WO2023112968A1 - Optical fiber - Google Patents

Optical fiber Download PDF

Info

Publication number
WO2023112968A1
WO2023112968A1 PCT/JP2022/046080 JP2022046080W WO2023112968A1 WO 2023112968 A1 WO2023112968 A1 WO 2023112968A1 JP 2022046080 W JP2022046080 W JP 2022046080W WO 2023112968 A1 WO2023112968 A1 WO 2023112968A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
core
optical fiber
less
ratio
Prior art date
Application number
PCT/JP2022/046080
Other languages
French (fr)
Japanese (ja)
Inventor
裕基 井上
圭省 森田
崇広 斎藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2023112968A1 publication Critical patent/WO2023112968A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers

Definitions

  • Patent document 1 describes ITU-T G.
  • An optical fiber is disclosed that has a MAC value similar to that of a general-purpose single-mode optical fiber (SMF) conforming to Recommendation 652 and that can suppress bending loss.
  • the MAC value is a value obtained by dividing the mode field diameter (MFD) [ ⁇ m] at a wavelength of 1310 nm by the fiber cutoff wavelength ⁇ c [ ⁇ m].
  • MFD mode field diameter
  • ⁇ c the refractive index distribution in the radial direction of the core is defined by the ⁇ multiplier.
  • Patent Document 2 discloses an optical fiber capable of minimizing bending loss and loss difference by wavelength and maintaining short cut-off wavelength characteristics.
  • a trench layer is provided outside the core.
  • the optical fiber of the present disclosure includes a core having a maximum refractive index n1 , a clad provided around the core and having a refractive index n0 lower than the maximum refractive index n1 , and provided between the core and the clad, and a depressed having a refractive index n2 lower than the refractive index n0 .
  • the refractive index distribution n(r) of the core is expressed by the formula (1 ) and equation (2) define its shape.
  • the ⁇ multiplier in Equation (1) is 1.5 or more and 10 or less.
  • the outer diameter 2a of the core is 8 ⁇ m or more and 14 ⁇ m or less.
  • the ratio b/a of the depressed outer diameter 2b to the core outer diameter 2a is 4.2 or more and 7.0 or less.
  • FIG. 1 is a diagram showing a cross section of an optical fiber according to an embodiment.
  • FIG. 2 is a refractive index profile of an optical fiber.
  • FIG. 3 is a graph showing the relationship between the ratio b/a and bending loss.
  • FIG. 4 is a graph showing the relationship between the ratio b/a and the zero dispersion wavelength.
  • FIG. 5 is a graph showing the relationship between the ratio b/a and chromatic dispersion at a wavelength of 1.55 ⁇ m.
  • An object of the present disclosure is to provide an optical fiber capable of further suppressing bending loss without affecting other optical properties.
  • An optical fiber according to an embodiment of the present disclosure includes a core having a maximum refractive index n1 , a clad provided around the core and having a refractive index n0 lower than the maximum refractive index n1 , and and a depressed therebetween and having a refractive index n2 lower than the refractive index n0 .
  • the refractive index distribution n(r) of the core is expressed by the formula (1 ) and equation (2) define its shape.
  • the ⁇ multiplier in Equation (1) is 1.5 or more and 10 or less.
  • the outer diameter 2a of the core is 8 ⁇ m or more and 14 ⁇ m or less.
  • a ratio b/a of the depressed outer diameter 2b to the core outer diameter 2a is 4.2 or more and 7.0 or less.
  • the core has an ⁇ power type refractive index distribution, and the ⁇ multiplier is 10 or less, so bending loss can be suppressed. Further, since the ⁇ multiplier is 1.5 or more, the dispersion characteristics can be adjusted. Since the ratio b/a of the depressed outer diameter 2b to the core outer diameter 2a is 4.2 or more, the bending loss can be further suppressed. In addition, since the ratio b/a is 7.0 or less, it is possible to suppress reduction in manufacturing efficiency due to shortening of the converted core length.
  • the equivalent core length is the length of the optical fiber obtained from the glass base material of the core portion having a predetermined length.
  • the ratio b/a may be greater than 6.0. In this case, bending loss can be further suppressed.
  • the relative refractive index difference ⁇ 1 represented by formula (2) may be 0.30% or more and 0.50% or less.
  • the zero dispersion wavelength can be set to 1300 nm or more.
  • the zero dispersion wavelength can be set to 1324 nm or less. With this, the ITU-T G. 657.
  • the zero dispersion wavelength of 1300 nm or more and 1324 nm or less, which is the standard for the A series, can be satisfied.
  • the relative refractive index difference ⁇ 2 represented by formula (3) may be ⁇ 0.12% or more and less than 0%. If it is -0.12% or more, the amount of additive added to the depressed layer can be small. Therefore, it is easy to manufacture, and the amount of gas used when adding can be reduced. Further, when the content is less than 0%, the effect of suppressing bending loss by the depressed layer can be reliably obtained.
  • the zero-dispersion wavelength may be 1300 nm or more and 1324 nm or less. In this case, the zero-dispersion wavelength specification is satisfied.
  • the chromatic dispersion at a wavelength of 1.55 ⁇ m may be 13.3 ps/nm/km or more and 18.6 ps/nm/km or less. In this case, the standard for chromatic dispersion at a wavelength of 1.55 ⁇ m is satisfied.
  • FIG. 1 is a diagram showing a cross section of an optical fiber according to an embodiment.
  • the optical fiber 1 comprises a core 10, a depressed 20 and a clad 30.
  • the core 10 has a central axis 10a.
  • the central axis 10 a coincides with the central axis of the optical fiber 1 .
  • the core 10 has a maximum refractive index n1 and an outer diameter 2a.
  • the core 10 has a maximum refractive index n1 at the central axis 10a.
  • the outer diameter 2a is 8 ⁇ m or more and 14 ⁇ m or less.
  • the core 10 is made of silica glass containing GeO 2 , for example.
  • the refractive index of the core 10 When the refractive index of the core 10 is increased, the optical energy confinement force is increased, resulting in improved bending loss characteristics.
  • the MFD mismatch with the general purpose SMF becomes larger. Therefore, splice loss at the time of fusion splicing increases.
  • increasing the Ge dopant concentration in core 10 increases transmission loss due to light scattering. Therefore, in the optical fiber 1, another method is used to suppress the bending loss.
  • a depressed portion 20 is provided around the core 10 .
  • Depressed 20 is provided between core 10 and clad 30 .
  • Depressed portion 20 is in contact with core 10 and clad 30 .
  • Depressed 20 has a refractive index of n2 and an outer diameter of 2b.
