WO2023112603A1 - Production device for coil and production method for coil - Google Patents

Production device for coil and production method for coil Download PDF

Info

Publication number
WO2023112603A1
WO2023112603A1 PCT/JP2022/042900 JP2022042900W WO2023112603A1 WO 2023112603 A1 WO2023112603 A1 WO 2023112603A1 JP 2022042900 W JP2022042900 W JP 2022042900W WO 2023112603 A1 WO2023112603 A1 WO 2023112603A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
coil
electrodeposition
materials
portions
Prior art date
Application number
PCT/JP2022/042900
Other languages
French (fr)
Japanese (ja)
Inventor
展充 近藤
隆久 蟹江
駿介 小薮
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2023112603A1 publication Critical patent/WO2023112603A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present disclosure relates to a coil manufacturing device and a coil manufacturing method.
  • a technique is known in which an insulating film is applied to multiple coils at the same time by electrodeposition coating.
  • the present disclosure aims to apply an insulating film with reduced variation to each coil material in a relatively short electrodeposition coating time.
  • a method for manufacturing a coil having an insulating film comprising: a preparation step of preparing a plurality of coil materials before the insulating film is applied; An electrodeposition coating step of generating a potential difference between a first electrode connected to the plurality of coil materials and a second electrode in the electrodeposition tank while the plurality of coil materials are immersed in the electrodeposition tank. and including In the electrodeposition coating step, the plurality of coil materials and the second electrode are arranged in relation to at least one target portion at the same position in the plurality of coil materials, and the target portion and the second electrode between the plurality of coil materials.
  • a method of manufacturing coils is provided in which the coils are positioned with respect to each other such that the shortest distances between the electrodes are substantially the same.
  • FIG. 3 is a cross-sectional view along the axial direction of the stator in which coil pieces are assembled to the stator core;
  • FIG. 4 is an explanatory diagram of a coil piece according to an example;
  • FIG. 10 is an explanatory diagram of a coil piece according to another example;
  • 4 is a schematic cross-sectional view of a coil piece;
  • 1 is a schematic plan view showing one work;
  • FIG. It is a figure explaining the conceptual feature which concerns on a 2nd electrode.
  • FIG. 4 is a perspective view schematically showing the relationship between a plurality of works immersed in an electrodeposition tank and a second electrode; 7 is an enlarged view of the periphery of the workpiece in FIG. 6;
  • FIG. FIG. 5 is a diagram showing the relationship between the transition portion and the second electrode;
  • FIG. 10 is an explanatory diagram of an example of a suitable arrangement when two or more rows of works in the Y direction are simultaneously immersed in an electrodeposition tank to perform an electrodeposition coating process.
  • FIG. 5 is an explanatory diagram of a configuration of a second electrode according to a comparative example; It is a figure which shows the analysis result with respect to a comparative example.
  • FIG. 10 is a diagram showing analysis results for Example 1;
  • FIG. 10 is a diagram showing analysis results for Example 1;
  • FIG. 10 is a diagram showing analysis results relating to the difference in film thickness between the central side surface and the opposite side surface of the work;
  • FIG. 5 is an explanatory diagram of a modification of the second electrode of Example 1;
  • FIG. 14 is an explanatory diagram of various parameters relating to the positional relationship between the second electrode and the work in the modified example of FIG. 13;
  • FIG. 10 is an explanatory diagram of another modified example of the second electrode of Example 1;
  • FIG. 10 is an explanatory diagram of a modification of the center side electrode of the second electrode of Example 1;
  • FIG. 10 is an explanatory diagram of another modification of the central electrode of the second electrode of Example 1;
  • FIG. 10 is an explanatory diagram of still another modified example of the central electrode of the second electrode of Example 1;
  • FIG. 10 is an explanatory diagram of still another modified example of the central electrode of the second electrode of Example 1;
  • FIG. 5 is an explanatory diagram of a modification of the second electrode of Example 1
  • FIG. 14 is an
  • FIG. 11 is a perspective view showing the relationship between a second electrode and a plurality of works in Example 2;
  • FIG. 10 is a diagram showing analysis results for Example 2;
  • FIG. 11 is an explanatory diagram of a modified example of the second electrode of Example 2;
  • FIG. 10 is an explanatory diagram of various parameters related to the positional relationship between the second electrode and the workpiece in Example 2;
  • FIG. 11 is an explanatory diagram of a modification of the center electrode of the second electrode of Example 2;
  • FIG. 11 is an explanatory diagram of a further modified example of the central electrode of the second electrode of Example 2;
  • FIG. 11 is an explanatory diagram of a further modified example of the central electrode of the second electrode of Example 2;
  • FIG. 10 is an explanatory diagram of a modification relating to a configuration that does not have a central electrode;
  • FIG. 1 is an axial cross-sectional view of the stator 10 with the coil pieces 52 assembled to the stator core 112 .
  • FIG. 2A is a front view of one coil piece 52 out of the plurality of coil pieces 52.
  • FIG. 2B is a three-sided view of one coil piece 52' according to another embodiment.
  • FIG. 3 is a schematic cross-sectional view of the coil piece 52. As shown in FIG.
  • the stator coil 114 includes a U-phase coil, a V-phase coil, and a W-phase coil (hereinafter referred to as "phase coils" when U, V, and W are not distinguished).
  • phase coils when U, V, and W are not distinguished.
  • the proximal end of each phase coil is connected to an input terminal (not shown), and the distal end of each phase coil is connected to the distal end of the other phase coil to form a neutral point. That is, stator coil 114 is star-connected.
  • the connection mode of the stator coil 114 may be changed as appropriate according to the required motor characteristics, etc.
  • the stator coil 114 may be delta-connected instead of star-connected.
  • Each phase coil of the stator coil 114 is configured by connecting a plurality of coil pieces 52 .
  • the coil pieces 52 are in the form of segment coils (segment conductors) obtained by dividing a phase coil into units that are easy to assemble (for example, units that are inserted into two slots 23).
  • the coil piece 52 is formed by covering a linear conductor (rectangular wire) 120 having a substantially rectangular cross section with an insulating film 130 .
  • the linear conductor is made of copper as an example.
  • the linear conductors may be made of other conductor materials such as iron.
  • the cross-sectional shape of the linear conductor may be other than rectangular.
  • one coil piece 52 is formed in a substantially U shape having a pair of linear slot accommodation portions 50 and a transition portion 54 connecting the pair of slot accommodation portions 50.
  • the transition portion 54 on the other side in the axial direction may be formed by molding in the circumferential direction from the state shown in FIG. 2A.
  • a connecting portion 40 that is connected to the connecting portion 40 of the connecting portion 54 of the other coil piece 52 is set at the end portion of the connecting portion 54 on the other side in the axial direction (upper side in FIG. 2A).
  • the pair of slot housing portions 50 are inserted into the slots 23 between the teeth 22 (see FIG. 1).
  • the coil segments 52 can be assembled axially, for example.
  • a plurality of slot accommodating portions 50 of the coil pieces 52 shown in FIG. Accordingly, a plurality of transition portions 54 extending in the circumferential direction are arranged in the radial direction at both ends of the stator core 112 in the axial direction. In addition, the transition portion 54 forms a coil end.
  • the coil pieces 52 may be wound around the stator core 112 in the form of lap winding, for example.
  • the lower transition portion 54 has offset portions 521B that are radially offset by one layer away from each other.
  • one coil piece 52' is formed by connecting a segment conductor 52A on one side in the axial direction and a segment conductor 52B on the other side in the axial direction.
  • the segment conductor 52A and the segment conductor 52B may each be formed in a substantially U-shape having a pair of linear slot accommodation portions 50 and a connecting portion 54 connecting the pair of slot accommodation portions 50.
  • the segment conductor 52A and the segment conductor 52B can each be coupled to one of the slot accommodating portions 50 on both sides in the circumferential direction, while the other is one layer in the radial direction. offset away from each other by Specifically, the segment conductor 52A and the segment conductor 52B respectively include offset portions 521A and 521B at the top of the facing surface 42, and the offset portions 521A and 521B provide opposite radial offsets.
  • the segment conductor 52A and the segment conductor 52B that constitute one coil piece 52' are connected to one of the slot housing portions 50 on both sides in the circumferential direction.
  • the parts 40 are joined together.
  • the slot accommodating portion 50 on the other side is coupled to another coil piece 52 .
  • the connecting portions 40 have facing surfaces 42 that face each other in the radial direction and are in surface contact with each other.
  • FIGS. 1 to 3 show the stator core 112 and the stator coil 114 having specific structures
  • the structures of the stator core 112 and the stator coil 114 are arbitrary as long as the stator coil 114 has the insulating film 130.
  • the winding method of the stator coil 114 is also arbitrary, and a winding method other than the above-described lap winding, such as wave winding, may be used.
  • the coil manufacturing method of this embodiment first includes a preparatory step of preparing a coil material before the insulating film 130 is applied and after molding.
  • the coil material after molding is obtained by, for example, bending a linear conductor.
  • the formed coil material may be partially formed, such as the coil piece 52 shown in FIG. 2A, or may be segmented, such as the coil piece 52' shown in FIG. 2B. Molding may be completed into a configuration corresponding to conductors 52A, 52B.
  • the coil material (hereinafter also referred to as "workpiece W") prepared in the preparation step has a substantially U-shaped configuration, as shown in FIG. 4B.
  • the coil manufacturing method of this embodiment includes an electrodeposition coating step of applying the insulating film 130 to the work W prepared in the preparation step by electrodeposition coating. Other steps may be included between the preparation step and the electrodeposition coating step.
  • the portion of the workpiece W to be coated with the insulating film 130 may be the entire workpiece W or a part of the workpiece W.
  • the target portion of the workpiece W to which the insulating film 130 is applied is substantially the entire workpiece W (for example, the entire portion of the coil piece 52 excluding the portion corresponding to the coupling portion 40).
  • FIG. 4A is an explanatory diagram of the outline of the coil manufacturing apparatus 1 and the electrodeposition coating process.
  • FIG. 4B is a schematic plan view showing one workpiece W.
  • FIG. 4A is an explanatory diagram of the outline of the coil manufacturing apparatus 1 and the electrodeposition coating process.
  • FIG. 4B is a schematic plan view showing one workpiece W.
  • the coil manufacturing apparatus 1 includes an electrodeposition bath 70, an electrode section 73, and an electrodeposition processing section 78, as shown in FIG. 4A.
  • the electrodeposition bath 70 is filled with paint.
  • the paint filled in the electrodeposition tank 70 is schematically indicated by a hatched area 72 .
  • the paint is a material of the insulating film 130, and may be an insulating paint containing polyamide-imide resin, polyimide resin, or the like.
  • a plurality of workpieces W are immersed in the electrodeposition tank 70 before the insulating film 130 is applied and after the molding.
  • the electrode part 73 forms a first electrode 74 electrically connected to the plurality of works W and a second electrode 76 in the electrodeposition bath 70 while the plurality of works W are immersed in the electrodeposition bath 70 . do.
  • the electrodeposition processing section 78 includes a DC power supply (rectifier) 781 and generates a potential difference between the first electrode 74 and the second electrode 76 .
  • the electrodeposition coating process is performed with the workpiece W immersed in the electrodeposition bath 70 as shown in FIG. 4A.
  • the workpiece W immersed in the electrodeposition tank 70 is in a state before the insulating film 130 is formed on the coil pieces 52 described above.
  • the corresponding portion of the coil piece 52 may be described.
  • a portion of the work W denoted by reference numeral 60 corresponds to the transition portion 54 of the coil piece 52, and is also simply referred to as the transition portion 54 of the work W hereinafter.
  • the positive electrode side (and the negative electrode side accordingly) of the first electrode 74 and the second electrode 76 is arbitrary.
  • the paint in the electrodeposition bath 70 may have flow.
  • paint may be supplied to the electrodeposition tank 70 from a supply side pipe (not shown) and discharged from a discharge side pipe (not shown). In this case, the paint is circulated through the electrodeposition bath 70 .
  • the second electrode 76 is schematically shown as a conceptual diagram, and the features of this embodiment will be described below.
  • the conceptual features of the second electrode 76 will first be described with reference to FIG. 5, and then, in FIG. (Embodiment 1 and subsequent embodiments to be described later) will be described separately.
  • FIG. 5 is a diagram for explaining conceptual features of the second electrode 76.
  • FIG. FIG. 5 conceptually shows a plurality of works W immersed in the electrodeposition tank 70 . Note that the plurality of works W have the same form.
  • the second electrode 76 is configured so that the plurality of works W have substantially the same positional relationship with respect to the plurality of works W when the plurality of works W are immersed in the electrodeposition tank 70 .
  • the phrase "substantially the same positional relationship" means that the plurality of works Regarding parts at the same position in W (hereinafter also referred to as "target parts"), the variation in the shortest distance between the target part and the second electrode 76 among the plurality of works W may be less than 5 mm. .
  • the shortest distance L1 between the target portion indicated by the arrow P1 and the second electrode 76 is uniquely determined for each workpiece W.
  • the shortest distance L1 is the spatial shortest distance through the paint in the electrodeposition bath 70, but it does not have to be measured precisely, and may be, for example, a distance intended by design.
  • a target site is at least a part of the range to be electrocoated, and may be any site (for example, a target site indicated by arrow P2 or arrow P3), or a specific part.
  • the target site may be any site within a range W2 mainly including the slot housing portion 50 as shown in FIG. 4B.
  • the target portion is an arbitrary portion within the range to be electrocoated (that is, the entire work W).
  • Variation in the shortest distance is, for example, the difference between the minimum and maximum values of the shortest distance L1 of each of the plurality of works W when the plurality of works W are immersed in the electrodeposition tank 70 .
  • the work W is more likely to be electrodeposited with the paint on the portion with the relatively high electric flux density than the portion with the relatively low electric flux density, and therefore the film thickness of the paint tends to increase.
  • Even a portion having a relatively high electric flux density at the start of the electrodeposition coating process will have a relatively low electric flux density as the coating film thickness increases with the passage of time.
  • the electric flux density related to one target portion of each work W correlates with the shortest distance between the second electrode 76 and the one target portion of each work W. That is, the electric flux density associated with one target portion of the work W tends to increase as the shortest distance becomes shorter.
  • the electrodeposition coating time can be shortened.
  • variation in the thickness of the insulating film 130 applied to the target portion of each workpiece W can be reduced.
  • the allowable upper limit varies depending on the required quality. Variation can be effectively reduced. Therefore, the allowable upper limit is preferably about 5 mm as described above, more preferably 3 mm or less, and even more preferably 1 mm or less.
  • the target portions of the plurality of works W are within the range W2 and the range W1 in FIG. 4B, as shown in FIG. It is preferably located between the slot accommodation portions 50 . In this case, variations in the thickness of the insulating film 130 can be reduced in relatively large portions within the range W2 and the range W1.
  • FIGS. 6 and 7 are explanatory diagrams of the coil manufacturing apparatus 1 and the manufacturing method according to Example 1, and FIG. 6 shows the relationship between a plurality of works W immersed in the electrodeposition tank 70 and the second electrode 76A.
  • FIG. 7 is a schematic perspective view, and FIG. 7 is an enlarged view of the periphery of the workpiece W in FIG. 6.
  • FIGS. 6 and 7 similar to FIG. 13 and the like below, mutually orthogonal X, Y, and Z axes are defined, and with regard to the Z axis, the Z1 side and Z2 side along the Z direction are defined.
  • FIG. 8 is an enlarged view of the transition portion 54 (offset portion 521B) and its surroundings viewed in the X direction (an example of the second direction), showing the relationship between the transition portion 54 and the second electrode 76A.
  • first electrode 74 and the electrodeposition processing unit 78 are omitted, but the first electrode 74 and the electrodeposition processing unit 78 are It is assumed that they are similarly provided in the manner shown in FIG. 4A.
  • a plurality of works W are immersed at the same time.
  • the plurality of works W are immersed in a manner lined up in the Y direction (an example of the first direction).
  • the workpieces W form one row in the Y direction, but may form two or more rows offset from each other in the X direction.
  • one row of works W in the Y direction will be described, but the same may be true for works W in other rows in the case of two or more rows. This also applies to the second embodiment and subsequent embodiments, which will be described later.
  • FIG. 6 and 7 show a state in which the workpiece W is immersed in the electrodeposition tank 70 (state in which the electrodeposition coating process is being performed). This also applies to the subsequent FIG. 13 and the like. Further, the positional relationship between the work W and the second electrode 76A, which will be described below, is the positional relationship when the electrodeposition coating process is performed.
  • the second electrode 76A includes a central electrode 761A arranged along the Y direction.
  • the center-side electrode 761A is arranged on the center side of the plurality of works W in the X direction. That is, the central electrode 761A is positioned between a pair (two) of the slot accommodating portions 50 in the X direction with respect to the plurality of works W. As shown in FIG. At this time, the central electrode 761A is positioned so as to overlap the plurality of works W when viewed in the X direction.
  • the central electrode 761A is preferably positioned at an intermediate position between the pair of slot accommodating portions 50 along the X direction.
  • the positional relationship of the central electrode 761A with respect to the pair of slot accommodation portions 50 is substantially the same, and the film thickness of the insulating film 130 applied to the pair of slot accommodation portions 50 varies (same variation within the workpiece) can be effectively reduced.
  • the central electrode 761A may be formed of a plurality of pieces overlapping in the Y direction, as shown in FIG. In this case, the central electrode 761A may be set for each workpiece W such that one piece corresponds to one workpiece W, or one piece corresponds to a plurality of workpieces W. and may be set for each of a plurality of workpieces W. Alternatively, the central electrode 761A may be formed from one piece common to all the works W in a line.
  • the center-side electrode 761A faces the bridge portions 54 of the plurality of works W from both sides in the Y direction.
  • the central electrode 761A has a groove portion 76210 through which the bridge portion 54 is passed at the lower end portion.
  • the groove portion 76210 is formed over the entire X-direction of the lower end portion of the center electrode 761A in a downwardly open manner.
  • wall portions 76211 on both sides of the groove portion 76210 in the Y direction face the transition portion 54 passed through the groove portion 76210 from both sides in the Y direction.
  • a relatively short shortest distance (see the shortest distance D in FIG. 8) can be achieved with respect to the transition portions 54 of the plurality of works W, and the transition portions 54 (especially the offset portions 521B) can be can effectively increase the electric flux density.
  • a bent portion such as the offset portion 521B of the transition portion 54 (for example, a portion where the flatwise side is formed and bent) has the same shortest distance as a straight portion (for example, the slot accommodation portion 50).
  • the electric flux density tends to be low, and therefore the paint tends to be difficult to be electrodeposited.
  • the unevenness of the surface due to the bent portion (the portion that is formed and bent), it tends to be difficult for the coating to be uniformly electrodeposited.
  • the center electrode 761A has the groove 76210 through which the bridge portion 54 is passed, so that the shortest distance between the second electrode 76A (center electrode 761A) and the bridge portion 54 is D can be set appropriately.
  • the shortest distance D between the second electrode 76A (center-side electrode 761A) and the connecting portion 54 is the shortest distance between the second electrode 76A (center-side electrode 761A) and the slot accommodating portion 50 ( (see shortest distance L1)).
  • the insulating film 130 having a required thickness can be applied to the bridge portion 54 as well.
  • the center electrode 761A can be brought close to the bridge portion 54 from multiple directions (that is, from both sides in the Y direction and from the upper side), the thickness of the insulating film 130 applied to the bridge portion 54 can be made uniform. be able to.
  • FIG. 9 is an arrangement suitable for performing the electrodeposition coating process by simultaneously immersing works W in two or more rows in the Y direction (there are two or more rows in the Y direction along the X direction) in the electrodeposition tank 70.
  • FIG. 4 is an explanatory diagram of an example;
  • FIG. 9 shows a plurality of works W forming two rows in the Y direction in a top view.
  • a plurality of works W may be immersed in the electrodeposition bath 70 in a manner separated from each other by a distance A, which is the shortest distance in top view.
  • the distance A which is the work pitch
  • the distance A which is the work pitch
  • three workpieces W are arranged in two rows for each row, but these numbers can be changed as appropriate.
  • FIG. 10A to 11 the effects of this embodiment will be further described with reference to FIGS. 10A to 11.
  • FIG. 10A and 10B are explanatory diagrams of the configuration of the second electrode 76A' according to the comparative example, and FIG. 10A schematically shows the relationship between the work W immersed in the electrodeposition tank 70 and the second electrode 76A'. and FIG. 10B is a diagram showing analysis results for a comparative example, and calculation of the thickness (film thickness) of the insulating film 130 applied to the transition portions 54 of three works W arranged in the Y direction.
  • FIG. 10 is a table for comparing values; FIG. In FIG. 10B, each calculated value is shown by a bar graph in association with three works W(1), W(2), and W(3).
  • the second electrodes 76A' are arranged on the side walls of the electrodeposition bath 70 (side walls on both sides in the Y direction in FIG. 10A).
  • the second electrode 76A' has a flat plate shape and extends in the XZ plane so as to overlap each workpiece W when viewed in the Y direction.
  • three workpieces W arranged in the Y direction are arranged in the center between the two second electrodes 76A' in the Y direction.
  • the variation in the shortest distance between the target portion (in this case, the transition portion 54) and the second electrode 76A' substantially corresponds to the inter-work distance in the Y direction. That is, among the three works W arranged in the Y direction, the two works W on both sides in the Y direction have substantially the same shortest distance (shortest distance to the second electrode 76A').
  • One workpiece W in the middle has a shortest distance larger than the two workpieces W on both sides in the Y direction by the distance between the workpieces in the Y direction.
  • FIG. 10B The results shown in FIG. 10B were obtained when the distance between works in the Y direction was set to 5 mm.
  • reference numerals 101 and 103 denote calculated values of the thickness of the insulating film 130 for the two works W(1) and (3) on both sides in the Y direction
  • reference numeral 102 denotes one work W (2 )
  • the calculated thickness of the insulating film 130 is shown.
  • the surface closer to the second electrode 76A′ in the Y direction and the surface farther from the second electrode 76A′ have different film thicknesses. are using.
  • the thickness of the insulating film 130 at the target portion (in this case, the transition portion 54) of the work W(2) in the middle is is significantly lower (eg by a significantly greater reduction than 15 ⁇ m) than the same thickness for .
  • 11A and 11B are diagrams showing the analysis results for this embodiment, in which the calculated values of the thickness of the insulating film 130 at each target portion of the work W are shown on the upper side, and the respective thicknesses of the work W are shown on the lower side. A diagram illustrating the target site is shown.
  • FIG. 11 four target regions where line segments LA and LD shown on the lower side of FIG. 11 intersect are evaluated.
  • the surface (side surface in the X direction) on the edgewise side (denoted as “EW side”) and the surface (side surface in the Y direction) on the flatwise side (denoted as “FW side”) of each target portion are shown.
  • a calculated value of the thickness of the insulating film 130 is shown for each.
  • the three target portions where the line segment LA and the line segment LC intersect form the slot accommodating portion 50, and the average value thereof is the calculated value of the line segment LA to the line segment LC. 11 are plotted above.
  • the upper part of FIG. 11 the surface (side surface in the X direction) on the edgewise side (denoted as “EW side”) and the surface (side surface in the Y direction) on the flatwise side (denoted as “FW side”) of each target portion are shown.
  • a calculated value of the thickness of the insulating film 130 is shown for each.
  • W(Ref) indicates a calculated value obtained by analyzing a single workpiece W as a reference value
  • W(2) indicates a value among three workpieces W arranged in the Y direction
  • W(1) and W(3) indicate the calculated values for the works W on both sides in the Y direction among the three works W arranged in the Y direction.
  • Three plots of average film thickness, maximum film thickness, and minimum film thickness are associated with each of W(Ref) to W(3).
  • the difference ( variation) is significantly reduced compared to the comparative example. For example, there is no variation exceeding 15 ⁇ m. From this, it can be understood from the analysis that the variation in the thickness of the insulating film 130 applied to the target portion of each workpiece W can be reduced by providing the second electrode 76A.
  • FIG. 12 is a diagram showing the difference in the analysis results of the calculated value of the thickness of the insulating film 130 between the central side surface of the work W and the opposite side surface of the same work W. As shown in FIG. In the lower part of FIG. 12, an arrow R1 indicating the central side surface of the work W and an arrow R2 indicating the opposite side surface of the work W are shown together with a schematic diagram of the second electrode 76A.
