WO2023112808A1 - Compound, host material, electron barrier material, composition and organic light emitting element - Google Patents

Compound, host material, electron barrier material, composition and organic light emitting element Download PDF

Info

Publication number
WO2023112808A1
WO2023112808A1 PCT/JP2022/045210 JP2022045210W WO2023112808A1 WO 2023112808 A1 WO2023112808 A1 WO 2023112808A1 JP 2022045210 W JP2022045210 W JP 2022045210W WO 2023112808 A1 WO2023112808 A1 WO 2023112808A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
compound
atoms
general formula
Prior art date
Application number
PCT/JP2022/045210
Other languages
French (fr)
Japanese (ja)
Inventor
寛晃 小澤
貴弘 柏▲崎▼
亜衣子 後藤
京 森本
ソンヘ ファン
ユバラズ 凱令
幸誠 金原
Original Assignee
株式会社Kyulux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kyulux filed Critical 株式会社Kyulux
Publication of WO2023112808A1 publication Critical patent/WO2023112808A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission

Definitions

  • the present invention relates to compounds useful as host materials, electron barrier materials, etc., and compositions and organic light-emitting devices using the compounds.
  • organic light-emitting devices such as organic electroluminescence devices (organic EL devices) have been actively carried out.
  • various attempts have been made to improve the characteristics of the device by newly developing and combining electron-transporting materials, hole-transporting materials, light-emitting materials, host materials, and the like, which constitute organic electroluminescence devices.
  • host materials mCBP and mCP having the following structures have been widely recognized as useful host materials.
  • the present inventors found that the characteristics can be improved by using a compound having a specific structure in an organic light-emitting device.
  • the present invention has been proposed based on these findings, and specifically has the following configurations.
  • R 1 to R 4 and R 8 to R 19 each independently represent a hydrogen atom, a deuterium atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted alkyl group;
  • R 5 to R 7 each independently represent a hydrogen atom, a deuterium atom, or a substituted or unsubstituted alkyl group;
  • at least one of R 1 to R 4 is a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group;
  • R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 may combine with each other to form a cyclic structure.
  • R 1 to R 4 and R 8 to R 19 each independently represent one or more atoms or groups selected from the group consisting of hydrogen atoms, deuterium atoms, alkyl groups and aryl groups;
  • at least one of R 1 to R 4 may be substituted with one atom or group selected from the group consisting of a deuterium atom, an alkyl group and an aryl group, or a group formed by combining two or more;
  • [7] The compound according to any one of [1] to [6], wherein R 5 to R 7 are each independently a hydrogen atom or a deuterium atom. [8] at least one pair of R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 are bonded to each other; The compound according to any one of [1] to [7], which forms a cyclic structure. [9] A host material containing the compound according to any one of [1] to [8]. [10] The host material of [9] for use with a delayed fluorescence material. [11] An electron barrier material containing the compound according to any one of [1] to [8].
  • [12] A composition obtained by doping the compound according to any one of [1] to [8] with a delayed fluorescence material.
  • the delayed fluorescence material is a compound having a cyanobenzene structure in which the benzene ring is substituted with one cyano group.
  • the delayed fluorescence material has two or more substituted or unsubstituted carbazolyl groups bonded to the benzene ring in addition to the cyano group.
  • composition according to [12] or [13], wherein the delayed fluorescence material is a compound having a dicyanobenzene structure in which the benzene ring is substituted with two cyano groups.
  • the delayed fluorescence material is a compound having a dicyanobenzene structure in which the benzene ring is substituted with two cyano groups.
  • Composition [18] The composition according to any one of [12] to [17], further comprising a host material not represented by general formula (1).
  • An organic light emitting device comprising the compound according to any one of [1] to [8].
  • organic light-emitting devices using the compound of the present invention include organic light-emitting devices with low driving voltage and organic light-emitting devices with long device life.
  • the contents of the present invention will be described in detail below.
  • the constituent elements described below may be explained based on representative embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples.
  • the numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
  • the isotopic species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited.
  • R 1 to R 4 and R 8 to R 19 each independently represent a hydrogen atom, a deuterium atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted alkyl group.
  • R 1 -R 4 and R 8 -R 19 are each independently a hydrogen atom or one or two atoms or groups selected from the group consisting of a deuterium atom, an alkyl group and an aryl group. It is a group formed by combining two or more.
  • at least one of R 1 to R 4 is a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group.
  • R 1 to R 4 is an aryl group, which has one or more atoms or groups selected from the group consisting of deuterium atoms, alkyl groups and aryl groups. It may be substituted with a group that can be combined.
  • R 5 to R 7 each independently represent a hydrogen atom, a deuterium atom, or a substituted or unsubstituted alkyl group.
  • R 1 to R 4 is a substituted or unsubstituted aryl group, for example only one is a substituted or unsubstituted aryl group and only two are substituted or unsubstituted is an aryl group of
  • R 1 is a substituted or unsubstituted aryl group.
  • R 2 is a substituted or unsubstituted aryl group.
  • R 3 is a substituted or unsubstituted aryl group.
  • R4 is a substituted or unsubstituted aryl group.
  • each of R 1 -R 4 is independently a hydrogen atom, a deuterium atom, or a substituted or unsubstituted aryl group.
  • at least one of R 1 to R 4 is a substituted or unsubstituted alkyl group, for example only one is a substituted or unsubstituted alkyl group and only two are substituted or unsubstituted is an alkyl group of
  • R 1 is a substituted or unsubstituted alkyl group.
  • R 2 is a substituted or unsubstituted alkyl group.
  • R 3 is a substituted or unsubstituted alkyl group.
  • R4 is a substituted or unsubstituted alkyl group.
  • each of R 1 to R 4 is independently a hydrogen atom, a deuterium atom, or a substituted or unsubstituted alkyl group.
  • each of R 5 to R 7 is independently hydrogen or deuterium.
  • at least one of R 5 to R 7 is a substituted or unsubstituted alkyl group.
  • all of R 5 to R 7 are each independently substituted or unsubstituted alkyl groups.
  • R5 is a substituted or unsubstituted alkyl group.
  • R6 is a substituted or unsubstituted alkyl group.
  • R7 is a substituted or unsubstituted alkyl group.
  • each of R 8 to R 11 is independently a hydrogen atom or a deuterium atom. In one aspect of the invention, at least one of R 8 to R 11 is a substituted or unsubstituted aryl group. In one aspect of the invention, R 8 is a substituted or unsubstituted aryl group. In one aspect of the invention, R9 is a substituted or unsubstituted aryl group. In one aspect of the invention, at least one of R 8 to R 11 is a substituted or unsubstituted alkyl group. In one aspect of the invention, R 10 is a substituted or unsubstituted alkyl group. In one aspect of the invention, R 11 is a substituted or unsubstituted alkyl group.
  • R 12 -R 19 are each independently a hydrogen atom or a deuterium atom. In one aspect of the invention, at least one of R 12 -R 19 is a deuterium atom, eg all are deuterium atoms. In one aspect of the invention, at least one of R 12 to R 19 is a substituted or unsubstituted aryl group. In one aspect of the invention, only one of R 12 to R 19 is a substituted or unsubstituted aryl group. In one aspect of the invention, only two of R 12 to R 19 are substituted or unsubstituted aryl groups.
  • R 12 to R 15 and only one of R 16 to R 19 are each independently a substituted or unsubstituted aryl group.
  • R 12 is a substituted or unsubstituted aryl group.
  • R 13 is a substituted or unsubstituted aryl group.
  • R 14 is a substituted or unsubstituted aryl group.
  • R 15 is a substituted or unsubstituted aryl group.
  • at least one of R 12 to R 19 is a substituted or unsubstituted alkyl group.
  • At least one of R 12 to R 15 and at least one of R 16 to R 19 are each independently a substituted or unsubstituted alkyl group.
  • R 16 is a substituted or unsubstituted alkyl group.
  • R 17 is a substituted or unsubstituted alkyl group.
  • R 18 is a substituted or unsubstituted alkyl group.
  • R 19 is a substituted or unsubstituted alkyl group.
  • R 14 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group, more preferably a substituted or unsubstituted aryl group, and for example R 12 , R 13 , R 15 to R 19 are each independently a hydrogen atom or a deuterium atom.
  • R 14 and R 17 are each independently a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group, more preferably each independently a substituted or unsubstituted aryl group.
  • R 12 , R 13 , R 15 , R 16 , R 18 and R 19 are each independently a hydrogen atom or a deuterium atom.
  • R 14 and R 17 are the same. In one aspect of the invention, R 14 and R 17 are different.
  • the total number of benzene rings contained in R 1 to R 19 is preferably 1 to 10, more preferably 1 to 6, still more preferably 1 to 4, for example 1. , for example 2, for example 3.
  • the total number of substituted or unsubstituted aryl groups in R 1 to R 19 is preferably 1 to 8, more preferably 1 to 4, such as 1, such as 2, such as 3. .
  • R 1 -R 4 and R 8 -R 19 are each independently a hydrogen atom, a deuterium atom, or a substituted or unsubstituted aryl group.
  • R 2 is a substituted or unsubstituted aryl group
  • R 14 is a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group
  • R 17 is a hydrogen atom, a heavy a hydrogen atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted alkyl group
  • R 1 , R 3 to R 13 , R 15 , R 16 , R 18 , and R 19 It is a hydrogen atom.
  • the aryl group that can be taken by R 1 to R 4 and R 8 to R 19 is substituted, it is an aryl group substituted with a deuterium atom, an aryl group substituted with an alkyl group, or an aryl group It is preferably an aryl group substituted with.
  • the aryl group that can be taken by R 1 to R 4 and R 8 to R 19 is substituted with one atom or group selected from the group consisting of a deuterium atom and an aryl group, or a group formed by combining two or more more preferably an aryl group with a For example, it is an aryl group optionally substituted with a deuterium atom.
  • alkyl group that R 1 to R 19 can take is substituted, it is preferably an alkyl group substituted with a deuterium atom or an alkyl group substituted with an aryl group.
  • the alkyl group that can be taken by R 1 to R 19 is more preferably an alkyl group optionally substituted with a deuterium atom.
  • the "alkyl group" in the present application may be linear, branched or cyclic. Moreover, two or more of the linear portion, the cyclic portion and the branched portion may be mixed.
  • the number of carbon atoms in the alkyl group can be, for example, 1 or more, 2 or more, or 4 or more.
  • the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, or 4 or less.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, cyclopentyl, A cyclohexyl group and a cycloheptyl group can be mentioned.
  • the alkyl group has 1 to 4 carbon atoms.
  • the alkyl group is a methyl group.
  • the alkyl group is an isopropyl group. In one aspect of the invention, the alkyl group is a tert-butyl group.
  • the alkyl groups may be the same or different. In one aspect of the present invention, all alkyl groups in the molecule represented by general formula (1) are the same.
  • the number of alkyl groups in the molecule represented by general formula (1) can be 0 or more, 1 or more, 2 or more, 4 or more, and 8 or more.
  • the number of alkyl groups in the molecule represented by formula (1) may be 20 or less, 10 or less, 5 or less, or 3 or less.
  • the number of alkyl groups in the molecule represented by general formula (1) may be zero.
  • the "alkyl group optionally substituted with a deuterium atom” in the present application means that at least one hydrogen atom of the alkyl group may be substituted with a deuterium atom. All hydrogen atoms in the alkyl group may be replaced with deuterium atoms.
  • optionally deuterated methyl groups include CH3 , CDH2 , CD2H , CD3 .
  • the "optionally deuterated alkyl group” is preferably an alkyl group that is not deuterated at all or an alkyl group in which all hydrogen atoms are substituted with deuterium atoms.
  • an alkyl group that is not deuterated at all is selected as the "optionally deuterated alkyl group”.
  • an alkyl group in which all hydrogen atoms are substituted with deuterium atoms is selected as the "optionally deuterated alkyl group”.
  • the "optionally deuterated alkyl group” is a non-deuterated methyl group [--CH 3 ], a non-deuterated ethyl group [--CH 2 CH 3 ] , non-deuterated isopropyl group [--CH(CH 3 ) 2 ], non-deuterated tert-butyl group [--C(CH 3 ) 3 ] or all hydrogen atoms deuterated methyl It is the group [-CD 3 ].
  • an “optionally deuterated alkyl group” is a methyl group that is not deuterated [—CH 3 ] or a methyl group in which all hydrogen atoms are deuterated [—CD 3 ].
  • at least one alkyl group having at least one hydrogen atom substituted with a deuterium atom is present in the molecule represented by general formula (1).
  • aryl group may be a monocyclic ring or a condensed ring in which two or more rings are condensed.
  • the aryl group is a phenyl group.
  • the aryl group is a group in which one or more rings are further condensed to the phenyl group.
  • the ring condensed to the phenyl group may be an aromatic hydrocarbon ring, an aromatic heterocyclic ring, an aliphatic hydrocarbon ring, or an aliphatic heterocyclic ring, or a ring in which these are condensed.
  • Preferred are aromatic hydrocarbon rings and aromatic heterocycles.
  • a benzene ring can be mentioned as an aromatic hydrocarbon ring.
  • the benzene ring may be condensed with another benzene ring, or may be condensed with a heterocyclic ring such as a pyridine ring.
  • the aromatic heterocyclic ring means an aromatic ring containing a heteroatom as a ring skeleton-constituting atom, and is preferably a 5- to 7-membered ring, such as a 5-membered ring or a 6-membered ring. can be adopted.
  • a furan ring, a thiophene ring, or a pyrrole ring can be employed as the aromatic heterocyclic ring.
  • rings that constitute the aryl group include a benzene ring and a naphthalene ring.
  • aryl groups include phenyl, naphthalene-1-yl and naphthalene-2-yl groups. These groups given as specific examples may be substituted.
  • the "aryl group optionally substituted with a deuterium atom" in the present application means that at least one hydrogen atom of the aryl group may be substituted with a deuterium atom. All of the hydrogen atoms in the aryl group may be replaced with deuterium atoms.
  • optionally deuterated phenyl groups include C6H5 , C6H4D , C6H3D2 , C6H2D3 , C6HD4 , C6D5 . included.
  • the "optionally deuterated aryl group” is preferably an aryl group that is not deuterated at all or an aryl group in which all hydrogen atoms are substituted with deuterium atoms. In one aspect of the present invention, an aryl group that is not deuterated at all is selected as the "optionally deuterated aryl group”. In one aspect of the present invention, an aryl group in which all hydrogen atoms are substituted with deuterium atoms is selected as the “optionally deuterated aryl group”.
  • the “optionally deuterated aryl group” is a non-deuterated phenyl group [—C 6 H 5 ], a non-deuterated naphthyl group [—C 10 H 7 ], a phenyl group in which all hydrogen atoms are deuterated [--C 6 D 5 ], and a naphthyl group in which all hydrogen atoms are deuterated [--C 10 D 7 ].
  • aryl groups that R 1 to R 4 and R 8 to R 19 can take are given below.
  • the aryl group that can be employed in the present invention is not limited to the following specific examples.
  • * indicates the binding position.
  • the display of the methyl group is omitted. Therefore, Ar2 to Ar7 represent structures substituted with methyl groups.
  • the aryl group that R 1 to R 4 and R 8 to R 19 can take is Ar1 or Ar1(D).
  • the aryl group that can be taken by R 1 to R 4 and R 8 to R 19 is the group consisting of Ar2 to Ar11, Ar2(d) to Ar11(d) and Ar2(D) to Ar11(D) more selected.
  • the aryl group that can be taken by R 1 to R 4 and R 8 to R 19 is the group consisting of Ar12 to Ar16, Ar12(d) to Ar16(d) and Ar12(D) to Ar16(D) more selected.
  • the aryl groups that R 1 to R 4 and R 8 to R 19 can take are Ar1, Ar1(D), Ar12 to Ar16, Ar12(d) to Ar16(d) and Ar12(D) to is selected from the group consisting of Ar16(D);
  • R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 in the general formula (1) are bonded to form a cyclic structure may be formed.
  • R 1 to R 11 in general formula (1) do not form a cyclic structure by combining with nearby groups.
  • the cyclic structure may be an aromatic ring, a heteroaromatic ring, an aliphatic hydrocarbon ring, or an aliphatic heterocyclic ring, or a condensed ring thereof.
  • Aromatic rings and heteroaromatic rings are preferred. Examples of aromatic rings include substituted or unsubstituted benzene rings.
  • the heteroaromatic ring means an aromatic ring containing a heteroatom as a ring skeleton-constituting atom, and is preferably a 5- to 7-membered ring, such as a 5-membered ring or a 6-membered ring. can be adopted.
  • a furan ring, a thiophene ring, and a pyrrole ring can be employed as the heteroaromatic ring.
  • a cyclopentadiene ring can be mentioned as an aliphatic hydrocarbon ring.
  • the cyclic structure is a benzene ring, a furan ring of substituted or unsubstituted benzofuran, a thiophene ring of substituted or unsubstituted benzothiophene, or a pyrrole ring of substituted or unsubstituted indole.
  • benzofuran, benzothiophene, and indole here are one atom or group selected from the group consisting of a deuterium atom, an alkyl group, and an aryl group, or a group formed by combining two or more. may be substituted.
  • the benzofurans, benzothiophenes, and indoles referred to herein are unsubstituted.
  • R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 are bonded to each other to form a cyclic structure.
  • the group (group having a carbazole structure) that is not formed and is bonded to the nitrogen atom on the right side of general formula (1) is a substituted or unsubstituted non-fused carbazol-9-yl group.
  • one or more pairs of R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 are bonded to each other, and the groups bonded at the nitrogen atom on the right side of general formula (1) are benzofuro[2,3-a]carbazol-1-yl group, benzofuro[3,2-a]carbazole- 1-yl group, benzofuro[2,3-b]carbazol-1-yl group, benzofuro[3,2-b]carbazol-1-yl group, benzofuro[2,3-c]carbazol-1-yl group, Or it forms a benzofuro[3,2-c]carbazol-1-yl group.
  • R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 are bonded to each other, and the groups bonded at the nitrogen atoms on the right side of general formula (1) are benzothieno[2,3-a]carbazol-1-yl groups, benzothieno[3,2-a]carbazole- 1-yl group, benzothieno[2,3-b]carbazol-1-yl group, benzothieno[3,2-b]carbazol-1-yl group, benzothieno[2,3-c]carbazol-1-yl group, Or it forms a benzothieno[2,3-a]carbazol-1-yl groups, benzothieno[3,2-a]carbazol-1-yl group, benzothieno[2,3-c]carbazol-1-yl group, Or it forms a benzothieno[2,3-a]carbazol-1-yl groups
  • These groups may be substituted, and in one aspect of the present invention, substituted with one atom or group selected from the group consisting of a deuterium atom, an alkyl group and an aryl group, or a group formed by combining two or more may have been
  • groups in which all hydrogen atoms present in alkyl groups and phenyl groups as substituents of D2 to D20 and D33 to D262 are substituted with deuterium atoms are exemplified here as D263 to D511. .
  • groups in which all hydrogen atoms existing in D1 to D262 are replaced with deuterium atoms are exemplified here as D512 to D773 in order.
  • the group bonded to the nitrogen atom on the right side of general formula (1) (group having a carbazole structure) is selected from D1 to D773.
  • the group attached to the nitrogen atom on the right side of general formula (1) is D1 or D512.
  • the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D1, D21-D32, D512, D532-D543. In one aspect of the present invention, the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D1-D14, D263-D275 and D512-D525. In one aspect of the present invention, the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D2-D14, D263-D275 and D513-D525.
  • the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D1, D15-D20, D33-D237, D276-D486, D512, D526-D531, D544-D748. . In one aspect of the present invention, the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D15-D20, D33-D237, D276-D486, D526-D531, D544-D748. In one aspect of the present invention, the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D1-D20, D263-D281 and D512-D531. In one aspect of the present invention, the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D21-D237, D282-D486, and D532-D748.
  • groups in which all hydrogen atoms of Z1 to Z40 are deuterated are exemplified here as Z41 to Z80, respectively.
  • Groups in which all the hydrogen atoms of the phenyl groups (C 6 H 5 ) of Z1 to Z4 and Z13 to Z16 are substituted with deuterated C 6 D5 are exemplified here as Z81 to Z88, respectively.
  • groups obtained by deuterating all the hydrogen atoms of the methyl group, isopropyl group and tert-butyl group of Z17 to Z40 are exemplified here as Z89 to Z112, respectively.
  • the group having a tricyclic structure (substituted dibenzofuran-2-yl group) on the left side of general formula (1) is selected from Z1 to Z112. In one aspect of the present invention, the group having a tricyclic structure on the left side of general formula (1) is selected from Z1-Z28, Z41-Z68 and Z81-Z100.
  • the compound represented by general formula (1) does not contain a metal element.
  • the compound represented by general formula (1) consists only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur atoms.
  • the compound represented by general formula (1) consists only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, oxygen atoms and nitrogen atoms.
  • the molecular weight of the compound represented by formula (1) is preferably 1500 or less, more preferably 1200 or less, and even more preferably 800 or less.
  • the lower limit of the molecular weight is the minimum molecular weight of the structure represented by general formula (1).
  • a preferred group of compounds represented by the general formula (1) includes compounds represented by the following general formula (2).
  • general formula (2) For definitions, explanations and preferred ranges of R 1 to R 4 and R 12 to R 19 in general formula (2), the corresponding descriptions in general formula (1) can be referred to.
  • a preferred group of compounds represented by the general formula (1) includes compounds represented by the following general formula (3).
  • R 20 to R 24 each independently represent a hydrogen atom, a deuterium atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted alkyl group.
  • the preferred range of R 20 to R 24 can be referred to the description of R 8 to R 10 in formula (1).
  • Table 2 identifies each structure of compounds 1-86576 by defining Z and D in each structure. Each row of Table 2 identifies, in order, 773 compounds with Z fixed and D varied from D1 to D773. Compounds 1-1546 of Table 2 identify the same as compounds 1-1546 of Table 1.
  • compounds 1(D) to 86576(D) Compounds in which all hydrogen atoms in compounds 1 to 86576 are replaced with deuterium atoms are exemplified as compounds 1(D) to 86576(D) in order.
  • compounds are selected from Compounds 1-86576 and Compounds 1(D)-86576(D).
  • the Select a compound from among In one aspect of the present invention, a compound selected from compounds 30921-52564, 61841-77300, 1(D)-21644(D), 30921(D)-52564(D), 61841(D)-77300(D) select.
  • a compound represented by the general formula (1) is useful as a host material for doping a light-emitting material. It is particularly useful as a host material for doping a delayed fluorescence material.
  • the material to be doped may be not only one kind but also plural kinds.
  • a material to be doped is selected from those having a lowest excited singlet energy lower than that of the compound represented by the general formula (1).
  • the compound represented by general formula (1) is also useful as a carrier-blocking material, such as an electron-blocking material. It can be effectively used as a barrier layer (for example, an electron barrier layer) in an organic light-emitting device such as an organic electroluminescence device.
  • a compound represented by the general formula (1) is useful as a host material for use with a delayed fluorescence material.
  • delayed fluorescence material means that in an excited state, reverse intersystem crossing occurs from an excited triplet state to an excited singlet state, and delayed fluorescence is emitted when returning from the excited singlet state to the ground state. It is an organic compound.
  • a delayed fluorescence material is defined as a material that emits fluorescence with an emission lifetime of 100 ns (nanoseconds) or more when measured by a fluorescence lifetime measurement system (such as a streak camera system manufactured by Hamamatsu Photonics).
  • the delayed fluorescence material receives energy from the compound represented by the general formula (1) in an excited singlet state to an excited singlet state transition to Further, the delayed fluorescence material may receive energy from the compound represented by general formula (1) in the excited triplet state and transition to the excited triplet state. Since the delayed fluorescent material has a small difference ( ⁇ EST ) between the excited singlet energy and the excited triplet energy, the delayed fluorescent material in the excited triplet state easily undergoes reverse intersystem crossing to the delayed fluorescent material in the excited singlet state. The delayed fluorescent material in the excited singlet state generated by these pathways contributes to light emission.
  • the difference ⁇ EST between the lowest excited singlet energy and the lowest excited triplet energy at 77K is preferably 0.3 eV or less, more preferably 0.25 eV or less, and 0.2 eV or less. is more preferably 0.15 eV or less, more preferably 0.1 eV or less, even more preferably 0.07 eV or less, and even more preferably 0.05 eV or less , is more preferably 0.03 eV or less, and particularly preferably 0.01 eV or less.
  • a thermally activated delayed fluorescence material absorbs the heat emitted by the device and relatively easily undergoes reverse intersystem crossing from the excited triplet state to the excited singlet state, and efficiently contributes the excited triplet energy to light emission. can be done.
  • the lowest excited singlet energy (E S1 ) and the lowest excited triplet energy (E T1 ) of the compound in the present invention are values determined by the following procedure.
  • ⁇ E ST is a value obtained by calculating E S1 -E T1 .
  • (2) Lowest excited singlet energy (E S1 ) A thin film or a toluene solution (concentration 10 ⁇ 5 mol/L) of the compound to be measured is prepared and used as a sample. The fluorescence spectrum of this sample is measured at room temperature (300K). In the fluorescence spectrum, the vertical axis is light emission and the horizontal axis is wavelength.
  • the maximum point with a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and is closest to the maximum value on the short wavelength side.
  • the tangent line drawn at the point where the value is taken is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
  • a compound (cyanobenzene derivative) having a cyanobenzene structure in which the benzene ring is substituted with one cyano group is used as the delayed fluorescence material.
  • a compound (dicyanobenzene derivative) having a dicyanobenzene structure in which two cyano groups are substituted on the benzene ring is used as the delayed fluorescence material.
  • a compound (azabenzene derivative) having an azabenzene structure in which at least one carbon atom constituting the ring skeleton of a benzene ring is substituted with a nitrogen atom is used as the delayed fluorescence material.
  • a compound represented by the following general formula (4) is used as the delayed fluorescence material.
  • one of R 21 to R 23 represents a cyano group or a group represented by general formula (5) below, and the remaining two of R 21 to R 23 and R 24 and R 25 At least one of them represents a group represented by the following general formula (6), and the rest of R 21 to R 25 are hydrogen atoms or substituents (wherein the substituent here is a cyano group, the following general formula (5) is not a group represented by the following general formula (6)).
  • L1 represents a single bond or a divalent linking group
  • R31 and R32 each independently represent a hydrogen atom or a substituent
  • * represents a bonding position
  • L2 represents a single bond or a divalent linking group
  • R33 and R34 each independently represent a hydrogen atom or a substituent
  • * represents a bonding position
  • R 22 is a cyano group. In a preferred embodiment of the present invention, R 22 is a group represented by general formula (5). In one aspect of the present invention, R 21 is a cyano group or a group represented by general formula (5). In one aspect of the present invention, R 23 is a cyano group or a group represented by general formula (5). In one aspect of the invention, one of R 21 to R 23 is a cyano group. In one aspect of the present invention, one of R 21 to R 23 is a group represented by general formula (5).
  • L 1 in general formula (5) is a single bond.
  • L 1 is a divalent linking group, preferably a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group, more preferably a substituted or unsubstituted arylene group and more preferably a substituted or unsubstituted 1,4-phenylene group (for example, an alkyl group having 1 to 3 carbon atoms as a substituent).
  • R 31 and R 32 in general formula (5) are each independently an alkyl group (eg, 1 to 40 carbon atoms), an aryl group (eg, 6 to 30 carbon atoms), a heteroaryl group (eg, 5 to 30 ring skeleton atoms), an alkenyl group (eg, 1 to 40 carbon atoms) and an alkynyl group (eg, 1 to 40 carbon atoms), or a group formed by combining two or more (these groups are hereinafter referred to as "substituent group A groups").
  • each of R 31 and R 32 is independently a substituted or unsubstituted aryl group (eg, having 6 to 30 carbon atoms), and the substituent of the aryl group is a group of substituent group A. can be mentioned.
  • R 31 and R 32 are the same.
  • L2 in general formula (6) is a single bond.
  • L2 is a divalent linking group, preferably a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group, more preferably a substituted or unsubstituted arylene group and more preferably a substituted or unsubstituted 1,4-phenylene group (for example, an alkyl group having 1 to 3 carbon atoms as a substituent).
  • R 33 and R 34 in general formula (6) are each independently a substituted or unsubstituted alkyl group (eg, 1 to 40 carbon atoms), a substituted or unsubstituted alkenyl group (eg, 1 to 40), a substituted or unsubstituted aryl group (eg, 6 to 30 carbon atoms), or a substituted or unsubstituted heteroaryl group (eg, 5 to 30 carbon atoms).
  • substituents of the alkyl group, alkenyl group, aryl group, and heteroaryl group referred to herein include hydroxyl group, halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl group (eg, C 1-40 ), an alkoxy group (eg, 1 to 40 carbon atoms), an alkylthio group (eg, 1 to 40 carbon atoms), an aryl group (eg, 6 to 30 carbon atoms), an aryloxy group (eg, 6 to 30 carbon atoms), an arylthio group ( (e.g., 6 to 30 carbon atoms), heteroaryl groups (e.g., 5 to 30 ring atoms), heteroaryloxy groups (e.g., 5 to 30 ring atoms), heteroarylthio groups (e.g., ring atoms) 5 to 30), acyl groups (eg, 1 to 40 carbon atoms), alky
  • R 33 and R 34 may be bonded to each other via a single bond or a linking group to form a cyclic structure.
  • R 33 and R 34 are aryl groups, they are preferably bonded to each other via a single bond or a linking group to form a cyclic structure.
  • R 35 to R 37 each independently represent a hydrogen atom or a substituent.
  • a group of the substituent group A can be selected, or a group of the substituent group B below can be selected, preferably an alkyl group having 1 to 10 carbon atoms and a group having 6 to 14 carbon atoms. It is one group or a combination of two or more groups selected from the group consisting of aryl groups.
  • the group represented by general formula (6) is preferably a group represented by general formula (7) below.
  • L11 in general formula (7) represents a single bond or a divalent linking group.
  • the description and preferred range of L 11 can be referred to the description and preferred range of L 2 above.
  • Each of R 41 to R 48 in general formula (7) independently represents a hydrogen atom or a substituent.
  • R 41 and R 42 , R 42 and R 43 , R 43 and R 44 , R 44 and R 45 , R 45 and R 46 , R 46 and R 47 , R 47 and R 48 are bonded together to form a cyclic structure. may be formed.
  • the cyclic structure formed by bonding to each other may be an aromatic ring or an alicyclic ring, or may contain a heteroatom, and the cyclic structure may be a condensed ring of two or more rings. .
  • heteroatoms referred to here are preferably those selected from the group consisting of nitrogen atoms, oxygen atoms and sulfur atoms.
  • cyclic structures formed include benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, imidazoline ring, oxazole ring, isoxazole ring, thiazole ring, iso thiazole ring, cyclohexadiene ring, cyclohexene ring, cyclopentaene ring, cycloheptatriene ring, cycloheptadiene ring, cycloheptaene ring, furan ring, thiophene ring, naphthyridine ring, quinoxaline ring, quinoline ring and the like.
  • a ring formed by condensing a large number of rings such as a phenanthrene ring or a triphenylene ring may be formed.
  • the number of rings contained in the group represented by general formula (7) may be selected from the range of 3-5, or may be selected from the range of 5-7.
  • substituents that R 41 to R 48 can take include the groups of the above substituent group B, preferably unsubstituted alkyl groups having 1 to 10 carbon atoms or unsubstituted alkyl groups having 1 to 10 carbon atoms. It is an aryl group having 6 to 10 carbon atoms which may be substituted with an alkyl group.
  • R 41 to R 48 are hydrogen atoms or unsubstituted alkyl groups having 1 to 10 carbon atoms. In a preferred embodiment of the present invention, R 41 to R 48 are hydrogen atoms or unsubstituted aryl groups having 6 to 10 carbon atoms. In a preferred embodiment of the present invention, all of R 41 to R 48 are hydrogen atoms.
  • * represents a bonding position.
  • a preferred embodiment of the present invention uses an azabenzene derivative as the delayed fluorescence material.
  • the azabenzene derivative has an azabenzene structure in which three of the ring skeleton-constituting carbon atoms of the benzene ring are substituted with nitrogen atoms.
  • an azabenzene derivative having a 1,3,5-triazine structure can be preferably selected.
  • the azabenzene derivative has an azabenzene structure in which two of the ring skeleton-constituting carbon atoms of the benzene ring are substituted with nitrogen atoms.
  • azabenzene derivatives having a pyridazine structure, a pyrimidine structure, and a pyrazine structure can be mentioned, and azabenzene derivatives having a pyrimidine structure can be preferably selected.
  • the azabenzene derivative has a pyridine structure in which one of the ring skeleton-constituting carbon atoms of the benzene ring is substituted with a nitrogen atom.
  • a compound represented by the following general formula (8) is used as the delayed fluorescence material.
  • at least one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the rest represent methine groups.
  • Y 1 is a nitrogen atom and Y 2 and Y 3 are methine groups.
  • Y 1 and Y 2 are preferably nitrogen atoms and Y 3 is preferably a methine group. More preferably, all of Y 1 to Y 3 are nitrogen atoms.
  • Z 1 to Z 3 each independently represent a hydrogen atom or a substituent, at least one of which is a donor substituent.
  • a donor substituent means a group having a negative Hammett's ⁇ p value.
  • at least one of Z 1 to Z 3 is a group containing a diarylamino structure (two aryl groups bonded to the nitrogen atom may be bonded to each other), more preferably the general formula (6 ), for example, a group represented by the general formula (7).
  • only one of Z 1 to Z 3 is a group represented by general formula (6) or (7).
  • only two of Z 1 to Z 3 are each independently a group represented by general formula (6) or (7).
  • all of Z 1 to Z 3 are each independently a group represented by general formula (6) or (7).
  • Z 1 to Z 3 that are not groups represented by general formulas (6) and (7) are substituted or unsubstituted aryl groups (eg, 6 to 40 carbon atoms, preferably 6 to 20 carbon atoms).
  • the substituents of the aryl group referred to herein include an aryl group (eg, 6 to 20 carbon atoms, preferably 6 to 14 carbon atoms) and an alkyl group (eg, 1 to 20 carbon atoms, preferably 1 to 6).
  • One group selected from the group or a group formed by combining two or more groups can be exemplified.
  • general formula (8) does not contain a cyano group.
  • a compound represented by the following general formula (9) is used as the delayed fluorescence material.
  • Ar 1 forms a cyclic structure that may be substituted with A 1 and D 1 below, and represents a benzene ring, naphthalene ring, anthracene ring, or phenanthrene ring.
  • Ar 2 and Ar 3 each may form a cyclic structure, and when they form a cyclic structure, they represent a benzene ring, a naphthalene ring, a pyridine ring, or a cyano-substituted benzene ring.
  • D 1 represents a substituted or unsubstituted 5H-indolo[3,2,1-de]phenazin-5-yl group or a substituted or unsubstituted heterocyclic condensed carbazolyl group containing no naphthalene structure; ), they may be the same or different. Also, the substituents of D 1 may be bonded to each other to form a cyclic structure.
  • Ar 1 is an optionally substituted phenanthrene ring, more preferably a substituted phenanthrene ring.
  • the number of substituents on the phenanthrene ring is one. In a preferred embodiment of the present invention, the number of substituents on the phenanthrene ring is two.
  • only one of Ar 2 and Ar 3 forms a cyclic structure. In a preferred embodiment of the present invention, both Ar 2 and Ar 3 form a cyclic structure.
  • delayed fluorescence material Preferred compounds that can be used as the delayed fluorescence material are listed below, but the delayed fluorescence material that can be used in the present invention is not limited to these specific examples.
  • known delayed fluorescence materials other than those described above can be used in appropriate combination with the compound represented by general formula (1). Moreover, even unknown delayed fluorescence materials can be used.
  • the delayed fluorescence material paragraphs 0008 to 0048 and 0095 to 0133 of WO2013/154064, paragraphs 0007 to 0047 and 0073 to 0085 of WO2013/011954, paragraphs 0007 to 0033 and 0059 to 0066 of WO2013/011955, Paragraphs 0008 to 0071 and 0118 to 0133 of WO2013/081088, paragraphs 0009 to 0046 and 0093 to 0134 of JP 2013-256490, paragraphs 0008 to 0020 and 0038 to 0040 of JP 2013-116975, WO2013 / Paragraphs 0007 to 0032 and 0079 to 0084 of 133359, paragraphs 0008 to 0054 and 0101 to 0121 of WO2013/161437, paragraphs 0007 to 0041 and 0060
  • JP 2013-253121, WO2013/133359, WO2014/034535, WO2014/115743, WO2014/122895, WO2014/126200, WO2014/136758, WO2014/13 3121 Publications, WO2014/136860, WO2014/196585, WO2014/189122, WO2014/168101, WO2015/008580, WO2014/203840, WO2015/002213, WO2015/ 016200 publication, WO2015/019725, WO2015/072470, WO2015/108049, WO2015/080182, WO2015/072537, WO2015/080183, JP 2015-129240, WO2015/129 714 publication, WO2015/129715, WO2015/133501, WO2015/136880, WO2015/137244, WO2015/137202, WO2015/137136, WO2015/146541, WO2015/15 9541, WO2019/ 191665, pp. 62
  • the delayed fluorescence material used in the present invention preferably does not contain metal atoms.
  • a compound composed of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms and sulfur atoms can be selected.
  • a compound composed of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms can be selected.
  • a compound composed of carbon atoms, hydrogen atoms and nitrogen atoms can be selected as the delayed fluorescence material.
  • composition contains a compound represented by formula (1) and a delayed fluorescence material.
  • the composition is composed only of one or more compounds represented by general formula (1) and one or more delayed fluorescence materials.
  • the composition comprises only one type of compound represented by general formula (1) and one type of delayed fluorescence material.
  • the composition contains a third component in addition to the compound represented by formula (1) and the delayed fluorescence material.
  • the third component here is neither the compound represented by the general formula (1) nor the delayed fluorescence material. Only one type of the third component may be contained, or two or more types may be contained.
  • the content of the third component in the composition may be selected within the range of 30% by weight or less, may be selected within the range of 10% by weight or less, or may be selected within the range of 1% by weight or less. It may be selected, or may be selected within the range of 0.1% by weight or less.
  • the third component does not emit light.
  • the third component emits fluorescence.
  • the largest component of luminescence from the composition of the present invention is fluorescence (including delayed fluorescence).
  • the content of the compound represented by general formula (1) is greater than that of the delayed fluorescence material on a weight basis.
  • the content of the compound represented by the general formula (1) may be selected within a range of 3 times or more by weight the content of the delayed fluorescence material, or may be selected within a range of 10 times or more by weight. However, it may be selected within a range of 100 times by weight or more, may be selected within a range of 1000 times by weight or more, or may be selected within a range of, for example, 10000 times by weight or less. In the composition of the present invention, it is preferable to select a delayed fluorescence material having an excited singlet energy smaller than the excited singlet energy of the compound represented by formula (1).
  • the difference in excited singlet energy may be 0.1 eV or more, 0.3 eV or more, or 0.5 eV or more, and may be 2 eV or less, 1.5 eV or less, or 1.0 eV or less.
  • the composition of the present invention preferably does not contain metal elements.
  • the composition of the invention consists exclusively of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms, sulfur atoms, boron atoms and halogen atoms.
  • the composition of the invention consists exclusively of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms.
  • the compound represented by general formula (1) is useful as a host material for use with a delayed fluorescence material and a fluorescent compound. Therefore, in one aspect of the present invention, the composition of the present invention contains a fluorescent compound in addition to the compound represented by formula (1) and the delayed fluorescent material.
  • the fluorescent compound preferably has a lower lowest excited singlet energy (E S1 ) than the compound represented by formula (1) and the delayed fluorescent material.
  • the fluorescent compound absorbs energy from the compound represented by general formula (1) in the excited singlet state, the delayed fluorescent material, and the delayed fluorescent material in the excited singlet state through inverse intersystem crossing from the excited triplet state. It receives and transitions to a singlet excited state, and then emits fluorescence when returning to the ground state.
  • the fluorescent compound is not particularly limited as long as it can receive energy from the compound represented by the general formula (1) and the delayed fluorescence material and emit fluorescence. It may be delayed fluorescence.
  • the luminescent material used as the fluorescent compound preferably emits fluorescence when returning from the lowest excited singlet energy level to the ground energy level.
  • Fluorescent compounds include anthracene derivatives, tetracene derivatives, naphthacene derivatives, pyrene derivatives, perylene derivatives, chrysene derivatives, rubrene derivatives, coumarin derivatives, pyran derivatives, stilbene derivatives, fluorene derivatives, anthryl derivatives, pyrromethene derivatives, terphenyl derivatives, terphenyl derivatives, Phenylene derivatives, fluoranthene derivatives, amine derivatives, quinacridone derivatives, oxadiazole derivatives, malononitrile derivatives, pyran derivatives, carbazole derivatives, julolidine derivatives, thiazole derivatives, derivatives containing metals (Al, Zn), diazaboranaphthoanthracene, etc.
  • the fluorescent compound include the compounds given as specific examples of the delayed fluorescence material.
  • the composition of the present invention contains two or more delayed fluorescence materials, and the one with the higher lowest singlet excited energy functions as an assist dopant, and the one with the lower lowest singlet excited energy functions as a fluorescent compound that mainly emits light.
  • the compound used as the fluorescent compound preferably exhibits a PL emission quantum yield of 60% or more, more preferably 80% or more.
  • the compound used as the fluorescent compound preferably exhibits an instantaneous fluorescence lifetime of 50 ns or less, more preferably 20 ns or less.
  • the instantaneous fluorescence lifetime at this time is the luminescence lifetime of the fastest decaying component among multiple exponentially decaying components observed when luminescence lifetime measurement is performed for a compound exhibiting thermally activated delayed fluorescence.
  • the compound used as the third compound preferably has a fluorescence emission rate from the lowest excited singlet (S1) to the ground state higher than an intersystem crossing rate from S1 to the lowest excited triplet (T1).
  • S1 lowest excited singlet
  • T1 intersystem crossing rate from S1 to the lowest excited triplet
  • the rate constant of the compound the known literature on thermally activated delayed fluorescence materials (H. Uoyama, et al., Nature 492, 234 (2012) and K. Masui, et al., Org. Electron. 14 , 2721, (2013), etc.).
  • Preferred compounds that can be used as fluorescent compounds that are used together with the delayed fluorescent material are listed below, but the fluorescent compounds that can be used in the present invention are not limited to these specific examples.
  • a compound exhibiting a multiple resonance effect as an assist dopant or a delayed fluorescence material used as a fluorescent compound having a lowest excited singlet energy lower than that of the assist dopant.
  • Compounds exhibiting multiple resonance effects include 5,9-Diphenyl-5H,9H-[1,4]benzazaborino[2,3,4-kl] described in Adv. Mater. 2016, 28, 2777-2781 ]phenazaborine (DABNA-1) is known.
  • DABNA-1 energy levels such as the highest transferred molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) can be adjusted to contribute to light emission. is also known (Angew. Chem. Int. Ed. 2018, 57, 11316-11320).
  • Compounds exhibiting such multiple resonance effects can also be widely employed in the present invention.
  • a compound represented by the following general formula can be used as the compound that exhibits the multiple resonance effect.
  • X 1 and X 2 each independently represent O or S; Y 1 and Y 2 each independently represent a single bond, O, S or C(R a )(R b ).
  • R 1′ to R 22′ , R a and R b each independently represent a hydrogen atom, a deuterium atom or a substituent, and at least one of R 1′ to R 22′ is a substituent.
  • R 1′ and R 2′ , R 2′ and R 3′ , R 3′ and R 4′ , R 5′ and R 6′ , R 6′ and R 7′ , R 7′ and Y 1 , Y 1 and R 8′ , R 8′ and R 9′ , R 9′ and R 10′ , R 10′ and R 11′ , R 12′ and R 13′ , R 13′ and R 14 ′ , R 14′ and R 15 ' , R 16' and R 17' , R 17' and R 18' , R 18' and Y 2 , Y 2 and R 19' , R 19' and R 20' , R 20' and R 21' , R 21 ' and R 22 ' may combine with each other to form a cyclic structure.
  • R 21′ and R 1′ , R 4′ and R 5′ , R 10′ and R 12′ , R 15′ and R 16′ are not bonded to each other to form a cyclic structure.
  • CR 1′ , CR 2′ , CR 3′ , CR 4′ , CR 5′ , CR 6 ′ , CR 7′ , C in general formula (10) —R 8′ , CR 9′ , CR 10′ , CR 11′ , CR 12′ , CR 13′ , CR 14′ , CR 15′ , CR 16′ , CR 17′ , CR 18′ , CR 19′ , CR 20′ , CR 21 ′ and CR 22′ may be substituted with N; Specific examples of the compound represented by the general formula (10) are given below, but the compound represented by the general formula (10) that can be used in the present invention should be construed to be limited by the following specific examples. no.
  • the compound represented by General Formula (1) can be used together with another host material for a light-emitting layer (composition) containing a plurality of host materials. That is, in one aspect of the present invention, the composition of the present invention contains a plurality of host materials containing the compound represented by general formula (1). In the composition of the present invention, a plurality of types of compounds represented by general formula (1) may be used, or a compound represented by general formula (1) and a host material not represented by general formula (1) may be used. They may be used in combination. Preferred compounds that can be used as the second host material together with the compound represented by the general formula (1) are listed below. It should not be interpreted restrictively.
  • the form of the composition of the present invention is not particularly limited.
  • the composition of the invention is in the form of a film.
  • a film comprising the composition of the present invention may be formed by a wet process or a dry process.
  • a solution in which the composition of the present invention is dissolved is applied to the surface, and the luminescent layer is formed after removing the solvent.
  • wet processes include spin coating, slit coating, inkjet (spray), gravure printing, offset printing, and flexographic printing, but are not limited to these.
  • a suitable organic solvent is selected and used that is capable of dissolving the composition of the present invention.
  • compounds included in the compositions of the present invention can be introduced with substituents (eg, alkyl groups) that increase their solubility in organic solvents.
  • a vacuum vapor deposition method can be preferably employed as the dry process. When a vacuum deposition method is employed, each compound constituting the composition of the present invention may be co-deposited from individual deposition sources, or all the compounds may be co-deposited from a single deposition source mixed. . When a single vapor deposition source is used, a mixed powder obtained by mixing powders of all the compounds may be used, a compression molding obtained by compressing the mixed powder may be used, or each compound may be heated and melted and mixed. A mixture that has been cooled after heating may be used.
  • the composition ratio of the plurality of compounds contained in the vapor deposition source is reduced by co-deposition under conditions in which the vapor deposition rates (weight reduction rates) of the plurality of compounds contained in the single vapor deposition source match or substantially match. It is possible to form a film having a composition ratio corresponding to A film having a desired composition ratio can be easily formed by mixing a plurality of compounds at the same composition ratio as that of the film to be formed, and using this as an evaporation source. In one embodiment, the temperature at which each of the co-deposited compounds has the same weight loss rate can be identified and used as the temperature during co-deposition.
  • the molecular weight of each compound constituting the composition is preferably 1500 or less, more preferably 1200 or less, further preferably 1000 or less, and 900 or less. It is even more preferred to have The lower limit of the molecular weight may be 450, 500, or 600, for example.
  • Organic light-emitting element Excellent organic light-emitting devices such as organic photoluminescence devices (organic PL devices) and organic electroluminescence devices (organic EL devices) can be provided by forming a light-emitting layer comprising the composition of the present invention.
  • the organic light-emitting device of the present invention is a fluorescent light-emitting device, and the largest component of light emitted from the device is fluorescence (the fluorescence referred to herein includes delayed fluorescence).
  • the thickness of the light-emitting layer can be, for example, 1-15 nm, 2-10 nm, or 3-7 nm.
  • An organic photoluminescence device has a structure in which at least a light-emitting layer is formed on a substrate.
  • the organic electroluminescence element has a structure in which at least an anode, a cathode, and an organic layer are formed between the anode and the cathode.
  • the organic layer includes at least a light-emitting layer, and may consist of only the light-emitting layer, or may have one or more organic layers in addition to the light-emitting layer.
  • Such other organic layers can include hole transport layers, hole injection layers, electron blocking layers, hole blocking layers, electron injection layers, electron transport layers, exciton blocking layers, and the like.
  • the hole transport layer may be a hole injection transport layer having a hole injection function
  • the electron transport layer may be an electron injection transport layer having an electron injection function.
  • the emission with the shortest wavelength may include delayed fluorescence.
  • the emission with the shortest wavelength does not contain delayed fluorescence.
  • An organic light-emitting device using the composition of the present invention when excited by thermal or electronic means, has a blue, green, yellow, orange, and red region (for example, 420-500 nm, 500 nm) in the ultraviolet region and the visible spectrum. ⁇ 600 nm or 600-700 nm) or in the near infrared region.
  • organic light emitting devices can emit light in the red or orange region (eg, 620-780 nm).
  • organic light emitting devices can emit light in the orange or yellow region (eg, 570-620 nm).
  • an organic light emitting device can emit light in the green region (eg, 490-575 nm).
  • an organic light emitting device can emit light in the blue region (eg, 400-490 nm).
  • organic light emitting devices can emit light in the ultraviolet spectral region (eg, 280-400 nm).
  • organic light emitting devices can emit light in the infrared spectral region (eg, 780 nm to 2 ⁇ m).
  • the largest component of light emitted from the organic light-emitting device using the composition of the present invention is light emitted from the delayed fluorescence material contained in the composition of the present invention.
  • Emission from the compound represented by the general formula (1) is preferably less than 10% of the light emission from the organic light-emitting device, for example, less than 1%, less than 0.1%, less than 0.01%, detection limit It may be below.
  • Emission from the delayed fluorescence material may be, for example, greater than 50%, greater than 90%, greater than 99% of the emission from the organic light emitting device.
  • the layer containing the composition of the present invention contains a fluorescent material as the third component
  • the maximum component of light emitted from the organic light-emitting device may be light emitted from the fluorescent material.
  • the emission from the luminescent material may be, for example, greater than 50%, greater than 90%, greater than 99% of the emission from the organic light emitting device.
  • the organic electroluminescent device of the present invention is held by a substrate, which is not particularly limited and commonly used in organic electroluminescent devices such as glass, transparent plastic, quartz and silicon. Any material formed by
  • the anode of the organic electroluminescent device is made from metals, alloys, conductive compounds, or combinations thereof.
  • the metal, alloy or conductive compound has a high work function (4 eV or greater).
  • the metal is Au.
  • the conductive transparent material is selected from CuI, indium tin oxide (ITO), SnO2 and ZnO. Some embodiments use amorphous materials that can form transparent conductive films, such as IDIXO (In 2 O 3 —ZnO).
  • the anode is a thin film. In some embodiments, the thin film is made by evaporation or sputtering.
  • the film is patterned by photolithographic methods. In some embodiments, if the pattern does not need to be highly precise (eg, about 100 ⁇ m or greater), the pattern may be formed using a mask with a shape suitable for vapor deposition or sputtering onto the electrode material. In some embodiments, wet film forming methods such as printing and coating methods are used when coating materials such as organic conductive compounds can be applied.
  • the anode has a transmittance of greater than 10% when emitted light passes through the anode, and the anode has a sheet resistance of several hundred ohms per unit area or less. In some embodiments, the thickness of the anode is 10-1,000 nm. In some embodiments, the thickness of the anode is 10-200 nm. In some embodiments, the thickness of the anode varies depending on the material used.
  • the cathode is made of electrode materials such as metals with a low work function (4 eV or less) (referred to as electron-injecting metals), alloys, conductive compounds, or combinations thereof.
  • the electrode material is sodium, sodium-potassium alloys, magnesium, lithium, magnesium-copper mixtures, magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide ( Al2 O 3 ) mixtures, indium, lithium-aluminum mixtures and rare earth elements.
  • a mixture of an electron-injecting metal and a second metal that is a stable metal with a higher work function than the electron-injecting metal is used.
  • the mixture is selected from magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide (Al 2 O 3 ) mixtures, lithium-aluminum mixtures and aluminum. In some embodiments, the mixture improves electron injection properties and resistance to oxidation.
  • the cathode is manufactured by depositing or sputtering the electrode material as a thin film. In some embodiments, the cathode has a sheet resistance of no more than several hundred ohms per unit area. In some embodiments, the thickness of said cathode is between 10 nm and 5 ⁇ m. In some embodiments, the thickness of the cathode is 50-200 nm.
  • either one of the anode and cathode of the organic electroluminescent device is transparent or translucent to allow transmission of emitted light.
  • transparent or translucent electroluminescent elements enhance light radiance.
  • the cathode is formed of a conductive transparent material as described above for the anode, thereby forming a transparent or translucent cathode.
  • the device includes an anode and a cathode, both transparent or translucent.
  • the injection layer is the layer between the electrode and the organic layer. In some embodiments, the injection layer reduces drive voltage and enhances light radiance. In some embodiments, the injection layer comprises a hole injection layer and an electron injection layer. The injection layer can be placed between the anode and the light-emitting layer or hole-transporting layer and between the cathode and the light-emitting layer or electron-transporting layer. In some embodiments, an injection layer is present. In some embodiments, there is no injection layer. Preferred examples of compounds that can be used as the hole injection material are given below.
  • a barrier layer is a layer that can prevent charges (electrons or holes) and/or excitons present in the light-emitting layer from diffusing out of the light-emitting layer.
  • an electron blocking layer is between the light-emitting layer and the hole-transporting layer to block electrons from passing through the light-emitting layer to the hole-transporting layer.
  • a hole blocking layer is between the emissive layer and the electron transport layer and blocks holes from passing through the emissive layer to the electron transport layer.
  • the barrier layer prevents excitons from diffusing out of the emissive layer.
  • the electron blocking layer and the hole blocking layer constitute an exciton blocking layer.
  • the terms "electron blocking layer” or "exciton blocking layer” include layers that have the functionality of both an electron blocking layer and an exciton blocking layer.
  • Hole blocking layer functions as an electron transport layer. In some embodiments, the hole blocking layer blocks holes from reaching the electron transport layer during electron transport. In some embodiments, the hole blocking layer increases the probability of recombination of electrons and holes in the emissive layer.
  • the materials used for the hole blocking layer can be the same materials as described above for the electron transport layer. Preferred examples of compounds that can be used in the hole blocking layer are given below.
  • Electron barrier layer The electron blocking layer transports holes. In some embodiments, the electron blocking layer prevents electrons from reaching the hole transport layer during hole transport. In some embodiments, the electron blocking layer increases the probability of recombination of electrons and holes in the emissive layer.
  • the materials used for the electron blocking layer may be the same materials as described above for the hole transport layer. Specific examples of preferred compounds that can be used as the electron barrier material are given below.
  • Exciton barrier layer The exciton blocking layer prevents excitons generated through recombination of holes and electrons in the light emitting layer from diffusing to the charge transport layer. In some embodiments, the exciton blocking layer allows effective confinement of excitons in the emissive layer. In some embodiments, the light emission efficiency of the device is improved. In some embodiments, an exciton blocking layer is adjacent to the emissive layer on either the anode side or the cathode side, and on both sides thereof. In some embodiments, when an exciton blocking layer is present on the anode side, it may be present between and adjacent to the hole-transporting layer and the light-emitting layer.
  • an exciton blocking layer when an exciton blocking layer is present on the cathode side, it may be between and adjacent to the emissive layer and the cathode. In some embodiments, a hole-injection layer, electron-blocking layer, or similar layer is present between the anode and an exciton-blocking layer adjacent to the light-emitting layer on the anode side. In some embodiments, a hole injection layer, electron blocking layer, hole blocking layer, or similar layer is present between the cathode and an exciton blocking layer adjacent to the emissive layer on the cathode side. In some embodiments, the exciton blocking layer comprises an excited singlet energy and an excited triplet energy, at least one of which is higher than the excited singlet energy and triplet energy, respectively, of the emissive material.
  • the hole-transporting layer comprises a hole-transporting material.
  • the hole transport layer is a single layer.
  • the hole transport layer has multiple layers.
  • the hole transport material has one property of a hole injection or transport property and an electron barrier property.
  • the hole transport material is an organic material.
  • the hole transport material is an inorganic material. Examples of known hole transport materials that can be used in the present invention include, but are not limited to, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolones.
  • the hole transport material is selected from porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds. In some embodiments, the hole transport material is an aromatic tertiary amine compound. Specific examples of preferred compounds that can be used as the hole-transporting material are given below.
  • the electron transport layer includes an electron transport material.
  • the electron transport layer is a single layer.
  • the electron transport layer has multiple layers.
  • the electron-transporting material need only function to transport electrons injected from the cathode to the emissive layer.
  • the electron transport material also functions as a hole blocking material.
  • electron-transporting layers examples include, but are not limited to, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethanes, anthrone derivatives, oxazide Azole derivatives, azole derivatives, azine derivatives or combinations thereof, or polymers thereof.
  • the electron transport material is a thiadiazole derivative or a quinoxaline derivative.
  • the electron transport material is a polymeric material. Specific examples of preferred compounds that can be used as the electron-transporting material are given below.
  • examples of preferred compounds as materials that can be added to each organic layer are given.
  • it may be added as a stabilizing material.
  • Preferred materials that can be used in organic electroluminescence elements are specifically exemplified, but materials that can be used in the present invention are not limitedly interpreted by the following exemplified compounds. Moreover, even compounds exemplified as materials having specific functions can be used as materials having other functions.
  • the emissive layer is incorporated into the device.
  • devices include, but are not limited to, OLED bulbs, OLED lamps, television displays, computer monitors, mobile phones and tablets.
  • an electronic device includes an OLED having at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode.
  • compositions described herein can be incorporated into various photosensitive or photoactivated devices, such as OLEDs or optoelectronic devices.
  • the composition may be useful in facilitating charge or energy transfer within a device and/or as a hole transport material.
  • OLEDs organic light emitting diodes
  • OICs organic integrated circuits
  • O-FETs organic field effect transistors
  • O-TFTs organic thin film transistors
  • O-LETs organic light emitting transistors
  • O-SC organic solar cells.
  • O-SC organic optical detectors
  • O-FQD organic field-quench devices
  • LOC luminescent fuel cells
  • O-lasers organic laser diodes
  • an electronic device includes an OLED including at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode.
  • the device includes OLEDs of different colors.
  • the device includes an array including combinations of OLEDs.
  • said combination of OLEDs is a combination of three colors (eg RGB).
  • the combination of OLEDs is a combination of colors other than red, green, and blue (eg, orange and yellow-green).
  • said combination of OLEDs is a combination of two, four or more colors.
  • the device a circuit board having a first side with a mounting surface and a second opposite side and defining at least one opening; at least one OLED on the mounting surface, wherein the at least one OLED comprises at least one organic layer comprising an anode, a cathode, and a light-emitting layer between the anode and the cathode to emit light; at least one OLED comprising a housing for the circuit board; at least one connector disposed at an end of said housing, said housing and said connector defining a package suitable for attachment to a lighting fixture.
  • the OLED light comprises multiple OLEDs mounted on a circuit board such that light is emitted in multiple directions. In some embodiments, some light emitted in the first direction is polarized and emitted in the second direction. In some embodiments, a reflector is used to polarize light emitted in the first direction.
  • the emissive layers of the invention can be used in screens or displays.
  • the compounds of the present invention are deposited onto a substrate using processes such as, but not limited to, vacuum evaporation, deposition, evaporation or chemical vapor deposition (CVD).
  • the substrate is a photoplate structure useful in two-sided etching to provide unique aspect ratio pixels.
  • Said screens also called masks
  • the corresponding artwork pattern design allows placement of very steep narrow tie-bars between pixels in the vertical direction as well as large and wide beveled openings in the horizontal direction.
  • the internal patterning of the pixels makes it possible to construct three-dimensional pixel openings with various aspect ratios in the horizontal and vertical directions. Additionally, the use of imaged "stripes" or halftone circles in pixel areas protects etching in specific areas until these specific patterns are undercut and removed from the substrate. All pixel areas are then treated with a similar etch rate, but their depth varies with the halftone pattern. Varying the size and spacing of the halftone patterns allows etching with varying degrees of protection within the pixel, allowing for the localized deep etching necessary to form steep vertical bevels. . A preferred material for the evaporation mask is Invar.
  • Invar is a metal alloy that is cold rolled into long thin sheets in steel mills. Invar cannot be electrodeposited onto a spin mandrel as a nickel mask.
  • a suitable and low-cost method for forming the open areas in the deposition mask is by wet chemical etching.
  • the screen or display pattern is a matrix of pixels on a substrate.
  • screen or display patterns are fabricated using lithography (eg, photolithography and e-beam lithography).
  • the screen or display pattern is processed using wet chemical etching.
  • the screen or display pattern is fabricated using plasma etching.
  • An OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels.
  • each cell panel on a mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating the TFT with a planarizing film, pixel electrodes, and a light emitting layer. , a counter electrode and an encapsulation layer, are sequentially formed and cut from the mother panel.
  • TFT thin film transistor
  • An OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels.
  • each cell panel on a mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating the TFT with a planarizing film, pixel electrodes, and a light emitting layer. , a counter electrode and an encapsulation layer, are sequentially formed and cut from the mother panel.
  • TFT thin film transistor
  • an organic light emitting diode (OLED) display comprising: forming a barrier layer on the base substrate of the mother panel; forming a plurality of display units on the barrier layer in cell panel units; forming an encapsulation layer over each of the display units of the cell panel; and applying an organic film to the interfaces between the cell panels.
  • the barrier layer is an inorganic film, eg, made of SiNx, and the edges of the barrier layer are covered with an organic film, made of polyimide or acrylic.
  • the organic film helps the mother panel to be softly cut into cell panels.
  • a thin film transistor (TFT) layer has an emissive layer, a gate electrode, and source/drain electrodes.
  • Each of the plurality of display units may have a thin film transistor (TFT) layer, a planarization film formed on the TFT layer, and a light-emitting unit formed on the planarization film;
  • the applied organic film is made of the same material as the material of the planarizing film and is formed at the same time as the planarizing film is formed.
  • the light-emitting unit is coupled to the TFT layer by a passivation layer, a planarizing film therebetween, and an encapsulation layer that covers and protects the light-emitting unit.
  • the organic film is not connected to the display unit or encapsulation layer.
  • each of the organic film and the planarizing film may include one of polyimide and acrylic.
  • the barrier layer may be an inorganic film.
  • the base substrate may be formed of polyimide.
  • the method further includes attaching a carrier substrate made of a glass material to one surface of a base substrate made of polyimide before forming a barrier layer on another surface of the base substrate; separating the carrier substrate from the base substrate prior to cutting along the interface.
  • the OLED display is a flexible display.
  • the passivation layer is an organic film placed on the TFT layer to cover the TFT layer.
  • the planarizing film is an organic film formed over a passivation layer.
  • the planarizing film is formed of polyimide or acrylic, as is the organic film formed on the edge of the barrier layer. In some embodiments, the planarizing film and the organic film are formed simultaneously during the manufacture of an OLED display. In some embodiments, the organic film may be formed on the edge of the barrier layer such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is , in contact with the barrier layer while surrounding the edges of the barrier layer.
  • the emissive layer comprises a pixel electrode, a counter electrode, and an organic emissive layer disposed between the pixel electrode and the counter electrode.
  • the pixel electrodes are connected to source/drain electrodes of the TFT layer.
  • a suitable voltage is formed between the pixel electrode and the counter electrode, causing the organic light-emitting layer to emit light, thereby displaying an image. is formed.
  • An image forming unit having a TFT layer and a light emitting unit is hereinafter referred to as a display unit.
  • the encapsulation layer that covers the display unit and prevents the penetration of external moisture may be formed into a thin encapsulation structure in which organic films and inorganic films are alternately laminated.
  • the encapsulation layer has a thin film-like encapsulation structure in which multiple thin films are stacked.
  • the organic film applied to the interface portion is spaced apart from each of the plurality of display units.
  • the organic film is formed such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is in contact with the barrier layer while surrounding the edges of the barrier layer. be done.
  • the OLED display is flexible and uses a flexible base substrate made of polyimide.
  • the base substrate is formed on a carrier substrate made of glass material, and then the carrier substrate is separated.
  • a barrier layer is formed on the surface of the base substrate opposite the carrier substrate.
  • the barrier layer is patterned according to the size of each cell panel. For example, a base substrate is formed on all surfaces of a mother panel, while barrier layers are formed according to the size of each cell panel, thereby forming grooves at the interfaces between the barrier layers of the cell panels. Each cell panel can be cut along the groove.
  • the manufacturing method further comprises cutting along the interface, wherein a groove is formed in the barrier layer, at least a portion of the organic film is formed with the groove, and the groove is Does not penetrate the base substrate.
  • a TFT layer of each cell panel is formed, and a passivation layer, which is an inorganic film, and a planarization film, which is an organic film, are placed on and cover the TFT layer.
  • the planarizing film eg made of polyimide or acrylic
  • the interface grooves are covered with an organic film, eg made of polyimide or acrylic. This prevents cracking by having the organic film absorb the impact that occurs when each cell panel is cut along the groove at the interface.
  • the grooves at the interfaces between the barrier layers are coated with an organic film to absorb shocks that might otherwise be transmitted to the barrier layers, so that each cell panel is softly cut and the barrier layers It may prevent cracks from forming.
  • the organic film covering the groove of the interface and the planarizing film are spaced apart from each other. For example, when the organic film and the planarizing film are connected to each other as a single layer, external moisture may enter the display unit through the planarizing film and the portion where the organic film remains. The organic film and planarizing film are spaced from each other such that the organic film is spaced from the display unit.
  • the display unit is formed by forming a light emitting unit and an encapsulating layer is placed over the display unit to cover the display unit.
  • the carrier substrate carrying the base substrate is separated from the base substrate.
  • the carrier substrate separates from the base substrate due to the difference in coefficient of thermal expansion between the carrier substrate and the base substrate.
  • the mother panel is cut into cell panels.
  • the mother panel is cut along the interfaces between the cell panels using a cutter.
  • the interface groove along which the mother panel is cut is coated with an organic film so that the organic film absorbs impact during cutting.
  • the barrier layer can be prevented from cracking during cutting.
  • the method reduces the reject rate of the product and stabilizes its quality.
  • Another embodiment includes a barrier layer formed on a base substrate, a display unit formed on the barrier layer, an encapsulation layer formed on the display unit, and an organic layer applied to the edges of the barrier layer.
  • An OLED display comprising a film.
  • reaction solution was cooled to room temperature, the solvent was removed, the obtained solid was washed with water, chloroform was added, the solid was dried over magnesium sulfate, and the solvent was removed.
  • a white solid compound a was obtained in the same manner as in Synthesis Example 2, except that 9-(4-bromophenyl)-3-phenyl-9H-carbazole was changed to 1-bromo-4-iodobenzene (2 .26 g, 77%).
  • Example 1 Preparation of green organic electroluminescence device with a different host material
  • a glass substrate having an anode made of indium tin oxide (ITO) having a thickness of 50 nm each thin film was formed by vacuum deposition. , and laminated at a degree of vacuum of 5 ⁇ 10 ⁇ 5 Pa.
  • HAT-CN was formed to a thickness of 10 nm on ITO
  • NPD was formed thereon to a thickness of 30 nm.
  • TrisPCz was formed thereon to a thickness of 10 nm.
  • Compound 1 and TADF1 were then co-deposited from different deposition sources to form a 40 nm thick light-emitting layer.
  • the contents of compound 1 and TADF1 were 55% by mass and 45% by mass.
  • SF3TRZ was formed thereon to a thickness of 10 nm, and SF3TRZ and Liq were co-deposited thereon from different vapor deposition sources at 70% by mass and 30% by mass, respectively, to form a 30 nm thick film. Furthermore, Liq was formed to a thickness of 2 nm, and then aluminum (Al) was deposited to a thickness of 100 nm to form a cathode.
  • the organic electroluminescence element 1 was produced by the above procedure.
  • a comparative element 1-1 was produced according to the same procedure except that the comparative compound 1 was used instead of the compound 1.
  • Example 2 Preparation of blue organic electroluminescent device with different host materials
  • the light-emitting layer of Example 1 was co-deposited with 70% by mass and 30% by mass of compound 1 and TADF85 from different deposition sources to a thickness of 40 nm.
  • a device 2-1 was fabricated according to the same procedure as in Example 1, except for the fact that it was formed in .
  • Elements 2-2 and 2-3 were prepared according to the same procedure except that Compound 16 or Compound 512 was used instead of Compound 1.
  • a comparative element 2-1 was produced according to the same procedure except that the comparative compound 2 was used instead of the compound 1. When electricity was applied to the electrodes of each of the fabricated devices, blue delayed fluorescence was observed.
  • the driving voltage was measured at a current density of 2.0 mA/cm 2 , and the difference (relative value) from the driving voltage of the comparative element 2-1 was obtained.
  • Table 3 shows the results. The results in Table 3 show that the driving voltage is also lowered when the compound of the present invention is used together with the blue delayed fluorescent material.
  • Example 3 Preparation of red organic electroluminescence device with different host materials
  • the light-emitting layer of Example 1 was prepared by using compound 1, TADF72, and F1 from different vapor deposition sources at 59.5% by mass, 40% by mass, and 0.5% by mass. %, and formed to a thickness of 40 nm.
  • a comparative element 3-1 was produced according to the same procedure except that the comparative compound 1 was used instead of the compound 1. When electricity was applied to the electrodes of each of the fabricated devices, red delayed fluorescence was observed. Further, when the driving voltage was measured at 6.3 mA/cm 2 , the element 3 of the present invention was 0.3 V lower than the comparative element 3-1.
  • the device 3 of the present invention was 10% higher than the comparative device 3-1. From this, it was confirmed that even when the compound of the present invention is used together with a delayed fluorescence material or a fluorescent material, the driving voltage is lowered and the luminous efficiency is improved.
  • Example 4 Fabrication of another red organic electroluminescence device by changing the host material
  • the light-emitting layer of Example 1 was prepared by adding 64.7% by mass, 35% by mass, 0.7% by mass of compound 1, TADF86 and E35 from different vapor deposition sources.
  • a device 4-1 was fabricated according to the same procedure as in Example 1 except that it was co-deposited at 3% by mass to form a film having a thickness of 40 nm.
  • Device 4-2 was fabricated according to the same procedure except that compound 512 was used instead of compound 1.
  • a comparative element 4-1 was produced according to the same procedure except that the comparative compound 3 was used instead of the compound 1. When electricity was applied to the electrodes of each of the fabricated devices, red delayed fluorescence was observed.
  • Example 5 Preparation of green organic electroluminescence device with different electron barrier materials Each thin film was formed by vacuum deposition on a glass substrate on which an anode made of indium tin oxide (ITO) with a thickness of 50 nm was formed. and laminated at a degree of vacuum of 5 ⁇ 10 ⁇ 5 Pa. First, HAT-CN was formed on ITO to a thickness of 10 nm, NPD was formed thereon to a thickness of 30 nm, and TrisPCz was formed to a thickness of 10 nm. Next, Compound 1 was formed thereon as an electron blocking layer to a thickness of 10 nm.
  • ITO indium tin oxide
  • H1 and TADF1 were co-deposited from different deposition sources to form a 40 nm thick emitting layer.
  • the contents of H1 and TADF1 were 55% by mass and 45% by mass.
  • SF3TRZ was formed thereon to a thickness of 10 nm
  • SF3TRZ and Liq were co-deposited thereon from different vapor deposition sources at 70% by mass and 30% by mass, respectively, to form a 30 nm thick film.
  • Liq was formed to a thickness of 2 nm, and then aluminum (Al) was deposited to a thickness of 100 nm to form a cathode.
  • the organic electroluminescence element 5 was produced by the above procedure.
  • a comparative element 5-1 was produced according to the same procedure except that the comparative compound 1 was used instead of the compound 1.
  • the element 5 of the present invention was higher than the comparative element 5-1. 1.5 times longer. From this, it was confirmed that the use of the compound of the present invention as an electron barrier material prolongs the life of the device.
  • Example 6 Production of a red organic electroluminescent device using two types of hosts, a host material and a second host material When forming a light-emitting layer, compound 1, H2, TADF15, and E35 were co-deposited from different deposition sources.
  • An organic electroluminescence device 6-1 was produced in the same manner as in Example 1, except that the film was formed to a thickness of 40 nm. At this time, the amount ratio of compound 1:H2:TADF15:E35 was 44.7% by mass:20% by mass:35% by mass:0.3% by mass.
  • Organic electroluminescence devices 6-2 and 6-3 were produced according to the same procedure except that compound 16 or compound 512 was used instead of compound 1.
  • a comparative element 6-1 was produced according to the same procedure except that the comparative compound 1 was used instead of the compound 1.
  • the driving voltage was measured at a current density of 15.4 mA/cm 2 , and the difference (relative value) from the driving voltage of the comparative element 6-1 was obtained. Table 5 shows the results.
  • the devices 6-1 to 6-3 of the present invention exhibited lower drive voltages than the comparative device 6-1. From this, it was confirmed that the driving voltage is lowered even when the compound of the present invention is used together with the second host material, the delayed fluorescent material and the fluorescent material.
  • the organic electroluminescence device using the compound of the present invention exhibited a lower driving voltage, a longer device life, and a higher luminous efficiency than the devices using the comparative compounds 1-3.
  • the structure in which the substituted dibenzofuran-2-yl group and the group having a carbazole structure are arranged at the para-position of the benzene ring favorably functions as a host material or an electron blocking material.
  • the compound represented by general formula (1) is useful, for example, as a host material or electron barrier material.
  • An organic light-emitting device using the compound represented by general formula (1) has excellent properties. Therefore, the present invention has high industrial applicability.