  • the refractive index n2 is lower than the maximum refractive index n1 ( n2 ⁇ n1 ).
  • the depressed 20 is made of silica glass containing fluorine, for example. By providing the depressed portion 20, bending loss characteristics can be improved.
  • a clad 30 is provided around the core 10 and the depressed portion 20 .
  • the cladding 30 has a refractive index n0 .
  • the refractive index n 0 is lower than the maximum refractive index n 1 and higher than the refractive index n 2 (n 2 ⁇ n 0 ⁇ n 1 ).
  • the clad 30 is made of pure silica glass, for example.
  • the relative refractive index difference ⁇ 1 represented by the above formula (2) is 0.30% or more and 0.55% or less (0.30% ⁇ 1 ⁇ 0.55%).
  • the relative refractive index difference ⁇ 1 is the relative refractive index difference between the central axis 10 a of the core 10 and the clad 30 .
  • the relative refractive index difference ⁇ 2 represented by the above formula (3) is ⁇ 0.12% or more and less than 0% ( ⁇ 0.12% ⁇ 2 ⁇ 0%).
  • the relative refractive index difference ⁇ 2 is the relative refractive index difference between the depressed 20 and the clad 30 .
  • the zero-dispersion wavelength of the optical fiber 1 is, for example, 1300 nm or more and 1324 nm or less.
  • the chromatic dispersion at a wavelength of 1.55 ⁇ m is 13.3 ps/nm/km or more and 18.6 ps/nm/km or less.
  • the optical fiber 1 is G.I. 657. It has a MAC value equivalent to a general-purpose SMF conforming to the A series.
  • the MAC value of the optical fiber 1 is, for example, 6.7 or more and 7.5 or less (7.1 ⁇ 0.4).
  • the MAC value may be 7.1 or less.
  • bending loss characteristics can be organized by MAC value, and the larger the MAC value, the worse the bending loss characteristics.
  • the MAC value exceeds 7.5, the bending loss increases depending on the refractive index distribution. 657. There is a possibility that it will deviate from the standard of the A series.
  • the MAC value is less than 6.7, the fiber cutoff wavelength ⁇ c increases and the G.C. 657. It exceeds the A series standard ( ⁇ 1260 nm), and the single mode operation of the signal light cannot be guaranteed.
  • the ratio b/a between the outer diameter 2b and the outer diameter 2a is 4.2 or more and 7.0 or less.
  • the ratio b/a may be greater than 6.0.
  • the ratio b/a is from 2.4 to 4.0. When the ratio b/a is small in this way, the interfacial distance becomes short, so the optical energy confinement force becomes weak. Therefore, the bending loss characteristic deteriorates.
  • the ratio b/a is too large, the converted core length will be shortened, resulting in a decrease in manufacturing efficiency and an increase in manufacturing cost. Even if the MAC value is 7.5, which is the upper limit of the MAC value range (7.1 ⁇ 0.4) of the generic SMF, the G. 657.
  • the ratio b/a that can satisfy the A2 standard is 7.0. Therefore, in the optical fiber 1, the upper limit of the ratio b/a is set to 7.0.
  • Fig. 2 is the refractive index profile of an optical fiber.
  • the horizontal axis indicates the radial position, that is, the radial distance r from the central axis 10a.
  • the vertical axis indicates the refractive index.
  • the core has an ⁇ power type refractive index distribution with an ⁇ multiplier of 1.5 or more and 10 or less. That is, the shape of the refractive index distribution n(r) in the radial direction of the core 10 is defined by the ⁇ multiplier shown in Equation (1) with respect to the radial distance r from the central axis 10a.
  • the ⁇ multiplier is 1.5 or more and 10 or less.
  • the preform base material to be the optical fiber 1 is any one of the VAD (Vapor-phase Axial Deposition) method, the OVD (Outside Vapor Deposition) method which is a multi-layer deposition method, and the MMD method which is a multi-layer deposition method using multiple burners.
  • VAD Very-phase Axial Deposition
  • OVD Outside Vapor Deposition
  • MMD Multi-layer deposition method using multiple burners.
  • Manufactured using The ⁇ multiplier can be adjusted by changing the flow rate of SiCl 4 and GeCl 4 introduced during the fabrication of the core, the flow rate of the combustion supporting gas such as hydrogen and oxygen, the rotation speed, and the traverse speed.
  • the trench layer improves bending loss characteristics.
  • the VAD method or the OVD method it is necessary to form a plurality of layers with different refractive indices.
  • a shallow depressed portion is formed by flowing CF 4 gas, so productivity can be improved.
  • the optical fiber 1 can suppress bending loss by including the depressed 20 .
  • G. 657 The MFD and the fiber cutoff wavelength ⁇ c were set so as to satisfy the A series standard, and the behavior of each characteristic was calculated when the ratio b/a was changed. rice field.
  • Table 1 is a table summarizing the specifications of the optical fibers of Experimental Examples 1 to 26.
  • the G.I. 657. A2 requires that the bending loss at a wavelength of 1550 nm is 1.0 dB/10 turns or less.
  • G657. A1 is required to have a bending loss of 7.5 dB/10 turns or less at a wavelength of 1550 nm.
  • FIG. 3 is a graph showing the relationship between the ratio b/a and bending loss.
  • the horizontal axis indicates the ratio b/a.
  • the vertical axis indicates the bending loss [dB/10turn] at a wavelength of 1550nm when winding 10 turns with a bending radius of 10mm.
  • the results of Experimental Examples 1 to 16 are shown.
  • the relative refractive index difference ⁇ 1 [%], relative refractive index difference ⁇ 2 [%], MFD, and fiber cutoff wavelength ⁇ c are set to the same value.
  • the larger the ratio b/a the lower the bending loss.
  • the ratio b/a is less than 4.2 (b/a ⁇ 4.2)
  • the bending loss is reduced to G. 657. It becomes larger than the A1 standard.
  • the ratio b/a is made larger than 6.0 (b/a>6.0), the bending loss will be reduced to G. 657. It can be made smaller than the A2 standard.
  • FIG. 4 is a graph showing the relationship between the ratio b/a and the zero dispersion wavelength.
  • the horizontal axis indicates the ratio b/a.
  • the vertical axis indicates the zero-dispersion wavelength [nm].
  • the results of Experimental Examples 1 to 16 are shown.
  • the zero-dispersion wavelength is almost constant regardless of the magnitude of the ratio b/a.
  • FIG. 5 is a graph showing the relationship between the ratio b/a and chromatic dispersion at a wavelength of 1.55 ⁇ m.
  • the horizontal axis indicates the ratio b/a.
  • the vertical axis represents chromatic dispersion [ps/nm/km] at a wavelength of 1.55 ⁇ m.
  • the results of Experimental Examples 1 to 16 are shown.
  • the chromatic dispersion at a wavelength of 1.55 ⁇ m is almost constant regardless of the magnitude of the ratio b/a.