  • the second electrode 76A is the surface (see arrow R1) of the four side surfaces of the slot accommodating portion 50 of the workpiece W on the center side in the X direction of the workpiece W and on the edgewise side. ) in the X direction. Therefore, of the two edgewise side surfaces of the slot accommodating portion 50 of the work W, the side opposite to the center side of the work W in the X direction (that is, the side facing the side wall of the electrodeposition tank 70 in the X direction) The surface of (see arrow R2) tends to be difficult for the paint to be electrodeposited. This can also be seen from the analysis results shown in FIG. That is, in the example shown on the upper side of FIG. The calculated thickness of the insulating film 130 applied to the opposite (R2) side surface is significantly lower (eg, by a reduction significantly greater than 15 ⁇ m).
  • the variation (difference) in the thickness of the insulating film 130 that can occur between the center side of the workpiece W in the X direction and the opposite side thereof in the same portion of the workpiece W will be referred to as the "target portion of the workpiece W. It is also referred to as "variation in film thickness between sides in”.
  • FIG. 13 is an explanatory diagram of a modification of the second electrode 76A of the present embodiment described above with reference to FIG. It is a diagram.
  • This modified example is a configuration suitable for reducing variations in film thickness between the side surfaces of the target portion of the work W described above with reference to FIG. 12 .
  • the second electrode 76B according to this modified example differs from the second electrode 76A according to the present embodiment described above with reference to FIG. That is, the second electrode 76B according to the present modification includes a central electrode 761B substantially identical to the central electrode 761A of the second electrode 76A of the present embodiment described above with reference to FIG. and a side electrode 762B.
  • the pair of lateral side electrodes 762B are arranged on both sides of the plurality of works W immersed in the electrodeposition tank 70 in the X direction. That is, the pair of side electrodes 762B are positioned on both sides of the two slot accommodating portions 50 in the X direction with respect to the plurality of works W immersed in the electrodeposition bath 70 .
  • the pair of side electrodes 762B are arranged along the Y direction so as to overlap a plurality of works W when viewed in the X direction.
  • the pair of lateral side electrodes 762B may be arranged along the Y direction in such a manner that one corresponds to one workpiece W, as shown in FIG.
  • the pair of side electrodes 762B may be arranged along the Y direction in such a manner that one corresponds to two or more works W.
  • the pair of lateral electrodes 762B may each be in the form of one piece. In the example shown in FIG.
  • the pair of side electrodes 762B has a circular cross-sectional shape (cross-sectional shape when cut along a horizontal plane), and is in the form of a rod extending vertically with a uniform cross section. be.
  • the shape of the pair of side electrodes 762B is arbitrary, and may have, for example, a rectangular cross-sectional shape.
  • Such a pair of side electrodes 762B faces the side surface of the work W opposite to the center side in the X direction, it has the function of facilitating the electrodeposition of paint on the opposite side surface. As a result, it is possible to reduce the film thickness variation between the side surfaces of the target portion of the work W described above with reference to FIG. 12 .
  • FIG. 14 is an explanatory diagram of various parameters relating to the positional relationship (the positional relationship when viewed in the Y direction) between the second electrode 76B and the workpiece W according to this modified example.
  • Various parameters below represent the distance between the second electrode 76B and the workpiece W.
  • the parameter B is the separation distance (the separation distance along the X direction) between the center electrode 761B and one of the two slot housing portions 50 of the workpiece W
  • the parameter B'' is the distance between the center electrode 761B and
  • the distance between the other of the two slot accommodating portions 50 of the workpiece W and the parameter B' is the distance between the lower portion of the slot accommodating portion 50 of the workpiece W (the target portion on the side close to the transition portion 54) and the center side.
  • the parameter C is the distance between the side electrode 762 B and one of the two slot housing portions 50 of the workpiece W (the closer one). is the distance between them (the distance along the X direction).
  • the relationship between the values of the parameter B and the parameter B' is preferably such that the values of the parameter B and the parameter B' are substantially the same.
  • the relationship between the values of the parameter B and the parameter C is preferably such that the values of the parameter B and the parameter C are substantially the same.
  • FIG. 15 is an explanatory diagram of still another modification of the second electrode 76A of the present embodiment described above with reference to FIG. It is a perspective view which shows a relationship.
  • This modified example is a configuration suitable for reducing variations in film thickness between the side surfaces of the target portion of the work W described above with reference to FIG. 12 .
  • a second electrode 76C according to this modification includes a pair of side electrodes 762C and a central electrode 761A, which is different from the second electrode 76A of the present embodiment described above with reference to FIG. It differs in that it is replaced with an electrode 761C. That is, the second electrode 76C according to this modification includes a central electrode 761C and a pair of side electrodes 762C.
  • the center-side electrode 761C has a different cross-sectional shape (cross-sectional shape when cut along a horizontal plane) from the center-side electrode 761A of the present embodiment described above with reference to FIG. It has a cross-sectional shape.
  • the central electrode 761C may have the same configuration around the transition portion 54 as the central electrode 761A of the present embodiment described above with reference to FIG. 7 and the like.
  • the pair of side electrodes 762C may be similar to the pair of side electrodes 762B according to the modification described above with reference to FIG. This modification also provides the same effects as the modification described above with reference to FIG. 13 . Also in this modified example, the relationship of various parameters shown in FIG. 14 may be realized.
  • the various second electrodes 76A, 76B, and 76C described above may be vertically movable with respect to the electrodeposition tank 70, and after setting a plurality of works W during the electrodeposition coating process, It is preferably set in the electrodeposition bath 70 .
  • the side electrodes 762B and 762C of the second electrodes 76B and 76C may be supported on the electrodeposition tank 70 side.
  • FIG. 16 is an explanatory diagram of a modification of the central electrode 761A of the second electrode 76A of the present embodiment described above with reference to FIG. It is a two-sided view showing the relationship between.
  • the center electrode 761D is arranged on the center side of the plurality of works W in the X direction in such a manner that the lower end is supported by the bottom portion 702 of the electrodeposition tank 70 . At this time, the center electrode 761D is positioned so as to be close to the plurality of works W in the Y direction.
  • the central electrodes 761D are arranged in such a manner as to form a pair (two pairs) for each workpiece W while being slightly offset in the X direction and sandwiching the bridge portion 54 in the Y direction.
  • the positional relationship of the center electrode 761D becomes substantially the same for each of the plurality of works W, and the variation in the shortest distance between the plurality of works W can be effectively reduced.
  • the center electrode 761D can face the bridge portions 54 of the plurality of works W from both sides in the Y direction.
  • the electric flux density of the transition portion 54 can be effectively increased in the electrodeposition coating process.
  • the distance between the center electrode 761D and the transition portion 54 may be the same as the shortest distance D (parameter D) described above.
  • the central electrode 761D is preferably positioned at an intermediate position between the pair of slot accommodating portions 50 along the X direction.
  • the positional relationship of the central electrode 761D with respect to the pair of slot accommodating portions 50 is substantially the same, and the film thickness of the insulating film 130 applied to the pair of slot accommodating portions 50 varies (same variation within the workpiece) can be effectively reduced.
  • central electrode 761D shown in FIG. 16 may be realized in combination with the side electrodes 762B and 762C described above.
  • FIG. 17 is an explanatory diagram of another modification of the central electrode 761A of the second electrode 76A of the present embodiment described above with reference to FIG. It is a two-sided view showing the relationship with W.
  • the center electrode 761E is arranged on the center side of the plurality of works W in the X direction in such a manner that the lower end is supported by the bottom 702 of the electrodeposition bath 70 . At this time, the center electrode 761E is positioned between the plurality of works W in the Y direction.
  • the central electrode 761E has a flat plate shape and extends vertically between the plurality of works W in the Y direction. In this case, the positional relationship of the center electrode 761E is substantially the same for each of the plurality of works W, and the variations in shortest distance between the plurality of works W can be effectively reduced.
  • the center electrode 761E can face the bridge portions 54 of the plurality of works W from both sides in the Y direction.
  • the electric flux density of the transition portion 54 can be effectively increased in the electrodeposition coating process.
  • the distance between the central electrode 761E and the transition portion 54 may be the same as the shortest distance D (parameter D) described above.
  • the central electrode 761E is preferably positioned at an intermediate position between the pair of slot accommodating portions 50 along the X direction.
  • the positional relationship of the central electrode 761E with respect to the pair of slot housing portions 50 is substantially the same, and the film thickness of the insulating film 130 applied to the pair of slot housing portions 50 varies (same variation within the workpiece) can be effectively reduced.
  • central electrode 761E shown in FIG. 17 may be realized in combination with the side electrodes 762B and 762C described above.
  • FIG. 18 is an explanatory diagram of still another modification of the central electrode 761A of the second electrode 76A of the present embodiment described above with reference to FIG. 2 is a two-sided view showing the relationship between the 1 and the workpiece W.
  • FIG. 18 is an explanatory diagram of still another modification of the central electrode 761A of the second electrode 76A of the present embodiment described above with reference to FIG. 2 is a two-sided view showing the relationship between the 1 and the workpiece W.
  • the center electrode 761F is arranged on the center side of the plurality of works W in the X direction in such a manner that the lower end is supported by the bottom 702 of the electrodeposition bath 70 . At this time, the center electrode 761F is positioned between the plurality of works W in the Y direction. In this case, the positional relationship of the center electrode 761F becomes substantially the same for each of the plurality of works W, and the variation in the shortest distance between the plurality of works W can be effectively reduced.
  • the center electrode 761F has a flat plate shape, but unlike the center electrode 761E shown in FIG. 17, the cross-sectional shape differs depending on the position in the vertical direction.
  • the central electrode 761F has a relatively large dimension in the X direction in a section (vertical section) facing the bridge portions 54 of the plurality of works W when viewed in the Y direction.
  • the central electrode 761F can efficiently increase the electrode area facing the bridge portions 54 while facing the bridge portions 54 of the plurality of workpieces W from both sides in the Y direction.
  • the distance between the central electrode 761F and the transition portion 54 may be the same as the shortest distance D (parameter D) described above.
  • the central electrode 761F is preferably positioned at an intermediate position between the pair of slot accommodating portions 50 along the X direction.
  • the positional relationship of the central electrode 761F with respect to the pair of slot housing portions 50 is substantially the same, and the film thickness of the insulating film 130 applied to the pair of slot housing portions 50 varies (same variation within the workpiece) can be effectively reduced.
  • central electrode 761F shown in FIG. 18 may be realized in combination with the side electrodes 762B and 762C described above.
  • Example 2 Next, the second electrode configuration according to Example 2 will be described with reference to FIG. 19 onward.
  • the workpiece W is provided with the insulating film 130 to finally form the coil piece 52.
  • insulation between different phases is provided at the portion (the transition portion 54) forming the coil end.
  • the insulating film 130 is relatively thick.
  • the insulating film 130 of the coil piece 52 is relatively thin in the slot accommodating portion 50 that is accommodated in the slot 23 from the viewpoint of increasing the occupancy of the conductor in the slot 23 .
  • the thickness of the insulating film 130 applied to the transition portion 54 of the work W is significantly larger than the thickness of the insulating film 130 applied to the slot accommodation portion 50.
  • the boundary position between the relatively thick range and the relatively thin range of the insulating film 130 does not need to strictly match the boundary position between the transition portion 54 and the slot accommodating portion 50 . , may slightly deviate from the boundary position between the transition portion 54 and the slot accommodation portion 50 .
  • the thickness of the insulating film 130 applied to the lower portion of the slot accommodating portion 50 may be relatively large, similar to the thickness of the insulating film 130 applied to the transition portion 54 .
  • FIG. 19 is a perspective view showing the relationship between the second electrode 76G and a plurality of works W of this embodiment.
  • the present embodiment differs from the second electrode 76A according to the first embodiment described above mainly in the form of the center electrode 761G (configuration of the lower end).
  • the layout of the center electrode 761G may be the same as the layout of the center electrode 761A according to the first embodiment.
  • the central electrode 761G of this embodiment has a base portion 7614G and a thick film forming portion 7616G.
  • the base portion 7614G may have substantially the same configuration as the center electrode 761A according to the first embodiment described above, except for the lower end portion. Specifically, the base portion 7614G is arranged on the center side of the plurality of works W in the X direction. That is, the base portion 7614G is positioned between a pair (two) of the slot housing portions 50 in the X direction with respect to the plurality of works W. As shown in FIG. At this time, the base portion 7614G is positioned so as to overlap the plurality of works W when viewed in the X direction. As a result, as described above with reference to FIG. 5, it is possible to effectively reduce the variations in shortest distance between the plurality of works W described above.
  • the base portion 7614G is preferably positioned at an intermediate position between the pair of slot accommodation portions 50 along the X direction.
  • the positional relationship of the base portion 7614G with respect to the pair of slot accommodation portions 50 is substantially the same, and the film thickness of the insulating film 130 applied to the pair of slot accommodation portions 50 varies (the same work can effectively reduce the variation within the
  • the thick film forming portion 7616G continues downward from the lower end portion of the base portion 7614G.
  • the thick film forming portion 7616G overlaps the transition portions 54 of the plurality of works W when viewed in the vertical direction.
  • the thick film forming portion 7616G preferably overlaps substantially the entire crossover portion 54 of the plurality of works W in the X direction when viewed in the vertical direction. Substantially the entire crossover portion 54 in the X direction takes into consideration the X-direction gap (see parameter B′ described later) secured between the workpiece W and the thick film forming portion 7616G at both ends in the X direction. be. Accordingly, the thick film forming portion 7616G is preferably significantly larger in dimension in the X direction than the base portion 7614G.
  • FIG. 20 is a diagram showing the analysis results for this example, and the target parts to be evaluated are as shown on the lower side of FIG. 11 described above.
  • the target portion of the line segment LC overlaps the thick film forming portion 7616G when viewed in the X direction.
  • the average value of each target portion of the upper line segment LA and the line segment LB is the calculation of the line segment LA and the line segment LB. plotted as values.
  • the average values of the target portions of the line segments LC and LD are plotted as the calculated values of the line segments LC and LD.
  • W(Ref) indicates a calculated value obtained by analyzing a single single workpiece as a reference value
  • W(2) indicates the center value of the three workpieces arranged in the Y direction
  • W(1) and W(3) indicate calculated values for the workpiece W
  • W(1) and (3) indicate calculated values for the workpieces W on both sides in the Y direction among the three workpieces arranged in the Y direction.
  • Three plots of average film thickness, maximum film thickness, and minimum film thickness are associated with each of W(Ref) to W(3).
  • the difference ( variation) is significantly reduced compared to the comparative example. For example, there is no variation exceeding 15 ⁇ m. From this, it can be understood from the analysis that the variation in the thickness of the insulating film 130 applied to the target portion of each workpiece W can be reduced by providing the second electrode 76G.
  • the target portions that take the shortest distance in relation to the thick film forming portion 7616G
  • the thickness of the insulating film 130 applied to the portion can be effectively increased. That is, from FIG. 20, among the target portions of the workpiece W, the target portions (the target portions of the line segment LC and the line segment LD) having the shortest distance in relation to the thick film forming portion 7616G are the other target portions.
  • the thickness of the insulating film 130 is larger than the target portion, that is, the target portion (the target portions of the line segment LA and the line segment LB) having the shortest distance from the base portion 7614G.
  • FIG. 21 is an explanatory diagram of a modification of the second electrode 76G of the present embodiment described above with reference to FIG. It is a diagram.
  • This modified example is a configuration suitable for reducing variations in film thickness between the side surfaces of the target portion of the work W described above with reference to FIG. 12 .
  • the second electrode 76H according to this modified example differs from the second electrode 76G according to the present embodiment described above with reference to FIG. That is, the second electrode 76H according to the present modification includes a central electrode 761H substantially identical to the central electrode 761G of the second electrode 76G of the present embodiment described above with reference to FIG. and an electrode 762H.
  • the pair of side electrodes 762H may have the same configuration as the pair of side electrodes 762B described above with reference to FIG. In this case, it is possible to reduce the film thickness variation between the side surfaces of the target portion of the workpiece W described above with reference to FIG. 12 .
  • FIG. 22 is an explanatory diagram of various parameters relating to the positional relationship (the positional relationship when viewed in the Y direction) between the second electrode 76H and the workpiece W according to the modification shown in FIG.
  • parameters B, B'', and C associated with base portion 7614H may be similar to parameters B, B'', and C described above with reference to FIG.
  • Parameter B′ is the separation distance (separation distance along the X direction) between the thick film forming portion 7616H and the two slot housing portions 50 of the work W, and the parameter C′ is the side electrode 762H, A separation distance (separation along the X direction distance).
  • FIG. 23 is an explanatory diagram of a further modification of the second electrode 76G of this embodiment described above with reference to FIG. 19, and shows the relationship between the second electrode 76I of this modification and a plurality of works W. It is a perspective view.
  • This modified example is a configuration suitable for reducing variations in film thickness between the side surfaces of the target portion of the work W described above with reference to FIG. 12 .
  • a second electrode 76I according to the present modification includes a pair of lateral side electrodes 762I and a center side electrode 761G as opposed to the second electrode 76G of the present embodiment described above with reference to FIG. The difference is that it is replaced with 761I. That is, the second electrode 76I according to this modification includes a central electrode 761I and a pair of side electrodes 762I.
  • the central electrode 761I differs from the central electrode 761G of the present embodiment described above with reference to FIG. 19 in that it is divided in the Y direction. It is divided into two relationships. Also, the center electrode 761I is different from the base portion 7614G of the center electrode 761G of the above-described embodiment in that the dimension of the base portion 7614I in the X direction is also smaller, but the dimension of the base portion 7614I in the X direction is the same as that of the base portion 7614G of the above-described embodiment. It may be similar to the base portion 7614G of the embodiment.
  • the central electrode 761I differs from the thick film forming portion 7616G of the central electrode 761G of the present embodiment in that the vertical dimension of the thick film forming portion 7616I is also smaller, but the vertical dimension is , may be the same as the thick film forming portion 7616G of the present embodiment described above.
  • the pair of side electrodes 762I may be similar to the pair of side electrodes 762H according to the modification described above with reference to FIG. This modification also provides the same effects as the modification described above with reference to FIG. 21 . Also in this modified example, the relationship between various parameters (the positional relationship when viewed in the Y direction) shown in FIG. 22 may be realized.
  • the various second electrodes 76G, 76H, and 76I described above may be vertically movable with respect to the electrodeposition tank 70.
  • It is preferably set in the electrodeposition bath 70 .
  • the side electrodes 762H and 762I of the second electrodes 76H and 76I may be supported on the electrodeposition tank 70 side.
  • FIG. 24 is an explanatory diagram of a further modification of the central electrode 761G of the second electrode 76G of the present embodiment described above with reference to FIG. It is a front view showing a relationship with.
  • the central electrode 761J that forms the second electrode 76J is arranged on the center side of the plurality of works W in the X direction in such a manner that the lower end is supported by the bottom 702 of the electrodeposition tank 70.
  • the center-side electrode 761J is divided so that there is one for each workpiece W, similar to the center-side electrode 761I described above with reference to FIG.
  • the center electrode 761J is positioned between the plurality of works W in the Y direction so as to be close to the plurality of works W in the Y direction.
  • the positional relationship of the center electrode 761J is substantially the same for each of the plurality of works W, and the variations in shortest distance between the plurality of works W can be effectively reduced.
  • the base portion 7614J of the central electrode 761J is preferably positioned at an intermediate position between the pair of slot accommodating portions 50 along the X direction.
  • the positional relationship of the central electrode 761J with respect to the pair of slot housing portions 50 is substantially the same, and the film thickness of the insulating film 130 applied to the pair of slot housing portions 50 varies (same variation within the workpiece) can be effectively reduced.
  • the thick film forming portions 7616J of the central electrode 761J are arranged in such a manner that a pair (two pairs) sandwiching the transition portion 54 in the Y direction is formed for each workpiece W.
  • the central electrode 761J can face the connecting portions 54 of the plurality of works W from both sides in the Y direction.
  • the electric flux density of the transition portion 54 can be effectively increased in the electrodeposition coating process.
  • the distance between the center electrode 761J and the bridge portion 54 may be the same as the above-described shortest distance D (parameters B' and C').
  • the central electrode 761J has portions 7618J that extend vertically from both ends of the thick film forming portion 7616J in the X direction.
  • the portions 7618J are arranged in such a manner that a pair (two pairs) sandwiching the lower portion of the slot housing portion 50 in the Y direction is formed for each workpiece W.
  • the portion 7618J overlaps with the lower portion of the slot accommodating portion 50 when viewed in the Y direction.
  • the center-side electrode 761J can face the lower part of the slot housing portion 50 of the plurality of works W from both sides in the Y direction.
  • the electric flux density in the lower portion of the slot housing portion 50 can be effectively increased in the electrodeposition coating process, and the thickness of the insulating film 130 applied to the lower portion of the slot housing portion 50 can be increased.
  • the distance between the center electrode 761J and the lower portion of the slot accommodation portion 50 may be the same as the shortest distance D (parameters B' and C') described above.
  • central electrode 761J shown in FIG. 24 may be realized in combination with the side electrodes 762H and 762I described above.
  • the portion 7618J of the central electrode 761J only overlaps the lower portion of the slot accommodating portion 50 when viewed in the Y direction, but in a manner that overlaps substantially the entire slot accommodating portion 50. , may extend further upward.
  • the portion 7618J that overlaps with the lower portion of the slot accommodating portion 50 when viewed in the Y direction may be omitted.
  • the central electrode 761K forming the second electrode 76K has a base portion 7614K and a thick film forming portion 7616K. The thick film forming portion 7616K does not overlap the lower portion of the slot accommodating portion 50 when viewed in the Y direction.
  • the central electrodes 761A to 761K are provided, but similar effects may be achieved without using central electrodes such as the central electrodes 761A to 761K.
  • second electrodes 76L according to the modification shown in FIG. 26 are provided in pairs on both sides in the X direction, and each have a side electrode portion 762L.
  • the side electrode portion 762L includes a portion 7620L extending to the side of the slot accommodating portion 50 and a portion 7621L extending below the transition portion 54. As shown in FIG.
  • the portion 7620L may have the same function as the side electrodes 762H, 762I and the like described above.
  • the portion 7621L overlaps the transition portion 54 when viewed in the vertical direction, and is the portion of the second electrode 76L that has the shortest distance to the transition portion 54 .
  • the second electrode 76L can be configured to have substantially the same positional relationship with the plurality of works W, as in the above-described embodiments.
  • the shortest distance between the portion 7621L and the transition portion 54 may be set in the same manner as the value of the parameter D (see FIG. 8) described above.
  • the part 7620L on the front side is shown transparently so that the state of the work W and the like can be easily understood.
  • Reference Signs List 1 ... Coil manufacturing apparatus, 70... Electrodeposition tank, 73... Electrode part, 74... First electrode, 76, 76A to 76L... Second electrode, 761A to 761K... Center Side electrodes 762B, 762C, 762H, 762I Side electrodes 78 Electrodeposition treatment section 130 Insulating films 52, 52' Coil pieces (coils) 112 Stator core 114 Stator coil (coil) 7614G Base portion (second electrode portion) 7616G, 7616H Thick film forming portion (first electrode portion) 50 Slot accommodating portion , 54... transition portion (coil end portion), 521B... offset portion (bending portion), W... work (coil material)

