクリル酸アルキルに由来する構造単位
(a3)カルボキシ基を有するビニル化合物に由来する構造単位
(a4)下記一般式(1)で表される構造単位及び下記一般式(2)で表される構造単位から選ばれた少なくとも1種の構造単位
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、水素原子又はメチル基であり、Rは、水素原子又はメチル基であり、Rは、水素原子又はメチル基であり、Rは、炭素原子数が2~4の炭化水素基であり、Rは、水素原子又はメチル基である。)
(a5)上記構造単位(a1)、(a2)、(a3)及び(a4)を除く他の構造単位
2.ゲルパーミエーションクロマトグラフィーによる数平均分子量が1,000~10,000である上記項1に記載のビニル系重合体。
3.上記構造単位(a2)が、エステル部のアルキル基の炭素原子数が4~18であるアクリル酸アルキルに由来する構造単位を含む上記項1又は2に記載のビニル系重合体。
4.上記ビニル系重合体の膜に対して、23℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を接触させた際のアルカリ溶解速度が40nm/秒以上である上記項1乃至3のいずれか一項に記載のビニル系重合体。
5.上記項1乃至4のいずれか一項に記載のビニル系重合体を含有する活性エネルギー線硬化性組成物。
6.更に、光重合開始剤を含有する上記項5に記載の活性エネルギー線硬化性組成物。
The present invention is shown below.
1. A vinyl polymer containing the following structural units (a1), (a2), (a3), (a4) and (a5) and having a (meth)acryloyl group in a side chain,
The content ratios of the structural units (a1), (a2), (a3), (a4) and (a5) are 20 to 82% by mass and 10 to 72%, respectively, when the total of these units is 100% by mass. % by mass, 5 to 67% by mass, 3 to 65% by mass, and 0 to 30% by mass.
(a1) structural unit derived from at least one selected from styrene and α-methylstyrene (a2) structural unit derived from alkyl acrylate having 2 or more carbon atoms in the alkyl group of the ester moiety (a3) carboxy Structural unit derived from a vinyl compound having a group (a4) At least one structural unit selected from structural units represented by the following general formula (1) and structural units represented by the following general formula (2)
Figure JPOXMLDOC01-appb-C000002
(wherein R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom or a methyl group, R 3 is a hydrogen atom or a methyl group, and R 4 has 2 to 4 is a hydrocarbon group, and R 5 is a hydrogen atom or a methyl group.)
(a5) Structural units other than the above structural units (a1), (a2), (a3) and (a4)2. 2. The vinyl polymer according to item 1, which has a number average molecular weight of 1,000 to 10,000 as determined by gel permeation chromatography.
3. 3. The vinyl polymer according to item 1 or 2, wherein the structural unit (a2) contains a structural unit derived from an alkyl acrylate having an alkyl group in the ester moiety with 4 to 18 carbon atoms.
4. 4. Any one of the above items 1 to 3, wherein the vinyl polymer film has an alkali dissolution rate of 40 nm/sec or more when brought into contact with a 2.38% by mass tetramethylammonium hydroxide aqueous solution at 23°C. The vinyl-based polymer according to the item.
5. 5. An active energy ray-curable composition containing the vinyl polymer according to any one of items 1 to 4 above.
6. 6. The active energy ray-curable composition according to item 5, further comprising a photopolymerization initiator.
 本明細書において、「(メタ)アクリレート」は、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル」とは、アクリロイル及び/又はメタクリロイルを意味する。更に、「(メタ)アクリル」は、アクリル及び/又はメタクリルを意味する。
 また、本明細書において、「重量平均分子量(Mw)」及び「数平均分子量(Mn)」は、ゲルパーミエーションクロマトグラフィー(GPC)による標準ポリスチレン換算値である。
As used herein, "(meth)acrylate" means acrylate and/or methacrylate. Moreover, "(meth)acryloyl" means acryloyl and/or methacryloyl. Furthermore, "(meth)acrylic" means acrylic and/or methacrylic.
Moreover, in this specification, "weight average molecular weight (Mw)" and "number average molecular weight (Mn)" are standard polystyrene conversion values by gel permeation chromatography (GPC).
 本発明のビニル系重合体は、構造単位(a3)を含むため、アルカリ溶解性に優れる。
 本発明のビニル系重合体を含有する活性エネルギー線硬化性組成物を用いて形成された皮膜(未硬化膜)に、活性エネルギー線を照射すると、破断強度に優れ、アルカリ現像後の基材への密着性及び残膜性に優れた硬化膜を得ることができる。また、上記皮膜(未硬化膜)における未露光部にはビニル系重合体がそのまま含まれるため、アルカリ現像により効率よく除去される。従って、活性エネルギー線を利用したパターン形成を好適に行うことができる。このような特性を生かして、本発明の活性エネルギー線硬化性組成物は、液晶、有機EL等の表示装置における、層間絶縁膜、平坦化膜、表面保護膜、スペーサー、カラーフィルターの着色層に用いられるカラーレジスト、ブラックマトリックス等の画素形成材料、タッチパネルの電極周辺に配される、コンタクトホールを有するパターン化された硬化樹脂層の形成材料;半導体におけるフレキシブルプリント基板の配線間を絶縁する材料、層間絶縁膜形成材料、平坦化膜、フォトレジスト、ソルダーレジスト、エッチングレジスト等のパターン形成材料等として好適である。
Since the vinyl polymer of the present invention contains the structural unit (a3), it has excellent alkali solubility.
When a film (uncured film) formed using the active energy ray-curable composition containing the vinyl polymer of the present invention is irradiated with an active energy ray, it has excellent breaking strength and can be applied to the base material after alkali development. It is possible to obtain a cured film excellent in adhesion and film retention. In addition, since the unexposed portion of the film (uncured film) contains the vinyl polymer as it is, it is efficiently removed by alkali development. Therefore, it is possible to suitably perform pattern formation using active energy rays. Taking advantage of such properties, the active energy ray-curable composition of the present invention can be used in interlayer insulating films, planarizing films, surface protective films, spacers, and colored layers of color filters in liquid crystal, organic EL, and other display devices. Color resist used, pixel forming materials such as black matrix, materials for forming a patterned cured resin layer having contact holes arranged around the electrodes of the touch panel; materials for insulating between wirings of flexible printed circuit boards in semiconductors, It is suitable as a pattern forming material such as an interlayer insulating film forming material, a planarizing film, a photoresist, a solder resist, an etching resist, and the like.
 本発明は、下記の構造単位(a1)、(a2)、(a3)、(a4)及び(a5)を特定の割合で含み、構造単位(a4)を含むことで、側鎖に(メタ)アクリロイル基を有するビニル系重合体、並びに、該ビニル系重合体を含有する活性エネルギー線硬化性組成物である。
(a1)スチレン及びα-メチルスチレンから選ばれた少なくとも1種に由来する構造単位
(a2)エステル部のアルキル基の炭素原子数が2以上であるアクリル酸アルキルに由来する構造単位
(a3)カルボキシ基を有するビニル化合物に由来する構造単位
(a4)下記一般式(1)で表される構造単位及び下記一般式(2)で表される構造単位から選ばれた少なくとも1種の構造単位
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、水素原子又はメチル基であり、Rは、水素原子又はメチル基であり、Rは、水素原子又はメチル基であり、Rは、炭素原子数が2~4の炭化水素基であり、Rは、水素原子又はメチル基である。)
(a5)上記構造単位(a1)、(a2)、(a3)及び(a4)を除く他の構造単位
The present invention includes the following structural units (a1), (a2), (a3), (a4) and (a5) in a specific ratio, and by including the structural unit (a4), (meta) A vinyl polymer having an acryloyl group and an active energy ray-curable composition containing the vinyl polymer.
(a1) structural unit derived from at least one selected from styrene and α-methylstyrene (a2) structural unit derived from alkyl acrylate having 2 or more carbon atoms in the alkyl group of the ester moiety (a3) carboxy Structural unit derived from a vinyl compound having a group (a4) At least one structural unit selected from structural units represented by the following general formula (1) and structural units represented by the following general formula (2)
Figure JPOXMLDOC01-appb-C000003
(wherein R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom or a methyl group, R 3 is a hydrogen atom or a methyl group, and R 4 has 2 to 4 is a hydrocarbon group, and R 5 is a hydrogen atom or a methyl group.)
(a5) Structural units other than the above structural units (a1), (a2), (a3) and (a4)
 上記構造単位(a1)は、スチレン及びα-メチルスチレンから選ばれた少なくとも1種に由来する構造単位である。本発明のビニル系重合体に含まれる構造単位(a1)は、1種のみ又は2種とすることができる。 The structural unit (a1) is a structural unit derived from at least one selected from styrene and α-methylstyrene. The structural unit (a1) contained in the vinyl polymer of the present invention can be of one type or two types.
 上記構造単位(a1)の含有割合は、活性エネルギー線硬化性組成物を硬化させた際に硬化物の耐水性及び耐アルカリ性が得られることから、本発明のビニル系重合体に含まれる構造単位(a1)、(a2)、(a3)、(a4)及び(a5)の含有割合の合計を100質量%とした場合に、20~82質量%であり、好ましくは25~75質量%、更に好ましくは35~70質量%である。 The content ratio of the structural unit (a1) is the structural unit contained in the vinyl polymer of the present invention, since water resistance and alkali resistance of the cured product can be obtained when the active energy ray-curable composition is cured. When the total content of (a1), (a2), (a3), (a4) and (a5) is 100% by mass, it is 20 to 82% by mass, preferably 25 to 75% by mass, and further It is preferably 35 to 70% by mass.
 上記構造単位(a2)は、エステル部のアルキル基の炭素原子数が2以上であるアクリル酸アルキルに由来する構造単位である。本発明のビニル系重合体に含まれる構造単位(a2)は、1種のみ又は2種以上とすることができる。 The structural unit (a2) is a structural unit derived from an alkyl acrylate in which the alkyl group in the ester moiety has 2 or more carbon atoms. The structural unit (a2) contained in the vinyl-based polymer of the present invention can be of one kind or two or more kinds.
 エステル部のアルキル基の炭素原子数が2以上であるアクリル酸アルキルとしては、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸n-ペンチル、アクリル酸n-ヘキシル、アクリル酸n-ヘプチル、アクリル酸n-オクチル、アクリル酸2-エチルヘキシル、アクリル酸n-ノニル、アクリル酸イソノニル、アクリル酸デシル、アクリル酸ウンデシル、アクリル酸ラウリル、アクリル酸トリデシル、アクリル酸テトラデシル、アクリル酸ペンタデシル、アクリル酸ヘキサデシル、アクリル酸ヘプタデシル、アクリル酸ステアリル、アクリル酸ノナデシル、アクリル酸エイコシル、アクリル酸ヘンイコシル、アクリル酸ベヘニル、アクリル酸テトラコシル、アクリル酸ヘキサコシル、アクリル酸オクタコシル、アクリル酸トリアコンチル、アクリル酸ドトリアコンチル、アクリル酸テトラトリアコンチル、アクリル酸ヘキサトリアコンチル、アクリル酸オクタトリアコンチル、アクリル酸テトラコンチル、アクリル酸イソデシル、アクリル酸イソウンデシル、アクリル酸イソラウリル、アクリル酸イソトリデシル、アクリル酸イソテトラデシル、アクリル酸イソペンタデシル、アクリル酸イソヘキサデシル、アクリル酸イソヘプタデシル、アクリル酸イソステアリル、アクリル酸イソノナデシル、アクリル酸イソエイコシル、アクリル酸イソヘンイコシル、アクリル酸イソベヘニル、アクリル酸イソテトラコシル、アクリル酸イソヘキサコシル、アクリル酸イソオクタコシル、アクリル酸イソトリアコンチル、アクリル酸イソドトリアコンチル、アクリル酸イソテトラトリアコンチル、アクリル酸イソヘキサトリアコンチル、アクリル酸イソオクタトリアコンチル、アクリル酸イソテトラコンチル等が挙げられる。これらのうち、エステル部のアルキル基の炭素原子数が4~18であるアクリル酸アルキルが好ましい。 Examples of alkyl acrylates in which the number of carbon atoms in the alkyl group of the ester moiety is 2 or more include ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, n-pentyl acrylate, n-hexyl acrylate, n-heptyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, n-nonyl acrylate, isononyl acrylate, decyl acrylate, undecyl acrylate, lauryl acrylate, tridecyl acrylate, tetradecyl acrylate, pentadecyl acrylate, hexadecyl acrylate, heptadecyl acrylate, stearyl acrylate, nonadecyl acrylate, eicosyl acrylate, heneicosyl acrylate, behenyl acrylate, acrylic acid Tetracosyl, hexacosyl acrylate, octacosyl acrylate, triacontyl acrylate, dotriacontyl acrylate, tetratriacontyl acrylate, hexatriacontyl acrylate, octatriacontyl acrylate, tetracontyl acrylate, isodecyl acrylate, isoundecyl acrylate , isolauryl acrylate, isotridecyl acrylate, isotetradecyl acrylate, isopentadecyl acrylate, isohexadecyl acrylate, isoheptadecyl acrylate, isostearyl acrylate, isononadecyl acrylate, isoeicosyl acrylate, isoheneicosyl acrylate, acrylic acid isobehenyl, isotetracosyl acrylate, isohexacosyl acrylate, isooctacosyl acrylate, isotriacontyl acrylate, isodotriacontyl acrylate, isotetratriacontyl acrylate, isohexatriacontyl acrylate, isooctatriacontyl acrylate Chill, isotetracontyl acrylate, and the like. Among these, alkyl acrylates in which the alkyl group in the ester portion has 4 to 18 carbon atoms are preferred.
 上記構造単位(a2)が、エステル部のアルキル基の炭素原子数が4~18であるアクリル酸アルキルに由来する構造単位(以下、「構造単位(a2-1)」という)を含む場合、この構造単位(a2-1)の含有割合の下限は、上記構造単位(a2)の全量に対して、好ましくは25質量%、より好ましくは55質量%である。 When the structural unit (a2) contains a structural unit derived from an alkyl acrylate having an alkyl group in the ester moiety with 4 to 18 carbon atoms (hereinafter referred to as “structural unit (a2-1)”), this The lower limit of the content of the structural unit (a2-1) is preferably 25% by mass, more preferably 55% by mass, based on the total amount of the structural unit (a2).
 上記構造単位(a2)の含有割合は、活性エネルギー線硬化性組成物の基材、配線等に対する密着性に優れ、更に、該組成物を硬化させた際に硬化物の破断強度(特に、柔軟性)に優れることから、本発明のビニル系重合体に含まれる構造単位(a1)、(a2)、(a3)、(a4)及び(a5)の含有割合の合計を100質量%とした場合に、10~72質量%であり、好ましくは12~60質量%、更に好ましくは15~40質量%である。 The content ratio of the structural unit (a2) is such that the active energy ray-curable composition has excellent adhesion to substrates, wiring, etc., and furthermore, when the composition is cured, the cured product has breaking strength (especially, flexibility When the total content of the structural units (a1), (a2), (a3), (a4) and (a5) contained in the vinyl polymer of the present invention is 100% by mass, In addition, it is 10 to 72% by mass, preferably 12 to 60% by mass, more preferably 15 to 40% by mass.