Abstract

The present invention is able to provide an organic light emitting element having excellent characteristics by using a compound of the general formula in the organic light emitting element. In the general formula, R1 to R4 and R8 to R19 each represent a hydrogen atom, a deuterium atom, an alkyl group or an aryl group; R5 to R7 each represent a hydrogen atom, a deuterium atom or an alkyl group; and at least one of R1 to R4 represents an alkyl group or an aryl group.

Description

化合物、ホスト材料、電子障壁材料、組成物および有機発光素子Compounds, host materials, electron barrier materials, compositions and organic light-emitting devices
 本発明は、ホスト材料や電子障壁材料等として有用な化合物と、その化合物を用いた組成物と有機発光素子に関する。 The present invention relates to compounds useful as host materials, electron barrier materials, etc., and compositions and organic light-emitting devices using the compounds.
 有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子に用いる材料の開発研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、ホール輸送材料、発光材料、ホスト材料などを新たに開発して組み合わせることにより、素子の特性を向上させようとする試みが種々なされてきている。例えば、ホスト材料については、これまで下記の構造を有するmCBPやmCPが有用なホスト材料として広く認識されている。
Figure JPOXMLDOC01-appb-C000002
Research and development of materials used for organic light-emitting devices such as organic electroluminescence devices (organic EL devices) have been actively carried out. In particular, various attempts have been made to improve the characteristics of the device by newly developing and combining electron-transporting materials, hole-transporting materials, light-emitting materials, host materials, and the like, which constitute organic electroluminescence devices. For example, as host materials, mCBP and mCP having the following structures have been widely recognized as useful host materials.
Figure JPOXMLDOC01-appb-C000002
 これらのカルバゾール構造を有する化合物の他に、カルバゾール構造とジベンゾフラン構造をともに有する化合物も提案されている(特許文献1参照)。
Figure JPOXMLDOC01-appb-C000003
In addition to these compounds having a carbazole structure, compounds having both a carbazole structure and a dibenzofuran structure have also been proposed (see Patent Document 1).
Figure JPOXMLDOC01-appb-C000003
WO2021/157593WO2021/157593
 しかしながら、従来から用いられているホスト材料を用いても、必ずしも優れた特性を有する発光素子を提供できない場合がある。例えば、遅延蛍光材料と組み合わせる場合には、有用とされているホスト材料をそのまま用いても、特性が優れた有機発光素子を製造できないことが多い。中でも有機エレクトロルミネッセンス素子に用いる場合には、駆動電圧や素子寿命の点で改善の余地がある。このため、優れたホスト材料を提供することにより、有機発光素子の特性を改善することを目的として本発明者らは検討を行った。 However, even if a host material that has been used conventionally is used, it may not always be possible to provide a light-emitting device having excellent characteristics. For example, when combined with a delayed fluorescence material, it is often not possible to produce an organic light-emitting device with excellent properties even if a useful host material is used as it is. In particular, when used in organic electroluminescence devices, there is room for improvement in terms of drive voltage and device life. Therefore, the present inventors have made studies with the aim of improving the characteristics of the organic light-emitting device by providing an excellent host material.
 鋭意検討を進めた結果、本発明者らは、特定の構造を有する化合物を有機発光素子に用いれば、特性を改善できることを見いだした。本発明は、こうした知見に基づいて提案されたものであり、具体的に以下の構成を有する。 As a result of intensive studies, the present inventors found that the characteristics can be improved by using a compound having a specific structure in an organic light-emitting device. The present invention has been proposed based on these findings, and specifically has the following configurations.
[1] 下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000004
[一般式(1)において、
 R~RおよびR~R19は、各々独立に水素原子、重水素原子、置換もしくは無置換のアリール基、または置換もしくは無置換のアルキル基を表し、
 R~Rは、各々独立に水素原子、重水素原子、または置換もしくは無置換のアルキル基を表し、
 R~Rの少なくとも1個は、置換もしくは無置換のアリール基、または置換もしくは無置換のアルキル基であり、
 R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19は、互いに結合して環状構造を形成していてもよい。]
[2] R~RおよびR~R19が、各々独立に水素原子、または、重水素原子、アルキル基およびアリール基からなる群より選択される1つの原子か基あるいは2つ以上を組み合わせてできる基である、[1]に記載の化合物。
[3] R~Rの少なくとも1個は、重水素原子、アルキル基およびアリール基からなる群より選択される1つの原子か基あるいは2つ以上を組み合わせてできる基で置換されていてもよいアリール基である、[1]または[2]に記載の化合物。
[4] Rが置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基である、[1]~[3]のいずれか1つに記載の化合物。
[5] R14およびR17の少なくとも一方が置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基である、[1]~[4]のいずれか1つに記載の化合物。
[6] R~R19に含まれるベンゼン環の総数が1~3個である、[1]~[5]のいずれか1つに記載の化合物。
[7] R~Rが、各々独立に水素原子または重水素原子である、[1]~[6]のいずれか1つに記載の化合物。
[8] R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19のうちの少なくとも1組が、互いに結合して環状構造を形成している、[1]~[7]のいずれか1つに記載の化合物。
[9] [1]~[8]のいずれか1つに記載の化合物を含むホスト材料。
[10] 遅延蛍光材料とともに用いるための[9]に記載のホスト材料。
[11] [1]~[8]のいずれか1つに記載の化合物を含む電子障壁材料。
[12] [1]~[8]のいずれか1つに記載の化合物に遅延蛍光材料をドープした組成物。
[13] 膜状である、[12]に記載の組成物。
[14] 前記遅延蛍光材料が、ベンゼン環に置換しているシアノ基の数が1つであるシアノベンゼン構造を有する化合物である、[12]または[13]に記載の組成物。
[15] 前記遅延蛍光材料が、ベンゼン環に前記シアノ基の他に2種以上の置換もしくは無置換のカルバゾリル基が結合している、[14]に記載の組成物。
[16] 前記遅延蛍光材料が、ベンゼン環に置換しているシアノ基の数が2つであるジシアノベンゼン構造を有する化合物である、[12]または[13]に記載の組成物。
[17] 前記一般式(1)で表される化合物および前記遅延蛍光材料よりも最低励起一重項エネルギーが低い蛍光性化合物をさらに含む、[14]~[16]のいずれか1つに記載の組成物。
[18] 前記一般式(1)で表されないホスト材料をさらに含む、[12]~[17]のいずれか1つに記載の組成物。
[19] [1]~[8]のいずれか1つに記載の化合物を含む有機発光素子。
[20] [12]に記載の組成物からなる層を有する有機発光素子。
[21] 前記層が、炭素原子、水素原子、窒素原子、酸素原子、ホウ素原子およびハロゲン原子からなる群より選択される原子のみからなる、[20]に記載の有機発光素子。
[22] 前記層が、炭素原子、水素原子、窒素原子および酸素原子からなる群より選択される原子のみからなる、[21]に記載の有機発光素子。
[23] 有機エレクトロルミネッセンス素子である、[19]~[22]のいずれか1つに記載の有機発光素子。
[1] A compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
[In the general formula (1),
R 1 to R 4 and R 8 to R 19 each independently represent a hydrogen atom, a deuterium atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted alkyl group;
R 5 to R 7 each independently represent a hydrogen atom, a deuterium atom, or a substituted or unsubstituted alkyl group;
at least one of R 1 to R 4 is a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group;
R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 may combine with each other to form a cyclic structure. . ]
[2] R 1 to R 4 and R 8 to R 19 each independently represent one or more atoms or groups selected from the group consisting of hydrogen atoms, deuterium atoms, alkyl groups and aryl groups; The compound according to [1], which is a group that can be combined.
[3] at least one of R 1 to R 4 may be substituted with one atom or group selected from the group consisting of a deuterium atom, an alkyl group and an aryl group, or a group formed by combining two or more; The compound according to [1] or [2], which is a good aryl group.
[4] The compound according to any one of [1] to [3], wherein R 2 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
[5] The compound according to any one of [1] to [4], wherein at least one of R 14 and R 17 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
[6] The compound according to any one of [1] to [5], wherein the total number of benzene rings contained in R 1 to R 19 is 1 to 3.
[7] The compound according to any one of [1] to [6], wherein R 5 to R 7 are each independently a hydrogen atom or a deuterium atom.
[8] at least one pair of R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 are bonded to each other; The compound according to any one of [1] to [7], which forms a cyclic structure.
[9] A host material containing the compound according to any one of [1] to [8].
[10] The host material of [9] for use with a delayed fluorescence material.
[11] An electron barrier material containing the compound according to any one of [1] to [8].
[12] A composition obtained by doping the compound according to any one of [1] to [8] with a delayed fluorescence material.
[13] The composition according to [12], which is in the form of a film.
[14] The composition according to [12] or [13], wherein the delayed fluorescence material is a compound having a cyanobenzene structure in which the benzene ring is substituted with one cyano group.
[15] The composition according to [14], wherein the delayed fluorescence material has two or more substituted or unsubstituted carbazolyl groups bonded to the benzene ring in addition to the cyano group.
[16] The composition according to [12] or [13], wherein the delayed fluorescence material is a compound having a dicyanobenzene structure in which the benzene ring is substituted with two cyano groups.
[17] Any one of [14] to [16], further comprising a fluorescent compound having a lower lowest excited singlet energy than the compound represented by the general formula (1) and the delayed fluorescent material. Composition.
[18] The composition according to any one of [12] to [17], further comprising a host material not represented by general formula (1).
[19] An organic light emitting device comprising the compound according to any one of [1] to [8].
[20] An organic light-emitting device having a layer made of the composition described in [12].
[21] The organic light emitting device according to [20], wherein the layer consists only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms, boron atoms and halogen atoms.
[22] The organic light emitting device according to [21], wherein the layer consists only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms.
[23] The organic light emitting device according to any one of [19] to [22], which is an organic electroluminescence device.
 本発明の化合物を用いれば、特性が優れた有機発光素子を提供することができる。例えば、本発明の化合物を用いた有機発光素子の中には、駆動電圧が低い有機発光素子や素子寿命が長い有機発光素子が含まれる。 By using the compound of the present invention, an organic light-emitting device with excellent characteristics can be provided. For example, organic light-emitting devices using the compound of the present invention include organic light-emitting devices with low driving voltage and organic light-emitting devices with long device life.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されない。 The contents of the present invention will be described in detail below. The constituent elements described below may be explained based on representative embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples. In this specification, the numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits. Further, the isotopic species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited.
(一般式(1)で表される化合物)
 本発明では、下記一般式(1)で表される化合物を用いる。
Figure JPOXMLDOC01-appb-C000005
(Compound represented by general formula (1))
In the present invention, a compound represented by the following general formula (1) is used.
Figure JPOXMLDOC01-appb-C000005
 一般式(1)において、R~RおよびR~R19は、各々独立に水素原子、重水素原子、置換もしくは無置換のアリール基、または置換もしくは無置換のアルキル基を表す。好ましくは、R~RおよびR~R19は、各々独立に水素原子であるか、あるいは、重水素原子、アルキル基およびアリール基からなる群より選択される1つの原子か基あるいは2つ以上を組み合わせてできる基である。一般式(1)において、R~Rの少なくとも1個は、置換もしくは無置換のアリール基、または置換もしくは無置換のアルキル基である。好ましくは、R~Rの少なくとも1個はアリール基であって、そのアリール基は、重水素原子、アルキル基およびアリール基からなる群より選択される1つの原子か基あるいは2つ以上を組み合わせてできる基で置換されていてもよい。一般式(1)において、R~Rは、各々独立に水素原子、重水素原子、または置換もしくは無置換のアルキル基を表す。 In general formula (1), R 1 to R 4 and R 8 to R 19 each independently represent a hydrogen atom, a deuterium atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted alkyl group. Preferably, R 1 -R 4 and R 8 -R 19 are each independently a hydrogen atom or one or two atoms or groups selected from the group consisting of a deuterium atom, an alkyl group and an aryl group. It is a group formed by combining two or more. In general formula (1), at least one of R 1 to R 4 is a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group. Preferably, at least one of R 1 to R 4 is an aryl group, which has one or more atoms or groups selected from the group consisting of deuterium atoms, alkyl groups and aryl groups. It may be substituted with a group that can be combined. In general formula (1), R 5 to R 7 each independently represent a hydrogen atom, a deuterium atom, or a substituted or unsubstituted alkyl group.
 本発明の一態様では、R~Rの少なくとも1個は置換もしくは無置換のアリール基であり、例えば1個だけが置換もしくは無置換のアリール基であり、2個だけが置換もしくは無置換のアリール基である。本発明の一態様では、Rが置換もしくは無置換のアリール基である。本発明の好ましい一態様では、Rが置換もしくは無置換のアリール基である。本発明の一態様では、Rが置換もしくは無置換のアリール基である。本発明の一態様では、Rが置換もしくは無置換のアリール基である。本発明の一態様では、R~Rは各々独立に水素原子、重水素原子、または置換もしくは無置換のアリール基である。
 本発明の一態様では、R~Rの少なくとも1個は置換もしくは無置換のアルキル基であり、例えば1個だけが置換もしくは無置換のアルキル基であり、2個だけが置換もしくは無置換のアルキル基である。本発明の一態様では、Rが置換もしくは無置換のアルキル基である。本発明の好ましい一態様では、Rが置換もしくは無置換のアルキル基である。本発明の一態様では、Rが置換もしくは無置換のアルキル基である。本発明の一態様では、Rが置換もしくは無置換のアルキル基である。本発明の一態様では、R~Rは各々独立に水素原子、重水素原子、または置換もしくは無置換のアルキル基である。
In one aspect of the invention, at least one of R 1 to R 4 is a substituted or unsubstituted aryl group, for example only one is a substituted or unsubstituted aryl group and only two are substituted or unsubstituted is an aryl group of In one aspect of the invention, R 1 is a substituted or unsubstituted aryl group. In one preferred aspect of the invention, R 2 is a substituted or unsubstituted aryl group. In one aspect of the invention, R 3 is a substituted or unsubstituted aryl group. In one aspect of the invention, R4 is a substituted or unsubstituted aryl group. In one aspect of the present invention, each of R 1 -R 4 is independently a hydrogen atom, a deuterium atom, or a substituted or unsubstituted aryl group.
In one aspect of the invention, at least one of R 1 to R 4 is a substituted or unsubstituted alkyl group, for example only one is a substituted or unsubstituted alkyl group and only two are substituted or unsubstituted is an alkyl group of In one aspect of the invention, R 1 is a substituted or unsubstituted alkyl group. In one preferred aspect of the invention, R 2 is a substituted or unsubstituted alkyl group. In one aspect of the invention, R 3 is a substituted or unsubstituted alkyl group. In one aspect of the invention, R4 is a substituted or unsubstituted alkyl group. In one aspect of the present invention, each of R 1 to R 4 is independently a hydrogen atom, a deuterium atom, or a substituted or unsubstituted alkyl group.
 本発明の好ましい一態様では、R~Rは各々独立に水素原子または重水素原子である。本発明の一態様では、R~Rの少なくとも1個が置換もしくは無置換のアルキル基である。例えばR~Rのすべてが各々独立に置換もしくは無置換のアルキル基である。本発明の一態様では、Rが置換もしくは無置換のアルキル基である。本発明の一態様では、Rが置換もしくは無置換のアルキル基である。本発明の一態様では、Rが置換もしくは無置換のアルキル基である。 In a preferred embodiment of the present invention, each of R 5 to R 7 is independently hydrogen or deuterium. In one aspect of the invention, at least one of R 5 to R 7 is a substituted or unsubstituted alkyl group. For example, all of R 5 to R 7 are each independently substituted or unsubstituted alkyl groups. In one aspect of the invention, R5 is a substituted or unsubstituted alkyl group. In one aspect of the invention, R6 is a substituted or unsubstituted alkyl group. In one aspect of the invention, R7 is a substituted or unsubstituted alkyl group.
 本発明の好ましい一態様では、R~R11は各々独立に水素原子または重水素原子である。本発明の一態様では、R~R11の少なくとも1個が置換もしくは無置換のアリール基である。本発明の一態様では、Rが置換もしくは無置換のアリール基である。本発明の一態様では、Rが置換もしくは無置換のアリール基である。本発明の一態様では、R~R11の少なくとも1個が置換もしくは無置換のアルキル基である。本発明の一態様では、R10が置換もしくは無置換のアルキル基である。本発明の一態様では、R11が置換もしくは無置換のアルキル基である。 In a preferred embodiment of the present invention, each of R 8 to R 11 is independently a hydrogen atom or a deuterium atom. In one aspect of the invention, at least one of R 8 to R 11 is a substituted or unsubstituted aryl group. In one aspect of the invention, R 8 is a substituted or unsubstituted aryl group. In one aspect of the invention, R9 is a substituted or unsubstituted aryl group. In one aspect of the invention, at least one of R 8 to R 11 is a substituted or unsubstituted alkyl group. In one aspect of the invention, R 10 is a substituted or unsubstituted alkyl group. In one aspect of the invention, R 11 is a substituted or unsubstituted alkyl group.
 本発明の一態様では、R12~R19は各々独立に水素原子または重水素原子である。本発明の一態様では、R12~R19の少なくとも1個が重水素原子であり、例えばすべてが重水素原子である。本発明の一態様では、R12~R19の少なくとも1個が置換もしくは無置換のアリール基である。本発明の一態様では、R12~R19の1個だけが置換もしくは無置換のアリール基である。本発明の一態様では、R12~R19の2個だけが置換もしくは無置換のアリール基である。本発明の一態様では、R12~R15の1個だけとR16~R19の1個だけが各々独立に置換もしくは無置換のアリール基である。本発明の一態様では、R12が置換もしくは無置換のアリール基である。本発明の一態様では、R13が置換もしくは無置換のアリール基である。本発明の好ましい一態様では、R14が置換もしくは無置換のアリール基である。本発明の一態様では、R15が置換もしくは無置換のアリール基である。
 本発明の一態様では、R12~R19の少なくとも1個が置換もしくは無置換のアルキル基である。本発明の一態様では、R12~R15の少なくとも1個とR16~R19の少なくとも1個が各々独立に置換もしくは無置換のアルキル基である。本発明の一態様では、R16が置換もしくは無置換のアルキル基である。本発明の一態様では、R17が置換もしくは無置換のアルキル基である。本発明の好ましい一態様では、R18が置換もしくは無置換のアルキル基である。本発明の一態様では、R19が置換もしくは無置換のアルキル基である。
 本発明の好ましい一態様では、R14が置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基であり、より好ましくは置換もしくは無置換のアリール基であり、また、例えばR12、R13、R15~R19は各々独立に水素原子または重水素原子である。本発明の好ましい一態様では、R14およびR17が各々独立に置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基であり、より好ましくは各々独立に置換もしくは無置換のアリール基であり、なおかつ、例えばR12、R13、R15、R16、R18、R19は各々独立に水素原子または重水素原子である。本発明の一態様では、R14とR17は同一である。本発明の一態様では、R14およびR17は異なっている。
In one aspect of the invention, R 12 -R 19 are each independently a hydrogen atom or a deuterium atom. In one aspect of the invention, at least one of R 12 -R 19 is a deuterium atom, eg all are deuterium atoms. In one aspect of the invention, at least one of R 12 to R 19 is a substituted or unsubstituted aryl group. In one aspect of the invention, only one of R 12 to R 19 is a substituted or unsubstituted aryl group. In one aspect of the invention, only two of R 12 to R 19 are substituted or unsubstituted aryl groups. In one aspect of the present invention, only one of R 12 to R 15 and only one of R 16 to R 19 are each independently a substituted or unsubstituted aryl group. In one aspect of the invention, R 12 is a substituted or unsubstituted aryl group. In one aspect of the invention, R 13 is a substituted or unsubstituted aryl group. In a preferred aspect of the invention, R 14 is a substituted or unsubstituted aryl group. In one aspect of the invention, R 15 is a substituted or unsubstituted aryl group.
In one aspect of the invention, at least one of R 12 to R 19 is a substituted or unsubstituted alkyl group. In one aspect of the present invention, at least one of R 12 to R 15 and at least one of R 16 to R 19 are each independently a substituted or unsubstituted alkyl group. In one aspect of the invention, R 16 is a substituted or unsubstituted alkyl group. In one aspect of the invention, R 17 is a substituted or unsubstituted alkyl group. In one preferred aspect of the invention, R 18 is a substituted or unsubstituted alkyl group. In one aspect of the invention, R 19 is a substituted or unsubstituted alkyl group.
In a preferred embodiment of the present invention, R 14 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group, more preferably a substituted or unsubstituted aryl group, and for example R 12 , R 13 , R 15 to R 19 are each independently a hydrogen atom or a deuterium atom. In a preferred embodiment of the present invention, R 14 and R 17 are each independently a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group, more preferably each independently a substituted or unsubstituted aryl group. and, for example, R 12 , R 13 , R 15 , R 16 , R 18 and R 19 are each independently a hydrogen atom or a deuterium atom. In one aspect of the invention, R 14 and R 17 are the same. In one aspect of the invention, R 14 and R 17 are different.
 本発明では、R~R19に含まれるベンゼン環の総数が1~10であることが好ましく、1~6であることがより好ましく、1~4であることがさらに好ましく、例えば1であり、例えば2であり、例えば3である。R~R19における置換もしくは無置換のアリール基の総数は、1~8であることが好ましく、1~4であることがより好ましく、例えば1であり、例えば2であり、例えば3である。
 本発明の好ましい一態様では、R~RおよびR~R19は、各々独立に水素原子、重水素原子、または置換もしくは無置換のアリール基である。本発明の好ましい一態様では、Rが置換もしくは無置換のアリール基であり、R14が置換もしくは無置換のアリール基、または置換もしくは無置換のアルキル基であり、R17が水素原子、重水素原子、置換もしくは無置換のアリール基、または置換もしくは無置換のアルキル基であり、R、R~R13、R15、R16、R18、R19は各々独立に水素原子または重水素原子である。
In the present invention, the total number of benzene rings contained in R 1 to R 19 is preferably 1 to 10, more preferably 1 to 6, still more preferably 1 to 4, for example 1. , for example 2, for example 3. The total number of substituted or unsubstituted aryl groups in R 1 to R 19 is preferably 1 to 8, more preferably 1 to 4, such as 1, such as 2, such as 3. .
In a preferred embodiment of the present invention, R 1 -R 4 and R 8 -R 19 are each independently a hydrogen atom, a deuterium atom, or a substituted or unsubstituted aryl group. In a preferred embodiment of the present invention, R 2 is a substituted or unsubstituted aryl group, R 14 is a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group, R 17 is a hydrogen atom, a heavy a hydrogen atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted alkyl group; R 1 , R 3 to R 13 , R 15 , R 16 , R 18 , and R 19 It is a hydrogen atom.
 R~R、R~R19が採りうるアリール基が置換されているとき、重水素原子で置換されたアリール基であるか、アルキル基で置換されたアリール基であるか、アリール基で置換されたアリール基であることが好ましい。R~R、R~R19が採りうるアリール基は、重水素原子およびアリール基からなる群より選択される1つの原子か基あるいは2つ以上を組み合わせてできる基で置換されていてもよいアリール基であることがより好ましい。例えば、重水素原子で置換されていてもよいアリール基である。
 R~R19が採りうるアルキル基が置換されているとき、重水素原子で置換されたアルキル基であるか、アリール基で置換されたアルキル基であることが好ましい。R~R19が採りうるアルキル基は、重水素原子で置換されていてもよいアルキル基であることがより好ましい。
 本願における「アルキル基」は、直鎖状、分枝状、環状のいずれであってもよい。また、直鎖部分と環状部分と分枝部分のうちの2種以上が混在していてもよい。アルキル基の炭素数は、例えば1以上、2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルキル基の具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基を挙げることができる。本発明の一態様では、アルキル基の炭素数は1~4である。本発明の一態様では、アルキル基はメチル基である。本発明の一態様では、アルキル基はイソプロピル基である。本発明の一態様では、アルキル基はtert-ブチル基である。一般式(1)で表される分子内にアルキル基が複数存在するとき、それらのアルキル基は互いに同一であっても異なっていてもよい。本発明の一態様では、一般式(1)で表される分子内のアルキル基はすべて同一である。一般式(1)で表される分子内のアルキル基の数は0以上、1以上、2以上、4以上、8以上とすることができる。一般式(1)で表される分子内のアルキル基の数は、20以下、10以下、5以下、3以下としてもよい。一般式(1)で表される分子内のアルキル基の数は0であってもよい。
 本願における「重水素原子で置換されていてもよいアルキル基」は、アルキル基の水素原子のうちの少なくとも1つが重水素原子に置換されていてもよいことを意味する。アルキル基の水素原子はすべてが重水素原子に置換されていてもよい。例えば、重水素化されていてもよいメチル基には、CH、CDH、CDH、CDが含まれる。「重水素化されていてもよいアルキル基」は、まったく重水素化されていないアルキル基か、すべての水素原子が重水素原子に置換されているアルキル基であることが好ましい。本発明の一態様では、「重水素化されていてもよいアルキル基」として、まったく重水素化されていないアルキル基を選択する。本発明の一態様では、「重水素化されていてもよいアルキル基」として、すべての水素原子が重水素原子に置換されているアルキル基を選択する。本発明の一態様では、「重水素化されていてもよいアルキル基」は、重水素化されていないメチル基[-CH]、重水素化されていないエチル基[-CHCH]、重水素化されていないイソプロピル基[-CH(CH)]、重水素化されていないtert-ブチル基[-C(CH) 3]またはすべての水素原子が重水素化されたメチル基[-CD]である。本発明の一態様では、「重水素化されていてもよいアルキル基」は、重水素化されていないメチル基[-CH]またはすべての水素原子が重水素化されたメチル基[-CD]である。本発明の一態様では、一般式(1)で表される分子内に、少なくとも1個の水素原子が重水素原子で置換されたアルキル基が少なくとも1個存在する。
When the aryl group that can be taken by R 1 to R 4 and R 8 to R 19 is substituted, it is an aryl group substituted with a deuterium atom, an aryl group substituted with an alkyl group, or an aryl group It is preferably an aryl group substituted with. The aryl group that can be taken by R 1 to R 4 and R 8 to R 19 is substituted with one atom or group selected from the group consisting of a deuterium atom and an aryl group, or a group formed by combining two or more more preferably an aryl group with a For example, it is an aryl group optionally substituted with a deuterium atom.
When the alkyl group that R 1 to R 19 can take is substituted, it is preferably an alkyl group substituted with a deuterium atom or an alkyl group substituted with an aryl group. The alkyl group that can be taken by R 1 to R 19 is more preferably an alkyl group optionally substituted with a deuterium atom.
The "alkyl group" in the present application may be linear, branched or cyclic. Moreover, two or more of the linear portion, the cyclic portion and the branched portion may be mixed. The number of carbon atoms in the alkyl group can be, for example, 1 or more, 2 or more, or 4 or more. Also, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, or 4 or less. Specific examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, cyclopentyl, A cyclohexyl group and a cycloheptyl group can be mentioned. In one aspect of the invention, the alkyl group has 1 to 4 carbon atoms. In one aspect of the invention, the alkyl group is a methyl group. In one aspect of the invention, the alkyl group is an isopropyl group. In one aspect of the invention, the alkyl group is a tert-butyl group. When multiple alkyl groups are present in the molecule represented by formula (1), the alkyl groups may be the same or different. In one aspect of the present invention, all alkyl groups in the molecule represented by general formula (1) are the same. The number of alkyl groups in the molecule represented by general formula (1) can be 0 or more, 1 or more, 2 or more, 4 or more, and 8 or more. The number of alkyl groups in the molecule represented by formula (1) may be 20 or less, 10 or less, 5 or less, or 3 or less. The number of alkyl groups in the molecule represented by general formula (1) may be zero.
The "alkyl group optionally substituted with a deuterium atom" in the present application means that at least one hydrogen atom of the alkyl group may be substituted with a deuterium atom. All hydrogen atoms in the alkyl group may be replaced with deuterium atoms. For example, optionally deuterated methyl groups include CH3 , CDH2 , CD2H , CD3 . The "optionally deuterated alkyl group" is preferably an alkyl group that is not deuterated at all or an alkyl group in which all hydrogen atoms are substituted with deuterium atoms. In one aspect of the present invention, an alkyl group that is not deuterated at all is selected as the "optionally deuterated alkyl group". In one aspect of the present invention, an alkyl group in which all hydrogen atoms are substituted with deuterium atoms is selected as the "optionally deuterated alkyl group". In one aspect of the present invention, the "optionally deuterated alkyl group" is a non-deuterated methyl group [--CH 3 ], a non-deuterated ethyl group [--CH 2 CH 3 ] , non-deuterated isopropyl group [--CH(CH 3 ) 2 ], non-deuterated tert-butyl group [--C(CH 3 ) 3 ] or all hydrogen atoms deuterated methyl It is the group [-CD 3 ]. In one aspect of the present invention, an “optionally deuterated alkyl group” is a methyl group that is not deuterated [—CH 3 ] or a methyl group in which all hydrogen atoms are deuterated [—CD 3 ]. In one aspect of the present invention, at least one alkyl group having at least one hydrogen atom substituted with a deuterium atom is present in the molecule represented by general formula (1).
 「アリール基」は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。単環であるとき、アリール基はフェニル基である。縮合環であるとき、アリール基はフェニル基にさらに1つ以上の環が縮合した基である。フェニル基に縮合する環は、芳香族炭化水素環、芳香族複素環、脂肪族炭化水素環、脂肪族複素環のいずれであってもよく、また、これらが縮合した環であってもよい。好ましくは芳香族炭化水素環、芳香族複素環である。芳香族炭化水素環としてベンゼン環を挙げることができる。ベンゼン環にはさらに他のベンゼン環が縮合していてもよく、ピリジン環のような複素環が縮合していてもよい。芳香族複素環は、環骨格構成原子としてヘテロ原子を含む芳香性を示す環を意味し、5~7員環であることが好ましく、例えば5員環であるものや、6員環であるものを採用したりすることができる。本発明の一態様では、芳香族複素環としてフラン環、チオフェン環、ピロール環を採用することができる。
 アリール基を構成する環の具体例として、ベンゼン環、ナフタレン環を挙げることができる。アリール基の具体例として、フェニル基、ナフタレン-1-イル基、ナフタレン-2-イル基を挙げることができる。具体例として挙げたこれらの基は、置換されていてもよい。
 本願における「重水素原子で置換されていてもよいアリール基」は、アリール基の水素原子のうちの少なくとも1つが重水素原子に置換されていてもよいことを意味する。アリール基の水素原子はすべてが重水素原子に置換されていてもよい。例えば、重水素化されていてもよいフェニル基には、C、CD、C、C、CHD、Cが含まれる。「重水素化されていてもよいアリール基」は、まったく重水素化されていないアリール基か、すべての水素原子が重水素原子に置換されているアリール基であることが好ましい。本発明の一態様では、「重水素化されていてもよいアリール基」として、まったく重水素化されていないアリール基を選択する。本発明の一態様では、「重水素化されていてもよいアリール基」として、すべての水素原子が重水素原子に置換されているアリール基を選択する。本発明の一態様では、「重水素化されていてもよいアリール基」は、重水素化されていないフェニル基[-C]、重水素化されていないナフチル基[-C10]、すべての水素原子が重水素化されたフェニル基[-C]、すべての水素原子が重水素化されたナフチル基[-C10]である。
An "aryl group" may be a monocyclic ring or a condensed ring in which two or more rings are condensed. When monocyclic, the aryl group is a phenyl group. When it is a condensed ring, the aryl group is a group in which one or more rings are further condensed to the phenyl group. The ring condensed to the phenyl group may be an aromatic hydrocarbon ring, an aromatic heterocyclic ring, an aliphatic hydrocarbon ring, or an aliphatic heterocyclic ring, or a ring in which these are condensed. Preferred are aromatic hydrocarbon rings and aromatic heterocycles. A benzene ring can be mentioned as an aromatic hydrocarbon ring. The benzene ring may be condensed with another benzene ring, or may be condensed with a heterocyclic ring such as a pyridine ring. The aromatic heterocyclic ring means an aromatic ring containing a heteroatom as a ring skeleton-constituting atom, and is preferably a 5- to 7-membered ring, such as a 5-membered ring or a 6-membered ring. can be adopted. In one aspect of the present invention, a furan ring, a thiophene ring, or a pyrrole ring can be employed as the aromatic heterocyclic ring.
Specific examples of rings that constitute the aryl group include a benzene ring and a naphthalene ring. Specific examples of aryl groups include phenyl, naphthalene-1-yl and naphthalene-2-yl groups. These groups given as specific examples may be substituted.
The "aryl group optionally substituted with a deuterium atom" in the present application means that at least one hydrogen atom of the aryl group may be substituted with a deuterium atom. All of the hydrogen atoms in the aryl group may be replaced with deuterium atoms. For example, optionally deuterated phenyl groups include C6H5 , C6H4D , C6H3D2 , C6H2D3 , C6HD4 , C6D5 . included. The "optionally deuterated aryl group" is preferably an aryl group that is not deuterated at all or an aryl group in which all hydrogen atoms are substituted with deuterium atoms. In one aspect of the present invention, an aryl group that is not deuterated at all is selected as the "optionally deuterated aryl group". In one aspect of the present invention, an aryl group in which all hydrogen atoms are substituted with deuterium atoms is selected as the “optionally deuterated aryl group”. In one aspect of the present invention, the “optionally deuterated aryl group” is a non-deuterated phenyl group [—C 6 H 5 ], a non-deuterated naphthyl group [—C 10 H 7 ], a phenyl group in which all hydrogen atoms are deuterated [--C 6 D 5 ], and a naphthyl group in which all hydrogen atoms are deuterated [--C 10 D 7 ].
 以下において、R~R、R~R19が採りうるアリール基の具体例を挙げる。ただし、本発明で採用することができるアリール基は以下の具体例によって限定的に解釈されることはない。以下の具体例において、*は結合位置を示す。また、メチル基は表示を省略している。このため、Ar2~Ar7はメチル基で置換された構造を表している。
Figure JPOXMLDOC01-appb-C000006
Specific examples of aryl groups that R 1 to R 4 and R 8 to R 19 can take are given below. However, the aryl group that can be employed in the present invention is not limited to the following specific examples. In the following specific examples, * indicates the binding position. Moreover, the display of the methyl group is omitted. Therefore, Ar2 to Ar7 represent structures substituted with methyl groups.
Figure JPOXMLDOC01-appb-C000006
 上記の具体例の他に、Ar2~Ar11の置換基であるアルキル基に存在するすべての水素原子を重水素原子に置換した基と、Ar12~Ar16の結合位置*に直接結合するベンゼン環に置換しているアリール基に存在するすべての水素原子を重水素原子に置換した基を、順にAr2(d)~Ar16(d)としてここに例示する。また、Ar1~Ar16に存在するすべての水素原子を重水素原子に置換した基を、順にAr1(D)~Ar16(D)としてここに例示する。
 本発明の一態様では、R~R、R~R19が採りうるアリール基はAr1またはAr1(D)である。本発明の一態様では、R~R、R~R19が採りうるアリール基はAr2~Ar11、Ar2(d)~Ar11(d)およびAr2(D)~Ar11(D)からなる群より選択される。本発明の一態様では、R~R、R~R19が採りうるアリール基はAr12~Ar16、Ar12(d)~Ar16(d)およびAr12(D)~Ar16(D)からなる群より選択される。本発明の一態様では、R~R、R~R19が採りうるアリール基はAr1、Ar1(D)、Ar12~Ar16、Ar12(d)~Ar16(d)およびAr12(D)~Ar16(D)からなる群より選択される。
In addition to the above specific examples, a group in which all the hydrogen atoms present in the alkyl groups that are substituents of Ar2 to Ar11 are substituted with deuterium atoms, and a benzene ring that is directly bonded to the bonding position * of Ar12 to Ar16. Groups obtained by substituting deuterium atoms for all hydrogen atoms present in the aryl group are exemplified here as Ar2(d) to Ar16(d) in order. Groups in which all hydrogen atoms present in Ar1 to Ar16 are substituted with deuterium atoms are exemplified here as Ar1(D) to Ar16(D) in order.
In one aspect of the present invention, the aryl group that R 1 to R 4 and R 8 to R 19 can take is Ar1 or Ar1(D). In one aspect of the present invention, the aryl group that can be taken by R 1 to R 4 and R 8 to R 19 is the group consisting of Ar2 to Ar11, Ar2(d) to Ar11(d) and Ar2(D) to Ar11(D) more selected. In one aspect of the present invention, the aryl group that can be taken by R 1 to R 4 and R 8 to R 19 is the group consisting of Ar12 to Ar16, Ar12(d) to Ar16(d) and Ar12(D) to Ar16(D) more selected. In one aspect of the present invention, the aryl groups that R 1 to R 4 and R 8 to R 19 can take are Ar1, Ar1(D), Ar12 to Ar16, Ar12(d) to Ar16(d) and Ar12(D) to is selected from the group consisting of Ar16(D);
 一般式(1)におけるR12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19は、互いに結合して環状構造を形成していてもよい。一般式(1)におけるR~R11は、近くにある基と互いに結合して環状構造を形成することはない。
 環状構造は、芳香環、複素芳香環、脂肪族炭化水素環、脂肪族複素環のいずれであってもよく、また、これらが縮合した環であってもよい。好ましくは芳香環、複素芳香環である。芳香環として置換もしくは無置換のベンゼン環を挙げることができる。複素芳香環は、環骨格構成原子としてヘテロ原子を含む芳香性を示す環を意味し、5~7員環であることが好ましく、例えば5員環であるものや、6員環であるものを採用したりすることができる。本発明の一態様では、複素芳香環としてフラン環、チオフェン環、ピロール環を採用することができる。脂肪族炭化水素環としてはシクロペンタジエン環を挙げることができる。本発明の好ましい一態様では、環状構造は、ベンゼン環、置換もしくは無置換のベンゾフランのフラン環、置換もしくは無置換のベンゾチオフェンのチオフェン環、置換もしくは無置換のインドールのピロール環である。本発明の好ましい一態様では、ここでいうベンゾフラン、ベンゾチオフェン、インドールは、重水素原子、アルキル基およびアリール基からなる群より選択される1つの原子か基あるいは2つ以上を組み合わせてできる基で置換されていてもよい。本発明の一態様では、ここでいうベンゾフラン、ベンゾチオフェン、インドールは無置換である。
