WO2023112876A1 - Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
WO2023112876A1
WO2023112876A1 PCT/JP2022/045607 JP2022045607W WO2023112876A1 WO 2023112876 A1 WO2023112876 A1 WO 2023112876A1 JP 2022045607 W JP2022045607 W JP 2022045607W WO 2023112876 A1 WO2023112876 A1 WO 2023112876A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
cam
secondary battery
positive electrode
compound
Prior art date
Application number
PCT/JP2022/045607
Other languages
French (fr)
Japanese (ja)
Inventor
信吾 橘
亮 栗木
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023112876A1 publication Critical patent/WO2023112876A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for lithium secondary batteries, a positive electrode for lithium secondary batteries, and a lithium secondary battery.
  • a positive electrode active material for lithium secondary batteries is used for the positive electrode that constitutes the lithium secondary battery.
  • a positive electrode active material for a lithium secondary battery contains a lithium metal composite oxide.
  • Patent Document 1 describes a lithium transition metal compound powder containing an oxide containing at least one or more elements selected from a main component raw material corresponding to a lithium metal composite oxide and Mo, W, Nb, Ta and Re. revealing the body
  • Such a lithium transition metal-based compound powder is expected to improve rate characteristics and output characteristics when used as a positive electrode material for lithium secondary batteries, thereby achieving cost reduction, high voltage resistance, and high safety. It is described in Patent Document 1.
  • lithium secondary batteries As the application of lithium secondary batteries progresses, positive electrode active materials for lithium secondary batteries that can provide lithium secondary batteries with longer life as well as battery characteristics and safety are in demand.
  • a phenomenon that a lithium secondary battery swells during charging is known as a phenomenon that shortens the life of a lithium secondary battery. It is known that this phenomenon is caused by gas generated by a side reaction that occurs when the lithium secondary battery is in a charged state. Therefore, it is important to suppress gas generation in lithium secondary batteries that are expected to be stored in a charged state.
  • An object of the present invention is to provide a secondary battery.
  • a positive electrode active material for a lithium secondary battery comprising a lithium metal composite oxide and a Li—X compound containing Li and an element X, wherein the Li—X compound is an oxide having lithium ion conductivity
  • a positive electrode active material for a lithium secondary battery wherein the element X is one or more elements selected from the group consisting of Nb, W and Mo, and satisfies the following (A) and (B).
  • X (XPS) is the abundance (%) of the element X on the surface of the particles of the positive electrode active material for a lithium secondary battery, measured by X-ray photoelectron spectroscopy.
  • X ( ICP) is the abundance ratio (%) of the element X in the particles of the positive electrode active material for a lithium secondary battery, measured by ICP emission spectroscopy.
  • Li (XPS) is the abundance (%) of Li on the surface of the particles of the positive electrode active material for a lithium secondary battery, measured by X-ray photoelectron spectroscopy.
  • Li (ICP) is the abundance ratio (%) of Li in the particles of the positive electrode active material for a lithium secondary battery, measured by ICP emission spectroscopy.
  • M is one or more elements selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Al, Zn, Sn, Zr, Ga, B, Si, S and P.
  • X is one or more elements selected from the group consisting of Nb, W and Mo, and formula (I) is ⁇ 0.1 ⁇ a ⁇ 0.2, 0 ⁇ y ⁇ 0.5, 0 ⁇ satisfy z ⁇ 0.7, 0 ⁇ w ⁇ 0.1, and y+z+w ⁇ 1.)
  • formula (I) is ⁇ 0.1 ⁇ a ⁇ 0.2, 0 ⁇ y ⁇ 0.5, 0 ⁇ satisfy z ⁇ 0.7, 0 ⁇ w ⁇ 0.1, and y+z+w ⁇ 1.
  • D10 is the 10% cumulative volume particle size of the positive electrode active material for lithium secondary batteries
  • D50 is the 50% cumulative volume particle size
  • D90 is the 90% cumulative volume particle size.
  • a positive electrode for lithium secondary batteries comprising the positive electrode active material for lithium secondary batteries according to any one of [1] to [6].
  • a lithium secondary battery comprising the positive electrode for a lithium secondary battery according to [7].
  • the present invention it is possible to provide a positive electrode active material for a lithium secondary battery that hardly generates gas even when stored in a charged state, a positive electrode for a lithium secondary battery using the same, and a lithium secondary battery.
  • FIG. 1 is a schematic diagram showing an example of a lithium secondary battery
  • FIG. 1 is a schematic diagram showing an example of an all-solid lithium secondary battery
  • FIG. 1 is a schematic diagram showing an example of an all-solid lithium secondary battery
  • the positive electrode active material for a lithium secondary battery of this embodiment includes a lithium metal composite oxide and a Li—X compound containing Li and the element X.
  • the positive electrode active material for lithium secondary batteries satisfies (A) and (B) described later.
  • a metal composite compound (Metal Composite Compound) is hereinafter referred to as “MCC”.
  • a lithium metal composite oxide (Lithium Metal Composite Compound) is hereinafter referred to as “LiMO”.
  • a cathode active material for lithium secondary batteries is hereinafter referred to as "CAM”.
  • the notation “Li” indicates that it is an Li element, not an elemental Li metal, unless otherwise specified.
  • the notation of other elements such as Ni, Co, and Mn is the same.
  • CAMs are particles, and particles include primary particles and secondary particles.
  • primary particles refers to particles that do not appear to have grain boundaries and that constitute secondary particles. More specifically, the term “primary particles” means particles that do not show clear grain boundaries on the particle surface when observed with a scanning electron microscope or the like in a field of view of 5,000 to 20,000 times.
  • secondary particle means a particle in which a plurality of the primary particles are three-dimensionally bonded with gaps therebetween. The secondary particles have a spherical or substantially spherical shape. Generally, the secondary particles are formed by agglomeration of 10 or more primary particles.
  • the primary particles provided in the CAM are primary particles of LiMO.
  • at least some of the primary particles provided by the CAM are provided with a Li—X compound on their surface.
  • the secondary particles contained in the CAM are aggregates of primary particles and have gaps between the primary particles.
  • Li-X compounds exist, for example, on the surfaces and gaps of secondary particles.
  • a Li—X compound present on the surface of the LiMO can act as a film that protects the LiMO from the electrolyte. Therefore, the decomposition reaction of the electrolyte caused by the contact of the electrolyte with LiMO can be suppressed.
  • a Li—X compound containing the element X is highly chemically stable, so it is difficult to be incorporated into the crystal structure of LiMO, and is likely to exist on the surface and in the gaps of LiMO, so that such an effect is exhibited.
  • LiMO is a compound containing Li, Ni, Co, and the element M, which are optional metal elements.
  • the element M is one or more elements selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Al, Zn, Sn, Zr, Ga, B, Si, S and P.
  • Li—X compound is a compound containing Li and the element X.
  • Element X is one or more elements selected from the group consisting of Nb, W and Mo.
  • Specific examples of Li—X compounds include lithium niobate, lithium tungstate, and lithium molybdate. These Li—X compounds have lithium ion conductivity.
  • lithium niobate examples include Li 3 NbO 4 , LiNbO 3 , LiNb 3 O 8 , Li 8 Nb 2 O 9 and the like.
  • Lithium tungstates include LiWO 4 , Li 2 WO 4 or Li 4 WO 5 .
  • Lithium molybdate includes Li 2 MoO 4 .
  • the Li—X compound is preferably lithium niobate or lithium tungstate, and particularly preferably lithium niobate.
  • the local structure of an atom includes, for example, the valence of the atom, adjacent atomic species, connectivity, and the like.
  • the ratio (I/I 0 ) of the X-ray intensity (I 0 ) before irradiating the CAM and the X-ray intensity (I) after passing through the CAM to be measured is measured and analyzed.
  • the CAM's constituent elements and their electronic states can be analyzed by irradiating the surface of the CAM with X-rays and measuring the energy of the generated photoelectrons.
  • XPS analysis it is possible to analyze the composition of the compound containing the element X included in the CAM.
  • the composition analysis of the compound containing element X utilizes XAFS analysis.
  • the fabricated CAM containing the element X is introduced into an XAFS beamline, which is a measurement apparatus, and the XAFS measurement and analysis of the element X are performed under the following conditions.
  • an XAFS measurement of a standard sample of the assumed Li—X compound is also carried out.
  • Measuring device Inter-University Research Institute Corporation High Energy Accelerator Research Organization BL-12C Measurement absorption edge: Nb-K absorption edge, WL absorption edge, Mo-K absorption edge
  • composition analysis of the compound containing element X is performed.
  • CAM satisfies the following (A) and (B). 0.09 ⁇ X(XPS)/X(ICP) ⁇ 0.22 (A) 0.5 ⁇ Li(XPS)/Li(ICP) ⁇ 1.5 (B)
  • X (XPS) is the abundance (%) of the element X on the surface of the CAM particle measured by X-ray photoelectron spectroscopy.
  • X (ICP) is ICP emission spectroscopy It is the abundance ratio (%) of the element X in the particles of the CAM measured by the method.
  • Li (XPS) is the abundance (%) of Li on the surface of the CAM particles measured by X-ray photoelectron spectroscopy.
  • Li (ICP) is the abundance ratio (%) of Li in the CAM particles measured by ICP emission spectroscopy.
  • XPS X-ray photoelectron spectroscopy
  • the constituent elements of the surface of the CAM particle can be analyzed by measuring the energy of photoelectrons generated when the surface of the CAM particle is irradiated with X-rays.
  • the "surface of the CAM particle" where the constituent elements are analyzed by XPS is the outermost surface of the CAM particle and the depth region where photoelectrons generated from the outermost surface toward the center of the particle can escape.
  • This depth region refers to a region up to a depth of approximately 10 nm.
  • XPS can analyze X (XPS) and Li (XPS) on the surface of CAM particles.
  • AlK ⁇ rays are used as the X-ray source, and a neutralization gun (acceleration voltage of 0.3 V, current of 100 ⁇ A) is used for charge neutralization during measurement.
  • a neutralization gun acceleration voltage of 0.3 V, current of 100 ⁇ A
  • analysis software MultiPak (Version 9.9.0.8) is used to calculate the number of elements of each metal element from the peak area of each metal element existing on the surface of the particles in the CAM. A few mg of CAM powder is used for the measurement.
  • the ratio of the number of elements of Li to 100% of the total number of metal elements excluding Li that is, Li (XPS) (unit: %) is obtained.
  • X-ray photoelectron spectrometer used for XPS measurement, for example, PHI5000 VersaProbe III manufactured by ULVAC-Phi, Inc. can be used.
  • ICP measurement the amount of elements X and Li contained in the CAM particles can be analyzed.
  • ICP emission spectrometer for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd. can be used.
  • the number of elements of each metal element is calculated from the amount of each metal element contained in the particles in the CAM obtained by ICP measurement. Then, the ratio of the number of elements of the element X to 100% of the total number of metal elements excluding Li, that is, X (ICP) (unit: %) is obtained.
  • the ratio of the number of Li elements to 100% of the total number of metal elements excluding Li that is, Li (ICP) (unit: %) is obtained.
  • the CAM preferably satisfies any one of the following (A)-1 to (A)-4. 0.10 ⁇ X(XPS)/X(ICP) ⁇ 0.21 (A) ⁇ 1 0.11 ⁇ X(XPS)/X(ICP) ⁇ 0.20 (A)-2 0.12 ⁇ X(XPS)/X(ICP) ⁇ 0.19 (A)-3 0.12 ⁇ X(XPS)/X(ICP) ⁇ 0.18 (A)-4
  • X(XPS)/X(ICP) is the ratio of X(ICP), which is the abundance of element X contained in the secondary particles of the CAM, to X(XPS), which is the abundance of element X on the surface of the secondary particles. Show the ratio.
  • the value of X(XPS)/X(ICP) is an index of how unevenly distributed the element X is between the surface and gaps of the secondary particles. "Secondary particle gap" means a gap that exists inside the secondary particles.
  • the Li—X compound has the property of being less likely to be unevenly distributed inside the secondary particles, and when the presence of the element X is confirmed from the value of X (ICP), the surface of the secondary particles, or the gaps between the secondary particles, Alternatively, element X may be present in both. In the CAM that satisfies (A), the element X is considered to be unevenly distributed in the gaps between the secondary particles.
  • Secondary particles are aggregates of primary particles, and there are spaces (gaps and pores) inside the secondary particles. Secondary particles having such a structure are considered to have a larger inner surface area than the outer surface area of the secondary particles. A decomposition reaction of the electrolytic solution can also occur on the outer and inner surfaces of the secondary particles.
  • the outer surface of the secondary particles means the interface between the space outside the secondary particles and the primary particles that make up the secondary particles, and the inner surface of the secondary particles means the space inside the secondary particles. It means an interface with a primary particle that constitutes a secondary particle.
  • the inner surface of the secondary particles is protected by the Li-X compound at a higher rate than the outer surface of the secondary particles. It is considered that the inner surface of the secondary particles has a greater influence on the decomposition reaction of the electrolytic solution of the entire secondary particles than the outer surface of the secondary particles. Therefore, if the inner surfaces of the secondary particles are protected, the decomposition reaction of the electrolytic solution is effectively suppressed, and it is thought that the amount of gas generated when stored in a charged state can be suppressed.
  • the CAM preferably satisfies any one of the following (B)-1 to (B)-3. 0.55 ⁇ Li (XPS) / Li (ICP) ⁇ 1.4 (B) -1 0.6 ⁇ Li (XPS)/Li (ICP) ⁇ 1.3 (B)-2 0.7 ⁇ Li (XPS)/Li (ICP) ⁇ 1.2 (B)-3
  • Li (XPS) / Li (ICP) is the ratio of Li (ICP), which is the abundance of Li contained in the secondary particles of the CAM, to Li (XPS), which is the abundance of Li on the surface of the secondary particles. show.
  • the value of Li(XPS)/Li(ICP) is an index of how unevenly distributed Li is on the surface and in the gaps of the secondary particles.
  • the uneven distribution of Li according to the value of Li(XPS)/Li(ICP) is the same as the above description of X(XPS)/X(ICP).
  • a CAM that satisfies (B)
  • the existence ratio of Li on the surface and the gaps of the secondary particles is small, in other words, it is considered that Li is uniformly present on the surface and the gaps of the secondary particles.
  • the value of Li (XPS) / Li (ICP) exceeds 1, the residual Li component is unevenly distributed on the surface of the secondary particles, and when it is less than 1, the residual Li component is unevenly distributed inside the secondary particles. Become.
  • the residual Li component is a lithium compound that remains unreacted during the production of CAM, or a lithium compound (for example, lithium carbonate) that is produced by a side reaction with components in the atmosphere.
  • the residual Li component causes generation of gas during charging of the lithium secondary battery.
  • the following two are typical examples of causes for gas generation inside a lithium secondary battery.
  • the first is a reductive decomposition reaction of the electrolytic solution that occurs on the surface of the CAM particles.
  • the surfaces of the CAM particles on which the reductive decomposition reaction occurs are the surfaces of the secondary particles of the CAM and the surfaces of the primary particles constituting the secondary particles.
  • the second is a reaction caused by an acid (for example, hydrogen fluoride) generated when the electrolyte that constitutes the lithium secondary battery is decomposed during charging.
  • an acid for example, hydrogen fluoride
  • the resulting acid reacts with the residual Li component, a gassing side reaction occurs.
  • the residual Li component is unevenly distributed on the surface of the secondary particles, gas is likely to be generated.
  • the Li—X compound is unevenly distributed in the interstices of the secondary particles rather than on the surfaces of the secondary particles.
  • the electrolyte diffuses inside from the surface of the secondary particles.
  • the Li—X compound unevenly distributed in the gaps between the secondary particles acts as a protective film, reductive decomposition of the electrolytic solution is less likely to occur. Therefore, generation of gas can be suppressed.
  • the CAM that satisfies (B) has a small uneven distribution of Li on the surface and inside of the secondary particles, so the residual Li component is less unevenly distributed, and Li is uniformly present on the surface and in the gaps of the secondary particles. it seems to do. Such a CAM is less likely to cause a side reaction with the electrolyte. Therefore, generation of gas can be suppressed.
  • a CAM that satisfies (A) and (B) can provide a lithium secondary battery that hardly generates gas when stored in a charged state for the above reasons.
  • X(XPS) preferably satisfies the following (C). 0.01 ⁇ X(XPS) ⁇ 0.30 (C)
  • X(XPS) preferably satisfies (C)-1 to (C)-3 below. 0.02 ⁇ X(XPS) ⁇ 0.25 (C) ⁇ 1 0.03 ⁇ X(XPS) ⁇ 0.2 (C)-2 0.04 ⁇ X(XPS) ⁇ 0.18 (C)-3
  • the element X is also present on the surface of the secondary particles, and the element X is unevenly distributed in the gaps between the secondary particles.
  • a CAM can provide a lithium secondary battery that generates less gas when stored in a charged state.
  • Li(XPS) preferably satisfies (D) below. 0.4 ⁇ Li (XPS) ⁇ 1.2 (D)
  • Li(XPS) preferably satisfies (D)-1 to (D)-3 below. 0.45 ⁇ Li (XPS) ⁇ 1.15 (D) ⁇ 1 0.50 ⁇ Li (XPS) ⁇ 1.1 (D)-2 0.55 ⁇ Li (XPS) ⁇ 1.05 (D)-3
  • the CAM that satisfies (D) has a small bias in the Li abundance ratio between the surface and the gaps of the secondary particles, and excessive Li exists on the surface of the secondary particles. That is, the residual Li component present on the surfaces of the secondary particles is small, and side reactions with the electrolytic solution are less likely to occur.
  • Such a CAM can provide a lithium secondary battery that generates less gas when stored in a charged state.
  • the CAM that satisfies (D) has an uneven distribution of the element X in the gaps between the secondary particles, and the existence ratio of Li between the surface and the gaps of the secondary particles
  • the bias is small, Li is not excessively present on the surface of the secondary particles, that is, the residual Li component present on the surface of the secondary particles is small, and the gaps between the secondary particles are effectively protected by the Li—X compound. This makes it more difficult for side reactions with the electrolyte to occur.
  • Such a CAM can provide a lithium secondary battery that generates less gas when stored in a charged state.
  • composition formula CAM preferably contains Li, Ni, and element X, and is preferably represented by the following compositional formula (I). More preferably, CAM contains Li, Ni, element X, and one or more elements selected from the group consisting of Co, Mn and Al. Li[Li a (Ni (1-yzw) Co y M z X w ) 1-a ]O 2 (I) (In formula (I), M is one or more elements selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Al, Zn, Sn, Zr, Ga, B, Si, S and P.
  • X is one or more elements selected from the group consisting of Nb, W and Mo, and formula (I) is ⁇ 0.1 ⁇ a ⁇ 0.2, 0 ⁇ y ⁇ 0.5, 0 ⁇ satisfy z ⁇ 0.7, 0 ⁇ w ⁇ 0.1, and y+z+w ⁇ 1.)
  • a is preferably -0.03 or more, more preferably 0 or more, and particularly preferably 0.002 or more, from the viewpoint of improving cycle characteristics. From the viewpoint of obtaining a lithium secondary battery with high initial efficiency, a is preferably 0.1 or less, more preferably 0.09 or less, and particularly preferably 0.07 or less.
  • a preferably satisfies ⁇ 0.03 ⁇ a ⁇ 0.1, more preferably satisfies 0 ⁇ a ⁇ 0.09, and particularly preferably satisfies 0.002 ⁇ a ⁇ 0.07.
  • composition formula (I) from the viewpoint of obtaining a lithium secondary battery with high discharge efficiency, it is preferable to satisfy 0 ⁇ y + z + w ⁇ 0.6, more preferably 0 ⁇ y + z + w ⁇ 0.5, and 0 ⁇ y + z + w It is particularly preferable to satisfy ⁇ 0.25, and more preferably to satisfy 0 ⁇ y+z+w ⁇ 0.2.
  • y is preferably 0.05 or more, more preferably 0.08 or more, from the viewpoint of obtaining a lithium secondary battery with low battery internal resistance. From the viewpoint of obtaining a lithium secondary battery with high thermal stability, it is preferably 0.4 or less, more preferably 0.3 or less.
  • the upper limit and lower limit of y can be combined arbitrarily. Examples of combinations include 0.05 ⁇ y ⁇ 0.4 and 0.08 ⁇ y ⁇ 0.3.
  • z is preferably 0.0002 or more, more preferably 0.0005 or more, from the viewpoint of improving cycle characteristics. Moreover, it is preferably 0.15 or less, more preferably 0.13 or less, and particularly preferably 0.10 or less.
  • the upper limit and lower limit of z can be combined arbitrarily. Examples of combinations include 0.0002 ⁇ z ⁇ 0.15, 0.0005 ⁇ z ⁇ 0.13, and 0.0005 ⁇ z ⁇ 0.10. z preferably satisfies 0.0002 ⁇ z ⁇ 0.15.
  • w is preferably 0.001 or more, more preferably 0.002 or more, from the viewpoint of improving cycle characteristics. Moreover, it is preferably 0.09 or less, more preferably 0.08 or less, and particularly preferably 0.07 or less.
  • the upper limit and lower limit of w can be combined arbitrarily. Examples of combinations include 0.001 ⁇ w ⁇ 0.09, 0.002 ⁇ w ⁇ 0.08, and 0.002 ⁇ w ⁇ 0.07. w preferably satisfies 0.001 ⁇ w ⁇ 0.09.
  • M is preferably at least one element selected from the group consisting of Mn, Ti, Mg, Al, W, Nb, Zr, and B, and from the group consisting of Mn, Al, W, Nb, Zr, and B At least one selected element is more preferred.
  • Composition formula (I) satisfies 0.002 ⁇ a ⁇ 0.07, 0.08 ⁇ y ⁇ 0.3, 0.0002 ⁇ z ⁇ 0.15 and 0.001 ⁇ w ⁇ 0.09. preferable.
  • composition analysis of CAM can be measured using an ICP emission spectrometer after dissolving the obtained CAM powder in hydrochloric acid.
  • ICP emission spectrometer for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd. can be used.
  • the crystal structure of CAM is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structure is: P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P61, P65, P62, P64, P63, P-6, P6/m, P63/m, P622, From P6122, P6522, P6222, P6422, P6322, P6mm, P6cc, P63cm, P63mc, P-6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P63/mcm and P63/mmc belong to any one space group selected from the group consisting of
  • the monoclinic crystal structure consists of P2, P21, C2, Pm, Pc, Cm, Cc, P2/m, P21/m, C2/m, P2/c, P21/c and C2/c. It belongs to any one space group selected from the group.
  • the crystal structure is a hexagonal crystal structure assigned to the space group R-3m, or a monoclinic crystal structure assigned to C2/m.
  • a crystalline structure is particularly preferred.
  • the crystal structure of CAM can be calculated by powder X-ray diffraction measurement using CuK ⁇ as a radiation source and a diffraction angle 2 ⁇ measurement range of 10-90°. Specifically, it can be confirmed by observation using a powder X-ray diffraction measurement device (for example, Ultima IV manufactured by Rigaku Corporation).
  • a powder X-ray diffraction measurement device for example, Ultima IV manufactured by Rigaku Corporation.
  • D10 , D90 and D50 >> D 10 , D 90 and D 50 of the CAM preferably satisfy the following (E). ( D90 - D50 )/( D50 - D10 ) ⁇ 3.0 (E) (In (E), D10 is the 10% cumulative volume particle size of CAM. D50 is the 50% cumulative volume particle size of CAM. D90 is the 90% cumulative volume particle size of CAM.)
  • a CAM that satisfies (E) is easy to fill when manufacturing a positive electrode, and tends to be in good contact with a conductive aid. Therefore, a positive electrode with low resistance can be manufactured.
  • the CAM that satisfies (E) suppresses the presence of coarse particles, makes it less likely that particle cracking will occur during the production of the positive electrode, and will less likely cause side reactions on the surface of the CAM. Therefore, generation of gas can be suppressed.
  • D 10 , D 50 and D 90 can be measured by the following dry method.
  • dry particle size distribution is measured with a laser diffraction particle size distribution meter using CAM 2g to obtain a volume-based cumulative particle size distribution curve.
  • the value of the particle diameter at 10% accumulation from the microparticle side is D 10 ( ⁇ m)
  • the particle diameter value at 50% accumulation from the microparticle side is D 50 ( ⁇ m)
  • the microparticles D 90 ( ⁇ m) is the value of the particle diameter at 90% accumulation from the particle side.
  • MS2000 manufactured by Malvern for example, can be used as a laser diffraction particle size distribution analyzer.
  • the D50 of compound X described below can be measured in the same manner as above, except that compound X is used instead of CAM.