 上記構造単位(a3)は、カルボキシ基を有するビニル化合物に由来する構造単位である。本発明のビニル系重合体に含まれる構造単位(a3)は、1種のみ又は2種以上とすることができる。 The structural unit (a3) is a structural unit derived from a vinyl compound having a carboxy group. The structural unit (a3) contained in the vinyl-based polymer of the present invention may be of one kind or two or more kinds.
 カルボキシ基を有するビニル化合物としては、(メタ)アクリル酸、エタクリル酸、クロトン酸、桂皮酸、マレイン酸モノエステル、フマル酸モノエステル、イタコン酸モノエステル、マレイン酸、フマル酸、イタコン酸、(メタ)アクリル酸、フタル酸モノヒドロキシエチルアクリレート、ω-カルボキシ-ポリカプロラクトンモノアクリレート、(メタ)アクリロイルオキシエチルサクシネート、(メタ)アクリロイルオキシエチルヘキサヒドロフタレート、(メタ)アクリロイルオキシエチルフタレート、(メタ)アクリロイルオキシエチル-2-ヒドロキシエチルフタレート、β-カルボキシエチルアクリレート、ペンタエリスリトールトリアクリレートの無水フタル酸付加物、ペンタエリスリトールトリアクリレートの無水コハク酸付加物、ジペンタエリスリトールトリアクリレートの無水コハク酸付加物、ジペンタエリスリトールトリアクリレートの無水フタル酸付加物、(メタ)アクリル酸のε-カプロラクトン変性物、(メタ)アクリル酸カルボキシエチル等が挙げられる。これらのうち、アクリル酸が好ましい。 Vinyl compounds having a carboxyl group include (meth)acrylic acid, ethacrylic acid, crotonic acid, cinnamic acid, maleic acid monoester, fumaric acid monoester, itaconic acid monoester, maleic acid, fumaric acid, itaconic acid, (meth) ) acrylic acid, monohydroxyethyl phthalate acrylate, ω-carboxy-polycaprolactone monoacrylate, (meth) acryloyloxyethyl succinate, (meth) acryloyloxyethyl hexahydrophthalate, (meth) acryloyloxyethyl phthalate, (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, β-carboxyethyl acrylate, phthalic anhydride adduct of pentaerythritol triacrylate, succinic anhydride adduct of pentaerythritol triacrylate, succinic anhydride adduct of dipentaerythritol triacrylate, Phthalic anhydride adducts of dipentaerythritol triacrylate, ε-caprolactone-modified (meth)acrylic acid, carboxyethyl (meth)acrylate and the like can be mentioned. Among these, acrylic acid is preferred.
 上記構造単位(a3)の含有割合は、アルカリ溶解性に優れたビニル系重合体を与え、このビニル系重合体を含有する活性エネルギー線硬化性組成物を硬化させた際に硬化物の耐水性及び耐アルカリ性が得られ、フォトリソグラフィーによるパターン形成が容易であることから、本発明のビニル系重合体に含まれる構造単位(a1)、(a2)、(a3)、(a4)及び(a5)の含有割合の合計を100質量%とした場合に、5~67質量%であり、好ましくは6~40質量%、更に好ましくは6~25質量%である。 The content of the structural unit (a3) gives a vinyl polymer with excellent alkali solubility, and when the active energy ray-curable composition containing this vinyl polymer is cured, the cured product has water resistance. and the structural units (a1), (a2), (a3), (a4) and (a5) contained in the vinyl polymer of the present invention, since they provide alkali resistance and facilitate pattern formation by photolithography. is 5 to 67% by mass, preferably 6 to 40% by mass, more preferably 6 to 25% by mass, when the total content of 100% by mass.
 上記構造単位(a4)は、上記一般式(1)で表される構造単位及び上記一般式(2)で表される構造単位から選ばれた少なくとも1種の構造単位である。本発明のビニル系重合体に含まれる構造単位(a4)は、1種のみ又は2種以上とすることができる。 The structural unit (a4) is at least one structural unit selected from structural units represented by the general formula (1) and structural units represented by the general formula (2). The structural unit (a4) contained in the vinyl-based polymer of the present invention may be of one type or two or more types.
 上記一般式(1)において、Rは、水素原子又はメチル基であり、Rは、水素原子又はメチル基である。
 また、上記一般式(2)において、Rは、水素原子又はメチル基であり、Rは、炭素原子数が2~4の炭化水素基であり、Rは、水素原子又はメチル基である。Rは、エチレン基が好ましい。
In general formula (1) above, R 1 is a hydrogen atom or a methyl group, and R 2 is a hydrogen atom or a methyl group.
In general formula (2) above, R 3 is a hydrogen atom or a methyl group, R 4 is a hydrocarbon group having 2 to 4 carbon atoms, and R 5 is a hydrogen atom or a methyl group. be. R 4 is preferably an ethylene group.
 上記構造単位(a4)の含有割合は、活性エネルギー線硬化性組成物の基材、配線等に対する密着性に優れ、活性エネルギー線による硬化性に優れることから、本発明のビニル系重合体に含まれる構造単位(a1)、(a2)、(a3)、(a4)及び(a5)の含有割合の合計を100質量%とした場合に、3~65質量%であり、好ましくは5~50質量%、更に好ましくは10~45質量%である。 The content ratio of the structural unit (a4) is included in the vinyl polymer of the present invention because the active energy ray-curable composition has excellent adhesion to substrates, wiring, etc., and excellent curability with active energy rays. When the total content of the structural units (a1), (a2), (a3), (a4) and (a5) is 100% by mass, it is 3 to 65% by mass, preferably 5 to 50% by mass %, more preferably 10 to 45% by mass.
 本発明のビニル系重合体は、上記構成単位(a1)、(a2)、(a3)及び(a4)からなるもの、又は、上記構成単位(a1)、(a2)、(a3)、(a4)及び(a5)からなるものとすることができる。この構造単位(a5)は、上記構成単位(a1)、(a2)、(a3)及び(a4)を除く構造単位であり、特に限定されないが、好ましくはビニル化合物に由来する構造単位である。
 上記構造単位(a5)を形成する単量体としては、脂肪族炭化水素基を含むエステル部分を有するメタクリル酸アルキル、アクリル酸メチル、脂環式炭化水素基を含むエステル部分を有する(メタ)アクリル酸アルキル、芳香族炭化水素基を含むエステル部分を有する(メタ)アクリル酸芳香族エステル、ヒドロキシ基含有ビニル化合物、アミノ基含有ビニル化合物、シアン化ビニル化合物(アクリロニトリル、メタクリロニトリル等)、不飽和酸無水物、マレイミド系化合物、アルコキシアルキル基を含むエステル部分を有する(メタ)アクリル酸アルキル、ハロゲン含有ビニル化合物(塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等)、ビニルシラン化合物(トリメトキシビニルシラン、トリエトキシビニルシラン、メチルジメトキシビニルシラン、メチルジエトキシビニルシラン、ジメチルメトキシシラン等)、ビニルエステル化合物(酢酸ビニル、プロピオン酸ビニル等)、ビニルエーテル化合物(メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル等)等が挙げられる。
The vinyl-based polymer of the present invention comprises the structural units (a1), (a2), (a3) and (a4), or the structural units (a1), (a2), (a3) and (a4). ) and (a5). The structural unit (a5) is a structural unit other than the structural units (a1), (a2), (a3) and (a4), and is not particularly limited, but is preferably a structural unit derived from a vinyl compound.
Examples of monomers forming the structural unit (a5) include alkyl methacrylate and methyl acrylate having an ester moiety containing an aliphatic hydrocarbon group, and (meth)acryl having an ester moiety containing an alicyclic hydrocarbon group. Alkyl acids, (meth)acrylic acid aromatic esters having ester moieties containing aromatic hydrocarbon groups, hydroxyl group-containing vinyl compounds, amino group-containing vinyl compounds, vinyl cyanide compounds (acrylonitrile, methacrylonitrile, etc.), unsaturated Acid anhydrides, maleimide compounds, alkyl (meth)acrylates having ester moieties containing alkoxyalkyl groups, halogen-containing vinyl compounds (vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, etc.), vinylsilane compounds (trimethoxy vinylsilane, triethoxyvinylsilane, methyldimethoxyvinylsilane, methyldiethoxyvinylsilane, dimethylmethoxysilane, etc.), vinyl ester compounds (vinyl acetate, vinyl propionate, etc.), vinyl ether compounds (methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, etc.) etc.
 本発明のビニル系重合体において、上記構造単位(a5)の含有割合の上限は、本発明のビニル系重合体に含まれる構造単位(a1)、(a2)、(a3)、(a4)及び(a5)の含有割合の合計を100質量%とした場合に、好ましくは30質量%、より好ましくは15質量%である。 In the vinyl polymer of the present invention, the upper limit of the content of the structural unit (a5) is the structural units (a1), (a2), (a3), (a4) and When the total content of (a5) is 100% by mass, it is preferably 30% by mass, more preferably 15% by mass.
 本発明のビニル系重合体1分子当たりの(メタ)アクリロイル基の数は、活性エネルギー線硬化性組成物を硬化させた際に硬化物の柔軟性、基材への密着性、引張物性及び残膜性が得られることから、好ましくは1~20、より好ましくは2~10である。尚、本発明のビニル系重合体1分子当たりの(メタ)アクリロイル基の平均個数は、好ましくは1.0~20、より好ましくは2.0~10である。この(メタ)アクリロイル基の平均個数が少なすぎると硬化性が不良となり、アルカリ現像時の残膜性が悪くなって所望のパターンを得ることができない。 The number of (meth)acryloyl groups per molecule of the vinyl polymer of the present invention is such that when the active energy ray-curable composition is cured, the flexibility of the cured product, the adhesion to the substrate, the tensile physical properties and the residual properties. It is preferably from 1 to 20, more preferably from 2 to 10, since film properties can be obtained. The average number of (meth)acryloyl groups per molecule of the vinyl polymer of the present invention is preferably 1.0-20, more preferably 2.0-10. If the average number of the (meth)acryloyl groups is too small, the curability will be poor and the residual film property during alkali development will be poor, making it impossible to obtain a desired pattern.
 本発明のビニル系重合体の数平均分子量(Mn)は、フォトリソグラフィーによるパターン形成が容易であることから、好ましくは1,000~10,000であり、より好ましくは2,000~8,500、特に好ましくは2,500~6,000である。ビニル系重合体の数平均分子量が1,000以上であると、露光後の硬化物中の未硬化成分に起因するアウトガスを低減でき、また、形成されたパターン形状においてアンダーカットが生じにくくなる。一方、数平均分子量が10,000を超えると、多官能(メタ)アクリレートや光重合開始剤との相溶性が低下しやすくなる。尚、本発明のビニル系重合体の重量平均分子量(Mw)は、特に限定されないが、好ましくは3,000~100,000、より好ましくは4,000~20,000である。ビニル系重合体の重量平均分子量が4,000以上であると、形成されるパターンの直線性が良好となる。一方、ビニル系重合体の重量平均分子量が20,000を超えると、アルカリ現像時に現像残渣が発生しやすくなる。 The number average molecular weight (Mn) of the vinyl polymer of the present invention is preferably 1,000 to 10,000, more preferably 2,000 to 8,500, because pattern formation by photolithography is easy. , particularly preferably 2,500 to 6,000. When the number average molecular weight of the vinyl polymer is 1,000 or more, outgassing due to uncured components in the cured product after exposure can be reduced, and undercuts are less likely to occur in the formed pattern shape. On the other hand, if the number average molecular weight exceeds 10,000, the compatibility with polyfunctional (meth)acrylates and photopolymerization initiators tends to decrease. The weight average molecular weight (Mw) of the vinyl polymer of the present invention is not particularly limited, but is preferably 3,000 to 100,000, more preferably 4,000 to 20,000. When the weight-average molecular weight of the vinyl-based polymer is 4,000 or more, the linearity of the formed pattern is improved. On the other hand, if the weight-average molecular weight of the vinyl-based polymer exceeds 20,000, development residues tend to occur during alkali development.
 本発明のビニル系重合体の(メタ)アクリロイル当量は、活性エネルギー線硬化性組成物を硬化させた際に硬化物の柔軟性、基材への密着性、引張物性及び残膜性が得られることから、好ましくは300~4,000g/eq、より好ましくは600~2,000g/eqである。 The (meth)acryloyl equivalent of the vinyl polymer of the present invention provides flexibility, adhesion to substrates, tensile physical properties and film retention properties of the cured product when the active energy ray-curable composition is cured. Therefore, it is preferably 300 to 4,000 g/eq, more preferably 600 to 2,000 g/eq.
 本発明のビニル系重合体のガラス転移点は、活性エネルギー線硬化性組成物を硬化させた際に硬化物の柔軟性、及び、基材への密着性が得られることから、好ましくは0℃~100℃、より好ましくは0℃~70℃であり、更に好ましくは20℃~60℃である。 The glass transition point of the vinyl-based polymer of the present invention is preferably 0° C. because the flexibility of the cured product and the adhesion to the substrate can be obtained when the active energy ray-curable composition is cured. ~100°C, more preferably 0°C to 70°C, still more preferably 20°C to 60°C.
 本発明のビニル系重合体の酸価は、フォトリソグラフィーによるパターン形成を容易に行うために、好ましくは25~300mgKOH/g、より好ましくは40~150mgKOH/gである。酸価を25mgKOH/g以上とすることにより、現像液浸透性が高くなり、現像ラチチュード(現像液のpH及び温度並びに現像時間に対する許容性)が向上する傾向にあり、酸価を300mgKOH/g以下とすることにより、残膜性に優れたより適切なパターンを得ることが可能になる。 The acid value of the vinyl polymer of the present invention is preferably 25-300 mgKOH/g, more preferably 40-150 mgKOH/g, in order to facilitate pattern formation by photolithography. By setting the acid value to 25 mgKOH/g or more, the permeability of the developer tends to be high, the development latitude (tolerance for pH and temperature of the developer, and development time) tends to be improved, and the acid value is 300 mgKOH/g or less. By doing so, it becomes possible to obtain a more appropriate pattern with excellent film retention.
 本発明のビニル系重合体を製造する方法は、特に限定されず、所定の構造単位を与える単量体を、懸濁重合、乳化重合、溶液重合又は塊状重合させる等の方法を適用することができる。これらのうち、製造が容易であり、重合体溶液に乳化剤等の不純物を含まない点で、塊状重合及び溶液重合が好ましい。 The method for producing the vinyl-based polymer of the present invention is not particularly limited, and a method such as suspension polymerization, emulsion polymerization, solution polymerization or bulk polymerization of a monomer that provides a predetermined structural unit can be applied. can. Among these, bulk polymerization and solution polymerization are preferred because they are easy to produce and do not contain impurities such as emulsifiers in the polymer solution.