R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 in the general formula (1) are bonded to form a cyclic structure may be formed. R 1 to R 11 in general formula (1) do not form a cyclic structure by combining with nearby groups.
The cyclic structure may be an aromatic ring, a heteroaromatic ring, an aliphatic hydrocarbon ring, or an aliphatic heterocyclic ring, or a condensed ring thereof. Aromatic rings and heteroaromatic rings are preferred. Examples of aromatic rings include substituted or unsubstituted benzene rings. The heteroaromatic ring means an aromatic ring containing a heteroatom as a ring skeleton-constituting atom, and is preferably a 5- to 7-membered ring, such as a 5-membered ring or a 6-membered ring. can be adopted. In one aspect of the present invention, a furan ring, a thiophene ring, and a pyrrole ring can be employed as the heteroaromatic ring. A cyclopentadiene ring can be mentioned as an aliphatic hydrocarbon ring. In a preferred embodiment of the present invention, the cyclic structure is a benzene ring, a furan ring of substituted or unsubstituted benzofuran, a thiophene ring of substituted or unsubstituted benzothiophene, or a pyrrole ring of substituted or unsubstituted indole. In a preferred embodiment of the present invention, benzofuran, benzothiophene, and indole here are one atom or group selected from the group consisting of a deuterium atom, an alkyl group, and an aryl group, or a group formed by combining two or more. may be substituted. In one aspect of the invention, the benzofurans, benzothiophenes, and indoles referred to herein are unsubstituted.
 本発明の一態様では、R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19は互いに結合して環状構造を形成しておらず、一般式(1)の右側の窒素原子で結合する基(カルバゾール構造を有する基)は、置換もしくは無置換の非縮合カルバゾール-9-イル基である。
 本発明の一態様では、R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19のうちの1組以上(好ましくは1組)が互いに結合して、一般式(1)の右側の窒素原子で結合する基がベンゾフロ[2,3-a]カルバゾール-1-イル基、ベンゾフロ[3,2-a]カルバゾール-1-イル基、ベンゾフロ[2,3-b]カルバゾール-1-イル基、ベンゾフロ[3,2-b]カルバゾール-1-イル基、ベンゾフロ[2,3-c]カルバゾール-1-イル基、またはベンゾフロ[3,2-c]カルバゾール-1-イル基を形成している。これらの基は置換されていてもよく、本発明の一態様では、重水素原子、アルキル基およびアリール基からなる群より選択される1つの原子か基あるいは2つ以上を組み合わせてできる基で置換されていてもよい。
 本発明の一態様では、R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19のうちの1組以上(好ましくは1組)が互いに結合して、一般式(1)の右側の窒素原子で結合する基がベンゾチエノ[2,3-a]カルバゾール-1-イル基、ベンゾチエノ[3,2-a]カルバゾール-1-イル基、ベンゾチエノ[2,3-b]カルバゾール-1-イル基、ベンゾチエノ[3,2-b]カルバゾール-1-イル基、ベンゾチエノ[2,3-c]カルバゾール-1-イル基、またはベンゾチエノ[3,2-c]カルバゾール-1-イル基を形成している。これらの基は置換されていてもよく、本発明の一態様では、重水素原子、アルキル基およびアリール基からなる群より選択される1つの原子か基あるいは2つ以上を組み合わせてできる基で置換されていてもよい。
In one aspect of the present invention, R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 are bonded to each other to form a cyclic structure. The group (group having a carbazole structure) that is not formed and is bonded to the nitrogen atom on the right side of general formula (1) is a substituted or unsubstituted non-fused carbazol-9-yl group.
In one aspect of the present invention, one or more pairs of R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 (preferably ) are bonded to each other, and the groups bonded at the nitrogen atom on the right side of general formula (1) are benzofuro[2,3-a]carbazol-1-yl group, benzofuro[3,2-a]carbazole- 1-yl group, benzofuro[2,3-b]carbazol-1-yl group, benzofuro[3,2-b]carbazol-1-yl group, benzofuro[2,3-c]carbazol-1-yl group, Or it forms a benzofuro[3,2-c]carbazol-1-yl group. These groups may be substituted, and in one aspect of the present invention, substituted with one atom or group selected from the group consisting of a deuterium atom, an alkyl group and an aryl group, or a group formed by combining two or more may have been
In one aspect of the present invention, one or more pairs of R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 (preferably ) are bonded to each other, and the groups bonded at the nitrogen atoms on the right side of general formula (1) are benzothieno[2,3-a]carbazol-1-yl groups, benzothieno[3,2-a]carbazole- 1-yl group, benzothieno[2,3-b]carbazol-1-yl group, benzothieno[3,2-b]carbazol-1-yl group, benzothieno[2,3-c]carbazol-1-yl group, Or it forms a benzothieno[3,2-c]carbazol-1-yl group. These groups may be substituted, and in one aspect of the present invention, substituted with one atom or group selected from the group consisting of a deuterium atom, an alkyl group and an aryl group, or a group formed by combining two or more may have been
 以下において、一般式(1)の右側の窒素原子で結合する基(カルバゾール構造を有する基)の具体例を挙げる。ただし、本発明で採用することができるものは、以下の具体例によって限定的に解釈されることはない。なお、以下の具体例において、*は一般式(1)の中央のベンゼン環への結合位置を示す。Phはフェニル基を表す。また、メチル基は表示を省略している。このため、例えばD2~D6はメチル基で置換された構造を表している。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Specific examples of the groups (groups having a carbazole structure) bonded at the nitrogen atom on the right side of general formula (1) are given below. However, what can be employed in the present invention is not limitedly interpreted by the following specific examples. In the following specific examples, * indicates the bonding position to the central benzene ring in general formula (1). Ph represents a phenyl group. Moreover, the display of the methyl group is omitted. Therefore, for example, D2 to D6 represent structures substituted with methyl groups.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
 上記の具体例の他に、D2~D20とD33~D262の置換基であるアルキル基とフェニル基に存在するすべての水素原子を重水素原子に置換した基を、D263~D511としてここに例示する。また、D1~D262に存在するすべての水素原子を重水素原子に置換した基を、順にD512~D773としてここに例示する。
 本発明の一態様では、一般式(1)の右側の窒素原子で結合する基(カルバゾール構造を有する基)は、D1~D773から選択される。本発明の一態様では、一般式(1)の右側の窒素原子で結合する基は、D1またはD512である。本発明の一態様では、一般式(1)の右側の窒素原子で結合する基は、D1、D21~D32、D512、D532~D543から選択される。本発明の一態様では、一般式(1)の右側の窒素原子で結合する基は、D1~D14、D263~D275、D512~D525から選択される。本発明の一態様では、一般式(1)の右側の窒素原子で結合する基は、D2~D14、D263~D275、D513~D525から選択される。本発明の一態様では、一般式(1)の右側の窒素原子で結合する基は、D1、D15~D20、D33~D237、D276~D486、D512、D526~D531、D544~D748から選択される。本発明の一態様では、一般式(1)の右側の窒素原子で結合する基は、D15~D20、D33~D237、D276~D486、D526~D531、D544~D748から選択される。本発明の一態様では、一般式(1)の右側の窒素原子で結合する基は、D1~D20、D263~D281、D512~D531から選択される。本発明の一態様では、一般式(1)の右側の窒素原子で結合する基は、D21~D237、D282~D486、D532~D748から選択される。
In addition to the above specific examples, groups in which all hydrogen atoms present in alkyl groups and phenyl groups as substituents of D2 to D20 and D33 to D262 are substituted with deuterium atoms are exemplified here as D263 to D511. . Further, groups in which all hydrogen atoms existing in D1 to D262 are replaced with deuterium atoms are exemplified here as D512 to D773 in order.
In one aspect of the present invention, the group bonded to the nitrogen atom on the right side of general formula (1) (group having a carbazole structure) is selected from D1 to D773. In one aspect of the present invention, the group attached to the nitrogen atom on the right side of general formula (1) is D1 or D512. In one aspect of the present invention, the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D1, D21-D32, D512, D532-D543. In one aspect of the present invention, the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D1-D14, D263-D275 and D512-D525. In one aspect of the present invention, the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D2-D14, D263-D275 and D513-D525. In one aspect of the present invention, the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D1, D15-D20, D33-D237, D276-D486, D512, D526-D531, D544-D748. . In one aspect of the present invention, the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D15-D20, D33-D237, D276-D486, D526-D531, D544-D748. In one aspect of the present invention, the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D1-D20, D263-D281 and D512-D531. In one aspect of the present invention, the groups bonded at the nitrogen atom on the right side of general formula (1) are selected from D21-D237, D282-D486, and D532-D748.
 以下において、一般式(1)の左側の3環構造を有する基(置換ジベンゾフラン-2-イル基)の具体例を挙げる。ただし、本発明で採用することができるものは、以下の具体例によって限定的に解釈されることはない。なお、以下の具体例において、*は一般式(1)の中央のベンゼン環への結合位置を示す。また、メチル基は表示を省略している。このため、例えばZ13~Z24はメチル基で置換された構造を表している。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Specific examples of the group having a tricyclic structure (substituted dibenzofuran-2-yl group) on the left side of general formula (1) are given below. However, what can be employed in the present invention is not limitedly interpreted by the following specific examples. In the following specific examples, * indicates the bonding position to the central benzene ring in general formula (1). Moreover, the display of the methyl group is omitted. Therefore, Z13 to Z24, for example, represent structures substituted with methyl groups.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
 上記の具体例の他に、Z1~Z40のすべての水素原子を重水素化した基を、それぞれZ41~Z80としてここに例示する。また、Z1~Z4とZ13~Z16のフェニル基(C)の水素原子をすべて重水素化したCで置換した基を、それぞれZ81~Z88としてここに例示する。さらに、Z17~Z40のメチル基、イソプロピル基、tert-ブチル基の水素原子をすべて重水素化した基を、それぞれZ89~Z112としてここに例示する。 In addition to the above specific examples, groups in which all hydrogen atoms of Z1 to Z40 are deuterated are exemplified here as Z41 to Z80, respectively. Groups in which all the hydrogen atoms of the phenyl groups (C 6 H 5 ) of Z1 to Z4 and Z13 to Z16 are substituted with deuterated C 6 D5 are exemplified here as Z81 to Z88, respectively. Furthermore, groups obtained by deuterating all the hydrogen atoms of the methyl group, isopropyl group and tert-butyl group of Z17 to Z40 are exemplified here as Z89 to Z112, respectively.
 本発明の一態様では、一般式(1)の左側の3環構造を有する基(置換ジベンゾフラン-2-イル基)は、Z1~Z112から選択される。本発明の一態様では、一般式(1)の左側の3環構造を有する基は、Z1~Z28、Z41~Z68、Z81~Z100から選択される。 In one aspect of the present invention, the group having a tricyclic structure (substituted dibenzofuran-2-yl group) on the left side of general formula (1) is selected from Z1 to Z112. In one aspect of the present invention, the group having a tricyclic structure on the left side of general formula (1) is selected from Z1-Z28, Z41-Z68 and Z81-Z100.
 一般式(1)で表される化合物は、金属元素を含まない。本発明の一態様では、一般式(1)で表される化合物は、炭素原子、水素原子、重水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子のみからなる。本発明の一態様では、一般式(1)で表される化合物は、炭素原子、水素原子、重水素原子、酸素原子および窒素原子からなる群より選択される原子のみからなる。
 一般式(1)で表される化合物の分子量は、1500以下であることが好ましく、1200以下であることがより好ましく、800以下であることがさらに好ましい。例えば700以下の範囲内で選択してもよいし、600以下の範囲内で選択してもよいし、550以下の範囲内で選択してもよい。分子量の下限値は、一般式(1)で表される構造の最小分子量である。
The compound represented by general formula (1) does not contain a metal element. In one aspect of the present invention, the compound represented by general formula (1) consists only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, nitrogen atoms, oxygen atoms and sulfur atoms. In one aspect of the present invention, the compound represented by general formula (1) consists only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, deuterium atoms, oxygen atoms and nitrogen atoms.
The molecular weight of the compound represented by formula (1) is preferably 1500 or less, more preferably 1200 or less, and even more preferably 800 or less. For example, it may be selected within the range of 700 or less, may be selected within the range of 600 or less, or may be selected within the range of 550 or less. The lower limit of the molecular weight is the minimum molecular weight of the structure represented by general formula (1).
 一般式(1)で表される化合物の好ましい一群として、下記一般式(2)で表される化合物を挙げることができる。一般式(2)におけるR~R、R12~R19の定義、説明、好ましい範囲については、一般式(1)の対応する記載を参照することができる。
Figure JPOXMLDOC01-appb-C000025
A preferred group of compounds represented by the general formula (1) includes compounds represented by the following general formula (2). For definitions, explanations and preferred ranges of R 1 to R 4 and R 12 to R 19 in general formula (2), the corresponding descriptions in general formula (1) can be referred to.
Figure JPOXMLDOC01-appb-C000025
 一般式(1)で表される化合物の好ましい一群として、下記一般式(3)で表される化合物を挙げることができる。一般式(3)におけるR、R~R19の定義、説明、好ましい範囲については、一般式(1)の対応する記載を参照することができる。R20~R24は各々独立に水素原子、重水素原子、置換もしくは無置換のアリール基、または置換もしくは無置換のアルキル基を表す。R20~R24の好ましい範囲については一般式(1)のR~R10の説明を参照することができる。
Figure JPOXMLDOC01-appb-C000026
A preferred group of compounds represented by the general formula (1) includes compounds represented by the following general formula (3). For definitions, explanations and preferred ranges of R 1 , R 3 to R 19 in general formula (3), the corresponding descriptions in general formula (1) can be referred to. R 20 to R 24 each independently represent a hydrogen atom, a deuterium atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted alkyl group. The preferred range of R 20 to R 24 can be referred to the description of R 8 to R 10 in formula (1).
Figure JPOXMLDOC01-appb-C000026
 以下に、一般式(1)で表される化合物の具体例を挙げる。具体例は、下記の一般式のZとDを表の中で特定することにより示している。なお、本発明で用いることができる一般式(1)で表される化合物はこれらの具体例により限定的に解釈されることはない。
 表1では、ZとDが表の各段に記載の基である化合物1~1546の構造を個別に特定している。
Specific examples of the compound represented by formula (1) are given below. Specific examples are illustrated by identifying Z and D in the general formula below in the table. In addition, the compound represented by the general formula (1) that can be used in the present invention is not limitedly interpreted by these specific examples.
Table 1 individually identifies the structures of compounds 1-1546 where Z and D are the groups described in each row of the table.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
 表2では、各構造におけるZとDを規定することによって化合物1~86576の各構造を特定している。表2の各段では、Zを固定し、DをD1~D773に変えた773種の化合物を順に特定している。表2の化合物1~1546は、表1の化合物1~1546と同じものを特定している。 Table 2 identifies each structure of compounds 1-86576 by defining Z and D in each structure. Each row of Table 2 identifies, in order, 773 compounds with Z fixed and D varied from D1 to D773. Compounds 1-1546 of Table 2 identify the same as compounds 1-1546 of Table 1.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-I000036
 化合物1~86576中のすべての水素原子を重水素原子へ置換した化合物を順に化合物1(D)~86576(D)としてここに例示する。
 本発明の一態様では、化合物1~86576、化合物1(D)~86576(D)の中から化合物を選択する。本発明の一態様では、化合物1~21644、30921~52564、61841~77300、1(D)~21644(D)、30921(D)~52564(D)、61841(D)~77300(D)の中から化合物を選択する。本発明の一態様では、化合物30921~52564、61841~77300、1(D)~21644(D)、30921(D)~52564(D)、61841(D)~77300(D)の中から化合物を選択する。
Compounds in which all hydrogen atoms in compounds 1 to 86576 are replaced with deuterium atoms are exemplified as compounds 1(D) to 86576(D) in order.
In one aspect of the present invention, compounds are selected from Compounds 1-86576 and Compounds 1(D)-86576(D). In one aspect of the present invention, the Select a compound from among In one aspect of the present invention, a compound selected from compounds 30921-52564, 61841-77300, 1(D)-21644(D), 30921(D)-52564(D), 61841(D)-77300(D) select.
 以下に、一般式(1)で表される好ましい化合物群の一例を挙げる。
Figure JPOXMLDOC01-appb-C000037
An example of a preferred group of compounds represented by general formula (1) is shown below.
Figure JPOXMLDOC01-appb-C000037
 以下に、一般式(1)で表される別の好ましい化合物群の一例を挙げる。
Figure JPOXMLDOC01-appb-C000038
An example of another preferred group of compounds represented by general formula (1) is given below.
Figure JPOXMLDOC01-appb-C000038
 以下に、一般式(1)で表される別の好ましい化合物群の一例を挙げる。
Figure JPOXMLDOC01-appb-C000039
An example of another preferred group of compounds represented by general formula (1) is given below.
Figure JPOXMLDOC01-appb-C000039
 一般式(1)で表される化合物は、発光材料をドープするためのホスト材料として有用である。特に遅延蛍光材料をドープするためのホスト材料として有用である。ドープする材料は1種のみならず、複数種であってもよい。ドープする材料は、一般式(1)で表される化合物よりも、最低励起一重項エネルギーが低いものの中から選択する。
 一般式(1)で表される化合物は、キャリア障壁材料としても有用であり、例えば電子障壁材料として有用である。有機エレクトロルミネッセンス素子などの有機発光素子において障壁層(例えば電子障壁層)に効果的に用いることができる。
A compound represented by the general formula (1) is useful as a host material for doping a light-emitting material. It is particularly useful as a host material for doping a delayed fluorescence material. The material to be doped may be not only one kind but also plural kinds. A material to be doped is selected from those having a lowest excited singlet energy lower than that of the compound represented by the general formula (1).
The compound represented by general formula (1) is also useful as a carrier-blocking material, such as an electron-blocking material. It can be effectively used as a barrier layer (for example, an electron barrier layer) in an organic light-emitting device such as an organic electroluminescence device.
(遅延蛍光材料)
 一般式(1)で表される化合物は、遅延蛍光材料とともに用いるためのホスト材料として有用である。
 ここでいう「遅延蛍光材料」とは、励起状態において、励起三重項状態から励起一重項状態への逆項間交差を生じ、その励起一重項状態から基底状態へ戻る際に遅延蛍光を放射する有機化合物である。本発明では、蛍光寿命測定システム(浜松ホトニクス社製ストリークカメラシステム等)により発光寿命を測定したとき、発光寿命が100ns(ナノ秒)以上の蛍光が観測されるものを遅延蛍光材料と言う。
 一般式(1)で表される化合物と遅延蛍光材料を組み合わせて用いたとき、遅延蛍光材料は、励起一重項状態の一般式(1)で表される化合物からエネルギーを受け取って励起一重項状態に遷移する。また、遅延蛍光材料は、励起三重項状態の一般式(1)で表される化合物からエネルギーを受け取って励起三重項状態に遷移してもよい。遅延蛍光材料は励起一重項エネルギーと励起三重項エネルギーの差(ΔEST)が小さいことから、励起三重項状態の遅延蛍光材料は励起一重項状態の遅延蛍光材料へ逆項間交差しやすい。これらの経路により生じた励起一重項状態の遅延蛍光材料が発光に寄与する。
(delayed fluorescence material)
A compound represented by the general formula (1) is useful as a host material for use with a delayed fluorescence material.
The term "delayed fluorescence material" as used herein means that in an excited state, reverse intersystem crossing occurs from an excited triplet state to an excited singlet state, and delayed fluorescence is emitted when returning from the excited singlet state to the ground state. It is an organic compound. In the present invention, a delayed fluorescence material is defined as a material that emits fluorescence with an emission lifetime of 100 ns (nanoseconds) or more when measured by a fluorescence lifetime measurement system (such as a streak camera system manufactured by Hamamatsu Photonics).
When the compound represented by the general formula (1) and the delayed fluorescence material are used in combination, the delayed fluorescence material receives energy from the compound represented by the general formula (1) in an excited singlet state to an excited singlet state transition to Further, the delayed fluorescence material may receive energy from the compound represented by general formula (1) in the excited triplet state and transition to the excited triplet state. Since the delayed fluorescent material has a small difference ( ΔEST ) between the excited singlet energy and the excited triplet energy, the delayed fluorescent material in the excited triplet state easily undergoes reverse intersystem crossing to the delayed fluorescent material in the excited singlet state. The delayed fluorescent material in the excited singlet state generated by these pathways contributes to light emission.
 遅延蛍光材料は、最低励起一重項エネルギーと77Kの最低励起三重項エネルギーの差ΔESTが0.3eV以下であることが好ましく、0.25eV以下であることがより好ましく、0.2eV以下であることがより好ましく、0.15eV以下であることがより好ましく、0.1eV以下であることがさらに好ましく、0.07eV以下であることがさらにより好ましく、0.05eV以下であることがさらにまた好ましく、0.03eV以下であることがさらになお好ましく、0.01eV以下であることが特に好ましい。
 ΔESTが小さければ、熱エネルギーの吸収によって励起一重項状態から励起三重項状態に逆項間交差しやすいため、熱活性化型の遅延蛍光材料として機能する。熱活性化型の遅延蛍光材料は、デバイスが発する熱を吸収して励起三重項状態から励起一重項へ比較的容易に逆項間交差し、その励起三重項エネルギーを効率よく発光に寄与させることができる。
In the delayed fluorescence material, the difference ΔEST between the lowest excited singlet energy and the lowest excited triplet energy at 77K is preferably 0.3 eV or less, more preferably 0.25 eV or less, and 0.2 eV or less. is more preferably 0.15 eV or less, more preferably 0.1 eV or less, even more preferably 0.07 eV or less, and even more preferably 0.05 eV or less , is more preferably 0.03 eV or less, and particularly preferably 0.01 eV or less.
If ΔEST is small, reverse intersystem crossing from the excited singlet state to the excited triplet state is likely to occur due to the absorption of thermal energy, and thus the material functions as a thermally activated delayed fluorescence material. A thermally activated delayed fluorescence material absorbs the heat emitted by the device and relatively easily undergoes reverse intersystem crossing from the excited triplet state to the excited singlet state, and efficiently contributes the excited triplet energy to light emission. can be done.
 本発明における、化合物の最低励起一重項エネルギー(ES1)と最低励起三重項エネルギー(ET1)は、下記の手順により求めた値である。ΔESTはES1-ET1を計算することにより求めた値である。
(1)最低励起一重項エネルギー(ES1
 測定対象化合物の薄膜もしくはトルエン溶液(濃度10-5mol/L)を調製して試料とする。常温(300K)でこの試料の蛍光スペクトルを測定する。蛍光スペクトルは、縦軸を発光、横軸を波長とする。この発光スペクトルの短波側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求める。この波長値を次に示す換算式でエネルギー値に換算した値をES1とする。
  換算式:ES1[eV]=1239.85/λedge
 後述の実施例における発光スペクトルの測定は、励起光源にLED光源(Thorlabs社製、M300L4)を用いて検出器(浜松ホトニクス社製、PMA-12マルチチャンネル分光器 C10027-01)により行った。
(2)最低励起三重項エネルギー(ET1
 最低励起一重項エネルギー(ES1)の測定で用いたのと同じ試料を、液体窒素によって77[K]に冷却し、励起光(300nm)を燐光測定用試料に照射し、検出器を用いて燐光を測定する。励起光照射後から100ミリ秒以降の発光を燐光スペクトルとする。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求める。この波長値を次に示す換算式でエネルギー値に換算した値をET1とする。
  換算式:ET1[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
The lowest excited singlet energy (E S1 ) and the lowest excited triplet energy (E T1 ) of the compound in the present invention are values determined by the following procedure. ΔE ST is a value obtained by calculating E S1 -E T1 .
(1) Lowest excited singlet energy (E S1 )
A thin film or a toluene solution (concentration 10 −5 mol/L) of the compound to be measured is prepared and used as a sample. The fluorescence spectrum of this sample is measured at room temperature (300K). In the fluorescence spectrum, the vertical axis is light emission and the horizontal axis is wavelength. A tangent line is drawn to the rise on the short wave side of the emission spectrum, and the wavelength value λedge [nm] at the intersection of the tangent line and the horizontal axis is obtained. A value obtained by converting this wavelength value into an energy value using the following conversion formula is assumed to be ES1 .
Conversion formula: E S1 [eV]=1239.85/λedge
The emission spectra in the examples described later were measured using an LED light source (Thorlabs, M300L4) as an excitation light source and a detector (Hamamatsu Photonics, PMA-12 multichannel spectrometer C10027-01).
(2) lowest excited triplet energy (E T1 )
The same sample used in the measurement of the lowest excited singlet energy (E S1 ) is cooled to 77 [K] with liquid nitrogen, the sample for phosphorescence measurement is irradiated with excitation light (300 nm), and a detector is used to Measure phosphorescence. Emission after 100 milliseconds from irradiation with excitation light is defined as a phosphorescence spectrum. A tangent line is drawn to the rising edge of the phosphorescence spectrum on the short wavelength side, and the wavelength value λedge [nm] at the intersection of the tangent line and the horizontal axis is obtained. A value obtained by converting this wavelength value into an energy value using the following conversion formula is defined as ET1 .
Conversion formula: E T1 [eV]=1239.85/λedge
A tangent line to the rise on the short wavelength side of the phosphorescence spectrum is drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side among the maximum values of the spectrum, consider the tangent line at each point on the curve toward the long wavelength side. This tangent line increases in slope as the curve rises (ie as the vertical axis increases). The tangent line drawn at the point where the value of this slope takes the maximum value is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
In addition, the maximum point with a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and is closest to the maximum value on the short wavelength side. The tangent line drawn at the point where the value is taken is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
 本発明の好ましい一態様では、遅延蛍光材料として、ベンゼン環に置換しているシアノ基の数が1つであるシアノベンゼン構造を有する化合物(シアノベンゼン誘導体)を用いる。本発明の別の好ましい一態様では、遅延蛍光材料として、ベンゼン環に置換しているシアノ基の数が2つであるジシアノベンゼン構造を有する化合物(ジシアノベンゼン誘導体)を用いる。本発明の別の好ましい一態様では、遅延蛍光材料として、ベンゼン環の環骨格構成炭素原子の少なくとも1つが窒素原子に置換したアザベンゼン構造を有する化合物(アザベンゼン誘導体)を用いる。 In a preferred embodiment of the present invention, a compound (cyanobenzene derivative) having a cyanobenzene structure in which the benzene ring is substituted with one cyano group is used as the delayed fluorescence material. In another preferred embodiment of the present invention, a compound (dicyanobenzene derivative) having a dicyanobenzene structure in which two cyano groups are substituted on the benzene ring is used as the delayed fluorescence material. In another preferred embodiment of the present invention, a compound (azabenzene derivative) having an azabenzene structure in which at least one carbon atom constituting the ring skeleton of a benzene ring is substituted with a nitrogen atom is used as the delayed fluorescence material.
 本発明の好ましい一態様では、遅延蛍光材料として下記一般式(4)で表される化合物を用いる。
Figure JPOXMLDOC01-appb-C000040
 一般式(4)において、R21~R23のうち1つはシアノ基または下記一般式(5)で表される基を表し、R21~R23の残りの2つとR24およびR25のうちの少なくとも1つは下記一般式(6)で表される基を表し、R21~R25の残りは水素原子または置換基(ただしここでいう置換基はシアノ基、下記一般式(5)で表される基、下記一般式(6)で表される基ではない)を表す。
Figure JPOXMLDOC01-appb-C000041
 一般式(5)において、Lは単結合もしくは2価の連結基を表し、R31およびR32は各々独立に水素原子または置換基を表し、*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000042
 一般式(6)において、Lは単結合または2価の連結基を表し、R33およびR34は各々独立に水素原子または置換基を表し、*は結合位置を表す。
In a preferred embodiment of the present invention, a compound represented by the following general formula (4) is used as the delayed fluorescence material.
Figure JPOXMLDOC01-appb-C000040
In general formula (4), one of R 21 to R 23 represents a cyano group or a group represented by general formula (5) below, and the remaining two of R 21 to R 23 and R 24 and R 25 At least one of them represents a group represented by the following general formula (6), and the rest of R 21 to R 25 are hydrogen atoms or substituents (wherein the substituent here is a cyano group, the following general formula (5) is not a group represented by the following general formula (6)).
Figure JPOXMLDOC01-appb-C000041
In general formula (5), L1 represents a single bond or a divalent linking group, R31 and R32 each independently represent a hydrogen atom or a substituent, and * represents a bonding position.
Figure JPOXMLDOC01-appb-C000042
In general formula (6), L2 represents a single bond or a divalent linking group, R33 and R34 each independently represent a hydrogen atom or a substituent, and * represents a bonding position.
 本発明の好ましい一態様では、R22がシアノ基である。本発明の好ましい一態様では、R22が一般式(5)で表される基である。本発明の一態様では、R21がシアノ基または一般式(5)で表される基である。本発明の一態様では、R23がシアノ基または一般式(5)で表される基である。本発明の一態様では、R21~R23のうち1つがシアノ基である。本発明の一態様では、R21~R23のうち1つが一般式(5)で表される基である。 In one preferred aspect of the invention, R 22 is a cyano group. In a preferred embodiment of the present invention, R 22 is a group represented by general formula (5). In one aspect of the present invention, R 21 is a cyano group or a group represented by general formula (5). In one aspect of the present invention, R 23 is a cyano group or a group represented by general formula (5). In one aspect of the invention, one of R 21 to R 23 is a cyano group. In one aspect of the present invention, one of R 21 to R 23 is a group represented by general formula (5).
 本発明の好ましい一態様では、一般式(5)におけるLは単結合である。本発明の一態様では、Lは2価の連結基であり、好ましくは置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基であり、より好ましくは置換もしくは無置換のアリーレン基であり、さらに好ましくは置換もしくは無置換の1,4-フェニレン基(置換基として例えば炭素数1~3のアルキル基)である。
 本発明の一態様では、一般式(5)におけるR31およびR32は各々独立に、アルキル基(例えば炭素数1~40)、アリール基(例えば炭素数6~30)、ヘテロアリール基(例えば環骨格構成原子数5~30)、アルケニル基(例えば炭素数1~40)およびアルキニル基(例えば炭素数1~40)からなる群より選択される1つの基または2つ以上を組み合わせてできる基である(以下においてこれらの基を「置換基群Aの基」という)。本発明の好ましい一態様では、R31およびR32は各々独立に、置換もしくは無置換のアリール基(例えば炭素数6~30)であり、アリール基の置換基としては置換基群Aの基を挙げることができる。本発明の好ましい一態様では、R31およびR32は同一である。
In a preferred embodiment of the present invention, L 1 in general formula (5) is a single bond. In one aspect of the present invention, L 1 is a divalent linking group, preferably a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group, more preferably a substituted or unsubstituted arylene group and more preferably a substituted or unsubstituted 1,4-phenylene group (for example, an alkyl group having 1 to 3 carbon atoms as a substituent).
In one aspect of the present invention, R 31 and R 32 in general formula (5) are each independently an alkyl group (eg, 1 to 40 carbon atoms), an aryl group (eg, 6 to 30 carbon atoms), a heteroaryl group (eg, 5 to 30 ring skeleton atoms), an alkenyl group (eg, 1 to 40 carbon atoms) and an alkynyl group (eg, 1 to 40 carbon atoms), or a group formed by combining two or more (these groups are hereinafter referred to as "substituent group A groups"). In a preferred embodiment of the present invention, each of R 31 and R 32 is independently a substituted or unsubstituted aryl group (eg, having 6 to 30 carbon atoms), and the substituent of the aryl group is a group of substituent group A. can be mentioned. In one preferred aspect of the invention, R 31 and R 32 are the same.
 本発明の好ましい一態様では、一般式(6)におけるLは単結合である。本発明の一態様では、Lは2価の連結基であり、好ましくは置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基であり、より好ましくは置換もしくは無置換のアリーレン基であり、さらに好ましくは置換もしくは無置換の1,4-フェニレン基(置換基として例えば炭素数1~3のアルキル基)である。
 本発明の一態様では、一般式(6)におけるR33およびR34は各々独立に、置換もしくは無置換のアルキル基(例えば炭素数1~40)、置換もしくは無置換のアルケニル基(例えば炭素数1~40)、置換もしくは無置換のアリール基(例えば炭素数6~30)、または置換もしくは無置換のヘテロアリール基(例えば炭素数5~30)を表す。ここでいうアルキル基、アルケニル基、アリール基、ヘテロアリール基の置換基としては、ヒドロキシル基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(例えば炭素数1~40)、アルコキシ基(例えば炭素数1~40)、アルキルチオ基(例えば炭素数1~40)、アリール基(例えば炭素数6~30)、アリールオキシ基(例えば炭素数6~30)、アリールチオ基(例えば炭素数6~30)、ヘテロアリール基(例えば環骨格構成原子数5~30)、ヘテロアリールオキシ基(例えば環骨格構成原子数5~30)、ヘテロアリールチオ基(例えば環骨格構成原子数5~30)、アシル基(例えば炭素数1~40)、アルケニル基(例えば炭素数1~40)、アルキニル基(例えば炭素数1~40)、アルコキシカルボニル基(例えば炭素数1~40)、アリールオキシカルボニル基(例えば炭素数1~40)、ヘテロアリールオキシカルボニル基(例えば炭素数1~40)、シリル基(例えば炭素数1~40のトリアルキルシリル基)、ニトロ基およびシアノ基からなる群より選択される1つの基または2つ以上を組み合わせてできる基を挙げることができる(以下においてこれらの基を「置換基群Bの基」という)。
 R33とR34は、互いに単結合または連結基を介して結合して環状構造を形成してもよい。特にR33とR34がアリール基である場合は、互いに単結合または連結基を介して結合して環状構造を形成することが好ましい。ここでいう連結基としては-O-、-S-、-N(R35)-、-C(R36)(R37)-、-C(=O)-を挙げることができ、-O-、-S-、-N(R35)-、-C(R36)(R37)-が好ましく、-O-、-S-、-N(R35)-がより好ましい。R35~R37は各々独立に水素原子または置換基を表す。置換基としては、上記置換基群Aの基を選択したり、下記置換基群Bの基を選択したりすることができ、好ましくは炭素数1~10のアルキル基および炭素数6~14のアリール基からなる群より選択される1つの基または2つ以上を組み合わせてできる基である。
In a preferred embodiment of the present invention, L2 in general formula (6) is a single bond. In one aspect of the present invention, L2 is a divalent linking group, preferably a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group, more preferably a substituted or unsubstituted arylene group and more preferably a substituted or unsubstituted 1,4-phenylene group (for example, an alkyl group having 1 to 3 carbon atoms as a substituent).
In one aspect of the present invention, R 33 and R 34 in general formula (6) are each independently a substituted or unsubstituted alkyl group (eg, 1 to 40 carbon atoms), a substituted or unsubstituted alkenyl group (eg, 1 to 40), a substituted or unsubstituted aryl group (eg, 6 to 30 carbon atoms), or a substituted or unsubstituted heteroaryl group (eg, 5 to 30 carbon atoms). Examples of substituents of the alkyl group, alkenyl group, aryl group, and heteroaryl group referred to herein include hydroxyl group, halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl group (eg, C 1-40 ), an alkoxy group (eg, 1 to 40 carbon atoms), an alkylthio group (eg, 1 to 40 carbon atoms), an aryl group (eg, 6 to 30 carbon atoms), an aryloxy group (eg, 6 to 30 carbon atoms), an arylthio group ( (e.g., 6 to 30 carbon atoms), heteroaryl groups (e.g., 5 to 30 ring atoms), heteroaryloxy groups (e.g., 5 to 30 ring atoms), heteroarylthio groups (e.g., ring atoms) 5 to 30), acyl groups (eg, 1 to 40 carbon atoms), alkenyl groups (eg, 1 to 40 carbon atoms), alkynyl groups (eg, 1 to 40 carbon atoms), alkoxycarbonyl groups (eg, 1 to 40 carbon atoms), consisting of an aryloxycarbonyl group (eg, 1 to 40 carbon atoms), a heteroaryloxycarbonyl group (eg, 1 to 40 carbon atoms), a silyl group (eg, a trialkylsilyl group having 1 to 40 carbon atoms), a nitro group and a cyano group; One group selected from the group or a group formed by combining two or more groups can be mentioned (hereinafter, these groups are referred to as "substituent group B groups").
R 33 and R 34 may be bonded to each other via a single bond or a linking group to form a cyclic structure. In particular, when R 33 and R 34 are aryl groups, they are preferably bonded to each other via a single bond or a linking group to form a cyclic structure. Examples of the linking group here include -O-, -S-, -N(R 35 )-, -C(R 36 )(R 37 )-, -C(=O)-, and -O -, -S-, -N(R 35 )- and -C(R 36 )(R 37 )- are preferred, and -O-, -S- and -N(R 35 )- are more preferred. R 35 to R 37 each independently represent a hydrogen atom or a substituent. As the substituent, a group of the substituent group A can be selected, or a group of the substituent group B below can be selected, preferably an alkyl group having 1 to 10 carbon atoms and a group having 6 to 14 carbon atoms. It is one group or a combination of two or more groups selected from the group consisting of aryl groups.