  • the CAM preferably has a BET specific surface area of 1.0 m 2 /g or more. Also, the CAM preferably has a BET specific surface area of 2.5 m 2 /g or less. The CAM preferably has a BET specific surface area of 1.2-2.5 m 2 /g, more preferably 1.4-2.5 m 2 /g.
  • a CAM having a BET specific surface area equal to or higher than the above lower limit facilitates enhancing the output characteristics of the lithium secondary battery.
  • a CAM having a BET specific surface area equal to or less than the above upper limit value is used, the contact area between the CAM and the electrolytic solution is less likely to increase, and gas due to decomposition of the electrolytic solution is less likely to be generated.
  • the BET specific surface area of CAM can be measured with a BET specific surface area measuring device.
  • a BET specific surface area measuring device for example, Macsorb (registered trademark) manufactured by Mountech Co., Ltd. can be used.
  • powdery CAM it is preferable to dry it at 105° C. for 30 minutes in a nitrogen atmosphere as a pretreatment.
  • N-methyl-2-pyrrolidone is used as an organic solvent when preparing the positive electrode mixture.
  • Acetylene black is used as the conductive material.
  • Polyvinylidene fluoride is used as the binder.
  • the obtained positive electrode mixture is applied to an Al foil having a thickness of 40 ⁇ m as a current collector, dried at 60° C. for 1 hour, and vacuum-dried at 150° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of this positive electrode for a lithium secondary battery is 34.96 cm 2 .
  • the resulting negative electrode mixture was applied to a Cu foil having a thickness of 10 ⁇ m as a current collector, dried at 60° C. for 1 hour, and vacuum-dried at 120° C. for 8 hours to obtain a negative electrode for a lithium secondary battery. rice field.
  • the electrode area of this negative electrode for lithium secondary battery was 37.44 cm 2 .
  • a separator (polyethylene porous film) is placed on the negative electrode produced in (Preparation of negative electrode for lithium secondary battery), and the lithium secondary battery prepared in (Preparation of positive electrode for lithium secondary battery) is placed thereon. After placing the positive electrode, wrap it with an aluminum laminate film. 1000 .mu.l of electrolyte solution is poured thereinto, and the aluminum laminate is sealed by a vacuum packaging machine to produce a lithium secondary battery (pouch type).
  • the electrolytic solution a solution obtained by dissolving LiPF 6 at a ratio of 1.3 mol/l in a mixed solution of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate (16:10:74 (volume ratio) is used.
  • the amount of gas generated is measured by the following method.
  • the pouch-type lithium secondary battery is formed under the following conditions. Formation conditions: Charge to 10% SOC at 0.05 CA at a test temperature of 25 ° C., leave for 10 hours at a test temperature of 60 ° C., then CC-CV charge to 4.3 V at 0.1 CA at a test temperature of 25 ° C. Current is charged to 0.05 CA. Further, after discharging to 2.5 V at 0.2 CA, two cycles of charging and discharging at 0.2 CA are performed.
  • the Archimedes method is a method of measuring the actual volume of the entire lithium secondary battery from the difference between the weight of the lithium secondary battery in air and the weight in water using an automatic hydrometer.
  • the amount of gas generated (unit: cc/g) is determined from the difference between the volume after storage at 60°C for 7 days and the volume before storage.
  • the mass (g) in the unit of the amount of generated gas is the standard for the weight of the CAM.
  • the above test is an accelerated test assuming storage of the lithium secondary battery in a charged state at room temperature for a long period of time, and is a test condition generally used in this technical field. If the amount of gas generated in the above test is small, it can be evaluated that gas is hardly generated even when the battery is stored in a charged state at room temperature for a long period of time.
  • the amount of gas generated measured by the above method is 0.13 cc/g or less, it is evaluated as "difficult to generate gas even when stored at room temperature for a long period of time in a charged state.”
  • CAM production method 1 is a method in which the steps of producing MCC, mixing MCC, a lithium compound and compound X to obtain a mixture, and obtaining CAM are performed in this order.
  • MCC is a metal composite oxide or metal composite hydroxide.
  • Compound X will be described later.
  • MCC containing Ni and optional elements Co and element M is prepared.
  • MCC can be produced by a batch co-precipitation method or a continuous co-precipitation method. The manufacturing method will be described in detail below, taking a metal composite hydroxide containing Ni, Co and Al as an example.
  • a nickel salt solution, a cobalt salt solution, an aluminum salt solution, and a complexing agent are reacted by a co-precipitation method, particularly the continuous method described in JP-A-2002-201028, to form Ni (1-yz) Co
  • a metal composite hydroxide represented by yAlz (OH) 2 (wherein y+z ⁇ 1 ) is produced.
  • the nickel salt that is the solute of the nickel salt solution is not particularly limited, but for example, one or more of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.
  • cobalt salt that is the solute of the cobalt salt solution
  • cobalt salt solution for example, one or more of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used.
  • aluminum salt that is the solute of the aluminum salt solution for example, aluminum sulfate, sodium aluminate, or the like can be used.
  • the above metal salts are used in proportions corresponding to the composition ratio of Ni (1-yz) Co y Al z (OH) 2 . Also, water is used as a solvent.
  • a complexing agent is a compound capable of forming a complex with Ni, Co, and Al ions in an aqueous solution.
  • Examples include ammonium ion donors, hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracildiacetic acid, and glycine.
  • Ammonium ion donors include ammonium salts such as ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, and ammonium fluoride.
  • the complexing agent may not be contained, and when the complexing agent is contained, the amount of the complexing agent contained in the mixed solution containing the nickel salt solution, the cobalt salt solution, the aluminum salt solution and the complexing agent is, for example, The mol ratio to the total number of mols of the metal salt is greater than 0 and 2.0 or less.
  • the pH value in this specification is defined as the value measured when the temperature of the mixed liquid is 40°C. If the temperature of the mixed liquid sampled from the reaction tank is not 40°C, the mixed liquid is heated or cooled to 40°C and the pH is measured.
  • Ni, Co, and Al react to form Ni (1-yz) Co y Al. z (OH) 2 is produced.
  • the temperature of the reaction vessel is controlled, for example, within the range of 20-80°C, preferably 30-70°C.
  • the pH value of the mixed solution in the reaction vessel is controlled within the range of pH 9-13, preferably pH 11-13.
  • the materials in the reaction vessel are appropriately agitated to mix.
  • the reactor used in the continuous co-precipitation process is an overflow-type reactor in which the formed reaction precipitate is overflowed and separated from the top of the reactor.
  • the inside of the reaction tank may be an inert atmosphere.
  • An inert atmosphere suppresses the aggregation of elements that are more easily oxidized than Ni, and a uniform MCC can be obtained.
  • oxygen may be introduced into the reaction tank.
  • a method of introducing oxygen into the reactor includes a method of bubbling an oxygen-containing gas. At this time, it is preferable to introduce oxygen gas while maintaining an inert atmosphere without introducing a large amount of oxygen.
  • the reaction product obtained is washed with water and then dried to obtain a metal composite hydroxide.
  • the reaction product may optionally be washed with weak acid water, sodium hydroxide, or potassium hydroxide. It may be washed with an alkaline solution.
  • the metal composite oxide can be prepared by oxidizing the metal composite hydroxide (oxidation step).
  • oxidation step it is preferable that the total time from the start of temperature rise to the end of temperature retention is 1 hour or more and 30 hours or less.
  • the heating rate until reaching the maximum holding temperature is preferably 180° C./hour or more, more preferably 200° C./hour or more, and particularly preferably 250° C./hour or more.
  • the maximum holding temperature in this specification is the maximum temperature of the holding temperature of the furnace atmosphere in the oxidation step or the firing step described later, and when the oxidation step or firing step has a plurality of steps, the maximum holding temperature It means the temperature of the process of oxidation or calcination at the highest temperature among the processes.
  • the heating rate in this specification refers to the time from the start of temperature rise to the maximum holding temperature in the apparatus used in the oxidation process or the firing process, and the time from the temperature at the start of heating in the furnace to the maximum holding temperature. It is calculated from the temperature difference between
  • various gases for example, inert gases such as nitrogen, argon and carbon dioxide, oxidizing gases such as air and oxygen, or mixed gases thereof may be supplied into the reaction vessel.
  • inert gases such as nitrogen, argon and carbon dioxide
  • oxidizing gases such as air and oxygen, or mixed gases thereof
  • An oxidizing agent may also be used.
  • peroxides such as hydrogen peroxide, peroxide salts such as permanganate, perchlorates, hypochlorites, nitric acid, halogens, ozone, and the like can be used.
  • Drying conditions for MCC are not particularly limited.
  • the drying conditions may be, for example, any of the following conditions 1) to 3). 1) Conditions under which the metal composite oxide or metal composite hydroxide is not oxidized or reduced. Specifically, the drying conditions are such that the metal composite oxide is maintained as a metal composite oxide, and the metal composite hydroxide is maintained as a metal composite hydroxide. 2) Conditions under which the metal composite hydroxide is oxidized. Specifically, the drying conditions are such that the metal composite hydroxide is oxidized to the metal composite oxide. 3) Conditions under which the metal composite oxide is reduced. Specifically, the drying conditions are such that the metal composite oxide is reduced to the metal composite hydroxide.
  • An inert gas such as nitrogen, helium or argon may be used in the atmosphere during drying in order to create a condition in which the metal composite oxide or metal composite hydroxide is not oxidized or reduced.
  • Oxygen or air may be used in the drying atmosphere to create conditions for oxidizing the metal composite hydroxide.
  • a reducing agent such as hydrazine or sodium sulfite may be used in an inert gas atmosphere during drying.
  • the MCC After drying the MCC, it may be appropriately classified.
  • lithium compound one or more of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, and lithium oxide may be used in combination.
  • lithium hydroxide and lithium acetate can react with carbon dioxide in the air and contain several percent of lithium carbonate.
  • a compound X is a compound containing the element X described above.
  • Compound X containing Nb includes niobium oxide (Nb 2 O 5 , NbO).
  • Compound X containing W includes tungsten oxide (WO 3 , WO 2 ), tungstic acid, and tungsten chloride.
  • Compound X containing Mo includes molybdenum oxide (MoO 3 ).
  • a CAM comprising LiMO and a Li-X compound and satisfying (A) and (B) is obtained.
  • a mixture containing MCC, a lithium compound, and compound X may be referred to as mixture 1.
  • the MCC reacts with the lithium compound to grow primary particles, which are aggregated and sintered to form secondary particles having gaps. Furthermore, Li contained in the lithium compound reacts with element X contained in compound X to form a Li—X compound.
  • the Li—X compound exists in the interstices of the secondary particles.
  • the amount of compound X added varies depending on the type of element X.
  • the amount of the compound X to be added is appropriately adjusted according to the ratio of the substance amount of the element X to the total substance amount of the metal elements contained in MCC.
  • the ratio of the substance amount of the element X is preferably 0.1-2.5 mol%.
  • the circularity value at the time of 50% accumulation from the low circularity particle side is the 50% cumulative volume circularity C50 .
  • the circularity values at 10% and 90% cumulative from the low circularity particle side are 10% cumulative volume circularity C 10 and 90% cumulative volume circularity, respectively. degree C 90 .
  • Morphologi G3SE Malvern's Morphologi series (apparatus name: Morphologi G3SE) can be used to measure circularity.
  • the C50 of the compound X containing Nb is preferably 0.6 or more, more preferably 0.7 or more, and particularly preferably 0.8 or more.
  • (C 90 -C 10 )/C 50 of compound X containing Nb is preferably 0.9 or less, more preferably 0.8 or less, and particularly preferably 0.7 or less.
  • (C 90 -C 10 )/C 50 of compound X containing Nb is preferably 0.30 or more, more preferably 0.35 or more, and particularly preferably 0.40 or more.
  • (C 90 -C 10 )/C 50 of compound X containing Nb is, for example, 0.30-0.9, 0.35-0.8, 0.40-0.7.
  • the C50 of the compound X containing W or Mo is preferably 0.6 or more, more preferably 0.7 or more, and particularly preferably 0.8 or more.
  • (C 90 -C 10 )/C 50 of compound X containing W or Mo is preferably 0.8 or less, more preferably 0.7 or less, particularly 0.6 or less. preferable.
  • (C 90 -C 10 )/C 50 of compound X containing W or Mo is preferably 0.1 or more, more preferably 0.15 or more, and particularly preferably 0.25 or more.
  • (C 90 -C 10 )/C 50 of compound X containing W or Mo is, for example, 0.1-0.8, 0.15-0.7, 0.25-0.6.
  • (C 90 -C 10 )/C 50 When (C 90 -C 10 )/C 50 is within the above range, it means that compound X has a certain variation in circularity.
  • (C 90 -C 10 )/C 50 is equal to or less than the above upper limit, the compound X having a low degree of circularity contributes to an increase in the specific surface area, thereby making it easier for the compound X to come into contact with MCC.
  • the element X becomes easier to diffuse on the surface of the MCC.
  • the secondary particles of the resulting CAM tend to contain Li—X compounds.
  • (C 90 -C 10 )/C 50 is equal to or higher than the lower limit, the compound X with low circularity is not too much and easily comes into contact with the MCC, facilitating surface diffusion into the interstices of the secondary particles of the CAM.
  • D 50 ( ⁇ m) of the compound X is preferably 0.02-20 ⁇ m, more preferably 0.05-14 ⁇ m. more preferred.
  • the D50 of the Nb-containing compound X is preferably 10 ⁇ m or less, more preferably 5.0 ⁇ m or less, and even more preferably 3.0 ⁇ m or less.
  • the D50 of the Nb-containing compound X is preferably 0.02 ⁇ m or more, particularly preferably 0.05 ⁇ m or more.
  • the D 50 of compound X containing Nb is for example 0.02-10 ⁇ m, 0.05-3.0 ⁇ m.
  • the D50 of compound X containing W or Mo is preferably 1.29 ⁇ m or less, more preferably 1.28 ⁇ m or less.
  • the D50 of the compound X containing W or Mo is preferably 0.02 ⁇ m or more, particularly preferably 0.05 ⁇ m or more.
  • the D 50 of compound X containing W or Mo is, for example, 0.02-1.29 ⁇ m, 0.05-1.28 ⁇ m.
  • MCC lithium compound
  • compound X X-dielectric X
  • the mixing device is not limited as long as MCC, the lithium compound, and the compound X can be uniformly mixed, it is preferable to use, for example, a Loedige mixer for mixing.
  • the lithium compound, MCC and compound X are used in consideration of the composition ratio of the final product.
  • the lithium compound, MCC, and compound X are used in proportions corresponding to the compositional ratio of the above compositional formula (I).
  • the CAM obtained is obtained by mixing the Li contained in the lithium compound and the total metal elements contained in the MCC at a molar ratio of 0.98 or more and 1.1 or less.
  • (B) and (D) of (B) and (D) are easily controlled within the preferred range of the present embodiment.
  • Step of obtaining CAM By firing a mixture of MCC, a lithium compound and compound X, a CAM with LiMO and a Li—X compound in the interstices can be obtained.
  • dry air, atmospheric air, an oxygen atmosphere, an inert atmosphere (nitrogen, argon), a mixed gas of these, or the like is used depending on the desired composition. In this embodiment, it is preferable to bake in an oxygen atmosphere.
  • the firing process may be a single firing or may have multiple firing stages. When there are multiple firing steps, the step of firing at the highest temperature is referred to as main firing. Temporary sintering may be performed before main sintering at a temperature lower than that of main sintering. Further, after the main firing, post-baking may be performed in which the material is fired at a temperature lower than that of the main firing.
  • the firing temperature (maximum holding temperature) of the main firing is preferably 600° C. or higher, more preferably 650° C. or higher, and particularly preferably 700° C. or higher, from the viewpoint of promoting the growth of LiMO particles. From the viewpoint of preventing cracks from being formed in the LiMO particles and maintaining the particle strength, the temperature is preferably 1200° C. or lower, more preferably 1100° C. or lower, and particularly preferably 1000° C. or lower. In addition, when the firing process is performed only once, it is preferable to carry out at the firing temperature of the main firing.
  • the upper limit and lower limit of the maximum holding temperature for main firing can be combined arbitrarily. Examples of combinations include 600-1200°C, 650-1100°C and 700-1000°C. When the main firing is carried out at 600° C. or higher, a CAM that satisfies (A), (B), (C) and (D) is likely to be obtained.
  • the firing temperature for pre-firing or post-firing should be lower than the firing temperature for main firing, and may be in the range of 350-800°C, for example.
  • the firing temperature may be appropriately adjusted according to the type of transition metal element used, the type and amount of precipitant and inert melting agent.
  • the holding time at the maximum holding temperature is 0.1 to 20 hours, preferably 0.5 to 10 hours.
  • the rate of temperature increase to the maximum holding temperature is preferably 50-400° C./hour, and the rate of temperature decrease from the maximum holding temperature to room temperature is preferably 10-400° C./hour.
  • a cleaning liquid such as pure water or an alkaline cleaning liquid.
  • alkaline cleaning solutions include LiOH (lithium hydroxide), NaOH ( sodium hydroxide), KOH (potassium hydroxide), Li2CO3 (lithium carbonate), Na2CO3 ( sodium carbonate), and K2CO3 .
  • An aqueous solution of one or more anhydrides selected from the group consisting of (potassium carbonate) and (NH 4 ) 2 CO 3 (ammonium carbonate) and an aqueous solution of the hydrate of said anhydride can be mentioned. Ammonia can also be used as the alkali.
  • the method of contacting the cleaning liquid and the fired product includes a method of putting the fired product into each cleaning solution and stirring it, a method of showering each cleaning solution as shower water on the fired product, and a method of pouring the fired product into the cleaning solution. is added and stirred, the fired product is separated from each cleaning solution, and then each cleaning solution is used as shower water to be applied to the separated fired product.
  • the temperature of the cleaning liquid used for cleaning is preferably 15°C or lower, more preferably 10°C or lower, and particularly preferably 8°C or lower.
  • the baked product after washing may be dried as appropriate.
  • a CAM is obtained through the above steps.
  • CAM production method 2 is a method in which a step of producing MCC, a step of mixing MCC and a lithium compound to obtain LiMO, and a step of mixing LiMO and compound X and firing to obtain CAM are performed in this order. is.
  • Step of obtaining LiMO The obtained MCC and a lithium compound are mixed. LiMO is obtained by firing a mixture containing MCC and a lithium compound.
  • the same compound as the lithium compound described in CAM production method 1 can be used.
  • the above lithium compound and MCC are used in consideration of the composition ratio of the final product.
  • the lithium compound and MCC are Li[Li a (Ni (1-yz) Co y Al z ) 1-a ]O 2 It is used at a ratio corresponding to the composition ratio (in the formula, y+z ⁇ 1).
  • the CAM which is the final product, when the Li contained in the lithium compound and the total metal elements contained in the MCC are mixed at a ratio such that the molar ratio is 0.98 to 1.1, the resulting CAM ( It is easy to control B) and (D) within the preferred ranges of the present embodiment.
  • dry air, oxygen atmosphere, inert atmosphere, etc. are used depending on the desired composition.
  • the firing process for firing the mixture containing MCC and the lithium compound is preferably performed only once.
  • firing of a mixture containing MCC and a lithium compound is referred to as primary firing.
  • the primary firing should be lower than the firing temperature of the secondary firing described later, for example, the range of 350°C or higher and 800°C or lower.
  • the CAM is obtained by mixing the fired product obtained after the primary firing with the compound X and firing the mixture.
  • a step of firing a mixture of the fired product obtained after the primary firing and the compound X is referred to as secondary firing.
  • the MCC reacts with the lithium compound to grow the primary particles, and the primary particles are aggregated and sintered to form secondary particles with gaps.
  • the element X is likely to exist in the gaps between the secondary particles. Since the sintering of the primary particles and the diffusion of the element X into the gaps between the primary particles are likely to occur in the secondary firing process, it is considered that the element X is likely to exist in the gaps of the secondary particles.
  • the firing temperature (maximum holding temperature) of the secondary firing is preferably 600° C. or higher, more preferably 650° C. or higher, and more preferably 700° C. or higher, from the viewpoint of allowing the Li—X compound to exist uniformly in the gaps between the secondary particles of the CAM. Especially preferred. From the viewpoint of preventing crack formation in the CAM particles and maintaining particle strength, the temperature is preferably 1200° C. or lower, more preferably 1100° C. or lower, and particularly preferably 1000° C. or lower.
  • the upper limit and lower limit of the highest holding temperature for secondary firing can be combined arbitrarily. Examples of combinations include 600-1200°C, 650-1100°C and 700-1000°C. If the secondary firing is carried out at 600° C. or higher, (A), (B), (C) and (D) can be easily controlled within the preferred ranges of the present embodiment.
  • the firing temperature of the secondary firing may be appropriately adjusted according to the type of transition metal element used, the type and amount of precipitant and inert melting agent.
  • the holding time at the maximum holding temperature is 0.1 to 20 hours, preferably 0.5 to 10 hours.
  • the rate of temperature increase to the maximum holding temperature is preferably 50-400° C./hour, and the rate of temperature decrease from the maximum holding temperature to room temperature is preferably 10-400° C./hour.
  • Air, oxygen, nitrogen, argon, or a mixed gas of these can be used as the atmosphere for the secondary firing.
  • the amount of compound X to be added is adjusted according to the type of element X so that the ratio of the substance amount of element X to the total substance amount of metal elements other than Li contained in LiMO is within a preferable range.
  • the ratio of the substance amount of the element X is preferably 0.1-2.5 mol%.
  • Compound X and LiMO are uniformly mixed until there are no compound X aggregates or LiMO aggregates.
  • the mixing device is not limited as long as the compound X and LiMO can be uniformly mixed, it is preferable to use, for example, a Loedige mixer for mixing.
  • a CAM is obtained by the above steps.
  • Lithium secondary battery suitable for using the CAM of this embodiment. Furthermore, a positive electrode for a lithium secondary battery (hereinafter sometimes referred to as a positive electrode) suitable for using the CAM of the present embodiment will be described. Furthermore, a lithium secondary battery suitable for use as a positive electrode will be described.
  • An example of a lithium secondary battery suitable for using the CAM of the present embodiment has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
  • FIG. 1 is a schematic diagram showing an example of a lithium secondary battery.
  • a cylindrical lithium secondary battery 10 is manufactured as follows.
  • An electrode group 4 is formed by laminating a positive electrode 2, a separator 1, and a negative electrode 3 in this order and winding them.
  • the positive electrode 2 has, for example, a positive electrode active material layer containing CAM, and a positive electrode current collector having the positive electrode active material layer formed on one surface.
  • a positive electrode 2 can be manufactured by first preparing a positive electrode mixture containing CAM, a conductive material, and a binder, and supporting the positive electrode mixture on one surface of a positive electrode current collector to form a positive electrode active material layer.
  • Examples of the negative electrode 3 include an electrode in which a negative electrode mixture containing a negative electrode active material (not shown) is supported on a negative electrode current collector, and an electrode composed solely of a negative electrode active material. can be manufactured in
  • the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the electrolyte is arranged between the positive electrode 2 and the negative electrode 3. . Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing member 8, the lithium secondary battery 10 can be manufactured.
  • the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape of the electrode group 4 cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. can be mentioned.
  • a shape defined by IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted.
  • IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500
  • a shape such as a cylindrical shape or a rectangular shape can be mentioned.
  • the lithium secondary battery is not limited to the wound type configuration described above, and may have a layered configuration in which a layered structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • laminated lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode, separator, negative electrode and electrolyte that constitute the lithium secondary battery for example, the configurations, materials and manufacturing methods described in [0113] to [0140] of WO2022/113904A1 can be used.
  • the CAM of this embodiment can be used as a CAM for an all-solid lithium secondary battery.
  • FIG. 2 is a schematic diagram showing an example of an all-solid lithium secondary battery.
  • the all-solid lithium secondary battery 1000 shown in FIG. 2 has a laminate 100 having a positive electrode 110, a negative electrode 120, and a solid electrolyte layer 130, and an outer package 200 that accommodates the laminate 100.
  • the all-solid lithium secondary battery 1000 may have a bipolar structure in which a CAM and a negative electrode active material are arranged on both sides of a current collector. Specific examples of bipolar structures include structures described in JP-A-2004-95400.
  • the positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112 .
  • the positive electrode active material layer 111 contains the above-described CAM and solid electrolyte. Moreover, the positive electrode active material layer 111 may contain a conductive material and a binder.
  • the negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122 .
  • the negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material.
  • the laminate 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122 .
  • all-solid lithium secondary battery 1000 may have a separator between positive electrode 110 and negative electrode 120 .