Abstract

An optical fiber (1) is provided with: a core (10) having a maximum refractive index n1; cladding (30) which is disposed around the core (10) and which has a refractive index n0 lower than the maximum refractive index n1; and a depressed part (20) which is disposed between the core (10) and the cladding (30) and which has a refractive index n2 lower than the refractive index n0. The relative refractive index difference between the maximum refractive index n1 and the refractive index n0 is denoted by Δ1, the shape of the refractive index distribution n(r) of the core (10) is defined by equation (1) and equation (2) with respect to the radial distance r from the central axis of the core (10). The multiplier α in equation (1) is 1.5-10. The outer diameter 2a of the core (10) is 8-14 μm. The ratio b/a of the outer diameter 2b of the depressed part (20) to the outer diameter 2a of the core is 4.2-7.0.

Description

光ファイバoptical fiber
 本開示は、光ファイバに関する。本出願は、2021年12月14日出願の日本出願第2021-202601号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This disclosure relates to optical fibers. This application claims priority based on Japanese Application No. 2021-202601 filed on December 14, 2021, and incorporates all the descriptions described in the Japanese Application.
 特許文献1には、ITU-T G.652勧告に準拠する汎用的なシングルモード光ファイバ(SMF)と同様のMAC値を有すると共に、曲げ損失を抑制することができる光ファイバが開示されている。MAC値は、波長1310nmにおけるモードフィールド径(MFD)[μm]をファイバカットオフ波長λc[μm]で割った値である。この光ファイバでは、コアの径方向の屈折率分布が、α乗数により規定される分布になっている。 Patent document 1 describes ITU-T G. An optical fiber is disclosed that has a MAC value similar to that of a general-purpose single-mode optical fiber (SMF) conforming to Recommendation 652 and that can suppress bending loss. The MAC value is a value obtained by dividing the mode field diameter (MFD) [μm] at a wavelength of 1310 nm by the fiber cutoff wavelength λc [μm]. In this optical fiber, the refractive index distribution in the radial direction of the core is defined by the α multiplier.
 特許文献2には、曲げ損失及び波長別損失差を最小化すると共に、短い遮断波長特性を維持することができる光ファイバが開示されている。この光ファイバでは、コアの外側にトレンチ層が設けられている。 Patent Document 2 discloses an optical fiber capable of minimizing bending loss and loss difference by wavelength and maintaining short cut-off wavelength characteristics. In this optical fiber, a trench layer is provided outside the core.
特開2018-189914号公報JP 2018-189914 A 特開2013-88818号公報JP 2013-88818 A
 本開示の光ファイバは、最大屈折率nを有するコアと、コアの周囲に設けられ、最大屈折率nより低い屈折率nを有するクラッドと、コアとクラッドとの間に設けられ、屈折率nより低い屈折率nを有するディプレストと、を備える。最大屈折率nと屈折率nとの比屈折率差をΔとしたとき、コアの屈折率分布n(r)は、コアの中心軸からの径方向距離rに対して式(1)及び式(2)によりその形状が規定される。式(1)におけるα乗数は、1.5以上10以下である。コアの外径2aは、8μm以上14μm以下である。ディプレストの外径2bとコアの外径2aとの比b/aは、4.2以上7.0以下である。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
The optical fiber of the present disclosure includes a core having a maximum refractive index n1 , a clad provided around the core and having a refractive index n0 lower than the maximum refractive index n1 , and provided between the core and the clad, and a depressed having a refractive index n2 lower than the refractive index n0 . When the relative refractive index difference between the maximum refractive index n1 and the refractive index n0 is Δ1 , the refractive index distribution n(r) of the core is expressed by the formula (1 ) and equation (2) define its shape. The α multiplier in Equation (1) is 1.5 or more and 10 or less. The outer diameter 2a of the core is 8 μm or more and 14 μm or less. The ratio b/a of the depressed outer diameter 2b to the core outer diameter 2a is 4.2 or more and 7.0 or less.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
図1は、実施形態に係る光ファイバの断面を示す図である。FIG. 1 is a diagram showing a cross section of an optical fiber according to an embodiment. 図2は、光ファイバの屈折率プロファイルである。FIG. 2 is a refractive index profile of an optical fiber. 図3は、比b/aと曲げ損失との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the ratio b/a and bending loss. 図4は、比b/aと零分散波長との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the ratio b/a and the zero dispersion wavelength. 図5は、比b/aと波長1.55μmにおける波長分散との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the ratio b/a and chromatic dispersion at a wavelength of 1.55 μm.
[本開示が解決しようとする課題]
 特許文献1に開示された光ファイバでは、コアがα乗型の屈折率分布を有することによって曲げ損失が抑制されるものの、十分ではない。特許文献2に開示された光ファイバでは、トレンチ層によって曲げ損失特性が改善するものの、分散特性及びファイバカットオフ波長λcなどの他の光学特性が変化するので、屈折率プロファイルの設計が複雑になる。
[Problems to be Solved by the Present Disclosure]
In the optical fiber disclosed in Patent Document 1, the bending loss is suppressed by the core having an α-th power refractive index distribution, but this is not sufficient. In the optical fiber disclosed in Patent Document 2, although the trench layer improves the bending loss characteristics, the design of the refractive index profile becomes complicated because other optical characteristics such as the dispersion characteristics and the fiber cutoff wavelength λc change. .
 本開示は、他の光学特性に影響を与えることなく、曲げ損失を更に抑制することが可能な光ファイバを提供することを目的とする。
[本開示の効果]