 一般式(6)で表される基は、下記一般式(7)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000043
The group represented by general formula (6) is preferably a group represented by general formula (7) below.
Figure JPOXMLDOC01-appb-C000043
 一般式(7)のL11は単結合もしくは2価の連結基を表す。L11の説明と好ましい範囲については、上記のLの説明と好ましい範囲を参照することができる。
 一般式(7)のR41~R48は各々独立に水素原子または置換基を表す。R41とR42、R42とR43、R43とR44、R44とR45、R45とR46、R46とR47、R47とR48は、互いに結合して環状構造を形成していてもよい。互いに結合して形成する環状構造は芳香環であっても脂肪環であってもよく、またヘテロ原子を含むものであってもよく、さらに環状構造は2環以上の縮合環であってもよい。ここでいうヘテロ原子としては、窒素原子、酸素原子および硫黄原子からなる群より選択されるものであることが好ましい。形成される環状構造の例として、ベンゼン環、ナフタレン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、イミダゾリン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、シクロヘキサジエン環、シクロヘキセン環、シクロペンタエン環、シクロヘプタトリエン環、シクロヘプタジエン環、シクロヘプタエン環、フラン環、チオフェン環、ナフチリジン環、キノキサリン環、キノリン環などを挙げることができる。例えばフェナントレン環やトリフェニレン環のように多数の環が縮合した環を形成してもよい。一般式(7)で表される基に含まれる環の数は3~5の範囲内から選択してもよく、5~7の範囲内から選択してもよい。
 R41~R48が採りうる置換基として、上記の置換基群Bの基を挙げることができ、好ましくは炭素数1~10の無置換のアルキル基、または炭素数1~10の無置換のアルキル基で置換されていてもよい炭素数6~10のアリール基である。本発明の好ましい一態様では、R41~R48は水素原子または炭素数1~10の無置換のアルキル基である。本発明の好ましい一態様では、R41~R48は水素原子または炭素数6~10の無置換のアリール基である。本発明の好ましい一態様では、R41~R48はすべてが水素原子である。
 一般式(7)において、*は結合位置を表す。
L11 in general formula (7) represents a single bond or a divalent linking group. The description and preferred range of L 11 can be referred to the description and preferred range of L 2 above.
Each of R 41 to R 48 in general formula (7) independently represents a hydrogen atom or a substituent. R 41 and R 42 , R 42 and R 43 , R 43 and R 44 , R 44 and R 45 , R 45 and R 46 , R 46 and R 47 , R 47 and R 48 are bonded together to form a cyclic structure. may be formed. The cyclic structure formed by bonding to each other may be an aromatic ring or an alicyclic ring, or may contain a heteroatom, and the cyclic structure may be a condensed ring of two or more rings. . The heteroatoms referred to here are preferably those selected from the group consisting of nitrogen atoms, oxygen atoms and sulfur atoms. Examples of cyclic structures formed include benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, imidazoline ring, oxazole ring, isoxazole ring, thiazole ring, iso thiazole ring, cyclohexadiene ring, cyclohexene ring, cyclopentaene ring, cycloheptatriene ring, cycloheptadiene ring, cycloheptaene ring, furan ring, thiophene ring, naphthyridine ring, quinoxaline ring, quinoline ring and the like. . For example, a ring formed by condensing a large number of rings such as a phenanthrene ring or a triphenylene ring may be formed. The number of rings contained in the group represented by general formula (7) may be selected from the range of 3-5, or may be selected from the range of 5-7.
Examples of substituents that R 41 to R 48 can take include the groups of the above substituent group B, preferably unsubstituted alkyl groups having 1 to 10 carbon atoms or unsubstituted alkyl groups having 1 to 10 carbon atoms. It is an aryl group having 6 to 10 carbon atoms which may be substituted with an alkyl group. In a preferred embodiment of the present invention, R 41 to R 48 are hydrogen atoms or unsubstituted alkyl groups having 1 to 10 carbon atoms. In a preferred embodiment of the present invention, R 41 to R 48 are hydrogen atoms or unsubstituted aryl groups having 6 to 10 carbon atoms. In a preferred embodiment of the present invention, all of R 41 to R 48 are hydrogen atoms.
In general formula (7), * represents a bonding position.
 本発明の好ましい一態様では、遅延蛍光材料としてアザベンゼン誘導体を用いる。本発明の好ましい一態様では、アザベンゼン誘導体は、ベンゼン環の環骨格構成炭素原子の3つが窒素原子に置換したアザベンゼン構造を有する。例えば、1,3,5-トリアジン構造を有するアザベンゼン誘導体を好ましく選択することができる。本発明の好ましい一態様では、アザベンゼン誘導体は、ベンゼン環の環骨格構成炭素原子の2つが窒素原子に置換したアザベンゼン構造を有する。例えば、ピリダジン構造、ピリミジン構造、ピラジン構造を有するアザベンゼン誘導体を挙げることができ、ピリミジン構造を有するアザベンゼン誘導体を好ましく選択することができる。本発明の一態様では、アザベンゼン誘導体は、ベンゼン環の環骨格構成炭素原子の1つが窒素原子に置換したピリジン構造を有する。 A preferred embodiment of the present invention uses an azabenzene derivative as the delayed fluorescence material. In a preferred embodiment of the present invention, the azabenzene derivative has an azabenzene structure in which three of the ring skeleton-constituting carbon atoms of the benzene ring are substituted with nitrogen atoms. For example, an azabenzene derivative having a 1,3,5-triazine structure can be preferably selected. In a preferred embodiment of the present invention, the azabenzene derivative has an azabenzene structure in which two of the ring skeleton-constituting carbon atoms of the benzene ring are substituted with nitrogen atoms. For example, azabenzene derivatives having a pyridazine structure, a pyrimidine structure, and a pyrazine structure can be mentioned, and azabenzene derivatives having a pyrimidine structure can be preferably selected. In one aspect of the present invention, the azabenzene derivative has a pyridine structure in which one of the ring skeleton-constituting carbon atoms of the benzene ring is substituted with a nitrogen atom.
 本発明の好ましい一態様では、遅延蛍光材料として下記一般式(8)で表される化合物を用いる。
Figure JPOXMLDOC01-appb-C000044
 一般式(8)において、Y、YおよびYは、少なくとも1つが窒素原子で残りがメチン基を表す。本発明の一態様では、Yが窒素原子で、YおよびYがメチン基である。好ましくはYおよびYが窒素原子で、Yがメチン基である。より好ましくは、Y~Yのすべてが窒素原子である。
 一般式(8)において、Z~Zは、各々独立に水素原子または置換基を表すが、少なくとも1つはドナー性の置換基である。ドナー性の置換基は、ハメットのσp値が負の基を意味する。好ましくは、Z~Zの少なくとも1つは、ジアリールアミノ構造(窒素原子に結合する2つのアリール基は互いに結合していてもよい)を含む基であり、より好ましくは上記一般式(6)で表される基であり、例えば上記一般式(7)で表される基である。本発明の一態様では、Z~Zの1つだけが一般式(6)または(7)で表される基である。本発明の一態様では、Z~Zの2つだけが各々独立に一般式(6)または(7)で表される基である。本発明の一態様では、Z~Zのすべてが各々独立に一般式(6)または(7)で表される基である。一般式(6)および一般式(7)の詳細と好ましい範囲については、上記の対応する記載を参照することができる。一般式(6)および一般式(7)で表される基ではない、残りのZ~Zは、置換もしくは無置換のアリール基(例えば炭素数6~40、好ましくは6~20)であることが好ましく、ここでいうアリール基の置換基としては、アリール基(例えば炭素数6~20、好ましくは6~14)およびアルキル基(例えば炭素数1~20、好ましくは1~6)からなる群より選択される1つの基または2つ以上を組み合わせてできる基を例示することができる。本発明の一態様では、一般式(8)はシアノ基を含まない。
In a preferred embodiment of the present invention, a compound represented by the following general formula (8) is used as the delayed fluorescence material.
Figure JPOXMLDOC01-appb-C000044
In general formula (8), at least one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the rest represent methine groups. In one aspect of the invention, Y 1 is a nitrogen atom and Y 2 and Y 3 are methine groups. Y 1 and Y 2 are preferably nitrogen atoms and Y 3 is preferably a methine group. More preferably, all of Y 1 to Y 3 are nitrogen atoms.
In general formula (8), Z 1 to Z 3 each independently represent a hydrogen atom or a substituent, at least one of which is a donor substituent. A donor substituent means a group having a negative Hammett's σp value. Preferably, at least one of Z 1 to Z 3 is a group containing a diarylamino structure (two aryl groups bonded to the nitrogen atom may be bonded to each other), more preferably the general formula (6 ), for example, a group represented by the general formula (7). In one aspect of the present invention, only one of Z 1 to Z 3 is a group represented by general formula (6) or (7). In one aspect of the present invention, only two of Z 1 to Z 3 are each independently a group represented by general formula (6) or (7). In one aspect of the present invention, all of Z 1 to Z 3 are each independently a group represented by general formula (6) or (7). For details and preferred ranges of general formulas (6) and (7), reference can be made to the corresponding description above. The remaining Z 1 to Z 3 that are not groups represented by general formulas (6) and (7) are substituted or unsubstituted aryl groups (eg, 6 to 40 carbon atoms, preferably 6 to 20 carbon atoms). The substituents of the aryl group referred to herein include an aryl group (eg, 6 to 20 carbon atoms, preferably 6 to 14 carbon atoms) and an alkyl group (eg, 1 to 20 carbon atoms, preferably 1 to 6). One group selected from the group or a group formed by combining two or more groups can be exemplified. In one aspect of the present invention, general formula (8) does not contain a cyano group.
 本発明の好ましい一態様では、遅延蛍光材料として下記一般式(9)で表される化合物を用いる。
Figure JPOXMLDOC01-appb-C000045
 一般式(9)において、Ar1は、下記AおよびDに置換されていてもよい環状構造を形成し、ベンゼン環、ナフタレン環、アントラセン環、またはフェナントレン環を表す。Ar、Arは、それぞれ環状構造を形成していてもよく、環状構造を形成している場合はベンゼン環、ナフタレン環、ピリジン環、またはシアノ基で置換されたベンゼン環を表す。m1は0~2のいずれかの整数を表し、m2は0~1のいずれかの整数を表す。Aはシアノ基、フェニル基、ピリミジル基、トリアジル基、もしくはベンゾニトリル基を表す。Dは、置換もしくは無置換の5H-インドロ[3,2,1-de]フェナジンー5-イル基、またはナフタレン構造を含まない置換もしくは無置換のヘテロ環縮合カルバゾリル基を表し、一般式(9)中に複数のDが存在する場合それらは同一でも異なっていてもよい。また、Dの置換基は、互いに結合して環状構造を形成していてもよい。
 本発明の好ましい一態様では、Ar1は置換されていてもよいフェナントレン環であり、より好ましくは置換されているフェナントレン環である。本発明の好ましい一態様では、フェナントレン環に置換されている置換基の数は1である。本発明の好ましい一態様では、フェナントレン環に置換されている置換基の数は2である。本発明の一態様では、Ar、Arの一方だけが環状構造を形成している。本発明の好ましい一態様では、Ar、Arはともに環状構造を形成している。
In a preferred embodiment of the present invention, a compound represented by the following general formula (9) is used as the delayed fluorescence material.
Figure JPOXMLDOC01-appb-C000045
In general formula (9), Ar 1 forms a cyclic structure that may be substituted with A 1 and D 1 below, and represents a benzene ring, naphthalene ring, anthracene ring, or phenanthrene ring. Ar 2 and Ar 3 each may form a cyclic structure, and when they form a cyclic structure, they represent a benzene ring, a naphthalene ring, a pyridine ring, or a cyano-substituted benzene ring. m1 represents an integer of 0 to 2; m2 represents an integer of 0 to 1; A1 represents a cyano group, a phenyl group, a pyrimidyl group, a triazyl group, or a benzonitrile group. D 1 represents a substituted or unsubstituted 5H-indolo[3,2,1-de]phenazin-5-yl group or a substituted or unsubstituted heterocyclic condensed carbazolyl group containing no naphthalene structure; ), they may be the same or different. Also, the substituents of D 1 may be bonded to each other to form a cyclic structure.
In one preferred embodiment of the present invention, Ar 1 is an optionally substituted phenanthrene ring, more preferably a substituted phenanthrene ring. In a preferred embodiment of the present invention, the number of substituents on the phenanthrene ring is one. In a preferred embodiment of the present invention, the number of substituents on the phenanthrene ring is two. In one aspect of the present invention, only one of Ar 2 and Ar 3 forms a cyclic structure. In a preferred embodiment of the present invention, both Ar 2 and Ar 3 form a cyclic structure.
 以下に、遅延蛍光材料として用いることができる好ましい化合物を挙げるが、本発明で用いることができる遅延蛍光材料はこれらの具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-I000048
Figure JPOXMLDOC01-appb-I000049
Figure JPOXMLDOC01-appb-I000050
Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-I000052
Figure JPOXMLDOC01-appb-I000053
Figure JPOXMLDOC01-appb-I000054
Preferred compounds that can be used as the delayed fluorescence material are listed below, but the delayed fluorescence material that can be used in the present invention is not limited to these specific examples.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-I000048
Figure JPOXMLDOC01-appb-I000049
Figure JPOXMLDOC01-appb-I000050
Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-I000052
Figure JPOXMLDOC01-appb-I000053
Figure JPOXMLDOC01-appb-I000054
 本発明では、上記以外にも公知の遅延蛍光材料を一般式(1)で表される化合物と適宜組み合わせて用いることができる。また、知られていない遅延蛍光材料であっても、用いることが可能である。
 遅延蛍光材料として、WO2013/154064号公報の段落0008~0048および0095~0133、WO2013/011954号公報の段落0007~0047および0073~0085、WO2013/011955号公報の段落0007~0033および0059~0066、WO2013/081088号公報の段落0008~0071および0118~0133、特開2013-256490号公報の段落0009~0046および0093~0134、特開2013-116975号公報の段落0008~0020および0038~0040、WO2013/133359号公報の段落0007~0032および0079~0084、WO2013/161437号公報の段落0008~0054および0101~0121、特開2014-9352号公報の段落0007~0041および0060~0069、特開2014-9224号公報の段落0008~0048および0067~0076、特開2017-119663号公報の段落0013~0025、特開2017-119664号公報の段落0013~0026、特開2017-222623号公報の段落0012~0025、特開2017-226838号公報の段落0010~0050、特開2018-100411号公報の段落0012~0043、WO2018/047853号公報の段落0016~0044に記載される一般式に包含される化合物、特に例示化合物であって、遅延蛍光を放射するものを挙げることができる。また、特開2013-253121号公報、WO2013/133359号公報、WO2014/034535号公報、WO2014/115743号公報、WO2014/122895号公報、WO2014/126200号公報、WO2014/136758号公報、WO2014/133121号公報、WO2014/136860号公報、WO2014/196585号公報、WO2014/189122号公報、WO2014/168101号公報、WO2015/008580号公報、WO2014/203840号公報、WO2015/002213号公報、WO2015/016200号公報、WO2015/019725号公報、WO2015/072470号公報、WO2015/108049号公報、WO2015/080182号公報、WO2015/072537号公報、WO2015/080183号公報、特開2015-129240号公報、WO2015/129714号公報、WO2015/129715号公報、WO2015/133501号公報、WO2015/136880号公報、WO2015/137244号公報、WO2015/137202号公報、WO2015/137136号公報、WO2015/146541号公報、WO2015/159541号公報、WO2019/191665の62~159頁、WO2020/111205の[0028]~[0056]に記載される発光材料であって、遅延蛍光を放射するものを採用することもできる。なお、この段落に記載される上記の公報は、本明細書の一部としてここに引用している。
In the present invention, known delayed fluorescence materials other than those described above can be used in appropriate combination with the compound represented by general formula (1). Moreover, even unknown delayed fluorescence materials can be used.
As the delayed fluorescence material, paragraphs 0008 to 0048 and 0095 to 0133 of WO2013/154064, paragraphs 0007 to 0047 and 0073 to 0085 of WO2013/011954, paragraphs 0007 to 0033 and 0059 to 0066 of WO2013/011955, Paragraphs 0008 to 0071 and 0118 to 0133 of WO2013/081088, paragraphs 0009 to 0046 and 0093 to 0134 of JP 2013-256490, paragraphs 0008 to 0020 and 0038 to 0040 of JP 2013-116975, WO2013 / Paragraphs 0007 to 0032 and 0079 to 0084 of 133359, paragraphs 0008 to 0054 and 0101 to 0121 of WO2013/161437, paragraphs 0007 to 0041 and 0060 to 0069 of JP 2014-9352, JP 2014- 9224, paragraphs 0008 to 0048 and 0067 to 0076, JP 2017-119663, paragraphs 0013 to 0025, JP 2017-119664, paragraphs 0013 to 0026, JP 2017-222623, paragraph 0012 to 0025, paragraphs 0010 to 0050 of JP-A-2017-226838, paragraphs 0012-0043 of JP-A-2018-100411, and compounds encompassed by the general formulas described in paragraphs 0016-0044 of WO2018/047853, In particular, exemplary compounds that emit delayed fluorescence can be mentioned. Further, JP 2013-253121, WO2013/133359, WO2014/034535, WO2014/115743, WO2014/122895, WO2014/126200, WO2014/136758, WO2014/13 3121 Publications, WO2014/136860, WO2014/196585, WO2014/189122, WO2014/168101, WO2015/008580, WO2014/203840, WO2015/002213, WO2015/ 016200 publication, WO2015/019725, WO2015/072470, WO2015/108049, WO2015/080182, WO2015/072537, WO2015/080183, JP 2015-129240, WO2015/129 714 publication, WO2015/129715, WO2015/133501, WO2015/136880, WO2015/137244, WO2015/137202, WO2015/137136, WO2015/146541, WO2015/15 9541, WO2019/ 191665, pp. 62-159, and WO2020/111205 [0028]-[0056], which emit delayed fluorescence and which emit delayed fluorescence. The above publications mentioned in this paragraph are hereby incorporated by reference as part of this specification.
 本発明で用いる遅延蛍光材料は金属原子を含まないことが好ましい。例えば、遅延蛍光材料として、炭素原子、水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子からなる化合物を選択することができる。例えば、遅延蛍光材料として、炭素原子、水素原子、窒素原子および酸素原子からなる群より選択される原子からなる化合物を選択することができる。例えば、遅延蛍光材料として、炭素原子、水素原子および窒素原子からなる化合物を選択することができる。 The delayed fluorescence material used in the present invention preferably does not contain metal atoms. For example, as the delayed fluorescence material, a compound composed of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms and sulfur atoms can be selected. For example, as the delayed fluorescence material, a compound composed of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms can be selected. For example, a compound composed of carbon atoms, hydrogen atoms and nitrogen atoms can be selected as the delayed fluorescence material.
(組成物)
 本発明の組成物は、一般式(1)で表される化合物と遅延蛍光材料を含む。本発明の一態様では、組成物は、1種以上の一般式(1)で表される化合物と、1種以上の遅延蛍光材料だけで構成される。本発明の一態様では、組成物は、1種の一般式(1)で表される化合物と、1種の遅延蛍光材料だけで構成される。本発明の一態様では、組成物は一般式(1)で表される化合物と遅延蛍光材料以外に第3の成分を含む。ここでいう第3の成分は、一般式(1)で表される化合物ではなく、また、遅延蛍光材料でもない。第3の成分は1種のみ含まれていてもよいし、2種以上が含まれていてもよい。組成物における第3の成分の含有量は、30重量%以下の範囲内で選択してもよいし、10重量%以下の範囲内で選択してもよいし、1重量%以下の範囲内で選択してもよいし、0.1重量%以下の範囲内で選択してもよい。本発明の一態様では、第3成分は発光しない。本発明の一態様では、第3成分は蛍光を発光する。本発明の好ましい一態様では、本発明組成物からの発光の最大成分は蛍光(遅延蛍光を含む)である。
 本発明の組成物において、一般式(1)で表される化合物は遅延蛍光材料よりも重量基準の含有量が多い。一般式(1)で表される化合物の含有量は、遅延蛍光材料の含有量の3重量倍以上の範囲内で選択してもよいし、10重量倍以上の範囲内で選択してもよいし、100重量倍以上の範囲内で選択してもよいし、1000重量倍以上の範囲内で選択してもよく、また、例えば10000重量倍以下の範囲内で選択してもよい。
 本発明の組成物では、一般式(1)で表される化合物の励起一重項エネルギーよりも小さい励起一重項エネルギーを有する遅延蛍光材料を選択することが好ましい。励起一重項エネルギーの差は、0.1eV以上としたり、0.3eV以上としたり、0.5eV以上としたりしてもよく、2eV以下としたり、1.5eV以下としたり、1.0eV以下としたりしてもよい。
 本発明の組成物は、金属元素を含まないことが好ましい。本発明の一態様では、本発明の組成物は炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、ホウ素原子およびハロゲン原子からなる群より選択される原子のみからなる。本発明の一態様では、本発明の組成物は炭素原子、水素原子、窒素原子および酸素原子からなる群より選択される原子のみからなる。
(Composition)
The composition of the present invention contains a compound represented by formula (1) and a delayed fluorescence material. In one aspect of the present invention, the composition is composed only of one or more compounds represented by general formula (1) and one or more delayed fluorescence materials. In one aspect of the present invention, the composition comprises only one type of compound represented by general formula (1) and one type of delayed fluorescence material. In one aspect of the present invention, the composition contains a third component in addition to the compound represented by formula (1) and the delayed fluorescence material. The third component here is neither the compound represented by the general formula (1) nor the delayed fluorescence material. Only one type of the third component may be contained, or two or more types may be contained. The content of the third component in the composition may be selected within the range of 30% by weight or less, may be selected within the range of 10% by weight or less, or may be selected within the range of 1% by weight or less. It may be selected, or may be selected within the range of 0.1% by weight or less. In one aspect of the invention, the third component does not emit light. In one aspect of the invention, the third component emits fluorescence. In one preferred aspect of the present invention, the largest component of luminescence from the composition of the present invention is fluorescence (including delayed fluorescence).
In the composition of the present invention, the content of the compound represented by general formula (1) is greater than that of the delayed fluorescence material on a weight basis. The content of the compound represented by the general formula (1) may be selected within a range of 3 times or more by weight the content of the delayed fluorescence material, or may be selected within a range of 10 times or more by weight. However, it may be selected within a range of 100 times by weight or more, may be selected within a range of 1000 times by weight or more, or may be selected within a range of, for example, 10000 times by weight or less.
In the composition of the present invention, it is preferable to select a delayed fluorescence material having an excited singlet energy smaller than the excited singlet energy of the compound represented by formula (1). The difference in excited singlet energy may be 0.1 eV or more, 0.3 eV or more, or 0.5 eV or more, and may be 2 eV or less, 1.5 eV or less, or 1.0 eV or less. You can
The composition of the present invention preferably does not contain metal elements. In one aspect of the invention, the composition of the invention consists exclusively of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms, sulfur atoms, boron atoms and halogen atoms. In one aspect of the invention, the composition of the invention consists exclusively of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms.
 また、本発明の一態様では、一般式(1)で表される化合物は、遅延蛍光材料および蛍光性化合物とともに用いるためのホスト材料として有用である。このため、本発明の一態様では、本発明の組成物は一般式(1)で表される化合物と遅延蛍光材料の他に蛍光性化合物も含む。 In addition, in one aspect of the present invention, the compound represented by general formula (1) is useful as a host material for use with a delayed fluorescence material and a fluorescent compound. Therefore, in one aspect of the present invention, the composition of the present invention contains a fluorescent compound in addition to the compound represented by formula (1) and the delayed fluorescent material.
 蛍光性化合物は、一般式(1)で表される化合物および遅延蛍光材料よりも最低励起一重項エネルギー(ES1)が小さいことが好ましい。蛍光性化合物は、励起一重項状態の一般式(1)で表される化合物および遅延蛍光材料と、励起三重項状態から逆項間交差して励起一重項状態になった遅延蛍光材料からエネルギーを受け取って一重項励起状態に遷移し、その後基底状態に戻るときに蛍光を放射する。蛍光性化合物としては、このように一般式(1)で表される化合物および遅延蛍光材料からエネルギーを受け取って蛍光を放射し得るものであれば特に限定されず、発光は蛍光であっても、遅延蛍光であっても構わない。中でも、蛍光性化合物として用いる発光体は、最低励起一重項エネルギー準位から基底エネルギー準位に戻るときに蛍光を放射するものであることが好ましい。蛍光性化合物は、2種以上を用いてもよい。例えば、発光色が異なる2種以上の蛍光性化合物を併用することにより、所望の色を発光させることが可能になる。
 蛍光性化合物としては、アントラセン誘導体、テトラセン誘導体、ナフタセン誘導体、ピレン誘導体、ペリレン誘導体、クリセン誘導体、ルブレン誘導体、クマリン誘導体、ピラン誘導体、スチルベン誘導体、フルオレン誘導体、アントリル誘導体、ピロメテン誘導体、ターフェニル誘導体、ターフェニレン誘導体、フルオランテン誘導体、アミン誘導体、キナクリドン誘導体、オキサジアゾール誘導体、マロノニトリル誘導体、ピラン誘導体、カルバゾール誘導体、ジュロリジン誘導体、チアゾール誘導体、金属(Al,Zn)を有する誘導体、ジアザボラナフトアントラセン等の含ホウ素多環芳香族骨格を持つ化合物等の多重共鳴効果を有する化合物等を用いることが可能である。これらの例示骨格には置換基を有してもよいし、置換基を有していなくてもよい。また、これらの例示骨格どうしを組み合わせてもよい。
The fluorescent compound preferably has a lower lowest excited singlet energy (E S1 ) than the compound represented by formula (1) and the delayed fluorescent material. The fluorescent compound absorbs energy from the compound represented by general formula (1) in the excited singlet state, the delayed fluorescent material, and the delayed fluorescent material in the excited singlet state through inverse intersystem crossing from the excited triplet state. It receives and transitions to a singlet excited state, and then emits fluorescence when returning to the ground state. The fluorescent compound is not particularly limited as long as it can receive energy from the compound represented by the general formula (1) and the delayed fluorescence material and emit fluorescence. It may be delayed fluorescence. Among them, the luminescent material used as the fluorescent compound preferably emits fluorescence when returning from the lowest excited singlet energy level to the ground energy level. Two or more fluorescent compounds may be used. For example, by using two or more fluorescent compounds with different emission colors, it is possible to emit light of a desired color.
Fluorescent compounds include anthracene derivatives, tetracene derivatives, naphthacene derivatives, pyrene derivatives, perylene derivatives, chrysene derivatives, rubrene derivatives, coumarin derivatives, pyran derivatives, stilbene derivatives, fluorene derivatives, anthryl derivatives, pyrromethene derivatives, terphenyl derivatives, terphenyl derivatives, Phenylene derivatives, fluoranthene derivatives, amine derivatives, quinacridone derivatives, oxadiazole derivatives, malononitrile derivatives, pyran derivatives, carbazole derivatives, julolidine derivatives, thiazole derivatives, derivatives containing metals (Al, Zn), diazaboranaphthoanthracene, etc. A compound having a multiple resonance effect such as a compound having a boron polycyclic aromatic skeleton can be used. These exemplified skeletons may or may not have a substituent. Also, these exemplary skeletons may be combined.
 蛍光性化合物の具体例としては、遅延蛍光材料の具体例として挙げた化合物を挙げることができる。このとき、本発明の組成物には2種以上の遅延蛍光材料が含まれることになるが、最低励起一重項エネルギーがより高い方がアシストドーパントとして機能し、最低励起一重項エネルギーがより低い方が主として発光する蛍光性化合物として機能する。蛍光性化合物として用いられる化合物は、60%以上のPL発光量子収率を示すことが好ましく、80%以上であることがより好ましい。また、蛍光性化合物として用いられる化合物は、50ns以下の瞬時蛍光寿命を示すことが好ましく、20ns以下であることがより好ましい。この時の瞬時蛍光寿命とは、熱活性型遅延蛍光を示す化合物について、発光寿命測定を行った時に観測される複数の指数減衰成分のうち最も早く減衰する成分の発光寿命のことである。また、第3化合物として用いられる化合物は、最低励起一重項(S1)から基底状態への蛍光放射速度がS1から最低励起三重項(T1)への項間交差速度よりも大きいことが好ましい。化合物の速度定数の算出方法については、熱活性型遅延蛍光材料に関する公知の文献(H. Uoyama, et al., Nature 492, 234 (2012)やK. Masui, et al., Org. Electron. 14, 2721, (2013)等)を参照することができる。 Specific examples of the fluorescent compound include the compounds given as specific examples of the delayed fluorescence material. At this time, the composition of the present invention contains two or more delayed fluorescence materials, and the one with the higher lowest singlet excited energy functions as an assist dopant, and the one with the lower lowest singlet excited energy functions as a fluorescent compound that mainly emits light. The compound used as the fluorescent compound preferably exhibits a PL emission quantum yield of 60% or more, more preferably 80% or more. The compound used as the fluorescent compound preferably exhibits an instantaneous fluorescence lifetime of 50 ns or less, more preferably 20 ns or less. The instantaneous fluorescence lifetime at this time is the luminescence lifetime of the fastest decaying component among multiple exponentially decaying components observed when luminescence lifetime measurement is performed for a compound exhibiting thermally activated delayed fluorescence. The compound used as the third compound preferably has a fluorescence emission rate from the lowest excited singlet (S1) to the ground state higher than an intersystem crossing rate from S1 to the lowest excited triplet (T1). Regarding the calculation method of the rate constant of the compound, the known literature on thermally activated delayed fluorescence materials (H. Uoyama, et al., Nature 492, 234 (2012) and K. Masui, et al., Org. Electron. 14 , 2721, (2013), etc.).
 以下に、遅延蛍光材料とともに用いる蛍光性化合物として用いることができる好ましい化合物を挙げるが、本発明で用いることができる蛍光性化合物はこれらの具体例により限定的に解釈されることはない。 Preferred compounds that can be used as fluorescent compounds that are used together with the delayed fluorescent material are listed below, but the fluorescent compounds that can be used in the present invention are not limited to these specific examples.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-I000056
Figure JPOXMLDOC01-appb-I000057
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-I000056
Figure JPOXMLDOC01-appb-I000057
 また、WO2015/022974号公報の段落0220~0239に記載の化合物も、本発明の蛍光性化合物として、特に好ましく採用することができる。 In addition, the compounds described in paragraphs 0220 to 0239 of WO2015/022974 can also be particularly preferably employed as the fluorescent compound of the present invention.
 アシストドーパント、またはアシストドーパントよりも最低励起一重項エネルギーが低い蛍光性化合物として用いる遅延蛍光材料として、本発明では多重共鳴効果を発現する化合物を用いることも好ましい。多重共鳴効果を発現する化合物としては、Adv. Mater. 2016, 28, 2777-2781等に記載される5,9-Diphenyl-5H,9H-[1,4]benzazaborino[2,3,4-kl]phenazaborine (DABNA-1)が知られている。また、DABNA-1を修飾することによって、最高被遷移分子軌道(HOMO)および最低空分子軌道(LUMO)などのエネルギー準位を調整し、発光へと寄与する蛍光放射過程や逆系間交差過程を促進した誘導体も知られている(Angew. Chem. Int. Ed. 2018, 57, 11316-11320)。このような多重共鳴効果を発現する化合物も本発明で広く採用することができる。
 多重共鳴効果を発現する化合物として、例えば下記の一般式で表される化合物を採用することができる。
Figure JPOXMLDOC01-appb-C000058
In the present invention, it is also preferable to use a compound exhibiting a multiple resonance effect as an assist dopant or a delayed fluorescence material used as a fluorescent compound having a lowest excited singlet energy lower than that of the assist dopant. Compounds exhibiting multiple resonance effects include 5,9-Diphenyl-5H,9H-[1,4]benzazaborino[2,3,4-kl] described in Adv. Mater. 2016, 28, 2777-2781 ]phenazaborine (DABNA-1) is known. In addition, by modifying DABNA-1, energy levels such as the highest transferred molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) can be adjusted to contribute to light emission. is also known (Angew. Chem. Int. Ed. 2018, 57, 11316-11320). Compounds exhibiting such multiple resonance effects can also be widely employed in the present invention.
For example, a compound represented by the following general formula can be used as the compound that exhibits the multiple resonance effect.
Figure JPOXMLDOC01-appb-C000058
 一般式(10)において、XおよびXは各々独立にOまたはSを表す。
 YおよびYは各々独立に単結合、O、SまたはC(R)(R)を表す。
 R1’~R22 ’、R、Rは、各々独立に水素原子、重水素原子または置換基を表すが、R1’~R22 ’の少なくとも1個は置換基である。
 R1’とR2’、R2’とR3’、R3’とR4’、R5’とR6’、R6’とR7’、R7’とY、YとR8’、R8’とR9’、R9’とR10’、R10’とR11’、R12’とR13’、R13’とR14’、R14’とR15’、R16’とR17’、R17’とR18’、R18’とY、YとR19’、R19’とR20’、R20’とR21’、R21’とR22’は互いに結合して環状構造を形成していてもよい。R21’とR1’、R4’とR5’、R10’とR12’、R15’とR16’は互いに結合して環状構造を形成していない。
 一般式(10)中のC-R1’、C-R2’、C-R3’、C-R4’、C-R5’、C-R6’、C-R7’、C-R8’、C-R9’、C-R10’、C-R11’、C-R12’、C-R13’、C-R14’、C-R15’、C-R16’、C-R17’、C-R18’、C-R19’、C-R20’、C-R21’、C-R22’は、Nに置換されていてもよい。
 以下において、一般式(10)で表される化合物の具体例を挙げるが、本発明で用いることができる一般式(10)で表される化合物は下記の具体例により限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000059
In general formula (10), X 1 and X 2 each independently represent O or S;
Y 1 and Y 2 each independently represent a single bond, O, S or C(R a )(R b ).
R 1′ to R 22′ , R a and R b each independently represent a hydrogen atom, a deuterium atom or a substituent, and at least one of R 1′ to R 22′ is a substituent.
R 1′ and R 2′ , R 2′ and R 3′ , R 3′ and R 4′ , R 5′ and R 6′ , R 6′ and R 7′ , R 7′ and Y 1 , Y 1 and R 8′ , R 8′ and R 9′ , R 9′ and R 10′ , R 10′ and R 11′ , R 12′ and R 13′ , R 13′ and R 14 , R 14′ and R 15 ' , R 16' and R 17' , R 17' and R 18' , R 18' and Y 2 , Y 2 and R 19' , R 19' and R 20' , R 20' and R 21' , R 21 ' and R 22 ' may combine with each other to form a cyclic structure. R 21′ and R 1′ , R 4′ and R 5′ , R 10′ and R 12′ , R 15′ and R 16′ are not bonded to each other to form a cyclic structure.
CR 1′ , CR 2′ , CR 3′ , CR 4′ , CR 5′ , CR 6 , CR 7′ , C in general formula (10) —R 8′ , CR 9′ , CR 10′ , CR 11′ , CR 12′ , CR 13′ , CR 14′ , CR 15′ , CR 16′ , CR 17′ , CR 18′ , CR 19′ , CR 20′ , CR 21 ′ and CR 22′ may be substituted with N;
Specific examples of the compound represented by the general formula (10) are given below, but the compound represented by the general formula (10) that can be used in the present invention should be construed to be limited by the following specific examples. no.
Figure JPOXMLDOC01-appb-C000059
 また、本発明の一態様では、一般式(1)で表される化合物を他のホスト材料とともに用いて、複数のホスト材料を含む発光層(組成物)として用いることができる。すなわち、本発明の一態様では、本発明の組成物は一般式(1)で表される化合物を含む複数のホスト材料を含有する。本発明の組成物には、一般式(1)で表される複数種の化合物を用いてもよいし、一般式(1)で表される化合物と一般式(1)で表されないホスト材料を組み合わせて用いてもよい。
 以下に、一般式(1)で表される化合物とともに用いられる第二のホスト材料として用いることができる好ましい化合物を挙げるが、本発明で用いることができる第二のホスト材料はこれらの具体例により限定的に解釈されることはない。
In one embodiment of the present invention, the compound represented by General Formula (1) can be used together with another host material for a light-emitting layer (composition) containing a plurality of host materials. That is, in one aspect of the present invention, the composition of the present invention contains a plurality of host materials containing the compound represented by general formula (1). In the composition of the present invention, a plurality of types of compounds represented by general formula (1) may be used, or a compound represented by general formula (1) and a host material not represented by general formula (1) may be used. They may be used in combination.
Preferred compounds that can be used as the second host material together with the compound represented by the general formula (1) are listed below. It should not be interpreted restrictively.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-I000061
Figure JPOXMLDOC01-appb-I000062
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-I000061
Figure JPOXMLDOC01-appb-I000062
 本発明の組成物の形態は特に制限されない。本発明の特に好ましい一態様では、本発明の組成物は膜(フィルム)状である。本発明の組成物からなる膜は湿式工程で形成してもよいし、乾式工程で形成してもよい。
 湿式工程では、本発明の組成物を溶解した溶液を面に塗布し、溶媒の除去後に発光層を形成する。湿式工程として、スピンコート法、スリットコート法、インクジェット法(スプレー法)、グラビア印刷法、オフセット印刷法、フレキソ印刷法を挙げることができるが、これらに限定されるものではない。湿式工程では、本発明の組成物を溶解することができる適切な有機溶媒を選択して用いる。ある実施形態では、本発明の組成物に含まれる化合物に、有機溶媒に対する溶解性を上げる置換基(例えばアルキル基)を導入することができる。
 乾式工程としては真空蒸着法を好ましく採用することができる。真空蒸着法を採用する場合は、本発明の組成物を構成する各化合物を個別の蒸着源から共蒸着させてもよいし、全化合物を混合した単一の蒸着源から共蒸着させてもよい。単一の蒸着源を用いる場合は、全化合物の粉末を混合した混合粉を用いてもよいし、その混合粉を圧縮した圧縮成形体を用いてもよいし、各化合物を加熱溶融して混合した後に冷却した混合物を用いてもよい。ある実施形態では、単一の蒸着源に含まれる複数の化合物の蒸着速度(重量減少速度)が一致ないしほぼ一致する条件で共蒸着を行うことにより、蒸着源に含まれる複数の化合物の組成比に対応する組成比の膜を形成することができる。形成される膜の組成比と同じ組成比で複数の化合物を混合して蒸着源とすれば、所望の組成比を有する膜を簡便に形成することができる。ある実施形態では、共蒸着される各化合物が同じ重量減少率になる温度を特定して、その温度を共蒸着時の温度として採用することができる。膜を蒸着法により製膜する場合は、組成物を構成する各化合物の分子量は1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、900以下であることがさらにより好ましい。分子量の下限値は、例えば450であったり、500であったり、600であったりしてもよい。
The form of the composition of the present invention is not particularly limited. In a particularly preferred embodiment of the invention, the composition of the invention is in the form of a film. A film comprising the composition of the present invention may be formed by a wet process or a dry process.
In the wet process, a solution in which the composition of the present invention is dissolved is applied to the surface, and the luminescent layer is formed after removing the solvent. Examples of wet processes include spin coating, slit coating, inkjet (spray), gravure printing, offset printing, and flexographic printing, but are not limited to these. In the wet process, a suitable organic solvent is selected and used that is capable of dissolving the composition of the present invention. In certain embodiments, compounds included in the compositions of the present invention can be introduced with substituents (eg, alkyl groups) that increase their solubility in organic solvents.