 本発明において、上記一般式(1)で表される構造単位(以下、「構造単位(a4-1)」という)を含むビニル系重合体(以下、「ビニル系重合体(P1)」という)を製造する場合、構造単位(a1)を与える単量体(スチレン又はα-メチルスチレン)と、構造単位(a2)を与える単量体(アクリル酸アルキル)と、構造単位(a3)を与える単量体(カルボキシ基を有するビニル化合物)と、必要に応じて構成単位(a5)を与える単量体とを含む単量体混合物を重合させて共重合体(以下、「前駆重合体X」という)とし、次いで、この前駆重合体Xと、エポキシ基を含む(メタ)アクリレート(以下、「エポキシ基含有(メタ)アクリレート」という)とを反応させ、即ち、前駆重合体Xにおける一部の構造単位(a3)のカルボキシ基と、エポキシ基含有(メタ)アクリレートのエポキシ基とを反応させて、該構造単位(a3)を構造単位(a4-1)に変性させる、2段階反応を含む製造方法を適用することができる。 In the present invention, a vinyl polymer (hereinafter referred to as "vinyl polymer (P1)") containing a structural unit represented by the general formula (1) (hereinafter referred to as "structural unit (a4-1)") When producing, a monomer that gives the structural unit (a1) (styrene or α-methylstyrene), a monomer that gives the structural unit (a2) (alkyl acrylate), and a unit that gives the structural unit (a3) A monomer mixture containing a monomer (vinyl compound having a carboxyl group) and, if necessary, a monomer giving the structural unit (a5) is polymerized to obtain a copolymer (hereinafter referred to as "precursor polymer X" ), and then react this precursor polymer X with a (meth)acrylate containing an epoxy group (hereinafter referred to as “epoxy group-containing (meth)acrylate”), that is, a part of the structure in the precursor polymer X A production method including a two-step reaction in which the carboxy group of the unit (a3) is reacted with the epoxy group of the epoxy group-containing (meth)acrylate to modify the structural unit (a3) into the structural unit (a4-1). can be applied.
 ビニル系重合体(P1)は、例えば、特開昭57-502171号公報、特開昭59-6207号公報、特開昭60-215007号公報等に記載された塊状重合法を適用して前駆重合体Xを製造し、次いで、触媒の存在下、この前駆重合体Xと、エポキシ基含有(メタ)アクリレートとを反応させて製造することができる。 The vinyl polymer (P1) is prepared by applying the bulk polymerization method described in, for example, JP-A-57-502171, JP-A-59-6207, JP-A-60-215007, etc. It can be produced by producing a polymer X and then reacting this precursor polymer X with an epoxy group-containing (meth)acrylate in the presence of a catalyst.
 前駆重合体X用の塊状重合は、具体的には、加圧可能な反応器を溶媒で満たし、加圧下で所定温度に設定した後、各単量体、又は、必要に応じて重合溶媒若しくは重合開始剤とからなる単量体混合物を一定の供給速度で反応器へ供給し、単量体混合物の供給量に見合う量の重合体溶液を抜き出す方法とすることができる。 Specifically, bulk polymerization for the precursor polymer X is performed by filling a pressurizable reactor with a solvent, setting it to a predetermined temperature under pressure, and then adding each monomer, or, if necessary, a polymerization solvent or A monomer mixture consisting of a polymerization initiator is supplied to a reactor at a constant supply rate, and an amount of polymer solution corresponding to the supply amount of the monomer mixture is withdrawn.
 前駆重合体Xは、構造単位(a1)、構造単位(a2)、構造単位(a3)及び構造単位(a5)の合計を100質量%とした場合に、これらが、それぞれ、好ましくは20~82質量%、10~72質量%、8~70質量%及び0~30質量%、更に好ましくは25~75質量%、12~60質量%、13~63質量%及び0~15質量%の割合で含有する共重合体である。 Precursor polymer X is preferably 20 to 82 % by weight, 10 to 72% by weight, 8 to 70% by weight and 0 to 30% by weight, more preferably 25 to 75% by weight, 12 to 60% by weight, 13 to 63% by weight and 0 to 15% by weight It is a copolymer containing
 その後、前駆重合体X及びエポキシ基含有(メタ)アクリレートの反応は、触媒の存在下、酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン等の有機溶媒中において行うことができるが、エポキシ基含有(メタ)アクリレートが液状である場合には、無溶媒で反応を行うこともできる。反応温度は、通常、60℃~120℃の範囲から選択される。 After that, the reaction of the precursor polymer X and the epoxy group-containing (meth)acrylate can be carried out in the presence of a catalyst in an organic solvent such as ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, etc. If the acrylate is liquid, the reaction can be carried out without solvent. The reaction temperature is usually selected from the range of 60°C to 120°C.
 エポキシ基含有(メタ)アクリレートとしては、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等が挙げられる。
 前駆重合体X及びエポキシ基含有(メタ)アクリレートの使用量の割合は、前駆重合体Xのカルボキシ基1モルに対して、エポキシ基含有(メタ)アクリレートのエポキシ基が、好ましくは0.1~0.9モル、更に好ましくは0.4~0.75モルとなるように設定される。
Epoxy group-containing (meth)acrylates include glycidyl (meth)acrylate, methylglycidyl (meth)acrylate, 4-hydroxybutyl acrylate glycidyl ether, 3,4-epoxycyclohexylmethyl (meth)acrylate and the like.
The ratio of the amounts of the precursor polymer X and the epoxy group-containing (meth)acrylate to be used is preferably 0.1 to 1 mol of the epoxy group-containing (meth)acrylate per 1 mol of the carboxy group of the precursor polymer X. It is set to 0.9 mol, more preferably 0.4 to 0.75 mol.
 触媒としては、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムクロリド、トリフェニルホスフィン、トリブチルホスフィン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,4-ジアザビシクロ[2,2,2]オクタン等が挙げられる。
 触媒の使用量は、前駆重合体X及びエポキシ基含有(メタ)アクリレートの反応性の観点から、これらの合計量に対して、通常、0.5~5質量%程度である。
Catalysts include tetrabutylammonium bromide, tetrabutylammonium chloride, tetramethylammonium bromide, tetramethylammonium chloride, triphenylphosphine, tributylphosphine, 1,8-diazabicyclo[5,4,0]-7-undecene, 1, 4-diazabicyclo[2,2,2]octane and the like.
From the viewpoint of the reactivity of the precursor polymer X and the epoxy group-containing (meth)acrylate, the amount of the catalyst used is usually about 0.5 to 5% by mass with respect to the total amount thereof.
 前駆重合体X及びエポキシ基含有(メタ)アクリレートを反応させる際には、エポキシ基含有(メタ)アクリレートにおける重合性不飽和結合の反応を抑制するために、反応系に、メトキシフェノール、ハイドロキノン、ジブチルヒドロキシトルエン、フェノチアジン等の重合禁止剤を添加することが好ましい。 When reacting the precursor polymer X and the epoxy group-containing (meth)acrylate, methoxyphenol, hydroquinone, dibutyl It is preferable to add a polymerization inhibitor such as hydroxytoluene or phenothiazine.
 本発明において、上記一般式(2)で表される構造単位(以下、「構造単位(a4-2)」という)を含むビニル系重合体(以下、「ビニル系重合体(P2)」という)を製造する場合、構造単位(a1)を与える単量体(スチレン又はα-メチルスチレン)と、構造単位(a2)を与える単量体(アクリル酸アルキル)と、構造単位(a3)を与える単量体(カルボキシ基を有するビニル化合物)と、ヒドロキシ基含有ビニル化合物と、必要に応じて構成単位(a5)を与える単量体とを含む単量体混合物を重合させて共重合体(以下、「前駆重合体Y」という)とし、次いで、この前駆重合体Yと、イソシアネート基を含む(メタ)アクリレート(以下、「イソシアネート基含有(メタ)アクリレート」という)とを反応させ、即ち、前駆重合体Yにおける、上記ヒドロキシ基含有ビニル化合物に由来する構造単位のヒドロキシ基と、イソシアネート基含有(メタ)アクリレートのイソシアネート基とを反応させて、上記ヒドロキシ基含有ビニル化合物に由来する構造単位を構造単位(a4-2)に変性させる、2段階反応を含む製造方法を適用することができる。 In the present invention, a vinyl polymer (hereinafter referred to as "vinyl polymer (P2)") containing a structural unit represented by the general formula (2) (hereinafter referred to as "structural unit (a4-2)") When producing, a monomer that gives the structural unit (a1) (styrene or α-methylstyrene), a monomer that gives the structural unit (a2) (alkyl acrylate), and a unit that gives the structural unit (a3) Polymerizing a monomer mixture containing a monomer (a vinyl compound having a carboxyl group), a hydroxy group-containing vinyl compound, and optionally a monomer giving the structural unit (a5) to obtain a copolymer (hereinafter referred to as (referred to as "precursor polymer Y"), and then reacting this precursor polymer Y with a (meth)acrylate containing an isocyanate group (hereinafter referred to as "isocyanate group-containing (meth)acrylate"), i.e., prepolymerization In the coalescence Y, the hydroxy group of the structural unit derived from the hydroxy group-containing vinyl compound is reacted with the isocyanate group of the isocyanate group-containing (meth)acrylate to convert the structural unit derived from the hydroxy group-containing vinyl compound into a structural unit. A manufacturing method including a two-step reaction for modifying (a4-2) can be applied.
 ビニル系重合体(P2)は、上記前駆重合体Xと同様にして前駆重合体Yを製造した後、必要に応じてウレタン結合形成用の触媒の存在下、この前駆重合体Yと、イソシアネート基含有(メタ)アクリレートとを反応させて製造することができる。反応温度は、通常、60℃~100℃の範囲から選択される。 The vinyl polymer (P2) is obtained by producing a precursor polymer Y in the same manner as the precursor polymer X, and optionally in the presence of a catalyst for forming a urethane bond, by combining the precursor polymer Y with an isocyanate group. It can be produced by reacting the contained (meth)acrylate. The reaction temperature is usually selected from the range of 60°C to 100°C.
 上記前駆重合体Yの形成に用いるヒドロキシ基含有ビニル化合物としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート、ポリ(エチレングリコール-プロピレングリコール)モノ(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、ポリエチレングリコール-ポリテトラメチレングリコールモノ(メタ)アクリレート等が挙げられる。 Examples of the hydroxy group-containing vinyl compound used for forming the precursor polymer Y include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, polyethylene glycol mono (meth)acrylate, polypropylene glycol mono(meth)acrylate, polybutylene glycol mono(meth)acrylate, poly(ethylene glycol-propylene glycol) mono(meth)acrylate, polyethylene glycol-polypropylene glycol mono(meth)acrylate, poly(ethylene) glycol-tetramethylene glycol) mono(meth)acrylate, polyethylene glycol-polytetramethylene glycol mono(meth)acrylate and the like.
 前駆重合体Yは、構造単位(a1)、構造単位(a2)、構造単位(a3)、ヒドロキシ基含有ビニル化合物に由来する構造単位、及び構造単位(a5)の合計を100質量%とした場合に、これらが、それぞれ、好ましくは20~82質量%、10~72質量%、3~30質量%、5~40質量%及び0~30質量%、更に好ましくは25~75質量%、12~60質量%、4~25質量%、9~35質量%及び0~15質量%の割合で含有する共重合体である。 In the precursor polymer Y, the total of the structural unit (a1), the structural unit (a2), the structural unit (a3), the structural unit derived from the hydroxy group-containing vinyl compound, and the structural unit (a5) is 100% by mass. 20 to 82% by mass, 10 to 72% by mass, 3 to 30% by mass, 5 to 40% by mass and 0 to 30% by mass, more preferably 25 to 75% by mass, 12 to They are copolymers containing 60% by mass, 4 to 25% by mass, 9 to 35% by mass and 0 to 15% by mass.
 その後、前駆重合体Y及びイソシアネート基含有(メタ)アクリレートの反応は、触媒の存在下、炭化水素、ケトン、エステル、エーテル等の有機溶媒中において行うことができる。 After that, the reaction between the precursor polymer Y and the isocyanate group-containing (meth)acrylate can be carried out in an organic solvent such as hydrocarbon, ketone, ester, ether, etc. in the presence of a catalyst.
 イソシアネート基含有(メタ)アクリレートとしては、2-(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート、等が挙げられる。
 前駆重合体Y及びイソシアネート基含有(メタ)アクリレートの使用量の割合は、イソシアネート基含有(メタ)アクリレートのイソシアネート基1モルに対して、前駆重合体Yのヒドロキシ基が、好ましくは0.9~1.1モルとなるように設定される。
Examples of isocyanate group-containing (meth)acrylates include 2-(meth)acryloyloxyethyl isocyanate, (meth)acryloylisocyanate, 1,1-bis(acryloyloxymethyl)ethylisocyanate, and the like.
The ratio of the amount of the precursor polymer Y and the isocyanate group-containing (meth)acrylate used is preferably 0.9 to 0.9 to 1 mol of the isocyanate group of the isocyanate group-containing (meth)acrylate. It is set to be 1.1 mol.
 ウレタン結合形成用の触媒としては、ジブチル錫ジクロライド等の有機錫化合物;ジブチル錫ジラウレート、ジブチル錫ジ(2-エチルヘキサノエート)、ジブチル錫ジアセテート、ジヘキシル錫ジアセテート、ジオクチル錫ジラウレート等の有機錫化合物の脂肪酸塩;ジメチル錫ビス(イソオクチルチオグリコール酸エステル)塩、ジメチル錫ビス(イソオクチルチオグリコール酸エステル)塩、ジオクチル錫ビス(イソオクチルチオグリコール酸エステル)塩等の有機錫化合物のチオグリコール酸エステル塩;オクチル酸錫、デカン酸錫等のカルボン酸錫;カルボン酸ビスマス;チタン錯体;ジルコニウム錯体等が挙げられる。
 触媒の使用量は、前駆重合体Y及びイソシアネート基含有(メタ)アクリレートの反応性の観点から、これらの合計量に対して、通常、0.01~0.1質量%程度である。
Catalysts for forming urethane bonds include organic tin compounds such as dibutyltin dichloride; Fatty acid salts of tin compounds; organic tin compounds such as dimethyltin bis(isooctylthioglycolic acid ester) salts, dimethyltin bis(isooctylthioglycolic acid ester) salts, dioctyltin bis(isooctylthioglycolic acid ester) salts Thioglycolic acid ester salts; tin carboxylates such as tin octoate and tin decanoate; bismuth carboxylates; titanium complexes;
From the viewpoint of the reactivity of the precursor polymer Y and the isocyanate group-containing (meth)acrylate, the amount of the catalyst used is usually about 0.01 to 0.1% by mass with respect to the total amount thereof.