An object of the present disclosure is to provide an optical fiber capable of further suppressing bending loss without affecting other optical properties.
[Effect of the present disclosure]
 本開示によれば、他の光学特性に影響を与えることなく、曲げ損失を更に抑制することが可能な光ファイバを提供することができる。
[本開示の実施態様の説明]
 最初に本開示の実施態様を列記して説明する。本開示の一実施態様に係る光ファイバは、最大屈折率nを有するコアと、コアの周囲に設けられ、最大屈折率nより低い屈折率nを有するクラッドと、コアとクラッドとの間に設けられ、屈折率nより低い屈折率nを有するディプレストと、を備える。最大屈折率nと屈折率nとの比屈折率差をΔとしたとき、コアの屈折率分布n(r)は、コアの中心軸からの径方向距離rに対して式(1)及び式(2)によりその形状が規定される。式(1)におけるα乗数は、1.5以上10以下である。コアの外径2aは、8μm以上14μm以下である。ディプレストの外径2bとコアの外径2aとの比b/aは、4.2以上7.0以下である。
According to the present disclosure, it is possible to provide an optical fiber capable of further suppressing bending loss without affecting other optical properties.
[Description of embodiments of the present disclosure]
First, the embodiments of the present disclosure will be listed and described. An optical fiber according to an embodiment of the present disclosure includes a core having a maximum refractive index n1 , a clad provided around the core and having a refractive index n0 lower than the maximum refractive index n1 , and and a depressed therebetween and having a refractive index n2 lower than the refractive index n0 . When the relative refractive index difference between the maximum refractive index n1 and the refractive index n0 is Δ1 , the refractive index distribution n(r) of the core is expressed by the formula (1 ) and equation (2) define its shape. The α multiplier in Equation (1) is 1.5 or more and 10 or less. The outer diameter 2a of the core is 8 μm or more and 14 μm or less. A ratio b/a of the depressed outer diameter 2b to the core outer diameter 2a is 4.2 or more and 7.0 or less.
 この光ファイバでは、コアがα乗型の屈折率分布を有し、α乗数が10以下なので、曲げ損失を抑制することができる。また、α乗数が1.5以上なので、分散特性を調整することができる。ディプレストの外径2bとコアの外径2aとの比b/aは、4.2以上なので、曲げ損失を更に抑制することができる。また、比b/aは、7.0以下なので、コア換算長が短くなって製造効率が低下することを抑制できる。ここで、コア換算長とは、所定長のコア部のガラス母材から得られる光ファイバの長さである。 In this optical fiber, the core has an α power type refractive index distribution, and the α multiplier is 10 or less, so bending loss can be suppressed. Further, since the α multiplier is 1.5 or more, the dispersion characteristics can be adjusted. Since the ratio b/a of the depressed outer diameter 2b to the core outer diameter 2a is 4.2 or more, the bending loss can be further suppressed. In addition, since the ratio b/a is 7.0 or less, it is possible to suppress reduction in manufacturing efficiency due to shortening of the converted core length. Here, the equivalent core length is the length of the optical fiber obtained from the glass base material of the core portion having a predetermined length.
 比b/aは、6.0より大きくてもよい。この場合、曲げ損失を一層抑制することができる。 The ratio b/a may be greater than 6.0. In this case, bending loss can be further suppressed.
 式(2)で示される比屈折率差Δは、0.30%以上0.50%以下であってもよい。比屈折率差Δを0.30%以上とすることにより、零分散波長を1300nm以上とすることができる。比屈折率差Δを0.50%以下とすることにより、零分散波長を1324nm以下とすることができる。これにより、ITU-T G.657.Aシリーズの規格である零分散波長1300nm以上1324nm以下を満たすことができる。 The relative refractive index difference Δ1 represented by formula (2) may be 0.30% or more and 0.50% or less. By setting the relative refractive index difference Δ1 to 0.30% or more, the zero dispersion wavelength can be set to 1300 nm or more. By setting the relative refractive index difference Δ1 to 0.50% or less, the zero dispersion wavelength can be set to 1324 nm or less. With this, the ITU-T G. 657. The zero dispersion wavelength of 1300 nm or more and 1324 nm or less, which is the standard for the A series, can be satisfied.
 式(3)で示される比屈折率差Δは、-0.12%以上0%未満であってもよい。-0.12%以上であれば、ディプレスト層に添加する添加物の量が少なくて済む。したがって、製造が容易であり、添加する際に使用するガスの量を削減することができる。また、0%未満であることにより、ディプレスト層による曲げ損失の抑制効果を確実に得ることができる。
Figure JPOXMLDOC01-appb-M000006
The relative refractive index difference Δ2 represented by formula (3) may be −0.12% or more and less than 0%. If it is -0.12% or more, the amount of additive added to the depressed layer can be small. Therefore, it is easy to manufacture, and the amount of gas used when adding can be reduced. Further, when the content is less than 0%, the effect of suppressing bending loss by the depressed layer can be reliably obtained.
Figure JPOXMLDOC01-appb-M000006
 零分散波長は、1300nm以上1324nm以下であってもよい。この場合、零分散波長の規格が満足される。 The zero-dispersion wavelength may be 1300 nm or more and 1324 nm or less. In this case, the zero-dispersion wavelength specification is satisfied.
 波長1.55μmにおける波長分散は、13.3ps/nm/km以上18.6ps/nm/km以下であってもよい。この場合、波長1.55μmにおける波長分散の規格が満足される。 The chromatic dispersion at a wavelength of 1.55 μm may be 13.3 ps/nm/km or more and 18.6 ps/nm/km or less. In this case, the standard for chromatic dispersion at a wavelength of 1.55 μm is satisfied.
[本開示の実施形態の詳細]
 本開示の光ファイバの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
[Details of the embodiment of the present disclosure]
A specific example of the optical fiber of the present disclosure will be described below with reference to the drawings. The present invention is not limited to these exemplifications, but is indicated by the scope of the claims, and is intended to include all modifications within the meaning and scope of equivalents to the scope of the claims. In the description of the drawings, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted.
 図1は、実施形態に係る光ファイバの断面を示す図である。図1に示されるように、光ファイバ1は、コア10と、ディプレスト20と、クラッド30とを備える。コア10は、中心軸10aを有している。中心軸10aは、光ファイバ1の中心軸と一致している。コア10は、最大屈折率nと外径2aとを有する。コア10は、中心軸10aで最大屈折率nを有する。外径2aは、8μm以上14μm以下である。コア10は、たとえば、GeOを含むシリカガラスからなる。 FIG. 1 is a diagram showing a cross section of an optical fiber according to an embodiment. As shown in FIG. 1, the optical fiber 1 comprises a core 10, a depressed 20 and a clad 30. As shown in FIG. The core 10 has a central axis 10a. The central axis 10 a coincides with the central axis of the optical fiber 1 . The core 10 has a maximum refractive index n1 and an outer diameter 2a. The core 10 has a maximum refractive index n1 at the central axis 10a. The outer diameter 2a is 8 μm or more and 14 μm or less. The core 10 is made of silica glass containing GeO 2 , for example.
 コア10の屈折率を高くすると、光エネルギーの閉じ込め力が強くなる結果、曲げ損失特性が向上する。しかしながら、MFDが小さくなるので、汎用的なSMFとの間でMFD不整合が大きくなる。よって、融着時の接続損失が大きくなる。加えて、コア10のGeドーパント濃度を高くすると、光の散乱による伝送損失が増大する。よって、光ファイバ1では、他の手法により曲げ損失の抑制を図っている。 When the refractive index of the core 10 is increased, the optical energy confinement force is increased, resulting in improved bending loss characteristics. However, as the MFD becomes smaller, the MFD mismatch with the general purpose SMF becomes larger. Therefore, splice loss at the time of fusion splicing increases. In addition, increasing the Ge dopant concentration in core 10 increases transmission loss due to light scattering. Therefore, in the optical fiber 1, another method is used to suppress the bending loss.
 ディプレスト20は、コア10の周囲に設けられている。ディプレスト20は、コア10とクラッド30との間に設けられている。ディプレスト20は、コア10とクラッド30とに接している。ディプレスト20は、屈折率nと外径2bとを有する。屈折率nは、最大屈折率nより低い(n<n)。ディプレスト20は、たとえば、フッ素を含むシリカガラスからなる。ディプレスト20を設けることで曲げ損失特性を改善できる。 A depressed portion 20 is provided around the core 10 . Depressed 20 is provided between core 10 and clad 30 . Depressed portion 20 is in contact with core 10 and clad 30 . Depressed 20 has a refractive index of n2 and an outer diameter of 2b. The refractive index n2 is lower than the maximum refractive index n1 ( n2 < n1 ). The depressed 20 is made of silica glass containing fluorine, for example. By providing the depressed portion 20, bending loss characteristics can be improved.
 クラッド30は、コア10及びディプレスト20の周囲に設けられている。クラッド30は、屈折率nを有する。屈折率nは、最大屈折率nより低く、屈折率nより高い(n<n<n)。クラッド30は、たとえば、純シリカガラスからなる。上記式(2)で示される比屈折率差Δは、0.30%以上0.55%以下である(0.30%≦Δ≦0.55%)。比屈折率差Δは、コア10の中心軸10aとクラッド30との比屈折率差である。上記式(3)で示される比屈折率差Δは、-0.12%以上0%未満である(-0.12%≦Δ<0%)。比屈折率差Δは、ディプレスト20とクラッド30との比屈折率差である。 A clad 30 is provided around the core 10 and the depressed portion 20 . The cladding 30 has a refractive index n0 . The refractive index n 0 is lower than the maximum refractive index n 1 and higher than the refractive index n 2 (n 2 <n 0 <n 1 ). The clad 30 is made of pure silica glass, for example. The relative refractive index difference Δ 1 represented by the above formula (2) is 0.30% or more and 0.55% or less (0.30%≦Δ 1 ≦0.55%). The relative refractive index difference Δ1 is the relative refractive index difference between the central axis 10 a of the core 10 and the clad 30 . The relative refractive index difference Δ 2 represented by the above formula (3) is −0.12% or more and less than 0% (−0.12%≦Δ 2 <0%). The relative refractive index difference Δ2 is the relative refractive index difference between the depressed 20 and the clad 30 .
 光ファイバ1の零分散波長は、たとえば、1300nm以上1324nm以下である。波長1.55μmにおける波長分散は、13.3ps/nm/km以上18.6ps/nm/km以下である。 The zero-dispersion wavelength of the optical fiber 1 is, for example, 1300 nm or more and 1324 nm or less. The chromatic dispersion at a wavelength of 1.55 μm is 13.3 ps/nm/km or more and 18.6 ps/nm/km or less.
 光ファイバ1は、G.657.Aシリーズに準拠する汎用的SMFと同等のMAC値を有している。光ファイバ1のMAC値は、たとえば、6.7以上、かつ、7.5以下(7.1±0.4)である。MAC値は、7.1以下であってもよい。 The optical fiber 1 is G.I. 657. It has a MAC value equivalent to a general-purpose SMF conforming to the A series. The MAC value of the optical fiber 1 is, for example, 6.7 or more and 7.5 or less (7.1±0.4). The MAC value may be 7.1 or less.
 一般的に、曲げ損失特性はMAC値で整理することができ、MAC値が大きいほど曲げ損失特性は悪化する。MAC値が7.5を超えると、屈折率分布次第で曲げ損失が、G.657.Aシリーズの規格から外れる可能性がある。MAC値が6.7を下回ると、ファイバカットオフ波長λcが大きくなってG.657.Aシリーズの規格(≦1260nm)を上回り、信号光のシングルモード動作を保証できなくなる。 In general, bending loss characteristics can be organized by MAC value, and the larger the MAC value, the worse the bending loss characteristics. When the MAC value exceeds 7.5, the bending loss increases depending on the refractive index distribution. 657. There is a possibility that it will deviate from the standard of the A series. When the MAC value is less than 6.7, the fiber cutoff wavelength λc increases and the G.C. 657. It exceeds the A series standard (≦1260 nm), and the single mode operation of the signal light cannot be guaranteed.
 外径2bと外径2aとの比b/aは、4.2以上7.0以下である。比b/aは、6.0より大きくてもよい。コア/ディプレストの界面と、ディプレスト/クラッドの界面との間の距離(界面間距離)が長いほど、光エネルギーの閉じ込め力が強くなる。よって、光ファイバ1を曲げたときの光エネルギーの漏れが抑制され、曲げ損失が向上する。特許文献1に記載の発明では、比b/aが2.4から4.0である。このように比b/aが小さい場合、界面間距離が短くなるため、光エネルギーの閉じ込め力が弱くなる。よって、曲げ損失特性が悪化する。 The ratio b/a between the outer diameter 2b and the outer diameter 2a is 4.2 or more and 7.0 or less. The ratio b/a may be greater than 6.0. The longer the distance between the core/depressed interface and the depressed/cladding interface (interfacial distance), the stronger the optical energy confinement force. Therefore, leakage of light energy is suppressed when the optical fiber 1 is bent, and bending loss is improved. In the invention described in Patent Document 1, the ratio b/a is from 2.4 to 4.0. When the ratio b/a is small in this way, the interfacial distance becomes short, so the optical energy confinement force becomes weak. Therefore, the bending loss characteristic deteriorates.
 一方、比b/aが大き過ぎる場合、コア換算長が短くなるので、製造効率の低下及び製造コストの増加を招く。MAC値が汎用的SMFのMAC値の範囲(7.1±0.4)の上限である7.5の場合でも、G.657.A2規格を満たすことができる比b/aは7.0である。よって、光ファイバ1では、比b/aの上限を7.0に設定した。 On the other hand, if the ratio b/a is too large, the converted core length will be shortened, resulting in a decrease in manufacturing efficiency and an increase in manufacturing cost. Even if the MAC value is 7.5, which is the upper limit of the MAC value range (7.1±0.4) of the generic SMF, the G. 657. The ratio b/a that can satisfy the A2 standard is 7.0. Therefore, in the optical fiber 1, the upper limit of the ratio b/a is set to 7.0.
 図2は、光ファイバの屈折率プロファイルである。横軸は、径方向半径位置、すなわち、中心軸10aからの径方向距離rを示す。縦軸は、屈折率を示す。コアは、α乗数が1.5以上10以下であるα乗型の屈折率分布を有する。すなわち、コア10の径方向の屈折率分布n(r)は、中心軸10aからの径方向距離rに対して式(1)に示すα乗数によりその形状が規定される。α乗数は、1.5以上10以下である。 Fig. 2 is the refractive index profile of an optical fiber. The horizontal axis indicates the radial position, that is, the radial distance r from the central axis 10a. The vertical axis indicates the refractive index. The core has an α power type refractive index distribution with an α multiplier of 1.5 or more and 10 or less. That is, the shape of the refractive index distribution n(r) in the radial direction of the core 10 is defined by the α multiplier shown in Equation (1) with respect to the radial distance r from the central axis 10a. The α multiplier is 1.5 or more and 10 or less.
 光ファイバ1となるプリフォーム母材は、VAD(Vapor-phase Axial Deposition)法、多層付け法であるOVD(Outside Vapor Deposition)法、及び、複数本バーナによる多層付け法であるMMD法のいずれかを用いて製造される。コア部の作製時に導入されるSiCl及びGeClの流量、水素及び酸素などの助燃性ガスの流量、回転速度、トラバース速度を変更することにより、α乗数を調整することができる。 The preform base material to be the optical fiber 1 is any one of the VAD (Vapor-phase Axial Deposition) method, the OVD (Outside Vapor Deposition) method which is a multi-layer deposition method, and the MMD method which is a multi-layer deposition method using multiple burners. Manufactured using The α multiplier can be adjusted by changing the flow rate of SiCl 4 and GeCl 4 introduced during the fabrication of the core, the flow rate of the combustion supporting gas such as hydrogen and oxygen, the rotation speed, and the traverse speed.
 特許文献2に開示された光ファイバでは、トレンチ層によって曲げ損失特性が向上する。しかしながら、VAD法又はOVD法で低屈折率部を形成するためには、屈折率が異なる複数の層を形成する必要がある。また、深いトレンチ層を形成するために、添加物を多く添加する必要がある。よって、プリフォーム母材の作製に必要な工程及び製造コストが増加する。本実施形態では、CFガスを流すことによって浅いディプレスト部を形成するので、生産性を向上させることができる。光ファイバ1は、ディプレスト20を備えることにより、曲げ損失を抑制することができる。 In the optical fiber disclosed in Patent Document 2, the trench layer improves bending loss characteristics. However, in order to form the low refractive index portion by the VAD method or the OVD method, it is necessary to form a plurality of layers with different refractive indices. Also, in order to form a deep trench layer, it is necessary to add many additives. Therefore, the steps and manufacturing costs required to fabricate the preform base material are increased. In this embodiment, a shallow depressed portion is formed by flowing CF 4 gas, so productivity can be improved. The optical fiber 1 can suppress bending loss by including the depressed 20 .
 続いて、シミュレーションによる実験結果について説明する。G.657.Aシリーズの規格を満たすようにMFD及びファイバカットオフ波長λcを設定し、比b/aを変化させたときに、各特性がどうなるかを計算した。
た。
Next, experimental results obtained by simulation will be described. G. 657. The MFD and the fiber cutoff wavelength λc were set so as to satisfy the A series standard, and the behavior of each characteristic was calculated when the ratio b/a was changed.
rice field.
 表1は、実験例1から26の光ファイバの緒元をまとめた表である。表1では、比屈折率差Δ[%]、比屈折率差Δ[%]、α乗数、外径2a、外径2b、比b/a、MAC値、曲げ半径10mmで10ターン巻いたときの波長1550nmにおける曲げ損失[dB/10turn]、零分散波長[nm]、及び、波長1.55μmにおける波長分散[ps/nm/km]が示されている。規格であるG.657.A2では、波長1550nmにおける曲げ損失が1.0dB/10turn以下であることが求められている。また、G657.A1では、波長1550nmにおける曲げ損失が7.5dB/10turn以下であることが求められている。 Table 1 is a table summarizing the specifications of the optical fibers of Experimental Examples 1 to 26. In Table 1, relative refractive index difference Δ 1 [%], relative refractive index difference Δ 2 [%], α multiplier, outer diameter 2a, outer diameter 2b, ratio b / a, MAC value, 10 turns with a bending radius of 10 mm Bending loss [dB/10 turn] at a wavelength of 1550 nm, zero dispersion wavelength [nm], and chromatic dispersion [ps/nm/km] at a wavelength of 1.55 μm are shown. The G.I. 657. A2 requires that the bending loss at a wavelength of 1550 nm is 1.0 dB/10 turns or less. Also, G657. A1 is required to have a bending loss of 7.5 dB/10 turns or less at a wavelength of 1550 nm.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図3は、比b/aと曲げ損失との関係を示すグラフである。横軸は、比b/aを示す。縦軸は、曲げ半径10mmで10ターン巻いたときの波長1550nmにおける曲げ損失[dB/10turn]を示す。図3では、実験例1から16の結果が示されている。実施例1から16では、比屈折率差Δ[%]、比屈折率差Δ[%]、MFD、及びファイバカットオフ波長λcが同じ値に設定されている。図3に示されるように、比b/aが大きいほど曲げ損失が低くなる。比b/aを4.2よりも小さくすると(b/a<4.2)、曲げ損失がG.657.A1規格よりも大きくなってしまう。比b/aを6.0よりも大きくすると(b/a>6.0)、曲げ損失をG.657.A2規格よりも小さくすることができる。 FIG. 3 is a graph showing the relationship between the ratio b/a and bending loss. The horizontal axis indicates the ratio b/a. The vertical axis indicates the bending loss [dB/10turn] at a wavelength of 1550nm when winding 10 turns with a bending radius of 10mm. In FIG. 3, the results of Experimental Examples 1 to 16 are shown. In Examples 1 to 16, the relative refractive index difference Δ 1 [%], relative refractive index difference Δ 2 [%], MFD, and fiber cutoff wavelength λc are set to the same value. As shown in FIG. 3, the larger the ratio b/a, the lower the bending loss. When the ratio b/a is less than 4.2 (b/a<4.2), the bending loss is reduced to G. 657. It becomes larger than the A1 standard. If the ratio b/a is made larger than 6.0 (b/a>6.0), the bending loss will be reduced to G. 657. It can be made smaller than the A2 standard.
 図4は、比b/aと零分散波長との関係を示すグラフである。横軸は、比b/aを示す。縦軸は、零分散波長[nm]を示す。図4では、実験例1から16の結果が示されている。図4に示されるように、零分散波長は、比b/aの大小に関わらず、ほとんど一定である。 FIG. 4 is a graph showing the relationship between the ratio b/a and the zero dispersion wavelength. The horizontal axis indicates the ratio b/a. The vertical axis indicates the zero-dispersion wavelength [nm]. In FIG. 4, the results of Experimental Examples 1 to 16 are shown. As shown in FIG. 4, the zero-dispersion wavelength is almost constant regardless of the magnitude of the ratio b/a.
 図5は、比b/aと波長1.55μmにおける波長分散との関係を示すグラフである。横軸は、比b/aを示す。縦軸は、波長1.55μmにおける波長分散[ps/nm/km]を示す。図5では、実験例1から16の結果が示されている。図5に示されるように、波長1.55μmにおける波長分散は、比b/aの大小に関わらず、ほとんど一定である。 FIG. 5 is a graph showing the relationship between the ratio b/a and chromatic dispersion at a wavelength of 1.55 μm. The horizontal axis indicates the ratio b/a. The vertical axis represents chromatic dispersion [ps/nm/km] at a wavelength of 1.55 μm. In FIG. 5, the results of Experimental Examples 1 to 16 are shown. As shown in FIG. 5, the chromatic dispersion at a wavelength of 1.55 μm is almost constant regardless of the magnitude of the ratio b/a.
 実験例15と実験例18との比較、及び、実験例16と実験例17との比較により、MAC値が大きくなると曲げ損失が悪化することが確認できる。 By comparing Experimental Examples 15 and 18 and comparing Experimental Examples 16 and 17, it can be confirmed that bending loss worsens as the MAC value increases.
 実験例17,18の結果から、MAC値が7.5の場合、比b/aを6.8よりも大きくすることで(b/a>6.8)、G.657.A2規格を満たすことができる。上述のように、比b/aが大き過ぎると生産性が低下するので、比b/aの上限を7.0として評価を行った。 From the results of Experimental Examples 17 and 18, when the MAC value is 7.5, by increasing the ratio b/a to greater than 6.8 (b/a>6.8), the G.I. 657. A2 standard can be met. As described above, if the ratio b/a is too large, the productivity decreases, so the upper limit of the ratio b/a was set to 7.0 for evaluation.
 実験例8及び実験例19から21の結果から、比屈折率差Δが0.3%未満(Δ<0.3%)であると、零分散波長が規格である1300nmよりも短くなることがわかる。比屈折率差Δが0.5%を超えると(Δ>0.5%)、零分散波長が規格である1324nmよりも長くなることがわかる。よって、比屈折率差Δは、0.30%以上0.50%以下を満たす必要がある。 From the results of Experimental Examples 8 and 19 to 21, when the relative refractive index difference Δ 1 is less than 0.3% (Δ 1 <0.3%), the zero dispersion wavelength is shorter than the standard 1300 nm. I understand. It can be seen that when the relative refractive index difference Δ 1 exceeds 0.5% (Δ 1 >0.5%), the zero dispersion wavelength becomes longer than the standard 1324 nm. Therefore, the relative refractive index difference Δ1 must satisfy 0.30% or more and 0.50% or less.
 実験例22から26の結果から、α乗数が大きいと曲げ損失が規格よりも大きくなることがわかる。α乗数が小さいと零波長分散が規格よりも長くなることがわかる。 From the results of Experimental Examples 22 to 26, it can be seen that bending loss becomes larger than the standard when the α multiplier is large. It can be seen that when the α multiplier is small, the zero chromatic dispersion becomes longer than the standard.
 これらの結果から、比b/aが4.2以上7.0以下の範囲で、G.657.Aシリーズの規格を満足できること、及び、比b/aの大小は零分散波長や1.55μm分散などの他の光学特性にほとんど影響を与えないことが確認できた。  From these results, the G.I. 657. It was confirmed that the standard of the A series could be satisfied, and that the size of the ratio b/a had almost no effect on other optical characteristics such as zero dispersion wavelength and 1.55 μm dispersion.
1…光ファイバ
10…コア
10a…中心軸
20…ディプレスト
30…クラッド

 
DESCRIPTION OF SYMBOLS 1... Optical fiber 10... Core 10a... Central axis 20... Depressed 30... Clad

Claims (6)

  1.  最大屈折率nを有するコアと、
     前記コアの周囲に設けられ、前記最大屈折率nより低い屈折率nを有するクラッドと、
     前記コアと前記クラッドとの間に設けられ、前記屈折率nより低い屈折率nを有するディプレストと、
    を備え、
     前記最大屈折率nと前記屈折率nとの比屈折率差をΔとしたとき、前記コアの屈折率分布n(r)は、前記コアの中心軸からの径方向距離rに対して式(1)及び式(2)によりその形状が規定され、
     式(1)におけるα乗数は、1.5以上10以下であり、
     前記コアの外径2aは、8μm以上14μm以下であり、
     前記ディプレストの外径2bと前記コアの外径2aとの比b/aは、4.2以上7.0以下である、
     光ファイバ。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    a core with a maximum refractive index n 1 ;
    a clad provided around the core and having a refractive index n0 lower than the maximum refractive index n1 ;
    a depressed layer provided between the core and the cladding and having a refractive index n2 lower than the refractive index n0 ;
    with
    When the relative refractive index difference between the maximum refractive index n1 and the refractive index n0 is Δ1 , the refractive index distribution n(r) of the core is The shape is defined by the formulas (1) and (2),
    The α multiplier in formula (1) is 1.5 or more and 10 or less,
    The outer diameter 2a of the core is 8 μm or more and 14 μm or less,
    A ratio b/a of the depressed outer diameter 2b to the core outer diameter 2a is 4.2 or more and 7.0 or less.
    fiber optic.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
  2.  前記比b/aは、6.0より大きい、
     請求項1に記載の光ファイバ。
    the ratio b/a is greater than 6.0;
    The optical fiber according to claim 1.
  3.  前記式(2)で示される比屈折率差Δは、0.30%以上0.50%以下である、
     請求項1または請求項2に記載の光ファイバ。
    The relative refractive index difference Δ1 represented by the formula (2) is 0.30% or more and 0.50% or less.
    3. The optical fiber according to claim 1 or 2.
  4.  前記屈折率nと前記屈折率nとの比屈折率差をΔとしたとき、式(3)で示される比屈折率差Δは、-0.12%以上0%未満である、
     請求項1から請求項3のいずれか一項に記載の光ファイバ。
    Figure JPOXMLDOC01-appb-M000003
    When the relative refractive index difference Δ2 between the refractive index n2 and the refractive index n0 is Δ2 , the relative refractive index difference Δ2 represented by the formula (3) is −0.12% or more and less than 0%. ,
    4. The optical fiber according to any one of claims 1-3.
    Figure JPOXMLDOC01-appb-M000003
  5.  零分散波長は、1300nm以上1324nm以下である、
     請求項1から請求項4のいずれか一項に記載の光ファイバ。
    The zero dispersion wavelength is 1300 nm or more and 1324 nm or less,
    5. The optical fiber according to any one of claims 1-4.
  6.  波長1.55μmにおける波長分散は、13.3ps/nm/km以上18.6ps/nm/km以下である、
     請求項1から請求項5のいずれか一項に記載の光ファイバ。
    chromatic dispersion at a wavelength of 1.55 μm is 13.3 ps/nm/km or more and 18.6 ps/nm/km or less;
    6. The optical fiber according to any one of claims 1-5.
PCT/JP2022/046080 2021-12-14 2022-12-14 Optical fiber WO2023112968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021202601 2021-12-14
JP2021-202601 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023112968A1 true WO2023112968A1 (en) 2023-06-22

Family

ID=86774775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046080 WO2023112968A1 (en) 2021-12-14 2022-12-14 Optical fiber

Country Status (1)

Country Link
WO (1) WO2023112968A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526749A (en) * 2007-05-07 2010-08-05 コーニング インコーポレイテッド Optical fiber containing alkali metal oxide
JP2014526066A (en) * 2011-08-19 2014-10-02 コーニング インコーポレイテッド Low bending loss optical fiber
JP2018533079A (en) * 2015-09-15 2018-11-08 コーニング インコーポレイテッド Low bending loss single-mode optical fiber with cladding up-doped with chlorine
WO2019017324A1 (en) * 2017-07-18 2019-01-24 株式会社フジクラ Optical fiber and method for producing same
WO2019172022A1 (en) * 2018-03-07 2019-09-12 住友電気工業株式会社 Optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526749A (en) * 2007-05-07 2010-08-05 コーニング インコーポレイテッド Optical fiber containing alkali metal oxide
JP2014526066A (en) * 2011-08-19 2014-10-02 コーニング インコーポレイテッド Low bending loss optical fiber
JP2018533079A (en) * 2015-09-15 2018-11-08 コーニング インコーポレイテッド Low bending loss single-mode optical fiber with cladding up-doped with chlorine
WO2019017324A1 (en) * 2017-07-18 2019-01-24 株式会社フジクラ Optical fiber and method for producing same
WO2019172022A1 (en) * 2018-03-07 2019-09-12 住友電気工業株式会社 Optical fiber

Similar Documents

Publication Publication Date Title
US10571628B2 (en) Low loss optical fiber with core codoped with two or more halogens
JP5636151B2 (en) Multi-wavelength, multimode optical fiber
JP5881213B2 (en) Single mode optical fiber
JP6298893B2 (en) Single mode fiber with trapezoidal core showing reduced loss
JP5222752B2 (en) Optical fiber
US6205279B1 (en) Single mode optical fiber having multi-step core structure and method of fabricating the same
WO2009078962A1 (en) Bend resistant multimode optical fiber
JP6155380B2 (en) Optical fiber and manufacturing method thereof
WO2016047749A1 (en) Optical fiber
WO2020162209A1 (en) Optical fiber and optical fiber manufacturing method
CN113608298B (en) Large-mode-field-diameter bending insensitive single-mode fiber
WO2016047675A1 (en) Optical fiber and method for manufacturing same
CN114325928B (en) Low-loss bending-resistant single-mode optical fiber
WO2012128250A1 (en) Optical fiber, optical fiber cord, and optical fiber cable
US10422948B2 (en) Optical fiber and method of manufacturing the same
JP6825104B2 (en) Optical fiber and its manufacturing method
US10422949B2 (en) Optical fiber and method of manufacturing the same
US11714228B2 (en) Optical fiber and method of manufacturing optical fiber
WO2023112968A1 (en) Optical fiber
WO2022181614A1 (en) Optical fiber
WO2019159719A1 (en) Optical fiber
WO2022131161A1 (en) Optical fiber, method for designing optical fiber, and method for manufacturing optical fiber
WO2023042769A1 (en) Optical fiber
US20240027679A1 (en) Optical fiber
WO2022210355A1 (en) Optical fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907491

Country of ref document: EP

Kind code of ref document: A1