A vacuum vapor deposition method can be preferably employed as the dry process. When a vacuum deposition method is employed, each compound constituting the composition of the present invention may be co-deposited from individual deposition sources, or all the compounds may be co-deposited from a single deposition source mixed. . When a single vapor deposition source is used, a mixed powder obtained by mixing powders of all the compounds may be used, a compression molding obtained by compressing the mixed powder may be used, or each compound may be heated and melted and mixed. A mixture that has been cooled after heating may be used. In one embodiment, the composition ratio of the plurality of compounds contained in the vapor deposition source is reduced by co-deposition under conditions in which the vapor deposition rates (weight reduction rates) of the plurality of compounds contained in the single vapor deposition source match or substantially match. It is possible to form a film having a composition ratio corresponding to A film having a desired composition ratio can be easily formed by mixing a plurality of compounds at the same composition ratio as that of the film to be formed, and using this as an evaporation source. In one embodiment, the temperature at which each of the co-deposited compounds has the same weight loss rate can be identified and used as the temperature during co-deposition. When the film is formed by a vapor deposition method, the molecular weight of each compound constituting the composition is preferably 1500 or less, more preferably 1200 or less, further preferably 1000 or less, and 900 or less. It is even more preferred to have The lower limit of the molecular weight may be 450, 500, or 600, for example.
(有機発光素子)
 本発明の組成物からなる発光層を形成することにより、有機フォトルミネッセンス素子(有機PL素子)や有機エレクトロルミネッセンス素子(有機EL素子)などの優れた有機発光素子を提供することができる。本発明の有機発光素子は蛍光発光素子であり、素子からの発光の最大成分は蛍光である(ここでいう蛍光には遅延蛍光が含まれる)。
 発光層の厚さは例えば1~15nmとしたり、2~10nmとしたり、3~7nmとすることができる。
 有機フォトルミネッセンス素子は、基材上に少なくとも発光層を形成した構造を有する。また、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子障壁層、正孔障壁層、電子注入層、電子輸送層、励起子障壁層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。
 本発明の有機発光素子が多波長発光型の有機発光素子であるとき、最も短波長な発光が遅延蛍光を含むものとすることができる。また、最も短波長な発光が遅延蛍光を含まないものとすることもできる。
 本発明の組成物を用いた有機発光素子は、熱的または電子的手段で励起されるとき、紫外領域、可視スペクトルのうち青色、緑色、黄色、オレンジ色、赤色領域(例えば420~500nm、500~600nmまたは600~700nm)または近赤外線領域で光を発することができる。例えば有機発光素子は赤色またはオレンジ色領域(例えば620~780nm)で光を発することができる。例えば有機発光素子はオレンジ色または黄色領域(例えば570~620nm)で光を発することができる。例えば有機発光素子は緑色領域(例えば490~575nm)で光を発することができる。例えば有機発光素子は青色領域(例えば400~490nm)で光を発することができる。例えば有機発光素子は紫外スペクトル領域(例えば280~400nm)で光を発することができる。例えば有機発光素子は赤外スペクトル領域(例えば780nm~2μm)で光を発することができる。
 本発明の組成物を用いた有機発光素子からの発光の最大成分は、本発明の組成物に含まれる遅延蛍光材料からの発光であることが好ましい。一般式(1)で表される化合物からの発光は、有機発光素子からの発光の10%未満であることが好ましく、例えば1%未満、0.1%未満、0.01%未満、検出限界以下であってもよい。遅延蛍光材料からの発光は、有機発光素子からの発光の例えば50%超、90%超、99%超であってもよい。本発明の組成物を含む層(発光層)が第3成分として蛍光材料を含む場合は、有機発光素子からの発光の最大成分はその蛍光材料からの発光であってもよい。その場合は、発光材料からの発光は有機発光素子からの発光の例えば50%超、90%超、99%超であってもよい。
(Organic light-emitting element)
Excellent organic light-emitting devices such as organic photoluminescence devices (organic PL devices) and organic electroluminescence devices (organic EL devices) can be provided by forming a light-emitting layer comprising the composition of the present invention. The organic light-emitting device of the present invention is a fluorescent light-emitting device, and the largest component of light emitted from the device is fluorescence (the fluorescence referred to herein includes delayed fluorescence).
The thickness of the light-emitting layer can be, for example, 1-15 nm, 2-10 nm, or 3-7 nm.
An organic photoluminescence device has a structure in which at least a light-emitting layer is formed on a substrate. Also, the organic electroluminescence element has a structure in which at least an anode, a cathode, and an organic layer are formed between the anode and the cathode. The organic layer includes at least a light-emitting layer, and may consist of only the light-emitting layer, or may have one or more organic layers in addition to the light-emitting layer. Such other organic layers can include hole transport layers, hole injection layers, electron blocking layers, hole blocking layers, electron injection layers, electron transport layers, exciton blocking layers, and the like. The hole transport layer may be a hole injection transport layer having a hole injection function, and the electron transport layer may be an electron injection transport layer having an electron injection function.
When the organic light-emitting device of the present invention is a multi-wavelength light-emitting organic light-emitting device, the emission with the shortest wavelength may include delayed fluorescence. In addition, it is also possible that the emission with the shortest wavelength does not contain delayed fluorescence.
An organic light-emitting device using the composition of the present invention, when excited by thermal or electronic means, has a blue, green, yellow, orange, and red region (for example, 420-500 nm, 500 nm) in the ultraviolet region and the visible spectrum. ~600 nm or 600-700 nm) or in the near infrared region. For example, organic light emitting devices can emit light in the red or orange region (eg, 620-780 nm). For example, organic light emitting devices can emit light in the orange or yellow region (eg, 570-620 nm). For example, an organic light emitting device can emit light in the green region (eg, 490-575 nm). For example, an organic light emitting device can emit light in the blue region (eg, 400-490 nm). For example, organic light emitting devices can emit light in the ultraviolet spectral region (eg, 280-400 nm). For example, organic light emitting devices can emit light in the infrared spectral region (eg, 780 nm to 2 μm).
It is preferable that the largest component of light emitted from the organic light-emitting device using the composition of the present invention is light emitted from the delayed fluorescence material contained in the composition of the present invention. Emission from the compound represented by the general formula (1) is preferably less than 10% of the light emission from the organic light-emitting device, for example, less than 1%, less than 0.1%, less than 0.01%, detection limit It may be below. Emission from the delayed fluorescence material may be, for example, greater than 50%, greater than 90%, greater than 99% of the emission from the organic light emitting device. When the layer containing the composition of the present invention (light-emitting layer) contains a fluorescent material as the third component, the maximum component of light emitted from the organic light-emitting device may be light emitted from the fluorescent material. In that case, the emission from the luminescent material may be, for example, greater than 50%, greater than 90%, greater than 99% of the emission from the organic light emitting device.
 以下において、有機エレクトロルミネッセンス素子の各部材および発光層以外の各層について説明する。 Each member of the organic electroluminescence element and each layer other than the light-emitting layer will be described below.
基材:
 いくつかの実施形態では、本発明の有機エレクトロルミネッセンス素子は基材により保持され、当該基材は特に限定されず、有機エレクトロルミネッセンス素子で一般的に用いられる、例えばガラス、透明プラスチック、クォーツおよびシリコンにより形成されたいずれかの材料を用いればよい。
Base material:
In some embodiments, the organic electroluminescent device of the present invention is held by a substrate, which is not particularly limited and commonly used in organic electroluminescent devices such as glass, transparent plastic, quartz and silicon. Any material formed by
陽極:
 いくつかの実施形態では、有機エレクトロルミネッセンス装置の陽極は、金属、合金、導電性化合物またはそれらの組み合わせから製造される。いくつかの実施形態では、前記の金属、合金または導電性化合物は高い仕事関数(4eV以上)を有する。いくつかの実施形態では、前記金属はAuである。いくつかの実施形態では、導電性の透明材料は、CuI、酸化インジウム・スズ(ITO)、SnOおよびZnOから選択される。いくつかの実施形態では、IDIXO(In-ZnO)などの、透明な導電性フィルムを形成できるアモルファス材料を使用する。いくつかの実施形態では、前記陽極は薄膜である。いくつかの実施形態では、前記薄膜は蒸着またはスパッタリングにより作製される。いくつかの実施形態では、前記フィルムはフォトリソグラフィー方法によりパターン化される。いくつかの実施形態では、パターンが高精度である必要がない(例えば約100μm以上)場合、当該パターンは、電極材料への蒸着またはスパッタリングに好適な形状のマスクを用いて形成してもよい。いくつかの実施形態では、有機導電性化合物などのコーティング材料を塗布しうるとき、プリント法やコーティング法などの湿式フィルム形成方法が用いられる。いくつかの実施形態では、放射光が陽極を通過するとき、陽極は10%超の透過度を有し、当該陽極は、単位面積あたり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、陽極の厚みは10~1,000nmである。いくつかの実施形態では、陽極の厚みは10~200nmである。いくつかの実施形態では、陽極の厚みは用いる材料に応じて変動する。
anode:
In some embodiments, the anode of the organic electroluminescent device is made from metals, alloys, conductive compounds, or combinations thereof. In some embodiments, the metal, alloy or conductive compound has a high work function (4 eV or greater). In some embodiments, the metal is Au. In some embodiments, the conductive transparent material is selected from CuI, indium tin oxide (ITO), SnO2 and ZnO. Some embodiments use amorphous materials that can form transparent conductive films, such as IDIXO (In 2 O 3 —ZnO). In some embodiments, the anode is a thin film. In some embodiments, the thin film is made by evaporation or sputtering. In some embodiments, the film is patterned by photolithographic methods. In some embodiments, if the pattern does not need to be highly precise (eg, about 100 μm or greater), the pattern may be formed using a mask with a shape suitable for vapor deposition or sputtering onto the electrode material. In some embodiments, wet film forming methods such as printing and coating methods are used when coating materials such as organic conductive compounds can be applied. In some embodiments, the anode has a transmittance of greater than 10% when emitted light passes through the anode, and the anode has a sheet resistance of several hundred ohms per unit area or less. In some embodiments, the thickness of the anode is 10-1,000 nm. In some embodiments, the thickness of the anode is 10-200 nm. In some embodiments, the thickness of the anode varies depending on the material used.
陰極:
 いくつかの実施形態では、前記陰極は、低い仕事関数を有する金属(4eV以下)(電子注入金属と称される)、合金、導電性化合物またはその組み合わせなどの電極材料で作製される。いくつかの実施形態では、前記電極材料は、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム-銅混合物、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al)混合物、インジウム、リチウム-アルミニウム混合物および希土類元素から選択される。いくつかの実施形態では、電子注入金属と、電子注入金属より高い仕事関数を有する安定な金属である第2の金属との混合物が用いられる。いくつかの実施形態では、前記混合物は、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al)混合物、リチウム-アルミニウム混合物およびアルミニウムから選択される。いくつかの実施形態では、前記混合物は電子注入特性および酸化に対する耐性を向上させる。いくつかの実施形態では、陰極は、蒸着またはスパッタリングにより電極材料を薄膜として形成させることによって製造される。いくつかの実施形態では、前記陰極は単位面積当たり数百オーム以下のシート抵抗を有する。いくつかの実施形態では、前記陰極の厚は10nm~5μmである。いくつかの実施形態では、前記陰極の厚は50~200nmである。いくつかの実施形態では、放射光を透過させるため、有機エレクトロルミネッセンス素子の陽極および陰極のいずれか1つは透明または半透明である。いくつかの実施形態では、透明または半透明のエレクトロルミネッセンス素子は光放射輝度を向上させる。
 いくつかの実施形態では、前記陰極を、前記陽極に関して前述した導電性の透明な材料で形成されることにより、透明または半透明の陰極が形成される。いくつかの実施形態では、素子は陽極と陰極とを含むが、いずれも透明または半透明である。
cathode:
In some embodiments, the cathode is made of electrode materials such as metals with a low work function (4 eV or less) (referred to as electron-injecting metals), alloys, conductive compounds, or combinations thereof. In some embodiments, the electrode material is sodium, sodium-potassium alloys, magnesium, lithium, magnesium-copper mixtures, magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide ( Al2 O 3 ) mixtures, indium, lithium-aluminum mixtures and rare earth elements. In some embodiments, a mixture of an electron-injecting metal and a second metal that is a stable metal with a higher work function than the electron-injecting metal is used. In some embodiments, the mixture is selected from magnesium-silver mixtures, magnesium-aluminum mixtures, magnesium-indium mixtures, aluminum-aluminum oxide (Al 2 O 3 ) mixtures, lithium-aluminum mixtures and aluminum. In some embodiments, the mixture improves electron injection properties and resistance to oxidation. In some embodiments, the cathode is manufactured by depositing or sputtering the electrode material as a thin film. In some embodiments, the cathode has a sheet resistance of no more than several hundred ohms per unit area. In some embodiments, the thickness of said cathode is between 10 nm and 5 μm. In some embodiments, the thickness of the cathode is 50-200 nm. In some embodiments, either one of the anode and cathode of the organic electroluminescent device is transparent or translucent to allow transmission of emitted light. In some embodiments, transparent or translucent electroluminescent elements enhance light radiance.
In some embodiments, the cathode is formed of a conductive transparent material as described above for the anode, thereby forming a transparent or translucent cathode. In some embodiments, the device includes an anode and a cathode, both transparent or translucent.
注入層:
 注入層は、電極と有機層との間の層である。いくつかの実施形態では、前記注入層は駆動電圧を減少させ、光放射輝度を増強する。いくつかの実施形態では、前記注入層は、正孔注入層と電子注入層とを含む。前記注入層は、陽極と発光層または正孔輸送層との間、並びに陰極と発光層または電子輸送層との間に配置することがきる。いくつかの実施形態では、注入層が存在する。いくつかの実施形態では、注入層が存在しない。
 以下に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Injection layer:
The injection layer is the layer between the electrode and the organic layer. In some embodiments, the injection layer reduces drive voltage and enhances light radiance. In some embodiments, the injection layer comprises a hole injection layer and an electron injection layer. The injection layer can be placed between the anode and the light-emitting layer or hole-transporting layer and between the cathode and the light-emitting layer or electron-transporting layer. In some embodiments, an injection layer is present. In some embodiments, there is no injection layer.
Preferred examples of compounds that can be used as the hole injection material are given below.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000064
Next, preferred examples of compounds that can be used as the electron injection material are given.
Figure JPOXMLDOC01-appb-C000064
障壁層:
 障壁層は、発光層に存在する電荷(電子または正孔)および/または励起子が、発光層の外側に拡散することを阻止できる層である。いくつかの実施形態では、電子障壁層は、発光層と正孔輸送層との間に存在し、電子が発光層を通過して正孔輸送層へ至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層と電子輸送層との間に存在し、正孔が発光層を通過して電子輸送層へ至ることを阻止する。いくつかの実施形態では、障壁層は、励起子が発光層の外側に拡散することを阻止する。いくつかの実施形態では、電子障壁層および正孔障壁層は励起子障壁層を構成する。本明細書で用いる用語「電子障壁層」または「励起子障壁層」には、電子障壁層の、および励起子障壁層の機能の両方を有する層が含まれる。
Barrier layer:
A barrier layer is a layer that can prevent charges (electrons or holes) and/or excitons present in the light-emitting layer from diffusing out of the light-emitting layer. In some embodiments, an electron blocking layer is between the light-emitting layer and the hole-transporting layer to block electrons from passing through the light-emitting layer to the hole-transporting layer. In some embodiments, a hole blocking layer is between the emissive layer and the electron transport layer and blocks holes from passing through the emissive layer to the electron transport layer. In some embodiments, the barrier layer prevents excitons from diffusing out of the emissive layer. In some embodiments, the electron blocking layer and the hole blocking layer constitute an exciton blocking layer. As used herein, the terms "electron blocking layer" or "exciton blocking layer" include layers that have the functionality of both an electron blocking layer and an exciton blocking layer.
正孔障壁層:
 正孔障壁層は、電子輸送層として機能する。いくつかの実施形態では、電子の輸送の間、正孔障壁層は正孔が電子輸送層に至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層における電子と正孔との再結合の確率を高める。正孔障壁層に用いる材料は、電子輸送層について前述したのと同じ材料であってもよい。
 以下に、正孔障壁層に用いることができる好ましい化合物例を挙げる。
Hole blocking layer:
A hole blocking layer functions as an electron transport layer. In some embodiments, the hole blocking layer blocks holes from reaching the electron transport layer during electron transport. In some embodiments, the hole blocking layer increases the probability of recombination of electrons and holes in the emissive layer. The materials used for the hole blocking layer can be the same materials as described above for the electron transport layer.
Preferred examples of compounds that can be used in the hole blocking layer are given below.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
電子障壁層:
 電子障壁層は、正孔を輸送する。いくつかの実施形態では、正孔の輸送の間、電子障壁層は電子が正孔輸送層に至ることを阻止する。いくつかの実施形態では、電子障壁層は、発光層における電子と正孔との再結合の確率を高める。電子障壁層に用いる材料は、正孔輸送層について前述したのと同じ材料であってもよい。
 以下に電子障壁材料として用いることができる好ましい化合物の具体例を挙げる。
Electron barrier layer:
The electron blocking layer transports holes. In some embodiments, the electron blocking layer prevents electrons from reaching the hole transport layer during hole transport. In some embodiments, the electron blocking layer increases the probability of recombination of electrons and holes in the emissive layer. The materials used for the electron blocking layer may be the same materials as described above for the hole transport layer.
Specific examples of preferred compounds that can be used as the electron barrier material are given below.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-I000067
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-I000067
励起子障壁層:
 励起子障壁層は、発光層における正孔と電子との再結合を通じて生じた励起子が電荷輸送層まで拡散することを阻止する。いくつかの実施形態では、励起子障壁層は、発光層における励起子の有効な閉じ込め(confinement)を可能にする。いくつかの実施形態では、装置の光放射効率が向上する。いくつかの実施形態では、励起子障壁層は、陽極の側と陰極の側のいずれかで、およびその両側の発光層に隣接する。いくつかの実施形態では、励起子障壁層が陽極側に存在するとき、当該層は、正孔輸送層と発光層との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、励起子障壁層が陰極側に存在するとき、当該層は、発光層と陰極との間に存在し、当該発光層に隣接してもよい。いくつかの実施形態では、正孔注入層、電子障壁層または同様の層は、陽極と、陽極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、正孔注入層、電子障壁層、正孔障壁層または同様の層は、陰極と、陰極側の発光層に隣接する励起子障壁層との間に存在する。いくつかの実施形態では、励起子障壁層は、励起一重項エネルギーと励起三重項エネルギーを含み、その少なくとも1つが、それぞれ、発光材料の励起一重項エネルギーと励起三重項エネルギーより高い。
Exciton barrier layer:
The exciton blocking layer prevents excitons generated through recombination of holes and electrons in the light emitting layer from diffusing to the charge transport layer. In some embodiments, the exciton blocking layer allows effective confinement of excitons in the emissive layer. In some embodiments, the light emission efficiency of the device is improved. In some embodiments, an exciton blocking layer is adjacent to the emissive layer on either the anode side or the cathode side, and on both sides thereof. In some embodiments, when an exciton blocking layer is present on the anode side, it may be present between and adjacent to the hole-transporting layer and the light-emitting layer. In some embodiments, when an exciton blocking layer is present on the cathode side, it may be between and adjacent to the emissive layer and the cathode. In some embodiments, a hole-injection layer, electron-blocking layer, or similar layer is present between the anode and an exciton-blocking layer adjacent to the light-emitting layer on the anode side. In some embodiments, a hole injection layer, electron blocking layer, hole blocking layer, or similar layer is present between the cathode and an exciton blocking layer adjacent to the emissive layer on the cathode side. In some embodiments, the exciton blocking layer comprises an excited singlet energy and an excited triplet energy, at least one of which is higher than the excited singlet energy and triplet energy, respectively, of the emissive material.
正孔輸送層:
 正孔輸送層は、正孔輸送材料を含む。いくつかの実施形態では、正孔輸送層は単層である。いくつかの実施形態では、正孔輸送層は複数の層を有する。
 いくつかの実施形態では、正孔輸送材料は、正孔の注入または輸送特性および電子の障壁特性のうちの1つの特性を有する。いくつかの実施形態では、正孔輸送材料は有機材料である。いくつかの実施形態では、正孔輸送材料は無機材料である。本発明で使用できる公知の正孔輸送材料の例としては、限定されないが、トリアゾール誘導体、オキサジアゾール誘導剤、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導剤、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリルアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導剤、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリンコポリマーおよび導電性ポリマーオリゴマー(特にチオフェンオリゴマー)、またはその組合せが挙げられる。いくつかの実施形態では、正孔輸送材料はポルフィリン化合物、芳香族三級アミン化合物およびスチリルアミン化合物から選択される。いくつかの実施形態では、正孔輸送材料は芳香族三級アミン化合物である。以下に正孔輸送材料として用いることができる好ましい化合物の具体例を挙げる。
Hole transport layer:
The hole-transporting layer comprises a hole-transporting material. In some embodiments, the hole transport layer is a single layer. In some embodiments, the hole transport layer has multiple layers.
In some embodiments, the hole transport material has one property of a hole injection or transport property and an electron barrier property. In some embodiments, the hole transport material is an organic material. In some embodiments, the hole transport material is an inorganic material. Examples of known hole transport materials that can be used in the present invention include, but are not limited to, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolones. derivatives, phenylenediamine derivatives, allylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers and conductive polymer oligomers (especially thiophene oligomers), or combinations thereof. are mentioned. In some embodiments, the hole transport material is selected from porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds. In some embodiments, the hole transport material is an aromatic tertiary amine compound. Specific examples of preferred compounds that can be used as the hole-transporting material are given below.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-I000069
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-I000069
電子輸送層:
 電子輸送層は、電子輸送材料を含む。いくつかの実施形態では、電子輸送層は単層である。いくつかの実施形態では、電子輸送層は複数の層を有する。
 いくつかの実施形態では、電子輸送材料は、陰極から注入された電子を発光層に輸送する機能さえあればよい。いくつかの実施形態では、電子輸送材料はまた、正孔障壁材料としても機能する。本発明で使用できる電子輸送層の例としては、限定されないが、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体、オキサジアゾール誘導体、アゾール誘導体、アジン誘導体またはその組合せ、またはそのポリマーが挙げられる。いくつかの実施形態では、電子輸送材料はチアジアゾール誘導剤またはキノキサリン誘導体である。いくつかの実施形態では、電子輸送材料はポリマー材料である。以下に電子輸送材料として用いることができる好ましい化合物の具体例を挙げる。
Electron transport layer:
The electron transport layer includes an electron transport material. In some embodiments, the electron transport layer is a single layer. In some embodiments, the electron transport layer has multiple layers.
In some embodiments, the electron-transporting material need only function to transport electrons injected from the cathode to the emissive layer. In some embodiments, the electron transport material also functions as a hole blocking material. Examples of electron-transporting layers that can be used in the present invention include, but are not limited to, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidene methane derivatives, anthraquinodimethanes, anthrone derivatives, oxazide Azole derivatives, azole derivatives, azine derivatives or combinations thereof, or polymers thereof. In some embodiments, the electron transport material is a thiadiazole derivative or a quinoxaline derivative. In some embodiments, the electron transport material is a polymeric material. Specific examples of preferred compounds that can be used as the electron-transporting material are given below.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 さらに、各有機層に添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。 Furthermore, examples of preferred compounds as materials that can be added to each organic layer are given. For example, it may be added as a stabilizing material.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示したが、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。 Preferred materials that can be used in organic electroluminescence elements are specifically exemplified, but materials that can be used in the present invention are not limitedly interpreted by the following exemplified compounds. Moreover, even compounds exemplified as materials having specific functions can be used as materials having other functions.
デバイス:
 いくつかの実施形態では、発光層はデバイス中に組み込まれる。例えば、デバイスには、OLEDバルブ、OLEDランプ、テレビ用ディスプレイ、コンピューター用モニター、携帯電話およびタブレットが含まれるが、これらに限定されない。
 いくつかの実施形態では、電子デバイスは、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を有するOLEDを含む。
 いくつかの実施形態では、本願明細書に記載の構成物は、OLEDまたは光電子デバイスなどの、様々な感光性または光活性化デバイスに組み込まれうる。いくつかの実施形態では、前記構成物はデバイス内の電荷移動またはエネルギー移動の促進に、および/または正孔輸送材料として有用でありうる。前記デバイスとしては、例えば有機発光ダイオード(OLED)、有機集積回線(OIC)、有機電界効果トランジスタ(O-FET)、有機薄膜トランジスタ(O-TFT)、有機発光トランジスタ(O-LET)、有機太陽電池(O-SC)、有機光学検出装置、有機光受容体、有機磁場クエンチ(field-quench)装置(O-FQD)、発光燃料電池(LEC)または有機レーザダイオード(O-レーザー)が挙げられる。
device:
In some embodiments, the emissive layer is incorporated into the device. For example, devices include, but are not limited to, OLED bulbs, OLED lamps, television displays, computer monitors, mobile phones and tablets.
In some embodiments, an electronic device includes an OLED having at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode.
In some embodiments, compositions described herein can be incorporated into various photosensitive or photoactivated devices, such as OLEDs or optoelectronic devices. In some embodiments, the composition may be useful in facilitating charge or energy transfer within a device and/or as a hole transport material. Examples of such devices include organic light emitting diodes (OLEDs), organic integrated circuits (OICs), organic field effect transistors (O-FETs), organic thin film transistors (O-TFTs), organic light emitting transistors (O-LETs), and organic solar cells. (O-SC), organic optical detectors, organic photoreceptors, organic field-quench devices (O-FQD), luminescent fuel cells (LEC) or organic laser diodes (O-lasers).
バルブまたはランプ:
 いくつかの実施形態では、電子デバイスは、陽極、陰極、当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含むOLEDを含む。
 いくつかの実施形態では、デバイスは色彩の異なるOLEDを含む。いくつかの実施形態では、デバイスはOLEDの組合せを含むアレイを含む。いくつかの実施形態では、OLEDの前記組合せは、3色の組合せ(例えばRGB)である。いくつかの実施形態では、OLEDの前記組合せは、赤色でも緑色でも青色でもない色(例えばオレンジ色および黄緑色)の組合せである。いくつかの実施形態では、OLEDの前記組合せは、2色、4色またはそれ以上の色の組合せである。
 いくつかの実施形態では、デバイスは、
 取り付け面を有する第1面とそれと反対の第2面とを有し、少なくとも1つの開口部を画定する回路基板と、
 前記取り付け面上の少なくとも1つのOLEDであって、当該少なくとも1つのOLEDが、陽極、陰極、および当該陽極と当該陰極との間の発光層を含む少なくとも1つの有機層を含む、発光する構成を有する少なくとも1つのOLEDと、
 回路基板用のハウジングと、
 前記ハウジングの端部に配置された少なくとも1つのコネクターであって、前記ハウジングおよび前記コネクターが照明設備への取付けに適するパッケージを画定する、少なくとも1つのコネクターと、を備えるOLEDライトである。
 いくつかの実施形態では、前記OLEDライトは、複数の方向に光が放射されるように回路基板に取り付けられた複数のOLEDを有する。いくつかの実施形態では、第1方向に発せられた一部の光は偏光されて第2方向に放射される。いくつかの実施形態では、反射器を用いて第1方向に発せられた光を偏光する。
Bulb or Lamp:
In some embodiments, an electronic device includes an OLED including at least one organic layer including an anode, a cathode, and a light-emitting layer between the anode and the cathode.
In some embodiments, the device includes OLEDs of different colors. In some embodiments, the device includes an array including combinations of OLEDs. In some embodiments, said combination of OLEDs is a combination of three colors (eg RGB). In some embodiments, the combination of OLEDs is a combination of colors other than red, green, and blue (eg, orange and yellow-green). In some embodiments, said combination of OLEDs is a combination of two, four or more colors.
In some embodiments, the device
a circuit board having a first side with a mounting surface and a second opposite side and defining at least one opening;
at least one OLED on the mounting surface, wherein the at least one OLED comprises at least one organic layer comprising an anode, a cathode, and a light-emitting layer between the anode and the cathode to emit light; at least one OLED comprising
a housing for the circuit board;
at least one connector disposed at an end of said housing, said housing and said connector defining a package suitable for attachment to a lighting fixture.
In some embodiments, the OLED light comprises multiple OLEDs mounted on a circuit board such that light is emitted in multiple directions. In some embodiments, some light emitted in the first direction is polarized and emitted in the second direction. In some embodiments, a reflector is used to polarize light emitted in the first direction.
ディスプレイまたはスクリーン:
 いくつかの実施形態では、本発明の発光層はスクリーンまたはディスプレイにおいて使用できる。いくつかの実施形態では、本発明に係る化合物は、限定されないが真空蒸発、堆積、蒸着または化学蒸着(CVD)などの工程を用いて基材上へ堆積させる。いくつかの実施形態では、前記基材は、独特のアスペクト比のピクセルを提供する2面エッチングにおいて有用なフォトプレート構造である。前記スクリーン(またマスクとも呼ばれる)は、OLEDディスプレイの製造工程で用いられる。対応するアートワークパターンの設計により、垂直方向ではピクセルの間の非常に急な狭いタイバーの、並びに水平方向では大きな広範囲の斜角開口部の配置を可能にする。これにより、TFTバックプレーン上への化学蒸着を最適化しつつ、高解像度ディスプレイに必要とされるピクセルの微細なパターン構成が可能となる。
 ピクセルの内部パターニングにより、水平および垂直方向での様々なアスペクト比の三次元ピクセル開口部を構成することが可能となる。更に、ピクセル領域中の画像化された「ストライプ」またはハーフトーン円の使用は、これらの特定のパターンをアンダーカットし基材から除くまで、特定の領域におけるエッチングが保護される。その時、全てのピクセル領域は同様のエッチング速度で処理されるが、その深さはハーフトーンパターンにより変化する。ハーフトーンパターンのサイズおよび間隔を変更することにより、ピクセル内での保護率が様々異なるエッチングが可能となり、急な垂直斜角を形成するのに必要な局在化された深いエッチングが可能となる。
 蒸着マスク用の好ましい材料はインバーである。インバーは、製鉄所で長い薄型シート状に冷延された金属合金である。インバーは、ニッケルマスクとしてスピンマンドレル上へ電着することができない。蒸着用マスク内に開口領域を形成するための適切かつ低コストの方法は、湿式化学エッチングによる方法である。
 いくつかの実施形態では、スクリーンまたはディスプレイパターンは、基材上のピクセルマトリックスである。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、リソグラフィー(例えばフォトリソグラフィーおよびeビームリソグラフィー)を使用して加工される。いくつかの実施形態では、スクリーンまたはディスプレイパターンは、湿式化学エッチングを使用して加工される。更なる実施形態では、スクリーンまたはディスプレイパターンは、プラズマエッチングを使用して加工される。
Display or screen:
In some embodiments, the emissive layers of the invention can be used in screens or displays. In some embodiments, the compounds of the present invention are deposited onto a substrate using processes such as, but not limited to, vacuum evaporation, deposition, evaporation or chemical vapor deposition (CVD). In some embodiments, the substrate is a photoplate structure useful in two-sided etching to provide unique aspect ratio pixels. Said screens (also called masks) are used in the manufacturing process of OLED displays. The corresponding artwork pattern design allows placement of very steep narrow tie-bars between pixels in the vertical direction as well as large and wide beveled openings in the horizontal direction. This allows for the fine patterning of pixels required for high resolution displays while optimizing chemical vapor deposition on the TFT backplane.
The internal patterning of the pixels makes it possible to construct three-dimensional pixel openings with various aspect ratios in the horizontal and vertical directions. Additionally, the use of imaged "stripes" or halftone circles in pixel areas protects etching in specific areas until these specific patterns are undercut and removed from the substrate. All pixel areas are then treated with a similar etch rate, but their depth varies with the halftone pattern. Varying the size and spacing of the halftone patterns allows etching with varying degrees of protection within the pixel, allowing for the localized deep etching necessary to form steep vertical bevels. .
A preferred material for the evaporation mask is Invar. Invar is a metal alloy that is cold rolled into long thin sheets in steel mills. Invar cannot be electrodeposited onto a spin mandrel as a nickel mask. A suitable and low-cost method for forming the open areas in the deposition mask is by wet chemical etching.
In some embodiments, the screen or display pattern is a matrix of pixels on a substrate. In some embodiments, screen or display patterns are fabricated using lithography (eg, photolithography and e-beam lithography). In some embodiments, the screen or display pattern is processed using wet chemical etching. In a further embodiment the screen or display pattern is fabricated using plasma etching.
デバイスの製造方法:
 OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
 OLEDディスプレイは、一般的には、大型のマザーパネルを形成し、次に当該マザーパネルをセルパネル単位で切断することによって製造される。通常は、マザーパネル上の各セルパネルは、ベース基材上に、活性層とソース/ドレイン電極とを有する薄膜トランジスタ(TFT)を形成し、前記TFTに平坦化フィルムを塗布し、ピクセル電極、発光層、対電極およびカプセル化層、を順に経時的に形成し、前記マザーパネルから切断することにより形成される。
Device manufacturing method:
An OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels. Generally, each cell panel on a mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating the TFT with a planarizing film, pixel electrodes, and a light emitting layer. , a counter electrode and an encapsulation layer, are sequentially formed and cut from the mother panel.
An OLED display is generally manufactured by forming a large mother panel and then cutting the mother panel into cell panels. Generally, each cell panel on a mother panel is formed by forming a thin film transistor (TFT) having an active layer and source/drain electrodes on a base substrate, coating the TFT with a planarizing film, pixel electrodes, and a light emitting layer. , a counter electrode and an encapsulation layer, are sequentially formed and cut from the mother panel.
 本発明の他の態様では、有機発光ダイオード(OLED)ディスプレイの製造方法を提供し、当該方法は、
 マザーパネルのベース基材上に障壁層を形成する工程と、
 前記障壁層上に、セルパネル単位で複数のディスプレイユニットを形成する工程と、
 前記セルパネルのディスプレイユニットのそれぞれの上にカプセル化層を形成する工程と、
 前記セルパネル間のインタフェース部に有機フィルムを塗布する工程と、を含む。
 いくつかの実施形態では、障壁層は、例えばSiNxで形成された無機フィルムであり、障壁層の端部はポリイミドまたはアクリルで形成された有機フィルムで被覆される。いくつかの実施形態では、有機フィルムは、マザーパネルがセルパネル単位で軟らかく切断されるように補助する。