 前駆重合体Y及びイソシアネート基含有(メタ)アクリレートを反応させる際には、イソシアネート基含有(メタ)アクリレートにおける重合性不飽和結合の反応を抑制するために、反応系に、メトキシフェノール、ハイドロキノン、ジブチルヒドロキシトルエン、フェノチアジン等の重合禁止剤を添加することが好ましい。 When reacting the precursor polymer Y and the isocyanate group-containing (meth)acrylate, methoxyphenol, hydroquinone, dibutyl It is preferable to add a polymerization inhibitor such as hydroxytoluene or phenothiazine.
 本発明のビニル系重合体は、紫外線、可視光線、電子線、X線等の活性エネルギー線により硬化させることができる。本発明のビニル系重合体は、後述するように、それと、活性エネルギー線の種類に応じて用いられる光重合開始剤、他の多官能性重合体等と併含する活性エネルギー線硬化性組成物を用いて形成された膜に対して露光及びアルカリ現像を含むフォトリソグラフィーを利用する、電子材料用のパターン形成に好適である。本発明において、例えば、ビニル系重合体及び光重合開始剤が共存する膜の一部に紫外線を照射すると、照射部(露光部)のビニル系重合体は架橋樹脂(硬化樹脂)となる一方、未照射部(未露光部)のビニル系重合体は変性することがない。本発明のビニル系重合体はアルカリ溶解性に優れるため、例えば、架橋樹脂(硬化樹脂)の部分を残存させてパターン形成する場合には、アルカリ現像を効率よく行うことができる。本発明のビニル系重合体からなる皮膜(未硬化膜)に、23℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を接触させた際のアルカリ溶解速度を、好ましくは40nm/秒以上、より好ましくは60nm/秒以上とすることができる。アルカリ溶解速度を40nm/秒以上とすることにより、活性エネルギー線硬化性組成物として問題なく使用でき、アルカリ現像後に所望のパターンを得ることができる。 The vinyl polymer of the present invention can be cured with active energy rays such as ultraviolet rays, visible rays, electron beams and X-rays. As will be described later, the vinyl polymer of the present invention is an active energy ray-curable composition containing it together with a photopolymerization initiator used according to the type of active energy ray, other polyfunctional polymer, etc. It is suitable for pattern formation for electronic materials using photolithography including exposure and alkali development for the film formed using In the present invention, for example, when a portion of a film in which a vinyl polymer and a photopolymerization initiator coexist is irradiated with ultraviolet rays, the vinyl polymer in the irradiated portion (exposed portion) becomes a crosslinked resin (cured resin), The vinyl polymer in the unirradiated area (unexposed area) is not modified. Since the vinyl-based polymer of the present invention is excellent in alkali solubility, for example, in the case of forming a pattern with a portion of the crosslinked resin (cured resin) remaining, alkali development can be performed efficiently. The alkali dissolution rate when a film (uncured film) made of the vinyl polymer of the present invention is brought into contact with a 2.38% by mass tetramethylammonium hydroxide aqueous solution at 23° C. is preferably 40 nm/sec or more, and more Preferably, it can be 60 nm/sec or more. By setting the alkali dissolution rate to 40 nm/sec or more, it can be used as an active energy ray-curable composition without any problem, and a desired pattern can be obtained after alkali development.
 本発明の活性エネルギー線硬化性組成物は、上記本発明のビニル系重合体(以下、「ビニル系重合体(A)」という)を含有する組成物である。その他、光重合開始剤、他の多官能性重合体、界面活性剤、重合禁止剤、耐光性向上剤、微粒子や、基材、配線等に対する塗工性等の観点で液状媒体等を含有することができる。 The active energy ray-curable composition of the present invention is a composition containing the vinyl polymer of the present invention (hereinafter referred to as "vinyl polymer (A)"). In addition, photopolymerization initiators, other polyfunctional polymers, surfactants, polymerization inhibitors, light resistance improvers, fine particles, and liquid media from the viewpoint of coatability on substrates, wiring, etc. be able to.
 上記光重合開始剤は、紫外線、可視光線、近赤外線等のエネルギーで励起されてラジカルを発生させ、少なくとも上記本発明のビニル系重合体のラジカル重合を促進するものであれば、特に限定されない。
 光重合開始剤としては、ベンジルジメチルケタール、ベンジル、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、オリゴ[2-ヒドロキシ-2-メチル-1-[4-1-(メチルビニル)フェニル]プロパノン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル]-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)]フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン)、フェニルグリオキシリックアシッドメチルエステル、エチルアントラキノン、フェナントレンキノン等の芳香族ケトン化合物;ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、4-(メチルフェニルチオ)フェニルフェニルメタン、メチル-2-ベンゾフェノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルフォニル)プロパン-1-オン、4,4′-ビス(ジメチルアミノ)ベンゾフェノン、4,4′-ビス(ジエチルアミノ)ベンゾフェノン、N,N′-テトラメチル-4,4′-ジアミノベンゾフェノン、N,N′-テトラエチル-4,4′-ジアミノベンゾフェノン、4-メトキシ-4′-ジメチルアミノベンゾフェノン等のベンゾフェノン系化合物;ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル-(2,4,6-トリメチルベンゾイル)フェニルフォスフィネート、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のアシルホスフィンオキサイド化合物;チオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン、3-[3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イル]オキシ]-2-ヒドロキシプロピル-N,N,N-トリメチルアンモニウムクロライド、フロロチオキサントン等のチオキサントン系化合物;アクリドン、10-ブチル-2-クロロアクリドン等のアクリドン系化合物;1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル類;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-フェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1,7-ビス(9,9′-アクリジニル)ヘプタン等のアクリジン誘導体等が挙げられる。
The photopolymerization initiator is not particularly limited as long as it is excited by energy such as ultraviolet rays, visible rays, and near-infrared rays to generate radicals and at least promote radical polymerization of the vinyl polymer of the present invention.
Photopolymerization initiators include benzyl dimethyl ketal, benzyl, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one. , 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, oligo[2-hydroxy-2-methyl-1-[4-1-( methylvinyl)phenyl]propanone, 2-hydroxy-1-[4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl]-2-methylpropan-1-one, 2-methyl- 1-[4-(methylthio)]phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one, 2-dimethylamino -2-(4-methylbenzyl)-1-(4-morpholin-4-yl-phenyl)-butan-1-one), phenylglyoxylic acid methyl ester, ethylanthraquinone, aromatic ketones such as phenanthrenequinone Compound; benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, 4-(methylphenylthio)phenylphenylmethane, methyl-2-benzophenone, 1-[4-(4-benzoylphenylsulfanyl)phenyl]-2-methyl-2-(4-methylphenylsulfonyl)propan-1-one, 4,4′-bis(dimethylamino)benzophenone, 4,4′ -Bis(diethylamino)benzophenone, N,N'-tetramethyl-4,4'-diaminobenzophenone, N,N'-tetraethyl-4,4'-diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone, etc. Benzophenone compounds; bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl-(2,4,6-trimethylbenzoyl)phenylphosphinate, Acylphosphine oxide compounds such as bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide; thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone, 1-chloro-4 -thioxanthone compounds such as propylthioxanthone, 3-[3,4-dimethyl-9-oxo-9H-thioxanthon-2-yl]oxy]-2-hydroxypropyl-N,N,N-trimethylammonium chloride and fluorothioxanthone ; acridone compounds such as acridone and 10-butyl-2-chloroacridone; 1,2-octanedione 1-[4-(phenylthio)-2-(O-benzoyloxime)], ethanone 1-[9-ethyl -6-(2-methylbenzoyl)-9H-carbazol-3-yl]-1-(O-acetyloxime) and other oxime esters; 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer , 2-(o-chlorophenyl)-4,5-di(m-methoxyphenyl)imidazole dimer, 2-(o-fluorophenyl)-4,5-phenylimidazole dimer, 2-(o-methoxy Phenyl)-4,5-diphenylimidazole dimer, 2-(p-methoxyphenyl)-4,5-diphenylimidazole dimer, 2,4-di(p-methoxyphenyl)-5-phenylimidazole dimer 2,4,5-triarylimidazole dimers such as isomers, 2-(2,4-dimethoxyphenyl)-4,5-diphenylimidazole dimers; 9-phenylacridine, 1,7-bis(9, 9'-acridinyl)heptane and other acridine derivatives.
 上記光重合開始剤の含有割合は、ビニル系重合体(A)の含有量を100質量部とした場合に、好ましくは0.1~10質量部、より好ましくは1~6質量部である。 The content of the photopolymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 1 to 6 parts by mass, when the content of the vinyl polymer (A) is 100 parts by mass.
 上記多官能性重合体としては、多官能(メタ)アクリレート、芳香族ポリビニル化合物、ジアリル化合物、(メタ)アクリル酸アリル、(メタ)アクリル酸ジシクロペンテニル等が挙げられる。これらのうち、多官能(メタ)アクリレートが好ましい。 Examples of the polyfunctional polymer include polyfunctional (meth)acrylates, aromatic polyvinyl compounds, diallyl compounds, allyl (meth)acrylate, and dicyclopentenyl (meth)acrylate. Among these, polyfunctional (meth)acrylates are preferred.
 多官能(メタ)アクリレートとしては、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールのトリ又はテトラ(メタ)アクリレート、ジトリメチロールプロパンのトリ又はテトラ(メタ)アクリレート、ジグリセリンのトリ又はテトラ(メタ)アクリレート、ジペンタエリスリトールのトリ、テトラ、ペンタ又はヘキサ(メタ)アクリレート等のポリオールポリ(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、及びポリ(1-メチルブチレングリコール)ジ(メタ)アクリレート等の(ポリ)アルキレングリコールジ(メタ)アクリレート;1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジオールのジ(メタ)アクリレート;グリセリンアルキレンオキサイド付加物のトリ(メタ)アクリレート、ペンタエリスリトールアルキレンオキサイド付加物のトリ又はテトラ(メタ)アクリレート、ジトリメチロールプロパンアルキレンオキサイド付加物のトリ又はテトラ(メタ)アクリレート、ジグリセリンアルキレンオキサイド付加物のトリ又はテトラ(メタ)アクリレート、ジペンタエリスリトールアルキレンオキサイド付加物のトリ、テトラ、ペンタ又はヘキサ(メタ)アクリレート等のポリオールアルキレンオキサイド付加物のポリ(メタ)アクリレート;ビスフェノールAのエチレンオキサイド変性ジ(メタ)アクリレート、ビスフェノールAのジ(メタ)アクリレート等のビスフェノール骨格を有するジ(メタ)アクリレート;トリシクロデカンジメチロールジ(メタ)アクリレート等の脂環式骨格を有するジ(メタ)アクリレート;イソシアヌル酸のエチレンオキサイド変性ジアクリレート、ε-カプロラクトン変性トリス((メタ)アクロキシエチル)イソシアヌレート等のイソシアヌレート骨格を有する(メタ)アクリレート;ポリエステル骨格を有するウレタン(メタ)アクリレート;ポリカーボネート骨格を有するウレタン(メタ)アクリレート;エポキシ(メタ)アクリレート;ポリエーテル(メタ)アクリレート;ペンタエリスリトールの多塩基酸変性トリ又はテトラ(メタ)アクリレート;ジペンタエリスリトールの多塩基酸変性テトラ、ペンタ又はヘキサ(メタ)アクリレート等が挙げられる。
 芳香族ポリビニル化合物としては、ジビニルベンゼン、1,3,5-トリビニルベンゼン等が挙げられる。
Polyfunctional (meth)acrylates include glycerol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, tri- or tetra-(meth)acrylate of pentaerythritol, tri- or tetra-(meth)acrylate of ditrimethylolpropane, and diglycerin. Polyol poly (meth) acrylates such as tri or tetra (meth) acrylate of dipentaerythritol, tri, tetra, penta or hexa (meth) acrylate of dipentaerythritol; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, polybutylene glycol di(meth)acrylate, and (poly)alkylene glycol di(meth)acrylates such as poly(1-methylbutylene glycol) di(meth)acrylate; 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate , di(meth)acrylates of aliphatic diols such as neopentyl glycol di(meth)acrylate; tri(meth)acrylates of glycerin alkylene oxide adducts, tri- or tetra(meth)acrylates of pentaerythritol alkylene oxide adducts, ditrimethylol Tri or tetra (meth) acrylate of propane alkylene oxide adduct, tri or tetra (meth) acrylate of diglycerin alkylene oxide adduct, tri, tetra, penta or hexa (meth) acrylate of dipentaerythritol alkylene oxide adduct, etc. Poly(meth)acrylates of polyol alkylene oxide adducts; di(meth)acrylates having a bisphenol skeleton such as ethylene oxide-modified di(meth)acrylates of bisphenol A and di(meth)acrylates of bisphenol A; tricyclodecanedimethylol di Di (meth) acrylate having an alicyclic skeleton such as (meth) acrylate; Ethylene oxide-modified diacrylate of isocyanuric acid, ε-caprolactone modified tris ((meth) acryloxyethyl) isocyanurate skeleton such as isocyanurate ( meth) acrylate; urethane (meth) acrylate having a polyester skeleton; urethane (meth) acrylate having a polycarbonate skeleton; epoxy (meth) acrylate; polyether (meth) acrylate; Acrylates; polybasic acid-modified tetra-, penta- or hexa(meth)acrylates of dipentaerythritol.
Examples of aromatic polyvinyl compounds include divinylbenzene and 1,3,5-trivinylbenzene.
 本発明の活性エネルギー線硬化性組成物が多官能性重合体を含有する場合、その含有割合は、ビニル系重合体(A)の含有量を100質量部とした場合に、好ましくは10~200質量部、より好ましくは50~150質量部である。 When the active energy ray-curable composition of the present invention contains a polyfunctional polymer, the content ratio thereof is preferably 10 to 200 when the content of the vinyl polymer (A) is 100 parts by mass. parts by mass, more preferably 50 to 150 parts by mass.
 上記界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用でき、塗布性をより向上できるという理由からフッ素系界面活性剤が好ましい。フッ素系界面活性剤としては、例えば、メガファックF171、F172、F173、F176、F177、F141、F142、F143、F144、R30、R41,R40LM、F437、F475、F479、F482、F554、F-557、F568、F780(以上、DIC(株)製)、フロラードFC430、FC431、FC171(以上、住友スリーエム(株)製)、サーフロンS-382、S-386、S-242、S-243、S-420、S-431、S-611、S-47、S-651、S-656(以上、AGC(株)製)、PF636、PF656、PF6320、PF6520、PF7002、PF-151N(以上、OMNOVA社製)、ユニダインDSN-403N、DS-101、DS-202、DS-401、DS-403、DSN-403N、NS-1602、NS-1603、NS-1605、NS-9013(以上、ダイキン工業(株)製)等が挙げられる。 As the surfactant, various surfactants such as fluorine-based surfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone surfactants can be used to improve the coating properties. Fluorosurfactants are preferred for the reason that they can be improved. Examples of fluorosurfactants include Megafac F171, F172, F173, F176, F177, F141, F142, F143, F144, R30, R41, R40LM, F437, F475, F479, F482, F554, F-557, F568, F780 (manufactured by DIC Corporation), Florard FC430, FC431, FC171 (manufactured by Sumitomo 3M), Surflon S-382, S-386, S-242, S-243, S-420 , S-431, S-611, S-47, S-651, S-656 (manufactured by AGC Co., Ltd.), PF636, PF656, PF6320, PF6520, PF7002, PF-151N (manufactured by OMNOVA) , Unidyne DSN-403N, DS-101, DS-202, DS-401, DS-403, DSN-403N, NS-1602, NS-1603, NS-1605, NS-9013 (manufactured by Daikin Industries, Ltd.) ) and the like.