  • the all-solid lithium secondary battery 1000 further has an insulator (not shown) for insulating the laminate 100 and the exterior body 200 and a sealing body (not shown) for sealing the opening 200 a of the exterior body 200 .
  • a container molded from a highly corrosion-resistant metal material such as aluminum, stainless steel, or nickel-plated steel can be used.
  • a container in which a laminated film having at least one surface subjected to corrosion-resistant processing is processed into a bag shape can also be used.
  • Examples of the shape of the all-solid lithium secondary battery 1000 include coin-shaped, button-shaped, paper-shaped (or sheet-shaped), cylindrical, rectangular, and laminated (pouch-shaped).
  • the all-solid-state lithium secondary battery 1000 is illustrated as having one laminate 100 as an example, but the present embodiment is not limited to this.
  • the all-solid-state lithium secondary battery 1000 may have a configuration in which the laminate 100 is used as a unit cell and a plurality of unit cells (laminate 100 ) are sealed inside the exterior body 200 .
  • the CAM of the present embodiment is used in the lithium secondary battery configured as described above, it is possible to provide a lithium secondary battery that generates a small amount of gas when stored in a charged state.
  • the positive electrode having the configuration described above has the CAM having the configuration described above, the amount of gas generated can be reduced even if the lithium secondary battery is stored in a charged state.
  • the lithium secondary battery configured as described above has the positive electrode described above, it becomes a secondary battery that generates a small amount of gas even when stored in a charged state.
  • One aspect of the present invention includes [11] to [22].
  • a CAM comprising LiMO and the Li—X compound, wherein the Li—X compound is an oxide having lithium ion conductivity, and satisfies (A)-3 and (B) above.
  • CAM CAM.
  • C X(XPS)
  • the CAM according to [11] or [12] wherein the Li(XPS) satisfies (D)-2 above.
  • the CAM according to any one of [11] to [13], which satisfies the following compositional formula (I)-1.
  • M is one or more elements selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Al, Zn, Sn, Zr, Ga, B, Si, S and P.
  • X (XPS) and Li (XPS) were measured by the method described in [Measurement of X (XPS) and Li (XPS)] above.
  • composition analysis The composition analysis of CAM was performed by the method described in [Composition analysis] above.
  • C 10 , C 10 , and C 90 were measured by the above (method for measuring circularity).
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution were mixed at a ratio of 88:9:3 for the atomic ratio of Ni, Co, and Al to prepare a mixed raw material solution.
  • this mixed raw material liquid and an aqueous solution of ammonium sulfate were continuously added as a complexing agent into the reactor while stirring.
  • An aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the mixed liquid in the reaction tank was 11.6 (when measured at a liquid temperature of 40° C.), to obtain particles of metal composite hydroxide.
  • After washing the metal composite hydroxide particles they were dehydrated with a centrifuge, isolated, and dried at 105° C. to obtain MCC1, which is a metal composite hydroxide.
  • the Nb 2 O 5 used in Example 1 had a D 50 of 1.26 ⁇ m, a C 50 of 0.82, and a (C 90 -C 10 )/C 50 of 0.41.
  • the resulting mixture was fired at 650° C. for 5 hours in an oxygen atmosphere to obtain a fired product.
  • WO 3 used in Example 3 had a D 50 of 0.25 ⁇ m, a C 50 of 0.86, and a (C 90 ⁇ C 10 )/C 50 of 0.29.
  • Preparation of CAM-11 Same as Example 1, except that Nb 2 O 5 with a D 50 of 34.0 ⁇ m, a C 50 of 0.69, and a (C 90 -C 10 )/C 50 of 0.50 was used. A similar experiment was performed to obtain CAM-11.
  • Preparation of CAM-12 Same as Example 1, except using Nb 2 O 5 with a D 50 of 1.30 ⁇ m, a C 50 of 0.82, and a (C 90 -C 10 )/C 50 of 0.27. A similar experiment was performed to obtain CAM-12.
  • the resulting mixture was fired at 650° C. for 5 hours in an oxygen atmosphere to obtain a fired product.
  • XPS X (XPS), X (ICP), X (XPS)/X (ICP), Li (XPS), Li (ICP), Li (XPS) of CAM-1 to CAM-3 and CAM-11 to CAM-14 /Li(ICP), D 10 , D 50 , D 90 , (D 90 ⁇ D 50 )/(D 50 ⁇ D 10 ), BET specific surface area and gas generation rate are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention provides a positive electrode active material for lithium secondary batteries, said positive electrode active material comprising a lithium metal composite oxide and a Li-X compound containing Li and element X. The Li-X compound is an oxide having lithium ion conductivity, the element X is at least one element selected from the group consisting of Nb, W, and Mo, and expressions (A) and (B) are satisfied. (A): 0.09 ≤ X(XPS)/X(ICP) ≤ 0.22 (B): 0.5 ≤ Li(XPS)/Li(ICP) ≤ 1.5

Description

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
 本発明は、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池に関する。
 本願は、2021年12月15日に、日本に出願された特願2021-203448号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a positive electrode active material for lithium secondary batteries, a positive electrode for lithium secondary batteries, and a lithium secondary battery.
This application claims priority based on Japanese Patent Application No. 2021-203448 filed in Japan on December 15, 2021, the contents of which are incorporated herein.
 リチウム二次電池を構成する正極には、リチウム二次電池用正極活物質が用いられる。リチウム二次電池用正極活物質は、リチウム金属複合酸化物を含む。 A positive electrode active material for lithium secondary batteries is used for the positive electrode that constitutes the lithium secondary battery. A positive electrode active material for a lithium secondary battery contains a lithium metal composite oxide.
 例えば特許文献1は、リチウム金属複合酸化物に相当する主成分原料と、Mo、W、Nb、Ta及びReから選ばれる少なくとも1種以上の元素を含有する酸化物を含むリチウム遷移金属系化合物粉体を開示している。 For example, Patent Document 1 describes a lithium transition metal compound powder containing an oxide containing at least one or more elements selected from a main component raw material corresponding to a lithium metal composite oxide and Mo, W, Nb, Ta and Re. revealing the body
 このようなリチウム遷移金属系化合物粉体は、リチウム二次電池用正極材料としての使用において、レート特性や出力特性を向上させ、低コスト化、耐高電圧化及び高安全性化が図れることが特許文献1に記載されている。 Such a lithium transition metal-based compound powder is expected to improve rate characteristics and output characteristics when used as a positive electrode material for lithium secondary batteries, thereby achieving cost reduction, high voltage resistance, and high safety. It is described in Patent Document 1.
JP-A-2008-305777JP-A-2008-305777
 リチウム二次電池の応用が進む中、電池特性や安全性の他、より長寿命のリチウム二次電池を提供できるリチウム二次電池用正極活物質が求められる。
 リチウム二次電池の寿命を短くする現象として、充電時にリチウム二次電池が膨れる現象が知られている。この現象は、リチウム二次電池が充電状態の際に生じる副反応により発生するガスが原因であることが知られている。そのため、充電状態での保管が想定されるリチウム二次電池において、ガスの発生を抑制することは重要である。
As the application of lithium secondary batteries progresses, positive electrode active materials for lithium secondary batteries that can provide lithium secondary batteries with longer life as well as battery characteristics and safety are in demand.
A phenomenon that a lithium secondary battery swells during charging is known as a phenomenon that shortens the life of a lithium secondary battery. It is known that this phenomenon is caused by gas generated by a side reaction that occurs when the lithium secondary battery is in a charged state. Therefore, it is important to suppress gas generation in lithium secondary batteries that are expected to be stored in a charged state.
 本発明は上記事情に鑑みてなされたものであって、充電状態で保管される場合でもガスが発生しにくいリチウム二次電池用正極活物質、これを用いたリチウム二次電池用正極及びリチウム二次電池を提供することを目的とする。 The present invention has been made in view of the above circumstances. An object of the present invention is to provide a secondary battery.
 本発明の一態様は[1]~[8]を包含する。
[1]リチウム金属複合酸化物と、Liと元素Xとを含むLi-X化合物と、を備えるリチウム二次電池用正極活物質であって、前記Li-X化合物はリチウムイオン導電性を有する酸化物であり、前記元素Xは、Nb、W及びMoからなる群より選択される1種以上の元素であり、下記(A)及び(B)を満たす、リチウム二次電池用正極活物質。
 0.09≦X(XPS)/X(ICP)≦0.22  ・・・(A)
 0.5≦Li(XPS)/Li(ICP)≦1.5   ・・・(B)
((A)中、X(XPS)は、X線光電子分光法により測定される、前記リチウム二次電池用正極活物質の粒子の表面における前記元素Xの存在割合(%)である。X(ICP)は、ICP発光分光法により測定される、前記リチウム二次電池用正極活物質の粒子における前記元素Xの存在割合(%)である。
(B)中、Li(XPS)は、X線光電子分光法により測定される、前記リチウム二次電池用正極活物質の粒子の表面におけるLiの存在割合(%)である。Li(ICP)は、ICP発光分光法により測定される、前記リチウム二次電池用正極活物質の粒子における前記Liの存在割合(%)である。)
[2]前記X(XPS)は、下記(C)を満たす、[1]に記載のリチウム二次電池用正極活物質。
 0.01≦X(XPS)≦0.30  ・・・(C)
[3]前記Li(XPS)は、下記(D)を満たす、[1]又は[2]に記載のリチウム二次電池用正極活物質。
 0.4≦Li(XPS)≦1.2  ・・・(D)
[4]下記組成式(I)で表される、[1]~[3]のいずれか1つに記載のリチウム二次電池用正極活物質。
 Li[Li(Ni(1-y-z-w)Co1-a]O ・・・(I)
(式(I)中、MはMn、Fe、Cu、Ti、Mg、Al、Zn、Sn、Zr、Ga、B、Si、S及びPからなる群より選択される1種以上の元素であり、XはNb、W及びMoからなる群より選択される1種以上の元素であり、式(I)は、-0.1≦a≦0.2、0≦y≦0.5、0≦z≦0.7、0<w≦0.1、及びy+z+w<1を満たす。)
[5]D10、D90及びD50が下記(E)を満たす、[1]~[4]のいずれか1つに記載のリチウム二次電池用正極活物質。
(D90-D50)/(D50-D10)≦3.0  ・・・(E)
((E)中、D10はリチウム二次電池用正極活物質の10%累積体積粒度であり、D50は50%累積体積粒度であり、D90は90%累積体積粒度である。)
[6]BET比表面積が1.0m/g以上を満たす、[1]~[5]のいずれか1つに記載のリチウム二次電池用正極活物質。
[7][1]~[6]のいずれか1つに記載のリチウム二次電池用正極活物質を含むリチウム二次電池用正極。
[8][7]に記載のリチウム二次電池用正極を含むリチウム二次電池。
One aspect of the present invention includes [1] to [8].
[1] A positive electrode active material for a lithium secondary battery comprising a lithium metal composite oxide and a Li—X compound containing Li and an element X, wherein the Li—X compound is an oxide having lithium ion conductivity A positive electrode active material for a lithium secondary battery, wherein the element X is one or more elements selected from the group consisting of Nb, W and Mo, and satisfies the following (A) and (B).
0.09≦X(XPS)/X(ICP)≦0.22 (A)
0.5≦Li(XPS)/Li(ICP)≦1.5 (B)
(In (A), X (XPS) is the abundance (%) of the element X on the surface of the particles of the positive electrode active material for a lithium secondary battery, measured by X-ray photoelectron spectroscopy. X ( ICP) is the abundance ratio (%) of the element X in the particles of the positive electrode active material for a lithium secondary battery, measured by ICP emission spectroscopy.
In (B), Li (XPS) is the abundance (%) of Li on the surface of the particles of the positive electrode active material for a lithium secondary battery, measured by X-ray photoelectron spectroscopy. Li (ICP) is the abundance ratio (%) of Li in the particles of the positive electrode active material for a lithium secondary battery, measured by ICP emission spectroscopy. )
[2] The positive electrode active material for a lithium secondary battery according to [1], wherein the X(XPS) satisfies the following (C).
0.01≦X(XPS)≦0.30 (C)
[3] The positive electrode active material for a lithium secondary battery according to [1] or [2], wherein the Li(XPS) satisfies the following (D).
0.4≦Li (XPS)≦1.2 (D)
[4] The positive electrode active material for a lithium secondary battery according to any one of [1] to [3], represented by the following compositional formula (I).
Li[Li a (Ni (1-yzw) Co y M z X w ) 1-a ]O 2 (I)
(In formula (I), M is one or more elements selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Al, Zn, Sn, Zr, Ga, B, Si, S and P. , X is one or more elements selected from the group consisting of Nb, W and Mo, and formula (I) is −0.1≦a≦0.2, 0≦y≦0.5, 0≦ satisfy z≦0.7, 0<w≦0.1, and y+z+w<1.)
[5] The positive electrode active material for lithium secondary batteries according to any one of [1] to [4], wherein D 10 , D 90 and D 50 satisfy the following (E).
( D90 - D50 )/( D50 - D10 ) ≤ 3.0 (E)
(In (E), D10 is the 10% cumulative volume particle size of the positive electrode active material for lithium secondary batteries, D50 is the 50% cumulative volume particle size, and D90 is the 90% cumulative volume particle size.)
[6] The positive electrode active material for lithium secondary batteries according to any one of [1] to [5], which has a BET specific surface area of 1.0 m 2 /g or more.
[7] A positive electrode for lithium secondary batteries comprising the positive electrode active material for lithium secondary batteries according to any one of [1] to [6].
[8] A lithium secondary battery comprising the positive electrode for a lithium secondary battery according to [7].
 本発明によれば、充電状態で保管される場合でもガスが発生しにくいリチウム二次電池用正極活物質、これを用いたリチウム二次電池用正極及びリチウム二次電池を提供することができる。 According to the present invention, it is possible to provide a positive electrode active material for a lithium secondary battery that hardly generates gas even when stored in a charged state, a positive electrode for a lithium secondary battery using the same, and a lithium secondary battery.
 本発明によれば、より長寿命のリチウム二次電池を提供することができる。 According to the present invention, it is possible to provide a longer-life lithium secondary battery.
リチウム二次電池の一例を示す模式図である。1 is a schematic diagram showing an example of a lithium secondary battery; FIG. 全固体リチウム二次電池の一例を示す模式図である。1 is a schematic diagram showing an example of an all-solid lithium secondary battery; FIG.
<リチウム二次電池用正極活物質>
 本実施形態のリチウム二次電池用正極活物質は、リチウム金属複合酸化物と、Liと元素Xとを含むLi-X化合物と、を備える。リチウム二次電池用正極活物質は、後述する(A)及び(B)を満たす。
<Positive electrode active material for lithium secondary battery>
The positive electrode active material for a lithium secondary battery of this embodiment includes a lithium metal composite oxide and a Li—X compound containing Li and the element X. The positive electrode active material for lithium secondary batteries satisfies (A) and (B) described later.
 本明細書において、金属複合化合物(Metal Composite Compound)を以下「MCC」と称する。
 リチウム金属複合酸化物(Lithium Metal Composite Compound)を以下「LiMO」と称する。
 リチウム二次電池用正極活物質(Cathode Active Material for lithium secondary batteries)を以下「CAM」と称する。
 「Li」との表記は、特に言及しない限りLi金属単体ではなく、Li元素であることを示す。Ni、Co、Mn等の他の元素の表記も同様である。
In this specification, a metal composite compound (Metal Composite Compound) is hereinafter referred to as "MCC".
A lithium metal composite oxide (Lithium Metal Composite Compound) is hereinafter referred to as “LiMO”.
A cathode active material for lithium secondary batteries is hereinafter referred to as "CAM".
The notation "Li" indicates that it is an Li element, not an elemental Li metal, unless otherwise specified. The notation of other elements such as Ni, Co, and Mn is the same.
 数値範囲を例えば「1-10μm」又は「1~10μm」と記載した場合、1μmから10μmまでの範囲を意味し、下限値である1μmと上限値である10μmを含む数値範囲を意味する。 When the numerical range is described as, for example, "1-10 μm" or "1-10 μm", it means the range from 1 μm to 10 μm, including the lower limit of 1 μm and the upper limit of 10 μm.
 CAMは粒子であり、粒子は一次粒子と、二次粒子とを含む。
 本明細書において、「一次粒子」とは、外観上に粒界が存在しない粒子であって、二次粒子を構成する粒子を意味する。より詳細には、「一次粒子」とは、走査型電子顕微鏡等で5000-20000倍の視野にて粒子を観察した場合に、粒子表面に明確な粒界が見られない粒子を意味する。
 本明細書において、「二次粒子」とは、複数の前記一次粒子が間隙をもって三次元的に結合した粒子を意味する。二次粒子は、球状、略球状の形状を有する。
 通常、前記二次粒子は前記一次粒子が10個以上凝集して形成される。
CAMs are particles, and particles include primary particles and secondary particles.
As used herein, the term "primary particles" refers to particles that do not appear to have grain boundaries and that constitute secondary particles. More specifically, the term “primary particles” means particles that do not show clear grain boundaries on the particle surface when observed with a scanning electron microscope or the like in a field of view of 5,000 to 20,000 times.
As used herein, the term "secondary particle" means a particle in which a plurality of the primary particles are three-dimensionally bonded with gaps therebetween. The secondary particles have a spherical or substantially spherical shape.
Generally, the secondary particles are formed by agglomeration of 10 or more primary particles.
 本実施形態において、CAMが備える一次粒子は、LiMOの一次粒子である。
 本実施形態において、CAMが備える一次粒子の少なくとも一部は、表面にLi-X化合物を備える。
 CAMが含む二次粒子は、一次粒子の凝集体であり、一次粒子同士の間に間隙を備える。
In this embodiment, the primary particles provided in the CAM are primary particles of LiMO.
In this embodiment, at least some of the primary particles provided by the CAM are provided with a Li—X compound on their surface.
The secondary particles contained in the CAM are aggregates of primary particles and have gaps between the primary particles.
 Li-X化合物は、例えば二次粒子の表面や間隙に存在する。LiMOの表面に存在するLi-X化合物は、LiMOを電解液から保護する膜として作用しうる。このため、電解液がLiMOに接触することで生じる電解液の分解反応を抑制できる。元素Xを含むLi-X化合物は、化学的安定性が高いためにLiMOの結晶構造内に取り込まれにくく、LiMOの表面や間隙に存在しやすいため、このような効果が発揮される。 Li-X compounds exist, for example, on the surfaces and gaps of secondary particles. A Li—X compound present on the surface of the LiMO can act as a film that protects the LiMO from the electrolyte. Therefore, the decomposition reaction of the electrolyte caused by the contact of the electrolyte with LiMO can be suppressed. A Li—X compound containing the element X is highly chemically stable, so it is difficult to be incorporated into the crystal structure of LiMO, and is likely to exist on the surface and in the gaps of LiMO, so that such an effect is exhibited.
≪リチウム金属複合酸化物≫
 LiMOは、Liと、任意金属元素であるNi、Co及び元素Mを含む化合物である。元素MはMn、Fe、Cu、Ti、Mg、Al、Zn、Sn、Zr、Ga、B、Si、S及びPからなる群より選択される1種以上の元素である。
<<Lithium Metal Composite Oxide>>
LiMO is a compound containing Li, Ni, Co, and the element M, which are optional metal elements. The element M is one or more elements selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Al, Zn, Sn, Zr, Ga, B, Si, S and P.
≪Li-X化合物≫
 Li-X化合物はLiと元素Xとを含む化合物である。元素XはNb、W及びMoからなる群より選択される1種以上の元素である。
 Li-X化合物は具体的には、ニオブ酸リチウム、タングステン酸リチウム、モリブデン酸リチウムが挙げられる。これらのLi-X化合物はリチウムイオン導電性を有する。
<<Li-X compound>>
A Li—X compound is a compound containing Li and the element X. Element X is one or more elements selected from the group consisting of Nb, W and Mo.
Specific examples of Li—X compounds include lithium niobate, lithium tungstate, and lithium molybdate. These Li—X compounds have lithium ion conductivity.
 ニオブ酸リチウムとしては、LiNbO、LiNbO、LiNb、又はLiNb等が挙げられる。 Examples of lithium niobate include Li 3 NbO 4 , LiNbO 3 , LiNb 3 O 8 , Li 8 Nb 2 O 9 and the like.
 タングステン酸リチウムとしては、LiWO、LiWO又はLiWOが挙げられる。 Lithium tungstates include LiWO 4 , Li 2 WO 4 or Li 4 WO 5 .
 モリブデン酸リチウムとしては、LiMoOが挙げられる。 Lithium molybdate includes Li 2 MoO 4 .
 高いリチウムイオン導電性を発揮する観点から、Li-X化合物は、ニオブ酸リチウム、又はタングステン酸リチウムであることが好ましく、特にニオブ酸リチウムが好ましい。 From the viewpoint of exhibiting high lithium ion conductivity, the Li—X compound is preferably lithium niobate or lithium tungstate, and particularly preferably lithium niobate.
[Li-X化合物の確認方法]
 CAM中に元素Xを含む化合物が含まれていることは、後述の[組成分析]に記載の方法でCAM中の元素Xを確認することにより、確認することができる。 次に、元素Xを含む化合物がLiを含有したLi-X化合物であるかは、CAMをX線吸収微細構造(XAFS)解析、X線光電子分光法(XPS)分析することで確認することができる。
[Confirmation method of Li-X compound]
Whether the CAM contains a compound containing the element X can be confirmed by confirming the element X in the CAM by the method described in [Composition analysis] below. Next, whether the compound containing the element X is a Li—X compound containing Li can be confirmed by performing X-ray absorption fine structure (XAFS) analysis and X-ray photoelectron spectroscopy (XPS) analysis of the CAM. can.
 XAFS解析によれば、着目する原子の局所構造の情報を得ることができる。原子の局所構造とは、例えば原子の価数、隣接する原子種、結合性等が挙げられる。
 XAFS解析は、CAMに照射する前のX線強度(I)と測定対象であるCAMを透過した後のX線強度(I)の比(I/I)を測定し、解析する。
According to the XAFS analysis, information on the local structure of the atom of interest can be obtained. The local structure of an atom includes, for example, the valence of the atom, adjacent atomic species, connectivity, and the like.
In the XAFS analysis, the ratio (I/I 0 ) of the X-ray intensity (I 0 ) before irradiating the CAM and the X-ray intensity (I) after passing through the CAM to be measured is measured and analyzed.
 XPS分析はCAMの表面にX線を照射し、生じる光電子のエネルギーを測定することで、CAMの構成元素とその電子状態を分析することができる。XPS分析を実施することで、CAMが備える元素Xを含む化合物の組成分析を行うことができる。 In XPS analysis, the CAM's constituent elements and their electronic states can be analyzed by irradiating the surface of the CAM with X-rays and measuring the energy of the generated photoelectrons. By performing the XPS analysis, it is possible to analyze the composition of the compound containing the element X included in the CAM.
 本実施形態において、元素Xを含む化合物の組成分析は、XAFS解析を利用する。
 具体的には、作製した元素Xを含むCAMを測定装置であるXAFSビームラインに導入し、以下の条件で元素XのXAFS測定、及び解析を実施する。このとき、想定されるLi-X化合物の標準試料のXAFS測定を併せて実施する。
  測定装置  :大学共同利用機関法人 高エネルギー加速器研究機構 BL-12C
  測定吸収端 :Nb-K吸収端、W-L吸収端、Mo-K吸収端
In this embodiment, the composition analysis of the compound containing element X utilizes XAFS analysis.
Specifically, the fabricated CAM containing the element X is introduced into an XAFS beamline, which is a measurement apparatus, and the XAFS measurement and analysis of the element X are performed under the following conditions. At this time, an XAFS measurement of a standard sample of the assumed Li—X compound is also carried out.
Measuring device: Inter-University Research Institute Corporation High Energy Accelerator Research Organization BL-12C
Measurement absorption edge: Nb-K absorption edge, WL absorption edge, Mo-K absorption edge
 得られたXAFSスペクトルはピーク値からベースライン値を差し引き、CAMと標準試料のピーク形状を比較することで、元素Xを含む化合物の組成分析を実施する。 By subtracting the baseline value from the peak value of the obtained XAFS spectrum and comparing the peak shapes of the CAM and the standard sample, the composition analysis of the compound containing element X is performed.
≪(A)及び(B)≫
 CAMは、下記(A)及び(B)を満たす。
 0.09≦X(XPS)/X(ICP)≦0.22  ・・・(A)
 0.5≦Li(XPS)/Li(ICP)≦1.5   ・・・(B)
((A)中、X(XPS)は、X線光電子分光法により測定される、前記CAMの粒子の表面における前記元素Xの存在割合(%)である。X(ICP)は、ICP発光分光法により測定される、前記CAMの粒子における前記元素Xの存在割合(%)である。
(B)中、Li(XPS)は、X線光電子分光法により測定される、前記CAMの粒子の表面におけるLiの存在割合(%)である。Li(ICP)は、ICP発光分光法により測定される、前記CAMの粒子における前記Liの存在割合(%)である。)
<<(A) and (B)>>
CAM satisfies the following (A) and (B).
0.09≦X(XPS)/X(ICP)≦0.22 (A)
0.5≦Li(XPS)/Li(ICP)≦1.5 (B)
(In (A), X (XPS) is the abundance (%) of the element X on the surface of the CAM particle measured by X-ray photoelectron spectroscopy. X (ICP) is ICP emission spectroscopy It is the abundance ratio (%) of the element X in the particles of the CAM measured by the method.
In (B), Li (XPS) is the abundance (%) of Li on the surface of the CAM particles measured by X-ray photoelectron spectroscopy. Li (ICP) is the abundance ratio (%) of Li in the CAM particles measured by ICP emission spectroscopy. )
[X(XPS)及びLi(XPS)の測定]
 本実施形態において、「X線光電子分光法」を「XPS」と記載する。
 XPSによれば、CAMの粒子の表面にX線を照射したときに生じる光電子のエネルギーを測定することで、CAMの粒子の表面の構成元素を分析することができる。
[Measurement of X (XPS) and Li (XPS)]
In this embodiment, "X-ray photoelectron spectroscopy" is described as "XPS".
According to XPS, the constituent elements of the surface of the CAM particle can be analyzed by measuring the energy of photoelectrons generated when the surface of the CAM particle is irradiated with X-rays.
 XPSにより構成元素が分析される「CAMの粒子の表面」とは、CAMの粒子の最表面と、最表面から粒子の中心に向かって生成した光電子が脱出できる深さ領域である。この深さ領域は概ね10nmの深さまでの領域をいう。 The "surface of the CAM particle" where the constituent elements are analyzed by XPS is the outermost surface of the CAM particle and the depth region where photoelectrons generated from the outermost surface toward the center of the particle can escape. This depth region refers to a region up to a depth of approximately 10 nm.
 本実施形態においては、励起X線としてAlKα線を照射したときにCAMの粒子の表面から放出される光電子の結合エネルギーを分析する。XPSによれば、CAMの粒子の表面におけるX(XPS)及びLi(XPS)を分析できる。 In this embodiment, the binding energy of photoelectrons emitted from the surface of CAM particles when irradiated with AlKα rays as excitation X-rays is analyzed. XPS can analyze X (XPS) and Li (XPS) on the surface of CAM particles.
 XPSの測定にあたり、X線源にはAlKα線を用い、測定時には帯電中和のために中和銃(加速電圧0.3V、電流100μA)を使用する。 When measuring XPS, AlKα rays are used as the X-ray source, and a neutralization gun (acceleration voltage of 0.3 V, current of 100 μA) is used for charge neutralization during measurement.
 測定の条件として、スポットサイズ=100μm、PassEnergy=112eV、Step=0.1eV、Dwelltime=50msとする。得られたXPSスペクトルについて、解析ソフト(MultiPak(Version9.9.0.8))を用い、CAM中の粒子の表面に存在する各金属元素のピーク面積から各金属元素の元素数を算出する。測定には、数mgのCAMの粉末を用いる。 The measurement conditions are spot size = 100 µm, PassEnergy = 112 eV, Step = 0.1 eV, and Dwelltime = 50 ms. For the obtained XPS spectrum, analysis software (MultiPak (Version 9.9.0.8)) is used to calculate the number of elements of each metal element from the peak area of each metal element existing on the surface of the particles in the CAM. A few mg of CAM powder is used for the measurement.
 次に、算出した各金属元素の元素数から、Liを除く各金属元素数の合計値100%に対する元素Xの元素数の割合、すなわちX(XPS)(単位:%)を求める。 Next, from the calculated number of elements of each metal element, the ratio of the number of elements of element X to 100% of the total number of metal elements excluding Li, that is, X (XPS) (unit: %) is obtained.
 また算出した各金属元素の元素数から、Liを除く各金属元素数の合計値100%に対するLiの元素数の割合、すなわちLi(XPS)(単位:%)を求める。 Also, from the calculated number of elements of each metal element, the ratio of the number of elements of Li to 100% of the total number of metal elements excluding Li, that is, Li (XPS) (unit: %) is obtained.
 XPS測定に用いるX線光電子分光装置としては、例えばアルバック・ファイ社製、PHI5000 VersaProbe IIIを使用できる。 As an X-ray photoelectron spectrometer used for XPS measurement, for example, PHI5000 VersaProbe III manufactured by ULVAC-Phi, Inc. can be used.
[X(ICP)及びLi(ICP)の測定]
 本実施形態において、「ICP発光分光法による測定」を「ICP測定」と記載する。
 ICP測定により、CAMの粒子に含まれる元素X及びLiの量を分析することができる。
[Measurement of X (ICP) and Li (ICP)]
In the present embodiment, "measurement by ICP emission spectroscopy" is described as "ICP measurement".
By ICP measurement, the amount of elements X and Li contained in the CAM particles can be analyzed.
 まず、数10mgのCAM粉末を酸、またはアルカリに溶解させる。このとき、溶液中の元素濃度がppmオーダーとなる割合で溶解させる。その後、ICP発光分光分析装置を用いて分析を行う。 First, several tens of mg of CAM powder are dissolved in acid or alkali. At this time, the element is dissolved at a rate such that the element concentration in the solution is on the order of ppm. After that, analysis is performed using an ICP emission spectrometer.
 ICP発光分光分析装置としては、例えばエスアイアイ・ナノテクノロジー株式会社製、SPS3000が使用できる。 As an ICP emission spectrometer, for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd. can be used.
 ICP測定により得られるCAM中の粒子に含まれる各金属元素の量から、各金属元素の元素数を算出する。そして、Liを除く各金属元素数の合計値100%に対する元素Xの元素数の割合、すなわちX(ICP)(単位:%)を求める。 The number of elements of each metal element is calculated from the amount of each metal element contained in the particles in the CAM obtained by ICP measurement. Then, the ratio of the number of elements of the element X to 100% of the total number of metal elements excluding Li, that is, X (ICP) (unit: %) is obtained.
 また、算出した各金属元素の元素数から、Liを除く各金属元素数の合計値100%に対するLiの元素数の割合、すなわちLi(ICP)(単位:%)を求める。 Also, from the calculated number of elements of each metal element, the ratio of the number of Li elements to 100% of the total number of metal elements excluding Li, that is, Li (ICP) (unit: %) is obtained.
(A)
 CAMは、上記(A)を満たす。
(A)
CAM satisfies the above (A).
 CAMは、下記(A)-1~(A)-4のいずれかを満たすことが好ましい。
0.10≦X(XPS)/X(ICP)≦0.21  ・・・(A)-1
0.11≦X(XPS)/X(ICP)≦0.20  ・・・(A)-2
0.12≦X(XPS)/X(ICP)≦0.19  ・・・(A)-3
0.12≦X(XPS)/X(ICP)≦0.18  ・・・(A)-4
The CAM preferably satisfies any one of the following (A)-1 to (A)-4.
0.10≦X(XPS)/X(ICP)≦0.21 (A)−1
0.11≦X(XPS)/X(ICP)≦0.20 (A)-2
0.12≦X(XPS)/X(ICP)≦0.19 (A)-3
0.12≦X(XPS)/X(ICP)≦0.18 (A)-4
 X(XPS)/X(ICP)は、CAMの二次粒子に含まれる元素Xの存在割合であるX(ICP)と、二次粒子表面の元素Xの存在割合であるX(XPS)との比を示す。X(XPS)/X(ICP)の値は、二次粒子の表面と間隙とで、元素Xがどの程度偏在しているかの指標となる。「二次粒子の間隙」とは、二次粒子の内部に存在する間隙を意味する。 X(XPS)/X(ICP) is the ratio of X(ICP), which is the abundance of element X contained in the secondary particles of the CAM, to X(XPS), which is the abundance of element X on the surface of the secondary particles. Show the ratio. The value of X(XPS)/X(ICP) is an index of how unevenly distributed the element X is between the surface and gaps of the secondary particles. "Secondary particle gap" means a gap that exists inside the secondary particles.
 Li-X化合物は二次粒子の内部に偏在しにくい性質があり、X(ICP)の値から元素Xの存在が確認された場合には、二次粒子の表面、あるいは二次粒子の間隙、あるいはその両方に元素Xが存在する可能性がある。(A)を満たすCAMは、二次粒子の間隙に元素Xが偏在していると考えられる。 The Li—X compound has the property of being less likely to be unevenly distributed inside the secondary particles, and when the presence of the element X is confirmed from the value of X (ICP), the surface of the secondary particles, or the gaps between the secondary particles, Alternatively, element X may be present in both. In the CAM that satisfies (A), the element X is considered to be unevenly distributed in the gaps between the secondary particles.
 X(XPS)/X(ICP)の値が1と等しい場合、二次粒子の表面と間隙とで、元素Xの存在量は偏りが小さい、換言すれば二次粒子の表面と間隙とで元素Xが均一に存在していると考えられる。
 X(XPS)/X(ICP)の値が1を超える場合、二次粒子の表面に元素Xが偏在すると考えられる。
 X(XPS)/X(ICP)の値が1よりも小さい場合、二次粒子の間隙に元素Xが偏在すると考えられる。
When the value of X(XPS)/X(ICP) is equal to 1, the abundance of the element X between the surface and the gap of the secondary particles is small. It is considered that X exists uniformly.
When the value of X(XPS)/X(ICP) exceeds 1, it is considered that the element X is unevenly distributed on the surface of the secondary particles.
When the value of X(XPS)/X(ICP) is smaller than 1, it is considered that the element X is unevenly distributed in the gaps of the secondary particles.
 二次粒子は一次粒子の凝集体であり、二次粒子の内部には空間(間隙や細孔)が存在する。このような構造の二次粒子は、二次粒子の外表面の表面積よりも、内表面の表面積の方が大きくなると考えられる。二次粒子の外表面及び内表面において、同様に電解液の分解反応は生じうる。ここで、二次粒子の外表面とは、二次粒子外部の空間と二次粒子を構成する一次粒子との界面を意味し、二次粒子の内表面とは、二次粒子内部の空間と二次粒子を構成する一次粒子との界面を意味する。 Secondary particles are aggregates of primary particles, and there are spaces (gaps and pores) inside the secondary particles. Secondary particles having such a structure are considered to have a larger inner surface area than the outer surface area of the secondary particles. A decomposition reaction of the electrolytic solution can also occur on the outer and inner surfaces of the secondary particles. Here, the outer surface of the secondary particles means the interface between the space outside the secondary particles and the primary particles that make up the secondary particles, and the inner surface of the secondary particles means the space inside the secondary particles. It means an interface with a primary particle that constitutes a secondary particle.
 上記(A)を満たす二次粒子は、二次粒子の外表面と比較して二次粒子の内表面が、より高い割合でLi-X化合物により保護されていると考えられる。二次粒子の内表面は、二次粒子の外表面よりも二次粒子全体の電解液の分解反応への影響が大きいと考えられる。このため二次粒子の内表面が保護されていると、電解液の分解反応が効果的に抑制され、充電状態で保管された時のガス発生量を抑えることができると考えられる。 In the secondary particles that satisfy (A) above, it is believed that the inner surface of the secondary particles is protected by the Li-X compound at a higher rate than the outer surface of the secondary particles. It is considered that the inner surface of the secondary particles has a greater influence on the decomposition reaction of the electrolytic solution of the entire secondary particles than the outer surface of the secondary particles. Therefore, if the inner surfaces of the secondary particles are protected, the decomposition reaction of the electrolytic solution is effectively suppressed, and it is thought that the amount of gas generated when stored in a charged state can be suppressed.
(B)
 CAMは、上記(B)を満たす。
(B)
CAM satisfies the above (B).
 CAMは、下記(B)-1~(B)-3のいずれかを満たすことが好ましい。
 0.55≦Li(XPS)/Li(ICP)≦1.4  ・・・(B)-1
 0.6≦Li(XPS)/Li(ICP)≦1.3  ・・・(B)-2
 0.7≦Li(XPS)/Li(ICP)≦1.2  ・・・(B)-3
The CAM preferably satisfies any one of the following (B)-1 to (B)-3.
0.55 ≤ Li (XPS) / Li (ICP) ≤ 1.4 (B) -1
0.6≦Li (XPS)/Li (ICP)≦1.3 (B)-2
0.7≦Li (XPS)/Li (ICP)≦1.2 (B)-3
 Li(XPS)/Li(ICP)は、CAMの二次粒子に含まれるLiの存在割合であるLi(ICP)と、二次粒子表面のLiの存在割合であるLi(XPS)との比を示す。Li(XPS)/Li(ICP)の値は、二次粒子の表面と間隙とで、Liがどの程度偏在しているかの指標となる。 Li (XPS) / Li (ICP) is the ratio of Li (ICP), which is the abundance of Li contained in the secondary particles of the CAM, to Li (XPS), which is the abundance of Li on the surface of the secondary particles. show. The value of Li(XPS)/Li(ICP) is an index of how unevenly distributed Li is on the surface and in the gaps of the secondary particles.
 Li(XPS)/Li(ICP)の値によるLiの偏在態様は、上記X(XPS)/X(ICP)の説明と同様である。(B)を満たすCAMは、二次粒子の表面と間隙とで、Liの存在割合の偏りが小さい、換言すれば二次粒子の表面と間隙とでLiが均一に存在していると考えられる。Li(XPS)/Li(ICP)の値が1を超えると、残留Li成分が二次粒子の表面に偏在し、1未満であると、残留Li成分が二次粒子の内部に偏在することとなる。 The uneven distribution of Li according to the value of Li(XPS)/Li(ICP) is the same as the above description of X(XPS)/X(ICP). In a CAM that satisfies (B), the existence ratio of Li on the surface and the gaps of the secondary particles is small, in other words, it is considered that Li is uniformly present on the surface and the gaps of the secondary particles. . When the value of Li (XPS) / Li (ICP) exceeds 1, the residual Li component is unevenly distributed on the surface of the secondary particles, and when it is less than 1, the residual Li component is unevenly distributed inside the secondary particles. Become.
 残留Li成分とは、CAMを製造する際に、未反応のまま残留したリチウム化合物、あるいは大気中の成分との副反応により生じたリチウム化合物(例えば炭酸リチウム)である。残留Li成分は、リチウム二次電池の充電時にガスを発生させる原因となる。 The residual Li component is a lithium compound that remains unreacted during the production of CAM, or a lithium compound (for example, lithium carbonate) that is produced by a side reaction with components in the atmosphere. The residual Li component causes generation of gas during charging of the lithium secondary battery.
 リチウム二次電池の電池内部においてガスが発生する原因の例として、代表的には以下の2つが挙げられる。
 1つ目は、CAMの粒子の表面において生じる電解液の還元分解反応である。還元分解反応が生じるCAMの粒子の表面とは、CAMの二次粒子の表面と、二次粒子を構成する一次粒子の表面である。
The following two are typical examples of causes for gas generation inside a lithium secondary battery.
The first is a reductive decomposition reaction of the electrolytic solution that occurs on the surface of the CAM particles. The surfaces of the CAM particles on which the reductive decomposition reaction occurs are the surfaces of the secondary particles of the CAM and the surfaces of the primary particles constituting the secondary particles.
 2つ目は、リチウム二次電池を構成する電解質が、充電時に分解されて生じる酸(例えばフッ化水素)に起因する反応である。生じた酸が残留Li成分と反応すると、ガスが発生する副反応が生じる。残留Li成分が二次粒子の表面に偏在すると、ガスが発生しやすくなる。 The second is a reaction caused by an acid (for example, hydrogen fluoride) generated when the electrolyte that constitutes the lithium secondary battery is decomposed during charging. When the resulting acid reacts with the residual Li component, a gassing side reaction occurs. When the residual Li component is unevenly distributed on the surface of the secondary particles, gas is likely to be generated.
 (A)を満たすCAMは、二次粒子の表面よりも、二次粒子の間隙にLi-X化合物が偏在している。電池が作動した際に、電解液は二次粒子の表面から内部に拡散する。このとき二次粒子の間隙に偏在するLi-X化合物が保護膜として作用するため、電解液の還元分解が生じにくくなる。このためガスの発生が抑制されうる。
 さらに(B)を満たすCAMは、二次粒子の表面と内部でLiの存在割合の偏りが小さいことから、残留Li成分の偏在が少なく、二次粒子の表面と間隙とでLiが均一に存在していると考えられる。このようなCAMは電解液との副反応が生じにくい。このためガスの発生が抑制されうる。
In the CAM that satisfies (A), the Li—X compound is unevenly distributed in the interstices of the secondary particles rather than on the surfaces of the secondary particles. When the battery operates, the electrolyte diffuses inside from the surface of the secondary particles. At this time, since the Li—X compound unevenly distributed in the gaps between the secondary particles acts as a protective film, reductive decomposition of the electrolytic solution is less likely to occur. Therefore, generation of gas can be suppressed.
Furthermore, the CAM that satisfies (B) has a small uneven distribution of Li on the surface and inside of the secondary particles, so the residual Li component is less unevenly distributed, and Li is uniformly present on the surface and in the gaps of the secondary particles. it seems to do. Such a CAM is less likely to cause a side reaction with the electrolyte. Therefore, generation of gas can be suppressed.
 (A)及び(B)を満たすCAMは、上記の理由から充電状態で保管された時にガスが発生しにくいリチウム二次電池を提供できる。 A CAM that satisfies (A) and (B) can provide a lithium secondary battery that hardly generates gas when stored in a charged state for the above reasons.
(C)
 X(XPS)は、下記(C)を満たすことが好ましい。
 0.01≦X(XPS)≦0.30  ・・・(C)
(C)
X(XPS) preferably satisfies the following (C).
0.01≦X(XPS)≦0.30 (C)
 X(XPS)は、下記(C)-1~(C)-3を満たすことが好ましい。
 0.02≦X(XPS)≦0.25  ・・・(C)-1
 0.03≦X(XPS)≦0.2   ・・・(C)-2
 0.04≦X(XPS)≦0.18  ・・・(C)-3
X(XPS) preferably satisfies (C)-1 to (C)-3 below.
0.02≦X(XPS)≦0.25 (C)−1
0.03≦X(XPS)≦0.2 (C)-2
0.04≦X(XPS)≦0.18 (C)-3
 (A)、(B)に加え、(C)を満たすCAMは、二次粒子の表面にも元素Xが存在し、かつ二次粒子の間隙に元素Xがより偏在している。このようなCAMは、充電状態で保管された時にガスがより発生しにくいリチウム二次電池を提供できる。 In a CAM that satisfies (C) in addition to (A) and (B), the element X is also present on the surface of the secondary particles, and the element X is unevenly distributed in the gaps between the secondary particles. Such a CAM can provide a lithium secondary battery that generates less gas when stored in a charged state.
(D)
 Li(XPS)は、下記(D)を満たすことが好ましい。
0.4≦Li(XPS)≦1.2  ・・・(D)
(D)
Li(XPS) preferably satisfies (D) below.
0.4≦Li (XPS)≦1.2 (D)
 Li(XPS)は、下記(D)-1~(D)-3を満たすことが好ましい。
 0.45≦Li(XPS)≦1.15  ・・・(D)-1
 0.50≦Li(XPS)≦1.1  ・・・(D)-2
 0.55≦Li(XPS)≦1.05  ・・・(D)-3
Li(XPS) preferably satisfies (D)-1 to (D)-3 below.
0.45≦Li (XPS)≦1.15 (D)−1
0.50≦Li (XPS)≦1.1 (D)-2
0.55≦Li (XPS)≦1.05 (D)-3
 (A)、(B)に加え、(D)を満たすCAMは、二次粒子の表面と間隙とで、Liの存在割合の偏りが小さく、二次粒子の表面に過剰にLiが存在していない、即ち二次粒子の表面に存在する残留Li成分が少なく、電解液との副反応がより生じにくい。このようなCAMは、充電状態で保管された時にガスがより発生しにくいリチウム二次電池を提供できる。 In addition to (A) and (B), the CAM that satisfies (D) has a small bias in the Li abundance ratio between the surface and the gaps of the secondary particles, and excessive Li exists on the surface of the secondary particles. That is, the residual Li component present on the surfaces of the secondary particles is small, and side reactions with the electrolytic solution are less likely to occur. Such a CAM can provide a lithium secondary battery that generates less gas when stored in a charged state.
 (A)、(B)、(C)に加え、(D)を満たすCAMは、二次粒子の間隙に元素Xがより偏在し、二次粒子の表面と間隙とで、Liの存在割合の偏りが小さく、二次粒子の表面に過剰にLiが存在していない、即ち二次粒子の表面に存在する残留Li成分が少なく、二次粒子の間隙がLi-X化合物により効果的に保護されており、電解液との副反応がより生じにくい。このようなCAMは、充電状態で保管された時にガスがより発生しにくいリチウム二次電池を提供できる。 In addition to (A), (B), and (C), the CAM that satisfies (D) has an uneven distribution of the element X in the gaps between the secondary particles, and the existence ratio of Li between the surface and the gaps of the secondary particles The bias is small, Li is not excessively present on the surface of the secondary particles, that is, the residual Li component present on the surface of the secondary particles is small, and the gaps between the secondary particles are effectively protected by the Li—X compound. This makes it more difficult for side reactions with the electrolyte to occur. Such a CAM can provide a lithium secondary battery that generates less gas when stored in a charged state.
[組成式]
 CAMは、LiとNiと元素Xとを含むことが好ましく、下記組成式(I)で表されることが好ましい。また、CAMは、LiとNiと元素Xと、Co、Mn及びAlからなる群より選択される1種以上の元素とを含むことがより好ましい。
 Li[Li(Ni(1-y-z-w)Co1-a]O ・・・(I)
(式(I)中、MはMn、Fe、Cu、Ti、Mg、Al、Zn、Sn、Zr、Ga、B、Si、S及びPからなる群より選択される1種以上の元素であり、XはNb、W及びMoからなる群より選択される1種以上の元素であり、式(I)は、-0.1≦a≦0.2、0≦y≦0.5、0≦z≦0.7、0<w≦0.1、及びy+z+w<1を満たす。)
[Composition formula]
CAM preferably contains Li, Ni, and element X, and is preferably represented by the following compositional formula (I). More preferably, CAM contains Li, Ni, element X, and one or more elements selected from the group consisting of Co, Mn and Al.
Li[Li a (Ni (1-yzw) Co y M z X w ) 1-a ]O 2 (I)
(In formula (I), M is one or more elements selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Al, Zn, Sn, Zr, Ga, B, Si, S and P. , X is one or more elements selected from the group consisting of Nb, W and Mo, and formula (I) is −0.1≦a≦0.2, 0≦y≦0.5, 0≦ satisfy z≦0.7, 0<w≦0.1, and y+z+w<1.)
 組成式(I)において、aはサイクル特性を向上させる観点から、-0.03以上が好ましく、0以上であることがより好ましく、0.002以上が特に好ましい。また、初回効率が高いリチウム二次電池を得る観点から、aは0.1以下が好ましく、0.09以下がより好ましく、0.07以下が特に好ましい。 In the composition formula (I), a is preferably -0.03 or more, more preferably 0 or more, and particularly preferably 0.002 or more, from the viewpoint of improving cycle characteristics. From the viewpoint of obtaining a lithium secondary battery with high initial efficiency, a is preferably 0.1 or less, more preferably 0.09 or less, and particularly preferably 0.07 or less.
 aの上記上限値及び下限値は任意に組み合わせることができる。
 aは、-0.03≦a≦0.1を満たすことが好ましく、0≦a≦0.09を満たすことがより好ましく、0.002≦a≦0.07を満たすことが特に好ましい。
The above upper limit and lower limit of a can be combined arbitrarily.
a preferably satisfies −0.03≦a≦0.1, more preferably satisfies 0≦a≦0.09, and particularly preferably satisfies 0.002≦a≦0.07.
 組成式(I)において、放電効率が高いリチウム二次電池を得る観点から、0<y+z+w<0.6を満たすことが好ましく、0<y+z+w≦0.5を満たすことがより好ましく、0<y+z+w≦0.25を満たすことが特に好ましく、0<y+z+w≦0.2を満たすことがさらに好ましい。 In the composition formula (I), from the viewpoint of obtaining a lithium secondary battery with high discharge efficiency, it is preferable to satisfy 0 < y + z + w < 0.6, more preferably 0 < y + z + w ≤ 0.5, and 0 < y + z + w It is particularly preferable to satisfy ≦0.25, and more preferably to satisfy 0<y+z+w≦0.2.
 組成式(I)において、yは電池の内部抵抗が低いリチウム二次電池を得る観点から、0.05以上が好ましく、0.08以上がより好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、0.4以下が好ましく、0.3以下がより好ましい。
 yの上限値と下限値は任意に組み合わせることができる。組み合わせの例としては、0.05≦y≦0.4、0.08≦y≦0.3が挙げられる。
In composition formula (I), y is preferably 0.05 or more, more preferably 0.08 or more, from the viewpoint of obtaining a lithium secondary battery with low battery internal resistance. From the viewpoint of obtaining a lithium secondary battery with high thermal stability, it is preferably 0.4 or less, more preferably 0.3 or less.
The upper limit and lower limit of y can be combined arbitrarily. Examples of combinations include 0.05≦y≦0.4 and 0.08≦y≦0.3.
 組成式(I)において、zはサイクル特性を向上させる観点から0.0002以上が好ましく、0.0005以上がより好ましい。また、0.15以下が好ましく、0.13以下がより好ましく、0.10以下が特に好ましい。
 zの上限値と下限値は任意に組み合わせることができる。組み合わせの例としては、0.0002≦z≦0.15、0.0005≦z≦0.13、0.0005≦z≦0.10が挙げられる。
 zは0.0002≦z≦0.15を満たすことが好ましい。
In composition formula (I), z is preferably 0.0002 or more, more preferably 0.0005 or more, from the viewpoint of improving cycle characteristics. Moreover, it is preferably 0.15 or less, more preferably 0.13 or less, and particularly preferably 0.10 or less.
The upper limit and lower limit of z can be combined arbitrarily. Examples of combinations include 0.0002≦z≦0.15, 0.0005≦z≦0.13, and 0.0005≦z≦0.10.
z preferably satisfies 0.0002≦z≦0.15.
 組成式(I)において、wはサイクル特性を向上させる観点から0.001以上が好ましく、0.002以上がより好ましい。また、0.09以下が好ましく、0.08以下がより好ましく、0.07以下が特に好ましい。
 wの上限値と下限値は任意に組み合わせることができる。組み合わせの例としては、0.001≦w≦0.09、0.002≦w≦0.08、0.002≦w≦0.07が挙げられる。
 wは0.001≦w≦0.09を満たすことが好ましい。
In composition formula (I), w is preferably 0.001 or more, more preferably 0.002 or more, from the viewpoint of improving cycle characteristics. Moreover, it is preferably 0.09 or less, more preferably 0.08 or less, and particularly preferably 0.07 or less.
The upper limit and lower limit of w can be combined arbitrarily. Examples of combinations include 0.001≦w≦0.09, 0.002≦w≦0.08, and 0.002≦w≦0.07.
w preferably satisfies 0.001≦w≦0.09.
 Mは、Mn、Ti、Mg、Al、W、Nb、Zr、及びBからなる群から選択される少なくとも1種の元素が好ましく、Mn、Al、W、Nb、Zr、及びBからなる群から選択される少なくとも1種の元素がより好ましい。 M is preferably at least one element selected from the group consisting of Mn, Ti, Mg, Al, W, Nb, Zr, and B, and from the group consisting of Mn, Al, W, Nb, Zr, and B At least one selected element is more preferred.
 組成式(I)は、0.002≦a≦0.07かつ0.08≦y≦0.3かつ0.0002≦z≦0.15かつ0.001≦w≦0.09を満たすことが好ましい。 Composition formula (I) satisfies 0.002≦a≦0.07, 0.08≦y≦0.3, 0.0002≦z≦0.15 and 0.001≦w≦0.09. preferable.
[組成分析]
 CAMの組成分析は、得られたCAMの粉末を塩酸に溶解させた後、ICP発光分光分析装置を用いて測定できる。
 ICP発光分光分析装置としては、例えばエスアイアイ・ナノテクノロジー株式会社製、SPS3000が使用できる。
[Composition analysis]
The composition analysis of CAM can be measured using an ICP emission spectrometer after dissolving the obtained CAM powder in hydrochloric acid.
As the ICP emission spectrometer, for example, SPS3000 manufactured by SII Nanotechnology Co., Ltd. can be used.
(層状構造)
 CAMの結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
(Layered structure)
The crystal structure of CAM is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
 六方晶型の結晶構造は、P3、P31、P32、R3、P-3、R-3、P312、P321、P3112、P3121、P3212、P3221、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P61、P65、P62、P64、P63、P-6、P6/m、P63/m、P622、P6122、P6522、P6222、P6422、P6322、P6mm、P6cc、P63cm、P63mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P63/mcm及びP63/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。 The hexagonal crystal structure is: P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P61, P65, P62, P64, P63, P-6, P6/m, P63/m, P622, From P6122, P6522, P6222, P6422, P6322, P6mm, P6cc, P63cm, P63mc, P-6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P63/mcm and P63/mmc belong to any one space group selected from the group consisting of
 また、単斜晶型の結晶構造は、P2、P21、C2、Pm、Pc、Cm、Cc、P2/m、P21/m、C2/m、P2/c、P21/c及びC2/cからなる群から選ばれるいずれか一つの空間群に帰属される。 The monoclinic crystal structure consists of P2, P21, C2, Pm, Pc, Cm, Cc, P2/m, P21/m, C2/m, P2/c, P21/c and C2/c. It belongs to any one space group selected from the group.
 これらのうち、初回放電容量が高いリチウム二次電池を得るため、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。 Among these, in order to obtain a lithium secondary battery with a high initial discharge capacity, the crystal structure is a hexagonal crystal structure assigned to the space group R-3m, or a monoclinic crystal structure assigned to C2/m. A crystalline structure is particularly preferred.
 CAMの結晶構造は、CuKαを線源とし、かつ回折角2θの測定範囲を10-90°とする粉末X線回折測定を行うことで算出できる。具体的には、粉末X線回折測定装置(例えば、株式会社リガク製UltimaIV)を用いて観察することにより確認できる。 The crystal structure of CAM can be calculated by powder X-ray diffraction measurement using CuKα as a radiation source and a diffraction angle 2θ measurement range of 10-90°. Specifically, it can be confirmed by observation using a powder X-ray diffraction measurement device (for example, Ultima IV manufactured by Rigaku Corporation).
≪D10、D90及びD50
 CAMは、D10、D90及びD50が下記(E)を満たすことが好ましい。
 (D90-D50)/(D50-D10)≦3.0  ・・・(E)
((E)中、D10はCAMの10%累積体積粒度である。D50はCAMの50%累積体積粒度である。D90はCAMの90%累積体積粒度である。)
<< D10 , D90 and D50 >>
D 10 , D 90 and D 50 of the CAM preferably satisfy the following (E).
( D90 - D50 )/( D50 - D10 ) ≤ 3.0 (E)
(In (E), D10 is the 10% cumulative volume particle size of CAM. D50 is the 50% cumulative volume particle size of CAM. D90 is the 90% cumulative volume particle size of CAM.)
 (E)の好ましい例を以下に記載する。
 (D90-D50)/(D50-D10)≦2.9  ・・・(E)-1
 (D90-D50)/(D50-D10)≦2.85  ・・・(E)-2
 (D90-D50)/(D50-D10)≦2.7 ・・・(E)-3
Preferred examples of (E) are described below.
(D 90 −D 50 )/(D 50 −D 10 )≦2.9 (E)−1
(D 90 −D 50 )/(D 50 −D 10 )≦2.85 (E)−2
(D 90 −D 50 )/(D 50 −D 10 )≦2.7 (E)−3
 (E)の好ましい例を以下にさらに記載する。
 1.0≦(D90-D50)/(D50-D10)≦3.0 ・・・(E)-10
 1.1≦(D90-D50)/(D50-D10)≦2.9  ・・・(E)-11 1.3≦(D90-D50)/(D50-D10)≦2.85 ・・・(E)-12
 1.5≦(D90-D50)/(D50-D10)≦2.7 ・・・(E)-13
Preferred examples of (E) are further described below.
1.0≦(D 90 −D 50 )/(D 50 −D 10 )≦3.0 (E)−10
1.1≦(D 90 −D 50 )/(D 50 −D 10 )≦2.9 (E)−11 1.3≦(D 90 −D 50 )/(D 50 −D 10 ) ≦2.85 (E)-12
1.5≤( D90 - D50 )/( D50 - D10 )≤2.7 (E)-13
 (E)を満たすCAMは、正極を製造する際に充填しやすくなり、導電助剤との接触が良好になりやすい。このため、抵抗が小さい正極を製造できる。また、 (E)を満たすCAMは、粗大粒子の存在が抑えられて、正極を製造する際に粒子割れが生じにくくなり、CAM表面での副反応が生じにくい。このため、ガスの発生を抑制することができる。 A CAM that satisfies (E) is easy to fill when manufacturing a positive electrode, and tends to be in good contact with a conductive aid. Therefore, a positive electrode with low resistance can be manufactured. In addition, the CAM that satisfies (E) suppresses the presence of coarse particles, makes it less likely that particle cracking will occur during the production of the positive electrode, and will less likely cause side reactions on the surface of the CAM. Therefore, generation of gas can be suppressed.
[D10、D90及びD50の測定]
 D10、D50及びD90は、以下の乾式の方法により測定できる。
[Measurement of D10 , D90 and D50 ]
D 10 , D 50 and D 90 can be measured by the following dry method.
 具体的には、まず、CAM2gを用いてレーザー回折粒度分布計により乾式粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、微小粒子側から10%累積時の粒子径の値がD10(μm)、微小粒子側から50%累積時の粒子径の値がD50(μm)、微小粒子側から90%累積時の粒子径の値がD90(μm)である。
 レーザー回折粒度分布計としては、例えばマルバーン製、MS2000が使用できる。
 後述の化合物XのD50は、CAMの代わりに化合物Xを用いた以外は上記と同様の方法で測定することができる。
Specifically, first, dry particle size distribution is measured with a laser diffraction particle size distribution meter using CAM 2g to obtain a volume-based cumulative particle size distribution curve. In the obtained cumulative particle size distribution curve, the value of the particle diameter at 10% accumulation from the microparticle side is D 10 (μm), the particle diameter value at 50% accumulation from the microparticle side is D 50 (μm), and the microparticles D 90 (μm) is the value of the particle diameter at 90% accumulation from the particle side.
As a laser diffraction particle size distribution analyzer, MS2000 manufactured by Malvern, for example, can be used.
The D50 of compound X described below can be measured in the same manner as above, except that compound X is used instead of CAM.
≪BET比表面積≫
 CAMは、BET比表面積が1.0m/g以上を満たすことが好ましい。またCAMは、BET比表面積が2.5m/g以下を満たすことが好ましい。CAMは、BET比表面積が1.2-2.5m/gを満たすことが好ましく、1.4-2.5m/gを満たすことがより好ましい。
<<BET specific surface area>>
The CAM preferably has a BET specific surface area of 1.0 m 2 /g or more. Also, the CAM preferably has a BET specific surface area of 2.5 m 2 /g or less. The CAM preferably has a BET specific surface area of 1.2-2.5 m 2 /g, more preferably 1.4-2.5 m 2 /g.
 BET比表面積が上記の下限値以上であるCAMを用いると、リチウム二次電池の出力特性を高めやすい。
 BET比表面積が上記の上限値以下であるCAMを用いると、CAMと電解液との接触面積が増大しにくく、電解液の分解に起因するガスが発生しにくい。
Using a CAM having a BET specific surface area equal to or higher than the above lower limit facilitates enhancing the output characteristics of the lithium secondary battery.
When a CAM having a BET specific surface area equal to or less than the above upper limit value is used, the contact area between the CAM and the electrolytic solution is less likely to increase, and gas due to decomposition of the electrolytic solution is less likely to be generated.
[BET比表面積の測定]
 CAMのBET比表面積は、BET比表面積測定装置により測定できる。BET比表面積測定装置としては、例えば、マウンテック社製Macsorb(登録商標)を用いることができる。粉末状のCAMを測定する場合、前処理として窒素雰囲気中、105℃で30分間乾燥させることが好ましい。
[Measurement of BET specific surface area]
The BET specific surface area of CAM can be measured with a BET specific surface area measuring device. As the BET specific surface area measuring device, for example, Macsorb (registered trademark) manufactured by Mountech Co., Ltd. can be used. When powdery CAM is measured, it is preferable to dry it at 105° C. for 30 minutes in a nitrogen atmosphere as a pretreatment.
 本実施形態において、充電状態で保管された時にガスが発生しにくいか否かは下記の方法により確認する。
 具体的には、リチウム二次電池を充電後、所定の条件で保存した後にガスの発生量を測定する。
In this embodiment, it is confirmed by the following method whether or not gas is unlikely to be generated when stored in a charged state.
Specifically, after the lithium secondary battery is charged and stored under predetermined conditions, the amount of gas generated is measured.
[ガス発生量の測定]
(リチウム二次電池用正極の作製)
 本実施形態のCAMと導電材とバインダーとを、CAM:導電材:バインダー=92:5:3(質量比)で混練し、ペースト状の正極合剤を調製する。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いる。導電材にはアセチレンブラックを用いる。バインダーには、ポリフッ化ビニリデンを用いる。
[Measurement of gas generation amount]
(Preparation of positive electrode for lithium secondary battery)
The CAM of the present embodiment, the conductive material, and the binder are kneaded at a ratio of CAM:conductive material:binder=92:5:3 (mass ratio) to prepare a pasty positive electrode mixture. N-methyl-2-pyrrolidone is used as an organic solvent when preparing the positive electrode mixture. Acetylene black is used as the conductive material. Polyvinylidene fluoride is used as the binder.
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して60℃で1時間乾燥し、150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得る。このリチウム二次電池用正極の電極面積は34.96cmとする。 The obtained positive electrode mixture is applied to an Al foil having a thickness of 40 μm as a current collector, dried at 60° C. for 1 hour, and vacuum-dried at 150° C. for 8 hours to obtain a positive electrode for a lithium secondary battery. The electrode area of this positive electrode for a lithium secondary battery is 34.96 cm 2 .
(リチウム二次電池用負極の作製)
 人造黒鉛とスチレンブタジエンゴム(SBR)とカルボキシメチルセルロース(CMC)とを、人造黒鉛:SBR:CMC=96.5:2:1.5(質量比)の組成となる割合で加えて混練することにより、ペースト状の負極合剤を調製する。負極合剤の調製時には、純水を溶媒として用いる。
(Preparation of negative electrode for lithium secondary battery)
By adding and kneading artificial graphite, styrene-butadiene rubber (SBR), and carboxymethyl cellulose (CMC) at a composition ratio of artificial graphite: SBR: CMC = 96.5: 2: 1.5 (mass ratio) , to prepare a paste-like negative electrode mixture. Pure water is used as a solvent when preparing the negative electrode mixture.
 得られた負極合剤を、集電体となる厚さ10μmのCu箔に塗布して、60℃で1時間乾燥し、120℃で8時間真空乾燥を行い、リチウム二次電池用負極を得た。このリチウム二次電池用負極の電極面積は37.44cmとした。 The resulting negative electrode mixture was applied to a Cu foil having a thickness of 10 μm as a current collector, dried at 60° C. for 1 hour, and vacuum-dried at 120° C. for 8 hours to obtain a negative electrode for a lithium secondary battery. rice field. The electrode area of this negative electrode for lithium secondary battery was 37.44 cm 2 .
(リチウム二次電池の作製)
 (リチウム二次電池用負極の作製)で作製される負極上に、セパレータ(ポリエチレン製多孔質フィルム)を置き、その上に(リチウム二次電池用正極の作製)で作製されるリチウム二次電池用正極を置いた後、アルミラミネートフィルムで包む。ここに電解液を1000μl注入し、真空包装機にてアルミラミネートを封止してリチウム二次電池(パウチ型)を作製する。電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの16:10:74(体積比)混合液に、LiPFを1.3mol/lとなる割合で溶解した溶液を用いる。
(Production of lithium secondary battery)
A separator (polyethylene porous film) is placed on the negative electrode produced in (Preparation of negative electrode for lithium secondary battery), and the lithium secondary battery prepared in (Preparation of positive electrode for lithium secondary battery) is placed thereon. After placing the positive electrode, wrap it with an aluminum laminate film. 1000 .mu.l of electrolyte solution is poured thereinto, and the aluminum laminate is sealed by a vacuum packaging machine to produce a lithium secondary battery (pouch type). As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a ratio of 1.3 mol/l in a mixed solution of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate (16:10:74 (volume ratio)) is used.
 上記の方法で作製されるリチウム二次電池を用いて、以下の方法でガス発生量を測定する。 Using the lithium secondary battery produced by the above method, the amount of gas generated is measured by the following method.
(測定方法)
 CAMを正極に用いて、パウチ型のリチウム二次電池を作製する。
(Measuring method)
Using CAM as a positive electrode, a pouch-type lithium secondary battery is produced.
 前記のパウチ型のリチウム二次電池を以下の条件でフォーメーションする。
 フォーメーション条件:試験温度25℃で0.05CAでSOC10%まで充電し、試験温度60℃で10時間放置し、その後、試験温度25℃で、0.1CAで4.3VまでCC-CV充電で電流が0.05CAになるまで充電を行う。さらに、0.2CAで2.5Vまで放電した後、0.2CAでの充放電を2サイクル実施する。
The pouch-type lithium secondary battery is formed under the following conditions.
Formation conditions: Charge to 10% SOC at 0.05 CA at a test temperature of 25 ° C., leave for 10 hours at a test temperature of 60 ° C., then CC-CV charge to 4.3 V at 0.1 CA at a test temperature of 25 ° C. Current is charged to 0.05 CA. Further, after discharging to 2.5 V at 0.2 CA, two cycles of charging and discharging at 0.2 CA are performed.
 その後リチウム二次電池の体積をアルキメデス法により測定し、保存前の体積を求める。
 アルキメデス法は、自動比重計を用いて、リチウム二次電池の空中重量と水中重量の差からリチウム二次電池全体の実体積を測定する方法である。
After that, the volume of the lithium secondary battery is measured by the Archimedes method to obtain the volume before storage.
The Archimedes method is a method of measuring the actual volume of the entire lithium secondary battery from the difference between the weight of the lithium secondary battery in air and the weight in water using an automatic hydrometer.
 次いで、4.3Vまで充電し、60℃の恒温槽内で7日間保存する。その後、0.2CAの電流値で2.5Vまで放電を実施したパウチ型のリチウム二次電池の体積をアルキメデス法で測定する。60℃、7日間保存後の体積と保存前の体積の差からガス発生量(単位:cc/g)を求める。なお、ガス発生量の単位における質量(g)は、CAMの重さの規格である。 Then, it is charged to 4.3V and stored in a constant temperature bath at 60°C for 7 days. After that, the volume of the pouch-type lithium secondary battery discharged to 2.5 V at a current value of 0.2 CA is measured by the Archimedes method. The amount of gas generated (unit: cc/g) is determined from the difference between the volume after storage at 60°C for 7 days and the volume before storage. The mass (g) in the unit of the amount of generated gas is the standard for the weight of the CAM.
 なお、充電状態のリチウム二次電池を60℃の恒温槽内に7日間保存するという試験は、常温と比較して副反応が非常に起きやすい状態であり、ガスが生じやすい状態である。すなわち、上記試験は、リチウム二次電池を充電状態で常温にて長期間保管することを想定した加速試験であり、本技術分野において一般的に用いられている試験条件である。上記試験においてガス発生量が少なければ、充電状態で常温にて長期間保管された場合においても、ガスが発生しにくいと評価できる。 It should be noted that, in a test in which a lithium secondary battery in a charged state is stored in a constant temperature bath at 60°C for 7 days, side reactions are more likely to occur than at room temperature, and gas is easily generated. That is, the above test is an accelerated test assuming storage of the lithium secondary battery in a charged state at room temperature for a long period of time, and is a test condition generally used in this technical field. If the amount of gas generated in the above test is small, it can be evaluated that gas is hardly generated even when the battery is stored in a charged state at room temperature for a long period of time.
 上記の方法により測定したガス発生量が0.13cc/g以下であると、「充電状態で常温にて長期間保管された場合でもガスが発生しにくい」と評価する。 If the amount of gas generated measured by the above method is 0.13 cc/g or less, it is evaluated as "difficult to generate gas even when stored at room temperature for a long period of time in a charged state."
<CAMの製造方法1>
 CAMの製造方法1は、MCCの製造工程と、MCC、リチウム化合物及び化合物Xとを混合し混合物を得る工程と、CAMを得る工程と、を順に実施する方法である。MCCは、金属複合酸化物又は金属複合水酸化物である。化合物Xについては後述する。
<CAM manufacturing method 1>
CAM production method 1 is a method in which the steps of producing MCC, mixing MCC, a lithium compound and compound X to obtain a mixture, and obtaining CAM are performed in this order. MCC is a metal composite oxide or metal composite hydroxide. Compound X will be described later.
[MCCの製造工程]
 まず、Niと任意元素であるCo及び元素Mとを含むMCCを調製する。
 MCCは、バッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、Ni、Co及びAlを含む金属複合水酸化物を例に、その製造方法を詳述する。
[Manufacturing process of MCC]
First, MCC containing Ni and optional elements Co and element M is prepared.
MCC can be produced by a batch co-precipitation method or a continuous co-precipitation method. The manufacturing method will be described in detail below, taking a metal composite hydroxide containing Ni, Co and Al as an example.
 まず共沈殿法、特にJP-A-2002-201028に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液、及び錯化剤を反応させ、Ni(1-y-z)CoAl(OH)(式中、y+z<1)で表される金属複合水酸化物を製造する。 First, a nickel salt solution, a cobalt salt solution, an aluminum salt solution, and a complexing agent are reacted by a co-precipitation method, particularly the continuous method described in JP-A-2002-201028, to form Ni (1-yz) Co A metal composite hydroxide represented by yAlz (OH) 2 (wherein y+z< 1 ) is produced.
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れか1種又は2種以上を使用することができる。 The nickel salt that is the solute of the nickel salt solution is not particularly limited, but for example, one or more of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.
 上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れか1種又は2種以上を使用することができる。 As the cobalt salt that is the solute of the cobalt salt solution, for example, one or more of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used.
 上記アルミニウム塩溶液の溶質であるアルミニウム塩としては、例えば硫酸アルミニウムやアルミン酸ソーダ等が使用できる。 As the aluminum salt that is the solute of the aluminum salt solution, for example, aluminum sulfate, sodium aluminate, or the like can be used.
 以上の金属塩は、上記Ni(1-y-z)CoAl(OH)の組成比に対応する割合で用いられる。また、溶媒として水が使用される。 The above metal salts are used in proportions corresponding to the composition ratio of Ni (1-yz) Co y Al z (OH) 2 . Also, water is used as a solvent.
 錯化剤は、水溶液中で、Ni、Co、及びAlのイオンと錯体を形成可能な化合物である。例えば、アンモニウムイオン供給体、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。 A complexing agent is a compound capable of forming a complex with Ni, Co, and Al ions in an aqueous solution. Examples include ammonium ion donors, hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracildiacetic acid, and glycine.
 アンモニウムイオン供給体としては、水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等のアンモニウム塩が挙げられる。 Ammonium ion donors include ammonium salts such as ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, and ammonium fluoride.
 錯化剤は含まれていなくてもよく、錯化剤が含まれる場合、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩のmol数の合計に対するmol比が0より大きく2.0以下である。 The complexing agent may not be contained, and when the complexing agent is contained, the amount of the complexing agent contained in the mixed solution containing the nickel salt solution, the cobalt salt solution, the aluminum salt solution and the complexing agent is, for example, The mol ratio to the total number of mols of the metal salt is greater than 0 and 2.0 or less.
 共沈殿法に際しては、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液及び錯化剤を含む混合液のpH値を調整するため、混合液のpHがアルカリ性から中性になる前に、混合液にアルカリ性水溶液を添加する。アルカリ性水溶液は、水酸化ナトリウム、水酸化カリウムが使用できる。 In the coprecipitation method, in order to adjust the pH value of the mixed solution containing the nickel salt solution, the cobalt salt solution, the aluminum salt solution and the complexing agent, before the pH of the mixed solution changes from alkaline to neutral, Add an alkaline aqueous solution. Sodium hydroxide and potassium hydroxide can be used as the alkaline aqueous solution.
 なお、本明細書におけるpHの値は、混合液の温度が40℃の時に測定された値であると定義する。反応槽からサンプリングした混合液の温度が40℃でない場合には、混合液を40℃まで加熱又は冷却してpHを測定する。 It should be noted that the pH value in this specification is defined as the value measured when the temperature of the mixed liquid is 40°C. If the temperature of the mixed liquid sampled from the reaction tank is not 40°C, the mixed liquid is heated or cooled to 40°C and the pH is measured.
 上記ニッケル塩溶液、コバルト塩溶液、及びアルミニウム塩溶液のほか、錯化剤を反応槽に連続して供給すると、Ni、Co、及びAlが反応し、Ni(1-y-z)CoAl(OH)が生成する。 When the nickel salt solution, cobalt salt solution, and aluminum salt solution as well as the complexing agent are continuously supplied to the reactor, Ni, Co, and Al react to form Ni (1-yz) Co y Al. z (OH) 2 is produced.
 反応に際しては、反応槽の温度を、例えば20-80℃、好ましくは30-70℃の範囲内で制御する。 During the reaction, the temperature of the reaction vessel is controlled, for example, within the range of 20-80°C, preferably 30-70°C.
 また、反応に際しては、反応槽内の混合液のpH値を、例えばpH9-13、好ましくはpH11-13の範囲内で制御する。 Also, during the reaction, the pH value of the mixed solution in the reaction vessel is controlled within the range of pH 9-13, preferably pH 11-13.
 反応槽内の物質は、適宜撹拌して混合する。
 連続式共沈殿法で用いる反応槽は、形成された反応沈殿物を反応槽の上部からあふれさせて分離する、オーバーフロータイプの反応槽である。
The materials in the reaction vessel are appropriately agitated to mix.
The reactor used in the continuous co-precipitation process is an overflow-type reactor in which the formed reaction precipitate is overflowed and separated from the top of the reactor.
 反応槽内は不活性雰囲気であってもよい。不活性雰囲気であると、Niよりも酸化されやすい元素が凝集してしまうことを抑制し、均一なMCCを得ることができる。 The inside of the reaction tank may be an inert atmosphere. An inert atmosphere suppresses the aggregation of elements that are more easily oxidized than Ni, and a uniform MCC can be obtained.
 また、反応槽内には酸素を導入してもよい。反応槽内に酸素を導入する方法は、酸素を含むガスをバブリングする方法が挙げられる。このとき、多量に酸素を導入することなく、不活性雰囲気を保ちつつ酸素ガスを導入することが好ましい。 Also, oxygen may be introduced into the reaction tank. A method of introducing oxygen into the reactor includes a method of bubbling an oxygen-containing gas. At this time, it is preferable to introduce oxygen gas while maintaining an inert atmosphere without introducing a large amount of oxygen.
 以上の反応後、得られた反応生成物を水で洗浄した後、乾燥することで、金属複合水酸化物が得られる。また、反応生成物に水で洗浄するだけでは混合液に由来する夾雑物が残存してしまう場合には、必要に応じて、反応生成物を、弱酸水や水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄してもよい。 After the above reaction, the reaction product obtained is washed with water and then dried to obtain a metal composite hydroxide. In addition, if contaminants derived from the mixed solution remain only by washing the reaction product with water, the reaction product may optionally be washed with weak acid water, sodium hydroxide, or potassium hydroxide. It may be washed with an alkaline solution.
 MCCとして金属複合酸化物を製造する場合、金属複合水酸化物を酸化することにより金属複合酸化物を調製することができる(酸化工程)。酸化工程において、昇温開始から達温して温度保持が終了するまでの合計時間を1時間以上30時間以下とすることが好ましい。最高保持温度に達するまでの昇温速度は180℃/時間以上が好ましく、200℃/時間以上がより好ましく、250℃/時間以上が特に好ましい。 When manufacturing a metal composite oxide as MCC, the metal composite oxide can be prepared by oxidizing the metal composite hydroxide (oxidation step). In the oxidation step, it is preferable that the total time from the start of temperature rise to the end of temperature retention is 1 hour or more and 30 hours or less. The heating rate until reaching the maximum holding temperature is preferably 180° C./hour or more, more preferably 200° C./hour or more, and particularly preferably 250° C./hour or more.
 本明細書における最高保持温度とは、酸化工程又は後述の焼成工程における炉内雰囲気の保持温度の最高温度であり、酸化工程又は焼成工程が複数の工程を有する場合、最高保持温度とは、各工程のうち、最も高い温度で酸化又は焼成した工程の温度を意味する。 The maximum holding temperature in this specification is the maximum temperature of the holding temperature of the furnace atmosphere in the oxidation step or the firing step described later, and when the oxidation step or firing step has a plurality of steps, the maximum holding temperature It means the temperature of the process of oxidation or calcination at the highest temperature among the processes.
 本明細書における昇温速度は、酸化工程又は焼成工程で用いる装置において、昇温を開始した時間から最高保持温度に到達するまでの時間と、炉内の昇温開始時の温度から最高保持温度までの温度差とから算出される。 The heating rate in this specification refers to the time from the start of temperature rise to the maximum holding temperature in the apparatus used in the oxidation process or the firing process, and the time from the temperature at the start of heating in the furnace to the maximum holding temperature. It is calculated from the temperature difference between
 酸化の際、各種気体、例えば、窒素、アルゴン、二酸化炭素等の不活性ガス、空気、酸素等の酸化性ガス、またはそれらの混合ガスを反応槽内に供給してもよい。 At the time of oxidation, various gases, for example, inert gases such as nitrogen, argon and carbon dioxide, oxidizing gases such as air and oxygen, or mixed gases thereof may be supplied into the reaction vessel.
 また酸化剤を用いてもよい。酸化剤としては、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン、オゾンなどを使用することができる。 An oxidizing agent may also be used. As the oxidizing agent, peroxides such as hydrogen peroxide, peroxide salts such as permanganate, perchlorates, hypochlorites, nitric acid, halogens, ozone, and the like can be used.
 MCCの乾燥条件は特に制限されない。MCCが金属複合酸化物又は金属複合水酸化物である場合、乾燥条件は、例えば、下記1)~3)のいずれの条件でもよい。
 1)金属複合酸化物又は金属複合水酸化物が酸化又は還元されない条件。具体的には、金属複合酸化物が金属複合酸化物のまま維持される乾燥条件、金属複合水酸化物が金属複合水酸化物のまま維持される乾燥条件である。
 2)金属複合水酸化物が酸化される条件。具体的には、金属複合水酸化物が金属複合酸化物に酸化される乾燥条件である。
 3)金属複合酸化物が還元される条件。具体的には、金属複合酸化物が金属複合水酸化物に還元される乾燥条件である。
Drying conditions for MCC are not particularly limited. When MCC is a metal composite oxide or metal composite hydroxide, the drying conditions may be, for example, any of the following conditions 1) to 3).
1) Conditions under which the metal composite oxide or metal composite hydroxide is not oxidized or reduced. Specifically, the drying conditions are such that the metal composite oxide is maintained as a metal composite oxide, and the metal composite hydroxide is maintained as a metal composite hydroxide.
2) Conditions under which the metal composite hydroxide is oxidized. Specifically, the drying conditions are such that the metal composite hydroxide is oxidized to the metal composite oxide.
3) Conditions under which the metal composite oxide is reduced. Specifically, the drying conditions are such that the metal composite oxide is reduced to the metal composite hydroxide.
 金属複合酸化物又は金属複合水酸化物が酸化又は還元されない条件にするためには、乾燥時の雰囲気に窒素、ヘリウム及びアルゴン等の不活性ガスを使用すればよい。
 金属複合水酸化物が酸化される条件にするためには、乾燥時の雰囲気に酸素又は空気を使用すればよい。
An inert gas such as nitrogen, helium or argon may be used in the atmosphere during drying in order to create a condition in which the metal composite oxide or metal composite hydroxide is not oxidized or reduced.
Oxygen or air may be used in the drying atmosphere to create conditions for oxidizing the metal composite hydroxide.
 また、金属複合酸化物が還元される条件にするためには、乾燥時に、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すればよい。 Also, in order to create conditions for reducing the metal composite oxide, a reducing agent such as hydrazine or sodium sulfite may be used in an inert gas atmosphere during drying.
 MCCの乾燥後に、適宜分級を行ってもよい。 After drying the MCC, it may be appropriately classified.
[混合物を得る工程]
 MCCを必要に応じて乾燥させた後、リチウム化合物と、化合物Xとを混合する。
[Step of obtaining a mixture]
After drying the MCC as necessary, the lithium compound and the compound X are mixed.
 リチウム化合物としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、または、二つ以上を混合して使用することができる。
 これらのリチウム化合物のうち、水酸化リチウムや酢酸リチウムは、空気中の二酸化炭素と反応して、炭酸リチウムを数%含みうる。
As the lithium compound, one or more of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, and lithium oxide may be used in combination.
Among these lithium compounds, lithium hydroxide and lithium acetate can react with carbon dioxide in the air and contain several percent of lithium carbonate.
 化合物Xとは、上記元素Xを含む化合物である。 A compound X is a compound containing the element X described above.
 Nbを含む化合物Xとしては、酸化ニオブ(Nb、NbO)が挙げられる。 Compound X containing Nb includes niobium oxide (Nb 2 O 5 , NbO).
 Wを含む化合物Xとしては、酸化タングステン(WO、WO)、タングステン酸、塩化タングステンが挙げられる。 Compound X containing W includes tungsten oxide (WO 3 , WO 2 ), tungstic acid, and tungsten chloride.
 Moを含む化合物Xとしては、酸化モリブデン(MoO)が挙げられる。 Compound X containing Mo includes molybdenum oxide (MoO 3 ).
 MCCと、リチウム化合物と、化合物Xとを含む混合物を焼成することにより、LiMOと、Li-X化合物とを備え、(A)及び(B)を満たすCAMが得られる。以下の説明において、MCCと、リチウム化合物と、化合物Xとを含む混合物を、混合物1と記載する場合がある。 By firing a mixture containing MCC, a lithium compound, and compound X, a CAM comprising LiMO and a Li-X compound and satisfying (A) and (B) is obtained. In the following description, a mixture containing MCC, a lithium compound, and compound X may be referred to as mixture 1.
 混合物1を焼成することにより、MCCと、リチウム化合物と、が反応して一次粒子が成長し、一次粒子同士が凝集して焼結し、間隙を有する二次粒子が形成される。さらに、リチウム化合物に含まれるLiと、化合物Xに含まれる元素Xとが反応し、Li-X化合物が形成される。Li-X化合物は二次粒子の間隙に存在する。 By firing the mixture 1, the MCC reacts with the lithium compound to grow primary particles, which are aggregated and sintered to form secondary particles having gaps. Furthermore, Li contained in the lithium compound reacts with element X contained in compound X to form a Li—X compound. The Li—X compound exists in the interstices of the secondary particles.
 本発明者らの検討により、粒径、及び下記(円形度の測定方法)に記載の方法により得られる円形度を適切な範囲に調整した化合物Xを用いると、二次粒子の間隙に元素Xが多く偏在し、二次粒子の表面よりも間隙に存在する元素Xの量が多いCAMが得られやすいことが見いだされた。化合物Xの粒径、及び円形度を適切な範囲に調整することで、MCCへの化合物Xの分散性を高めることができる。 As a result of studies by the present inventors, it has been found that when using compound X in which the particle diameter and the circularity obtained by the method described below (Method for measuring circularity) are adjusted to an appropriate range, element X It was found that a large amount of X is unevenly distributed, and a CAM having a larger amount of element X present in the interstices than in the surface of the secondary particles is easily obtained. The dispersibility of compound X in MCC can be enhanced by adjusting the particle size and circularity of compound X within appropriate ranges.
 化合物Xの添加量は、元素Xの種類に応じて異なる。化合物Xの添加量は、MCCに含まれる金属元素の総物質量に対する、元素Xの物質量の割合により適宜調整する。 The amount of compound X added varies depending on the type of element X. The amount of the compound X to be added is appropriately adjusted according to the ratio of the substance amount of the element X to the total substance amount of the metal elements contained in MCC.
 例えば、前記元素Xの物質量の割合は、0.1-2.5mol%であることが好ましい。 For example, the ratio of the substance amount of the element X is preferably 0.1-2.5 mol%.
(円形度の測定方法)
 化合物Xの円形度は以下の方法で測定する。
 まず、化合物Xの画像を光学顕微鏡で撮影し、化合物Xの投影像である粒子画像を得る。次に、化合物Xを構成する個々の粒子について、下記式(X)により算出される円形度を測定する。得られた円形度を横軸に、累積体積を縦軸とし、化合物Xの円形度分布曲線が得られる。
 下記式(X)に示す円形度は、数値が1に近づくほど真円であることを意味する。
 円形度=4πS/L2  …(X)
(Sは化合物Xの投影画像の投影面積であり、Lは化合物Xの粒子の周囲長である。)
(Method for measuring circularity)
The circularity of compound X is measured by the following method.
First, an image of compound X is photographed with an optical microscope to obtain a particle image, which is a projected image of compound X. Next, the circularity calculated by the following formula (X) is measured for each particle that constitutes the compound X. A circularity distribution curve of the compound X is obtained by plotting the obtained circularity on the horizontal axis and the cumulative volume on the vertical axis.
The circularity shown in the following formula (X) means that the closer the numerical value is to 1, the better the circularity.
Circularity=4πS/L 2 (X)
(S is the projected area of the projected image of compound X, and L is the perimeter of the particle of compound X.)
 得られた円形度分布曲線において、低円形度粒子側から50%累積時の円形度の値が50%累積体積円形度C50である。同様に、得られた累積円形度分布曲線において、低円形度粒子側から10%、及び90%累積時の円形度の値が、それぞれ10%累積体積円形度C10、及び90%累積体積円形度C90である。 In the obtained circularity distribution curve, the circularity value at the time of 50% accumulation from the low circularity particle side is the 50% cumulative volume circularity C50 . Similarly, in the obtained cumulative circularity distribution curve, the circularity values at 10% and 90% cumulative from the low circularity particle side are 10% cumulative volume circularity C 10 and 90% cumulative volume circularity, respectively. degree C 90 .
 円形度の測定には、例えばマルバーン社製のモフォロギシリーズ(装置名:Morphologi G3SE)が使用できる。 For example, Malvern's Morphologi series (apparatus name: Morphologi G3SE) can be used to measure circularity.
 Nbを含む化合物XのC50は、0.6以上が好ましく、0.7以上がより好ましく、0.8以上が特に好ましい。 The C50 of the compound X containing Nb is preferably 0.6 or more, more preferably 0.7 or more, and particularly preferably 0.8 or more.
 Nbを含む化合物Xの(C90-C10)/C50は、0.9以下であることが好ましく、0.8以下であることがより好ましく、0.7以下であることが特に好ましい。また、Nbを含む化合物Xの(C90-C10)/C50は、0.30以上が好ましく、0.35以上がより好ましく、0.40以上が特に好ましい。
 Nbを含む化合物Xの(C90-C10)/C50は、例えば0.30-0.9、0.35-0.8、0.40-0.7である。
(C 90 -C 10 )/C 50 of compound X containing Nb is preferably 0.9 or less, more preferably 0.8 or less, and particularly preferably 0.7 or less. In addition, (C 90 -C 10 )/C 50 of compound X containing Nb is preferably 0.30 or more, more preferably 0.35 or more, and particularly preferably 0.40 or more.
(C 90 -C 10 )/C 50 of compound X containing Nb is, for example, 0.30-0.9, 0.35-0.8, 0.40-0.7.
 W又はMoを含む化合物XのC50は、0.6以上が好ましく、0.7以上がより好ましく、0.8以上が特に好ましい。 The C50 of the compound X containing W or Mo is preferably 0.6 or more, more preferably 0.7 or more, and particularly preferably 0.8 or more.
 W又はMoを含む化合物Xの(C90-C10)/C50は、0.8以下であることが好ましく、0.7以下であることがより好ましく、0.6以下であることが特に好ましい。また、W又はMoを含む化合物Xの(C90-C10)/C50は、0.1以上が好ましく、0.15以上がより好ましく、0.25以上が特に好ましい。
 W又はMoを含む化合物Xの(C90-C10)/C50は、例えば0.1-0.8、0.15-0.7、0.25-0.6である。
(C 90 -C 10 )/C 50 of compound X containing W or Mo is preferably 0.8 or less, more preferably 0.7 or less, particularly 0.6 or less. preferable. In addition, (C 90 -C 10 )/C 50 of compound X containing W or Mo is preferably 0.1 or more, more preferably 0.15 or more, and particularly preferably 0.25 or more.
(C 90 -C 10 )/C 50 of compound X containing W or Mo is, for example, 0.1-0.8, 0.15-0.7, 0.25-0.6.
 C50が上記範囲であると、化合物Xの円形度が高いことを意味する。このような化合物Xを添加することで、MCCと化合物Xが接触しやすくなりLi-X化合物の分散性が向上する。 When C50 is within the above range, it means that compound X has a high degree of circularity. By adding such a compound X, the contact between MCC and the compound X is facilitated, and the dispersibility of the Li—X compound is improved.
 (C90-C10)/C50が上記範囲であると、円形度に一定のばらつきを有する化合物Xであることを意味する。(C90-C10)/C50が上記上限値以下であると、円形度が低い化合物Xが比表面積の増大に寄与することで化合物XがMCCと接触しやすくなり、化合物Xに含まれる元素XがMCCの表面をより拡散しやすくなる。その結果、得られるCAMの二次粒子にLi-X化合物が存在しやすくなる。(C90-C10)/C50が下限値以上であると、円形度の低い化合物Xが多すぎず、MCCと接触しやすくなり、CAMの二次粒子の間隙へ表面拡散しやすくなる。 When (C 90 -C 10 )/C 50 is within the above range, it means that compound X has a certain variation in circularity. When (C 90 -C 10 )/C 50 is equal to or less than the above upper limit, the compound X having a low degree of circularity contributes to an increase in the specific surface area, thereby making it easier for the compound X to come into contact with MCC. The element X becomes easier to diffuse on the surface of the MCC. As a result, the secondary particles of the resulting CAM tend to contain Li—X compounds. When (C 90 -C 10 )/C 50 is equal to or higher than the lower limit, the compound X with low circularity is not too much and easily comes into contact with the MCC, facilitating surface diffusion into the interstices of the secondary particles of the CAM.
 CAMの二次粒子の間隙に効率的にLi-X化合物を偏在させるため、化合物XのD50(μm)は、0.02-20μmであることが好ましく、0.05-14μmであることがより好ましい。 In order to efficiently unevenly distribute the Li—X compound in the gaps between the secondary particles of the CAM, D 50 (μm) of the compound X is preferably 0.02-20 μm, more preferably 0.05-14 μm. more preferred.
 Nbを含む化合物XのD50は、10μm以下であることが好ましく、5.0μm以下であることがより好ましく、3.0μm以下であることが更に好ましい。また、Nbを含む化合物XのD50は、0.02μm以上であることが好ましく、0.05μm以上であることが特に好ましい。
 Nbを含む化合物XのD50は、例えば0.02-10μm、0.05-3.0μmである。
The D50 of the Nb-containing compound X is preferably 10 μm or less, more preferably 5.0 μm or less, and even more preferably 3.0 μm or less. The D50 of the Nb-containing compound X is preferably 0.02 μm or more, particularly preferably 0.05 μm or more.
The D 50 of compound X containing Nb is for example 0.02-10 μm, 0.05-3.0 μm.
 W又はMoを含む化合物XのD50は、1.29μm以下であることが好ましく、1.28μm以下であることがより好ましい。また、W又はMoを含む化合物XのD50は、0.02μm以上であることが好ましく、0.05μm以上であることが特に好ましい。
 W又はMoを含む化合物XのD50は、例えば、0.02-1.29μm、0.05-1.28μmである。
The D50 of compound X containing W or Mo is preferably 1.29 μm or less, more preferably 1.28 μm or less. The D50 of the compound X containing W or Mo is preferably 0.02 μm or more, particularly preferably 0.05 μm or more.
The D 50 of compound X containing W or Mo is, for example, 0.02-1.29 μm, 0.05-1.28 μm.
 D50、C50及び(C90-C10)/C50が上記の範囲である化合物Xを用いると、二次粒子の間隙に元素Xが多く偏在し、二次粒子の表面よりも間隙に存在する元素Xの量が多いCAMが得られやすくなり、さらに(A)、(B)、(C)及び(D)を満たすCAMを製造しやすくなる。 When a compound X having D 50 , C 50 and (C 90 -C 10 )/C 50 within the above ranges is used, a large amount of the element X is unevenly distributed in the gaps of the secondary particles, and the gaps of the secondary particles are more concentrated than the surfaces. It becomes easier to obtain a CAM with a large amount of element X present, and it becomes easier to manufacture a CAM that satisfies (A), (B), (C) and (D).
 MCC、リチウム化合物、及び化合物Xは、それぞれの凝集体がなくなるまで均一に混合することが好ましい。MCC、リチウム化合物、及び化合物Xを均一に混合できれば混合装置は限定されないが、例えば、レーディゲミキサーを用いて混合することが好ましい。 It is preferable to uniformly mix MCC, lithium compound, and compound X until there are no aggregates of each. Although the mixing device is not limited as long as MCC, the lithium compound, and the compound X can be uniformly mixed, it is preferable to use, for example, a Loedige mixer for mixing.
 リチウム化合物、MCC及び化合物Xは、最終目的物の組成比を勘案して用いられる。リチウム化合物とMCCと化合物Xは、上記組成式(I)の組成比に対応する割合で用いられる。 The lithium compound, MCC and compound X are used in consideration of the composition ratio of the final product. The lithium compound, MCC, and compound X are used in proportions corresponding to the compositional ratio of the above compositional formula (I).
 また、最終目的物であるCAMにおいて、リチウム化合物に含まれるLiと、MCCに含まれる金属元素の合計とのmol比が0.98以上、1.1以下となる比率で混合すると、得られるCAMの(B)及び(D)を本実施形態の好ましい範囲に制御しやすい。 Further, in the CAM, which is the final product, the CAM obtained is obtained by mixing the Li contained in the lithium compound and the total metal elements contained in the MCC at a molar ratio of 0.98 or more and 1.1 or less. (B) and (D) of (B) and (D) are easily controlled within the preferred range of the present embodiment.
[CAMを得る工程]
 MCC、リチウム化合物及び化合物Xの混合物を焼成することによって、LiMOと、間隙にLi-X化合物とを有するCAMを得ることができる。なお、焼成には、所望の組成に応じて乾燥空気、大気、酸素雰囲気、不活性雰囲気(窒素、アルゴン)、又はこれらの混合ガス等が用いられる。本実施形態においては酸素雰囲気で焼成することが好ましい。
[Step of obtaining CAM]
By firing a mixture of MCC, a lithium compound and compound X, a CAM with LiMO and a Li—X compound in the interstices can be obtained. For firing, dry air, atmospheric air, an oxygen atmosphere, an inert atmosphere (nitrogen, argon), a mixed gas of these, or the like is used depending on the desired composition. In this embodiment, it is preferable to bake in an oxygen atmosphere.
 焼成工程は、1回のみの焼成であってもよく、複数回の焼成段階を有していてもよい。
 複数回の焼成段階を有する場合、最も高い温度で焼成する工程を本焼成と記載する。本焼成の前には、本焼成よりも低い温度で焼成する仮焼成を行ってもよい。また、本焼成の後には本焼成よりも低い温度で焼成する後焼成を行ってもよい。
The firing process may be a single firing or may have multiple firing stages.
When there are multiple firing steps, the step of firing at the highest temperature is referred to as main firing. Temporary sintering may be performed before main sintering at a temperature lower than that of main sintering. Further, after the main firing, post-baking may be performed in which the material is fired at a temperature lower than that of the main firing.
 本焼成の焼成温度(最高保持温度)は、LiMOの粒子の成長を促進させる観点から、600℃以上が好ましく、650℃以上がより好ましく、700℃以上が特に好ましい。また、LiMOの粒子にクラックが形成されることを防止し、粒子強度を維持する観点から、1200℃以下が好ましく、1100℃以下がより好ましく、1000℃以下が特に好ましい。
 なお、焼成工程が1回のみの場合、上記本焼成の焼成温度で実施することが好ましい。
The firing temperature (maximum holding temperature) of the main firing is preferably 600° C. or higher, more preferably 650° C. or higher, and particularly preferably 700° C. or higher, from the viewpoint of promoting the growth of LiMO particles. From the viewpoint of preventing cracks from being formed in the LiMO particles and maintaining the particle strength, the temperature is preferably 1200° C. or lower, more preferably 1100° C. or lower, and particularly preferably 1000° C. or lower.
In addition, when the firing process is performed only once, it is preferable to carry out at the firing temperature of the main firing.
 本焼成の最高保持温度の上限値及び下限値は任意に組みわせることができる。
 組み合わせの例としては、600-1200℃、650-1100℃、700-1000℃が挙げられる。
 本焼成を600℃以上で実施すると、(A)、(B)、(C)及び(D)を満たすCAMが得られやすい。
The upper limit and lower limit of the maximum holding temperature for main firing can be combined arbitrarily.
Examples of combinations include 600-1200°C, 650-1100°C and 700-1000°C.
When the main firing is carried out at 600° C. or higher, a CAM that satisfies (A), (B), (C) and (D) is likely to be obtained.
 仮焼成又は後焼成の焼成温度は、本焼成の焼成温度よりも低ければよく、例えば350-800℃の範囲が挙げられる。 The firing temperature for pre-firing or post-firing should be lower than the firing temperature for main firing, and may be in the range of 350-800°C, for example.
 焼成温度は、用いる遷移金属元素の種類、沈殿剤、不活性溶融剤の種類、量に応じて適宜調整すればよい。 The firing temperature may be appropriately adjusted according to the type of transition metal element used, the type and amount of precipitant and inert melting agent.
 また、前記最高保持温度で保持する時間は、0.1-20時間が挙げられ、0.5-10時間が好ましい。前記最高保持温度までの昇温速度は、好ましくは50-400℃/時間であり、前記最高保持温度から室温までの降温速度は、好ましくは10-400℃/時間である。 Also, the holding time at the maximum holding temperature is 0.1 to 20 hours, preferably 0.5 to 10 hours. The rate of temperature increase to the maximum holding temperature is preferably 50-400° C./hour, and the rate of temperature decrease from the maximum holding temperature to room temperature is preferably 10-400° C./hour.
[任意工程]
・洗浄工程
 本実施形態においては、焼成後の焼成物を純水やアルカリ性洗浄液などの洗浄液で洗浄することが好ましい。
 アルカリ性洗浄液としては、例えば、LiOH(水酸化リチウム)、NaOH(水酸化ナトリウム)、KOH(水酸化カリウム)、LiCO(炭酸リチウム)、NaCO(炭酸ナトリウム)、KCO(炭酸カリウム)および(NHCO(炭酸アンモニウム)からなる群より選ばれる1種以上の無水物の水溶液並びに前記無水物の水和物の水溶液を挙げることができる。また、アルカリとして、アンモニアを使用することもできる。
[Optional process]
- Washing step In the present embodiment, it is preferable to wash the fired product after firing with a cleaning liquid such as pure water or an alkaline cleaning liquid.
Examples of alkaline cleaning solutions include LiOH (lithium hydroxide), NaOH ( sodium hydroxide), KOH (potassium hydroxide), Li2CO3 (lithium carbonate), Na2CO3 ( sodium carbonate), and K2CO3 . An aqueous solution of one or more anhydrides selected from the group consisting of (potassium carbonate) and (NH 4 ) 2 CO 3 (ammonium carbonate) and an aqueous solution of the hydrate of said anhydride can be mentioned. Ammonia can also be used as the alkali.
 洗浄工程において、洗浄液と焼成物とを接触させる方法としては、各洗浄液中に、焼成物を投入して撹拌する方法、各洗浄液をシャワー水として、焼成物にかける方法、洗浄液中に、焼成物を投入して撹拌した後、各洗浄液から焼成物を分離し、次いで、各洗浄液をシャワー水として、分離後の焼成物にかける方法が挙げられる。 In the washing process, the method of contacting the cleaning liquid and the fired product includes a method of putting the fired product into each cleaning solution and stirring it, a method of showering each cleaning solution as shower water on the fired product, and a method of pouring the fired product into the cleaning solution. is added and stirred, the fired product is separated from each cleaning solution, and then each cleaning solution is used as shower water to be applied to the separated fired product.
 洗浄に用いる洗浄液の温度は、15℃以下が好ましく、10℃以下がより好ましく、8℃以下が特に好ましい。洗浄液の温度を上記範囲且つ洗浄液が凍結しない温度に制御することで、洗浄時に焼成物の結晶構造中から洗浄液中へのリチウムイオンの過度な溶出が抑制できる。 The temperature of the cleaning liquid used for cleaning is preferably 15°C or lower, more preferably 10°C or lower, and particularly preferably 8°C or lower. By controlling the temperature of the cleaning liquid within the above range and at a temperature at which the cleaning liquid does not freeze, excessive elution of lithium ions from the crystal structure of the baked product into the cleaning liquid during cleaning can be suppressed.
 洗浄後の焼成物は、適宜乾燥させてもよい。 The baked product after washing may be dried as appropriate.
 以上の工程により、CAMが得られる。 A CAM is obtained through the above steps.
<CAMの製造方法2>
 CAMの製造方法2は、MCCの製造工程と、MCC及びリチウム化合物とを混合しLiMOを得る工程と、LiMOと化合物Xとを混合し、焼成してCAMを得る工程と、を順に実施する方法である。
<CAM manufacturing method 2>
CAM production method 2 is a method in which a step of producing MCC, a step of mixing MCC and a lithium compound to obtain LiMO, and a step of mixing LiMO and compound X and firing to obtain CAM are performed in this order. is.
[MCCの製造工程]
 CAMの製造方法2における、MCCの製造工程に関する説明は、前記CAMの製造方法1におけるMCCの製造工程に関する説明と同様である。
[Manufacturing process of MCC]
The description of the MCC manufacturing process in the CAM manufacturing method 2 is the same as the description of the MCC manufacturing process in the CAM manufacturing method 1 above.
[LiMOを得る工程]
 得られたMCCと、リチウム化合物を混合する。MCCとリチウム化合物とを含む混合物を焼成することにより、LiMOが得られる。
[Step of obtaining LiMO]
The obtained MCC and a lithium compound are mixed. LiMO is obtained by firing a mixture containing MCC and a lithium compound.
 本工程において用いるリチウム化合物は、CAMの製造方法1において説明したリチウム化合物と同様の化合物が使用できる。 As the lithium compound used in this step, the same compound as the lithium compound described in CAM production method 1 can be used.
 以上のリチウム化合物とMCCとは、最終目的物の組成比を勘案して用いられる。例えば、MCCとしてNi、Co、Alを含む金属複合水酸化物を用いる場合、リチウム化合物とMCCは、Li[Li(Ni(1-y-z)CoAl1-a]O(式中、y+z<1)の組成比に対応する割合で用いられる。また、最終目的物であるCAMにおいて、リチウム化合物に含まれるLiと、MCCに含まれる金属元素の合計とのmol比が0.98-1.1となる比率で混合すると、得られるCAMの(B)及び(D)を本実施形態の好ましい範囲に制御しやすい。 The above lithium compound and MCC are used in consideration of the composition ratio of the final product. For example, when a metal composite hydroxide containing Ni, Co, and Al is used as MCC, the lithium compound and MCC are Li[Li a (Ni (1-yz) Co y Al z ) 1-a ]O 2 It is used at a ratio corresponding to the composition ratio (in the formula, y+z<1). In addition, in the CAM, which is the final product, when the Li contained in the lithium compound and the total metal elements contained in the MCC are mixed at a ratio such that the molar ratio is 0.98 to 1.1, the resulting CAM ( It is easy to control B) and (D) within the preferred ranges of the present embodiment.
 後述の一次焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられる。 For the primary firing described later, dry air, oxygen atmosphere, inert atmosphere, etc. are used depending on the desired composition.
 MCC及びリチウム化合物を含む混合物を焼成する焼成工程は、1回のみの焼成であることが好ましい。以下において、MCC及びリチウム化合物を含む混合物の焼成を一次焼成と記載する。 The firing process for firing the mixture containing MCC and the lithium compound is preferably performed only once. In the following, firing of a mixture containing MCC and a lithium compound is referred to as primary firing.
 一次焼成は、後述する二次焼成の焼成温度よりも低ければよく、例えば350℃以上800℃以下の範囲が挙げられる。 The primary firing should be lower than the firing temperature of the secondary firing described later, for example, the range of 350°C or higher and 800°C or lower.
[CAMを得る工程]
 一次焼成後に得られる焼成物と、化合物Xとを混合し、さらに焼成することで、CAMが得られる。一次焼成後に得られる焼成物と化合物Xとの混合物を焼成する工程を二次焼成と記載する。
[Step of obtaining CAM]
The CAM is obtained by mixing the fired product obtained after the primary firing with the compound X and firing the mixture. A step of firing a mixture of the fired product obtained after the primary firing and the compound X is referred to as secondary firing.
 一次焼成により、MCCと、リチウム化合物とが反応して一次粒子が成長し、一次粒子同士が凝集して焼結し、間隙を有する二次粒子が形成される。一次焼成後に得られる焼成物と化合物Xとを混合して二次焼成することにより、二次粒子の間隙に元素Xが存在しやすくなる。一次粒子同士の焼結と、元素Xの間隙への拡散は、二次焼成の工程において生じやすいため、二次粒子の間隙に元素Xが存在しやすくなると考えられる。 Due to the primary firing, the MCC reacts with the lithium compound to grow the primary particles, and the primary particles are aggregated and sintered to form secondary particles with gaps. By mixing the fired product obtained after the primary firing with the compound X and performing the secondary firing, the element X is likely to exist in the gaps between the secondary particles. Since the sintering of the primary particles and the diffusion of the element X into the gaps between the primary particles are likely to occur in the secondary firing process, it is considered that the element X is likely to exist in the gaps of the secondary particles.
 CAMの製造方法2において用いる化合物Xについての説明は、CAMの製造方法1における化合物Xの説明と同様である。 The explanation of compound X used in CAM production method 2 is the same as the explanation of compound X in CAM production method 1.
 二次焼成の焼成温度(最高保持温度)は、CAMの二次粒子の間隙にLi-X化合物を均一に存在させる観点から、600℃以上が好ましく、650℃以上がより好ましく、700℃以上が特に好ましい。また、CAMの粒子にクラックが形成されることを防止し、粒子強度を維持する観点から、1200℃以下が好ましく、1100℃以下がより好ましく、1000℃以下が特に好ましい。 The firing temperature (maximum holding temperature) of the secondary firing is preferably 600° C. or higher, more preferably 650° C. or higher, and more preferably 700° C. or higher, from the viewpoint of allowing the Li—X compound to exist uniformly in the gaps between the secondary particles of the CAM. Especially preferred. From the viewpoint of preventing crack formation in the CAM particles and maintaining particle strength, the temperature is preferably 1200° C. or lower, more preferably 1100° C. or lower, and particularly preferably 1000° C. or lower.
 二次焼成の最高保持温度の上限値及び下限値は任意に組みわせることができる。
 組み合わせの例としては、600-1200℃、650-1100℃、700-1000℃が挙げられる。
 二次焼成を600℃以上で実施すると、(A)、(B)、(C)及び(D)を本実施形態の好ましい範囲に制御しやすい。
The upper limit and lower limit of the highest holding temperature for secondary firing can be combined arbitrarily.
Examples of combinations include 600-1200°C, 650-1100°C and 700-1000°C.
If the secondary firing is carried out at 600° C. or higher, (A), (B), (C) and (D) can be easily controlled within the preferred ranges of the present embodiment.
 二次焼成の焼成温度は、用いる遷移金属元素の種類、沈殿剤、不活性溶融剤の種類、量に応じて適宜調整すればよい。 The firing temperature of the secondary firing may be appropriately adjusted according to the type of transition metal element used, the type and amount of precipitant and inert melting agent.
 また、二次焼成において、前記最高保持温度で保持する時間は、0.1-20時間が挙げられ、0.5-10時間が好ましい。前記最高保持温度までの昇温速度は、好ましくは50-400℃/時間であり、前記最高保持温度から室温までの降温速度は、好ましくは10-400℃/時間である。また、二次焼成の雰囲気としては、大気、酸素、窒素、アルゴンまたはこれらの混合ガスを用いることができる。 Also, in the secondary firing, the holding time at the maximum holding temperature is 0.1 to 20 hours, preferably 0.5 to 10 hours. The rate of temperature increase to the maximum holding temperature is preferably 50-400° C./hour, and the rate of temperature decrease from the maximum holding temperature to room temperature is preferably 10-400° C./hour. Air, oxygen, nitrogen, argon, or a mixed gas of these can be used as the atmosphere for the secondary firing.
 化合物Xの添加量は、元素Xの種類に応じて、LiMOに含まれるLi以外の金属元素の総物質量に対する、元素Xの物質量の割合が好ましい範囲になる割合に調整する。 The amount of compound X to be added is adjusted according to the type of element X so that the ratio of the substance amount of element X to the total substance amount of metal elements other than Li contained in LiMO is within a preferable range.
 例えば、上記元素Xの物質量の割合は、0.1-2.5mol%であることが好ましい。 For example, the ratio of the substance amount of the element X is preferably 0.1-2.5 mol%.
 化合物X及びLiMOは、化合物Xの凝集体又はLiMOの凝集体がなくなるまで均一に混合される。化合物X及びLiMOを均一に混合できれば混合装置は限定されないが、例えば、レーディゲミキサーを用いて混合することが好ましい。 Compound X and LiMO are uniformly mixed until there are no compound X aggregates or LiMO aggregates. Although the mixing device is not limited as long as the compound X and LiMO can be uniformly mixed, it is preferable to use, for example, a Loedige mixer for mixing.
 二次焼成後、上記[任意工程]を実施してもよい。
 以上の工程により、CAMが得られる。
After the secondary firing, the above [optional step] may be carried out.
A CAM is obtained by the above steps.
<リチウム二次電池>
 次いで、本実施形態のCAMを用いる場合の好適なリチウム二次電池の構成を説明する。
 さらに、本実施形態のCAMを用いる場合に好適なリチウム二次電池用正極(以下、正極と称することがある。)について説明する。
 さらに、正極の用途として好適なリチウム二次電池について説明する。
<Lithium secondary battery>
Next, the configuration of a lithium secondary battery suitable for using the CAM of this embodiment will be described.
Furthermore, a positive electrode for a lithium secondary battery (hereinafter sometimes referred to as a positive electrode) suitable for using the CAM of the present embodiment will be described.
Furthermore, a lithium secondary battery suitable for use as a positive electrode will be described.
 本実施形態のCAMを用いる場合の好適なリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 An example of a lithium secondary battery suitable for using the CAM of the present embodiment has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
 図1は、リチウム二次電池の一例を示す模式図である。例えば円筒型のリチウム二次電池10は、次のようにして製造する。 FIG. 1 is a schematic diagram showing an example of a lithium secondary battery. For example, a cylindrical lithium secondary battery 10 is manufactured as follows.
 まず、図1の部分拡大図に示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。 First, as shown in the partial enlarged view of FIG. An electrode group 4 is formed by laminating a positive electrode 2, a separator 1, and a negative electrode 3 in this order and winding them.
 正極2は、一例として、CAMを含む正極活物質層と、正極活物質層が一面に形成された正極集電体とを有する。このような正極2は、まずCAM、導電材及びバインダーを含む正極合剤を調製し、正極合剤を正極集電体の一面に担持させて正極活物質層を形成することで製造できる。 The positive electrode 2 has, for example, a positive electrode active material layer containing CAM, and a positive electrode current collector having the positive electrode active material layer formed on one surface. Such a positive electrode 2 can be manufactured by first preparing a positive electrode mixture containing CAM, a conductive material, and a binder, and supporting the positive electrode mixture on one surface of a positive electrode current collector to form a positive electrode active material layer.
 負極3は、一例として、不図示の負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができ、正極2と同様の方法で製造できる。 Examples of the negative electrode 3 include an electrode in which a negative electrode mixture containing a negative electrode active material (not shown) is supported on a negative electrode current collector, and an electrode composed solely of a negative electrode active material. can be manufactured in
 次いで、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。 Next, after housing the electrode group 4 and an insulator (not shown) in the battery can 5, the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the electrolyte is arranged between the positive electrode 2 and the negative electrode 3. . Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing member 8, the lithium secondary battery 10 can be manufactured.
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形又は角を丸めた長方形となるような柱状の形状を挙げることができる。 The shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape of the electrode group 4 cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. can be mentioned.
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型又は角型などの形状を挙げることができる。 In addition, as the shape of the lithium secondary battery having such an electrode group 4, a shape defined by IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted. . For example, a shape such as a cylindrical shape or a rectangular shape can be mentioned.
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、又はペーパー型(又はシート型)電池を例示することができる。 Further, the lithium secondary battery is not limited to the wound type configuration described above, and may have a layered configuration in which a layered structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked. Examples of laminated lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
 リチウム二次電池を構成する正極、セパレータ、負極及び電解液については、例えば、WO2022/113904A1の[0113]~[0140]に記載の構成、材料及び製造方法を用いることが出来る。 For the positive electrode, separator, negative electrode and electrolyte that constitute the lithium secondary battery, for example, the configurations, materials and manufacturing methods described in [0113] to [0140] of WO2022/113904A1 can be used.
 <全固体リチウム二次電池>
 本実施形態のCAMは、全固体リチウム二次電池のCAMとして用いることができる。
<All-solid lithium secondary battery>
The CAM of this embodiment can be used as a CAM for an all-solid lithium secondary battery.
 図2は、全固体リチウム二次電池の一例を示す模式図である。図2に示す全固体リチウム二次電池1000は、正極110と、負極120と、固体電解質層130とを有する積層体100と、積層体100を収容する外装体200と、を有する。また、全固体リチウム二次電池1000は、集電体の両側にCAMと負極活物質とを配置したバイポーラ構造であってもよい。バイポーラ構造の具体例として、例えば、JP-A-2004-95400に記載される構造が挙げられる。 FIG. 2 is a schematic diagram showing an example of an all-solid lithium secondary battery. The all-solid lithium secondary battery 1000 shown in FIG. 2 has a laminate 100 having a positive electrode 110, a negative electrode 120, and a solid electrolyte layer 130, and an outer package 200 that accommodates the laminate 100. Moreover, the all-solid lithium secondary battery 1000 may have a bipolar structure in which a CAM and a negative electrode active material are arranged on both sides of a current collector. Specific examples of bipolar structures include structures described in JP-A-2004-95400.
 正極110は、正極活物質層111と正極集電体112とを有している。正極活物質層111は、上述したCAM及び固体電解質を含む。また、正極活物質層111は、導電材及びバインダーを含んでいてもよい。 The positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112 . The positive electrode active material layer 111 contains the above-described CAM and solid electrolyte. Moreover, the positive electrode active material layer 111 may contain a conductive material and a binder.
 負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質及び導電材を含んでいてもよい。 The negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122 . The negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material.
 積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123と、を有していてもよい。その他、全固体リチウム二次電池1000は、正極110と負極120との間にセパレータを有していてもよい。 The laminate 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122 . In addition, all-solid lithium secondary battery 1000 may have a separator between positive electrode 110 and negative electrode 120 .
 全固体リチウム二次電池1000は、さらに積層体100と外装体200とを絶縁する不図示のインシュレーター及び外装体200の開口部200aを封止する不図示の封止体を有する。 The all-solid lithium secondary battery 1000 further has an insulator (not shown) for insulating the laminate 100 and the exterior body 200 and a sealing body (not shown) for sealing the opening 200 a of the exterior body 200 .
 外装体200は、アルミニウム、ステンレス鋼又はニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器を用いることができる。また、外装体200として、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器を用いることもできる。 For the exterior body 200, a container molded from a highly corrosion-resistant metal material such as aluminum, stainless steel, or nickel-plated steel can be used. Moreover, as the exterior body 200, a container in which a laminated film having at least one surface subjected to corrosion-resistant processing is processed into a bag shape can also be used.
 全固体リチウム二次電池1000の形状としては、例えば、コイン型、ボタン型、ペーパー型(またはシート型)、円筒型、角型、又はラミネート型(パウチ型)などの形状を挙げることができる。 Examples of the shape of the all-solid lithium secondary battery 1000 include coin-shaped, button-shaped, paper-shaped (or sheet-shaped), cylindrical, rectangular, and laminated (pouch-shaped).
 全固体リチウム二次電池1000は、一例として積層体100を1つ有する形態が図示されているが、本実施形態はこれに限らない。全固体リチウム二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成であってもよい。 The all-solid-state lithium secondary battery 1000 is illustrated as having one laminate 100 as an example, but the present embodiment is not limited to this. The all-solid-state lithium secondary battery 1000 may have a configuration in which the laminate 100 is used as a unit cell and a plurality of unit cells (laminate 100 ) are sealed inside the exterior body 200 .
 全固体リチウム二次電池については、例えば、WO2022/113904A1の[0151]~[0181]に記載の構成、材料及び製造方法を用いることができる。 For all-solid-state lithium secondary batteries, for example, the configurations, materials and manufacturing methods described in [0151] to [0181] of WO2022/113904A1 can be used.
 以上のような構成のリチウム二次電池において、本実施形態のCAMを用いているため、充電状態で保管された時にガス発生量の少ないリチウム二次電池を提供できる。 Since the CAM of the present embodiment is used in the lithium secondary battery configured as described above, it is possible to provide a lithium secondary battery that generates a small amount of gas when stored in a charged state.
 また、以上のような構成の正極は、上述した構成のCAMを有するため、リチウム二次電池を充電状態で保管されたとしてもガス発生量を低減できる。 In addition, since the positive electrode having the configuration described above has the CAM having the configuration described above, the amount of gas generated can be reduced even if the lithium secondary battery is stored in a charged state.
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、充電状態で保管されてもガス発生量の少ない二次電池となる。 Furthermore, since the lithium secondary battery configured as described above has the positive electrode described above, it becomes a secondary battery that generates a small amount of gas even when stored in a charged state.
 本発明の一態様は[11]~[22]を包含する。
[11]LiMOと、前記Li-X化合物と、を備えるCAMであって、前記Li-X化合物はリチウムイオン導電性を有する酸化物であり、上記(A)-3及び上記(B)を満たす、CAM。
[12]前記X(XPS)は、上記(C)-2を満たす、[11]に記載のCAM。
[13]前記Li(XPS)は、上記(D)-2を満たす、[11]又は[12]に記載のCAM。
[14]下記組成式(I)-1を満たす、[11]~[13]のいずれか1つに記載のCAM。
 Li[Li(Ni(1-y-z-w)Co1-a]O ・・・(I)-1
(式(I)-1中、MはMn、Fe、Cu、Ti、Mg、Al、Zn、Sn、Zr、Ga、B、Si、S及びPからなる群より選択される1種以上の元素であり、XはNb、W及びMoからなる群より選択される1種以上の元素であり、式(I)-1は、0.002≦a≦0.07、0.08≦y≦0.3、0.0002≦z≦0.15、0.001≦w≦0.09、及び0<y+z+w≦0.5を満たす。)
[15]D10、D90及びD50が上記(E)-13を満たす、[11]~[14]のいずれか1つに記載のCAM。
[16]BET比表面積が1.4-2.5m/gを満たす、[11]~[15]のいずれか1つに記載のCAM。
[17]上記(A)-4を満たす、[11]~[16]のいずれか1つに記載のCAM。
[18]上記(B)-3を満たす、[11]~[17]のいずれか1つに記載のCAM。
[19]前記X(XPS)は、上記(C)-3を満たす、[11]~[18]のいずれか1つに記載のCAM。
[20]前記Li(XPS)は、上記(D)-3を満たす、[11]~[19]のいずれか1つに記載のCAM。
[21][11]~[20]のいずれか1つに記載のCAMを含むリチウム二次電池用正極。
[22][21]に記載のリチウム二次電池用正極を含むリチウム二次電池。
One aspect of the present invention includes [11] to [22].
[11] A CAM comprising LiMO and the Li—X compound, wherein the Li—X compound is an oxide having lithium ion conductivity, and satisfies (A)-3 and (B) above. , CAM.
[12] The CAM according to [11], wherein the X(XPS) satisfies (C)-2 above.
[13] The CAM according to [11] or [12], wherein the Li(XPS) satisfies (D)-2 above.
[14] The CAM according to any one of [11] to [13], which satisfies the following compositional formula (I)-1.
Li[Li a (Ni (1-yzw) Co y M z X w ) 1-a ]O 2 (I)-1
(In formula (I)-1, M is one or more elements selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Al, Zn, Sn, Zr, Ga, B, Si, S and P. and X is one or more elements selected from the group consisting of Nb, W and Mo, and formula (I)-1 is 0.002 ≤ a ≤ 0.07, 0.08 ≤ y ≤ 0 .3, 0.0002≦z≦0.15, 0.001≦w≦0.09, and 0<y+z+w≦0.5.)
[15] The CAM according to any one of [11] to [14], wherein D 10 , D 90 and D 50 satisfy (E)-13 above.
[16] The CAM according to any one of [11] to [15], having a BET specific surface area of 1.4-2.5 m 2 /g.
[17] The CAM according to any one of [11] to [16], which satisfies (A)-4 above.
[18] The CAM according to any one of [11] to [17], which satisfies (B)-3 above.
[19] The CAM according to any one of [11] to [18], wherein the X(XPS) satisfies (C)-3 above.
[20] The CAM according to any one of [11] to [19], wherein the Li(XPS) satisfies (D)-3 above.
[21] A positive electrode for a lithium secondary battery, comprising the CAM according to any one of [11] to [20].
[22] A lithium secondary battery comprising the positive electrode for a lithium secondary battery according to [21].
[X(XPS)及びLi(XPS)の測定]
 上記[X(XPS)及びLi(XPS)の測定]に記載の方法により、X(XPS)及びLi(XPS)を測定した。
[Measurement of X (XPS) and Li (XPS)]
X (XPS) and Li (XPS) were measured by the method described in [Measurement of X (XPS) and Li (XPS)] above.
[X(ICP)及びLi(ICP)の測定]
 上記[X(ICP)及びLi(ICP)の測定]に記載の方法により、X(ICP)及びLi(ICP)を測定した。
[Measurement of X (ICP) and Li (ICP)]
X(ICP) and Li(ICP) were measured by the method described in [Measurement of X(ICP) and Li(ICP)] above.
[組成分析]
 CAMの組成分析は、上記[組成分析]に記載の方法により実施した。
[Composition analysis]
The composition analysis of CAM was performed by the method described in [Composition analysis] above.
[D10、D90及びD50の測定]
 上記[D10、D90及びD50の測定]に記載の方法により、CAMのD10、D90及びD50、並びにNb及びWOのD50を測定した。
[Measurement of D10 , D90 and D50 ]
D 10 , D 90 and D 50 of CAM and D 50 of Nb 2 O 5 and WO 3 were measured by the method described in [Measurement of D 10 , D 90 and D 50 ] above.
[BET比表面積の測定]
 上記[BET比表面積の測定]に記載の方法により、BET比表面積を測定した。
[Measurement of BET specific surface area]
The BET specific surface area was measured by the method described in [Measurement of BET specific surface area] above.
[ガス発生量の測定]
 上記[ガス発生量の測定]に記載の方法により、ガス発生量を測定した。
[Measurement of gas generation amount]
The amount of generated gas was measured by the method described in [Measurement of amount of generated gas].
 上記(円形度の測定方法)により、C10、C10、及びC90を測定した。 C 10 , C 10 , and C 90 were measured by the above (method for measuring circularity).
≪実施例1≫
1.CAM-1の製造
 攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
<<Example 1>>
1. Production of CAM-1 After water was put into a reactor equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added and the liquid temperature was maintained at 50°C.
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸アルミニウム水溶液とを、NiとCoとAlとの原子比が88:9:3となる割合で混合して、混合原料液を調製した。 A nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution were mixed at a ratio of 88:9:3 for the atomic ratio of Ni, Co, and Al to prepare a mixed raw material solution.
 次に、反応槽内に、攪拌下、この混合原料液と硫酸アンモニウム水溶液を錯化剤として連続的に添加した。反応槽内の混合液のpHが11.6(液温40℃での測定時)になるよう、水酸化ナトリウム水溶液を適時滴下し、金属複合水酸化物の粒子を得た。
 金属複合水酸化物の粒子を洗浄した後、遠心分離機で脱水し、単離して105℃で乾燥することで、金属複合水酸化物であるMCC1を得た。
Next, this mixed raw material liquid and an aqueous solution of ammonium sulfate were continuously added as a complexing agent into the reactor while stirring. An aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the mixed liquid in the reaction tank was 11.6 (when measured at a liquid temperature of 40° C.), to obtain particles of metal composite hydroxide.
After washing the metal composite hydroxide particles, they were dehydrated with a centrifuge, isolated, and dried at 105° C. to obtain MCC1, which is a metal composite hydroxide.
 MCC1と水酸化リチウム一水和物粉末を、mol比がLi/(Ni+Co+Al)=1.10となる割合で秤量して混合した。
 さらに、NbをNb/(Ni+Co+Al)=1.0mol%となる割合で秤量して混合した。
MCC1 and lithium hydroxide monohydrate powder were weighed and mixed at a molar ratio of Li/(Ni+Co+Al)=1.10.
Furthermore, Nb 2 O 5 was weighed and mixed at a ratio of Nb/(Ni+Co+Al)=1.0 mol %.
 実施例1において用いたNbは、D50が1.26μm、C50が0.82、(C90-C10)/C50が0.41であった。 The Nb 2 O 5 used in Example 1 had a D 50 of 1.26 μm, a C 50 of 0.82, and a (C 90 -C 10 )/C 50 of 0.41.
 その後、酸素雰囲気下650℃で5時間焼成した。
 その後、さらに酸素雰囲気下790℃で6時間焼成した。
After that, it was baked at 650° C. for 5 hours in an oxygen atmosphere.
After that, it was further fired at 790° C. for 6 hours in an oxygen atmosphere.
 その後、水洗し、窒素雰囲気下210℃で10時間の条件で乾燥し、CAM-1を得た。 After that, it was washed with water and dried at 210°C for 10 hours in a nitrogen atmosphere to obtain CAM-1.
2.CAM-1の評価
 CAM-1の組成分析を行い、組成式(I)に対応させたところ、a=0.01、y=0.09、z=0.03、w=0.01であり、元素XはNbであり、元素MはAlであった。CAM-1をXAFSにて測定したところ、Li-X化合物の形成が確認された。
2. Evaluation of CAM-1 Composition analysis of CAM-1 was performed, and when it corresponded to the composition formula (I), a = 0.01, y = 0.09, z = 0.03, and w = 0.01. , element X was Nb and element M was Al. XAFS measurement of CAM-1 confirmed the formation of a Li—X compound.
≪実施例2≫
1.CAM-2の製造
 実施例1における焼成温度790℃を760℃に変更したこと以外は、実施例1と同様の実験を行い、CAM-2を得た。
<<Example 2>>
1. Production of CAM-2 The same experiment as in Example 1 was conducted except that the firing temperature of 790°C in Example 1 was changed to 760°C to obtain CAM-2.
2.CAM-2の評価
 CAM-2の組成分析を行い、組成式(I)に対応させたところ、a=0.06、y=0.09、z=0.02、w=0.01であり、元素XはNbであり、元素MはAlであった。CAM-2をXAFSにて測定したところ、Li-X化合物の形成が確認された。
2. Evaluation of CAM-2 A composition analysis of CAM-2 was performed, and when it corresponded to the composition formula (I), a = 0.06, y = 0.09, z = 0.02, and w = 0.01. , element X was Nb and element M was Al. XAFS measurement of CAM-2 confirmed the formation of a Li—X compound.
≪実施例3≫
1.CAM-3の製造
 MCC1と水酸化リチウム一水和物粉末を、mol比がLi/(Ni+Co+Al)=1.10となる割合で秤量して混合した。
 得られた混合物を酸素雰囲気下で650℃で5時間焼成し、焼成物を得た。
<<Example 3>>
1. Production of CAM-3 MCC1 and lithium hydroxide monohydrate powder were weighed and mixed at a molar ratio of Li/(Ni+Co+Al)=1.10.
The resulting mixture was fired at 650° C. for 5 hours in an oxygen atmosphere to obtain a fired product.
 焼成物とWOをW/(Ni+Co+Al)=0.75mol%となる割合で秤量して混合した。 The fired product and WO 3 were weighed and mixed at a ratio of W/(Ni+Co+Al)=0.75 mol %.
 実施例3において用いたWOは、D50が0.25μm、C50が0.86、(C90-C10)/C50が0.29であった。 WO 3 used in Example 3 had a D 50 of 0.25 μm, a C 50 of 0.86, and a (C 90 −C 10 )/C 50 of 0.29.
 その後、酸素雰囲気下790℃で6時間焼成した。 After that, it was fired at 790°C for 6 hours in an oxygen atmosphere.
 その後、水洗し、150℃で10時間の条件で減圧乾燥し、CAM-3を得た。 After that, it was washed with water and dried under reduced pressure at 150°C for 10 hours to obtain CAM-3.
2.CAM-3の評価
 CAM-3の組成分析を行い、組成式(I)に対応させたところ、a=-0.02、y=0.09、z=0.03、w=0.002であり、元素XはWであり、元素MはAlであった。CAM-3をXAFSにて測定したところ、Li-X化合物の形成が確認された。
2. Evaluation of CAM-3 When the composition analysis of CAM-3 was performed and it corresponded to the composition formula (I), a = -0.02, y = 0.09, z = 0.03, and w = 0.002. , element X was W and element M was Al. XAFS measurement of CAM-3 confirmed the formation of a Li—X compound.
≪比較例1≫
1.CAM-11の製造
 D50が34.0μm、C50が0.69、(C90-C10)/C50が0.50であるNbを用いたこと以外は、実施例1と同様の実験を行い、CAM-11を得た。
<<Comparative Example 1>>
1. Preparation of CAM-11 Same as Example 1, except that Nb 2 O 5 with a D 50 of 34.0 μm, a C 50 of 0.69, and a (C 90 -C 10 )/C 50 of 0.50 was used. A similar experiment was performed to obtain CAM-11.
2.CAM-11の評価
 CAM-11の組成分析を行い、組成式(I)に対応させたところ、a=0.016、y=0.090、z=0.021、w=0.005であり、元素XはNbであり、元素MはAlであった。CAM-11をXAFSにて測定したところ、Li-X化合物の形成が確認された。
2. Evaluation of CAM-11 Composition analysis of CAM-11 was performed, and when it corresponded to the composition formula (I), a = 0.016, y = 0.090, z = 0.021, and w = 0.005. , element X was Nb and element M was Al. XAFS measurement of CAM-11 confirmed the formation of a Li—X compound.
≪比較例2≫
1.CAM-12の製造
 D50が1.30μm、C50が0.82、(C90-C10)/C50が0.27であるNbを用いたこと以外は、実施例1と同様の実験を行い、CAM-12を得た。
<<Comparative Example 2>>
1. Preparation of CAM-12 Same as Example 1, except using Nb 2 O 5 with a D 50 of 1.30 μm, a C 50 of 0.82, and a (C 90 -C 10 )/C 50 of 0.27. A similar experiment was performed to obtain CAM-12.
2.CAM-12の評価
 CAM-12の組成分析を行い、組成式(I)に対応させたところ、a=0.033、y=0.087、z=0.029、w=0.012であり、元素XはNbであり、元素MはAlであった。CAM-12をXAFSにて測定したところ、Li-X化合物の形成が確認された。
2. Evaluation of CAM-12 Composition analysis of CAM-12 was performed, and when it corresponded to the composition formula (I), a = 0.033, y = 0.087, z = 0.029, and w = 0.012. , element X was Nb and element M was Al. XAFS measurement of CAM-12 confirmed the formation of a Li—X compound.
≪比較例3≫
1.CAM-13の製造
 MCC1と水酸化リチウム一水和物粉末を、mol比がLi/(Ni+Co+Al)=1.10となる割合で秤量して混合した。
 得られた混合物を酸素雰囲気下650℃で5時間焼成し、焼成物を得た。
<<Comparative Example 3>>
1. Production of CAM-13 MCC1 and lithium hydroxide monohydrate powder were weighed and mixed at a molar ratio of Li/(Ni+Co+Al)=1.10.
The resulting mixture was fired at 650° C. for 5 hours in an oxygen atmosphere to obtain a fired product.
 焼成物と、比較例2に記載のNbをNb/(Ni+Co+Al)=1.0mol%となる割合で秤量して混合した。 The calcined product and Nb 2 O 5 described in Comparative Example 2 were weighed and mixed at a ratio of Nb/(Ni+Co+Al)=1.0 mol %.
 その後、酸素雰囲気下760℃で6時間焼成した。 After that, it was fired at 760°C for 6 hours in an oxygen atmosphere.
 その後、水洗し、窒素雰囲気下210℃で10時間の条件で乾燥し、CAM-13を得た。 After that, it was washed with water and dried at 210°C for 10 hours in a nitrogen atmosphere to obtain CAM-13.
2.CAM-13の評価
 CAM-13の組成分析を行い、組成式(I)に対応させたところ、a=0.02、y=0.09、z=0.03、w=0.01であり、元素XはNbであり、元素MはAlであった。CAM-13をXAFSにて測定したところ、Li-X化合物の形成が確認された。
2. Evaluation of CAM-13 A composition analysis of CAM-13 was performed, and when it corresponded to the composition formula (I), a = 0.02, y = 0.09, z = 0.03, and w = 0.01. , element X was Nb and element M was Al. XAFS measurement of CAM-13 confirmed the formation of a Li—X compound.
≪比較例4≫
1.CAM-14の製造
 MCC1と水酸化リチウム一水和物粉末を、mol比がLi/(Ni+Co+Al)=1.03となる割合で秤量して混合した。
 さらに、比較例1に記載のNbをNb/(Ni+Co+Al)=1.0mol%となる割合で秤量して混合した。
 その後、酸素雰囲気下650℃で5時間焼成した。
 その後、さらに酸素雰囲気下790℃で6時間焼成し、CAM-14を得た。
<<Comparative Example 4>>
1. Production of CAM-14 MCC1 and lithium hydroxide monohydrate powder were weighed and mixed at a molar ratio of Li/(Ni+Co+Al)=1.03.
Further, Nb 2 O 5 described in Comparative Example 1 was weighed and mixed at a ratio of Nb/(Ni+Co+Al)=1.0 mol %.
After that, it was baked at 650° C. for 5 hours in an oxygen atmosphere.
After that, it was further fired at 790° C. for 6 hours in an oxygen atmosphere to obtain CAM-14.
2.CAM-14の評価
 CAM-14の組成分析を行い、組成式(I)に対応させたところ、a=-0.01、y=0.09、z=0.03、w=0.01であり、元素XはNbであり、元素MはAlであった。CAM-14をXAFSにて測定したところ、Li-X化合物の形成が確認された。
2. Evaluation of CAM-14 When the composition analysis of CAM-14 was performed and it corresponded to the composition formula (I), a = -0.01, y = 0.09, z = 0.03, and w = 0.01. , the element X was Nb, and the element M was Al. XAFS measurement of CAM-14 confirmed the formation of a Li—X compound.
 CAM-1~CAM-3、CAM-11~CAM-14のX(XPS)、X(ICP)、X(XPS)/X(ICP)、Li(XPS)、Li(ICP)、Li(XPS)/Li(ICP)、D10、D50、D90、(D90-D50)/(D50-D10)、BET比表面積及びガス発生量を表1に記載する。 X (XPS), X (ICP), X (XPS)/X (ICP), Li (XPS), Li (ICP), Li (XPS) of CAM-1 to CAM-3 and CAM-11 to CAM-14 /Li(ICP), D 10 , D 50 , D 90 , (D 90 −D 50 )/(D 50 −D 10 ), BET specific surface area and gas generation rate are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に記載に通り、(A)及び(B)を満たすCAMを用いた場合、充電状態での高温保存試験において、ガス発生量が少ないリチウム二次電池を製造することができた。 As shown in Table 1, when a CAM that satisfies (A) and (B) was used, it was possible to manufacture a lithium secondary battery that generated a small amount of gas in the high-temperature storage test in a charged state.
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード、100…積層体、110…正極、111…正極活物質層、112…正極集電体、113…外部端子、120…負極、121…負極活物質層、122…負極集電体、123…外部端子、130…固体電解質層、200…外装体、200a…開口部、1000…全固体リチウム二次電池 DESCRIPTION OF SYMBOLS 1... Separator, 2... Positive electrode, 3... Negative electrode, 4... Electrode group, 5... Battery can, 6... Electrolytic solution, 7... Top insulator, 8... Sealing body, 10... Lithium secondary battery, 21... Positive electrode lead, 31 Negative electrode lead 100 Laminated body 110 Positive electrode 111 Positive electrode active material layer 112 Positive electrode current collector 113 External terminal 120 Negative electrode 121 Negative electrode active material layer 122 Negative electrode current collector DESCRIPTION OF SYMBOLS 123... External terminal 130... Solid electrolyte layer 200... Exterior body 200a... Opening part 1000... All-solid-state lithium secondary battery

Claims (8)

  1.  リチウム金属複合酸化物と、Liと元素Xとを含むLi-X化合物と、を備えるリチウム二次電池用正極活物質であって、前記Li-X化合物はリチウムイオン導電性を有する酸化物であり、前記元素Xは、Nb、W及びMoからなる群より選択される1種以上の元素であり、下記(A)及び(B)を満たす、リチウム二次電池用正極活物質。
     0.09≦X(XPS)/X(ICP)≦0.22  ・・・(A)
     0.5≦Li(XPS)/Li(ICP)≦1.5   ・・・(B)
    ((A)中、X(XPS)は、X線光電子分光法により測定される、前記リチウム二次電池用正極活物質の粒子の表面における前記元素Xの存在割合(%)である。X(ICP)は、ICP発光分光法により測定される、前記リチウム二次電池用正極活物質の粒子における前記元素Xの存在割合(%)である。
    (B)中、Li(XPS)は、X線光電子分光法により測定される、前記リチウム二次電池用正極活物質の粒子の表面におけるLiの存在割合(%)である。Li(ICP)は、ICP発光分光法により測定される、前記リチウム二次電池用正極活物質の粒子における前記Liの存在割合(%)である。)
    A positive electrode active material for a lithium secondary battery comprising a lithium metal composite oxide and a Li—X compound containing Li and an element X, wherein the Li—X compound is an oxide having lithium ion conductivity. , wherein the element X is one or more elements selected from the group consisting of Nb, W and Mo, and satisfies the following (A) and (B), a positive electrode active material for a lithium secondary battery.
    0.09≦X(XPS)/X(ICP)≦0.22 (A)
    0.5≦Li(XPS)/Li(ICP)≦1.5 (B)
    (In (A), X (XPS) is the abundance (%) of the element X on the surface of the particles of the positive electrode active material for a lithium secondary battery, measured by X-ray photoelectron spectroscopy. X ( ICP) is the abundance ratio (%) of the element X in the particles of the positive electrode active material for a lithium secondary battery, measured by ICP emission spectroscopy.
    In (B), Li (XPS) is the abundance (%) of Li on the surface of the particles of the positive electrode active material for a lithium secondary battery, measured by X-ray photoelectron spectroscopy. Li (ICP) is the abundance ratio (%) of Li in the particles of the positive electrode active material for a lithium secondary battery, measured by ICP emission spectroscopy. )
  2.  前記X(XPS)は、下記(C)を満たす、請求項1に記載のリチウム二次電池用正極活物質。
     0.01≦X(XPS)≦0.30  ・・・(C)
    2. The positive electrode active material for a lithium secondary battery according to claim 1, wherein said X(XPS) satisfies the following (C).
    0.01≦X(XPS)≦0.30 (C)
  3.  前記Li(XPS)は、下記(D)を満たす、請求項1又は2に記載のリチウム二次電池用正極活物質。
     0.4≦Li(XPS)≦1.2  ・・・(D)
    3. The positive electrode active material for a lithium secondary battery according to claim 1, wherein said Li(XPS) satisfies (D) below.
    0.4≦Li (XPS)≦1.2 (D)
  4.  下記組成式(I)で表される、請求項1~3のいずれか1項に記載のリチウム二次電池用正極活物質。
     Li[Li(Ni(1-y-z-w)Co1-a]O ・・・(I)
    (式(I)中、MはMn、Fe、Cu、Ti、Mg、Al、Zn、Sn、Zr、Ga、B、Si、S及びPからなる群より選択される1種以上の元素であり、XはNb、W及びMoからなる群より選択される1種以上の元素であり、式(I)は、-0.1≦a≦0.2、0≦y≦0.5、0≦z≦0.7、0<w≦0.1、及びy+z+w<1を満たす。)
    The positive electrode active material for a lithium secondary battery according to any one of claims 1 to 3, represented by the following compositional formula (I).
    Li[Li a (Ni (1-yzw) Co y M z X w ) 1-a ]O 2 (I)
    (In formula (I), M is one or more elements selected from the group consisting of Mn, Fe, Cu, Ti, Mg, Al, Zn, Sn, Zr, Ga, B, Si, S and P. , X is one or more elements selected from the group consisting of Nb, W and Mo, and formula (I) is −0.1≦a≦0.2, 0≦y≦0.5, 0≦ satisfy z≦0.7, 0<w≦0.1, and y+z+w<1.)
  5.  D10、D90及びD50が下記(E)を満たす、請求項1~4のいずれか1項に記載のリチウム二次電池用正極活物質。
    (D90-D50)/(D50-D10)≦3.0  ・・・(E)
    ((E)中、D10はリチウム二次電池用正極活物質の10%累積体積粒度であり、D50は50%累積体積粒度であり、D90は90%累積体積粒度である。)
    The positive electrode active material for a lithium secondary battery according to any one of claims 1 to 4, wherein D 10 , D 90 and D 50 satisfy the following (E).
    ( D90 - D50 )/( D50 - D10 ) ≤ 3.0 (E)
    (In (E), D10 is the 10% cumulative volume particle size of the positive electrode active material for lithium secondary batteries, D50 is the 50% cumulative volume particle size, and D90 is the 90% cumulative volume particle size.)
  6.  BET比表面積が1.0m/g以上を満たす、請求項1~5のいずれか1項に記載のリチウム二次電池用正極活物質。 The positive electrode active material for lithium secondary batteries according to any one of claims 1 to 5, having a BET specific surface area of 1.0 m 2 /g or more.
  7.  請求項1~6のいずれか1項に記載のリチウム二次電池用正極活物質を含むリチウム二次電池用正極。 A positive electrode for lithium secondary batteries comprising the positive electrode active material for lithium secondary batteries according to any one of claims 1 to 6.
  8.  請求項7に記載のリチウム二次電池用正極を含むリチウム二次電池。 A lithium secondary battery comprising the positive electrode for a lithium secondary battery according to claim 7.
PCT/JP2022/045607 2021-12-15 2022-12-12 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery WO2023112876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021203448A JP7204868B1 (en) 2021-12-15 2021-12-15 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2021-203448 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023112876A1 true WO2023112876A1 (en) 2023-06-22

Family

ID=84901066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045607 WO2023112876A1 (en) 2021-12-15 2022-12-12 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Country Status (2)

Country Link
JP (2) JP7204868B1 (en)
WO (1) WO2023112876A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188878A (en) * 2005-12-16 2007-07-26 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2008269928A (en) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824349B2 (en) * 2005-06-16 2011-11-30 パナソニック株式会社 Lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188878A (en) * 2005-12-16 2007-07-26 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2008269928A (en) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2023088900A (en) 2023-06-27
JP2023088609A (en) 2023-06-27
JP7204868B1 (en) 2023-01-16

Similar Documents

Publication Publication Date Title
US11394024B2 (en) Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
JP2009021251A (en) Cathode active material of lithium secondary cell, its forming method, and lithium secondary cell
JP2017226576A (en) Lithium-nickel-containing composite oxide and nonaqueous electrolyte secondary battery
US20230327105A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2023013494A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2018160323A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and precursor thereof, and manufacturing methods therefor
JP7146140B1 (en) Method for producing lithium metal composite oxide
WO2023112876A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US11873234B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, and method of manufacturing positive electrode active material precursor for non-aqueous electrolyte secondary battery
WO2023106311A1 (en) Lithium-metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2023106274A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP7454642B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
WO2024135203A1 (en) Lithium-metal complex oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2023106313A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2023106336A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7416897B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JP7359911B1 (en) Precursor and method for producing positive electrode active material for lithium secondary batteries
JP7148685B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
WO2024014552A1 (en) Metal complex compound, method for producing metal complex compound, and method for producing positive electrode active material for lithium secondary battery
WO2023181992A1 (en) Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, lithium secondary battery, and method for producing lithium secondary battery positive electrode active material
WO2024128014A1 (en) Metal composite compound powder and method for producing positive electrode active material for lithium secondary battery
WO2023054687A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, and method for producing positive electrode active material for lithium secondary batteries
WO2024014557A1 (en) Metal composite compound and method for producing positive-electrode active material for lithium secondary batteries
JP2024086255A (en) METAL COMPOUND POWDER AND METHOD FOR PRODUCING POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY
JP2023101923A (en) Lithium metal composite oxide powder, cathode active material for solid secondary battery, cathode for solid secondary battery and solid secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907400

Country of ref document: EP

Kind code of ref document: A1