 いくつかの実施形態では、薄膜トランジスタ(TFT)層は、発光層と、ゲート電極と、ソース/ドレイン電極と、を有する。複数のディスプレイユニットの各々は、薄膜トランジスタ(TFT)層と、TFT層上に形成された平坦化フィルムと、平坦化フィルム上に形成された発光ユニットと、を有してもよく、前記インタフェース部に塗布された有機フィルムは、前記平坦化フィルムの材料と同じ材料で形成され、前記平坦化フィルムの形成と同時に形成される。いくつかの実施形態では、前記発光ユニットは、不動態化層と、その間の平坦化フィルムと、発光ユニットを被覆し保護するカプセル化層と、によりTFT層と連結される。前記製造方法のいくつかの実施形態では、前記有機フィルムは、ディスプレイユニットにもカプセル化層にも連結されない。
In another aspect of the invention, there is provided a method of manufacturing an organic light emitting diode (OLED) display, the method comprising:
forming a barrier layer on the base substrate of the mother panel;
forming a plurality of display units on the barrier layer in cell panel units;
forming an encapsulation layer over each of the display units of the cell panel;
and applying an organic film to the interfaces between the cell panels.
In some embodiments, the barrier layer is an inorganic film, eg, made of SiNx, and the edges of the barrier layer are covered with an organic film, made of polyimide or acrylic. In some embodiments, the organic film helps the mother panel to be softly cut into cell panels.
In some embodiments, a thin film transistor (TFT) layer has an emissive layer, a gate electrode, and source/drain electrodes. Each of the plurality of display units may have a thin film transistor (TFT) layer, a planarization film formed on the TFT layer, and a light-emitting unit formed on the planarization film; The applied organic film is made of the same material as the material of the planarizing film and is formed at the same time as the planarizing film is formed. In some embodiments, the light-emitting unit is coupled to the TFT layer by a passivation layer, a planarizing film therebetween, and an encapsulation layer that covers and protects the light-emitting unit. In some embodiments of the manufacturing method, the organic film is not connected to the display unit or encapsulation layer.
 前記有機フィルムと平坦化フィルムの各々は、ポリイミドおよびアクリルのいずれか1つを含んでもよい。いくつかの実施形態では、前記障壁層は無機フィルムであってもよい。いくつかの実施形態では、前記ベース基材はポリイミドで形成されてもよい。前記方法は更に、ポリイミドで形成されたベース基材の1つの表面に障壁層を形成する前に、当該ベース基材のもう1つの表面にガラス材料で形成されたキャリア基材を取り付ける工程と、インタフェース部に沿った切断の前に、前記キャリア基材をベース基材から分離する工程と、を含んでもよい。いくつかの実施形態では、前記OLEDディスプレイはフレキシブルなディスプレイである。
 いくつかの実施形態では、前記不動態化層は、TFT層の被覆のためにTFT層上に配置された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、不動態化層上に形成された有機フィルムである。いくつかの実施形態では、前記平坦化フィルムは、障壁層の端部に形成された有機フィルムと同様、ポリイミドまたはアクリルで形成される。いくつかの実施形態では、OLEDディスプレイの製造の際、前記平坦化フィルムおよび有機フィルムは同時に形成される。いくつかの実施形態では、前記有機フィルムは、障壁層の端部に形成されてもよく、それにより、当該有機フィルムの一部が直接ベース基材と接触し、当該有機フィルムの残りの部分が、障壁層の端部を囲みつつ、障壁層と接触する。
Each of the organic film and the planarizing film may include one of polyimide and acrylic. In some embodiments, the barrier layer may be an inorganic film. In some embodiments, the base substrate may be formed of polyimide. The method further includes attaching a carrier substrate made of a glass material to one surface of a base substrate made of polyimide before forming a barrier layer on another surface of the base substrate; separating the carrier substrate from the base substrate prior to cutting along the interface. In some embodiments, the OLED display is a flexible display.
In some embodiments, the passivation layer is an organic film placed on the TFT layer to cover the TFT layer. In some embodiments, the planarizing film is an organic film formed over a passivation layer. In some embodiments, the planarizing film is formed of polyimide or acrylic, as is the organic film formed on the edge of the barrier layer. In some embodiments, the planarizing film and the organic film are formed simultaneously during the manufacture of an OLED display. In some embodiments, the organic film may be formed on the edge of the barrier layer such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is , in contact with the barrier layer while surrounding the edges of the barrier layer.
 いくつかの実施形態では、前記発光層は、ピクセル電極と、対電極と、当該ピクセル電極と当該対電極との間に配置された有機発光層と、を有する。いくつかの実施形態では、前記ピクセル電極は、TFT層のソース/ドレイン電極に連結している。
 いくつかの実施形態では、TFT層を通じてピクセル電極に電圧が印加されるとき、ピクセル電極と対電極との間に適切な電圧が形成され、それにより有機発光層が光を放射し、それにより画像が形成される。以下、TFT層と発光ユニットとを有する画像形成ユニットを、ディスプレイユニットと称する。
 いくつかの実施形態では、ディスプレイユニットを被覆し、外部の水分の浸透を防止するカプセル化層は、有機フィルムと無機フィルムとが交互に積層する薄膜状のカプセル化構造に形成されてもよい。いくつかの実施形態では、前記カプセル化層は、複数の薄膜が積層した薄膜状カプセル化構造を有する。いくつかの実施形態では、インタフェース部に塗布される有機フィルムは、複数のディスプレイユニットの各々と間隔を置いて配置される。いくつかの実施形態では、前記有機フィルムは、一部の有機フィルムが直接ベース基材と接触し、有機フィルムの残りの部分が障壁層の端部を囲む一方で障壁層と接触する態様で形成される。
In some embodiments, the emissive layer comprises a pixel electrode, a counter electrode, and an organic emissive layer disposed between the pixel electrode and the counter electrode. In some embodiments, the pixel electrodes are connected to source/drain electrodes of the TFT layer.
In some embodiments, when a voltage is applied to the pixel electrode through the TFT layer, a suitable voltage is formed between the pixel electrode and the counter electrode, causing the organic light-emitting layer to emit light, thereby displaying an image. is formed. An image forming unit having a TFT layer and a light emitting unit is hereinafter referred to as a display unit.
In some embodiments, the encapsulation layer that covers the display unit and prevents the penetration of external moisture may be formed into a thin encapsulation structure in which organic films and inorganic films are alternately laminated. In some embodiments, the encapsulation layer has a thin film-like encapsulation structure in which multiple thin films are stacked. In some embodiments, the organic film applied to the interface portion is spaced apart from each of the plurality of display units. In some embodiments, the organic film is formed such that a portion of the organic film is in direct contact with the base substrate and a remaining portion of the organic film is in contact with the barrier layer while surrounding the edges of the barrier layer. be done.
 一実施形態では、OLEDディスプレイはフレキシブルであり、ポリイミドで形成された柔軟なベース基材を使用する。いくつかの実施形態では、前記ベース基材はガラス材料で形成されたキャリア基材上に形成され、次に当該キャリア基材が分離される。
 いくつかの実施形態では、障壁層は、キャリア基材の反対側のベース基材の表面に形成される。一実施形態では、前記障壁層は、各セルパネルのサイズに従いパターン化される。例えば、ベース基材がマザーパネルの全ての表面上に形成される一方で、障壁層が各セルパネルのサイズに従い形成され、それにより、セルパネルの障壁層の間のインタフェース部に溝が形成される。各セルパネルは、前記溝に沿って切断できる。
In one embodiment, the OLED display is flexible and uses a flexible base substrate made of polyimide. In some embodiments, the base substrate is formed on a carrier substrate made of glass material, and then the carrier substrate is separated.
In some embodiments, a barrier layer is formed on the surface of the base substrate opposite the carrier substrate. In one embodiment, the barrier layer is patterned according to the size of each cell panel. For example, a base substrate is formed on all surfaces of a mother panel, while barrier layers are formed according to the size of each cell panel, thereby forming grooves at the interfaces between the barrier layers of the cell panels. Each cell panel can be cut along the groove.
 いくつかの実施形態では、前記の製造方法は、更にインタフェース部に沿って切断する工程を含み、そこでは溝が障壁層に形成され、少なくとも一部の有機フィルムが溝で形成され、当該溝がベース基材に浸透しない。いくつかの実施形態では、各セルパネルのTFT層が形成され、無機フィルムである不動態化層と有機フィルムである平坦化フィルムが、TFT層上に配置され、TFT層を被覆する。例えばポリイミドまたはアクリル製の平坦化フィルムが形成されるのと同時に、インタフェース部の溝は、例えばポリイミドまたはアクリル製の有機フィルムで被覆される。これは、各セルパネルがインタフェース部で溝に沿って切断されるとき、生じた衝撃を有機フィルムに吸収させることによってひびが生じるのを防止する。すなわち、全ての障壁層が有機フィルムなしで完全に露出している場合、各セルパネルがインタフェース部で溝に沿って切断されるとき、生じた衝撃が障壁層に伝達され、それによりひびが生じるリスクが増加する。しかしながら、一実施形態では、障壁層間のインタフェース部の溝が有機フィルムで被覆されて、有機フィルムがなければ障壁層に伝達されうる衝撃を吸収するため、各セルパネルをソフトに切断し、障壁層でひびが生じるのを防止してもよい。一実施形態では、インタフェース部の溝を被覆する有機フィルムおよび平坦化フィルムは、互いに間隔を置いて配置される。例えば、有機フィルムおよび平坦化フィルムが1つの層として相互に接続している場合には、平坦化フィルムと有機フィルムが残っている部分とを通じてディスプレイユニットに外部の水分が浸入するおそれがあるため、有機フィルムおよび平坦化フィルムは、有機フィルムがディスプレイユニットから間隔を置いて配置されるように、相互に間隔を置いて配置される。 In some embodiments, the manufacturing method further comprises cutting along the interface, wherein a groove is formed in the barrier layer, at least a portion of the organic film is formed with the groove, and the groove is Does not penetrate the base substrate. In some embodiments, a TFT layer of each cell panel is formed, and a passivation layer, which is an inorganic film, and a planarization film, which is an organic film, are placed on and cover the TFT layer. At the same time that the planarizing film, eg made of polyimide or acrylic, is formed, the interface grooves are covered with an organic film, eg made of polyimide or acrylic. This prevents cracking by having the organic film absorb the impact that occurs when each cell panel is cut along the groove at the interface. That is, if all the barrier layers are completely exposed without an organic film, when each cell panel is cut along the groove at the interface, the resulting impact will be transferred to the barrier layers, thereby creating a risk of cracking. increases. However, in one embodiment, the grooves at the interfaces between the barrier layers are coated with an organic film to absorb shocks that might otherwise be transmitted to the barrier layers, so that each cell panel is softly cut and the barrier layers It may prevent cracks from forming. In one embodiment, the organic film covering the groove of the interface and the planarizing film are spaced apart from each other. For example, when the organic film and the planarizing film are connected to each other as a single layer, external moisture may enter the display unit through the planarizing film and the portion where the organic film remains. The organic film and planarizing film are spaced from each other such that the organic film is spaced from the display unit.
 いくつかの実施形態では、ディスプレイユニットは、発光ユニットの形成により形成され、カプセル化層は、ディスプレイユニットを被覆するためディスプレイユニット上に配置される。これにより、マザーパネルが完全に製造された後、ベース基材を担持するキャリア基材がベース基材から分離される。いくつかの実施形態では、レーザー光線がキャリア基材へ放射されると、キャリア基材は、キャリア基材とベース基材との間の熱膨張率の相違により、ベース基材から分離される。
 いくつかの実施形態では、マザーパネルは、セルパネル単位で切断される。いくつかの実施形態では、マザーパネルは、カッターを用いてセルパネル間のインタフェース部に沿って切断される。いくつかの実施形態では、マザーパネルが沿って切断されるインタフェース部の溝が有機フィルムで被覆されているため、切断の間、当該有機フィルムが衝撃を吸収する。いくつかの実施形態では、切断の間、障壁層でひびが生じるのを防止できる。
 いくつかの実施形態では、前記方法は製品の不良率を減少させ、その品質を安定させる。
 他の態様は、ベース基材上に形成された障壁層と、障壁層上に形成されたディスプレイユニットと、ディスプレイユニット上に形成されたカプセル化層と、障壁層の端部に塗布された有機フィルムと、を有するOLEDディスプレイである。
In some embodiments, the display unit is formed by forming a light emitting unit and an encapsulating layer is placed over the display unit to cover the display unit. Thereby, after the mother panel is completely manufactured, the carrier substrate carrying the base substrate is separated from the base substrate. In some embodiments, when the laser beam is directed at the carrier substrate, the carrier substrate separates from the base substrate due to the difference in coefficient of thermal expansion between the carrier substrate and the base substrate.
In some embodiments, the mother panel is cut into cell panels. In some embodiments, the mother panel is cut along the interfaces between the cell panels using a cutter. In some embodiments, the interface groove along which the mother panel is cut is coated with an organic film so that the organic film absorbs impact during cutting. In some embodiments, the barrier layer can be prevented from cracking during cutting.
In some embodiments, the method reduces the reject rate of the product and stabilizes its quality.
Another embodiment includes a barrier layer formed on a base substrate, a display unit formed on the barrier layer, an encapsulation layer formed on the display unit, and an organic layer applied to the edges of the barrier layer. An OLED display comprising a film.
 以下に合成例と実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、ソースメータ(ケースレー社製:2400シリーズ)、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、光学分光器(オーシャンオプティクス社製:USB2000)、分光放射計(トプコン社製:SR-3)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。
 以下の合成例において、一般式(1)に含まれる化合物を合成した。
The features of the present invention will be more specifically described below with reference to Synthesis Examples and Examples. The materials, processing details, processing procedures, etc. described below can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the specific examples shown below. In addition, the evaluation of the light emission characteristics was performed using a source meter (manufactured by Keithley: 2400 series), a semiconductor parameter analyzer (manufactured by Agilent Technologies: E5273A), an optical power meter measuring device (manufactured by Newport: 1930C), and an optical spectroscope. (Ocean Optics: USB2000), a spectroradiometer (Topcon: SR-3) and a streak camera (Hamamatsu Photonics, Model C4334).
In the following Synthesis Examples, compounds included in the general formula (1) were synthesized.
(合成例1)化合物1の合成
Figure JPOXMLDOC01-appb-C000072
(Synthesis Example 1) Synthesis of Compound 1
Figure JPOXMLDOC01-appb-C000072
 2-ブロモ-8-フェニルジベンゾフラン(2.53g,7.83mmol)、4-(9H-カルバゾール-9-イル)フェニルボロン酸(2.7g,9.4mmol),テトラキストリフェニルフォスフィンパラジウム(0)(0.9g,0.78mmol),炭酸カリウム(23.5g,3.25mmol)をテトラヒドロフランと水(50/25ml)の混合溶液に溶解し、75℃で18時間撹拌した。反応溶液を室温まで冷却し、溶媒を除去、得られた固体を水で洗浄し、クロロホルムを加え、硫酸マグネシウムで乾燥、溶媒を除去した。得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:クロロホルム=7:3)により精製した。さらに再結晶(トルエン/メタノール)により白色固体の化合物1を得た(3.13g,82%)。
1H NMR (400MHz, CDCl3, δ): 8.3 (s, 1H), 8.23 (s, 1H), 8.18 (s, 1H), 8.16 (s, 1H), 7.92 (d, J = 8 Hz, 2H), 7.81 (d, J= 8 Hz, 1H), 7.75-7.66 (m, 7H), 7.53-7.36 (m, 7H), 7.31 (t, J = 7 Hz, 2H).
MS (ASAP): 486.29 (M+H+). Calcd. for C36H23NO: 485.18.
2-bromo-8-phenyldibenzofuran (2.53 g, 7.83 mmol), 4-(9H-carbazol-9-yl)phenylboronic acid (2.7 g, 9.4 mmol), tetrakistriphenylphosphine palladium (0 ) (0.9 g, 0.78 mmol) and potassium carbonate (23.5 g, 3.25 mmol) were dissolved in a mixed solution of tetrahydrofuran and water (50/25 ml) and stirred at 75° C. for 18 hours. The reaction solution was cooled to room temperature, the solvent was removed, the obtained solid was washed with water, chloroform was added, the solid was dried over magnesium sulfate, and the solvent was removed. The resulting solid was purified by silica gel column chromatography (developing solvent: hexane:chloroform=7:3). Further recrystallization (toluene/methanol) gave Compound 1 as a white solid (3.13 g, 82%).
1 H NMR (400MHz, CDCl 3 , δ): 8.3 (s, 1H), 8.23 (s, 1H), 8.18 (s, 1H), 8.16 (s, 1H), 7.92 (d, J = 8 Hz, 2H ), 7.81 (d, J = 8 Hz, 1H), 7.75-7.66 (m, 7H), 7.53-7.36 (m, 7H), 7.31 (t, J = 7 Hz, 2H).
MS ( ASAP): 486.29 (M+H + ). Calcd. for C36H23NO : 485.18.
(合成例2)化合物16の合成
Figure JPOXMLDOC01-appb-C000073
(Synthesis Example 2) Synthesis of Compound 16
Figure JPOXMLDOC01-appb-C000073
 2-フェニル-8-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-ジベンゾフラン(2.69g,6.75mmol)、9-(4-ブロモフェニル)-3-フェニル-9H-カルバゾール(2.74g,8.1mmol)、テトラキストリフェニルフォスフィンパラジウム(0)(0.79g,0.68mmol)、炭酸カリウム(2.8g,20.3mmol)をテトラヒドロフランと水(50/25ml)の混合溶液に溶解し、75℃で16時間撹拌した。反応溶液を室温まで冷却し、溶媒を除去、得られた固体を水で洗浄し、クロロホルムを加え、硫酸マグネシウムで乾燥、溶媒を除去した。得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:クロロホルム=7:3)により精製した。さらに再結晶(トルエン/アセトニトリル)により白色固体の化合物16を得た(2g,53%)。
1H NMR (400MHz, CDCl3, δ): 8.38 (s, 1H), 8.31 (s, 1H), 8.24 (s, 1H), 8.22 (d, J = 8 Hz, 1H), 7.94 (d, J = 8 Hz, 2H), 7.82 (d, J = 8 Hz, 1H), 7.76-7.67 (m, 10H), 7.58-7.45 (m, 7H), 7.43-7.32 (m, 3H).
MS (ASAP): 562.32 (M+H+). Calcd. for C42H27NO: 561.21.
2-phenyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-dibenzofuran (2.69 g, 6.75 mmol), 9-(4-bromophenyl) -3-phenyl-9H-carbazole (2.74 g, 8.1 mmol), tetrakistriphenylphosphine palladium (0) (0.79 g, 0.68 mmol), potassium carbonate (2.8 g, 20.3 mmol) in tetrahydrofuran and water (50/25 ml), and stirred at 75° C. for 16 hours. The reaction solution was cooled to room temperature, the solvent was removed, the obtained solid was washed with water, chloroform was added, the solid was dried over magnesium sulfate, and the solvent was removed. The resulting solid was purified by silica gel column chromatography (developing solvent: hexane:chloroform=7:3). Further recrystallization (toluene/acetonitrile) gave compound 16 as a white solid (2 g, 53%).
1 H NMR (400 MHz, CDCl 3 , δ): 8.38 (s, 1H), 8.31 (s, 1H), 8.24 (s, 1H), 8.22 (d, J = 8 Hz, 1H), 7.94 (d, J = 8 Hz, 2H), 7.82 (d, J = 8 Hz, 1H), 7.76-7.67 (m, 10H), 7.58-7.45 (m, 7H), 7.43-7.32 (m, 3H).
MS ( ASAP): 562.32 (M+H + ). Calcd. for C42H27 NO: 561.21.
(合成例3)化合物512の合成
Figure JPOXMLDOC01-appb-C000074
(Synthesis Example 3) Synthesis of compound 512
Figure JPOXMLDOC01-appb-C000074
 9-(4-ブロモフェニル)-3-フェニル-9H-カルバゾールを1-ブロモ-4-ヨードベンゼンに変更すること以外は、合成例2と同様の手順で白色固体の化合物aを得た(2.26g,77%)。
1H NMR (400MHz, CDCl3, δ): 8.19 (dd, J = 2.0 Hz, 0.8 Hz, 1H), 8.16 (dd, J = 1.6 Hz, 0.8 Hz, 1H), 7.72 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 7.70-7.67 (m, 2H), 7.66-7.63 (m, 3H), 7.62-7.59 (m, 2H), 7.57-7.53 (m, 2H), 7.52-7.47 (m, 2H), 7.41-7.36 (m, 1H).
MS (ASAP): 399.12 (M+H+). Calcd. for C24H15BrO: 398.03.
A white solid compound a was obtained in the same manner as in Synthesis Example 2, except that 9-(4-bromophenyl)-3-phenyl-9H-carbazole was changed to 1-bromo-4-iodobenzene (2 .26 g, 77%).
1 H NMR (400MHz, CDCl 3 , δ): 8.19 (dd, J = 2.0 Hz, 0.8 Hz, 1H), 8.16 (dd, J = 1.6 Hz, 0.8 Hz, 1H), 7.72 (dd, J = 8.4 Hz , 2.0 Hz, 1H), 7.70-7.67 (m, 2H), 7.66-7.63 (m, 3H), 7.62-7.59 (m, 2H), 7.57-7.53 (m, 2H), 7.52-7.47 (m, 2H ), 7.41-7.36 (m, 1H).
MS (ASAP): 399.12 (M+H + ). Calcd . for C24H15BrO : 398.03.
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 化合物a(1.37g,3.44mmol)、カルバゾール-1,2,3,4,5,6,7,8-d8(0.66g,3.78mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.31g,0.344mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(0.20g,0.688mmol)およびナトリウムtert-ブトキシド(0.66g,6.88mmol)をトルエン(35mL)に溶解して15時間還流した。反応液を室温まで冷却し、不溶物をろ過後、溶媒を除去した。残渣にクロロホルムを加えて水で2回洗浄した。このクロロホルム溶液を、硫酸マグネシウムで乾燥、ろ過後、溶媒を除去した。得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン:クロロホルム=8:2)により精製した。さらに再結晶(トルエン/メタノール)により白色固体の化合物512を得た(1.25g,74%)。
1H NMR (400MHz, CDCl3, δ): 8.31 (d, J = 2.0 Hz, 1H), 8.24 (d, J = 1.6 Hz, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.82 (dd, J = 8.8 Hz, 2.0 Hz, 1H), 7.76-7.67 (m, 7H), 7.53-7.48 (m, 2H), 7.42-7.37 (m, 1H).
MS (ASAP): 494.37 (M+H+). Calcd. for C36H15D8NO: 493.23.
Compound a (1.37 g, 3.44 mmol), carbazole-1,2,3,4,5,6,7,8-d8 (0.66 g, 3.78 mmol), tris(dibenzylideneacetone) dipalladium ( 0) (0.31 g, 0.344 mmol), tri-tert-butylphosphonium tetrafluoroborate (0.20 g, 0.688 mmol) and sodium tert-butoxide (0.66 g, 6.88 mmol) in toluene (35 mL) and refluxed for 15 hours. The reaction liquid was cooled to room temperature, the solvent was removed after filtering an insoluble matter. Chloroform was added to the residue and washed twice with water. The chloroform solution was dried with magnesium sulfate, filtered, and then the solvent was removed. The resulting solid was purified by silica gel column chromatography (developing solvent: hexane:chloroform=8:2). Further recrystallization (toluene/methanol) gave compound 512 as a white solid (1.25 g, 74%).
1 H NMR (400MHz, CDCl 3 , δ): 8.31 (d, J = 2.0 Hz, 1H), 8.24 (d, J = 1.6 Hz, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.82 ( dd, J = 8.8 Hz, 2.0 Hz, 1H), 7.76-7.67 (m, 7H), 7.53-7.48 (m, 2H), 7.42-7.37 (m, 1H).
MS ( ASAP ): 494.37 (M+H + ). Calcd. for C36H15D8 NO: 493.23.
(実施例1)ホスト材料を替えた緑色有機エレクトロルミネッセンス素子の作製
 膜厚50nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基材上に、各薄膜を真空蒸着法にて、真空度5×10-5Paで積層した。まず、ITO上にHAT-CNを10nmの厚さに形成し、その上にNPDを30nmの厚さに形成した。次いで、その上にTrisPCzを10nmの厚さに形成した。次に、化合物1とTADF1を異なる蒸着源から共蒸着し、40nmの厚さの発光層を形成した。化合物1とTADF1の含有量は55質量%、45質量%とした。その上に、SF3TRZを10nmの厚さに形成し、さらにその上にSF3TRZとLiqを異なる蒸着源からそれぞれ70質量%、30質量%で共蒸着して30nmの厚さに形成した。さらに、Liqを2nmの厚さに形成し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成した。以上の手順により、有機エレクトロルミネッセンス素子1を作製した。
 化合物1の代わりに比較化合物1を用いた点だけを変更して、その他は同じ手順にしたがって比較素子1-1を作製した。
 作製した各素子の電極に通電したところ、緑色の遅延蛍光が観測された。また、6.3mA/cmでの駆動電圧を測定したところ、比較素子1-1よりも本発明の素子1の方が0.3V低かった。また、25.2mA/cmで駆動したときに発光強度が駆動開始時の95%になるまでの時間(LT95)を測定したところ、比較素子1-1よりも本発明の素子1の方が1.35倍長かった。このことから、本発明の化合物を遅延蛍光材料と併用すると駆動電圧が低くなり、素子寿命が長くなることが確認された。
(Example 1) Preparation of green organic electroluminescence device with a different host material On a glass substrate having an anode made of indium tin oxide (ITO) having a thickness of 50 nm, each thin film was formed by vacuum deposition. , and laminated at a degree of vacuum of 5×10 −5 Pa. First, HAT-CN was formed to a thickness of 10 nm on ITO, and NPD was formed thereon to a thickness of 30 nm. Then, TrisPCz was formed thereon to a thickness of 10 nm. Compound 1 and TADF1 were then co-deposited from different deposition sources to form a 40 nm thick light-emitting layer. The contents of compound 1 and TADF1 were 55% by mass and 45% by mass. SF3TRZ was formed thereon to a thickness of 10 nm, and SF3TRZ and Liq were co-deposited thereon from different vapor deposition sources at 70% by mass and 30% by mass, respectively, to form a 30 nm thick film. Furthermore, Liq was formed to a thickness of 2 nm, and then aluminum (Al) was deposited to a thickness of 100 nm to form a cathode. The organic electroluminescence element 1 was produced by the above procedure.
A comparative element 1-1 was produced according to the same procedure except that the comparative compound 1 was used instead of the compound 1.
When electricity was applied to the electrodes of each of the fabricated devices, green delayed fluorescence was observed. Further, when the driving voltage was measured at 6.3 mA/cm 2 , the device 1 of the present invention was 0.3 V lower than the comparative device 1-1. Further, when the time (LT95) required for the light emission intensity to reach 95% of that at the start of driving when driven at 25.2 mA/cm 2 was measured, the element 1 of the present invention was higher than the comparative element 1-1. 1.35 times longer. From this, it was confirmed that when the compound of the present invention is used in combination with the delayed fluorescence material, the driving voltage becomes lower and the device life becomes longer.
(実施例2)ホスト材料を替えた青色有機エレクトロルミネッセンス素子の作製
 実施例1の発光層を、化合物1とTADF85を異なる蒸着源から70質量%、30質量%で共蒸着して40nmの厚さに形成した点だけを変更して、その他は実施例1と同じ手順にしたがって素子2-1を作製した。
 化合物1の代わりに化合物16または化合物512をそれぞれ用いた点だけを変更して、その他は同じ手順にしたがって素子2-2、2-3を作製した。
 化合物1の代わりに比較化合物2を用いた点だけを変更して、その他は同じ手順にしたがって比較素子2-1を作製した。
 作製した各素子の電極に通電したところ、青色の遅延蛍光が観測された。各素子について、2.0mA/cmの電流密度で駆動電圧を測定し、比較素子2-1の駆動電圧との差(相対値)を求めた結果を表3に示す。表3の結果は、本発明の化合物を青色遅延蛍光材料とともに用いた場合も駆動電圧が低くなることを示している。
(Example 2) Preparation of blue organic electroluminescent device with different host materials The light-emitting layer of Example 1 was co-deposited with 70% by mass and 30% by mass of compound 1 and TADF85 from different deposition sources to a thickness of 40 nm. A device 2-1 was fabricated according to the same procedure as in Example 1, except for the fact that it was formed in .
Elements 2-2 and 2-3 were prepared according to the same procedure except that Compound 16 or Compound 512 was used instead of Compound 1.
A comparative element 2-1 was produced according to the same procedure except that the comparative compound 2 was used instead of the compound 1.
When electricity was applied to the electrodes of each of the fabricated devices, blue delayed fluorescence was observed. For each element, the driving voltage was measured at a current density of 2.0 mA/cm 2 , and the difference (relative value) from the driving voltage of the comparative element 2-1 was obtained. Table 3 shows the results. The results in Table 3 show that the driving voltage is also lowered when the compound of the present invention is used together with the blue delayed fluorescent material.
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
(実施例3)ホスト材料を替えた赤色有機エレクトロルミネッセンス素子の作製
 実施例1の発光層を、化合物1とTADF72とF1を異なる蒸着源から59.5質量%、40質量%、0.5質量%で共蒸着して40nmの厚さに形成した点だけを変更して、その他は実施例1と同じ手順にしたがって素子3を作製した。
 化合物1の代わりに比較化合物1を用いた点だけを変更して、その他は同じ手順にしたがって比較素子3-1を作製した。
 作製した各素子の電極に通電したところ、赤色の遅延蛍光が観測された。また、6.3mA/cmでの駆動電圧を測定したところ、比較素子3-1よりも本発明の素子3の方が0.3V低かった。また、6.3mA/cmでの外部量子収率(EQE)を測定したところ、比較素子3-1よりも本発明の素子3の方が10%も高かった。このことから、本発明の化合物を遅延蛍光材料や蛍光材料とともに用いた場合も駆動電圧が低くなり、発光効率が良くなることが確認された。
(Example 3) Preparation of red organic electroluminescence device with different host materials The light-emitting layer of Example 1 was prepared by using compound 1, TADF72, and F1 from different vapor deposition sources at 59.5% by mass, 40% by mass, and 0.5% by mass. %, and formed to a thickness of 40 nm.
A comparative element 3-1 was produced according to the same procedure except that the comparative compound 1 was used instead of the compound 1.
When electricity was applied to the electrodes of each of the fabricated devices, red delayed fluorescence was observed. Further, when the driving voltage was measured at 6.3 mA/cm 2 , the element 3 of the present invention was 0.3 V lower than the comparative element 3-1. Further, when the external quantum yield (EQE) was measured at 6.3 mA/cm 2 , the device 3 of the present invention was 10% higher than the comparative device 3-1. From this, it was confirmed that even when the compound of the present invention is used together with a delayed fluorescence material or a fluorescent material, the driving voltage is lowered and the luminous efficiency is improved.
(実施例4)ホスト材料を替えた別の赤色有機エレクトロルミネッセンス素子の作製
 実施例1の発光層を、化合物1とTADF86とE35を異なる蒸着源から64.7質量%、35質量%、0.3質量%で共蒸着して40nmの厚さに形成した点だけを変更して、その他は実施例1と同じ手順にしたがって素子4-1を作製した。
 化合物1の代わりに化合物512を用いた点だけを変更して、その他は同じ手順にしたがって素子4-2を作製した。
 化合物1の代わりに比較化合物3を用いた点だけを変更して、その他は同じ手順にしたがって比較素子4-1を作製した。
 作製した各素子の電極に通電したところ、赤色の遅延蛍光が観測された。50.0mA/cmで駆動したときに発光強度が駆動開始時の95%になるまでの時間(LT95)を測定し、比較素子4-1の時間に対する比(相対値)を求めた結果を表4に示す。表4の結果は、本発明の化合物を遅延蛍光材料や蛍光材料とともに用いた場合も素子寿命が長くなることを示している。
(Example 4) Fabrication of another red organic electroluminescence device by changing the host material The light-emitting layer of Example 1 was prepared by adding 64.7% by mass, 35% by mass, 0.7% by mass of compound 1, TADF86 and E35 from different vapor deposition sources. A device 4-1 was fabricated according to the same procedure as in Example 1 except that it was co-deposited at 3% by mass to form a film having a thickness of 40 nm.
Device 4-2 was fabricated according to the same procedure except that compound 512 was used instead of compound 1.
A comparative element 4-1 was produced according to the same procedure except that the comparative compound 3 was used instead of the compound 1.
When electricity was applied to the electrodes of each of the fabricated devices, red delayed fluorescence was observed. When driving at 50.0 mA/cm 2 , the time (LT95) required for the light emission intensity to reach 95% of that at the start of driving was measured, and the ratio (relative value) of the comparative element 4-1 to the time was obtained. Table 4 shows. The results in Table 4 show that the device life is prolonged even when the compound of the present invention is used together with the delayed fluorescent material and the fluorescent material.
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
(実施例5)電子障壁材料を替えた緑色有機エレクトロルミネッセンス素子の作製
 膜厚50nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基材上に、各薄膜を真空蒸着法にて、真空度5×10-5Paで積層した。まず、ITO上にHAT-CNを10nmの厚さに形成し、その上にNPDを30nmの厚さに形成し、さらにTrisPCzを10nmの厚さに形成した。次いで、その上に電子障壁層として化合物1を10nmの厚さに形成した。次に、H1とTADF1を異なる蒸着源から共蒸着し、40nmの厚さの発光層を形成した。H1とTADF1の含有量は55質量%、45質量%とした。その上に、SF3TRZを10nmの厚さに形成し、さらにその上にSF3TRZとLiqを異なる蒸着源からそれぞれ70質量%、30質量%で共蒸着して30nmの厚さに形成した。さらに、Liqを2nmの厚さに形成し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成した。以上の手順により、有機エレクトロルミネッセンス素子5を作製した。
 化合物1の代わりに比較化合物1を用いた点だけを変更して、その他は同じ手順にしたがって比較素子5-1を作製した。
 作製した各素子の電極に通電したところ、緑色の遅延蛍光が観測された。また、25.2mA/cmで駆動したときに発光強度が駆動開始時の95%になるまでの時間(LT95)を測定したところ、比較素子5-1よりも本発明の素子5の方が1.5倍長かった。このことから、本発明の化合物を電子障壁材料として用いると素子寿命が長くなることが確認された。
(Example 5) Preparation of green organic electroluminescence device with different electron barrier materials Each thin film was formed by vacuum deposition on a glass substrate on which an anode made of indium tin oxide (ITO) with a thickness of 50 nm was formed. and laminated at a degree of vacuum of 5×10 −5 Pa. First, HAT-CN was formed on ITO to a thickness of 10 nm, NPD was formed thereon to a thickness of 30 nm, and TrisPCz was formed to a thickness of 10 nm. Next, Compound 1 was formed thereon as an electron blocking layer to a thickness of 10 nm. Next, H1 and TADF1 were co-deposited from different deposition sources to form a 40 nm thick emitting layer. The contents of H1 and TADF1 were 55% by mass and 45% by mass. SF3TRZ was formed thereon to a thickness of 10 nm, and SF3TRZ and Liq were co-deposited thereon from different vapor deposition sources at 70% by mass and 30% by mass, respectively, to form a 30 nm thick film. Furthermore, Liq was formed to a thickness of 2 nm, and then aluminum (Al) was deposited to a thickness of 100 nm to form a cathode. The organic electroluminescence element 5 was produced by the above procedure.
A comparative element 5-1 was produced according to the same procedure except that the comparative compound 1 was used instead of the compound 1.
When electricity was applied to the electrodes of each of the fabricated devices, green delayed fluorescence was observed. Further, when the time (LT95) required for the light emission intensity to reach 95% of that at the start of driving when driven at 25.2 mA/cm 2 was measured, the element 5 of the present invention was higher than the comparative element 5-1. 1.5 times longer. From this, it was confirmed that the use of the compound of the present invention as an electron barrier material prolongs the life of the device.
(実施例6)ホスト材料と第二のホスト材料の2種類のホストを用いた赤色有機エレクトロルミネッセンス素子の作製
 発光層を形成する際、化合物1とH2とTADF15とE35を異なる蒸着源から共蒸着して40nmの厚さに形成した点だけを変更して、その他は実施例1と同じ手順にしたがって有機エレクトロルミネッセンス素子6-1を作製した。このとき、化合物1:H2:TADF15:E35の量比は、44.7質量%:20質量%:35質量%:0.3質量%とした。
 化合物1の代わりに化合物16または化合物512を用いた点だけを変更して、その他は同じ手順にしたがって有機エレクトロルミネッセンス素子6-2、6-3を作製した。
 化合物1の代わりに比較化合物1を用いた点だけを変更して、その他は同じ手順にしたがって比較素子6-1を作製した。
 作製した各素子の電極に通電したところ、赤色の遅延蛍光が観測された。各素子について、15.4mA/cmの電流密度で駆動電圧を測定し、比較素子6-1の駆動電圧との差(相対値)を求めた結果を表5に示す。
(Example 6) Production of a red organic electroluminescent device using two types of hosts, a host material and a second host material When forming a light-emitting layer, compound 1, H2, TADF15, and E35 were co-deposited from different deposition sources. An organic electroluminescence device 6-1 was produced in the same manner as in Example 1, except that the film was formed to a thickness of 40 nm. At this time, the amount ratio of compound 1:H2:TADF15:E35 was 44.7% by mass:20% by mass:35% by mass:0.3% by mass.
Organic electroluminescence devices 6-2 and 6-3 were produced according to the same procedure except that compound 16 or compound 512 was used instead of compound 1.
A comparative element 6-1 was produced according to the same procedure except that the comparative compound 1 was used instead of the compound 1.
When electricity was applied to the electrodes of each of the fabricated devices, red delayed fluorescence was observed. For each element, the driving voltage was measured at a current density of 15.4 mA/cm 2 , and the difference (relative value) from the driving voltage of the comparative element 6-1 was obtained. Table 5 shows the results.
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000078
 表3に示すように、比較素子6-1よりも本発明の素子6-1~6-3の方が低い駆動電圧を示した。このことから、本発明の化合物を、第二のホスト材料、遅延蛍光材料および蛍光材料とともに用いた場合も駆動電圧が低くなることが確認された。 As shown in Table 3, the devices 6-1 to 6-3 of the present invention exhibited lower drive voltages than the comparative device 6-1. From this, it was confirmed that the driving voltage is lowered even when the compound of the present invention is used together with the second host material, the delayed fluorescent material and the fluorescent material.
 以上のように、本発明の化合物を用いた有機エレクトロルミネッセンス素子は、比較化合物1~3を用いた素子よりも低い駆動電圧や長い素子寿命、高い発光効率を示した。これは、置換ジベンゾフラン-2-イル基とカルバゾール構造を有する基がベンゼン環のパラ位に配置している構造が、ホスト材料や電子障壁材料としての機能に有利に作用するためである。 As described above, the organic electroluminescence device using the compound of the present invention exhibited a lower driving voltage, a longer device life, and a higher luminous efficiency than the devices using the comparative compounds 1-3. This is because the structure in which the substituted dibenzofuran-2-yl group and the group having a carbazole structure are arranged at the para-position of the benzene ring favorably functions as a host material or an electron blocking material.
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 一般式(1)で表される化合物は、例えばホスト材料や電子障壁材料として有用である。一般式(1)で表される化合物を用いた有機発光素子は、優れた特性を有する。このため、本発明は産業上の利用可能性が高い。 The compound represented by general formula (1) is useful, for example, as a host material or electron barrier material. An organic light-emitting device using the compound represented by general formula (1) has excellent properties. Therefore, the present invention has high industrial applicability.

Claims (23)

  1.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、
     R~RおよびR~R19は、各々独立に水素原子、重水素原子、置換もしくは無置換のアリール基、または置換もしくは無置換のアルキル基を表し、
     R~Rは、各々独立に水素原子、重水素原子、または置換もしくは無置換のアルキル基を表し、
     R~Rの少なくとも1個は、置換もしくは無置換のアリール基、または置換もしくは無置換のアルキル基であり、
     R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19は、互いに結合して環状構造を形成していてもよい。]
    A compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (1),
    R 1 to R 4 and R 8 to R 19 each independently represent a hydrogen atom, a deuterium atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted alkyl group;
    R 5 to R 7 each independently represent a hydrogen atom, a deuterium atom, or a substituted or unsubstituted alkyl group;
    at least one of R 1 to R 4 is a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group;
    R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 may combine with each other to form a cyclic structure. . ]
  2.  R~RおよびR~R19が、各々独立に水素原子、または、重水素原子、アルキル基およびアリール基からなる群より選択される1つの原子か基あるいは2つ以上を組み合わせてできる基である、請求項1に記載の化合物。 R 1 to R 4 and R 8 to R 19 are each independently a hydrogen atom, or one atom or group selected from the group consisting of a deuterium atom, an alkyl group and an aryl group, or a combination of two or more 2. The compound of claim 1, which is a group.
  3.  R~Rの少なくとも1個は、重水素原子、アルキル基およびアリール基からなる群より選択される1つの原子か基あるいは2つ以上を組み合わせてできる基で置換されていてもよいアリール基である、請求項1に記載の化合物。 At least one of R 1 to R 4 is an aryl group optionally substituted with one atom or group selected from the group consisting of a deuterium atom, an alkyl group and an aryl group, or a group formed by combining two or more 2. The compound of claim 1, which is
  4.  Rが置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基である、請求項1に記載の化合物。 2. The compound of Claim 1, wherein R2 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  5.  R14およびR17の少なくとも一方が置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基である、請求項1に記載の化合物。 2. The compound of claim 1, wherein at least one of R14 and R17 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  6.  R~R19に含まれるベンゼン環の総数が1~3個である、請求項1に記載の化合物。 The compound according to claim 1, wherein the total number of benzene rings contained in R 1 to R 19 is 1 to 3.
  7.  R~Rが、各々独立に水素原子または重水素原子である、請求項1に記載の化合物。 The compound according to claim 1, wherein R 5 -R 7 are each independently a hydrogen atom or a deuterium atom.
  8.  R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19のうちの少なくとも1組が、互いに結合して環状構造を形成している、請求項1に記載の化合物。 at least one pair of R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 are bonded together to form a cyclic structure; 2. The compound of claim 1, which is formed.
  9.  請求項1~8のいずれか1項に記載の化合物を含むホスト材料。 A host material containing the compound according to any one of claims 1 to 8.
  10.  遅延蛍光材料とともに用いるための請求項9に記載のホスト材料。 The host material according to claim 9 for use with a delayed fluorescence material.
  11.  請求項1~8のいずれか1項に記載の化合物を含む電子障壁材料。 An electron barrier material containing the compound according to any one of claims 1 to 8.
  12.  請求項1~8のいずれか1項に記載の化合物に遅延蛍光材料をドープした組成物。 A composition in which the compound according to any one of claims 1 to 8 is doped with a delayed fluorescence material.
  13.  膜状である、請求項12に記載の組成物。 The composition according to claim 12, which is in the form of a film.
  14.  前記遅延蛍光材料が、ベンゼン環に置換しているシアノ基の数が1つであるシアノベンゼン構造を有する化合物である、請求項12に記載の組成物。 The composition according to claim 12, wherein the delayed fluorescence material is a compound having a cyanobenzene structure in which the benzene ring is substituted with one cyano group.
  15.  前記遅延蛍光材料が、ベンゼン環に前記シアノ基の他に2種以上の置換もしくは無置換のカルバゾリル基が結合している、請求項14に記載の組成物。 The composition according to claim 14, wherein the delayed fluorescence material has two or more substituted or unsubstituted carbazolyl groups bonded to the benzene ring in addition to the cyano group.
  16.  前記遅延蛍光材料が、ベンゼン環に置換しているシアノ基の数が2つであるジシアノベンゼン構造を有する化合物である、請求項12に記載の組成物。 The composition according to claim 12, wherein the delayed fluorescence material is a compound having a dicyanobenzene structure in which two cyano groups are substituted on the benzene ring.
  17.  前記一般式(1)で表される化合物および前記遅延蛍光材料よりも最低励起一重項エネルギーが低い蛍光性化合物をさらに含む、請求項14に記載の組成物。 The composition according to claim 14, further comprising a fluorescent compound having a lowest excited singlet energy lower than that of the compound represented by the general formula (1) and the delayed fluorescent material.
  18.  前記一般式(1)で表されないホスト材料をさらに含む、請求項12に記載の組成物。 The composition according to claim 12, further comprising a host material not represented by the general formula (1).
  19.  請求項1~8のいずれか1項に記載の化合物を含む有機発光素子。 An organic light emitting device containing the compound according to any one of claims 1 to 8.
  20.  請求項12に記載の組成物からなる層を有する、請求項19に記載の有機発光素子。 The organic light-emitting device according to claim 19, which has a layer made of the composition according to claim 12.
  21.  前記層が、炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、ホウ素原子およびハロゲン原子からなる群より選択される原子のみからなる、請求項20に記載の有機発光素子。 21. The organic light emitting device according to claim 20, wherein said layer consists only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms, oxygen atoms, sulfur atoms, boron atoms and halogen atoms.
  22.  前記層が、炭素原子、水素原子、窒素原子および酸素原子からなる群より選択される原子のみからなる、請求項21に記載の有機発光素子。 The organic light-emitting device according to claim 21, wherein the layer consists only of atoms selected from the group consisting of carbon atoms, hydrogen atoms, nitrogen atoms and oxygen atoms.
  23.  有機エレクトロルミネッセンス素子である、請求項19に記載の有機発光素子。 The organic light-emitting device according to claim 19, which is an organic electroluminescence device.
PCT/JP2022/045210 2021-12-17 2022-12-08 Compound, host material, electron barrier material, composition and organic light emitting element WO2023112808A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021204983 2021-12-17
JP2021-204983 2021-12-17
JP2022091795 2022-06-06
JP2022-091795 2022-06-06

Publications (1)

Publication Number Publication Date
WO2023112808A1 true WO2023112808A1 (en) 2023-06-22

Family

ID=86774644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045210 WO2023112808A1 (en) 2021-12-17 2022-12-08 Compound, host material, electron barrier material, composition and organic light emitting element

Country Status (1)

Country Link
WO (1) WO2023112808A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267255A (en) * 2008-04-28 2009-11-12 Idemitsu Kosan Co Ltd Material for organic electroluminescent element and organic electroluminescent element using the material
WO2016129672A1 (en) * 2015-02-13 2016-08-18 コニカミノルタ株式会社 Aromatic heterocyclic derivative, and organic electroluminescent element, illumination device, and display device using aromatic heterocyclic derivative
CN112174944A (en) * 2020-09-25 2021-01-05 江苏三月科技股份有限公司 Compound with dibenzo five-membered heterocycle as core and application thereof
WO2022196749A1 (en) * 2021-03-18 2022-09-22 出光興産株式会社 Organic electroluminescent element, compound, and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267255A (en) * 2008-04-28 2009-11-12 Idemitsu Kosan Co Ltd Material for organic electroluminescent element and organic electroluminescent element using the material
WO2016129672A1 (en) * 2015-02-13 2016-08-18 コニカミノルタ株式会社 Aromatic heterocyclic derivative, and organic electroluminescent element, illumination device, and display device using aromatic heterocyclic derivative
CN112174944A (en) * 2020-09-25 2021-01-05 江苏三月科技股份有限公司 Compound with dibenzo five-membered heterocycle as core and application thereof
WO2022196749A1 (en) * 2021-03-18 2022-09-22 出光興産株式会社 Organic electroluminescent element, compound, and electronic device

Similar Documents

Publication Publication Date Title
WO2021157642A1 (en) Host material, composition, and organic electroluminescent element
WO2022249505A1 (en) Compound, light-emitting material, and light-emitting element
WO2023140130A1 (en) Compound, light-emitting material and organic light-emitting device
JP7152805B1 (en) Compounds, compositions, host materials, electron barrier materials and organic light-emitting devices
WO2022168825A1 (en) Organic electroluminescence element, method for designing luminous composition, and program
JP7408125B2 (en) Charge transport materials and organic light emitting devices
WO2023053835A1 (en) Compound, composition, host material, electron barrier material and organic light emitting element
WO2023112808A1 (en) Compound, host material, electron barrier material, composition and organic light emitting element
WO2022230574A1 (en) Charge transport material, composition, and organic luminescent element
WO2023276918A1 (en) Compound, electronic barrier material, and organic semiconductor element and compound
WO2022254965A1 (en) Compound, light-emitting material, and light-emitting element
WO2022168956A1 (en) Compound, light-emitting material, and organic light-emitting element
WO2023079993A1 (en) Compound, composition, host material, and organic electroluminescent element
JP2023159034A (en) Compound, host material, composition, and organic light-emitting element
JP2023089875A (en) Compound, composition, host material, and organic light-emitting element
JP2022168813A (en) Charge transport material, composition, and organic luminescent element
JP2023069652A (en) Compound, composition, host material, and organic electroluminescent element
JP2023032402A (en) Compound, luminescent material, and organic light-emitting element
JP2023056802A (en) Compound, light-emitting material and organic light-emitting device
WO2023166883A1 (en) Compound, light-emitting material and light-emitting element
JP2023046437A (en) Compound, luminescent material, and organic light-emitting element
JP2023056804A (en) Compound, light-emitting material and organic light-emitting device
WO2023090154A1 (en) Compound, light-emitting material, and light-emitting element
JP2023002881A (en) Compound, light-emitting material, and organic light-emitting element
JP2023056803A (en) Compound, light-emitting material and organic light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907335

Country of ref document: EP

Kind code of ref document: A1