 本発明の活性エネルギー線硬化性組成物が界面活性剤を含有する場合、その含有割合は、組成物の全固形分に対して、0.001~0.2質量%が好ましく、0.0015~0.1質量%がより好ましく、0.002~0.05質量%が更に好ましい。
 界面活性剤の含有量が上記範囲であれば、活性エネルギー線硬化性組成物の塗布性が良好であり、塗布ムラやストリエーションの発生をより効果的に抑制できる。
When the active energy ray-curable composition of the present invention contains a surfactant, its content is preferably 0.001 to 0.2% by mass, preferably 0.0015 to 0.0015% by mass, based on the total solid content of the composition. 0.1% by mass is more preferable, and 0.002 to 0.05% by mass is even more preferable.
When the content of the surfactant is within the above range, the application properties of the active energy ray-curable composition are good, and the occurrence of coating unevenness and striations can be more effectively suppressed.
 上記重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-t-ブチル-p-クレゾール、ピロガロール、t-ブチルカテコール、ベンゾキノン、4,4′-チオビス(3-メチル-6-t-ブチルフェノール)、2,2′-メチレンビス(4-メチル-6-t-ブチルフェノール)、フェノチアジン、2-メルカプトベンゾイミダゾール等が挙げられる。 Examples of the polymerization inhibitor include hydroquinone, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4'-thiobis(3-methyl-6-t-butylphenol). , 2,2′-methylenebis(4-methyl-6-t-butylphenol), phenothiazine, 2-mercaptobenzimidazole and the like.
 上記耐光性向上剤としては、紫外線吸収剤又は光安定剤を用いることができる。
 紫外線吸収剤としては、2-(2′-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール化合物;2,4-ビス(2,4-ジメチルフェニル)-6-(2-ヒドロキシ-4-イソ-オクチルオキシフェニル)-s-トリアジン等のトリアジン化合物;2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-4′-メチルベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2,4,4′-トリヒドロキシベンゾフェノン、2,2′,4,4′-テトラヒドロキシベンゾフェノン、2,3,4,4′-テトラヒドロキシベンゾフェノン、2,3′,4,4′-テトラヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシベンゾフェノン等のベンゾフェノン化合物等が挙げられる。
 また、光安定剤としては、N,N′-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N′-ジホルミルヘキサメチレンジアミン、ビス(1,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジターシャリーブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート等の低分子量ヒンダードアミン化合物;N,N′-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N′-ジホルミルヘキサメチレンジアミン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート等の高分子量ヒンダードアミン化合物等が挙げられる。
As the light resistance improver, an ultraviolet absorber or a light stabilizer can be used.
UV absorbers include 2-(2'-hydroxy-5-methylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-di-t-butylphenyl)benzotriazole, 2-(2 '-Hydroxy-3'-t-butyl-5'-methylphenyl)benzotriazole compounds such as benzotriazole; 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-iso- Triazine compounds such as octyloxyphenyl)-s-triazine; 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'- dihydroxy-4-methoxybenzophenone, 2,4,4'-trihydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,3', Examples include benzophenone compounds such as 4,4'-tetrahydroxybenzophenone and 2,2'-dihydroxy-4,4'-dimethoxybenzophenone.
Further, as light stabilizers, N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-N,N'-diformylhexamethylenediamine, bis(1,2,6, 6-pentamethyl-4-piperidyl)-2-(3,5-ditert-butyl-4-hydroxybenzyl)-2-n-butylmalonate, bis(1,2,2,6,6-pentamethyl-4- low molecular weight hindered amine compounds such as piperidinyl) sebacate; High molecular weight hindered amine compounds such as 2,6,6-pentamethyl-4-piperidinyl)sebacate and the like can be mentioned.
 上記微粒子としては、金属、無機化合物、ゴム又は樹脂からなる、粒子径1~100μm程度の微粒子を用いることができる。無機化合物としては、ケイ素、アルミニウム、ジルコニウム、チタニウム、亜鉛、鉛、ゲルマニウム、インジウム、スズ、アンチモン、セリウム、リチウム等の酸化物又はこれらの複合酸化物、炭酸カルシウム、ベントナイト等が挙げられる。ゴム又は樹脂は、架橋重合体からなるものであってもよい。 As the fine particles, fine particles having a particle diameter of about 1 to 100 μm made of metal, inorganic compound, rubber or resin can be used. Examples of inorganic compounds include oxides of silicon, aluminum, zirconium, titanium, zinc, lead, germanium, indium, tin, antimony, cerium, lithium and the like, composite oxides thereof, calcium carbonate, bentonite and the like. The rubber or resin may consist of a crosslinked polymer.
 上記液状媒体は、通常、有機溶剤であり、例えば、n-ヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、シクロヘキサン等の炭化水素;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、2-メトキシエタノール、2-エトキシエタノール、2-(メトキシメトキシ)エタノール、2-イソプロポキシエタノール、2-ブトキシエタノール、2-イソペンチルオキシエタノール、2-ヘキシルオキシエタノール、2-フェノキシエタノール、2-ベンジルオキシエタノール、フルフリルアルコール、テトラヒドロフルフリルアルコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ビス(2-メトキシエチル)エーテル、ビス(2-エトキシエチル)エーテル、ビス(2-ブトキシエチル)エーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、メチル-n-プロピルケトン、ジエチルケトン、ブチルメチルケトン、メチルイソブチルケトン、メチルペンチルケトン、ジ-n-プロピルケトン、ジイソブチルケトン、ホロン、イソホロン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、酢酸イソブチル、メチルグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート、酢酸セロソルブ等のエステル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、γ-ブチロラクトン等の非プロトン性極性溶媒等が挙げられる。これらの有機溶剤は、単独であるいは2種以上を組み合わせて用いることができる。活性エネルギー線硬化性組成物を溶解する際に適切な液状媒体を選択することにより、活性エネルギー線硬化性組成物を塗布した際の塗布ムラやストリエーションの発生及び活性エネルギー線硬化性組成物中の特定成分の経時変化による析出を効果的に抑制することができる。 The above liquid medium is usually an organic solvent, for example, hydrocarbons such as n-hexane, benzene, toluene, xylene, ethylbenzene, cyclohexane; butanol, isobutyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, 2-(methoxymethoxy)ethanol, 2-isopropoxyethanol, 2-butoxyethanol, 2-isopentyloxyethanol, 2-hexyloxyethanol, 2-phenoxyethanol , 2-benzyloxyethanol, furfuryl alcohol, tetrahydrofurfuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, propylene glycol monomethyl Alcoholic solvents such as ether; tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, bis(2-methoxyethyl) ether, bis(2-ethoxyethyl) ether, bis(2-butoxyethyl) Ether solvents such as ether; acetone, methyl ethyl ketone, methyl-n-propyl ketone, diethyl ketone, butyl methyl ketone, methyl isobutyl ketone, methyl pentyl ketone, di-n-propyl ketone, diisobutyl ketone, holone, isophorone, cyclopentanone , cyclohexanone, ketone solvents such as methylcyclohexanone; ethyl acetate, butyl acetate, isobutyl acetate, methyl glycol acetate, propylene glycol monomethyl ether acetate, ester solvents such as cellosolve acetate; N,N-dimethylformamide, N,N-dimethyl Aprotic polar solvents such as acetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, γ-butyrolactone, and the like. These organic solvents can be used alone or in combination of two or more. By selecting an appropriate liquid medium when dissolving the active energy ray-curable composition, the occurrence of coating unevenness and striations when the active energy ray-curable composition is applied and the active energy ray-curable composition It is possible to effectively suppress the precipitation due to the change over time of the specific component of.
 本発明の活性エネルギー線硬化性組成物が液状媒体を含有する場合、その含有割合は、用途により、適宜、選択され、特に限定されない。本発明の活性エネルギー線硬化性組成物を、電子材料用のパターン形成に用いる場合、ビニル系重合体(A)を100質量部、又は、ビニル系重合体(A)及び多官能性重合体の合計量を100質量部とした場合に、好ましくは20~400質量部、より好ましくは40~200質量部である。 When the active energy ray-curable composition of the present invention contains a liquid medium, its content is appropriately selected depending on the application and is not particularly limited. When the active energy ray-curable composition of the present invention is used for pattern formation for electronic materials, 100 parts by mass of the vinyl polymer (A), or the vinyl polymer (A) and the polyfunctional polymer When the total amount is 100 parts by mass, it is preferably 20 to 400 parts by mass, more preferably 40 to 200 parts by mass.
 本発明の活性エネルギー線硬化性組成物は、上記のビニル系重合体(A)等の原料成分を、各種の混合機、分散機を用いて混合することにより製造することができる。 The active energy ray-curable composition of the present invention can be produced by mixing the raw material components such as the vinyl polymer (A) using various mixers and dispersers.
 本発明において、活性エネルギー線硬化性組成物を用いて形成された、ビニル系重合体を含む皮膜(未硬化膜)に、活性エネルギー線を照射すると、破断強度に優れ、アルカリ現像後の基材(無機材料、樹脂等からなる基材)への密着性に優れた硬化膜を得ることができる。このような特性を生かして、本発明の活性エネルギー線硬化性組成物は、基材、配線等の上に、パターン化された硬化樹脂層を有する電子部品の製造に特に好適である。電子部品用の基材としては、液晶表示素子等に用いられるソーダガラス、無アルカリガラス、パイレックス(登録商標)ガラス、石英ガラス等からなる板状基板、これらの基板の表面に(透明)導電膜を配設したもの、固体撮像素子等に用いられる光電変換素子基板(シリコン基板等)、カラーフィルター基板等が挙げられる。 In the present invention, when a film containing a vinyl polymer (uncured film) formed using an active energy ray-curable composition is irradiated with an active energy ray, it exhibits excellent breaking strength, and the base material after alkali development. It is possible to obtain a cured film having excellent adhesion to (substrate made of inorganic material, resin, etc.). Taking advantage of such properties, the active energy ray-curable composition of the present invention is particularly suitable for producing electronic components having a patterned cured resin layer on a substrate, wiring, or the like. Substrates for electronic parts include plate substrates made of soda glass, alkali-free glass, Pyrex (registered trademark) glass, quartz glass, etc. used in liquid crystal display elements, etc., and (transparent) conductive films on the surfaces of these substrates. , photoelectric conversion element substrates (silicon substrates, etc.) used in solid-state imaging devices and the like, color filter substrates, and the like.
 パターン化された硬化樹脂層を作製する場合、活性エネルギー線硬化性組成物を用いて基材の表面に皮膜(未硬化膜)を形成する工程(以下、「皮膜形成工程」という)、皮膜に、活性エネルギー線を、マスクを介して照射するかあるいはマスクを用いずに走査露光する工程(以下、「露光工程」という)、アルカリ性の水溶液(以下、「現像液」ともいう)を用いて、露光皮膜を現像する工程(以下、「現像工程」という)を、順次、備える方法を適用することができる。露光工程において電子線又はX線を用いる場合には、皮膜形成工程において光重合開始剤を含有しない活性エネルギー線硬化性組成物を用いることができる。また、露光工程において紫外線又は可視光線を用いる場合には、皮膜形成工程において光重合開始剤を含有する活性エネルギー線硬化性組成物を用いる。 When producing a patterned cured resin layer, a step of forming a film (uncured film) on the surface of a substrate using an active energy ray-curable composition (hereinafter referred to as "film formation step"), , a step of irradiating an active energy ray through a mask or scanning exposure without using a mask (hereinafter referred to as "exposure step"), using an alkaline aqueous solution (hereinafter also referred to as "developer"), A method of sequentially providing a step of developing the exposed film (hereinafter referred to as a “development step”) can be applied. When electron beams or X-rays are used in the exposure step, an active energy ray-curable composition containing no photopolymerization initiator can be used in the film formation step. Moreover, when using an ultraviolet-ray or a visible ray in an exposure process, the active-energy-ray-curable composition containing a photoinitiator is used in a film formation process.
 上記皮膜形成工程においては、バーコーター、アプリケーター、ドクターブレード、ナイフコーター、コンマコーター、リバースロールコーター、ダイコーター、リップコーター、グラビアコーター、マイクログラビアコーター等を用いた、従来、公知の塗布方法により、液状の活性エネルギー線硬化性組成物を塗布して塗膜を形成した後、必要により、減圧乾燥又は加熱を行って組成物中の有機溶剤を除去し、皮膜(未硬化膜)を形成する。尚、膜厚は、用途により、適宜、選択される。 In the film forming step, a conventionally known coating method using a bar coater, applicator, doctor blade, knife coater, comma coater, reverse roll coater, die coater, lip coater, gravure coater, micro gravure coater, etc. After applying the liquid active energy ray-curable composition to form a coating film, if necessary, drying under reduced pressure or heating is performed to remove the organic solvent in the composition to form a film (uncured film). Incidentally, the film thickness is appropriately selected depending on the application.
 上記露光工程において、皮膜の所定部分が露光されて、露光部が硬化樹脂からなり、他方、未露光部が未硬化樹脂のまま残存する。硬化樹脂は、活性エネルギー線硬化性組成物に含まれたビニル系重合体(A)の構造単位(a4)が側鎖に有する(メタ)アクリロイル基に基づいて形成された架橋樹脂である。
 上記露光工程で用いる活性エネルギー線は、紫外線、可視光線、電子線又はX線である。紫外線は、高圧水銀ランプ、メタルハライドランプ、紫外線(UV)無電極ランプ、発光ダイオード(LED)、紫外レーザー等を光源とした照射装置を用いて照射することができる。電子線は、エレクトロカーテン型や、ブロードビーム型の線状フィラメントタイプや走査型の電子線加速装置を用いて照射することができる。
 上記活性エネルギー線としては、短時間で、且つ、低エネルギー照射で硬化樹脂を形成できることから、紫外線が好ましい。尚、紫外線の線量、照射量、照射強度等は、用途により、適宜、選択される。
In the above exposure step, a predetermined portion of the film is exposed, and the exposed portion is made of cured resin, while the unexposed portion remains as uncured resin. The cured resin is a crosslinked resin formed based on a (meth)acryloyl group in the side chain of the structural unit (a4) of the vinyl polymer (A) contained in the active energy ray-curable composition.