Abstract

Disclosed is a production method that is for a coil having an insulating film and that comprises: a preparation step for preparing a plurality of coil materials before application of the insulating film; and an electrodeposition coating step for generating an electric potential difference between a first electrode to which the coil materials are connected and a second electrode in an electro-coating tank, in a state where the coil materials are immersed in the electro-coating tank. In the electrodeposition coating step, positioning of the coil materials and the second electrode is performed such that, with respect to one or more target sites located at the same position among the respective coil materials, the shortest distances between the second electrode and the target sites of the respective coil materials become substantially equal to one another.

Description

コイル製造装置及びコイル製造方法Coil manufacturing device and coil manufacturing method
 本開示は、コイル製造装置及びコイル製造方法に関する。 The present disclosure relates to a coil manufacturing device and a coil manufacturing method.
 複数のコイルに対して同時に絶縁膜を電着塗装により付与する技術が知られている。 A technique is known in which an insulating film is applied to multiple coils at the same time by electrodeposition coating.
特開2017-115240号公報JP 2017-115240 A
 しかしながら、上記のような従来技術では、電着槽内の電極に対するコイル素材の位置関係に関して、コイル素材間でばらつきが顕著であるので、比較的短い電着塗装時間で、各コイル素材にばらつきの低減された絶縁膜を付与することが難しい。 However, in the prior art as described above, the positional relationship of the coil material with respect to the electrodes in the electrodeposition tank varies significantly among the coil materials. It is difficult to apply a reduced insulating film.
 そこで、1つの側面では、本開示は、比較的短い電着塗装時間で、各コイル素材にばらつきの低減された絶縁膜を付与することを目的とする。 Therefore, in one aspect, the present disclosure aims to apply an insulating film with reduced variation to each coil material in a relatively short electrodeposition coating time.
 本開示の一局面によれば、絶縁膜を有するコイルの製造方法であって、
 前記絶縁膜が付与される前かつ複数のコイル素材を準備する準備工程と、
 複数の前記コイル素材を電着槽に浸漬した状態で、複数の前記コイル素材に接続される第1電極と、前記電着槽内の第2電極との間に電位差を発生させる電着塗装工程と、を含み、
 前記電着塗装工程において、複数の前記コイル素材と前記第2電極とは、複数の前記コイル素材における同一位置の少なくとも1つの対象部位に関して、複数の前記コイル素材間における前記対象部位と前記第2電極との間の最短距離が、略同一になるように、互いに対して位置付けられる、コイル製造方法が提供される。
According to one aspect of the present disclosure, a method for manufacturing a coil having an insulating film, comprising:
a preparation step of preparing a plurality of coil materials before the insulating film is applied;
An electrodeposition coating step of generating a potential difference between a first electrode connected to the plurality of coil materials and a second electrode in the electrodeposition tank while the plurality of coil materials are immersed in the electrodeposition tank. and including
In the electrodeposition coating step, the plurality of coil materials and the second electrode are arranged in relation to at least one target portion at the same position in the plurality of coil materials, and the target portion and the second electrode between the plurality of coil materials. A method of manufacturing coils is provided in which the coils are positioned with respect to each other such that the shortest distances between the electrodes are substantially the same.
 1つの側面では、本開示によれば、比較的短い電着塗装時間で、各コイル素材にばらつきの低減された絶縁膜を付与することが可能となる。 In one aspect, according to the present disclosure, it is possible to apply an insulating film with reduced variation to each coil material in a relatively short electrodeposition coating time.
ステータコアにコイル片が組み付けられた状態のステータの軸方向に沿った断面図である。FIG. 3 is a cross-sectional view along the axial direction of the stator in which coil pieces are assembled to the stator core; 一例によるコイル片の説明図である。FIG. 4 is an explanatory diagram of a coil piece according to an example; 他の一例によるコイル片の説明図である。FIG. 10 is an explanatory diagram of a coil piece according to another example; コイル片の概略的な断面図である。4 is a schematic cross-sectional view of a coil piece; FIG. コイル製造装置及び電着塗装工程の概要の説明図である。It is explanatory drawing of a coil manufacturing apparatus and the outline|summary of an electrodeposition coating process. 一のワークを示す概略的な平面図である。1 is a schematic plan view showing one work; FIG. 第2電極に係る概念的な特徴を説明する図である。It is a figure explaining the conceptual feature which concerns on a 2nd electrode. 電着槽内に浸漬された複数のワークと第2電極との関係を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing the relationship between a plurality of works immersed in an electrodeposition tank and a second electrode; 図6のワーク周辺の拡大図である。7 is an enlarged view of the periphery of the workpiece in FIG. 6; FIG. 渡り部と第2電極との間の関係を示す図である。FIG. 5 is a diagram showing the relationship between the transition portion and the second electrode; Y方向の2列以上のワークを同時に電着槽に浸漬して電着塗装工程を実行する場合に好適な配置例の説明図である。FIG. 10 is an explanatory diagram of an example of a suitable arrangement when two or more rows of works in the Y direction are simultaneously immersed in an electrodeposition tank to perform an electrodeposition coating process. 比較例による第2電極の構成の説明図である。FIG. 5 is an explanatory diagram of a configuration of a second electrode according to a comparative example; 比較例に対する解析結果を示す図である。It is a figure which shows the analysis result with respect to a comparative example. 実施例1に対する解析結果を示す図である。FIG. 10 is a diagram showing analysis results for Example 1; ワークの中心側側面とその反対側側面との間での膜厚の相違に係る解析結果を示す図である。FIG. 10 is a diagram showing analysis results relating to the difference in film thickness between the central side surface and the opposite side surface of the work; 実施例1の第2電極に対する変形例の説明図である。FIG. 5 is an explanatory diagram of a modification of the second electrode of Example 1; 図13の変形例の第2電極とワークとの間の位置関係に係る各種パラメータの説明図である。FIG. 14 is an explanatory diagram of various parameters relating to the positional relationship between the second electrode and the work in the modified example of FIG. 13; 実施例1の第2電極に対する他の変形例の説明図である。FIG. 10 is an explanatory diagram of another modified example of the second electrode of Example 1; 実施例1の第2電極の中心側電極に対する変形例の説明図である。FIG. 10 is an explanatory diagram of a modification of the center side electrode of the second electrode of Example 1; 実施例1の第2電極の中心側電極に対する他の変形例の説明図である。FIG. 10 is an explanatory diagram of another modification of the central electrode of the second electrode of Example 1; 実施例1の第2電極の中心側電極に対する更なる他の変形例の説明図である。FIG. 10 is an explanatory diagram of still another modified example of the central electrode of the second electrode of Example 1; 実施例2の第2電極と複数のワークとの関係を示す斜視図である。FIG. 11 is a perspective view showing the relationship between a second electrode and a plurality of works in Example 2; 実施例2に対する解析結果を示す図である。FIG. 10 is a diagram showing analysis results for Example 2; 実施例2の第2電極に対する変形例の説明図である。FIG. 11 is an explanatory diagram of a modified example of the second electrode of Example 2; 実施例2の第2電極とワークとの間の位置関係に係る各種パラメータの説明図である。FIG. 10 is an explanatory diagram of various parameters related to the positional relationship between the second electrode and the workpiece in Example 2; 実施例2の第2電極の中心側電極に対する変形例の説明図である。FIG. 11 is an explanatory diagram of a modification of the center electrode of the second electrode of Example 2; 実施例2の第2電極の中心側電極に対する更なる変形例の説明図である。FIG. 11 is an explanatory diagram of a further modified example of the central electrode of the second electrode of Example 2; 実施例2の第2電極の中心側電極に対する更なる変形例の説明図である。FIG. 11 is an explanatory diagram of a further modified example of the central electrode of the second electrode of Example 2; 中心側電極を有さない構成に係る変形例の説明図である。FIG. 10 is an explanatory diagram of a modification relating to a configuration that does not have a central electrode;
 以下、添付図面を参照しながら各実施例について詳細に説明する。なお、図面の寸法比率はあくまでも一例であり、これに限定されるものではなく、また、図面内の形状等は、説明の都合上、部分的に誇張している場合がある。 Each embodiment will be described in detail below with reference to the accompanying drawings. Note that the dimensional ratios in the drawings are merely examples, and the present invention is not limited to these, and shapes and the like in the drawings may be partially exaggerated for convenience of explanation.
 以下では、まず、本実施例のコイル製造方法により製造されるコイルについて概説してから、コイル製造方法について説明する。 Below, first, the coil manufactured by the coil manufacturing method of the present embodiment will be outlined, and then the coil manufacturing method will be described.
 図1は、ステータコア112にコイル片52が組み付けられた状態のステータ10の軸方向に沿った断面図である。図2Aは、複数のコイル片52のうちの、一のコイル片52の正面図である。図2Aでは、成形前の状態の一のコイル片52が示されている。図2Bは、他の実施例による一のコイル片52’の3面図である。図3は、コイル片52の概略的な断面図である。 FIG. 1 is an axial cross-sectional view of the stator 10 with the coil pieces 52 assembled to the stator core 112 . FIG. 2A is a front view of one coil piece 52 out of the plurality of coil pieces 52. FIG. In FIG. 2A, one coil piece 52 is shown in a pre-molding state. FIG. 2B is a three-sided view of one coil piece 52' according to another embodiment. FIG. 3 is a schematic cross-sectional view of the coil piece 52. As shown in FIG.
 ステータコイル114は、U相コイル、V相コイル、及びW相コイル(以下、U、V、Wを区別しない場合は「相コイル」と称する)を含む。各相コイルの基端は、入力端子(図示せず)に接続されており、各相コイルの末端は、他の相コイルの末端に接続されて中性点を形成する。すなわち、ステータコイル114は、スター結線される。ただし、ステータコイル114の結線態様は、必要とするモータ特性等に応じて、適宜、変更してもよく、例えば、ステータコイル114は、スター結線に代えて、デルタ結線されてもよい。 The stator coil 114 includes a U-phase coil, a V-phase coil, and a W-phase coil (hereinafter referred to as "phase coils" when U, V, and W are not distinguished). The proximal end of each phase coil is connected to an input terminal (not shown), and the distal end of each phase coil is connected to the distal end of the other phase coil to form a neutral point. That is, stator coil 114 is star-connected. However, the connection mode of the stator coil 114 may be changed as appropriate according to the required motor characteristics, etc. For example, the stator coil 114 may be delta-connected instead of star-connected.
 ステータコイル114の各相コイルは、複数のコイル片52を結合して構成される。コイル片52は、相コイルを、組み付けやすい単位(例えば2つのスロット23に挿入される単位)で分割したセグメントコイル(セグメント導体)の形態である。コイル片52は、図3に示すように、断面略矩形の線状導体(平角線)120を、絶縁膜130で被覆してなる。ここでは、線状導体は、一例として、銅により形成される。ただし、変形例では、線状導体は、鉄のような他の導体材料により形成されてもよい。また、線状導体の断面形状は、矩形以外であってもよい。 Each phase coil of the stator coil 114 is configured by connecting a plurality of coil pieces 52 . The coil pieces 52 are in the form of segment coils (segment conductors) obtained by dividing a phase coil into units that are easy to assemble (for example, units that are inserted into two slots 23). As shown in FIG. 3, the coil piece 52 is formed by covering a linear conductor (rectangular wire) 120 having a substantially rectangular cross section with an insulating film 130 . Here, the linear conductor is made of copper as an example. However, in a variant, the linear conductors may be made of other conductor materials such as iron. Also, the cross-sectional shape of the linear conductor may be other than rectangular.
 図2Aに示す例では、一のコイル片52は、一対の直線状のスロット収容部50と、当該一対のスロット収容部50を連結する渡り部54と、を有した略U字状に成形されてよい。軸方向の他方側(図2Aの上側)の渡り部54は、図2Aに示す状態から、周方向に成形することで形成されてよい。軸方向の他方側(図2Aの上側)の渡り部54の端部には、他のコイル片52の渡り部54の結合部40と結合される結合部40が設定される。 In the example shown in FIG. 2A, one coil piece 52 is formed in a substantially U shape having a pair of linear slot accommodation portions 50 and a transition portion 54 connecting the pair of slot accommodation portions 50. you can The transition portion 54 on the other side in the axial direction (upper side in FIG. 2A) may be formed by molding in the circumferential direction from the state shown in FIG. 2A. A connecting portion 40 that is connected to the connecting portion 40 of the connecting portion 54 of the other coil piece 52 is set at the end portion of the connecting portion 54 on the other side in the axial direction (upper side in FIG. 2A).
 コイル片52をステータコア112に組み付ける際、一対のスロット収容部50は、それぞれ、ティース22間のスロット23に挿入される(図1参照)。この場合、コイル片52は、例えば軸方向に組み付けることができる。 When assembling the coil pieces 52 to the stator core 112, the pair of slot housing portions 50 are inserted into the slots 23 between the teeth 22 (see FIG. 1). In this case, the coil segments 52 can be assembled axially, for example.
 一のスロット23には、図1に示すコイル片52のスロット収容部50が複数、径方向に並んで挿入される。従って、ステータコア112の軸方向の両端には、周方向に延びる渡り部54が複数、径方向に並ぶ。なお、渡り部54は、コイルエンドを形成する。 A plurality of slot accommodating portions 50 of the coil pieces 52 shown in FIG. Accordingly, a plurality of transition portions 54 extending in the circumferential direction are arranged in the radial direction at both ends of the stator core 112 in the axial direction. In addition, the transition portion 54 forms a coil end.
 なお、コイル片52は、例えば、重ね巻の形態でステータコア112に巻装されてよい。図2Aに示す例では、下側の渡り部54は、径方向に1層分だけ互いに離間する方向にオフセットするオフセット部521Bを有する。 Note that the coil pieces 52 may be wound around the stator core 112 in the form of lap winding, for example. In the example shown in FIG. 2A, the lower transition portion 54 has offset portions 521B that are radially offset by one layer away from each other.
 図2Bに示す例では、一のコイル片52’は、軸方向の一方側のセグメント導体52Aと、軸方向の他方側のセグメント導体52Bとを結合してなる。 In the example shown in FIG. 2B, one coil piece 52' is formed by connecting a segment conductor 52A on one side in the axial direction and a segment conductor 52B on the other side in the axial direction.
 セグメント導体52A及びセグメント導体52Bは、それぞれ、一対の直線状のスロット収容部50と、当該一対のスロット収容部50を連結する渡り部54と、を有した略U字状に成形されてよい。 The segment conductor 52A and the segment conductor 52B may each be formed in a substantially U-shape having a pair of linear slot accommodation portions 50 and a connecting portion 54 connecting the pair of slot accommodation portions 50.
 なお、図2Bに示す例では、セグメント導体52A及びセグメント導体52Bは、それぞれ、周方向両側のスロット収容部50のうちの一方が結合可能であるのに対して、他方が、径方向に1層分だけ互いに離間する方向にオフセットする。具体的には、セグメント導体52A及びセグメント導体52Bは、それぞれ、対向面42の頂部にオフセット部521A、521Bを備え、オフセット部521A、521Bは、径方向で逆方向のオフセットを実現する。 In the example shown in FIG. 2B, the segment conductor 52A and the segment conductor 52B can each be coupled to one of the slot accommodating portions 50 on both sides in the circumferential direction, while the other is one layer in the radial direction. offset away from each other by Specifically, the segment conductor 52A and the segment conductor 52B respectively include offset portions 521A and 521B at the top of the facing surface 42, and the offset portions 521A and 521B provide opposite radial offsets.
 なお、一のコイル片52’を構成するセグメント導体52A及びセグメント導体52Bは、図2Bに示すように、それぞれ、周方向両側のスロット収容部50のうちの、一方側のスロット収容部50の結合部40同士が結合される。この場合、他方側のスロット収容部50は、他の一のコイル片52に結合される。この際、結合部40は、互いに全体が径方向で対向して面接触する対向面42を有し、対向面42同士が重なる状態で結合部40同士が結合される。 As shown in FIG. 2B, the segment conductor 52A and the segment conductor 52B that constitute one coil piece 52' are connected to one of the slot housing portions 50 on both sides in the circumferential direction. The parts 40 are joined together. In this case, the slot accommodating portion 50 on the other side is coupled to another coil piece 52 . At this time, the connecting portions 40 have facing surfaces 42 that face each other in the radial direction and are in surface contact with each other.
 なお、図1~図3では、特定の構造のステータコア112及びステータコイル114が示されるが、ステータコア112及びステータコイル114の構造は、ステータコイル114が絶縁膜130を有する限り、任意である。また、ステータコイル114の巻き方も任意であり、波巻の形態等のような、上述したような重ね巻の形態以外の巻き方であってもよい。 Although FIGS. 1 to 3 show the stator core 112 and the stator coil 114 having specific structures, the structures of the stator core 112 and the stator coil 114 are arbitrary as long as the stator coil 114 has the insulating film 130. Moreover, the winding method of the stator coil 114 is also arbitrary, and a winding method other than the above-described lap winding, such as wave winding, may be used.
 次に、図4A以降を参照して、本実施例のコイル製造方法について詳説する。 Next, the coil manufacturing method of this embodiment will be described in detail with reference to FIG. 4A onward.
 本実施例のコイル製造方法は、まず、絶縁膜130が付与される前かつ成形後のコイル素材を準備する準備工程を含む。なお、成形後のコイル素材は、例えば、直線状の線状導体を曲げ成形等してなる。成形後のコイル素材は、例えば図2Aに示した状態のコイル片52のように、一部だけが成形済みであってもよいし、例えば図2Bに示したコイル片52’のように、セグメント導体52A、52Bに対応する形態へと成形が完了されていてもよい。本実施例では、準備工程で準備されるコイル素材(以下、「ワークW」とも称する)は、図4Bに示すように、略U字状の形態を有するものとする。 The coil manufacturing method of this embodiment first includes a preparatory step of preparing a coil material before the insulating film 130 is applied and after molding. The coil material after molding is obtained by, for example, bending a linear conductor. The formed coil material may be partially formed, such as the coil piece 52 shown in FIG. 2A, or may be segmented, such as the coil piece 52' shown in FIG. 2B. Molding may be completed into a configuration corresponding to conductors 52A, 52B. In this embodiment, the coil material (hereinafter also referred to as "workpiece W") prepared in the preparation step has a substantially U-shaped configuration, as shown in FIG. 4B.
 本実施例のコイル製造方法は、準備工程で準備したワークWに対して絶縁膜130を電着塗装により付与する電着塗装工程を含む。なお、準備工程と電着塗装工程との間には、他の工程が含まれてもよい。 The coil manufacturing method of this embodiment includes an electrodeposition coating step of applying the insulating film 130 to the work W prepared in the preparation step by electrodeposition coating. Other steps may be included between the preparation step and the electrodeposition coating step.
 ワークWにおける絶縁膜130を付与する被塗部分は、ワークW全体であってもよいし、ワークWの一部であってもよい。本実施例では、一例として、ワークWにおける絶縁膜130を付与する対象部分は、ワークWの略全体(例えばコイル片52の結合部40に対応する部位を除く全体)である。 The portion of the workpiece W to be coated with the insulating film 130 may be the entire workpiece W or a part of the workpiece W. In this embodiment, as an example, the target portion of the workpiece W to which the insulating film 130 is applied is substantially the entire workpiece W (for example, the entire portion of the coil piece 52 excluding the portion corresponding to the coupling portion 40).
 図4Aは、コイル製造装置1及び電着塗装工程の概要の説明図である。図4Bは、一のワークWを示す概略的な平面図である。 FIG. 4A is an explanatory diagram of the outline of the coil manufacturing apparatus 1 and the electrodeposition coating process. FIG. 4B is a schematic plan view showing one workpiece W. FIG.
 コイル製造装置1は、図4Aに示すように、電着槽70と、電極部73と、電着処理部78とを含む。 The coil manufacturing apparatus 1 includes an electrodeposition bath 70, an electrode section 73, and an electrodeposition processing section 78, as shown in FIG. 4A.
 電着槽70には、塗料が満たされている。なお、図4Aには、電着槽70に満たされた塗料がハッチング領域72で模式的に示されている。なお、塗料は、絶縁膜130の材料であり、ポリアミドイミド樹脂やポリイミド樹脂等を含む絶縁塗料であってよい。電着槽70には、絶縁膜130が付与される前かつ成形後の複数のワークWが浸漬される。 The electrodeposition bath 70 is filled with paint. In addition, in FIG. 4A, the paint filled in the electrodeposition tank 70 is schematically indicated by a hatched area 72 . The paint is a material of the insulating film 130, and may be an insulating paint containing polyamide-imide resin, polyimide resin, or the like. A plurality of workpieces W are immersed in the electrodeposition tank 70 before the insulating film 130 is applied and after the molding.
 電極部73は、複数のワークWを電着槽70に浸漬した状態で、複数のワークWに電気的に接続される第1電極74と、電着槽70内の第2電極76とを形成する。 The electrode part 73 forms a first electrode 74 electrically connected to the plurality of works W and a second electrode 76 in the electrodeposition bath 70 while the plurality of works W are immersed in the electrodeposition bath 70 . do.
 電着処理部78は、直流電源(整流器)781を含み、第1電極74と第2電極76との間に電位差を発生する。 The electrodeposition processing section 78 includes a DC power supply (rectifier) 781 and generates a potential difference between the first electrode 74 and the second electrode 76 .
 電着塗装工程は、図4Aに示すように、ワークWを電着槽70に浸漬した状態で実行される。なお、電着槽70に浸漬されるワークWは、上述したコイル片52における絶縁膜130が形成される前の状態である。以下では、ワークWの特定部位を指すとき、コイル片52の対応する部位で説明する場合がある。例えば、図4Bにおいて、ワークWにおける符号60が付された部位は、コイル片52の渡り部54に対応し、以下では、単に、ワークWの渡り部54とも称する。 The electrodeposition coating process is performed with the workpiece W immersed in the electrodeposition bath 70 as shown in FIG. 4A. The workpiece W immersed in the electrodeposition tank 70 is in a state before the insulating film 130 is formed on the coil pieces 52 described above. Below, when a specific portion of the workpiece W is indicated, the corresponding portion of the coil piece 52 may be described. For example, in FIG. 4B, a portion of the work W denoted by reference numeral 60 corresponds to the transition portion 54 of the coil piece 52, and is also simply referred to as the transition portion 54 of the work W hereinafter.
 ワークWが電着槽70に浸漬した状態において、第1電極74と第2電極76との間の電位差を発生させると、塗料を介して直流電流が発生する(塗膜成分が電気泳動する)。その結果、電着槽70内に浸漬されたワークWの表面には、塗料の膜(塗膜)が析出(電着)される。このようにして形成される塗料の膜が、絶縁膜130となる。なお、第1電極74は、ワークWに直接的に導通され、第2電極76は、電着槽70内に配置され、第1電極74と第2電極76との間には、直流電源781が電気的に接続される。なお、第1電極74と第2電極76のうちの、正極となる側(及びそれに伴い負極となる側)は任意である。また、電着塗装工程中、電着槽70内の塗料は、流れを有してよい。例えば、電着塗装工程中、電着槽70には、供給側の配管(図示せず)から塗料が供給され、排出側の配管(図示せず)から排出されてよい。この場合、塗料は電着槽70を介して循環される。 When a potential difference is generated between the first electrode 74 and the second electrode 76 while the work W is immersed in the electrodeposition tank 70, a direct current is generated through the paint (coating film component electrophoreses). . As a result, a coating film (coating film) is deposited (electrodeposited) on the surface of the workpiece W immersed in the electrodeposition tank 70 . The paint film formed in this way becomes the insulating film 130 . The first electrode 74 is directly connected to the workpiece W, the second electrode 76 is arranged in the electrodeposition bath 70, and a DC power source 781 is provided between the first electrode 74 and the second electrode 76. are electrically connected. The positive electrode side (and the negative electrode side accordingly) of the first electrode 74 and the second electrode 76 is arbitrary. Also, during the electrodeposition coating process, the paint in the electrodeposition bath 70 may have flow. For example, during the electrodeposition coating process, paint may be supplied to the electrodeposition tank 70 from a supply side pipe (not shown) and discharged from a discharge side pipe (not shown). In this case, the paint is circulated through the electrodeposition bath 70 .
 なお、図4Aでは、第2電極76は概念図として概略的に示されており、本実施例による特徴については、以下で説明する。以下では、第2電極76について、まず、図5を参照して概念的な特徴を説明してから、図6以降で、当該特徴を実現するのに好適な具体的な構成を、各実施例(後述する実施例1以降)に分けて説明する。 In addition, in FIG. 4A, the second electrode 76 is schematically shown as a conceptual diagram, and the features of this embodiment will be described below. In the following, the conceptual features of the second electrode 76 will first be described with reference to FIG. 5, and then, in FIG. (Embodiment 1 and subsequent embodiments to be described later) will be described separately.
 図5は、第2電極76に係る概念的な特徴を説明する図である。図5には、電着槽70内に浸漬された状態の複数のワークWが概念的に示されている。なお、複数のワークWは、同じ形態である。 FIG. 5 is a diagram for explaining conceptual features of the second electrode 76. FIG. FIG. 5 conceptually shows a plurality of works W immersed in the electrodeposition tank 70 . Note that the plurality of works W have the same form.