The active energy rays used in the exposure step are ultraviolet rays, visible rays, electron beams, or X-rays. Ultraviolet rays can be applied using an irradiation device having a light source such as a high-pressure mercury lamp, a metal halide lamp, an ultraviolet (UV) electrodeless lamp, a light emitting diode (LED), an ultraviolet laser, or the like. The electron beam can be applied using an electron curtain type, broad beam linear filament type, or scanning electron beam accelerator.
As the active energy ray, ultraviolet rays are preferable because a cured resin can be formed in a short time and with low energy irradiation. Incidentally, the dose, irradiation amount, irradiation intensity, etc. of the ultraviolet rays are appropriately selected according to the application.
 上記現像工程において、現像液(アルカリ性の水溶液)を露光皮膜に接触させると、未露光部が溶解除去され、露光部(アルカリ性水溶液に不溶となった硬化樹脂部)が残存する。
 上記現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、硅酸ナトリウム、メタ硅酸ナトリウム、アンモニア水、エチルアミン、ジエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等の水溶液を用いることができる。この現像液は、例えば、メタノール、エタノール等の水溶性有機溶媒、消泡剤、界面活性剤等を含有してもよい。尚、現像条件は、特に限定されない。
 上記現像工程では、シャワー現像法、スプレー現像法、ディップ(浸漬)現像法、パドル(液盛り)現像法等を適用することができる。
In the above-mentioned development step, when a developer (alkaline aqueous solution) is brought into contact with the exposed film, the unexposed areas are dissolved and removed, leaving the exposed areas (cured resin insoluble in the alkaline aqueous solution).
Examples of the developer include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, diethylamine, monoethanolamine, diethanolamine, and triethanolamine. , dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo-[5.4.0]-7-undecene, 1,5-diazabicyclo-[4.3 An aqueous solution of .0]-5-nonene or the like can be used. This developer may contain, for example, a water-soluble organic solvent such as methanol or ethanol, an antifoaming agent, a surfactant, and the like. Incidentally, the development conditions are not particularly limited.
In the development process, a shower development method, a spray development method, a dip (immersion) development method, a puddle (liquid puddle) development method, or the like can be applied.
 上記現像工程の後、通常、水洗、乾燥等が行われ、必要に応じて、熱処理することができる。 After the development process, the film is usually washed with water, dried, etc., and can be heat-treated if necessary.
 本発明において、基板の表面に形成した、活性エネルギー線硬化性組成物の塗膜を乾燥させた後、得られた皮膜(未硬化膜、平均膜厚:4.0μm)に対して、活性エネルギー線を照射して形成された硬化膜に、後述の〔実施例〕に記載される条件で2.38%テトラメチルアンモニウムヒドロキシド水溶液(23℃)を0.15MPaでスプレー噴霧した場合、膜厚保持率を、好ましくは86%以上、より好ましくは91%以上、更に好ましくは94%以上とすることができる。 In the present invention, after drying the coating film of the active energy ray-curable composition formed on the surface of the substrate, the resulting film (uncured film, average film thickness: 4.0 μm), the activation energy When a 2.38% tetramethylammonium hydroxide aqueous solution (23 ° C.) was sprayed at 0.15 MPa on the cured film formed by irradiating the radiation under the conditions described later in [Example], the film thickness The retention can be preferably 86% or higher, more preferably 91% or higher, and even more preferably 94% or higher.
 以下、実施例により、本発明の実施形態を更に具体的に説明するが、本発明は、これらの実施例に限定されるものではない。尚、下記において、「部」及び「%」は、特に断らない限り、質量基準である。 The embodiments of the present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples. In the following, "parts" and "%" are based on mass unless otherwise specified.
1.重合体の物性測定方法
 ビニル系重合体又は(メタ)アクリレート重合体(前駆重合体)の分子量(Mw及びMn)、ビニル系重合体の酸価、含まれる(メタ)アクリロイル基の当量及び1分子あたりの(メタ)アクリロイル基の数(平均値)、ビニル系重合体及び(メタ)アクリレート重合体のガラス転移温度の測定方法、並びに、ビニル系重合体のアルカリ溶解性の評価方法を以下に示す。
1. Polymer physical property measurement method Molecular weight (Mw and Mn) of vinyl polymer or (meth)acrylate polymer (precursor polymer), acid value of vinyl polymer, equivalent weight of (meth)acryloyl group contained and 1 molecule The number of (meth)acryloyl groups per unit (average value), the method for measuring the glass transition temperature of the vinyl polymer and the (meth)acrylate polymer, and the method for evaluating the alkali solubility of the vinyl polymer are shown below. .
(1)分子量
 東ソー社製カラム「TSKgel SuperMultipore HZ-M」(製品名)を4本連結させ、これらを東ソー社製ゲル浸透クロマトグラフ装置「HLC-8320」(型式名)に配設して用い、下記の測定条件でポリスチレン換算による数平均分子量(Mn)及び重量平均分子量(Mw)を測定した。
 カラム温度:40℃
 溶離液:テトラヒドロフラン
 検出器:RI
(1) Molecular weight Four columns "TSKgel SuperMultipore HZ-M" (product name) manufactured by Tosoh Corporation are connected and used by arranging them in a gel permeation chromatograph device "HLC-8320" (model name) manufactured by Tosoh Corporation. , the number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene were measured under the following measurement conditions.
Column temperature: 40°C
Eluent: Tetrahydrofuran Detector: RI
(2)酸価
 JIS K 0070(酸価測定)に準じ、平沼産業社製自動滴定装置「COM1600ST」(型式名)を用いて測定した。即ち、ビニル系重合体を、滴定量が約10mLとなるように秤量し、約50mLのテトラヒドロフランに希釈した後、0.1N-KOH/エタノール溶液を用いて滴定を行った。
(2) Acid value Measured according to JIS K 0070 (acid value measurement) using an automatic titrator "COM1600ST" (model name) manufactured by Hiranuma Sangyo Co., Ltd. That is, the vinyl polymer was weighed so that the titration amount was about 10 mL, diluted with about 50 mL of tetrahydrofuran, and then titrated with a 0.1N-KOH/ethanol solution.
(3)(メタ)アクリロイル当量(g/eq)
 ビニル系重合体の製造に用いた単量体、変性剤の仕込み量、ビニル系重合体の酸価又は赤外線吸収スペクトルから算出される反応率を用いて算出した。
(3) (meth) acryloyl equivalent (g/eq)
It was calculated using the monomers used in the production of the vinyl polymer, the charged amount of the modifier, the acid value of the vinyl polymer, or the reaction rate calculated from the infrared absorption spectrum.
(4)1分子あたりの(メタ)アクリロイル基の数(平均値)
 (メタ)アクリロイル当量及び数平均分子量より算出した。
(4) Number of (meth)acryloyl groups per molecule (average value)
It was calculated from the (meth)acryloyl equivalent and the number average molecular weight.
(5)ガラス転移温度(Tg)
 TA Instrument社製示差走査熱量計「Q-100」(型式名)を用いて、下記の条件でE型粘度を測定した。
 昇温速度:10℃/分
 雰囲気: 窒素ガス
(5) Glass transition temperature (Tg)
E-type viscosity was measured under the following conditions using a differential scanning calorimeter "Q-100" (model name) manufactured by TA Instruments.
Heating rate: 10°C/min Atmosphere: Nitrogen gas
(6)固形分
 所定量の重合体溶液を、通風乾燥機に入れ、150℃で1時間乾燥し、重量減少分から固形分を求めた。
(6) Solid content A predetermined amount of the polymer solution was placed in a ventilation dryer, dried at 150°C for 1 hour, and the solid content was determined from the weight loss.
(7)アルカリ溶解性
 エンジニアリングテストサービス社製銅板「C1020」(商品名)の表面に、スピンコーターを用いて、乾燥後の膜厚が4.0μmとなるようにビニル系重合体の溶液を塗布した。次いで、通風乾燥機を用いて、塗膜を乾燥(90℃、10分間)させ、皮膜(未硬化膜)を有する積層板を得た。
 その後、この積層板の皮膜に、2.38%テトラメチルアンモニウムヒドロキシド水溶液(23℃)を、0.15MPaでスプレー噴霧し、皮膜が完全に溶解するまでの時間を計測し、アルカリ溶解速度(nm/秒)を算出した。
(7) Alkali solubility Using a spin coater, a vinyl polymer solution was applied to the surface of a copper plate "C1020" (trade name) manufactured by Engineering Test Service Co., Ltd. so that the film thickness after drying was 4.0 μm. bottom. Then, the coating film was dried (90° C., 10 minutes) using an air drier to obtain a laminate having a film (uncured film).
After that, a 2.38% tetramethylammonium hydroxide aqueous solution (23° C.) was sprayed onto the film of this laminate at 0.15 MPa, and the time until the film completely dissolved was measured, and the alkali dissolution rate ( nm/sec) was calculated.
2.ビニル系重合体の合成
 以下の実施例1-1~1-15及び比較例1-1~1-4において、各種重合体を合成した。
2. Synthesis of Vinyl Polymer Various polymers were synthesized in Examples 1-1 to 1-15 and Comparative Examples 1-1 to 1-4 below.
  実施例1-1
 オイルジャケットを備えた加圧式撹拌槽型反応器の温度を221℃に保持し、反応器の内圧を加圧状態として一定に保ちながら、スチレン(以下、「St」という)を53部、アクリル酸n-ブチル(以下、「BA」という)を22部、アクリル酸(以下、「AA」という)を25部、有機溶媒としてメチルエチルケトン(以下、「MEK」という)を20部、及び、重合開始剤として日油社製ジ-tert-ブチルパーオキサイド「パーヘキシルD」(商品名、以下、「DTBP」という)を0.1部からなる単量体混合物を、一定の供給速度(48g/分)で原料タンクから反応器に連続供給を開始し、滞留時間を12分間として重合反応を進めた(表1参照)。そして、単量体混合物の供給量に相当する反応液を反応器の出口から連続的に抜き出し回収した。反応開始直後には、一旦反応温度が低下したものの、重合熱による温度上昇が認められた。そこで、オイルジャケットの温度を制御することにより、反応温度を226℃~228℃(表1には227℃と記載)に保持した。
 単量体混合物の供給開始から反応器内の液温が安定した時点を、反応液の採取開始点とし、これから37分間反応を行った。その結果、単量体混合物の供給量は1.78kgであり、反応液の回収量は1.78kgであった。
 その後、反応液を薄膜蒸発器に導入して、未反応モノマー等の揮発成分を分離して、前駆重合体である、カルボキシ基を有する(メタ)アクリレート重合体(以下、「共重合体p-1」という)1.36kgを得た。そして、得られた共重合体p-1の重量平均分子量(Mw)及びガラス転移温度(Tg)を測定した(表1参照)。
Example 1-1
While maintaining the temperature of a pressurized stirred tank reactor equipped with an oil jacket at 221 ° C. and keeping the internal pressure of the reactor constant as a pressurized state, 53 parts of styrene (hereinafter referred to as “St”) and acrylic acid 22 parts of n-butyl (hereinafter referred to as "BA"), 25 parts of acrylic acid (hereinafter referred to as "AA"), 20 parts of methyl ethyl ketone (hereinafter referred to as "MEK") as an organic solvent, and a polymerization initiator As a monomer mixture consisting of 0.1 parts of di-tert-butyl peroxide "Perhexyl D" (trade name, hereinafter referred to as "DTBP") manufactured by NOF Corporation, at a constant supply rate (48 g / min) Continuous supply was started from the raw material tank to the reactor, and the polymerization reaction proceeded with a residence time of 12 minutes (see Table 1). Then, the reaction liquid corresponding to the supplied amount of the monomer mixture was continuously withdrawn from the outlet of the reactor and recovered. Immediately after the start of the reaction, the reaction temperature was once lowered, but a temperature rise was observed due to the heat of polymerization. Therefore, by controlling the temperature of the oil jacket, the reaction temperature was kept at 226° C. to 228° C. (described as 227° C. in Table 1).
The point at which the temperature of the liquid in the reactor stabilized after the start of supply of the monomer mixture was set as the starting point for collecting the reaction liquid, and the reaction was continued for 37 minutes. As a result, the supplied amount of the monomer mixture was 1.78 kg, and the recovered amount of the reaction liquid was 1.78 kg.
Thereafter, the reaction solution is introduced into a thin film evaporator to separate volatile components such as unreacted monomers, thereby forming a (meth)acrylate polymer having a carboxyl group (hereinafter referred to as "copolymer p- 1”) obtained 1.36 kg. Then, the weight average molecular weight (Mw) and glass transition temperature (Tg) of the obtained copolymer p-1 were measured (see Table 1).
 次に、100部の共重合体p-1と、0.06部のジブチルヒドロキシトルエン(重合禁止剤、以下、「BHT」という)と、24.7部(共重合体p-1のカルボキシ基の0.5当量のエポキシ基数に相当する量)のメタクリル酸グリシジル(以下、「GMA」という)と、有機溶媒として64.2部の酢酸ブチルとを反応容器に入れ、5%の酸素と95%の窒素とからなる混合ガスによりバブリングさせながら、液温を95℃とし、共重合体p-1を溶解させた。その後、この溶液に、0.62部のトリフェニルホスフィン(反応触媒、以下、「TPP」という)を添加し、内温95℃を保ちながら6時間撹拌し、変性反応させ、共重合体p-1のアクリル酸付加物であるビニル系重合体A-1を含有する重合体溶液を得た。そして、得られたビニル系重合体A-1の固形分、数平均分子量(Mn)及び重量平均分子量(Mw)、酸価、(メタ)アクリロイル当量、1分子あたりの(メタ)アクリロイル基の平均値、並びに、ガラス転移温度(Tg)を測定した(表1参照)。尚、ガラス転移温度(Tg)の測定に用いる重合体サンプルとして、上記重合体溶液に、ビニル系重合体A-1に対して1000ppmに相当する量の4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルを添加して、溶解させた後、減圧条件下、80℃で、有機溶媒を除去して得られたものを用いた。 Next, 100 parts of the copolymer p-1, 0.06 parts of dibutyl hydroxytoluene (polymerization inhibitor, hereinafter referred to as "BHT"), and 24.7 parts (the carboxy group of the copolymer p-1 of glycidyl methacrylate (hereinafter referred to as "GMA") and 64.2 parts of butyl acetate as an organic solvent were placed in a reaction vessel and mixed with 5% oxygen and 95 % nitrogen, the liquid temperature was raised to 95° C. to dissolve the copolymer p-1. Thereafter, 0.62 part of triphenylphosphine (reaction catalyst, hereinafter referred to as “TPP”) is added to this solution, and the mixture is stirred for 6 hours while maintaining the internal temperature at 95° C. to cause a modification reaction, resulting in a copolymer p- A polymer solution containing vinyl polymer A-1, which is an acrylic acid adduct of No. 1, was obtained. Then, the solid content, number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained vinyl polymer A-1, acid value, (meth)acryloyl equivalent, average of (meth)acryloyl groups per molecule values, as well as the glass transition temperature (Tg) were measured (see Table 1). As a polymer sample used for measuring the glass transition temperature (Tg), the polymer solution was added with 4-hydroxy-2,2,6,6 in an amount corresponding to 1000 ppm with respect to the vinyl polymer A-1. -Tetramethylpiperidine-1-oxyl was added and dissolved, and then the organic solvent was removed at 80°C under reduced pressure to use the product obtained.
  実施例1-2~1-13及び比較例1-1~1-4
 製造原料の種類及び使用量を、表1、表2、表3及び表4に記載のようにした以外は、実施例1-1と同様の操作を行って、前駆重合体p-2~p-10及びpp-1~pp-4並びにビニル系重合体A-2~A-13及びAA-1~AA-4を得た(表1~表4参照)。尚、表1における「AMS」はα-メチルスチレンであり、表2における「AN」はアクリロニトリルであり、表3における「HA」はアクリル酸ヘキシルであり、「TDA」はアクリル酸テトラデシルであり、「MAA」はメタクリル酸であり、表4における「MMA」はメタクリル酸メチルである。
Examples 1-2 to 1-13 and Comparative Examples 1-1 to 1-4
The same operations as in Example 1-1 were performed except that the types and amounts of raw materials used for production were as shown in Tables 1, 2, 3 and 4 to obtain precursor polymers p-2 to p -10 and pp-1 to pp-4 and vinyl polymers A-2 to A-13 and AA-1 to AA-4 were obtained (see Tables 1 to 4). "AMS" in Table 1 is α-methylstyrene, "AN" in Table 2 is acrylonitrile, "HA" in Table 3 is hexyl acrylate, and "TDA" is tetradecyl acrylate. "MAA" is methacrylic acid and "MMA" in Table 4 is methyl methacrylate.
  実施例1-14
 オイルジャケットを備えた加圧式撹拌槽型反応器の温度を221℃に保持し、反応器の内圧を加圧状態として一定に保ちながら、53部のSt、22部のBA、25部のAA、13部の2-ヒドロキシエチルメタクリレート(以下、「HEMA」という)、20部のMEK、及び、0.1部のDTBPからなる単量体混合物を、一定の供給速度(48g/分)で原料タンクから反応器に連続供給を開始し、滞留時間を12分間として重合反応を進めた(表3参照)。そして、単量体混合物の供給量に相当する反応液を反応器の出口から連続的に抜き出し回収した。反応開始直後には、一旦反応温度が低下したものの、重合熱による温度上昇が認められた。そこで、オイルジャケットの温度を制御することにより、反応温度を226℃~228℃(表3には227℃と記載)に保持した。
 単量体混合物の供給開始から反応器内の液温が安定した時点を、反応液の採取開始点とし、これから37分間反応を行った。その結果、単量体混合物の供給量は1.78kgであり、反応液の回収量は1.78kgであった。
 その後、反応液を薄膜蒸発器に導入して、未反応モノマー等の揮発成分を分離して、前駆重合体である、ヒドロキシ基及びカルボキシ基を有する(メタ)アクリレート重合体(以下、「共重合体p-11」という)1.34kgを得た。そして、得られた共重合体p-11の重量平均分子量(Mw)及びガラス転移温度(Tg)を測定した(表3参照)。
Examples 1-14
While maintaining the temperature of a pressurized stirred tank reactor equipped with an oil jacket at 221° C. and keeping the internal pressure of the reactor constant as a pressurized state, 53 parts of St, 22 parts of BA, 25 parts of AA, A monomer mixture consisting of 13 parts of 2-hydroxyethyl methacrylate (hereinafter referred to as "HEMA"), 20 parts of MEK, and 0.1 part of DTBP was added to the raw material tank at a constant supply rate (48 g / min). Continuous supply to the reactor was started from this point, and the polymerization reaction proceeded with a residence time of 12 minutes (see Table 3). Then, the reaction liquid corresponding to the supplied amount of the monomer mixture was continuously withdrawn from the outlet of the reactor and recovered. Immediately after the start of the reaction, the reaction temperature was once lowered, but a temperature rise was observed due to the heat of polymerization. Therefore, by controlling the temperature of the oil jacket, the reaction temperature was kept at 226° C. to 228° C. (227° C. shown in Table 3).
The point at which the temperature of the liquid in the reactor stabilized after the start of supply of the monomer mixture was set as the starting point for collecting the reaction liquid, and the reaction was continued for 37 minutes. As a result, the supplied amount of the monomer mixture was 1.78 kg, and the recovered amount of the reaction liquid was 1.78 kg.
After that, the reaction liquid is introduced into a thin film evaporator to separate volatile components such as unreacted monomers, and a (meth)acrylate polymer having a hydroxyl group and a carboxy group (hereinafter referred to as "copolymerization"), which is a precursor polymer. 1.34 kg of combined p-11”) was obtained. Then, the weight average molecular weight (Mw) and glass transition temperature (Tg) of the obtained copolymer p-11 were measured (see Table 3).
 次に、100部の共重合体p-11と、0.06部のBHTと、16.5部(共重合体p-11のヒドロキシ基の1.0当量のイソシアネート基数に相当する量)の昭和電工マテリアルズ社製2-メタクリロイルオキシエチルイソシアネート「カレンズMOI」(商品名)と、触媒として0.012部のジブチルスズジラウレート(以下、「DBTDL」という)と、有機溶媒として60.0部の酢酸ブチルとを反応容器に入れ、5%酸素と95%の窒素とからなる混合ガスによりバブリングさせながら、液温を80℃とし、共重合体p-11を溶解させた。その後、内温80℃を保ちながら、撹拌を継続し、Perkin Elmer社製赤外分光光度計「Spectrum 100」(型式名)を用いて、ATR法により、2200cm-1におけるイソシアネート基による吸収ピークが消失していることを確認し、6時間後、変性反応を終了した。これにより、共重合体p-11における、HEMAに由来する構造単位におけるヒドロキシ基と、2-メタクリロイルオキシエチルイソシアネートにおけるイソシアネート基とが反応し、側鎖にメタクリロイル基を有する構造単位を含むビニル系重合体A-14を含有する重合体溶液を得た。そして、実施例1-1と同様にして、得られたビニル系重合体A-14の固形分、数平均分子量(Mn)及び重量平均分子量(Mw)、酸価、メタクリロイル当量、1分子あたりのメタクリロイル基の平均値、並びに、ガラス転移温度(Tg)を測定した(表3参照)。 Next, 100 parts of the copolymer p-11, 0.06 parts of BHT, and 16.5 parts (an amount corresponding to the number of isocyanate groups equivalent to 1.0 equivalent of the hydroxyl group of the copolymer p-11) Showa Denko Materials Co., Ltd. 2-methacryloyloxyethyl isocyanate "Karenzu MOI" (trade name), 0.012 parts of dibutyltin dilaurate (hereinafter referred to as "DBTDL") as a catalyst, and 60.0 parts of acetic acid as an organic solvent Butyl was placed in a reaction vessel, and while bubbling with a mixed gas of 5% oxygen and 95% nitrogen, the liquid temperature was raised to 80° C. to dissolve the copolymer p-11. After that, while maintaining the internal temperature at 80 ° C., stirring is continued, and an absorption peak due to the isocyanate group at 2200 cm -1 is detected by the ATR method using a Perkin Elmer infrared spectrophotometer "Spectrum 100" (model name). It was confirmed that it had disappeared, and after 6 hours, the modification reaction was terminated. As a result, the hydroxy group in the structural unit derived from HEMA in the copolymer p-11 reacts with the isocyanate group in 2-methacryloyloxyethyl isocyanate, resulting in a vinyl polymer containing a structural unit having a methacryloyl group in the side chain. A polymer solution containing coalescence A-14 was obtained. Then, in the same manner as in Example 1-1, the solid content, number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained vinyl polymer A-14, acid value, methacryloyl equivalent, per molecule The average value of methacryloyl groups and the glass transition temperature (Tg) were measured (see Table 3).
  実施例1-15
 実施例1-14で用いた2-メタクリロイルオキシエチルイソシアネートに代えて、昭和電工マテリアルズ社製2-アクリロイルオキシエチルイソシアネート「カレンズAOI」(商品名)14.1部を用い、更に、触媒の使用量を0.011部に変更した以外は、実施例1-14と同様の操作を行い、側鎖にアクリロイル基を有する構造単位を含むビニル系重合体A-15を含有する重合体溶液を得た。そして、実施例1-1と同様にして、得られたビニル系重合体A-15の固形分、数平均分子量(Mn)及び重量平均分子量(Mw)、酸価、アクリロイル当量、1分子あたりのアクリロイル基の平均値、並びに、ガラス転移温度(Tg)を測定した(表3参照)。
Examples 1-15
Instead of 2-methacryloyloxyethyl isocyanate used in Example 1-14, 14.1 parts of 2-acryloyloxyethyl isocyanate "Karenzu AOI" (trade name) manufactured by Showa Denko Materials Co., Ltd. was used, and a catalyst was used. A polymer solution containing a vinyl polymer A-15 containing a structural unit having an acryloyl group in a side chain was obtained in the same manner as in Example 1-14, except that the amount was changed to 0.011 parts. rice field. Then, in the same manner as in Example 1-1, the solid content, number average molecular weight (Mn) and weight average molecular weight (Mw), acid value, acryloyl equivalent, and per molecule of the obtained vinyl polymer A-15 The average value of acryloyl groups and the glass transition temperature (Tg) were measured (see Table 3).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
3.活性エネルギー線硬化性組成物の製造及び評価
 上記の実施例1-1~1-15又は比較例1-1~1-4で得られた、ビニル系重合体(A)又は(AA)を含む溶液(酢酸ブチルを溶媒とした重合体溶液)と、以下の原料とを用いて、活性エネルギー線硬化性組成物を調製し、各種評価を行った。
(i)多官能アクリレート
 東亞合成社製ペンタエリスリトールのペンタ及びヘキサアクリレート「アロニックス M-420」(商品名)を用いた。
(ii)光重合開始剤
 三洋貿易社製1-ヒドロキシシクロヘキシルフェニルケトン「Omnirad 184」(商品名)を用いた。
(iii)溶媒
 酢酸ブチルを用いた。
3. Production and evaluation of active energy ray-curable composition Contains vinyl polymer (A) or (AA) obtained in Examples 1-1 to 1-15 or Comparative Examples 1-1 to 1-4 above An active energy ray-curable composition was prepared using a solution (polymer solution using butyl acetate as a solvent) and the following raw materials, and various evaluations were performed.
(i) Polyfunctional acrylate Pentaerythritol penta and hexaacrylate “Aronix M-420” (trade name) manufactured by Toagosei Co., Ltd. was used.
(ii) Photopolymerization Initiator 1-hydroxycyclohexylphenyl ketone “Omnirad 184” (trade name) manufactured by Sanyo Trading Co., Ltd. was used.
(iii) Solvent Butyl acetate was used.
  実施例2-1
 実施例1-1で得られた、ビニル系重合体A-1の溶液75.6部(ビニル系重合体50部及び酢酸ブチル25.6部からなる重合体溶液75.6部)と、多官能アクリレート50部と、光重合開始剤5部と、酢酸ブチル30部とを混合して、活性エネルギー線硬化性組成物を調製した(表5参照)。
 その後、この活性エネルギー線硬化性組成物を用いて硬化物を作製し、引張物性、基材密着性、残膜性及びアルカリ溶解性(未硬化膜)の評価を行った。これらの結果を表5に併記した。
Example 2-1
75.6 parts of the solution of the vinyl polymer A-1 obtained in Example 1-1 (75.6 parts of the polymer solution containing 50 parts of the vinyl polymer and 25.6 parts of butyl acetate); An active energy ray-curable composition was prepared by mixing 50 parts of a functional acrylate, 5 parts of a photoinitiator, and 30 parts of butyl acetate (see Table 5).
After that, a cured product was produced using this active energy ray-curable composition, and tensile physical properties, substrate adhesion, film retention properties, and alkali solubility (uncured film) were evaluated. These results are also shown in Table 5.
(1)引張物性
 ベースフィルムとして、東レ社製PETフィルム「ルミラーT-60」(商品名、フィルム膜厚:100μm)を用意し、その表面に、バーコーター#0を用いて、乾燥後の膜厚が30~40μmとなるように活性エネルギー線硬化性組成物を塗布した。次いで、通風乾燥機を用いて、塗膜を乾燥(90℃、10分間)させ、皮膜(未硬化膜)を有する積層フィルムを得た。
 その後、アイグラフィックス社製高圧水銀ランプを用いて、大気雰囲気下、集光式で、UVA照度が500mW/cm、及び、1回あたりの照射量が800mJ/cmとなるように調節し、この光照射下に上記積層フィルムをコンベアで2回通過させて皮膜に紫外線照射を行い、硬化膜を形成させた。
 次に、硬化膜を有するフィルムを、1cm幅の短冊状に切り出し、硬化膜をベースフィルムから剥離した。そして、島津製作所社製引張試験機「オートグラフAGS-J」(商品名)を用いて、引張速度5mm/分における破断伸び率及び破断強度を測定した。
(1) Tensile physical properties As a base film, a PET film “Lumirror T-60” manufactured by Toray Industries, Inc. (trade name, film thickness: 100 μm) was prepared, and a bar coater #0 was used to coat the surface of the film after drying. The active energy ray-curable composition was applied to a thickness of 30-40 μm. Then, the coating film was dried (90° C., 10 minutes) using a ventilation dryer to obtain a laminated film having a film (uncured film).
After that, using a high-pressure mercury lamp manufactured by iGraphics Co., Ltd., the UVA illuminance was adjusted to 500 mW/cm 2 and the irradiation amount per time was adjusted to 800 mJ/cm 2 in an air atmosphere with a condensing type. Under this light irradiation, the laminated film was passed twice on a conveyor, and the film was irradiated with ultraviolet rays to form a cured film.
Next, the film having the cured film was cut into strips having a width of 1 cm, and the cured film was peeled off from the base film. Then, using a tensile tester "Autograph AGS-J" (trade name) manufactured by Shimadzu Corporation, the elongation at break and the strength at break at a tensile speed of 5 mm/min were measured.
(2)基材密着性
 エンジニアリングテストサービス社製銅板「C1020」(商品名)の表面に、スピンコーターを用いて、乾燥後の膜厚が4.0μmとなるように活性エネルギー線硬化性組成物を塗布した。次いで、通風乾燥機を用いて、塗膜を乾燥(90℃、10分間)させ、皮膜(未硬化膜)を有する積層板を得た。
 その後、アイグラフィックス社製高圧水銀ランプを用いて、大気雰囲気下、集光式で、UVA照度が500mW/cm、及び、1回あたりの照射量が800mJ/cmとなるように調節し、この光照射下に上記積層板をコンベアで2回通過させて皮膜に紫外線照射を行い、硬化膜を形成させた。
 次に、硬化膜付き銅板を、2.38%テトラメチルアンモニウムヒドロキシド水溶液(23℃)に、5分間浸漬させ、その後、1分間、超純水を流水させながら洗浄し、窒素ブローを行って乾燥した。
 このアルカリ処理後の硬化膜について、JIS K 5600-5-6に従って、碁盤目剥離試験を行い、基材密着性を評価した。
 碁盤目100目のうち、すべて密着していた場合を100/100とした。
(2) Substrate Adhesion An active energy ray-curable composition was applied to the surface of a copper plate “C1020” (trade name) manufactured by Engineering Test Service Co., Ltd. using a spin coater so that the film thickness after drying was 4.0 μm. was applied. Then, the coating film was dried (90° C., 10 minutes) using an air drier to obtain a laminate having a film (uncured film).