 第2電極76は、複数のワークWを電着槽70に浸漬した状態で、複数のワークWに対する位置関係が、複数のワークW間で略同一になるように、構成される。ここで、第2電極76(以下で説明する第2電極76A~第2電極76Jも同様)と複数のワークWとの間の位置関係に関して、「位置関係が略同一」とは、複数のワークWにおける同一位置の部位(以下、「対象部位」とも称する)に関して、複数のワークW間における当該対象部位と第2電極76との間の最短距離のばらつきが、5mmより小さい関係であってよい。例えば、図5に示す例では、矢印P1が指す対象部位と第2電極76との間の最短距離L1は、各ワークWに対して一意に定まる。最短距離L1は、電着槽70内の塗料を通る空間的な最短距離であるが、精密に測定される必要はなく、例えば設計上意図される距離であってもよい。これは、矢印P2や矢印P3が指す他の対象部位に係る最短距離L2、L3についても同様である。このような対象部位は、電着塗装される範囲のうちの、少なくとも一部であり、任意の部位(例えば、矢印P2や矢印P3が指す対象部位)であってもよいし、特定の一部の部位であってもよい。例えば、対象部位は、図4Bに示したような主にスロット収容部50を含む範囲W2内の任意の部位であってもよい。本実施例では、好ましい例として、対象部位は、電着塗装される範囲の任意の部位(すなわちワークW全体)である。最短距離のばらつきとは、例えば、複数のワークWを電着槽70に浸漬した状態において、複数のワークWのそれぞれの最短距離L1のうちの、最小値と最大値との差である。 The second electrode 76 is configured so that the plurality of works W have substantially the same positional relationship with respect to the plurality of works W when the plurality of works W are immersed in the electrodeposition tank 70 . Here, with regard to the positional relationship between the second electrode 76 (the same applies to the second electrodes 76A to 76J described below) and the plurality of works W, the phrase "substantially the same positional relationship" means that the plurality of works Regarding parts at the same position in W (hereinafter also referred to as "target parts"), the variation in the shortest distance between the target part and the second electrode 76 among the plurality of works W may be less than 5 mm. . For example, in the example shown in FIG. 5, the shortest distance L1 between the target portion indicated by the arrow P1 and the second electrode 76 is uniquely determined for each workpiece W. As shown in FIG. The shortest distance L1 is the spatial shortest distance through the paint in the electrodeposition bath 70, but it does not have to be measured precisely, and may be, for example, a distance intended by design. The same applies to the shortest distances L2 and L3 related to the other target parts indicated by the arrows P2 and P3. Such a target site is at least a part of the range to be electrocoated, and may be any site (for example, a target site indicated by arrow P2 or arrow P3), or a specific part. may be the part of For example, the target site may be any site within a range W2 mainly including the slot housing portion 50 as shown in FIG. 4B. In this embodiment, as a preferred example, the target portion is an arbitrary portion within the range to be electrocoated (that is, the entire work W). Variation in the shortest distance is, for example, the difference between the minimum and maximum values of the shortest distance L1 of each of the plurality of works W when the plurality of works W are immersed in the electrodeposition tank 70 .
 ところで、電着塗装工程においては、ワークWは、電束密度の比較的高い部位において電束密度の比較的低い部位よりも塗料が電着されやすく、それ故に、塗料の膜厚が大きくなる傾向がある。電着塗装工程の開始時点で電束密度が比較的高かった部位も、時間の経過によって塗料の膜厚が大きくなると、電束密度が比較的低くなるので、複数のワークWを電着槽70に浸漬した状態の持続時間(電着塗装工程の時間)が比較的長くなると、ワークW全体として膜厚が均一化される。 By the way, in the electrodeposition coating process, the work W is more likely to be electrodeposited with the paint on the portion with the relatively high electric flux density than the portion with the relatively low electric flux density, and therefore the film thickness of the paint tends to increase. There is Even a portion having a relatively high electric flux density at the start of the electrodeposition coating process will have a relatively low electric flux density as the coating film thickness increases with the passage of time. When the duration of the state of being immersed in the water (time of the electrodeposition coating process) becomes relatively long, the film thickness of the entire work W becomes uniform.
 このため、各ワークWの一の対象部位にばらつきの低減された絶縁膜130を付与するためには、各ワークWにおける当該一の対象部位に係る電束密度間のばらつきを低減することや、電着塗装工程の時間(電着塗装時間)を長くすることが有効である。 Therefore, in order to apply the insulating film 130 with reduced variation to one target portion of each work W, it is necessary to reduce the variation between the electric flux densities related to the one target portion of each work W, It is effective to lengthen the time of the electrodeposition coating process (electrodeposition coating time).
 ここで、各ワークWにおける一の対象部位に係る電束密度は、第2電極76と各ワークWにおける当該一の対象部位との間の最短距離に相関する。すなわち、ワークWにおける一の対象部位に係る電束密度は、当該最短距離が短くなるほど高くなる傾向がある。 Here, the electric flux density related to one target portion of each work W correlates with the shortest distance between the second electrode 76 and the one target portion of each work W. That is, the electric flux density associated with one target portion of the work W tends to increase as the shortest distance becomes shorter.
 従って、複数のワークWにおける対象部位に関して、複数のワークW間における当該対象部位と第2電極76との間の最短距離のばらつきを比較的小さくすることで、電着塗装時間の短縮を図りつつ、各ワークWの当該対象部位に付与される絶縁膜130の厚みのばらつきを低減できる。 Therefore, with regard to the target portions of the plurality of works W, by making the variation in the shortest distance between the target portions and the second electrode 76 relatively small among the plurality of works W, the electrodeposition coating time can be shortened. , variation in the thickness of the insulating film 130 applied to the target portion of each workpiece W can be reduced.
 なお、複数のワークW間における当該対象部位と第2電極76との間の最短距離のばらつきについて、許容される上限値は、求められる品質に応じて異なり、小さいほど、絶縁膜130の厚みのばらつきを効果的に低減できる。従って、許容される上限値は、好ましくは、上述した5mm程度であるが、より好ましくは3mm以下であり、更に好ましくは1mm以下である。 Regarding the variation in the shortest distance between the target portion and the second electrode 76 among the plurality of works W, the allowable upper limit varies depending on the required quality. Variation can be effectively reduced. Therefore, the allowable upper limit is preferably about 5 mm as described above, more preferably 3 mm or less, and even more preferably 1 mm or less.
 ここで、複数のワークWにおける対象部位が図4Bの範囲W2及び範囲W1内である場合、図5に示すように、ワークWがU字状に見える方向視で、第2電極76が2つのスロット収容部50の間に位置するのが好適となる。この場合、範囲W2及び範囲W1内の比較的大部分の部位において、絶縁膜130の厚みのばらつきの低減を図ることができる。 Here, when the target portions of the plurality of works W are within the range W2 and the range W1 in FIG. 4B, as shown in FIG. It is preferably located between the slot accommodation portions 50 . In this case, variations in the thickness of the insulating film 130 can be reduced in relatively large portions within the range W2 and the range W1.
 [実施例1]
 図6及び図7は、実施例1によるコイル製造装置1及び製造方法の説明図であり、図6は、電着槽70内に浸漬された複数のワークWと第2電極76Aとの関係を模式的に示す斜視図であり、図7は、図6のワークW周辺の拡大図である。図6及び図7(以降の図13等も同様)には、互いに直交するX、Y、Z軸が定義されており、また、Z軸に関しては、Z方向に沿ったZ1側及びZ2側が定義されている。Z方向(第3方向の一例)は、上下方向に対応し、Z1側及びZ2側は、それぞれ、上側と下側に対応する。図8は、X方向(第2方向の一例)に視た渡り部54(オフセット部521B)周辺の拡大図であり、渡り部54と第2電極76Aとの間の関係を示す図である。
[Example 1]
6 and 7 are explanatory diagrams of the coil manufacturing apparatus 1 and the manufacturing method according to Example 1, and FIG. 6 shows the relationship between a plurality of works W immersed in the electrodeposition tank 70 and the second electrode 76A. FIG. 7 is a schematic perspective view, and FIG. 7 is an enlarged view of the periphery of the workpiece W in FIG. 6. FIG. In FIGS. 6 and 7 (similar to FIG. 13 and the like below), mutually orthogonal X, Y, and Z axes are defined, and with regard to the Z axis, the Z1 side and Z2 side along the Z direction are defined. It is The Z direction (an example of the third direction) corresponds to the vertical direction, and the Z1 side and Z2 side respectively correspond to the upper side and the lower side. FIG. 8 is an enlarged view of the transition portion 54 (offset portion 521B) and its surroundings viewed in the X direction (an example of the second direction), showing the relationship between the transition portion 54 and the second electrode 76A.
 なお、図6及び図7(以降の図13等も同様)では、上述した第1電極74や電着処理部78の図示は省略されるが、第1電極74や電着処理部78は、図4Aに示した態様で同様に設けられているものとする。 6 and 7 (similarly to FIG. 13 and the like), the above-described first electrode 74 and the electrodeposition processing unit 78 are omitted, but the first electrode 74 and the electrodeposition processing unit 78 are It is assumed that they are similarly provided in the manner shown in FIG. 4A.
 図6及び図7に示す例では、複数のワークWが同時に浸漬される。具体的には、複数のワークWは、一例として、Y方向(第1方向の一例)に並ぶ態様で浸漬される。なお、図6及び図7に示す例では、ワークWはY方向の一列を形成するが、X方向に互いに対してオフセットする態様で2列以上を形成してもよい。以下では、特に言及しない限り、Y方向の一列のワークWについて説明するが、2列以上の場合の他の列のワークWについても実質的に同様であってよい。これは、後述する第2実施例以降も同様である。また、図6及び図7に示す図は、ワークWが電着槽70に浸漬された状態(電着塗装工程が実行されている状態)を示す。これは、以降の図13等も同様である。また、以下で説明するワークWと第2電極76Aとの位置関係は、電着塗装工程が実行される際の位置関係である。 In the examples shown in FIGS. 6 and 7, a plurality of works W are immersed at the same time. Specifically, for example, the plurality of works W are immersed in a manner lined up in the Y direction (an example of the first direction). In the examples shown in FIGS. 6 and 7, the workpieces W form one row in the Y direction, but may form two or more rows offset from each other in the X direction. In the following, unless otherwise specified, one row of works W in the Y direction will be described, but the same may be true for works W in other rows in the case of two or more rows. This also applies to the second embodiment and subsequent embodiments, which will be described later. 6 and 7 show a state in which the workpiece W is immersed in the electrodeposition tank 70 (state in which the electrodeposition coating process is being performed). This also applies to the subsequent FIG. 13 and the like. Further, the positional relationship between the work W and the second electrode 76A, which will be described below, is the positional relationship when the electrodeposition coating process is performed.
 実施例1では、第2電極76Aは、Y方向に沿って配置される中心側電極761Aを含む。中心側電極761Aは、複数のワークWのX方向の中心側に配置される。すなわち、中心側電極761Aは、複数のワークWに対して、X方向で対(2つ)のスロット収容部50の間に、位置付けられる。この際、中心側電極761Aは、X方向に視て複数のワークWに重なるように、位置付けられる。これにより、図5を参照して上述したように、複数のワークW間における上述した最短距離のばらつきを効果的に低減できる。すなわち、複数のワークWのそれぞれに対する第2電極76Aの位置関係が略同一となり、複数のワークW間における上述した最短距離のばらつきを効果的に低減できる。 In Example 1, the second electrode 76A includes a central electrode 761A arranged along the Y direction. The center-side electrode 761A is arranged on the center side of the plurality of works W in the X direction. That is, the central electrode 761A is positioned between a pair (two) of the slot accommodating portions 50 in the X direction with respect to the plurality of works W. As shown in FIG. At this time, the central electrode 761A is positioned so as to overlap the plurality of works W when viewed in the X direction. As a result, as described above with reference to FIG. 5, it is possible to effectively reduce the variations in shortest distance between the plurality of works W described above. That is, the positional relationship of the second electrode 76A with respect to each of the plurality of works W becomes substantially the same, and the variation in the shortest distance between the plurality of works W can be effectively reduced.
 中心側電極761Aは、好ましくは、X方向に沿った対のスロット収容部50の間の中間位置に位置付けられる。この場合、複数のワークWのそれぞれにおいて、対のスロット収容部50に対する中心側電極761Aの位置関係が略同一となり、対のスロット収容部50に付与される絶縁膜130の膜厚のばらつき(同一ワーク内でのばらつき)を効果的に低減できる。 The central electrode 761A is preferably positioned at an intermediate position between the pair of slot accommodating portions 50 along the X direction. In this case, in each of the plurality of works W, the positional relationship of the central electrode 761A with respect to the pair of slot accommodation portions 50 is substantially the same, and the film thickness of the insulating film 130 applied to the pair of slot accommodation portions 50 varies (same variation within the workpiece) can be effectively reduced.
 なお、中心側電極761Aは、図7に示すように、Y方向に重なる複数のピースにより形成されてもよい。この場合、中心側電極761Aは、1つのワークWに対して1つのピースが対応する関係で、ワークWごとに設定されてもよいし、複数のワークWに対して1つのピースが対応する関係で、複数のワークWごとに設定されてもよい。あるいは、中心側電極761Aは、一列のすべてのワークWに対して共通の1つのピースより形成されてもよい。 Note that the central electrode 761A may be formed of a plurality of pieces overlapping in the Y direction, as shown in FIG. In this case, the central electrode 761A may be set for each workpiece W such that one piece corresponds to one workpiece W, or one piece corresponds to a plurality of workpieces W. and may be set for each of a plurality of workpieces W. Alternatively, the central electrode 761A may be formed from one piece common to all the works W in a line.
 中心側電極761Aは、複数のワークWの渡り部54に対して、Y方向の両側からY方向に対向する。具体的には、図7及び図8に示すように、中心側電極761Aは、下端部に、渡り部54が通される溝部76210を有する。溝部76210は、下方に開口する態様で、中心側電極761Aの下端部のX方向全体にわたって形成される。この場合、溝部76210に通される渡り部54に対して、溝部76210を形成するY方向両側の壁部76211が、Y方向の両側からY方向に対向する。 The center-side electrode 761A faces the bridge portions 54 of the plurality of works W from both sides in the Y direction. Specifically, as shown in FIGS. 7 and 8, the central electrode 761A has a groove portion 76210 through which the bridge portion 54 is passed at the lower end portion. The groove portion 76210 is formed over the entire X-direction of the lower end portion of the center electrode 761A in a downwardly open manner. In this case, wall portions 76211 on both sides of the groove portion 76210 in the Y direction face the transition portion 54 passed through the groove portion 76210 from both sides in the Y direction.
 このような中心側電極761Aによれば、複数のワークWの渡り部54に対して、比較的短い最短距離(図8の最短距離D参照)を実現でき、渡り部54(特にオフセット部521B)に係る電束密度を効果的に高めることができる。 According to such a central electrode 761A, a relatively short shortest distance (see the shortest distance D in FIG. 8) can be achieved with respect to the transition portions 54 of the plurality of works W, and the transition portions 54 (especially the offset portions 521B) can be can effectively increase the electric flux density.
 ところで、渡り部54のオフセット部521Bのような曲げ部(例えば、フラットワイズ側が成形曲げされた部位)は、直線状の部位(例えばスロット収容部50)に比べて、最短距離が同じであっても、電束密度が小さくなり易く、それ故に、塗料が電着され難い傾向がある。また、曲げ部(成形曲げされた部位)による表面凹凸に起因して、塗料が均一に電着され難い傾向がある。 By the way, a bent portion such as the offset portion 521B of the transition portion 54 (for example, a portion where the flatwise side is formed and bent) has the same shortest distance as a straight portion (for example, the slot accommodation portion 50). Also, the electric flux density tends to be low, and therefore the paint tends to be difficult to be electrodeposited. In addition, due to the unevenness of the surface due to the bent portion (the portion that is formed and bent), it tends to be difficult for the coating to be uniformly electrodeposited.
 この点、本実施例によれば、中心側電極761Aが、渡り部54が通される溝部76210を有することで、第2電極76A(中心側電極761A)と渡り部54との間の最短距離Dを適切に設定できる。例えば、第2電極76A(中心側電極761A)と渡り部54との間の最短距離Dを、第2電極76A(中心側電極761A)とスロット収容部50との間の最短距離(図5の最短距離L1参照)よりも有意に小さくできる。これにより、渡り部54に対しても必要な膜厚の絶縁膜130を付与することが可能となる。また、渡り部54に対して、多方向から(すなわちY方向両側と上側から)中心側電極761Aを近接させることができるので、渡り部54に付与される絶縁膜130の厚みの均一化を図ることができる。 In this regard, according to the present embodiment, the center electrode 761A has the groove 76210 through which the bridge portion 54 is passed, so that the shortest distance between the second electrode 76A (center electrode 761A) and the bridge portion 54 is D can be set appropriately. For example, the shortest distance D between the second electrode 76A (center-side electrode 761A) and the connecting portion 54 is the shortest distance between the second electrode 76A (center-side electrode 761A) and the slot accommodating portion 50 ( (see shortest distance L1)). As a result, the insulating film 130 having a required thickness can be applied to the bridge portion 54 as well. In addition, since the center electrode 761A can be brought close to the bridge portion 54 from multiple directions (that is, from both sides in the Y direction and from the upper side), the thickness of the insulating film 130 applied to the bridge portion 54 can be made uniform. be able to.
 図9は、Y方向の2列以上(Y方向の列がX方向に沿って2つ以上)のワークWを同時に電着槽70に浸漬して電着塗装工程を実行する場合に好適な配置例の説明図である。図9は、上面視で、Y方向の2列を形成する複数のワークWが示されている。 FIG. 9 is an arrangement suitable for performing the electrodeposition coating process by simultaneously immersing works W in two or more rows in the Y direction (there are two or more rows in the Y direction along the X direction) in the electrodeposition tank 70. FIG. 4 is an explanatory diagram of an example; FIG. 9 shows a plurality of works W forming two rows in the Y direction in a top view.
 図9に示すように、複数のワークWは、上面視での最短距離で、互いに対して距離Aだけ離される態様で、電着槽70に浸漬されてよい。この場合、ワーク間ピッチである距離Aは、好ましくは、1mmから100mmの間に設定されてよい。これにより、電着槽70内に浸漬できるワークWの数の適正化を図りつつ、ワークW同士が過度に近接する場合に生じうる不都合(例えば、電束密度の不均一化)を防止できる。なお、図9では、2列で一列ごとに3つのワークWが並んでいるが、これらの数は適宜変更可能である。 As shown in FIG. 9, a plurality of works W may be immersed in the electrodeposition bath 70 in a manner separated from each other by a distance A, which is the shortest distance in top view. In this case, the distance A, which is the work pitch, may preferably be set between 1 mm and 100 mm. As a result, it is possible to optimize the number of works W that can be immersed in the electrodeposition tank 70, and to prevent problems that may occur when the works W are too close to each other (for example, uneven electric flux density). In FIG. 9, three workpieces W are arranged in two rows for each row, but these numbers can be changed as appropriate.
 次に、図10Aから図11を参照して、本実施例の効果を更に説明する。 Next, the effects of this embodiment will be further described with reference to FIGS. 10A to 11. FIG.
 図10A及び図10Bは、比較例による第2電極76A’の構成の説明図であり、図10Aは、電着槽70内に浸漬されたワークWと第2電極76A’との関係を模式的に示す斜視図であり、図10Bは、比較例に対する解析結果を示す図であり、Y方向に並んだ3つのワークWの渡り部54に付与される絶縁膜130の厚み(膜厚)の計算値を比較する表図である。図10Bでは、3つのワークW(1)、W(2)、及びW(3)に対応付けられて、各計算値が棒グラフで示されている。 10A and 10B are explanatory diagrams of the configuration of the second electrode 76A' according to the comparative example, and FIG. 10A schematically shows the relationship between the work W immersed in the electrodeposition tank 70 and the second electrode 76A'. and FIG. 10B is a diagram showing analysis results for a comparative example, and calculation of the thickness (film thickness) of the insulating film 130 applied to the transition portions 54 of three works W arranged in the Y direction. FIG. 10 is a table for comparing values; FIG. In FIG. 10B, each calculated value is shown by a bar graph in association with three works W(1), W(2), and W(3).
 比較例では、図10Aに示すように、第2電極76A’は、電着槽70の側壁(図10Aでは、Y方向両側の側壁)に配置される。第2電極76A’は、平板状であり、Y方向に視て、各ワークWに重なるようにXZ面内に延在する。なお、比較例では、Y方向に並んだ3つのワークWは、Y方向で2つの第2電極76A’の間の中心に配置されている。 In the comparative example, as shown in FIG. 10A, the second electrodes 76A' are arranged on the side walls of the electrodeposition bath 70 (side walls on both sides in the Y direction in FIG. 10A). The second electrode 76A' has a flat plate shape and extends in the XZ plane so as to overlap each workpiece W when viewed in the Y direction. In the comparative example, three workpieces W arranged in the Y direction are arranged in the center between the two second electrodes 76A' in the Y direction.
 このような比較例では、対象部位(この場合、渡り部54)と第2電極76A’との間の最短距離のばらつきは、実質的に、Y方向のワーク間距離に対応する。すなわち、Y方向に並んだ3つのワークWのうちの、Y方向両側の2つのワークWは、それぞれの最短距離(第2電極76A’に対する最短距離)は、略同じであるのに対して、真ん中の1つのワークWは、Y方向両側の2つのワークWよりも、Y方向のワーク間距離分だけ最短距離が大きくなる。 In such a comparative example, the variation in the shortest distance between the target portion (in this case, the transition portion 54) and the second electrode 76A' substantially corresponds to the inter-work distance in the Y direction. That is, among the three works W arranged in the Y direction, the two works W on both sides in the Y direction have substantially the same shortest distance (shortest distance to the second electrode 76A'). One workpiece W in the middle has a shortest distance larger than the two workpieces W on both sides in the Y direction by the distance between the workpieces in the Y direction.
 Y方向のワーク間距離=5mmとした場合に図10Bに示す結果が得られた。図10Bにおいて、符号101、103は、Y方向両側の2つのワークW(1)、(3)についての絶縁膜130の厚みの計算値を示し、符号102は、真ん中の1つのワークW(2)についての絶縁膜130の厚みの計算値を示す。なお、同じ一のワークWの渡り部54においても、Y方向で第2電極76A’に近い側の表面と、遠い側の表面とで、膜厚が異なるが、ここでは、膜厚の最大値を利用している。 The results shown in FIG. 10B were obtained when the distance between works in the Y direction was set to 5 mm. In FIG. 10B, reference numerals 101 and 103 denote calculated values of the thickness of the insulating film 130 for the two works W(1) and (3) on both sides in the Y direction, and reference numeral 102 denotes one work W (2 ), the calculated thickness of the insulating film 130 is shown. In addition, even in the crossover portion 54 of the same workpiece W, the surface closer to the second electrode 76A′ in the Y direction and the surface farther from the second electrode 76A′ have different film thicknesses. are using.
 図10Bから分かるように、真ん中の1つのワークW(2)について対象部位(この場合、渡り部54)の絶縁膜130の厚みは、Y方向両側の2つのワークW(1)、(3)についての同厚みよりも有意に(例えば15μmよりも有意に大きい低減分だけ)低くなっている。 As can be seen from FIG. 10B, the thickness of the insulating film 130 at the target portion (in this case, the transition portion 54) of the work W(2) in the middle is is significantly lower (eg by a significantly greater reduction than 15 μm) than the same thickness for .
 図11は、本実施例に対する解析結果を示す図であり、上側には、ワークWの各対象部位における絶縁膜130の厚みの計算値が示されており、下側には、ワークWの各対象部位を説明する図が示されている。 11A and 11B are diagrams showing the analysis results for this embodiment, in which the calculated values of the thickness of the insulating film 130 at each target portion of the work W are shown on the upper side, and the respective thicknesses of the work W are shown on the lower side. A diagram illustrating the target site is shown.
 図11では、図11の下側に示す線分LAから線分LDが交差する4箇所の対象部位が評価されている。図11の上側では、各対象部位におけるエッジワイズ側(「EW側」と表記)の表面(X方向の側面)とフラットワイズ側(「FW側」と表記)の表面(Y方向の側面)のそれぞれについて、絶縁膜130の厚みの計算値が示されている。また、図11では、線分LAから線分LCが交差する3箇所の対象部位は、スロット収容部50を形成し、それらの平均値が、線分LAから線分LCの計算値として、図11の上側にプロットされている。また、図11の上側において、W(Ref)は、基準値として、単独の1つのワークWで解析したときの計算値を示し、W(2)は、Y方向に並ぶ3つのワークWのうちの、真ん中のワークWに関する計算値を示し、W(1)、(3)は、Y方向に並ぶ3つのワークWのうちの、Y方向両側のワークWに関する計算値を示す。なお、W(Ref)からW(3)のそれぞれには、平均膜厚と、最大膜厚と、最小膜厚の3つのプロットが対応付けられている。 In FIG. 11, four target regions where line segments LA and LD shown on the lower side of FIG. 11 intersect are evaluated. In the upper part of FIG. 11 , the surface (side surface in the X direction) on the edgewise side (denoted as “EW side”) and the surface (side surface in the Y direction) on the flatwise side (denoted as “FW side”) of each target portion are shown. A calculated value of the thickness of the insulating film 130 is shown for each. Further, in FIG. 11, the three target portions where the line segment LA and the line segment LC intersect form the slot accommodating portion 50, and the average value thereof is the calculated value of the line segment LA to the line segment LC. 11 are plotted above. In the upper part of FIG. 11, W(Ref) indicates a calculated value obtained by analyzing a single workpiece W as a reference value, and W(2) indicates a value among three workpieces W arranged in the Y direction. W(1) and W(3) indicate the calculated values for the works W on both sides in the Y direction among the three works W arranged in the Y direction. Three plots of average film thickness, maximum film thickness, and minimum film thickness are associated with each of W(Ref) to W(3).
 図11から分かるように、本実施例では、W(2)に対応付けられている各計算値と、W(1)、(3)に対応付けられている各計算値との間の差分(すなわちばらつき)は、比較例に比べて有意に低減されている。例えば15μmを超えるようなばらつきは生じていない。このことから、第2電極76Aを設けることで、各ワークWの当該対象部位に付与される絶縁膜130の厚みのばらつきを低減できることが、解析上からも分かる。 As can be seen from FIG. 11, in this embodiment, the difference ( variation) is significantly reduced compared to the comparative example. For example, there is no variation exceeding 15 μm. From this, it can be understood from the analysis that the variation in the thickness of the insulating film 130 applied to the target portion of each workpiece W can be reduced by providing the second electrode 76A.
 図12は、ワークWの中心側側面と、同ワークWの反対側側面との間での、絶縁膜130の厚みの計算値の解析結果の相違を示す図である。図12の下側には、ワークWの中心側側面を示す矢印R1と、同ワークWの反対側側面を示す矢印R2とが、第2電極76Aの概略図とともに示されている。 FIG. 12 is a diagram showing the difference in the analysis results of the calculated value of the thickness of the insulating film 130 between the central side surface of the work W and the opposite side surface of the same work W. As shown in FIG. In the lower part of FIG. 12, an arrow R1 indicating the central side surface of the work W and an arrow R2 indicating the opposite side surface of the work W are shown together with a schematic diagram of the second electrode 76A.
 本実施例では、上述したように、第2電極76Aは、ワークWのスロット収容部50の4方の側面のうちの、ワークWのX方向の中心側かつエッジワイズ側の表面(矢印R1参照)に対してのみ、X方向に対向する。従って、ワークWのスロット収容部50の2方のエッジワイズ側の表面のうちの、ワークWのX方向の中心側とは逆側(すなわち電着槽70のX方向の側壁に対向する側)の表面(矢印R2参照)には、塗料が電着され難い傾向がある。これは、図12に示す解析結果からも分かる。すなわち、図12の上側に示す例では、ワークWのX方向の中心側(R1)の側面に付与される絶縁膜130の厚みの計算値に対して、ワークWのX方向の中心側とは逆側(R2)の側面に付与される絶縁膜130の厚みの計算値は、有意に(例えば15μmよりも有意に大きい低減分だけ)低くなっている。 In the present embodiment, as described above, the second electrode 76A is the surface (see arrow R1) of the four side surfaces of the slot accommodating portion 50 of the workpiece W on the center side in the X direction of the workpiece W and on the edgewise side. ) in the X direction. Therefore, of the two edgewise side surfaces of the slot accommodating portion 50 of the work W, the side opposite to the center side of the work W in the X direction (that is, the side facing the side wall of the electrodeposition tank 70 in the X direction) The surface of (see arrow R2) tends to be difficult for the paint to be electrodeposited. This can also be seen from the analysis results shown in FIG. That is, in the example shown on the upper side of FIG. The calculated thickness of the insulating film 130 applied to the opposite (R2) side surface is significantly lower (eg, by a reduction significantly greater than 15 μm).
 以下では、このようにワークWの同じ部位において、ワークWのX方向の中心側と、その反対側との間で生じうる絶縁膜130の厚みのばらつき(差分)を、「ワークWの対象部位における側面間での膜厚ばらつき」とも称する。 In the following description, the variation (difference) in the thickness of the insulating film 130 that can occur between the center side of the workpiece W in the X direction and the opposite side thereof in the same portion of the workpiece W will be referred to as the "target portion of the workpiece W. It is also referred to as "variation in film thickness between sides in".
 図13は、図7等を参照して上述した本実施例の第2電極76Aに対する変形例の説明図であり、本変形例による第2電極76Bと、複数のワークWとの関係を示す斜視図である。本変形例は、図12を参照して上述したワークWの対象部位における側面間での膜厚ばらつきを低減するのに好適な構成である。 FIG. 13 is an explanatory diagram of a modification of the second electrode 76A of the present embodiment described above with reference to FIG. It is a diagram. This modified example is a configuration suitable for reducing variations in film thickness between the side surfaces of the target portion of the work W described above with reference to FIG. 12 .
 具体的には、本変形例による第2電極76Bは、図7等を参照して上述した本実施例の第2電極76Aに対して、対の側方側電極762Bを備える点が異なる。すなわち、本変形例による第2電極76Bは、図7等を参照して上述した本実施例の第2電極76Aの中心側電極761Aと実質的に同一の中心側電極761Bと、対の側方側電極762Bとを備える。 Specifically, the second electrode 76B according to this modified example differs from the second electrode 76A according to the present embodiment described above with reference to FIG. That is, the second electrode 76B according to the present modification includes a central electrode 761B substantially identical to the central electrode 761A of the second electrode 76A of the present embodiment described above with reference to FIG. and a side electrode 762B.
 対の側方側電極762Bは、電着槽70に浸漬した状態の複数のワークWのX方向両側に配置される。すなわち、対の側方側電極762Bは、電着槽70に浸漬した状態の複数のワークWに対して、X方向で2つのスロット収容部50の両側に位置付けられる。 The pair of lateral side electrodes 762B are arranged on both sides of the plurality of works W immersed in the electrodeposition tank 70 in the X direction. That is, the pair of side electrodes 762B are positioned on both sides of the two slot accommodating portions 50 in the X direction with respect to the plurality of works W immersed in the electrodeposition bath 70 .
 対の側方側電極762Bは、X方向に視て、複数のワークWに重なる態様で、Y方向に沿って配置される。対の側方側電極762Bは、図13に示すように、1つのワークWに対して1つが対応する態様で、Y方向に沿って配置されてもよい。あるいは、対の側方側電極762Bは、2つ以上のワークWに対して1つが対応する態様で、Y方向に沿って配置されてもよい。例えば、対の側方側電極762Bは、それぞれ、1ピースの形態であってもよい。なお、図13に示す例では、対の側方側電極762Bは、円形状の断面形状(水平面で切断した際の断面形状)を有し、等断面で上下方向に延在する棒状の形態である。ただし、対の側方側電極762Bの形態は任意であり、例えば矩形状の断面形状を有してもよい。 The pair of side electrodes 762B are arranged along the Y direction so as to overlap a plurality of works W when viewed in the X direction. The pair of lateral side electrodes 762B may be arranged along the Y direction in such a manner that one corresponds to one workpiece W, as shown in FIG. Alternatively, the pair of side electrodes 762B may be arranged along the Y direction in such a manner that one corresponds to two or more works W. FIG. For example, the pair of lateral electrodes 762B may each be in the form of one piece. In the example shown in FIG. 13, the pair of side electrodes 762B has a circular cross-sectional shape (cross-sectional shape when cut along a horizontal plane), and is in the form of a rod extending vertically with a uniform cross section. be. However, the shape of the pair of side electrodes 762B is arbitrary, and may have, for example, a rectangular cross-sectional shape.
 このような対の側方側電極762Bは、ワークWのX方向の中心側とは逆側の側面に対向するので、当該逆側の側面に塗料が電着されやすくする機能を有する。これにより、図12を参照して上述したワークWの対象部位における側面間での膜厚ばらつきを低減することが可能となる。 Since such a pair of side electrodes 762B faces the side surface of the work W opposite to the center side in the X direction, it has the function of facilitating the electrodeposition of paint on the opposite side surface. As a result, it is possible to reduce the film thickness variation between the side surfaces of the target portion of the work W described above with reference to FIG. 12 .
 図14は、本変形例による第2電極76BとワークWとの間の位置関係(Y方向に視たときの位置関係)に係る各種パラメータの説明図である。なお、以下の各種パラメータは、第2電極76BとワークWとの間の離間距離を表す。 FIG. 14 is an explanatory diagram of various parameters relating to the positional relationship (the positional relationship when viewed in the Y direction) between the second electrode 76B and the workpiece W according to this modified example. Various parameters below represent the distance between the second electrode 76B and the workpiece W.
 パラメータBは、中心側電極761BとワークWの2つのスロット収容部50のうちの一方との間の離間距離(X方向に沿った離間距離)であり、パラメータB”は、中心側電極761BとワークWの2つのスロット収容部50のうちの他方との間の離間距離であり、パラメータB’は、ワークWのスロット収容部50の下部(渡り部54に近い側の対象部位)と中心側電極761Bとの間の離間距離(X方向に沿った離間距離)である。パラメータCは、側方側電極762Bと、ワークWの2つのスロット収容部50のうちの一方(近い方)との間の離間距離(X方向に沿った離間距離)である。 The parameter B is the separation distance (the separation distance along the X direction) between the center electrode 761B and one of the two slot housing portions 50 of the workpiece W, and the parameter B'' is the distance between the center electrode 761B and The distance between the other of the two slot accommodating portions 50 of the workpiece W and the parameter B' is the distance between the lower portion of the slot accommodating portion 50 of the workpiece W (the target portion on the side close to the transition portion 54) and the center side. is the separation distance (the separation distance along the X direction) from the electrode 761 B. The parameter C is the distance between the side electrode 762 B and one of the two slot housing portions 50 of the workpiece W (the closer one). is the distance between them (the distance along the X direction).
 本変形例では、パラメータBとパラメータB’の各値の関係は、好ましくは、パラメータBとパラメータB’の各値が略同じとなる関係であり、具体的には、B:B’=0.01~1:0.01~1であり、より好ましくは、B:B’=0.1~1:0.1~1であり、最も好ましくはB:B’=1:1である。また、パラメータBとパラメータB”の各値の関係は、好ましくは、B:B”=0.01~1:0.01~1であり、より好ましくは、B:B”=0.1~1:0.1~1であり、最も好ましくはB:B”=1:1である。このようなパラメータBとパラメータB’又はB”の各値の関係を実現することで、同じワークW内におけるスロット収容部50の異なる部位間での膜厚ばらつきを低減することが可能となる。 In this modification, the relationship between the values of the parameter B and the parameter B' is preferably such that the values of the parameter B and the parameter B' are substantially the same. Specifically, B:B'=0 .01-1:0.01-1, more preferably B:B'=0.1-1:0.1-1, most preferably B:B'=1:1. In addition, the relationship between the values of parameter B and parameter B″ is preferably B:B″=0.01 to 1:0.01 to 1, more preferably B:B″=0.1 to 1:0.1 to 1, most preferably B:B″=1:1. By realizing such a relationship between the values of the parameter B and the parameter B' or B'', it is possible to reduce film thickness variations between different portions of the slot accommodating portion 50 in the same workpiece W.
 また、パラメータBとパラメータCの各値の関係は、好ましくは、パラメータBとパラメータCの各値が略同じとなる関係であり、具体的には、B:C=0.01~1:0.01~1であり、より好ましくは、B:C=0.1~1:0.1~1であり、最も好ましくはB:C=1:1である。このようなパラメータBとパラメータCの各値の関係を実現することで、ワークWの対象部位における側面間での膜厚ばらつきを低減することが可能となる。 Further, the relationship between the values of the parameter B and the parameter C is preferably such that the values of the parameter B and the parameter C are substantially the same. Specifically, B:C=0.01 to 1:0. .01-1, more preferably B:C=0.1-1:0.1-1, most preferably B:C=1:1. By realizing such a relationship between the values of the parameter B and the parameter C, it is possible to reduce the film thickness variation between the side surfaces of the target portion of the workpiece W.
 また、パラメータBと、上述したパラメータD(図8参照)との関係では、各値の関係は、好ましくは、B:D=1:0.01~0.99である。このようなパラメータBとパラメータDの各値の関係を実現することで、同じワークW内におけるスロット収容部50と渡り部54(特にオフセット部521B)との間での膜厚ばらつきを低減することが可能となる。 Also, in the relationship between parameter B and parameter D (see FIG. 8) described above, the relationship between each value is preferably B:D=1:0.01 to 0.99. By realizing such a relationship between the values of the parameter B and the parameter D, it is possible to reduce film thickness variations between the slot accommodating portion 50 and the transition portion 54 (especially the offset portion 521B) in the same work W. becomes possible.
 図15は、図7等を参照して上述した本実施例の第2電極76Aに対する更なる他の変形例の説明図であり、本変形例による第2電極76Cと、複数のワークWとの関係を示す斜視図である。本変形例は、図12を参照して上述したワークWの対象部位における側面間での膜厚ばらつきを低減するのに好適な構成である。 FIG. 15 is an explanatory diagram of still another modification of the second electrode 76A of the present embodiment described above with reference to FIG. It is a perspective view which shows a relationship. This modified example is a configuration suitable for reducing variations in film thickness between the side surfaces of the target portion of the work W described above with reference to FIG. 12 .
 本変形例による第2電極76Cは、図7等を参照して上述した本実施例の第2電極76Aに対して、対の側方側電極762Cを備え、かつ、中心側電極761Aが中心側電極761Cに置換された点が異なる。すなわち、本変形例による第2電極76Cは、中心側電極761Cと、対の側方側電極762Cとを備える。 A second electrode 76C according to this modification includes a pair of side electrodes 762C and a central electrode 761A, which is different from the second electrode 76A of the present embodiment described above with reference to FIG. It differs in that it is replaced with an electrode 761C. That is, the second electrode 76C according to this modification includes a central electrode 761C and a pair of side electrodes 762C.
 中心側電極761Cは、図7等を参照して上述した本実施例の中心側電極761Aに対して、断面形状(水平面で切断した際の断面形状)が異なり、本変形例では、円形状の断面形状を有する。中心側電極761Cは、渡り部54まわりの構成については、図7等を参照して上述した本実施例の中心側電極761Aと同様であってよい。 The center-side electrode 761C has a different cross-sectional shape (cross-sectional shape when cut along a horizontal plane) from the center-side electrode 761A of the present embodiment described above with reference to FIG. It has a cross-sectional shape. The central electrode 761C may have the same configuration around the transition portion 54 as the central electrode 761A of the present embodiment described above with reference to FIG. 7 and the like.
 対の側方側電極762Cは、図13を参照して上述した変形例による対の側方側電極762Bと同様であってよい。本変形例によっても、図13を参照して上述した変形例と同様の効果が得られる。なお、本変形例においても、図14に示した各種パラメータの関係が実現されてよい。 The pair of side electrodes 762C may be similar to the pair of side electrodes 762B according to the modification described above with reference to FIG. This modification also provides the same effects as the modification described above with reference to FIG. 13 . Also in this modified example, the relationship of various parameters shown in FIG. 14 may be realized.
 ところで、上述した各種の第2電極76A、76B、及び76Cは、電着槽70に対して上下方向に移動可能であってよく、電着塗装工程の際、複数のワークWをセットした後に、電着槽70内にセットされるのが好適である。ただし、第2電極76B、76Cのうちの側方側電極762B、762Cは、電着槽70側に支持されてもよい。 By the way, the various second electrodes 76A, 76B, and 76C described above may be vertically movable with respect to the electrodeposition tank 70, and after setting a plurality of works W during the electrodeposition coating process, It is preferably set in the electrodeposition bath 70 . However, the side electrodes 762B and 762C of the second electrodes 76B and 76C may be supported on the electrodeposition tank 70 side.
 図16は、図7等を参照して上述した本実施例の第2電極76Aの中心側電極761Aに対する変形例の説明図であり、本変形例による中心側電極761Dと、複数のワークWとの関係を示す2面図である。 FIG. 16 is an explanatory diagram of a modification of the central electrode 761A of the second electrode 76A of the present embodiment described above with reference to FIG. It is a two-sided view showing the relationship between.
 本変形例では、中心側電極761Dは、下端が電着槽70の底部702に支持される態様で、複数のワークWのX方向の中心側に配置される。この際、中心側電極761Dは、Y方向で複数のワークWに近接するように、位置付けられる。図16に示す例では、中心側電極761Dは、X方向で僅かにオフセットしつつ渡り部54をY方向で挟む対(2本の対)を、ワークWごとに形成する態様で、配置されている。この場合、複数のワークWのそれぞれに対して、中心側電極761Dの位置関係が略同一となり、複数のワークW間における上述した最短距離のばらつきを効果的に低減できる。また、この場合、中心側電極761Dは、複数のワークWの渡り部54に対して、Y方向の両側からY方向に対向できる。これにより、電着塗装工程において渡り部54に係る電束密度を効果的に高めることができる。なお、中心側電極761Dと渡り部54との間の離間距離は、上述した最短距離D(パラメータD)と同様であってよい。 In this modified example, the center electrode 761D is arranged on the center side of the plurality of works W in the X direction in such a manner that the lower end is supported by the bottom portion 702 of the electrodeposition tank 70 . At this time, the center electrode 761D is positioned so as to be close to the plurality of works W in the Y direction. In the example shown in FIG. 16, the central electrodes 761D are arranged in such a manner as to form a pair (two pairs) for each workpiece W while being slightly offset in the X direction and sandwiching the bridge portion 54 in the Y direction. there is In this case, the positional relationship of the center electrode 761D becomes substantially the same for each of the plurality of works W, and the variation in the shortest distance between the plurality of works W can be effectively reduced. Further, in this case, the center electrode 761D can face the bridge portions 54 of the plurality of works W from both sides in the Y direction. As a result, the electric flux density of the transition portion 54 can be effectively increased in the electrodeposition coating process. Note that the distance between the center electrode 761D and the transition portion 54 may be the same as the shortest distance D (parameter D) described above.
 本変形例においても、中心側電極761Dは、好ましくは、X方向に沿った対のスロット収容部50の間の中間位置に位置付けられる。この場合、複数のワークWのそれぞれにおいて、対のスロット収容部50に対する中心側電極761Dの位置関係が略同一となり、対のスロット収容部50に付与される絶縁膜130の膜厚のばらつき(同一ワーク内でのばらつき)を効果的に低減できる。 Also in this modified example, the central electrode 761D is preferably positioned at an intermediate position between the pair of slot accommodating portions 50 along the X direction. In this case, in each of the plurality of works W, the positional relationship of the central electrode 761D with respect to the pair of slot accommodating portions 50 is substantially the same, and the film thickness of the insulating film 130 applied to the pair of slot accommodating portions 50 varies (same variation within the workpiece) can be effectively reduced.
 なお、図16に示す中心側電極761Dは、上述した側方側電極762B、762Cと組み合わせて実現されてもよい。 Note that the central electrode 761D shown in FIG. 16 may be realized in combination with the side electrodes 762B and 762C described above.
 図17は、図7等を参照して上述した本実施例の第2電極76Aの中心側電極761Aに対する他の変形例の説明図であり、本変形例による中心側電極761Eと、複数のワークWとの関係を示す2面図である。 FIG. 17 is an explanatory diagram of another modification of the central electrode 761A of the second electrode 76A of the present embodiment described above with reference to FIG. It is a two-sided view showing the relationship with W.
 本変形例では、中心側電極761Eは、下端が電着槽70の底部702に支持される態様で、複数のワークWのX方向の中心側に配置される。この際、中心側電極761Eは、Y方向で複数のワークWの間に、位置付けられる。図17に示す例では、中心側電極761Eは、平板状の形態であり、Y方向で複数のワークWの間で、上下方向に延在する。この場合、複数のワークWのそれぞれに対して、中心側電極761Eの位置関係が略同一となり、複数のワークW間における上述した最短距離のばらつきを効果的に低減できる。また、この場合、中心側電極761Eは、複数のワークWの渡り部54に対して、Y方向の両側からY方向に対向できる。これにより、電着塗装工程において渡り部54に係る電束密度を効果的に高めることができる。なお、中心側電極761Eと渡り部54との間の離間距離は、上述した最短距離D(パラメータD)と同様であってよい。 In this modified example, the center electrode 761E is arranged on the center side of the plurality of works W in the X direction in such a manner that the lower end is supported by the bottom 702 of the electrodeposition bath 70 . At this time, the center electrode 761E is positioned between the plurality of works W in the Y direction. In the example shown in FIG. 17, the central electrode 761E has a flat plate shape and extends vertically between the plurality of works W in the Y direction. In this case, the positional relationship of the center electrode 761E is substantially the same for each of the plurality of works W, and the variations in shortest distance between the plurality of works W can be effectively reduced. Further, in this case, the center electrode 761E can face the bridge portions 54 of the plurality of works W from both sides in the Y direction. As a result, the electric flux density of the transition portion 54 can be effectively increased in the electrodeposition coating process. Note that the distance between the central electrode 761E and the transition portion 54 may be the same as the shortest distance D (parameter D) described above.
 本変形例においても、中心側電極761Eは、好ましくは、X方向に沿った対のスロット収容部50の間の中間位置に位置付けられる。この場合、複数のワークWのそれぞれにおいて、対のスロット収容部50に対する中心側電極761Eの位置関係が略同一となり、対のスロット収容部50に付与される絶縁膜130の膜厚のばらつき(同一ワーク内でのばらつき)を効果的に低減できる。 Also in this modified example, the central electrode 761E is preferably positioned at an intermediate position between the pair of slot accommodating portions 50 along the X direction. In this case, in each of the plurality of works W, the positional relationship of the central electrode 761E with respect to the pair of slot housing portions 50 is substantially the same, and the film thickness of the insulating film 130 applied to the pair of slot housing portions 50 varies (same variation within the workpiece) can be effectively reduced.
 なお、図17に示す中心側電極761Eは、上述した側方側電極762B、762Cと組み合わせて実現されてもよい。 Note that the central electrode 761E shown in FIG. 17 may be realized in combination with the side electrodes 762B and 762C described above.
 図18は、図7等を参照して上述した本実施例の第2電極76Aの中心側電極761Aに対する更なる他の変形例の説明図であり、本変形例による中心側電極761Fと、複数のワークWとの関係を示す2面図である。 FIG. 18 is an explanatory diagram of still another modification of the central electrode 761A of the second electrode 76A of the present embodiment described above with reference to FIG. 2 is a two-sided view showing the relationship between the 1 and the workpiece W. FIG.
 本変形例では、中心側電極761Fは、下端が電着槽70の底部702に支持される態様で、複数のワークWのX方向の中心側に配置される。この際、中心側電極761Fは、Y方向で複数のワークWの間に、位置付けられる。この場合、複数のワークWのそれぞれに対して、中心側電極761Fの位置関係が略同一となり、複数のワークW間における上述した最短距離のばらつきを効果的に低減できる。また、図18に示す例では、中心側電極761Fは、平板状の形態であるが、図17に示した中心側電極761Eとは異なり、断面形状が上下方向の位置で異なる。具体的には、中心側電極761Fは、Y方向に視て複数のワークWの渡り部54に対して対向する区間(上下方向の区間)において、比較的大きいX方向の寸法を有する。この場合、中心側電極761Fは、複数のワークWの渡り部54にY方向の両側からY方向に対向しつつ、渡り部54に対向する電極面積を効率的に増加できる。これにより、電着塗装工程において渡り部54(特にオフセット部521B)に係る電束密度を効果的に高めることができる。なお、中心側電極761Fと渡り部54との間の離間距離は、上述した最短距離D(パラメータD)と同様であってよい。 In this modified example, the center electrode 761F is arranged on the center side of the plurality of works W in the X direction in such a manner that the lower end is supported by the bottom 702 of the electrodeposition bath 70 . At this time, the center electrode 761F is positioned between the plurality of works W in the Y direction. In this case, the positional relationship of the center electrode 761F becomes substantially the same for each of the plurality of works W, and the variation in the shortest distance between the plurality of works W can be effectively reduced. In the example shown in FIG. 18, the center electrode 761F has a flat plate shape, but unlike the center electrode 761E shown in FIG. 17, the cross-sectional shape differs depending on the position in the vertical direction. Specifically, the central electrode 761F has a relatively large dimension in the X direction in a section (vertical section) facing the bridge portions 54 of the plurality of works W when viewed in the Y direction. In this case, the central electrode 761F can efficiently increase the electrode area facing the bridge portions 54 while facing the bridge portions 54 of the plurality of workpieces W from both sides in the Y direction. As a result, it is possible to effectively increase the electric flux density of the transition portion 54 (especially the offset portion 521B) in the electrodeposition coating process. The distance between the central electrode 761F and the transition portion 54 may be the same as the shortest distance D (parameter D) described above.
 本変形例においても、中心側電極761Fは、好ましくは、X方向に沿った対のスロット収容部50の間の中間位置に位置付けられる。この場合、複数のワークWのそれぞれにおいて、対のスロット収容部50に対する中心側電極761Fの位置関係が略同一となり、対のスロット収容部50に付与される絶縁膜130の膜厚のばらつき(同一ワーク内でのばらつき)を効果的に低減できる。 Also in this modified example, the central electrode 761F is preferably positioned at an intermediate position between the pair of slot accommodating portions 50 along the X direction. In this case, in each of the plurality of works W, the positional relationship of the central electrode 761F with respect to the pair of slot housing portions 50 is substantially the same, and the film thickness of the insulating film 130 applied to the pair of slot housing portions 50 varies (same variation within the workpiece) can be effectively reduced.
 なお、図18に示す中心側電極761Fは、上述した側方側電極762B、762Cと組み合わせて実現されてもよい。 Note that the central electrode 761F shown in FIG. 18 may be realized in combination with the side electrodes 762B and 762C described above.
[実施例2]
 次に、図19以降を参照して、実施例2による第2電極構成について説明する。
[Example 2]
Next, the second electrode configuration according to Example 2 will be described with reference to FIG. 19 onward.
 ところで、ワークWは絶縁膜130が付与されることで、最終的にコイル片52を形成するが、コイル片52は、コイルエンドを形成する部分(渡り部54)においては、異なる相間での絶縁性を高める観点から、絶縁膜130が比較的厚いほうが望ましい。他方、コイル片52は、スロット23に収容されるスロット収容部50においては、スロット23内における導体の占有率を高める観点から、絶縁膜130が比較的薄いほうが望ましい。 By the way, the workpiece W is provided with the insulating film 130 to finally form the coil piece 52. In the coil piece 52, insulation between different phases is provided at the portion (the transition portion 54) forming the coil end. From the viewpoint of improving the properties, it is desirable that the insulating film 130 is relatively thick. On the other hand, it is desirable that the insulating film 130 of the coil piece 52 is relatively thin in the slot accommodating portion 50 that is accommodated in the slot 23 from the viewpoint of increasing the occupancy of the conductor in the slot 23 .
 そこで、本実施例による第2電極構成は、ワークWのうちの、渡り部54に付与される絶縁膜130の厚みが、スロット収容部50に付与される絶縁膜130の厚みよりも有意に大きくなるように、構成される。この場合、スロット収容部50に付与される絶縁膜130の膜厚を1.0とした場合、渡り部54に付与される絶縁膜130の膜厚は、1.1以上であり、好ましくは、2.0(すなわち2倍)以上である。なお、絶縁膜130の厚みが比較的大きい範囲と、厚みが比較的小さい範囲との間の境界位置は、渡り部54とスロット収容部50との間の境界位置に厳密に一致する必要はなく、渡り部54とスロット収容部50との間の境界位置から若干ずれてもよい。例えば、スロット収容部50の下部に付与される絶縁膜130の膜厚は、渡り部54に付与される絶縁膜130の膜厚と同様、比較的大きくてもよい。 Therefore, in the second electrode configuration according to the present embodiment, the thickness of the insulating film 130 applied to the transition portion 54 of the work W is significantly larger than the thickness of the insulating film 130 applied to the slot accommodation portion 50. is configured to be In this case, when the thickness of the insulating film 130 applied to the slot housing portion 50 is 1.0, the thickness of the insulating film 130 applied to the transition portion 54 is 1.1 or more. 2.0 (i.e. doubled) or greater. The boundary position between the relatively thick range and the relatively thin range of the insulating film 130 does not need to strictly match the boundary position between the transition portion 54 and the slot accommodating portion 50 . , may slightly deviate from the boundary position between the transition portion 54 and the slot accommodation portion 50 . For example, the thickness of the insulating film 130 applied to the lower portion of the slot accommodating portion 50 may be relatively large, similar to the thickness of the insulating film 130 applied to the transition portion 54 .
 図19は、本実施例の第2電極76Gと、複数のワークWとの関係を示す斜視図である。本実施例は、上述した実施例1による第2電極76Aに対して、中心側電極761Gの形態(下端部の構成)が主に異なる。なお、中心側電極761Gの配置態様は、上述した実施例1による中心側電極761Aの配置態様と同様であってよい。 FIG. 19 is a perspective view showing the relationship between the second electrode 76G and a plurality of works W of this embodiment. The present embodiment differs from the second electrode 76A according to the first embodiment described above mainly in the form of the center electrode 761G (configuration of the lower end). The layout of the center electrode 761G may be the same as the layout of the center electrode 761A according to the first embodiment.
 具体的には、本実施例の中心側電極761Gは、ベース部7614Gと、厚膜形成部7616Gとを有する。 Specifically, the central electrode 761G of this embodiment has a base portion 7614G and a thick film forming portion 7616G.
 ベース部7614Gは、上述した実施例1による中心側電極761Aに対して、下端部以外は実質的に同じ構成であってよい。具体的には、ベース部7614Gは、複数のワークWのX方向の中心側に配置される。すなわち、ベース部7614Gは、複数のワークWに対して、X方向で対(2つ)のスロット収容部50の間に、位置付けられる。この際、ベース部7614Gは、X方向に視て複数のワークWに重なるように、位置付けられる。これにより、図5を参照して上述したように、複数のワークW間における上述した最短距離のばらつきを効果的に低減できる。 The base portion 7614G may have substantially the same configuration as the center electrode 761A according to the first embodiment described above, except for the lower end portion. Specifically, the base portion 7614G is arranged on the center side of the plurality of works W in the X direction. That is, the base portion 7614G is positioned between a pair (two) of the slot housing portions 50 in the X direction with respect to the plurality of works W. As shown in FIG. At this time, the base portion 7614G is positioned so as to overlap the plurality of works W when viewed in the X direction. As a result, as described above with reference to FIG. 5, it is possible to effectively reduce the variations in shortest distance between the plurality of works W described above.
 ベース部7614Gは、好ましくは、X方向に沿った対のスロット収容部50の間の中間位置に位置付けられる。この場合、複数のワークWのそれぞれにおいて、対のスロット収容部50に対するベース部7614Gの位置関係が略同一となり、対のスロット収容部50に付与される絶縁膜130の膜厚のばらつき(同一ワーク内でのばらつき)を効果的に低減できる。 The base portion 7614G is preferably positioned at an intermediate position between the pair of slot accommodation portions 50 along the X direction. In this case, in each of the plurality of works W, the positional relationship of the base portion 7614G with respect to the pair of slot accommodation portions 50 is substantially the same, and the film thickness of the insulating film 130 applied to the pair of slot accommodation portions 50 varies (the same work can effectively reduce the variation within the
 厚膜形成部7616Gは、ベース部7614Gの下端部から下方に連続する。厚膜形成部7616Gは、上下方向に視て複数のワークWの渡り部54に重なる。厚膜形成部7616Gは、好ましくは、上下方向に視て複数のワークWの渡り部54のX方向略全体にわたって重なる。渡り部54のX方向略全体とは、X方向両側の端部においてワークWと厚膜形成部7616Gとの間に確保されるX方向の隙間(後述するパラメータB’参照)を考慮したものである。従って、厚膜形成部7616Gは、好ましくは、ベース部7614GよりもX方向の寸法が有意に大きい。 The thick film forming portion 7616G continues downward from the lower end portion of the base portion 7614G. The thick film forming portion 7616G overlaps the transition portions 54 of the plurality of works W when viewed in the vertical direction. The thick film forming portion 7616G preferably overlaps substantially the entire crossover portion 54 of the plurality of works W in the X direction when viewed in the vertical direction. Substantially the entire crossover portion 54 in the X direction takes into consideration the X-direction gap (see parameter B′ described later) secured between the workpiece W and the thick film forming portion 7616G at both ends in the X direction. be. Accordingly, the thick film forming portion 7616G is preferably significantly larger in dimension in the X direction than the base portion 7614G.
 図20は、本実施例に対する解析結果を示す図であり、評価される対象部位は、上述した図11の下側に示したとおりである。なお、図11に示す線分LAから線分LCが交差する3箇所の対象部位のうちの、上側の線分LA及び線分LBの各対象部位は、X方向に視て厚膜形成部7616Gに重ならない。他方、線分LCの対象部位は、X方向に視て厚膜形成部7616Gに重なる。図20では、線分LAから線分LCが交差する3箇所の対象部位のうちの、上側の線分LA及び線分LBの各対象部位の平均値が、線分LA及び線分LBの計算値としてプロットされている。また、線分LC及び線分LDの各対象部位の平均値が、線分LC及び線分LDの計算値としてプロットされている。また、図20において、W(Ref)は、基準値として、単独の1つのワークで解析したときの計算値を示し、W(2)は、Y方向に並ぶ3つのワークのうちの、真ん中のワークWに関する計算値を示し、W(1)、(3)は、Y方向に並ぶ3つのワークのうちの、Y方向両側のワークWに関する計算値を示す。なお、W(Ref)からW(3)のそれぞれには、平均膜厚と、最大膜厚と、最小膜厚の3つのプロットが対応付けられている。 FIG. 20 is a diagram showing the analysis results for this example, and the target parts to be evaluated are as shown on the lower side of FIG. 11 described above. Of the three target portions where the line segment LA and the line segment LC shown in FIG. does not overlap with On the other hand, the target portion of the line segment LC overlaps the thick film forming portion 7616G when viewed in the X direction. In FIG. 20, among the three target portions where the line segment LC intersects with the line segment LA, the average value of each target portion of the upper line segment LA and the line segment LB is the calculation of the line segment LA and the line segment LB. plotted as values. Also, the average values of the target portions of the line segments LC and LD are plotted as the calculated values of the line segments LC and LD. Further, in FIG. 20, W(Ref) indicates a calculated value obtained by analyzing a single single workpiece as a reference value, and W(2) indicates the center value of the three workpieces arranged in the Y direction. W(1) and W(3) indicate calculated values for the workpiece W, and W(1) and (3) indicate calculated values for the workpieces W on both sides in the Y direction among the three workpieces arranged in the Y direction. Three plots of average film thickness, maximum film thickness, and minimum film thickness are associated with each of W(Ref) to W(3).
 図20から分かるように、本実施例では、W(2)に対応付けられている各計算値と、W(1)、(3)に対応付けられている各計算値との間の差分(すなわちばらつき)は、比較例に比べて有意に低減されている。例えば15μmを超えるようなばらつきは生じていない。このことから、第2電極76Gを設けることで、各ワークWの当該対象部位に付与される絶縁膜130の厚みのばらつきを低減できることが、解析上からも分かる。 As can be seen from FIG. 20, in this embodiment, the difference ( variation) is significantly reduced compared to the comparative example. For example, there is no variation exceeding 15 μm. From this, it can be understood from the analysis that the variation in the thickness of the insulating film 130 applied to the target portion of each workpiece W can be reduced by providing the second electrode 76G.
 また、図20から分かるように、本実施例では、厚膜形成部7616Gを設けることで、厚膜形成部7616Gとの関係で最短距離を取る対象部位(線分LC及び線分LDの各対象部位)に付与される絶縁膜130の厚みを効果的に増加できること分かる。すなわち、図20からは、ワークWの各対象部位のうちの、厚膜形成部7616Gとの関係で最短距離を取る対象部位(線分LC及び線分LDの各対象部位)は、それ以外の対象部位、すなわちベース部7614Gとの関係で最短距離を取る対象部位(線分LA及び線分LBの各対象部位)よりも、絶縁膜130の厚みが大きくなっている。 In addition, as can be seen from FIG. 20, in the present embodiment, by providing the thick film forming portion 7616G, the target portions (targets of the line segment LC and the line segment LD) that take the shortest distance in relation to the thick film forming portion 7616G It can be seen that the thickness of the insulating film 130 applied to the portion) can be effectively increased. That is, from FIG. 20, among the target portions of the workpiece W, the target portions (the target portions of the line segment LC and the line segment LD) having the shortest distance in relation to the thick film forming portion 7616G are the other target portions. The thickness of the insulating film 130 is larger than the target portion, that is, the target portion (the target portions of the line segment LA and the line segment LB) having the shortest distance from the base portion 7614G.
 図21は、図7等を参照して上述した本実施例の第2電極76Gに対する変形例の説明図であり、本変形例による第2電極76Hと、複数のワークWとの関係を示す斜視図である。本変形例は、図12を参照して上述したワークWの対象部位における側面間での膜厚ばらつきを低減するのに好適な構成である。 FIG. 21 is an explanatory diagram of a modification of the second electrode 76G of the present embodiment described above with reference to FIG. It is a diagram. This modified example is a configuration suitable for reducing variations in film thickness between the side surfaces of the target portion of the work W described above with reference to FIG. 12 .
 具体的には、本変形例による第2電極76Hは、図7等を参照して上述した本実施例の第2電極76Gに対して、対の側方側電極762Hを備える点が異なる。すなわち、本変形例による第2電極76Hは、図19を参照して上述した本実施例の第2電極76Gの中心側電極761Gと実質的に同一の中心側電極761Hと、対の側方側電極762Hとを備える。対の側方側電極762Hは、図13を参照して上述した対の側方側電極762Bと同様の構成であってよい。この場合、図12を参照して上述したワークWの対象部位における側面間での膜厚ばらつきを低減することが可能となる。 Specifically, the second electrode 76H according to this modified example differs from the second electrode 76G according to the present embodiment described above with reference to FIG. That is, the second electrode 76H according to the present modification includes a central electrode 761H substantially identical to the central electrode 761G of the second electrode 76G of the present embodiment described above with reference to FIG. and an electrode 762H. The pair of side electrodes 762H may have the same configuration as the pair of side electrodes 762B described above with reference to FIG. In this case, it is possible to reduce the film thickness variation between the side surfaces of the target portion of the workpiece W described above with reference to FIG. 12 .
 図22は、図21に示す本変形例による第2電極76HとワークWとの間の位置関係(Y方向に視たときの位置関係)に係る各種パラメータの説明図である。 FIG. 22 is an explanatory diagram of various parameters relating to the positional relationship (the positional relationship when viewed in the Y direction) between the second electrode 76H and the workpiece W according to the modification shown in FIG.
 図22において、ベース部7614Hに係るパラメータB、B”、及びCは、実施例1に関して図14を参照して上述したパラメータB、B”、及びCと同様であってよい。 In FIG. 22, parameters B, B'', and C associated with base portion 7614H may be similar to parameters B, B'', and C described above with reference to FIG.
 パラメータB’は、厚膜形成部7616HとワークWの2つのスロット収容部50との間の離間距離(X方向に沿った離間距離)であり、パラメータC’は、側方側電極762Hと、ワークWの2つのスロット収容部50のうちの一方(近い方)における一部であって、X方向に視て厚膜形成部7616Hに重なる部位との間の離間距離(X方向に沿った離間距離)である。 Parameter B′ is the separation distance (separation distance along the X direction) between the thick film forming portion 7616H and the two slot housing portions 50 of the work W, and the parameter C′ is the side electrode 762H, A separation distance (separation along the X direction distance).
 本変形例では、パラメータBとパラメータB’の各値の関係は、好ましくは、B:B’=1:0.99~0.01であり、より好ましくは、B:B’=1:0.5~0.01であり、更に好ましくは、B:B’=1:0.2~0.01である。また、パラメータBとパラメータCの各値の関係は、好ましくは、B:C=1:0.01~2である。また、パラメータCとパラメータC’の各値の関係は、好ましくは、C:C’=1:0.99~0.01であり、より好ましくは、C:C’=1:0.5~0.01であり、更に好ましくは、C:C’=1:0.2~0.01である。また、パラメータB’とパラメータC’の各値の関係は、好ましくは、B’:C’=1:1~0.01である。なお、図22においては、C:C’=1:0.2~0.01となるように、側方側電極762Hの下部がスロット収容部50に近づく態様でオフセットされている。このように、側方側電極762Hの下部が上部に対してスロット収容部50に近づく側にオフセットされてもよい。 In this modification, the relationship between the values of parameter B and parameter B' is preferably B:B'=1:0.99 to 0.01, more preferably B:B'=1:0. 0.5 to 0.01, more preferably B:B'=1:0.2 to 0.01. Also, the relationship between the values of parameter B and parameter C is preferably B:C=1:0.01-2. Further, the relationship between the values of the parameter C and the parameter C' is preferably C:C'=1:0.99 to 0.01, more preferably C:C'=1:0.5 to 0.01, more preferably C:C'=1:0.2 to 0.01. Also, the relationship between the values of parameter B' and parameter C' is preferably B':C'=1:1 to 0.01. In FIG. 22, the lower portion of the side electrode 762H is offset so as to approach the slot accommodating portion 50 so that C:C'=1:0.2 to 0.01. In this way, the lower portion of the side electrode 762H may be offset from the upper portion toward the slot accommodating portion 50 .
 このようなパラメータB’、C’等の各値の関係を実現することで、同じワークW内におけるスロット収容部50と渡り部54との間での膜厚ばらつきを低減することが可能となる。 By realizing such a relationship between the values of the parameters B', C', etc., it is possible to reduce film thickness variations between the slot housing portion 50 and the transition portion 54 in the same work W. .
 図23は、図19を参照して上述した本実施例の第2電極76Gに対する更なる変形例の説明図であり、本変形例による第2電極76Iと、複数のワークWとの関係を示す斜視図である。本変形例は、図12を参照して上述したワークWの対象部位における側面間での膜厚ばらつきを低減するのに好適な構成である。 FIG. 23 is an explanatory diagram of a further modification of the second electrode 76G of this embodiment described above with reference to FIG. 19, and shows the relationship between the second electrode 76I of this modification and a plurality of works W. It is a perspective view. This modified example is a configuration suitable for reducing variations in film thickness between the side surfaces of the target portion of the work W described above with reference to FIG. 12 .
 本変形例による第2電極76Iは、図19を参照して上述した本実施例の第2電極76Gに対して、対の側方側電極762Iを備え、かつ、中心側電極761Gが中心側電極761Iに置換された点が異なる。すなわち、本変形例による第2電極76Iは、中心側電極761Iと、対の側方側電極762Iとを備える。 A second electrode 76I according to the present modification includes a pair of lateral side electrodes 762I and a center side electrode 761G as opposed to the second electrode 76G of the present embodiment described above with reference to FIG. The difference is that it is replaced with 761I. That is, the second electrode 76I according to this modification includes a central electrode 761I and a pair of side electrodes 762I.
 中心側電極761Iは、図19を参照して上述した本実施例の中心側電極761Gに対して、Y方向で分割した形態である点が異なり、本変形例では、1つのワークWごとに1つとなる関係で、分割されている。また、中心側電極761Iは、上述した本実施例の中心側電極761Gのベース部7614Gに対して、ベース部7614IのX方向の寸法も小さい点が異なるが、X方向の寸法は、上述した本実施例のベース部7614Gと同様であってもよい。また、中心側電極761Iは、上述した本実施例の中心側電極761Gの厚膜形成部7616Gに対して、厚膜形成部7616Iの上下方向の寸法も小さい点が異なるが、上下方向の寸法は、上述した本実施例の厚膜形成部7616Gと同様であってもよい。 The central electrode 761I differs from the central electrode 761G of the present embodiment described above with reference to FIG. 19 in that it is divided in the Y direction. It is divided into two relationships. Also, the center electrode 761I is different from the base portion 7614G of the center electrode 761G of the above-described embodiment in that the dimension of the base portion 7614I in the X direction is also smaller, but the dimension of the base portion 7614I in the X direction is the same as that of the base portion 7614G of the above-described embodiment. It may be similar to the base portion 7614G of the embodiment. In addition, the central electrode 761I differs from the thick film forming portion 7616G of the central electrode 761G of the present embodiment in that the vertical dimension of the thick film forming portion 7616I is also smaller, but the vertical dimension is , may be the same as the thick film forming portion 7616G of the present embodiment described above.
 対の側方側電極762Iは、図21を参照して上述した変形例による対の側方側電極762Hと同様であってよい。本変形例によっても、図21を参照して上述した変形例と同様の効果が得られる。なお、本変形例においても、図22に示した各種パラメータの関係(Y方向に視たときの位置関係)が実現されてよい。 The pair of side electrodes 762I may be similar to the pair of side electrodes 762H according to the modification described above with reference to FIG. This modification also provides the same effects as the modification described above with reference to FIG. 21 . Also in this modified example, the relationship between various parameters (the positional relationship when viewed in the Y direction) shown in FIG. 22 may be realized.
 ところで、上述した各種の第2電極76G、76H、及び76Iは、電着槽70に対して上下方向に移動可能であってよく、電着塗装工程の際、複数のワークWをセットした後に、電着槽70内にセットされるのが好適である。ただし、第2電極76H、76Iのうちの側方側電極762H、762Iは、電着槽70側に支持されてもよい。 By the way, the various second electrodes 76G, 76H, and 76I described above may be vertically movable with respect to the electrodeposition tank 70. During the electrodeposition coating process, after setting a plurality of works W, It is preferably set in the electrodeposition bath 70 . However, the side electrodes 762H and 762I of the second electrodes 76H and 76I may be supported on the electrodeposition tank 70 side.
 図24は、図19を参照して上述した本実施例の第2電極76Gの中心側電極761Gに対する更なる変形例の説明図であり、本変形例による中心側電極761Jと、複数のワークWとの関係を示す正面図である。 FIG. 24 is an explanatory diagram of a further modification of the central electrode 761G of the second electrode 76G of the present embodiment described above with reference to FIG. It is a front view showing a relationship with.
 本変形例では、第2電極76Jを形成する中心側電極761Jは、下端が電着槽70の底部702に支持される態様で、複数のワークWのX方向の中心側に配置される。中心側電極761Jは、図23を参照して上述した中心側電極761Iと同様に、1つのワークWごとに1つとなる関係で、分割されている。この際、中心側電極761Jは、Y方向で複数のワークWに近接するように、Y方向で複数のワークW間に、位置付けられる。この場合、複数のワークWのそれぞれに対して、中心側電極761Jの位置関係が略同一となり、複数のワークW間における上述した最短距離のばらつきを効果的に低減できる。 In this modified example, the central electrode 761J that forms the second electrode 76J is arranged on the center side of the plurality of works W in the X direction in such a manner that the lower end is supported by the bottom 702 of the electrodeposition tank 70. The center-side electrode 761J is divided so that there is one for each workpiece W, similar to the center-side electrode 761I described above with reference to FIG. At this time, the center electrode 761J is positioned between the plurality of works W in the Y direction so as to be close to the plurality of works W in the Y direction. In this case, the positional relationship of the center electrode 761J is substantially the same for each of the plurality of works W, and the variations in shortest distance between the plurality of works W can be effectively reduced.
 本変形例においても、中心側電極761Jのベース部7614Jは、好ましくは、X方向に沿った対のスロット収容部50の間の中間位置に位置付けられる。この場合、複数のワークWのそれぞれにおいて、対のスロット収容部50に対する中心側電極761Jの位置関係が略同一となり、対のスロット収容部50に付与される絶縁膜130の膜厚のばらつき(同一ワーク内でのばらつき)を効果的に低減できる。図24に示す例では、中心側電極761Jの厚膜形成部7616Jは、渡り部54をY方向で挟む対(2本の対)を、ワークWごとに形成する態様で、配置されている。この場合、中心側電極761Jは、複数のワークWの渡り部54に対して、Y方向の両側からY方向に対向できる。これにより、電着塗装工程において渡り部54に係る電束密度を効果的に高めることができる。なお、中心側電極761Jと渡り部54との間の離間距離は、上述した最短距離D(パラメータB’、C’)と同様であってよい。 Also in this modified example, the base portion 7614J of the central electrode 761J is preferably positioned at an intermediate position between the pair of slot accommodating portions 50 along the X direction. In this case, in each of the plurality of works W, the positional relationship of the central electrode 761J with respect to the pair of slot housing portions 50 is substantially the same, and the film thickness of the insulating film 130 applied to the pair of slot housing portions 50 varies (same variation within the workpiece) can be effectively reduced. In the example shown in FIG. 24, the thick film forming portions 7616J of the central electrode 761J are arranged in such a manner that a pair (two pairs) sandwiching the transition portion 54 in the Y direction is formed for each workpiece W. In this case, the central electrode 761J can face the connecting portions 54 of the plurality of works W from both sides in the Y direction. As a result, the electric flux density of the transition portion 54 can be effectively increased in the electrodeposition coating process. Note that the distance between the center electrode 761J and the bridge portion 54 may be the same as the above-described shortest distance D (parameters B' and C').
 また、本変形例では、中心側電極761Jは、厚膜形成部7616JのX方向両端から上下方向に延在する部位7618Jを有する。部位7618Jは、スロット収容部50の下部をY方向で挟む対(2本の対)を、ワークWごとに形成する態様で、配置されている。部位7618Jは、Y方向に視て、スロット収容部50の下部に重なる。この場合、中心側電極761Jは、複数のワークWのスロット収容部50の下部に対して、Y方向の両側からY方向に対向できる。これにより、電着塗装工程においてスロット収容部50の下部に係る電束密度を効果的に高めることができ、スロット収容部50の下部に付与される絶縁膜130の厚膜化を図ることができる。なお、中心側電極761Jとスロット収容部50の下部との間の離間距離は、上述した最短距離D(パラメータB’、C’)と同様であってよい。 In addition, in this modified example, the central electrode 761J has portions 7618J that extend vertically from both ends of the thick film forming portion 7616J in the X direction. The portions 7618J are arranged in such a manner that a pair (two pairs) sandwiching the lower portion of the slot housing portion 50 in the Y direction is formed for each workpiece W. The portion 7618J overlaps with the lower portion of the slot accommodating portion 50 when viewed in the Y direction. In this case, the center-side electrode 761J can face the lower part of the slot housing portion 50 of the plurality of works W from both sides in the Y direction. As a result, the electric flux density in the lower portion of the slot housing portion 50 can be effectively increased in the electrodeposition coating process, and the thickness of the insulating film 130 applied to the lower portion of the slot housing portion 50 can be increased. . The distance between the center electrode 761J and the lower portion of the slot accommodation portion 50 may be the same as the shortest distance D (parameters B' and C') described above.
 なお、図24に示す中心側電極761Jは、上述した側方側電極762H、762Iと組み合わせて実現されてもよい。 Note that the central electrode 761J shown in FIG. 24 may be realized in combination with the side electrodes 762H and 762I described above.
 また、図24に示す例では、中心側電極761Jのうちの部位7618Jは、Y方向に視て、スロット収容部50の下部に重なるだけであるが、スロット収容部50の略全体に重なる態様で、更に上側まで延在してもよい。あるいは、逆に図25に示す中心側電極761Kのように、Y方向に視てスロット収容部50の下部に重なる部位7618Jが省略されてもよい。この場合、第2電極76Kを形成する中心側電極761Kは、ベース部7614Kと、厚膜形成部7616Kとを有する。厚膜形成部7616Kは、Y方向に視てスロット収容部50の下部に重ならない。 In the example shown in FIG. 24, the portion 7618J of the central electrode 761J only overlaps the lower portion of the slot accommodating portion 50 when viewed in the Y direction, but in a manner that overlaps substantially the entire slot accommodating portion 50. , may extend further upward. Alternatively, like the central electrode 761K shown in FIG. 25, the portion 7618J that overlaps with the lower portion of the slot accommodating portion 50 when viewed in the Y direction may be omitted. In this case, the central electrode 761K forming the second electrode 76K has a base portion 7614K and a thick film forming portion 7616K. The thick film forming portion 7616K does not overlap the lower portion of the slot accommodating portion 50 when viewed in the Y direction.
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。また、各実施例の効果のうちの、従属項に係る効果は、上位概念(独立項)とは区別した付加的効果である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes are possible within the scope described in the claims. It is also possible to combine all or more of the constituent elements of the above-described embodiments. Further, among the effects of each embodiment, the effects related to dependent claims are additional effects distinguished from generic concepts (independent claims).
 例えば、上述した各実施例では、中心側電極761A~761Kが設けられるが、中心側電極761A~761Kのような中心側電極を利用せずに、同様の効果を実現してもよい。例えば、図26に示す変形例による第2電極76Lは、X方向の両側に対で設けられ、それぞれ、側方側電極部762Lを有する。側方側電極部762Lは、スロット収容部50の側方側に延在する部位7620Lと、渡り部54の下方に延在する部位7621Lとを含む。部位7620Lは、上述した側方側電極762H、762I等と同様の機能を有してよい。部位7621Lは、上下方向に視て渡り部54に重なり、第2電極76Lのうちの、渡り部54に対する最短距離を取る部位となる。この場合も、上述した各実施例と同様、第2電極76Lは、複数のワークWとの位置関係が略同一になるように構成できる。なお、部位7621Lと渡り部54との間の最短距離は、上述したパラメータD(図8参照)の値と同様の態様で設定されてよい。他のパラメータ(例えばパラメータB等)についても同様である。このような変形例によっても、上述した実施例と同様の効果を得ることができる。なお、図26に示す斜視図では、ワークWの状態等が理解しやすいように、手前側の部位7620Lが透視で示されている。 For example, in each of the embodiments described above, the central electrodes 761A to 761K are provided, but similar effects may be achieved without using central electrodes such as the central electrodes 761A to 761K. For example, second electrodes 76L according to the modification shown in FIG. 26 are provided in pairs on both sides in the X direction, and each have a side electrode portion 762L. The side electrode portion 762L includes a portion 7620L extending to the side of the slot accommodating portion 50 and a portion 7621L extending below the transition portion 54. As shown in FIG. The portion 7620L may have the same function as the side electrodes 762H, 762I and the like described above. The portion 7621L overlaps the transition portion 54 when viewed in the vertical direction, and is the portion of the second electrode 76L that has the shortest distance to the transition portion 54 . In this case as well, the second electrode 76L can be configured to have substantially the same positional relationship with the plurality of works W, as in the above-described embodiments. Note that the shortest distance between the portion 7621L and the transition portion 54 may be set in the same manner as the value of the parameter D (see FIG. 8) described above. The same applies to other parameters (for example, parameter B, etc.). Even with such a modified example, the same effect as the above-described embodiment can be obtained. In addition, in the perspective view shown in FIG. 26, the part 7620L on the front side is shown transparently so that the state of the work W and the like can be easily understood.
1・・・コイル製造装置、70・・・電着槽、73・・・電極部、74・・・第1電極、76、76A~76L・・・第2電極、761A~761K・・・中心側電極、762B、762C、762H、762I・・・側方側電極、78・・・電着処理部、130・・・絶縁膜、52、52’・・・コイル片(コイル)、112・・・ステータコア、114・・・ステータコイル(コイル)、7614G・・・ベース部(第2電極部位)、7616G、7616H・・・厚膜形成部(第1電極部位)、50・・・スロット収容部、54・・・渡り部(コイルエンド部)、521B・・・オフセット部(曲げ部)、W・・・ワーク(コイル素材) Reference Signs List 1... Coil manufacturing apparatus, 70... Electrodeposition tank, 73... Electrode part, 74... First electrode, 76, 76A to 76L... Second electrode, 761A to 761K... Center Side electrodes 762B, 762C, 762H, 762I Side electrodes 78 Electrodeposition treatment section 130 Insulating films 52, 52' Coil pieces (coils) 112 Stator core 114 Stator coil (coil) 7614G Base portion (second electrode portion) 7616G, 7616H Thick film forming portion (first electrode portion) 50 Slot accommodating portion , 54... transition portion (coil end portion), 521B... offset portion (bending portion), W... work (coil material)

Claims (11)

  1.  絶縁膜を有するコイルの製造方法であって、
     前記絶縁膜が付与される前かつ複数のコイル素材を準備する準備工程と、
     複数の前記コイル素材を電着槽に浸漬した状態で、複数の前記コイル素材に接続される第1電極と、前記電着槽内の第2電極との間に電位差を発生させる電着塗装工程と、を含み、
     前記電着塗装工程において、複数の前記コイル素材と前記第2電極とは、複数の前記コイル素材における同一位置の少なくとも1つの対象部位に関して、複数の前記コイル素材間における前記対象部位と前記第2電極との間の最短距離が、略同一になるように、互いに対して位置付けられる、コイル製造方法。
    A method for manufacturing a coil having an insulating film,
    a preparation step of preparing a plurality of coil materials before the insulating film is applied;
    An electrodeposition coating step of generating a potential difference between a first electrode connected to the plurality of coil materials and a second electrode in the electrodeposition tank while the plurality of coil materials are immersed in the electrodeposition tank. and including
    In the electrodeposition coating step, the plurality of coil materials and the second electrode are arranged in relation to at least one target portion at the same position in the plurality of coil materials, and the target portion and the second electrode between the plurality of coil materials. A coil manufacturing method wherein the coils are positioned relative to each other such that the shortest distances between the electrodes are substantially the same.
  2.  前記電着塗装工程において、複数の前記コイル素材と前記第2電極とは、前記最短距離のばらつきが、5mmより小さくなるように、互いに対して位置付けられる、請求項1に記載のコイル製造方法。 The coil manufacturing method according to claim 1, wherein in the electrodeposition coating step, the plurality of coil materials and the second electrode are positioned with respect to each other such that the variation in the shortest distance is less than 5 mm.
  3.  複数の前記コイル素材は、ステータコアに巻装されるステータコイル用であり、巻装状態で前記ステータコアのスロットに収容される2つのスロット収容部と、巻装状態で前記ステータコアの軸方向端面から露出するコイルエンド部とをそれぞれ備え、
     前記対象部位は、前記スロット収容部及び前記コイルエンド部のうちの少なくとも一部を含む、請求項1又は2に記載のコイル製造方法。
    The plurality of coil materials are for a stator coil wound around a stator core, and include two slot accommodating portions accommodated in slots of the stator core in a wound state, and exposed from an axial end surface of the stator core in a wound state. each having a coil end portion that
    The coil manufacturing method according to claim 1 or 2, wherein the target portion includes at least part of the slot accommodating portion and the coil end portion.
  4.  前記電着塗装工程において、複数の前記コイル素材は、2つの前記スロット収容部及び前記コイルエンド部が、第1方向に視てU字状をなす向きで、前記第1方向に列をなして前記電着槽に浸漬され、
     前記第2電極は、前記第1方向に沿って配置される中心側電極を含み、
     前記電着塗装工程において、前記中心側電極は、前記電着槽に浸漬した状態の複数の前記コイル素材に対して、前記第1方向に交差する第2方向で2つの前記スロット収容部の間に、前記第2方向に視て複数の前記コイル素材に重なるように、位置付けられる、請求項3に記載のコイル製造方法。
    In the electrodeposition coating step, the plurality of coil materials are arranged in rows in the first direction such that the two slot housing portions and the coil end portions form a U-shape when viewed in the first direction. immersed in the electrodeposition bath,
    the second electrode includes a central electrode arranged along the first direction;
    In the electrodeposition coating step, the central electrode is disposed between the two slot accommodating portions in a second direction intersecting the first direction with respect to the plurality of coil materials immersed in the electrodeposition bath. 4. The coil manufacturing method according to claim 3, wherein the coil material is positioned so as to overlap the plurality of coil materials when viewed in the second direction.
  5.  前記電着塗装工程において、前記中心側電極は、前記第2方向に沿った2つの前記スロット収容部の間の中間位置に位置付けられる、請求項4に記載のコイル製造方法。 5. The coil manufacturing method according to claim 4, wherein in the electrodeposition coating step, the center electrode is positioned at an intermediate position between the two slot accommodating portions along the second direction.
  6.  前記コイルエンド部は、巻装状態で前記ステータコアの径方向に対応する方向にオフセットする曲げ部を有し、
     前記対象部位は、前記スロット収容部の少なくとも一部と、前記曲げ部とを含み、
     前記電着塗装工程において、前記曲げ部と前記第2電極との間の最短距離は、前記スロット収容部における前記対象部位と前記第2電極との間の最短距離よりも小さい、請求項4又は5に記載のコイル製造方法。
    The coil end portion has a bent portion offset in a direction corresponding to the radial direction of the stator core in a wound state,
    the target portion includes at least a portion of the slot accommodation portion and the bending portion;
    5. In the electrodeposition coating step, the shortest distance between the bent portion and the second electrode is smaller than the shortest distance between the target portion of the slot accommodation portion and the second electrode. 5. The coil manufacturing method according to 5.
  7.  前記電着塗装工程において、前記中心側電極は、前記電着槽に浸漬した状態の複数の前記コイル素材の前記曲げ部に対して、前記第1方向の両側から前記第1方向に対向する、請求項6に記載のコイル製造方法。 In the electrodeposition coating step, the center electrode faces the bent portions of the plurality of coil materials immersed in the electrodeposition tank from both sides in the first direction, The coil manufacturing method according to claim 6.
  8.  前記電着塗装工程において、前記中心側電極は、前記電着槽に浸漬した状態の複数の前記コイル素材に対して、
     前記第1方向及び前記第2方向の双方に垂直な第3方向に視て複数の前記コイル素材の前記コイルエンド部に重なる第1電極部位と、
     前記第2方向に視て複数の前記コイル素材の前記スロット収容部に重なる第2電極部位とを有し、
     前記電着塗装工程において、前記第1電極部位は、前記第3方向で前記第2電極部位よりも前記コイルエンド部に近接し、かつ、前記第2電極部位よりも前記第2方向の寸法が大きい、請求項4から7のうちのいずれか1項に記載のコイル製造方法。
    In the electrodeposition coating step, the central electrode is applied to the plurality of coil materials immersed in the electrodeposition bath,
    a first electrode portion overlapping the coil end portions of the plurality of coil materials when viewed in a third direction perpendicular to both the first direction and the second direction;
    a second electrode portion that overlaps with the slot accommodating portions of the plurality of coil materials when viewed in the second direction;
    In the electrodeposition coating step, the first electrode portion is closer to the coil end portion than the second electrode portion in the third direction, and is larger in dimension in the second direction than the second electrode portion. A method of manufacturing a coil according to any one of claims 4 to 7, wherein the coil is large.
  9.  前記第2電極は、前記第1方向に沿って配置される対の側方側電極を更に含み、
     前記電着塗装工程において、前記対の側方側電極は、前記電着槽に浸漬した状態の複数の前記コイル素材に対して、前記第2方向で2つの前記スロット収容部の両側に位置付けられる、請求項4から8のうちのいずれか1項に記載のコイル製造方法。
    The second electrode further includes a pair of side electrodes arranged along the first direction,
    In the electrodeposition coating step, the pair of side electrodes are positioned on both sides of the two slot accommodating portions in the second direction with respect to the plurality of coil materials immersed in the electrodeposition bath. 9. A method for manufacturing a coil according to any one of claims 4 to 8.
  10.  前記電着塗装工程において、前記第2方向に沿った前記対の側方側電極と2つの前記スロット収容部の間の離間距離は、前記第2方向に沿った前記中心側電極と2つの前記スロット収容部の間の離間距離に、略等しい、請求項9に記載のコイル製造方法。 In the electrodeposition coating step, the separation distance between the pair of side electrodes along the second direction and the two slot accommodating portions is 10. The method of manufacturing a coil according to claim 9, wherein the distance is substantially equal to the separation distance between the slot accommodation portions.
  11.  絶縁膜を有するコイルの製造装置であって、
     前記絶縁膜が付与される前かつ複数のコイル素材が浸漬される電着槽と、
     複数の前記コイル素材を前記電着槽に浸漬した状態で、複数の前記コイル素材に接続される第1電極と、前記電着槽内の第2電極とを形成する電極部と、
     前記第1電極と前記第2電極との間に電位差を発生する電着処理部と、を含み、
     前記第2電極は、複数の前記コイル素材を前記電着槽に浸漬した状態で、複数の前記コイル素材における同一位置の少なくとも1つの対象部位に関して、複数の前記コイル素材間における前記対象部位と前記第2電極との間の最短距離が、略同一になるように、構成される、コイル製造装置。
    An apparatus for manufacturing a coil having an insulating film,
    an electrodeposition tank in which the plurality of coil materials are immersed before the insulating film is applied;
    an electrode part forming a first electrode connected to the plurality of coil materials and a second electrode in the electrodeposition bath while the plurality of coil materials are immersed in the electrodeposition bath;
    an electrodeposition processing unit that generates a potential difference between the first electrode and the second electrode,
    In a state in which the plurality of coil materials are immersed in the electrodeposition bath, the second electrode is provided with respect to at least one target portion at the same position in the plurality of coil materials, the target portion between the plurality of coil materials and the A coil manufacturing apparatus configured so that the shortest distance between the electrodes and the second electrode is substantially the same.
PCT/JP2022/042900 2021-12-13 2022-11-18 Production device for coil and production method for coil WO2023112603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021201368 2021-12-13
JP2021-201368 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023112603A1 true WO2023112603A1 (en) 2023-06-22

Family

ID=86774101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042900 WO2023112603A1 (en) 2021-12-13 2022-11-18 Production device for coil and production method for coil

Country Status (1)

Country Link
WO (1) WO2023112603A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5349038A (en) * 1976-10-15 1978-05-04 Hitachi Ltd Electrodeposit coating
JPS60161168U (en) * 1984-03-31 1985-10-26 三菱電線工業株式会社 Electrodeposition equipment
JPS6447899A (en) * 1987-08-12 1989-02-22 Poly Techs Inc Electrodeposition painting device
JP2012167349A (en) * 2011-02-16 2012-09-06 Mitsubishi Cable Ind Ltd Electrodeposition method and electrodeposition apparatus
JP2013235791A (en) * 2012-05-11 2013-11-21 Toyota Motor Corp Assembled conductor wire, coil formed by processing the same, and process of manufacturing the same
JP2017115240A (en) * 2015-12-18 2017-06-29 三菱マテリアル株式会社 Insulation-coated wire component manufacturing method and electrodeposition jig

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5349038A (en) * 1976-10-15 1978-05-04 Hitachi Ltd Electrodeposit coating
JPS60161168U (en) * 1984-03-31 1985-10-26 三菱電線工業株式会社 Electrodeposition equipment
JPS6447899A (en) * 1987-08-12 1989-02-22 Poly Techs Inc Electrodeposition painting device
JP2012167349A (en) * 2011-02-16 2012-09-06 Mitsubishi Cable Ind Ltd Electrodeposition method and electrodeposition apparatus
JP2013235791A (en) * 2012-05-11 2013-11-21 Toyota Motor Corp Assembled conductor wire, coil formed by processing the same, and process of manufacturing the same
JP2017115240A (en) * 2015-12-18 2017-06-29 三菱マテリアル株式会社 Insulation-coated wire component manufacturing method and electrodeposition jig

Similar Documents

Publication Publication Date Title
US9979265B2 (en) Stator, stator manufacturing method, and rotary electric machine
US10763730B2 (en) Insulating resin coating method and stator
US10263486B2 (en) Rotary electric machine stator
US20200321819A1 (en) Stator with tip ends of conductors of different phases having larger distance between them than distance between tip ends of same phase conductors of a rotary electric machine
US11469639B2 (en) Stator having an insulation layer
US11404928B2 (en) Stator, method for manufacturing stator, coil, and method for manufacturing coil
US10608492B2 (en) Stator and rotating electrical machine including the same
US20190252957A1 (en) Manufacturing method of stator, stator, and bending process machine
US20210391763A1 (en) Armature
JP6893967B2 (en) Motor stator wiring device
US11557935B2 (en) Stator of electric rotating machine, hairpin of stator of electric rotating machine and manufacturing method thereof
JP2021065078A (en) Motor stator wire connection device
WO2023112603A1 (en) Production device for coil and production method for coil
US20210119520A1 (en) Apparatus and method for manufacturing stator
JP5173617B2 (en) Stator
JP6606311B1 (en) Stator manufacturing method
US11404946B2 (en) Method for manufacturing a stator
JP2013158129A (en) Segment coil, stator, manufacturing method of segment coil, and manufacturing method of stator
CN111344929A (en) Armature and method for manufacturing armature
WO2022075378A1 (en) Coil manufacturing method
JP2022116834A (en) Coil production method
JP2022116835A (en) Stator for rotary electric machine
JP2020102981A (en) Stator for rotary electric machine and manufacturing method therefor
US11804749B2 (en) Stator and busbar module
JP2023172728A (en) Insulating coating film treatment method, manufacturing method of stator for rotary electric machine, and stator for electrical rotating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907134

Country of ref document: EP

Kind code of ref document: A1