After that, using a high-pressure mercury lamp manufactured by iGraphics Co., Ltd., the UVA illuminance was adjusted to 500 mW/cm 2 and the irradiation amount per time was adjusted to 800 mJ/cm 2 in an air atmosphere with a condensing type. Under this light irradiation, the laminate was passed twice on a conveyer to irradiate the film with ultraviolet rays to form a cured film.
Next, the copper plate with the cured film was immersed in a 2.38% tetramethylammonium hydroxide aqueous solution (23° C.) for 5 minutes, then washed with running ultrapure water for 1 minute, and then blown with nitrogen. Dried.
The cured film after alkali treatment was subjected to a cross-cut peeling test according to JIS K 5600-5-6 to evaluate adhesion to the substrate.
100/100 was given when all of the 100 grids were in close contact with each other.
(3)残膜性
 上記(2)で作製した硬化膜付き銅板の硬化膜に、2.38%テトラメチルアンモニウムヒドロキシド水溶液(23℃)を、0.15MPaで、1分間、スプレー噴霧し、その後、1分間、超純水を流水させながら洗浄し、窒素ブローを行って乾燥した。
 このスプレー噴霧の前後で、キーエンス社製レーザー顕微鏡「VK-9700」(型式名)を用いて膜厚測定を行い、下記式を用いて、膜厚保持率を求めた。
  膜厚保持率(%)=(スプレー噴霧後膜厚/スプレー噴霧前膜厚)×100
(3) Remaining film property A 2.38% tetramethylammonium hydroxide aqueous solution (23°C) was sprayed at 0.15 MPa for 1 minute on the cured film of the copper plate with a cured film prepared in (2) above, After that, it was washed with running ultrapure water for 1 minute, and dried by blowing nitrogen.
Before and after this spraying, the film thickness was measured using a laser microscope "VK-9700" (model name) manufactured by Keyence Corporation, and the film thickness retention rate was determined using the following formula.
Film thickness retention rate (%) = (film thickness after spraying/film thickness before spraying) x 100
(4)アルカリ溶解性(未硬化膜)
 エンジニアリングテストサービス社製銅板「C1020」(商品名)の表面に、スピンコーターを用いて、乾燥後の膜厚が4.0μmとなるように、ビニル系重合体(A)並びに(AA)を含む酢酸ブチル溶液又は前駆活性エネルギー線硬化性組成物を塗布した。次いで、通風乾燥機を用いて、塗膜を乾燥(90℃、10分間)させ、皮膜(未硬化膜)を有する積層板を得た。
 その後、この積層板の皮膜に、2.38%テトラメチルアンモニウムヒドロキシド水溶液(23℃)を、0.15MPaでスプレー噴霧し、皮膜が完全に溶解するまでの時間(秒数)を計測し、アルカリ溶解速度(nm/秒)を算出した。
(4) Alkali solubility (uncured film)
Vinyl polymer (A) and (AA) are applied to the surface of a copper plate "C1020" (trade name) manufactured by Engineering Test Service Co., Ltd. using a spin coater so that the film thickness after drying is 4.0 μm. A butyl acetate solution or a precursor active energy ray-curable composition was applied. Then, the coating film was dried (90° C., 10 minutes) using an air drier to obtain a laminate having a film (uncured film).
After that, a 2.38% tetramethylammonium hydroxide aqueous solution (23°C) was sprayed onto the film of this laminate at 0.15 MPa, and the time (seconds) until the film was completely dissolved was measured. An alkali dissolution rate (nm/sec) was calculated.
  実施例2-2~2-15及び比較例2-1~2-4
 使用するビニル系重合体を、表5及び表6に記載のようにした以外は、実施例2-1と同様にして、活性エネルギー線硬化性組成物の調製、硬化物の作製及び評価を行った(表5及び表6参照)。
Examples 2-2 to 2-15 and Comparative Examples 2-1 to 2-4
Preparation of an active energy ray-curable composition, preparation of a cured product, and evaluation were carried out in the same manner as in Example 2-1, except that the vinyl polymer used was as shown in Tables 5 and 6. (See Tables 5 and 6).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表5及び表6から以下のことが明らかである。
 実施例2-1~2-15では、引張物性において、優れた破断強度を示したのに対して、比較例2-2では、柔軟性が不十分であり、引張試験では、サンプル割れが発生したことにより測定できなかった。
 実施例2-1~2-15では、優れた基材密着性を示したのに対して、比較例2-2では、密着性が不十分であった。
 実施例2-1~2-15では、アルカリ現像後の残膜性が優れていたのに対して、比較例2-1及び2-4では、それより劣る結果となった。
 また、実施例2-1~2-5では、1分間という所定の時間内での現像が可能であったのに対して、比較例2-3では、所定の時間内での現像ができず、アルカリ溶解性が不十分であった。
Tables 5 and 6 clearly show the following.
Examples 2-1 to 2-15 exhibited excellent breaking strength in terms of tensile properties, whereas Comparative Example 2-2 exhibited insufficient flexibility, and sample cracking occurred in the tensile test. measurement was not possible due to
Examples 2-1 to 2-15 exhibited excellent adhesion to the substrate, whereas Comparative Example 2-2 exhibited insufficient adhesion.
In Examples 2-1 to 2-15, the film remaining properties after alkali development were excellent, while in Comparative Examples 2-1 and 2-4, the results were inferior.
Further, in Examples 2-1 to 2-5, development was possible within the predetermined time of 1 minute, whereas in Comparative Example 2-3 development was not possible within the predetermined time. , the alkali solubility was insufficient.
 本発明のビニル系重合体は、液晶、有機EL等の表示装置における、層間絶縁膜、平坦化膜、表面保護膜、スペーサー、カラーフィルターの着色層に用いられるカラーレジスト、ブラックマトリックス等の画素形成材料、タッチパネルの電極周辺に配される、コンタクトホールを有するパターン化された硬化樹脂層の形成材料;半導体におけるフレキシブルプリント基板の配線間を絶縁する材料、層間絶縁膜形成材料、平坦化膜、フォトレジスト、ソルダーレジスト、エッチングレジスト等のパターン形成材料等として有用な活性エネルギー線硬化性組成物の原料成分として好適である。本発明の活性エネルギー線硬化性組成物は、コーティング剤等として用いることもできる。 The vinyl-based polymer of the present invention is used for interlayer insulating films, planarizing films, surface protective films, spacers, colored layers of color filters, color resists used in colored layers of color filters, and pixel formation such as black matrices in display devices such as liquid crystal and organic EL. Materials, materials for forming a patterned cured resin layer having contact holes arranged around electrodes of a touch panel; materials for insulating between wirings of flexible printed circuit boards in semiconductors, materials for forming interlayer insulating films, planarizing films, photo It is suitable as a raw material component of an active energy ray-curable composition useful as a pattern-forming material such as a resist, solder resist, etching resist, and the like. The active energy ray-curable composition of the present invention can also be used as a coating agent or the like.

Claims (6)

  1.  下記の構造単位(a1)、(a2)、(a3)、(a4)及び(a5)を含み、側鎖に(メタ)アクリロイル基を有するビニル系重合体であって、
     前記構造単位(a1)、(a2)、(a3)、(a4)及び(a5)の含有割合は、これらの合計を100質量%とした場合に、それぞれ、20~82質量%、10~72質量%、5~67質量%、3~65質量%及び0~30質量%であるビニル系重合体。
    (a1)スチレン及びα-メチルスチレンから選ばれた少なくとも1種に由来する構造単位
    (a2)エステル部のアルキル基の炭素原子数が2以上であるアクリル酸アルキルに由来する構造単位
    (a3)カルボキシ基を有するビニル化合物に由来する構造単位
    (a4)下記一般式(1)で表される構造単位及び下記一般式(2)で表される構造単位から選ばれた少なくとも1種の構造単位
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、水素原子又はメチル基であり、Rは、水素原子又はメチル基であり、Rは、水素原子又はメチル基であり、Rは、炭素原子数が2~4の炭化水素基であり、Rは、水素原子又はメチル基である。)
    (a5)前記構造単位(a1)、(a2)、(a3)及び(a4)を除く他の構造単位
    A vinyl polymer containing the following structural units (a1), (a2), (a3), (a4) and (a5) and having a (meth)acryloyl group in a side chain,
    The content ratio of the structural units (a1), (a2), (a3), (a4) and (a5) is 20 to 82% by mass and 10 to 72%, respectively, when the total of these units is 100% by mass. % by mass, 5 to 67% by mass, 3 to 65% by mass, and 0 to 30% by mass.
    (a1) structural unit derived from at least one selected from styrene and α-methylstyrene (a2) structural unit derived from alkyl acrylate having 2 or more carbon atoms in the alkyl group of the ester moiety (a3) carboxy Structural unit derived from a vinyl compound having a group (a4) At least one structural unit selected from structural units represented by the following general formula (1) and structural units represented by the following general formula (2)
    Figure JPOXMLDOC01-appb-C000001
    (wherein R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom or a methyl group, R 3 is a hydrogen atom or a methyl group, and R 4 has 2 to 4 is a hydrocarbon group, and R 5 is a hydrogen atom or a methyl group.)
    (a5) Structural units other than the structural units (a1), (a2), (a3) and (a4)
  2.  ゲルパーミエーションクロマトグラフィーによる数平均分子量が1,000~10,000である請求項1に記載のビニル系重合体。 The vinyl polymer according to claim 1, which has a number average molecular weight of 1,000 to 10,000 as determined by gel permeation chromatography.
  3.  前記構造単位(a2)が、エステル部のアルキル基の炭素原子数が4~18であるアクリル酸アルキルに由来する構造単位を含む請求項1又は2に記載のビニル系重合体。 The vinyl polymer according to claim 1 or 2, wherein the structural unit (a2) contains a structural unit derived from an alkyl acrylate in which the alkyl group of the ester moiety has 4 to 18 carbon atoms.
  4.  前記ビニル系重合体の膜に対して、23℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を接触させた際のアルカリ溶解速度が40nm/秒以上である請求項1から3のいずれか一項に記載のビニル系重合体。 4. The vinyl polymer film has an alkali dissolution rate of 40 nm/second or more when brought into contact with a 2.38% by mass tetramethylammonium hydroxide aqueous solution at 23°C. The vinyl-based polymer according to the item.
  5.  請求項1から4のいずれか一項に記載のビニル系重合体を含有する活性エネルギー線硬化性組成物。 An active energy ray-curable composition containing the vinyl polymer according to any one of claims 1 to 4.
  6.  更に、光重合開始剤を含有する請求項5に記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to claim 5, further comprising a photopolymerization initiator.
PCT/JP2022/046423 2021-12-17 2022-12-16 Vinyl-based polymer and active energy ray curable composition containing same WO2023113015A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-205559 2021-12-17
JP2021205559 2021-12-17
JP2021210015 2021-12-23
JP2021-210015 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023113015A1 true WO2023113015A1 (en) 2023-06-22

Family

ID=86774450

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/046419 WO2023113014A1 (en) 2021-12-17 2022-12-16 Alkali-soluble vinyl polymer, and active energy ray-curable composition containing same
PCT/JP2022/046423 WO2023113015A1 (en) 2021-12-17 2022-12-16 Vinyl-based polymer and active energy ray curable composition containing same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046419 WO2023113014A1 (en) 2021-12-17 2022-12-16 Alkali-soluble vinyl polymer, and active energy ray-curable composition containing same

Country Status (1)

Country Link
WO (2) WO2023113014A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934041B1 (en) * 1970-12-26 1974-09-11
JP2001228606A (en) * 2000-02-14 2001-08-24 Tamura Kaken Co Ltd Active energy beam curable composition and printed wiring board
JP2011033952A (en) * 2009-08-05 2011-02-17 Toyo Ink Mfg Co Ltd Photosensitive composition
JP2011033951A (en) * 2009-08-05 2011-02-17 Toyo Ink Mfg Co Ltd Photosensitive composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105170A (en) * 2019-12-26 2021-07-26 東亞合成株式会社 Active energy ray-curable composition and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934041B1 (en) * 1970-12-26 1974-09-11
JP2001228606A (en) * 2000-02-14 2001-08-24 Tamura Kaken Co Ltd Active energy beam curable composition and printed wiring board
JP2011033952A (en) * 2009-08-05 2011-02-17 Toyo Ink Mfg Co Ltd Photosensitive composition
JP2011033951A (en) * 2009-08-05 2011-02-17 Toyo Ink Mfg Co Ltd Photosensitive composition

Also Published As

Publication number Publication date
WO2023113014A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
US10527937B2 (en) Liquid solder resist composition and covered-printed wiring board
CN107003610B (en) Solder resist composition and covered printed wiring board
JP6456632B2 (en) Photosensitive resin composition
JP6385853B2 (en) Photosensitive composition, method for producing cured film, cured film, touch panel, touch panel display device, liquid crystal display device, and organic EL display device
JP5393543B2 (en) Photosensitive resin composition, cured film, and liquid crystal display device
WO2014192671A1 (en) Photosensitive resin composition, photospacer, protective film for color filters, and protective film or insulating film of touch panel
JP2008112146A (en) Photosensitive resin composition and photosensitive element using the same
JP2013257471A (en) Curable resin composition and application thereof
TWI598692B (en) Liquid solder resist composition and coated printed wiring board (3)
TWI656163B (en) Liquid solder resist composition and coated printed wiring board (2)
JP4840444B2 (en) Photosensitive element
WO2023113015A1 (en) Vinyl-based polymer and active energy ray curable composition containing same
JP4910610B2 (en) Photosensitive resin composition and photosensitive film
CN115698856A (en) Transfer film and method for manufacturing laminate
JP2021026240A (en) Active energy ray-curing type composition for pattern formation
JP2021005033A (en) Photosensitive resin composition, photosensitive resin film, method for producing cured product, laminate, and electronic component
JP6592835B2 (en) Solder resist composition and coated printed wiring board
WO2019224887A1 (en) Transfer type photosensitive film, electrode substrate with resin cured film, and touch panel
CN115917430A (en) Transfer film and method for manufacturing laminate
JP6509493B2 (en) Curable resin composition and use thereof
CN114967337A (en) Photosensitive resin composition, dry film, solder resist and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567845

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE