WO2023112503A1 - Exterior material, solid-state battery, and electronic device - Google Patents

Exterior material, solid-state battery, and electronic device Download PDF

Info

Publication number
WO2023112503A1
WO2023112503A1 PCT/JP2022/039941 JP2022039941W WO2023112503A1 WO 2023112503 A1 WO2023112503 A1 WO 2023112503A1 JP 2022039941 W JP2022039941 W JP 2022039941W WO 2023112503 A1 WO2023112503 A1 WO 2023112503A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin layer
exterior material
layer
solid
Prior art date
Application number
PCT/JP2022/039941
Other languages
French (fr)
Japanese (ja)
Inventor
伊佐夫 玉置
治彦 森
憲英 藤本
英樹 井村
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023112503A1 publication Critical patent/WO2023112503A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to exterior materials, as well as solid-state batteries and electronic devices. Specifically, the present invention relates to a sheath, a solid-state battery comprising the sheath, and an electronic device comprising the sheath.
  • the exterior material is provided to cover the electronic device and protect the electronic device.
  • Examples of electronic devices protected by exterior materials include batteries, circuit boards, composite modules, and electronic components.
  • Batteries include secondary batteries that can be repeatedly charged and discharged. Secondary batteries that can be repeatedly charged and discharged have been used for various purposes. For example, secondary batteries are used as power sources for electronic devices such as smartphones and laptop computers.
  • An object of the present invention is to provide an exterior material capable of suppressing permeation of water vapor, and an electronic device such as a solid-state battery including the exterior material.
  • thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer
  • An exterior material is provided in which both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C.
  • a battery element comprising a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer; an exterior material covering the battery element; a conducting portion;
  • the exterior material comprises a metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer.
  • a layer and A solid battery is provided, which is an exterior material in which both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C.
  • An electronic device and an exterior material covering the electronic device comprises a metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer.
  • a layer and The present invention relates to an electronic device which is an exterior material in which both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C.
  • the exterior material it is possible to suppress the infiltration of water vapor.
  • the solid-state battery and the electronic device according to one embodiment of the present invention it is possible to suppress the infiltration of water vapor into the interior thereof.
  • FIG. 1 is a cross-sectional view schematically showing an exterior material according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the manufacturing process of the exterior material according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention.
  • FIG. 4 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention.
  • FIG. 5 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention.
  • FIG. 6 is a cross-sectional view schematically showing how the solid-state battery according to one embodiment of the present invention prevents water vapor intrusion.
  • FIG. 1 is a cross-sectional view schematically showing an exterior material according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the manufacturing process of the exterior material according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a
  • FIG. 7 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention.
  • FIG. 8 is a perspective view schematically showing a solid-state battery according to one embodiment of the invention.
  • FIG. 9 is a cross-sectional view schematically showing a solid-state battery (expanded state) according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing a solid-state battery according to one embodiment (with sealant) of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing a solid-state battery according to another embodiment of the invention.
  • FIG. 12 is a cross-sectional view schematically showing a solid-state battery according to another embodiment of the invention.
  • FIG. 13 is a cross-sectional view schematically showing an electronic device according to one embodiment of the invention.
  • FIG. 14 is a schematic diagram showing a manufacturing process of a solid-state battery according to one embodiment of the present invention.
  • FIG. 15 is a cross-sectional view schematically showing a conventional exterior material.
  • FIG. 16 is a cross-sectional view schematically showing a conventional solid-state battery.
  • FIG. 17 is a perspective view schematically showing a conventional solid-state battery.
  • FIG. 1 is a cross-sectional view schematically showing an exterior material according to one embodiment of the present invention.
  • the exterior material 11 includes a metal layer 11b, a first thermoplastic resin layer 11a located on the first main surface side of the metal layer 11b, and a metal layer
  • the second thermoplastic resin layer 11c located on the second main surface side of 11b is included, and both the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c are higher than 260°C. is also high.
  • the “thermoplastic resin” referred to in this specification is a resin that can be softened by applying heat, solidified by cooling, and can be reversibly softened and solidified.
  • the thermoplastic resin may be a resin having heat-sealing properties.
  • an adhesive layer was interposed between the resin layer and the adherend in order to join the adherend such as the resin layer and the metal layer.
  • the conventional exterior material 11' shown in FIG. may have an agent layer 11e').
  • the two resin layers 11a and 11c located on the first main surface side and the second main surface side of the metal layer 11b both have thermoplasticity and It is a resin layer having a melting point higher than the mounting temperature upper limit (see FIG. 1).
  • thermoplastic resin layers are provided so as to sandwich a metal layer and/or the properties of each thermoplastic resin layer (softening by applying heat and cooling Due to the softening of the resin surface due to heating, it follows the unevenness of the metal layer surface, and as a result, the contact area between the resin layer surface and the metal layer surface increases, and the metal layer surface and the functional groups of the thermoplastic resin layer can cause chemical bonding and/or physical bonding between the metal layer surface and the thermoplastic resin layer due to intermolecular forces.
  • two thermoplastic resin layers and an adherend such as a metal layer positioned therebetween can be mutually bonded without necessarily using an adhesive layer.
  • the present invention can prevent water vapor from entering the exterior materials themselves. becomes.
  • the exterior material in which penetration of water vapor is suppressed so as to cover the periphery of an electronic device such as a solid-state battery, it is possible to suppress the penetration of water vapor into the electronic device such as the solid-state battery.
  • the exterior material itself can function as a water vapor barrier film.
  • thermoplastic resin layers and an adherend such as a metal layer positioned between them can be bonded to each other without necessarily using an adhesive layer. It is also possible to reduce the overall thickness of the material. In other words, when the exterior material is integrated with an electronic device such as a battery, it can contribute to reducing the size of the integrated product itself. Reducing the size of the integrated body itself can contribute to, for example, improving energy density or saving space.
  • the step of applying the adhesive layer and the step of curing the adhesive layer can be omitted. Therefore, the facing material of one embodiment of the present invention can be a low cost facing material.
  • the metal layer 11b is, as shown in FIG. In other words, the metal layer 11b is a layer sandwiched between the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c.
  • the metal layer 11b is a layer extending planarly. Since it is a layer extending planarly, the metal layer 11b has two main surfaces. Specifically, the metal layer 11b extends so that the first main surface of the metal layer 11b faces the second main surface of the metal layer 11b.
  • a metal foil may be used as the metal layer 11b used for the exterior material 11, for example.
  • Metal layer 11b may be a layer that is substantially impermeable to water vapor and/or gases.
  • the first thermoplastic resin layer 11a is located on the first main surface side of the metal layer 11b, as shown in FIG. In other words, the first thermoplastic resin layer 11a is located on the first main surface among the main surfaces of the metal layer 11b.
  • the term "positioned" as used herein may mean that the first thermoplastic resin layer 11a is provided in direct contact with the metal layer 11b, or that the first thermoplastic resin layer 11a is provided in contact with another layer. It may be indirectly provided on the first main surface via the first main surface. In other words, it means that there may or may not be another layer between the first thermoplastic resin layer 11a and the metal layer.
  • the first thermoplastic resin layer 11a is used to protect the electronic device, specifically to prevent water vapor from entering from the outside (water vapor barrier layer) or to prevent damage to the electronic device. If necessary, the first thermoplastic resin layer 11a may also have chemical resistance, insulating properties, and the like.
  • the first thermoplastic resin layer 11a is a layer containing a thermoplastic resin as a main component.
  • a thermoplastic resin is a resin that can be bonded to an adherend such as a metal layer by applying heat.
  • a thermoplastic resin is a resin that can be softened by applying heat and solidified by cooling, and can reversibly repeat softening and solidifying.
  • the first thermoplastic resin layer 11a may be made of thermoplastic resin only.
  • the first thermoplastic resin layer 11a may be composed of a single layer, or may be composed of an integrated body composed of two or more layers.
  • the thermoplastic resin may be a resin having heat-sealing properties.
  • the melting point of the first thermoplastic resin layer 11a is preferably higher than 260°C.
  • the "melting point of the first thermoplastic resin layer" as used in the present invention may be, for example, the temperature at which the first thermoplastic resin layer 11a melts, and may be the melting point described in detail below. .
  • the melting point of the material used for these layers is preferably higher than 260.degree.
  • the second thermoplastic resin layer 11c is located on the second main surface side of the metal layer 11b, as shown in FIG. In other words, the second thermoplastic resin layer 11c is located on the second main surface among the main surfaces of the metal layer 11b.
  • the second thermoplastic resin layer 11c is located on the main surface side of the metal layer 11b, which is different from the main surface side on which the first thermoplastic resin layer 11a is located.
  • the term "positioned" as used herein may mean that the second thermoplastic resin layer 11c is provided in direct contact with the metal layer 11b, or that the second thermoplastic resin layer 11c is provided in another layer.
  • the second thermoplastic resin layer 11c is used to protect the electronic device, specifically to prevent water vapor from entering from the outside (water vapor barrier layer) or to prevent damage to the electronic device. If necessary, the second thermoplastic resin layer 11c may also have chemical resistance, insulating properties, and the like.
  • the second thermoplastic resin layer 11c is a layer containing a thermoplastic resin as a main component.
  • the thermoplastic resin used for the second thermoplastic resin layer 11c is a resin having the same characteristics as the thermoplastic resin used for the first thermoplastic resin.
  • the second thermoplastic resin layer 11c may be made of thermoplastic resin only.
  • the second thermoplastic resin layer 11c may be a single layer, or may be composed of an integrated body composed of two or more layers.
  • the melting point of the second thermoplastic resin layer 11c is preferably higher than 260°C.
  • the "melting point of the second thermoplastic resin layer" as used in the present invention may be, for example, the temperature at which the second thermoplastic resin layer 11c melts, but may be the melting point described in detail below. .
  • the melting point of the material used for these layers is preferably higher than 260.degree.
  • thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c values measured by a conventionally known method may be used.
  • the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c may be values determined according to the method described in JIS K7121-2012.
  • the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c can be controlled by a conventionally known method.
  • the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c are the molecular weight, polymerization degree, molecular weight distribution, crystallinity degree, copolymerization ratio, and And it can be controlled by adjusting the size of the polymer crystal.
  • the melting point of the first thermoplastic resin layer 11a is not particularly limited as long as the first thermoplastic resin layer 11a does not melt at the mounting temperature when mounting the electronic device provided with the exterior material of the present invention on a substrate or the like. From the viewpoint of further preventing the first thermoplastic resin layer 11a from melting at the mounting temperature, the melting point of the first thermoplastic resin layer 11a is preferably 270°C or higher, more preferably 280°C or higher, and still more preferably 290°C. That's all there is to it. On the other hand, if the melting point of the first thermoplastic resin layer 11a is too high, the first thermoplastic resin layer 11a is difficult to soften, making it difficult to process. Become.
  • the melting point of the first thermoplastic resin layer 11a may be preferably 400° C. or lower, more preferably 370° C. or lower, and still more preferably 350° C. or lower. Especially preferably, it may be 330° C. or lower.
  • the melting point of the second thermoplastic resin layer 11c is not particularly limited as long as the second thermoplastic resin layer 11c does not melt at the mounting temperature when mounting the electronic device provided with the exterior material of the present invention on a substrate or the like. From the viewpoint of further preventing the second thermoplastic resin layer 11c from melting at the mounting temperature, the melting point of the second thermoplastic resin layer 11c is preferably 270°C or higher, more preferably 280°C or higher, and still more preferably 290°C. That's all there is to it. On the other hand, when the melting point of the second thermoplastic resin layer 11c is too high, the second thermoplastic resin layer 11c becomes difficult to soften, making it difficult to process. Become.
  • the melting point of the second thermoplastic resin layer 11c may be preferably 400° C. or lower, more preferably 370° C. or lower, still more preferably 350° C. or lower, and particularly preferably 350° C. or lower. may be 330° C. or lower.
  • the thickness of the exterior material 11 is preferably 1 ⁇ m or more and 500 ⁇ m or less, more preferably 5 ⁇ m or more and 300 ⁇ m. It is more preferably 10 ⁇ m or more and 200 ⁇ m or less, and particularly preferably 20 ⁇ m or more and 150 ⁇ m.
  • the thickness of the metal layer 11b may be, for example, 1 ⁇ m or more and 200 ⁇ m or less. From the viewpoint of further reducing the total thickness of the exterior material 11, the thickness of the metal layer 11b may be 1 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less, and still more preferably 20 ⁇ m or more and 50 ⁇ m or less. can be
  • the thickness of the first thermoplastic resin layer 11a is preferably 1 ⁇ m or more and 500 ⁇ m or less, more preferably 2 ⁇ m or more and 300 ⁇ m or less, still more preferably 3 ⁇ m or more and 100 ⁇ m or less, from the viewpoint of further reducing the total thickness of the exterior material 11.
  • the thickness of the second thermoplastic resin layer 11c is preferably 1 ⁇ m or more and 500 ⁇ m or less, more preferably 2 ⁇ m or more and 300 ⁇ m or less, still more preferably 3 ⁇ m or more and 100 ⁇ m or less, from the viewpoint of further reducing the total thickness of the exterior material 11.
  • thermoplastic resin layer 11b located on the first main surface side of the metal layer 11b
  • second thermoplastic resin layer 11c located on the second main surface side of the metal layer 11b.
  • Such other layers and further layers may be, for example, water vapor barrier layers, insulating layers, chemical resistant layers, heat resistant layers, or damage prevention layers.
  • the exterior material 11 may have a first sub-layer covering the first thermoplastic resin layer 11a, and may have a second sub-layer covering the second thermoplastic resin layer 11c. good too.
  • first sublayer On the main surface of the first thermoplastic resin layer 11a different from the main surface of the first thermoplastic resin layer 11a facing or in contact with the first main surface of the metal layer 11b There may be a first sublayer.
  • the first thermoplastic layer is located between the first sublayer and the metal layer.
  • a second sub-layer is formed on the major surface of the second thermoplastic resin layer 11c that is different from the major surface of the second thermoplastic resin layer 11c facing or in contact with the second major surface of the metal layer 11b. There may be.
  • a second thermoplastic layer is located between the second sub-layer and the metal layer.
  • first and second sub-layers may be, for example, additional water vapor barrier layers, chemical resistant layers, heat resistant cladding, or damage resistant layers. Specifically, for example, it may be an additional metal layer or a metal plating layer formed by sputtering or the like.
  • the exterior material 11 does not use an adhesive layer or uses a relatively thin adhesive layer from the viewpoint of suppressing the infiltration of water vapor. may be used.
  • the adhesive layer is not used, there is no concern that water vapor may enter through the adhesive layer, so the water vapor barrier properties of the exterior material can be improved.
  • the adhesive may be, for example, an adhesive that can maintain adhesive strength before and after the mounting process.
  • the exterior material according to one embodiment of the present invention may adopt the following aspects.
  • At least one of the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be directly bonded to the metal layer 11b.
  • Direct bonding between the thermoplastic resin layer and the metal layer 11b means that the thermoplastic resin layer and the metal layer 11b are directly bonded without any other layer interposed between the thermoplastic resin layer and the metal layer 11b. It means that they are connected to each other. As such an embodiment, for example, the thermoplastic resin layer and the metal layer 11b are directly bonded to each other without an adhesive layer interposed between the thermoplastic resin layer and the metal layer 11b. Things are mentioned.
  • the term "joining" as used herein means, for example, that in a state in which two objects are in contact with each other, the two objects in contact with each other do not separate from each other unless a force is applied to the two objects from the outside. do.
  • the first thermoplastic resin layer 11a and the metal layer 11b may be directly bonded to each other, or the second thermoplastic resin layer 11c and the metal layer 11b may be directly bonded to each other.
  • the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be directly bonded to the metal layer 11b.
  • Direct bonding between the thermoplastic resin layer and the metal layer 11b may be achieved by, for example, pressing the thermoplastic resin layer and the metal layer 11b together.
  • Crimping means bonding the thermoplastic resin layer and the metal layer 11b by pressurizing or compressing at least one of the thermoplastic resin layer and the metal layer 11b.
  • crimping is performed by superimposing the first thermoplastic resin layer 11a and the metal layer 11b and applying a force so as to sandwich the superimposed first thermoplastic resin layer 11a and the metal layer 11b.
  • the second thermoplastic resin layer 11c and the metal layer 11b are press-bonded together, the same method as described above may be used.
  • an adhesive layer may not be used.
  • thermoplastic resin layer used for the exterior material itself has adhesiveness. Therefore, the thermoplastic resin layer and the metal layer 11b can be adhered without using an adhesive layer.
  • the mechanism by which the thermoplastic resin layer itself has a binding force is not clear, for example, the molecular structure that contributes to the binding force contained in the thermoplastic resin, or the functional group in the molecule, or the thermoplastic resin is the adherend. It is considered that the reason is that it enters into the fine unevenness of the surface.
  • the difference between the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c may be 20°C or more.
  • the melting point of the first thermoplastic resin layer 11a may be higher than the melting point of the second thermoplastic resin layer 11c by 20° C. or more, and the melting point of the first thermoplastic resin layer 11a may be the second heat. It may be 20° C. or more lower than the melting point of the plastic resin layer 11c.
  • the difference between the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c is 20° C. or more, the exterior material 11 can be easily manufactured.
  • thermoplastic resin layer having a relatively high melting point is thermally laminated on the first main surface side of the metal layer 11b, and then the second main surface of the metal layer 11b is laminated. It becomes possible to thermally laminate a thermoplastic resin layer having a relatively low melting point on the face side.
  • the difference between the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c is preferably 25° C. or more, more preferably 30° C., from the viewpoint of facilitating the manufacture of the exterior material 11. above, more preferably 35° C. or higher, particularly preferably 40° C. or higher.
  • the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c may be 100°C or less, preferably 80°C or less, more preferably 70°C or less, even more preferably 60°C or less, particularly preferably 50°C or less.
  • the types of the metal layer, the first thermoplastic resin, and the second thermoplastic resin that can be used for the exterior material according to one embodiment of the present invention are described below.
  • Examples of the metal material forming the metal layer 11b include at least one selected from the group consisting of aluminum (or its alloy), stainless steel, copper, nickel, titanium, nickel-plated steel plate, and the like. A commercial product can be used for the metal layer 11b.
  • metal layer 11b When aluminum (or its alloy) is used for the metal layer 11b, for example, an aluminum material that has been used in the past may be used. When an aluminum alloy is used for the metal layer 11b, for example, an aluminum alloy having a composition specified by JIS A8021 or JIS 8079 may be used.
  • thermoplastic resin used for the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c is not particularly limited as long as the melting point exceeds 260° C.
  • liquid crystal polymer aromatic polyester resin ( polyethylene naphthalate), aromatic polyether ketone resins, fluorine resins, polyphenylene sulfide resins, polyamide resins, thermoplastic polyimide resins, polyamideimide resins, polyetherimide resins, phenolic resins, acrylic resins Resins, polyurethane resins, silicone resins, or modified products thereof may be used.
  • resins classified as super engineering plastics may be used.
  • the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be homopolymers or copolymers of the above resins.
  • the above resin may be used as a single product, or a compound product configured by combining two or more types of resin may be used.
  • the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be a single layer, or may be composed of two or more layers. Commercially available products can be used for the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c.
  • the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c are composed of liquid crystal polymer, polyethylene naphthalate, aromatic polyether ketone resin, and fluorine resin, from the viewpoint of further suppressing the infiltration of water vapor.
  • Liquid crystal polymers include thermotropic liquid crystal polymers that exhibit liquid crystallinity in a molten state and rheotropic liquid crystal polymers that exhibit liquid crystallinity in a solution state. Although any liquid crystal polymer may be used in the present invention, a thermotropic liquid crystal polymer may be used from the viewpoint of further suppressing the penetration of water vapor and/or from the viewpoint of preventing melting at the reflow temperature.
  • thermotropic liquid crystal polyester (hereinafter simply referred to as “liquid crystal polyester”) is, for example, an aromatic hydroxycarboxylic acid as an essential monomer, and an aromatic dicarboxylic acid, an aromatic diol, or the like. It is an aromatic polyester obtained by reacting with a monomer and exhibits liquid crystallinity when melted.
  • Representative examples include Type I [formula (1) below] synthesized from parahydroxybenzoic acid (PHB), phthalic acid, and 4,4'-biphenol, PHB and 2,6-hydroxynaphthoic acid.
  • type I liquid crystal polyester and type II liquid crystal polyester among the above may be used because they are superior in heat resistance and hydrolysis resistance.
  • Aromatic polyester-based resins are based on an aromatic dicarboxylic acid component and a glycol component.
  • an aromatic polyester resin having a basic skeleton of a naphthalene dicarboxylic acid component and an alkylene glycol component may be used, and specifically polyethylene naphthalate may be used.
  • polyethylene naphthalate polyethylene naphthalate obtained by reacting 2,6-naphthalenedicarboxylic acid or 2,7-naphthalenedicarboxylic acid as the naphthalenedicarboxylic acid component and ethylene glycol as the alkylene glycol component is used. good too.
  • Aromatic polyether ketone resin is a resin that has a structure in which a ketone group and an ether group are linked to an aromatic ring.
  • aromatic polyether ketone resins There are various types of aromatic polyether ketone resins depending on the arrangement order and number of aromatic rings, ketone groups, and ether groups in the constituent repeating units.
  • examples of aromatic polyetherketone-based resins include polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), and polyallyl ether.
  • Ketone (PAEK), polyetherketoneetherketoneketone (PEKEKK), or the like may also be used.
  • a fluororesin is a resin obtained by polymerizing an olefin containing fluorine.
  • fluororesin polyethylene terephthalate (PETF), perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), ethylenetetrafluoroethylene copolymer (ETFE), and the like may be used.
  • Polyphenylene sulfide is a resin that contains aromatic rings and sulfide bonds in the structural repeating units of the polymer.
  • Polyphenylene sulfide includes a linear type, a cross-linked type, a semi-cross-linked type, and the like, and any type may be used.
  • a polyamide resin is a resin that has a basic skeleton of a diamine component and a carboxylic acid component, and contains an amide bond in the structural repeating unit of the polymer.
  • the polyamide-based resin an aromatic polyamide-based resin having a relatively high melting point may be used, or a highly heat-resistant polyamide (HTPA)-based resin may be used.
  • HTPA highly heat-resistant polyamide
  • the resin used for the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be a crystalline resin or an amorphous resin. From the viewpoint of suppressing permeation of water vapor, a crystalline resin that generally does not allow water vapor to permeate may be used.
  • the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may contain filler.
  • the filler may be, for example, carbon fiber, glass fiber, silica, talc, inorganic particles, or the like.
  • the filler may be contained in the first thermoplastic resin layer 11a in an amount of, for example, 50% by volume or less, and may be contained in the second thermoplastic resin layer 11c in an amount of, for example, 50% by volume or less.
  • the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be made of the same type of thermoplastic resin.
  • the term "species" of "the same species” means the type of polymeric material determined based on the repeating units of the molecular structure of the polymer and/or the properties of the polymeric material.
  • the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c are made of the same type of thermoplastic resin
  • the first thermoplastic resin is a liquid crystal polymer exhibiting liquid crystallinity. is selected, it means that a liquid crystal polymer exhibiting liquid crystallinity is also selected as the second thermoplastic resin.
  • an aromatic polyester-based resin that is a polyester type containing an aromatic ring is selected as the first thermoplastic resin
  • an aromatic polyester-based resin that is a polyester type containing an aromatic ring is selected as the second thermoplastic resin. means it is selected.
  • the second thermoplastic resin is an aromatic ring, an ether bond, , and an aromatic polyetherketone-based resin, which is a polymer species containing ketone groups.
  • first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c are made of the same type of thermoplastic resin
  • the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c properties may be different.
  • the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11a Thermal properties (e.g. melting point, coefficient of thermal expansion, thermal conductivity), mechanical properties (e.g. tensile strength, flexural strength, compressive strength), resistivity, chemical resistance, etc. of layer 11c are different. good.
  • the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be made of the same thermoplastic resin material.
  • the “same material” as used herein means a material having the same repeating unit of the molecular structure of the polymer.
  • the second thermoplastic resin is polyethylene composed of similar repeating units. It means that naphthalate is selected.
  • the second thermoplastic resin is also composed of similar repeating units. This means that the polyetheretherketone that is used is selected.
  • first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c are made of the same thermoplastic resin material
  • first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c properties may be different.
  • first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c are made of the same thermoplastic resin
  • first thermoplastic resin layer 11a and the second thermoplastic resin Thermal properties e.g. melting point, coefficient of thermal expansion, thermal conductivity
  • mechanical properties e.g. tensile strength, flexural strength, compressive strength
  • resistivity chemical resistance, etc.
  • a method for manufacturing an exterior material according to an embodiment of the present invention will be described below.
  • a method for manufacturing an exterior material according to an embodiment of the present invention roughly includes the following steps (i) and (ii) in order (see FIG. 2).
  • thermoplastic resin material 511a are placed on the first heating roll 401 and the first cooling roll so that the first thermoplastic resin material 511a is positioned on the first main surface of the metal layer 511b. 501;
  • the metal layer 511b and the first thermoplastic resin material are placed on the second heating roll 402 and the second cooling roll 502 so that the second thermoplastic resin material 511c is positioned on the second main surface of the metal layer 511b. The process of passing through.
  • the first thermoplastic resin material 511a is adhered to the first main surface of the metal layer 511b by thermal lamination. Specifically, the metal layer 511b and the first thermoplastic resin material 511a are placed together with the first heating roll 401 so that the first main surface of the metal layer 511b and the first thermoplastic resin material 511a overlap each other. Pass between the cooling roll 501 . At this time, the metal layer 511b is brought into contact with the first heating roll 401, and the first thermoplastic resin material 511a is brought into contact with the first cooling roll 501. Then, as shown in FIG.
  • the portion of the first thermoplastic resin material 11a in contact with the heated metal layer 511b is softened, and the softened first thermoplastic resin material 511a is adhered (thermally fused) to the metal layer 511b.
  • an integrated product of the metal layer 511b and the first thermoplastic resin material 511a is obtained.
  • the integrated product of the metal layer 511b and the first thermoplastic resin material 511a is bonded with the second thermoplastic resin material 511c to the remaining second main surface of the metal layer 511b by thermal lamination.
  • the metal layer 511b and the second thermoplastic resin material 511c are placed together with the second heating roll 402 so that the remaining second main surface of the metal layer 511b and the second thermoplastic resin material 511c overlap each other. Pass between the second cooling roll 502 .
  • the portion of the second thermoplastic resin material 511c in contact with the heated metal layer 511b is softened, and the softened second thermoplastic resin material 511c is bonded (heat-sealed) to the metal layer 511b.
  • the metal layer 511b is brought into contact with the second heating roll 402, and the second thermoplastic resin material 511c is brought into contact with the second cooling roll 502. Then, as shown in FIG. From between the rolls of the second heating roll 402 and the second cooling roll 502, the exterior material 11 according to one embodiment of the present invention is obtained.
  • the melting point of the thermoplastic resin material to be heat-sealed first is preferably 20°C or more higher than the melting point of the thermoplastic resin material to be heat-sealed subsequently.
  • the thermoplastic resin material that is heat-sealed first is called the first thermoplastic resin material
  • the thermoplastic resin material that is heat-sealed next is called the second thermoplastic resin material.
  • the melting point of the first thermoplastic resin material is preferably higher than the melting point of the second thermoplastic resin material. More preferably, the melting point of the first thermoplastic resin material is 20° C. or more higher than the melting point of the second thermoplastic resin material.
  • thermoplastic resin material having a relatively low melting point when the thermoplastic resin material having a relatively low melting point is thermally laminated on the second main surface side of the metal layer 511b later, the first main surface side of the metal layer 511b is preceded by The relatively high melting point thermoplastic material that is heat laminated cannot soften and remains adhered to the metal layer. For this reason, a thermoplastic resin material having a relatively high melting point is thermally laminated to the first main surface side of the metal layer 511b, and then a relatively low melting point thermoplastic resin material is laminated to the second main surface side of the metal layer 511b. It becomes possible to thermally laminate a thermoplastic resin material. In the above-described mode, the temperature of the first heating roll 401 that thermally laminates the metal layer and the resin material first is preferably higher than that of the subsequent second heating roll 402 .
  • the adhesive layer may be provided in advance on the metal layer 511b and/or the thermoplastic resin layer.
  • the temperature of the first heating roll 401 is not particularly limited as long as the metal layer 511b and the first thermoplastic resin material 511a can be heat-sealed. C. or less, more preferably 230.degree. C. or higher and 350.degree. C. or lower, still more preferably 230.degree.
  • the temperature of the second heating roll 402 is not particularly limited as long as the metal layer 511b and the second thermoplastic resin material 511c can be heat-sealed. C. or less, more preferably 230.degree. C. or higher and 350.degree. C. or lower, still more preferably 230.degree.
  • the electronic device to which the exterior material according to one embodiment of the present invention can be applied is not particularly limited except for using the exterior material according to one embodiment of the present invention.
  • Examples of electronic devices here include circuit boards, composite modules, batteries, and electronic parts. Batteries include secondary batteries, particularly solid-state batteries. Electronic components include capacitors, resistors, coils, diodes, filters, oscillators and/or transistors, and the like. Electronic device elements other than exterior materials (e.g., batteries refer to terminals, electrodes, separators, electrolytes, etc., and capacitors refer to electrodes, dielectrics, terminals, etc.) apply to electronic devices. There is no particular limitation as long as it is For example, such electronic device elements may be pre-existing.
  • An embodiment of the present invention includes an electronic device and an exterior material covering the electronic device.
  • the exterior material includes a metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer. wherein both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C.
  • the exterior material according to one embodiment of the present invention can suppress permeation of water vapor into the exterior material itself.
  • the exterior material that suppresses permeation of water vapor so as to cover the periphery of the electronic device, it is possible to suppress permeation of water vapor into the electronic device.
  • thermoplastic resin layers and an adherend such as a metal layer positioned between them can be bonded to each other without necessarily using an adhesive layer. It is also possible to reduce the overall thickness of the material. That is, in the case where the exterior material is integrated with an electronic component or an electronic device, it can contribute to the reduction of the size of the integrated product itself. By reducing the size of the integrated body itself, it is possible to contribute to space saving and the like.
  • the step of applying the adhesive layer and the step of curing the adhesive layer can be omitted.
  • the electronic device of one embodiment of the present invention can be a low-cost electronic device.
  • Solid battery In the following, a battery, particularly a solid-state battery, is taken as an example of the electronic device, and a case where the exterior material according to one embodiment of the present invention is applied to the solid-state battery will be described in detail. Specifically, the exterior material is applied so as to cover the battery elements of the solid-state battery. In this case, since the internal battery element is protected from the external environment, the solid battery can be packaged as a whole. That is, a solid battery with an exterior material can also be called a solid battery package. 3 to 12 schematically show the form in which the battery element 100 is covered with the exterior material according to one embodiment of the present invention, but the exterior material according to one embodiment of the present invention can be applied to a battery other than a solid battery. When applied to the electronic device, the battery element 100 in the above drawings may be used as the electronic device element.
  • a solid-state battery to which the exterior material according to one embodiment of the present invention is applied is not particularly limited except for using the exterior material according to one embodiment of the present invention.
  • battery elements eg, electrodes, solid electrolytes, conductive parts, etc.
  • such battery elements may be conventional.
  • a solid battery comprises at least positive and negative electrode layers and a solid electrolyte.
  • a solid battery has a battery element including a battery structural unit composed of a positive electrode layer, a negative electrode layer, and a solid electrolyte interposed therebetween.
  • solid battery as used in the present invention broadly refers to a battery whose components are composed of solids, and in terms of discussion, the battery components (particularly preferably all battery components) are composed of solids. It refers to an all-solid-state battery that In a preferred embodiment, the solid-state battery in the present invention is a stacked-type solid-state battery configured such that each layer forming a battery structural unit is stacked with each other, and each such layer is preferably made of a sintered body.
  • solid battery includes not only a so-called “secondary battery” that can be repeatedly charged and discharged, but also a "primary battery” that can only be discharged. According to one preferred aspect of the invention, the “solid battery” is a secondary battery.
  • Secondary battery is not limited to its name, and can include, for example, power storage devices.
  • cross-sectional view refers to a state when viewed from a direction substantially perpendicular to the thickness direction of the battery element that constitutes the solid-state battery.
  • Up-down direction and “left-right direction” used directly or indirectly in this specification correspond to the up-down direction and left-right direction in the drawings, respectively.
  • the same reference numerals or symbols indicate the same members/parts or the same meanings.
  • the downward vertical direction that is, the direction in which gravity acts
  • the opposite direction corresponds to the "upward direction”.
  • each layer that constitutes it may be formed by firing, or the positive electrode layer, negative electrode layer, solid electrolyte, etc. may form a sintered layer.
  • the positive electrode layer, the negative electrode layer and the solid electrolyte are each integrally sintered with each other, so that the battery element may form an integral sintered body.
  • the positive electrode layer is an electrode layer containing at least a positive electrode active material.
  • the positive electrode layer may further comprise a solid electrolyte.
  • the positive electrode layer is composed of a sintered body containing at least positive electrode active material particles and solid electrolyte particles.
  • the positive electrode layer is composed of a sintered body that substantially contains only positive electrode active material particles and solid electrolyte particles.
  • the negative electrode layer is an electrode layer containing at least a negative electrode active material.
  • the negative electrode layer may further comprise a solid electrolyte.
  • the negative electrode layer is composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles.
  • the negative electrode layer is composed of a sintered body that substantially contains only negative electrode active material particles and solid electrolyte particles.
  • the positive electrode active material and negative electrode active material are substances involved in the transfer of electrons in solid-state batteries. Ions are transferred (conducted) between the positive electrode layer and the negative electrode layer via the solid electrolyte, and electrons are transferred, whereby charging and discharging are performed.
  • the positive electrode layer and the negative electrode layer may in particular be layers capable of intercalating and deintercalating lithium ions or sodium ions. That is, the solid-state battery may be an all-solid-state secondary battery in which lithium ions or sodium ions move between the positive electrode layer and the negative electrode layer via a solid electrolyte to charge and discharge the battery.
  • Examples of the positive electrode active material contained in the positive electrode layer include a lithium-containing phosphate compound having a Nasicon type structure, a lithium-containing phosphate compound having an olivine type structure, a lithium-containing layered oxide, and a lithium-containing compound having a spinel type structure. At least one selected from the group consisting of oxides and the like can be mentioned. Li3V2 ( PO4 ) 3 etc. are mentioned as an example of the lithium containing phosphate compound which has a Nasicon type structure. Examples of lithium-containing phosphate compounds having an olivine structure include Li3Fe2 ( PO4 ) 3 , LiFePO4 , and/or LiMnPO4 .
  • lithium-containing layered oxides examples include LiCoO 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .
  • Examples of lithium-containing oxides having a spinel structure include LiMn 2 O 4 and/or LiNi 0.5 Mn 1.5 O 4 .
  • the type of lithium compound is not particularly limited, for example, a lithium transition metal composite oxide and a lithium transition metal phosphate compound may be used.
  • Lithium transition metal composite oxide is a general term for oxides containing lithium and one or more transition metal elements as constituent elements
  • lithium transition metal phosphate compounds are lithium and one or more transition metal elements.
  • the types of transition metal elements are not particularly limited, but examples include cobalt (Co), nickel (Ni), manganese (Mn) and iron (Fe).
  • positive electrode active materials capable of occluding and releasing sodium ions include sodium-containing phosphate compounds having a Nasicon-type structure, sodium-containing phosphate compounds having an olivine-type structure, sodium-containing layered oxides, and sodium-containing compounds having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned.
  • Na3V2 ( PO4 ) 3 NaCoFe2 ( PO4 ) 3 , Na2Ni2Fe ( PO4 ) 3 , Na3Fe2 ( PO4 ) 3 , Na 2 FeP 2 O 7 , Na 4 Fe 3 (PO 4 ) 2 (P 2 O 7 ), and at least one selected from the group consisting of NaFeO 2 as the sodium-containing layered oxide.
  • the positive electrode active material may be, for example, an oxide, a disulfide, a chalcogenide, or a conductive polymer.
  • the oxide may be, for example, titanium oxide, vanadium oxide, manganese dioxide, or the like.
  • Disulfides are, for example, titanium disulfide or molybdenum sulfide.
  • the chalcogenide may be, for example, niobium selenide.
  • the conductive polymer may be, for example, disulfide, polypyrrole, polyaniline, polythiophene, polyparastyrene, polyacetylene, polyacene, or the like.
  • Examples of the negative electrode active material contained in the negative electrode layer include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, carbon materials such as graphite, and graphite-lithium. at least one selected from the group consisting of compounds, lithium alloys, lithium-containing phosphate compounds having a Nasicon-type structure, lithium-containing phosphate compounds having an olivine-type structure, and lithium-containing oxides having a spinel-type structure. be done.
  • Examples of lithium alloys include Li—Al and the like. Li3V2 ( PO4 ) 3 and/or LiTi2( PO4 ) 3 etc.
  • lithium-containing phosphate compounds having an olivine structure examples include Li3Fe2 ( PO4 ) 3 and/or LiCuPO4 .
  • An example of a lithium-containing oxide having a spinel structure includes Li 4 Ti 5 O 12 and the like.
  • the negative electrode active material capable of absorbing and releasing sodium ions includes a sodium-containing phosphate compound having a Nasicon type structure, a sodium-containing phosphate compound having an olivine type structure, and a sodium-containing oxide having a spinel type structure. At least one selected from the group is included.
  • the positive electrode layer and the negative electrode layer may be made of the same material.
  • the positive electrode layer and/or the negative electrode layer may contain a conductive material. At least one of metal materials such as silver, palladium, gold, platinum, aluminum, copper and nickel, carbon and the like can be used as the conductive material contained in the positive electrode layer and the negative electrode layer.
  • the positive electrode layer and/or the negative electrode layer may contain a sintering aid.
  • Sintering aids include at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide and phosphorus oxide.
  • the positive electrode layer and the negative electrode layer are made of the same material.
  • the positive electrode layer and the negative electrode layer may be made of the same material (eg, in such cases, the positive electrode active material and the negative electrode active material may be of the same type).
  • a solid electrolyte is a material that can conduct lithium ions.
  • a solid electrolyte which constitutes a battery structural unit in a solid battery, forms a layer capable of conducting lithium ions between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte may be provided at least between the positive electrode layer and the negative electrode layer. That is, the solid electrolyte may also exist around the positive electrode layer and/or the negative electrode layer so as to protrude from between the positive electrode layer and the negative electrode layer.
  • a specific solid electrolyte may be, for example, an oxide system, and examples include a lithium-containing phosphate compound having a Nasicon type structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet-like structure, and an oxide. material glass-ceramics-based lithium ion conductors, and the like.
  • Lithium-containing phosphate compounds having a Nasicon type structure include Li x My (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is the group consisting of Ti, Ge, Al, Ga and Zr). at least one selected from).
  • An example of the lithium-containing phosphate compound having a Nasicon-type structure includes Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like.
  • An example of an oxide having a perovskite structure is La 0.55 Li 0.35 TiO 3 or the like.
  • An example of an oxide having a garnet-type or garnet-like structure is Li7La3Zr2O12 .
  • As the oxide glass-ceramic lithium ion conductor for example, a phosphate compound (LATP) containing lithium, aluminum and titanium as constituent elements, and a phosphate compound (LAGP) containing lithium, aluminum and germanium as constituent elements can be used. can be done.
  • Solid electrolytes capable of conducting sodium ions include, for example, sodium-containing phosphate compounds having a Nasicon-type structure, oxides having a perovskite structure, and oxides having a garnet-type or garnet-like structure.
  • NaxMy(PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is selected from the group consisting of Ti, Ge, Al, Ga and Zr) as the sodium-containing phosphate compound having a Nasicon-type structure. at least one).
  • the solid electrolyte may contain a sintering aid.
  • the sintering aid contained in the solid electrolyte may be selected, for example, from materials similar to those of the sintering aid that can be contained in the positive electrode layer and the negative electrode layer.
  • the thickness of the solid electrolyte layer is not particularly limited, and may be, for example, 1 ⁇ m or more and 15 ⁇ m or less, particularly 1 ⁇ m or more and 5 ⁇ m or less.
  • the positive electrode layer and the negative electrode layer may each include a positive current collecting layer and a negative current collecting layer.
  • the positive electrode current collecting layer and the negative electrode current collecting layer may each have the form of a foil, but from the viewpoint of reducing the production cost of the solid battery by co-firing and reducing the internal resistance of the solid battery, etc., the form of the sintered body is preferred. may have.
  • As the positive electrode current collector that constitutes the positive electrode current collecting layer and the negative electrode current collector that constitutes the negative electrode current collecting layer it is preferable to use materials having high electrical conductivity, such as silver, palladium, gold, platinum, aluminum, and copper. , nickel, etc. may be used.
  • copper may be used because it hardly reacts with the positive electrode active material, the negative electrode active material, and the solid electrolyte material, and is effective in reducing the internal resistance of the solid battery.
  • the positive electrode current collecting layer and the negative electrode current collecting layer have the form of a sintered body, they may be composed of a sintered body containing a conductive material and a sintering aid.
  • the conductive material contained in the positive electrode current collecting layer and the negative electrode current collecting layer may be selected from, for example, the same conductive materials that can be contained in the positive electrode layer and the negative electrode layer.
  • the sintering aid contained in the positive electrode current collecting layer and the negative electrode current collecting layer may be selected, for example, from materials similar to those of the sintering aid that can be contained in the positive electrode layer and the negative electrode layer. It should be noted that the positive electrode current collecting layer and the negative electrode current collecting layer are not essential in the solid battery, and a solid battery without such a positive electrode current collecting layer and the negative electrode current collecting layer is also conceivable. In other words, the solid-state battery in the present invention may be a collector-layer-less solid-state battery.
  • the thickness of the positive electrode layer and the negative electrode layer is not particularly limited, for example, each may be independently 2 ⁇ m or more and 50 ⁇ m or less, particularly 5 ⁇ m or more and 30 ⁇ m or less.
  • Solid-state batteries are generally provided with terminals (eg, external electrodes).
  • the end face electrodes are provided on the side faces of the battery element. More specifically, there are provided a positive electrode side face electrode connected to the positive electrode layer and a negative electrode side face electrode connected to the negative electrode layer.
  • Such edge electrodes may comprise a highly conductive material.
  • Specific materials for the end face electrodes are not particularly limited, but at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin and nickel can be mentioned.
  • terminals called tab leads are provided at the ends of the end face electrodes for taking out the generated electricity to the outside.
  • the material of the tab lead may contain a material with high electrical conductivity, similar to the material of the end face electrodes.
  • a specific material for the tab lead is not particularly limited, but at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin and nickel can be mentioned.
  • a solid battery to which the exterior material according to one embodiment of the present invention is applied includes a battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, and a battery element. It may include an exterior covering material and a conducting portion capable of extracting electricity from the battery element to the outside.
  • the exterior material includes a metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer. and wherein both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C, that is, the exterior material of the present invention described above.
  • the exterior material according to one embodiment of the present invention can suppress permeation of water vapor into the exterior material itself.
  • an exterior material that suppresses the permeation of water vapor is provided so as to cover the periphery of the solid-state battery, it is possible to suppress the permeation of water vapor into the solid-state battery.
  • thermoplastic resin layers and an adherend such as a metal layer positioned between them can be bonded to each other without necessarily using an adhesive layer. It is also possible to reduce the overall thickness of the material. That is, in the case where the exterior material is integrated with the solid-state battery, it can contribute to the reduction of the size of the integrated product itself. By reducing the size of the integrated body itself, it is possible to contribute to space saving and the like.
  • the step of applying the adhesive layer and the step of curing the adhesive layer can be omitted. Therefore, the solid-state battery of one embodiment of the present invention can be a low-cost solid-state battery.
  • the form in which the exterior material covers the solid battery is not particularly limited, and conventional forms can be adopted. Regardless of the form, the solid battery obtained by integrating the exterior material and the battery element can exhibit the above effects of the present invention.
  • the form in which the exterior material of the present invention covers the battery element can adopt, for example, the following embodiments.
  • the first embodiment is an embodiment in which the exterior material is composed of a continuous single structure, and the exterior material of the single structure surrounds the battery element.
  • the exterior material is an exterior composite composed of a first exterior material and a second exterior material, and the exterior composite surrounds the battery element. It is an embodiment.
  • FIG. 3 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention.
  • FIG. 4 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention.
  • FIG. 3 shows a solid state battery 200 comprising a battery element 100 covered by a single sheathing material 11 and having a conducting part 20 consisting of an end face electrode 21 and a tab lead 22.
  • the end surface electrode 21 is connected to one end of the tab lead 22, and the other end of the tab lead 22 is exposed to the outside.
  • the solid state battery 200 of FIG. 3 is surface mountable to a substrate through the exposed tab lead 22 ends.
  • the conductive portion 20 (tab lead 22 ) may be drawn out and the tab lead 22 of the drawn conductive portion 20 may be provided along the contour surface of the battery element 100 .
  • the tab leads 22 of the conducting portion 20 and the outer covering 11 may be provided along the contour surface of the battery element 100 .
  • the "contour surface of the battery element 100” means a surface that forms the shape or appearance of the battery element 100.
  • the tab leads 22 of the conductive portion 20 and the exterior material 11 are provided along the contour surface of the battery element 100 ” means that the tab lead 22 of the conductive portion 20 and the exterior material 11 are provided along the outline of the battery element 100 . It means a state of being provided substantially parallel to the extending direction of the surface.
  • the tab leads 22 of the conductive portion 20 and the exterior material 11 may extend in substantially the same direction as the extending direction of the contour surface of the battery element 100 .
  • the term “extending direction of the contoured surface of the battery element 100” means the direction in which the contoured surface extends in the longitudinal direction.
  • the conductive portion 20 and the exterior material 11 may at least at first glance extend in substantially the same direction as the extending direction of the contour surface of the battery element 100 . It does not necessarily need to extend completely in the same direction as the extending direction of .
  • a portion of the conducting portion 20 and a portion of the exterior material 11 extend substantially in the same direction as the outline surface of the battery element 100. There may be portions that do not extend in parallel.
  • the conducting part 20 of the solid battery 200 shown in FIG. 4 can have a large contact area with the substrate in surface mounting.
  • the contact area between the conductive portion 20 and the substrate is large, the solid-state battery 200 can be more firmly surface-mounted on the substrate.
  • the lead-out portion (corresponding to the tab lead 22) of the conducting portion 20 to the outside may include the bent portion 20A.
  • the bent portion here means a bent portion.
  • the form of bending there is no particular limitation on the form of bending.
  • the lead-out portion of the conducting portion 20 to the outside may be bent so as to have an arc (curved) portion.
  • a portion (corresponding to the tab lead 22) of the conductive portion 20 that is led out to the outside is connected to an electronic substrate or the like when the solid-state battery 200 according to one embodiment of the present invention is surface-mounted. At that time, depending on the mounting area of the solid battery 200 according to one embodiment of the present invention, the positional relationship between the solid battery 200 and the electronic base material, etc., and the connection method between the solid battery 200 and the electronic base material, etc. A part drawn out to the outside (corresponding to the tab lead 22) can be bent.
  • the length of the conducting portion 20 drawn out to the outside is not particularly limited as long as electricity can be extracted from the conducting portion 20 .
  • the conductive portion 20 (specifically, the tab lead 22) along the contour of the battery element 100 may have its end portion provided on the upper surface side or the lower surface side of the solid battery 200, for example, the lower surface side.
  • the solid-state batteries 200 can be mounted in parallel on the electronic substrate, and the overall surface mounting area can be further reduced.
  • at least a part of the lead-out portion of the conductive portion 20 is "flat" with the surface of the electronic substrate. may come into contact.
  • the contact area between the conducting part 20 and the electronic substrate can be increased by making contact with the "surface". As shown in FIG. 4, such a form is provided with a bent portion in the lead portion of the conductive portion 20 so that at least a portion of the lead portion of the conductive portion 20 to the outside is substantially parallel to the surface of the electronic substrate. achievable.
  • the end of the conductive portion 20 drawn out does not necessarily have to be fixed to the exterior material 11, and the end may be a free end that can be freely moved. In this respect, from the viewpoint of reducing the mounting area, in one aspect, at least the end of the conductive portion 20 drawn out may be fixed to the exterior material 11 .
  • the end of the conductive portion 20 drawn out is brought into close contact along the side surface of the battery element 100, and the close contact state can be maintained.
  • the pulled-out end of the conducting portion 20 is preferably bent and deformed. can be prevented.
  • the solid-state battery 200 can be appropriately surface-mounted on the electronic substrate.
  • the method of fixing the drawn-out end of the conductive part 20 to the exterior material 11 is not particularly limited.
  • the drawn-out end portion of the conductive portion 20 may be fixed to the exterior material 11 by thermal fusion.
  • the drawn-out end of the conducting portion 20 may be fixed to the exterior material 11 using an adhesive.
  • the form of the adhesive is, for example, liquid, paste, sheet, solid, and powder.
  • Types of adhesives include, for example, water-based adhesives, chemical reaction adhesives, solvent-based adhesives, and hot-melt adhesives.
  • the adhesive is not particularly limited as long as the adhesive strength of the adhesive does not change before and after the reflow process.
  • the material of the adhesive can be at least one selected from the group consisting of silicone-based resins, acrylic-based resins, epoxy-based resins, urethane-based resins, and the like.
  • the active material contained in each electrode layer expands along the stacking direction as ions move in the solid electrolyte layer between the positive electrode layer and the negative electrode layer. , can shrink.
  • the active material that is, the electrode layer expands along the stacking direction
  • this causes upward acting tensile stress and downward acting tensile stress.
  • a minute space can be provided between the solid-state battery 200 and the electronic substrate. Due to the presence of such a space, it is also possible to accommodate the portion of the solid-state battery 200 that expands due to the expansion of the electrode layers along the stacking direction.
  • the exterior material 11 may be fixed to the end face electrode 21 by thermal fusion.
  • the first thermoplastic resin layer 11 a or the second heat-sealable resin layer 11 c of the exterior material 11 may be heat-sealed to the end surface electrode 21 .
  • the difference between the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c may be 20° C. or more.
  • the melting point of the second thermoplastic resin layer 11c may be lower than the melting point of the first thermoplastic resin layer 11a.
  • FIG. 5 From the viewpoint of surface-mounting a solid-state battery, for example, an embodiment as shown in FIG. 5 may be adopted. Specifically, the solid-state battery shown in FIG. A cladding composite is provided of two or more claddings, the two or more claddings including a first cladding and a second cladding, the first cladding and the second cladding being interconnected. forming an overlapping region that overlaps with A conductive portion is drawn out from the overlapping region to the outside.
  • FIG. 5 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention.
  • FIG. 6 is a cross-sectional view schematically showing how the solid-state battery according to one embodiment of the present invention prevents water vapor intrusion.
  • FIG. 7 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention.
  • FIG. 8 is a perspective view schematically showing a solid-state battery according to one embodiment of the invention.
  • FIG. 9 is a cross-sectional view schematically showing a solid-state battery (expanded state) according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing a solid-state battery according to one embodiment (with sealant) of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing a solid-state battery according to another embodiment of the invention.
  • FIG. 12 is a cross-sectional view schematically showing a solid-state battery according to another embodiment of
  • the term “exterior composite” refers to a structure (structure) in which two or more exterior materials are assembled or combined, and can also be referred to as an exterior assembly.
  • composite refers to a state in which two or more things come together to become one.
  • the term “conducting portion” as used in this specification is a general term for members that contribute to electricity extraction, such as the end face electrodes 21 provided on the battery element 100 and the tab leads 22 connected to the end face electrodes 21 .
  • the conducting portion 20 has the end face electrode 21 provided on the battery element 100 and the tab lead 22 connected to the end face electrode 21 .
  • the battery element 100 is covered with the exterior composite 10 configured by combining two or more exterior materials.
  • the sheathing composite 10 surrounds the battery element 100 .
  • an exterior composite 10 is composed of a first exterior material 11 and a second exterior material 12 .
  • the exterior composite 10 is formed with an overlapping region 50 in which the first exterior material 11 and the second exterior material 12 overlap each other, and the exterior from the overlap region 50 is formed. The conducting portion 20 is pulled out to the .
  • the first exterior material 11 has a metal layer 11b, a first thermoplastic resin layer 11a, and a second thermoplastic resin layer 11c.
  • the second exterior material 12 has a metal layer 12b, a first thermoplastic resin layer 12a, and a second thermoplastic resin layer 12c. Each layer constituting the first exterior material 11 and each layer constituting the second exterior material 12 may be the same.
  • the positional relationship between the first exterior material 11 and the second exterior material 12 in the overlap region 50 is not particularly limited.
  • the first exterior material 11 may be positioned outside the second exterior material 12 .
  • the first sheathing material 11 is provided on the side relatively proximal to the battery element 100
  • the second sheathing material is provided on the side relatively distal to the battery element 100 .
  • Material 12 may be provided.
  • the second sheathing material 12 is provided on the side relatively proximal to the battery element 100 and the first sheathing material is provided on the side relatively distal to the battery element 100 .
  • 11 may be provided.
  • Overlap region 50 may be composed of more than two claddings.
  • the overlapping region 50 is composed of two layers of the first exterior material 11 and the second exterior material 12, but for example, a third exterior material and a fourth exterior material may also be used.
  • An overlapping region may be configured by
  • overlapping region broadly refers to a region where the first exterior material 11 and the second exterior material 12 overlap each other, and in a narrow sense, overlaps with a part of the first exterior material 11. It refers to a region where a part of the second exterior material 12 overlaps with each other.
  • “Mutually overlapping” refers to a state in which the main surface of one exterior material and the main surface of the other exterior material directly or adjacently face each other. In other words, even if resin, metal, or the like is interposed between the main surface of one exterior material and the main surface of the other exterior material, it is considered that they "overlap each other" in the above state.
  • steam as used herein is not particularly limited to gaseous water, but also includes liquid water and the like.
  • water vapor is used to broadly encompass items related to water regardless of its physical state. Therefore, “steam” can also be referred to as moisture, etc.
  • water in a liquid state may include condensed water in which water in a gaseous state is condensed.
  • the term “drawn out” means that at least a part of another independent component located in a component extends from the component to the outside, and the independent other means that at least part of the constituent elements of is exposed to the outside. That is, in this specification, "the conductive portion 20 is pulled out from the overlapping region 50 of the exterior composite 10" means that the battery element 100 covered with the exterior composite 10 can be electrically connected. As shown in FIG. 5, a part of the conductive portion 20 passes through between the first and second exterior materials 11 and 12 forming the overlap region 50 of the exterior composite body 10 to the outside. and exposed state.
  • the first packaging material 11, which is a component of the packaging composite 10, does not need to cover the entire battery element 100.
  • the second packaging material 12 also covers the entire battery element 100. does not need to be covered.
  • the first exterior material 11 and the second exterior material 12 may be arranged so as to cover the entire battery element 100 with the first exterior material 11 and the second exterior material 12 . That is, it is sufficient that the exterior composite 10 is finally arranged so as to cover the entire battery element 100 .
  • the overlap region 50 can be formed such that a portion of one facing and a portion of the other facing cover each other.
  • the overlap region 50 can be formed by stacking a portion of the first sheathing 11 and a portion of the second sheathing 12 on top of each other.
  • the direction in which the first and second exterior materials are stacked in overlapping region 50 is substantially perpendicular to the stacking direction of positive electrode layer 110 , negative electrode layer 120 , and solid electrolyte layer 130 in battery element 100 .
  • the direction in which the conductive portion 20 is pulled out from the overlap region 50 is substantially perpendicular to the direction in which the first and second exterior materials are stacked in the overlap region 50, while the battery element 100 is It is substantially parallel to the stacking direction of the positive electrode layer 110 , the negative electrode layer 120 , and the solid electrolyte layer 130 .
  • the tab lead 22 can be connected to the end surface electrode 21 while separating the tab lead 22 and the battery element 100 with the first outer packaging material.
  • the solid-state battery 200 adopts a configuration in which the conducting portion 20 is pulled out from the overlapping region 50 of the exterior composite 10 to the outside. With such a configuration, the following technical effects can be achieved.
  • a single exterior member 13' is configured to cover the battery element 100' by one turn in a cross-sectional view.
  • a tab lead 22' which is a component of the conductive portion, can be connected to the battery element 100' across the exterior material 13'.
  • the tab lead 22' is configured to traverse the exterior material 13' and protrude outward. In such a configuration, since the tab lead 22' crosses the exterior material 13', a minute gap is generated between the tab lead 22' and the exterior material 13', and the gap is a passage through which water vapor communicates from the outside to the battery element 100'. There is a risk of becoming.
  • a solid-state battery 200 in a solid-state battery 200 according to an embodiment of the present invention, as shown in FIGS. 5 and 6, the conductive portion 20 connected to the battery element 100 is pulled out from the overlapping region 50. . Therefore, compared to the conventional solid-state battery 200' covered with a single exterior material 13' (that is, no overlapping region), the outside of the battery in the extending direction (longitudinal direction) of the overlapping region 50 in cross-sectional view is to the battery element 100 can be increased by the length of the overlapping region 50 . As a result, compared with the conventional solid-state battery 200', water vapor 40 can be favorably suppressed from reaching the battery element 100 from the outside.
  • the overlapping region 50 is in a state in which one exterior material and the other exterior material overlap each other. That is, the overlapping region 50 is a region composed of two or more layers of exterior materials. Therefore, the thickness of the overlapping region 50 is thicker than the thickness of the exterior composite 10 in the portions other than the overlapping region 50 . As a result, in the thickness direction (transverse direction) of the overlapping region 50 in a cross-sectional view, the overlapping region 50 The thickness of the exterior material in can be increased. Therefore, compared with the conventional solid-state battery 200', it is possible to favorably suppress the water vapor 40 from reaching the battery element 100 from the outside.
  • the water vapor transmission rate in the thickness direction of the exterior material is, for example, less than 5.0 ⁇ 10 ⁇ 3 g/(m 2 day), preferably 0 or more and 5.0 ⁇ 10 ⁇ 3 g/( m 2 ⁇ day).
  • the term "water vapor transmission rate” as used herein refers to the transmission rate obtained by the MA method using a gas transmission rate measuring device of model WG-15S manufactured by MORESCO under the measurement conditions of 85°C and 85% RH. pointing to
  • the measurement conditions are 40° C., 90% RH, and a differential pressure of 1 atm.
  • the water vapor permeability value obtained is 1.0. It may be less than ⁇ 10 ⁇ 3 g/(m 2 ⁇ day).
  • the exterior composite 10 has an overlap region 50 formed by overlapping the first exterior material 11 and the second exterior material 12 with each other.
  • overlap region 50 may be achieved by providing second cladding 12 over first cladding 11, as shown in FIG.
  • the first packaging material 11 in the overlap region 50 is positioned relatively inside, and the second packaging material 12 in the overlap region 50 is positioned relatively outside. become.
  • the first thermoplastic resin layer 11a or the second thermoplastic resin layer 11c of the first exterior material 11 and the second exterior material The twelve first thermoplastic resin layers 12a or the second thermoplastic resin layers 12c face each other.
  • facing here means that the layers face each other.
  • the second thermoplastic resin layer 12c of the second exterior material 12 face each other.
  • the first thermoplastic resin layer 11a or the second thermoplastic resin layer 11c of the first exterior material 11 in the overlap region 50 and the first thermoplastic resin layer 12a or the second thermoplastic resin layer 12a of the second exterior material 12 The following pattern is mentioned as the facing aspect which the 2nd thermoplastic resin layer 12c faces.
  • (Opposing mode 1) The first thermoplastic resin layer 11a of the first exterior material 11 and the first thermoplastic resin layer 12a of the second exterior material 12 face each other.
  • the second thermoplastic resin layer 11c of the first exterior material 11 and the second thermoplastic resin layer 12c of the second exterior material 12 face each other.
  • thermoplastic resin layer 11a of the first exterior material 11 and the second thermoplastic resin layer 12c of the second exterior material 12 face each other.
  • thermoplastic resin layer 11c of the first exterior material 11 and the first thermoplastic resin layer 12a of the second exterior material 12 face each other.
  • the solid battery of the present invention is the facing mode 1 and It is good also as the facing aspect 2.
  • thermoplastic resin layers having a relatively low melting point overlap in the overlapping region 50. They are preferably facing each other. For example, it is preferable that thermoplastic resin layers with relatively low melting points are in contact with each other in the overlap region 50 .
  • thermoplastic resin layers facing each other can be softened and heat-sealed.
  • a thermoplastic resin layer having a relatively high melting point that is not exposed (that is, on the outermost side) is not softened and can maintain its shape.
  • the shape of the solid battery 200 as a whole can be maintained while heat-sealing the portions where the first exterior material 11 and the second exterior material 12 face each other in the overlapping region 50 .
  • the difference between the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c may be 20° C. or more.
  • the difference between the melting point of the first thermoplastic resin layer 12a and the melting point of the second thermoplastic resin layer 12c is 20° C. or more.
  • the melting point of the second thermoplastic resin layer 11c may be lower than the melting point of the first thermoplastic resin layer 11a.
  • the melting point of the second thermoplastic resin layer 11c may be lower than the melting point of the first thermoplastic resin layer 11a.
  • the melting point of the thermoplastic resin layer with a relatively low melting point is preferably 20°C or more lower than the melting point of the thermoplastic resin layer with a relatively high melting point.
  • the melting point of the thermoplastic resin layer with a relatively low melting point is preferably 40° C. or higher, more preferably 60° C., higher than the melting point of the thermoplastic resin layer with a relatively high melting point. °C or lower.
  • the melting point of the thermoplastic resin layer with a relatively low melting point is lower than the melting point of the thermoplastic resin layer with a relatively high melting point. , 120° C. or less, preferably 100° C. or less, more preferably 90° C. or less.
  • the "relatively low melting point thermoplastic resin layer” may be the "second thermoplastic resin layer”
  • the "relatively high melting point thermoplastic resin layer” may be the "first thermoplastic resin layer.” ' may be.
  • thermoplastic resin of the exterior material itself has adhesiveness, it is not always necessary to provide the sealant on the conducting portion 20 located in the overlapping region 50 . That is, the first thermoplastic resin layer 11a of the first exterior material 11 is directly bonded to one main surface of the conductive portion 20, and the first thermoplastic resin layer 12a of the second exterior material 12 is conductive. It may be directly joined to the other main surface of the portion 20 . That is, it is possible to adopt a form without sealant. Alternatively, the second thermoplastic resin layer 11c of the first exterior material 11 is directly bonded to one main surface of the conductive portion 20, and the second thermoplastic resin layer 12c of the second exterior material 12 is conductive.
  • the sealant 24 may be provided on the conducting portion 20 positioned in the overlapping region 50 as shown in FIG.
  • the conducting portion 20 positioned in the overlapping area 50 and the two exterior materials 11 and 12 forming the overlapping area 50 can be adhered.
  • the conducting portion 20 and the two exterior materials 11 and 12 can be surface-bonded in a cross-sectional view, and the shape of the solid-state battery 200 can be more easily maintained.
  • sealant 24 is not particularly limited as long as the adhesive strength of the sealant does not change before and after the reflow process.
  • sealant 24 may comprise a resin having a melting point higher than the peak temperature during lead-free solder reflow.
  • a solid-state battery according to an embodiment of the present invention may further adopt the following aspects.
  • the conductive portion 20 may be provided so as to be sandwiched between the first exterior material 11 and the second exterior material 12 that constitute the exterior composite 10 (see FIGS. 5 to 8, etc. ). Specifically, the first exterior material 11 is in contact with the conductive portion 20, the second exterior material 12 is in contact with the conductive portion 20, and in that state, the conductive portion 20 is in contact with the first exterior material. It is sandwiched between 11 and the second exterior material 12 .
  • a conducting portion 20 may be provided between the outer surface of the first exterior material 11 and the inner surface of the second exterior material 12 . In such a configuration, the conductive portion 20 is sandwiched between the first exterior material 11 and the second exterior material 12 so as to be substantially parallel to the first exterior material 11 and the second exterior material 12. .
  • the conducting portion 20 is positioned between the first exterior material 11 and the second exterior material 12, and the conducting portion 20, the first exterior material 11, and the second exterior material 12 are integrated.
  • the exterior materials are positioned on both sides of the conducting portion 20 in a cross-sectional view, so that the conducting portion 20 can be brought into surface contact with the two exterior materials, respectively, and the conducting portion 20 and each exterior material can be brought into contact with each other. A minute gap between them can be suitably reduced. As a result, it is possible to suitably prevent water vapor from passing through the overlapping region 50 .
  • two overlapping regions 50 may be provided in a cross-sectional view. Specifically, there may be provided one for sandwiching the conductive portion on the positive electrode side (corresponding to the tab lead 22) and another for sandwiching the conductive portion on the negative electrode side (corresponding to the tab lead 22).
  • the end face electrodes of the conducting portion 20 and the exterior composite 10 are provided along the contour surface of the battery element 100 (see FIGS. 5 to 12, etc.).
  • the "contour surface of the battery element 100” means a surface that forms the shape or appearance of the battery element 100.
  • the end surface electrode of the conductive portion 20 and the exterior composite 10 are provided along the contour surface of the battery element 100 means that the end surface electrode of the conductive portion 20 and the exterior composite 10 It means a state in which it is provided substantially parallel to the extending direction of the contour surface of the.
  • the end surface electrodes of the conducting portion 20 and the exterior composite 10 extend in substantially the same direction as the extending direction of the contour surface of the battery element 100 .
  • the term “extending direction of the contoured surface of the battery element 100” means the direction in which the contoured surface extends in the longitudinal direction.
  • the conducting portion 20 and the exterior composite 10 may at least at first glance extend in substantially the same direction as the extending direction of the contour surface of the battery element 100. It does not necessarily have to extend in exactly the same direction as the extension of the contoured surface of element 100 .
  • a portion of the conductive portion 20 and a portion of the exterior composite 10 are aligned with the extending direction of the contour surface of the battery element 100. There may be portions that do not extend substantially in parallel.
  • the tab lead 22' which is a constituent element of the conductive portion, is configured to cross the exterior material 13' and protrude outward. Therefore, the area required for mounting in the conventional solid-state battery 200' is further required for the area of the tab leads protruding to the outside.
  • this tab lead is a part that extracts electricity from the solid-state battery and does not contribute to the power generation of the solid-state battery, it can lead to a decrease in the power generation capacity per unit area of the solid-state battery depending on the area of the projecting conductive portion.
  • the conducting portion 20 is drawn out from the overlapping region 50 where the first covering material 11 and the second covering material 12 overlap each other.
  • Overlapping region 50 is a component of exterior composite 10 that covers battery element 100 , and thus can generally follow the contours of battery element 100 . Therefore, the conductive portion 20 drawn out from the overlapping region 50 can also have a structure in which protrusion along the contour of the battery element 100 is suppressed. Since the conductive part 20 (specifically, the tab lead 22) can be configured along the contour of the battery element 100 instead of the projecting structure, the solid battery 200 according to one embodiment of the present invention as a whole can be surface-mounted on the electronic substrate. can be made
  • the portion (corresponding to the tab lead 22) of the conductive portion 20 led out to the outside has a bent portion 20A (see FIGS. 6 to 8, etc.).
  • the bent portion here means a bent portion.
  • the portion of the conductive portion 20 leading to the outside may be bent so as to have a right-angled portion.
  • the lead-out portion of the conducting portion 20 to the outside may be bent so as to have an arc (curved) portion, specifically, it may be bent along the surface of the exterior material.
  • the form in which the tab lead 22 connected to the end face electrode 21 is drawn out is not particularly limited, and for example, as shown in FIG. In other words, the tab lead 22 may be configured to include multiple bends.
  • the portion (corresponding to the tab lead 22) of the conducting portion 20 that is led out to the outside is connected to the electronic substrate 300 or the like when the solid-state battery 200 according to one embodiment of the present invention is surface-mounted. .
  • the positional relationship between the solid battery 200 and the electronic substrate 300, etc., the connection method between the solid battery 200 and the electronic substrate 300, etc., the conductive part A portion (corresponding to tab lead 22) of lead 20 to the outside can be bent.
  • the length of the conducting portion 20 drawn out to the outside is not particularly limited as long as electricity can be extracted from the conducting portion 20 .
  • the lead-out conductive part 20 is covered with the first packaging material 11 or the second packaging material 12 at the end of the drawn-out conductive part 20 of the battery element 100 .
  • the conductive portion 20 (specifically, the tab lead 22 ) along the contour of the battery element 100 is preferably provided with its end portion on the upper surface side or the lower surface side of the solid battery 200 , for example, the lower surface side.
  • the solid-state batteries 200 can be mounted in parallel on the electronic substrate 300, and the overall surface mounting area can be further reduced.
  • at least a portion of the lead-out portion of the conductive portion 20 is “planed” with the surface of the electronic base 300. contact is preferred.
  • the contact area between the conductive portion 20 and the electronic substrate 300 can be increased by making contact with the “surface”.
  • a bent portion is provided in the drawn portion of the conductive portion 20 so that at least a portion of the drawn portion of the conductive portion 20 to the outside is substantially parallel to the surface of the electronic substrate 300.
  • the end of the conductive portion 20 pulled out does not necessarily need to be fixed to the first exterior material 11 or the second exterior material 12, and the end may be a freely movable free end.
  • at least the end of the conductive portion 20 drawn out is preferably fixed to the first exterior material 11 or the second exterior material 12 .
  • the end of the conductive portion 20 drawn out is brought into close contact along the side surface of the battery element 100, and the close contact state can be maintained. Since the portion protruding from the solid-state battery can be suppressed more reliably, the mounting area can be reduced.
  • the pulled-out end of the conducting portion 20 is preferably bent and deformed. can be prevented.
  • the solid-state battery 200 can be appropriately surface-mounted on the electronic substrate 300 .
  • the method of fixing the drawn-out end of the conducting portion 20 to the first exterior material 11 or the second exterior material 12 is not particularly limited.
  • the drawn-out end portion of the conductive portion 20 may be fixed to the first exterior material 11 or the second exterior material 12 by heat sealing.
  • the drawn-out end of the conductive portion 20 may be fixed to the first exterior material 11 or the second exterior material 12 using an adhesive.
  • the form of the adhesive is, for example, liquid, paste, sheet, solid, or powder.
  • Types of adhesives include, for example, water-based adhesives, chemical reaction adhesives, solvent-based adhesives, and hot-melt adhesives.
  • the adhesive is not particularly limited as long as its adhesive strength does not change before and after the reflow process.
  • the material of the adhesive can be at least one selected from the group consisting of silicone-based resins, acrylic-based resins, epoxy-based resins, urethane-based resins, and the like.
  • the tab leads 22 are connected to the end face electrodes 21, and electricity can be taken out from the battery element 100 via the tab leads 22 to the outside.
  • a method for connecting the tab lead 22 and the edge electrode 21 is not particularly limited as long as the tab lead 22 and the edge electrode 21 are electrically connected.
  • the tab lead 22 and the end face electrode 21 may be connected by conductive paste or by welding.
  • the active material contained in each electrode layer expands and contracts along the stacking direction as ions move in the solid electrolyte layer between the positive electrode layer and the negative electrode layer. can.
  • the active material that is, the electrode layer expands along the stacking direction
  • this causes upward acting tensile stress and downward acting tensile stress.
  • a minute space can be provided between the solid-state battery 200 and the electronic substrate 300 . Due to the presence of such a space, it is also possible to accommodate the expanded portion of the solid-state battery 200 due to the expansion of the electrode layers along the stacking direction (see FIG. 9).
  • overlapping regions 50 may be provided along the sides of battery element 100 . It may be provided along the entire side surface of the battery element 100 (see FIGS. 6 to 9, etc.).
  • the term “side surface” means a surface that extends in a direction relatively perpendicular to the upper surface or the lower surface among the surfaces that constitute the battery element 100 .
  • the overlapping area 50 does not protrude from the battery element 100, so the mounting area required for surface mounting is reduced.
  • the conducting portion 20 (specifically, the tab lead 22) along the contour of the battery element 100 is provided on the upper surface side or the lower surface side of the solid battery 200, for example, the lower surface side
  • the conducting portion 20 (specifically, The portion other than the end of the tab lead 22) can be accommodated in the overlap region 50 along the side surface of the battery element 100, so that the solid battery 200 can be surface-mounted on the electronic substrate 300 and water vapor can be prevented from entering the battery. and can be suitably compatible.
  • the overlapping region 50 may be wide. Specifically, in a cross-sectional view, it is preferable that the length of the overlapping region 50 along the longitudinal direction of the tab lead 22 is longer.
  • the length of the overlap region 50 may be 10% or more, preferably 20% or more, or 30% or more of the height of the battery element 100 (that is, the length from the top surface to the bottom surface of the battery element 100). more preferably 40% or more.
  • the length of the overlapping region 50 should be 150% or less of the height of the battery element 100, preferably 100% or less, more preferably 80% or less, still more preferably 70% or less, particularly preferably 60% or less.
  • the length of overlap region 50 need not be of uniform length throughout overlap region 50 .
  • overlap regions 50 may have different lengths, as shown in the cross-sectional view of FIG.
  • the first exterior material 11 and the second exterior material 12 have a metal layer 11b and a metal layer 12b as intermediate layers (see FIG. 7).
  • the metal layer 11b which is an intermediate layer of the exterior material, is electrically connected to the positive electrode side end surface electrode 21 and the negative electrode side end surface electrode 21, and the metal layer 11b is electrically connected to the end surface electrode 21 of the negative electrode side.
  • An insulating material may be provided on the end face of the exterior material from the viewpoint of preventing a short circuit from occurring.
  • the method of insulation treatment for providing the insulating material is not particularly limited, and any method may be used as long as it contributes to the prevention of short circuiting of the battery element 100 via the exterior material.
  • the positional relationship between the conductive portion 20 and the overlapping region 50 is not particularly limited until confirmation, and any structure may be employed according to the form of surface mounting.
  • structures as shown in FIGS. 11 and 12 can be adopted.
  • the exposed portions of the conductive portions 20 on the positive electrode side and the negative electrode side are positioned to face each other with the battery element 100 interposed therebetween.
  • the conductive portion 20 on the positive electrode side and the conductive portion 20 on the negative electrode side of the solid-state battery 200 are positioned further apart from each other, so that the possibility of short-circuiting between the two electrodes can be reduced. Further, as shown in FIG.
  • the design of the overlapping region between the positive electrode side and the negative electrode side and the design of the tab lead 22 can be appropriately changed to be asymmetrical. This enables flexible surface mounting according to the surface configuration of the surface mounting destination of the solid battery 200 .
  • the thickness of the overlap region 50 is determined by the thicknesses of the first exterior material 11 and the second exterior material 12 forming the overlap region.
  • the thickness of the overlapping region is preferably 2 ⁇ m or more and 1000 ⁇ m or less, more preferably 4 ⁇ m or more and 600 ⁇ m or less, and still more preferably 6 ⁇ m or more, from the viewpoint of further suppressing the deterioration of the battery performance due to the penetration of water vapor into the battery element. It may be in the range of 200 ⁇ m or less, for example 100 ⁇ m.
  • the exterior material according to one embodiment of the present invention is a circuit board (or composite module, etc.) provided with a plurality of electronic devices (for example, capacitors, resistors, coils, diodes, transistors, etc.). ) 610.
  • FIG. 13 shows a packaged circuit board 600 in which a circuit board 610 is assembled with a sheath composite 10 consisting of a first sheath 11 and a second sheath 12 . Constructed by covering.
  • a method for manufacturing a solid-state battery according to an embodiment of the present invention includes: (i) preparing a battery element 100 comprising a positive electrode layer 110, a negative electrode layer 120, and a solid electrolyte layer 130 interposed between the positive electrode layer 110 and the negative electrode layer 120; (ii) providing a first exterior material 11 so as to partially cover the battery element 100; (iii) providing a conductive portion 20 capable of extracting electricity from the battery element 100 to the outside; (iv) providing the second exterior material 12 so as to cover the rest of the battery element 100 other than a portion thereof;
  • an overlapping region 50 is formed in which the first exterior material 11 and the second exterior material 12 overlap each other, and A
  • first exterior material 11 and the second exterior material 12 are composed of a metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second layer of the metal layer. and a second thermoplastic resin layer positioned on the main surface side, wherein both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C.
  • the first exterior material 11 of the present invention is prepared.
  • the first exterior material 11 includes a metal layer 11b, a first thermoplastic resin layer 11a located on the first main surface side of the metal layer 11b, and a second resin layer 11a located on the second main surface side of the metal layer 11b. 2 thermoplastic resin layers 11c.
  • the first exterior material 11 may be produced and prepared according to the above (the manufacturing method of the exterior material of the present invention).
  • the first exterior material 11 is formed into a shape that covers the battery element 100 by drawing.
  • the drawing process is a processing method in which pressure is applied to the first exterior material 11 to draw it into a concave shape (or a cup shape) so that the first exterior material 11 covers the battery element 100. Especially, if it is a processing method.
  • the first packaging material 11 is placed on a box-shaped mold that follows the shape of the battery element 100, and pressure is applied from above the first packaging material 11 with a mold that imitates the shape of the battery element 100.
  • the drawing process may be performed by pressing the battery element 100 against the first exterior material 11 .
  • the battery element 100 is inserted into the first exterior material 11 obtained by the above method, and the first exterior material 11 is attached to the battery element 100 .
  • the first exterior material is covered so that the upper surface or the lower surface of the battery element 100 is partially exposed.
  • the first exterior material is attached so as to cover surfaces other than the top surface or the bottom surface of the battery element 100 .
  • the first exterior material 11 is attached so that the end face of the first exterior material is located on the boundary line between the top surface and the side surface of the battery element 100 .
  • the end face electrodes 21 may be attached in advance to the side faces of the battery element 100 .
  • An insulating material 31 may be provided on the end face of the first exterior material 11 to prevent the battery element 100 from short-circuiting.
  • the insulating material 31 is not particularly limited as long as it has electrical insulation, and may be, for example, an insulating resin. At least one selected from the group consisting of epoxy-based resins, acrylic-based resins, phenol-based resins, and synthetic rubbers can be used as the material of the insulating resin.
  • the tab leads 22 are attached to the end face electrodes 21 provided on the battery element 100 not covered with the first exterior material 11.
  • a conductive adhesive 23 is applied to the ends of the tab leads 22 by metal mask printing, so that the ends of the tab leads 22 and the end surface electrodes 21 of the battery element 100 are attached so as to be electrically connected to each other.
  • the conductive adhesive 23 may be a conductive paste, and is made of, for example, a resin material containing a conductive filler.
  • the conductive filler examples include at least one selected from the group consisting of nickel, copper, aluminum, gold, carbon, etc., and the resin material includes epoxy resin, acrylic resin, silicone resin, and urethane resin. At least one selected from the group consisting of resins and the like can be mentioned.
  • the tab lead 22 is positioned along the outline of the side surface of the battery element 100.
  • the tab lead 22 may be bent when the tab lead 22 is laid across the side of the battery element 100 .
  • the second exterior material 12 includes a metal layer 12b, a first thermoplastic resin layer 12a positioned on the first main surface side of the metal layer 12b, and a second resin layer 12a positioned on the second main surface side of the metal layer 12b. 2 thermoplastic resin layers 12c.
  • the second exterior material 12 may be produced and prepared according to the above (the manufacturing method of the exterior material of the present invention). As shown in FIG. 14(g), after positioning the tab lead 22 along the contoured side surface of the battery element 100, the surface side of the battery element 100 not covered with the first exterior material 11 is A second exterior material 12 is placed.
  • the end of the second exterior material 12 is arranged along the side surface of the battery element 100 .
  • an overlapping region 50 is formed where the second packaging material 12 and the first packaging material 11 overlap.
  • layers are formed in which the battery element 100 , the first packaging material 11 , the tab lead 22 , and the second packaging material 12 are arranged in this order, and the tab lead 22 extends from the overlapping region 50 . It is pulled out. In other words, the conductive portion 20 composed of the end surface electrode 21 and the tab lead 22 is pulled out from the overlapping region.
  • the first exterior material 11 is arranged so that the first thermoplastic resin layer of the first exterior material 11 and the first thermoplastic resin layer of the second exterior material 12 face each other.
  • the second packaging material 12 are preferably arranged on the battery element 100 .
  • the facing thermoplastic resin preferably has a relatively low melting point.
  • the first exterior material 11 located in the overlap region 50, the tab lead 22 as a component of the conductive portion 20, and the second exterior material 12 are brought into close contact.
  • the method of adhesion is not particularly limited, but adhesion can be achieved by heat fusion, mechanical bonding, crimping, welding, adhesives, or the like.
  • heat-sealing for example, in the case of FIG. 14(g) or FIG. 14(h), the overlapping region 50 is heated using an external heat source, and the tab lead 22 is bonded to the first exterior material 11 and the second exterior material. 12 may be heat-sealed.
  • the tab lead 22 is heated, and the first exterior material 11 and the second exterior material 12 are adhered to the heated tab lead 22 and heat-sealed. good.
  • the sealant 24 is applied to the tab leads 22 in advance and the sealant 24 is applied to the overlap region 50 from the viewpoint of improving the adhesion between the first exterior material 11 , the tab lead 22 , and the second exterior material 12 .
  • the sealant 24 is not particularly limited as long as the adhesive strength of the sealant 24 does not change before and after the reflow process.
  • sealant 24 may comprise a resin having a melting point higher than the peak temperature during reflow.
  • first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c which constitute the exterior material of the present invention, have improved adhesiveness, they can be bonded to the tab lead 22 without using the sealant 24. It is possible. Moreover, even when the sealant 24 is used, a thinner sealant than before can be used.
  • the tab lead 22 with one free end that is, the end of the tab lead 22 that is not connected to the battery element 100 (that is, the end of the conductive portion 20 drawn out) ) are positioned along the contour surface of the battery element 100 .
  • the tab lead 22 is bent so as to be in contact with the first exterior material 11 .
  • the first packaging material 11 may be heat-sealed to the tab lead 22 by heating the portion where the tab lead 22 and the first packaging material 11 are in contact with each other.
  • an adhesive or the like may be applied to a portion where the tab lead 22 and the first exterior material 11 are in contact, and the tab lead 22 and the first exterior material 11 may be bonded and fixed.
  • the adhesive is not particularly limited as long as the adhesive strength of the sealant 24 does not change before and after the reflow process.
  • a solid-state battery 200 according to one embodiment of the present invention can be finally obtained (FIG. 14(h)).
  • the bending of the tab lead 22 and the bonding and fixing to the first exterior material in the above [fixing the tab lead 22] may be performed, for example, immediately before the solid battery 200 of the present invention is surface-mounted on the electronic substrate 300. .
  • the manufacturing may be temporarily stopped before the tab lead 22 is fixed, and temporarily stored in the state shown in FIG. 14(g).
  • the solid-state battery 200 of the present invention can be surface-mounted flexibly according to the shape of the electronic substrate.
  • the finally obtained solid battery 200 according to one embodiment of the present invention can exhibit the following effects.
  • the conducting portion 20 connected to the battery element 100 is pulled out from the overlap region 50 to the outside. Therefore, compared to the conventional solid-state battery 200' covered with a single exterior material 13' (that is, no overlapping region), the outside of the battery in the extending direction (longitudinal direction) of the overlapping region 50 in cross-sectional view is to the battery element 100 can be increased by the length of the overlapping region 50 . As a result, compared with the conventional solid-state battery 200', water vapor 40 can be favorably suppressed from reaching the battery element 100 from the outside.
  • the overlapping region 50 is in a state in which one exterior material and the other exterior material overlap each other. That is, the overlapping region 50 is a region composed of two or more layers of exterior material. Therefore, the thickness of the overlapping region 50 is thicker than the thickness of the exterior composite 10 in the portions other than the overlapping region 50 . As a result, in the thickness direction (transverse direction) of the overlapping region 50 in a cross-sectional view, the overlapping region 50 The thickness of the exterior material in can be increased. Therefore, compared with the conventional solid-state battery 200', it is possible to favorably suppress the water vapor 40 from reaching the battery element 100 from the outside.
  • a method for manufacturing a solid-state battery according to one embodiment of the present invention (first embodiment) roughly includes the following steps (i) to (iv) in order (FIGS. 14(a) to 14(h). )reference).
  • a method for manufacturing a solid-state battery according to an embodiment of the present invention includes: (i) preparing a battery element 100 comprising a positive electrode layer 110, a negative electrode layer 120, and a solid electrolyte layer 130 interposed between the positive electrode layer 110 and the negative electrode layer 120; (ii) a step of providing an end surface electrode 21 capable of extracting electricity from the battery element 100 to the outside; (iii) providing the exterior material 11 so as to partially cover the battery element 100;
  • the exterior material 11 includes a metal layer 11b, a first thermoplastic resin layer 11a positioned on the first main surface side of the metal layer 11b, and a second thermoplastic resin layer 11a positioned on the second main surface side of the metal layer 11b. The melting point of the first thermoplastic resin layer 11a and
  • the exterior material 11 is prepared as described in [Preparation of the first exterior material] in ⁇ Second embodiment> above (Fig. 14a).
  • exterior material 11 is processed into a concave shape (or cup shape) (Fig. 14b).
  • the battery element 100 having the end face electrodes 21 is inserted into the recessed first packaging material 11, and the packaging material 11 is attached to the battery element 100 (FIG. 14c).
  • the exterior material 11 is attached so as to cover the battery element 100 to which the recessed exterior material 11 is attached (on the portion of the remaining battery element 100 not covered by the recessed exterior material 11). At this time, the exterior material 11 is attached so that the tab leads 22 attached to the end face electrodes 21 are exposed to the outside.
  • Table 1 shows the configurations of the exterior materials of Examples 1 to 5 and Comparative Example 1 and the evaluation results of the solid-state batteries provided with these exterior materials.
  • a first exterior material was produced as follows. First, using a heat lamination method, a highly heat-resistant polyamide with a melting point of (305°C) is heat-sealed to one side of an aluminum foil at a temperature of (290)°C to produce an integrated product of the aluminum foil and the highly heat-resistant polyamide. bottom. Next, polyethylene naphthalate having a melting point of (269° C.) was heat-sealed to the other surface of the aluminum foil of the integrated product at a temperature of (255° C.) to produce a first exterior material.
  • the second exterior material was produced in the same manner as the first exterior material.
  • a battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer was prepared, and an end face electrode capable of extracting electricity from the battery element to the outside was provided.
  • a cup-shaped first exterior material was attached to the battery body provided with the end face electrodes.
  • a tab lead was attached to the end surface electrode exposed to the outside on the side not covered with the first packaging material 11 .
  • the tab leads attached to the end face electrodes were positioned so as to follow the outline of the side face of the battery element.
  • a second cup-shaped exterior member was attached so as to cover the surface of the battery element that was not covered with the first cup-shaped exterior member.
  • an overlapping region was formed on the side surface of the battery element where the second exterior material and the first exterior material were overlapped. The overlapping region was heated to heat-seal and seal the first exterior material and the second exterior material in the overlapping region.
  • a solid battery covered with an exterior material was obtained.
  • Example 2 to 5 were obtained in the same manner as in Example 1, except that the thermoplastic resin layers described in Examples 2 to 5 in Table 1 were used.
  • Comparative Example 1 was obtained in the same manner as in Example 1, except that the thermoplastic resin layer described in Comparative Example 1 in Table 1 was used.
  • the exterior material according to one embodiment of the present invention can be used for various electronic devices that require water vapor barrier properties.
  • the exterior material according to one embodiment of the present invention can be used for batteries (primary batteries, secondary batteries, particularly solid batteries), circuit boards, composite modules, electronic components, and the like.
  • a solid-state battery according to an embodiment of the present invention can be used in various fields in which battery use or power storage is assumed.
  • the electronic device according to one embodiment of the present invention can be used in various fields requiring electrical control.
  • the solid-state battery according to one embodiment of the present invention can be used in the electric, information, and communication fields where mobile devices and the like are used (for example, mobile phones, smartphones, smart watches, laptop computers and digital cameras, activities Weighing scales, arm computers, mobile devices such as electronic paper), household and small industrial applications (e.g. electric tools, golf carts, household, nursing care and industrial robots), large industrial applications (e.g. forklifts, elevators, harbor cranes), transportation systems (e.g. hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.), power system applications (e.g.
  • mobile devices and the like for example, mobile phones, smartphones, smart watches, laptop computers and digital cameras, activities Weighing scales, arm computers, mobile devices such as electronic paper
  • household and small industrial applications e.g. electric tools, golf carts, household, nursing care and industrial robots
  • large industrial applications e.g. forklifts, elevators, harbor cranes
  • transportation systems e.g. hybrid vehicles, electric vehicles

Abstract

The present invention provides an exterior material capable of suppressing infiltration of water vapor. The present invention provides an exterior material which includes a metal layer, a first thermoplastic resin layer located on a first main surface side of the metal layer, and a second thermoplastic resin layer located on a second main surface side of the metal layer, and in which the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are both higher than 260°C.

Description

外装材、ならびに固体電池および電子デバイスExterior materials, as well as solid-state batteries and electronic devices
 本発明は、外装材、ならびに固体電池および電子デバイスに関する。具体的には、本発明は、外装材、ならびに外装材を備える固体電池および外装材を備える電子デバイスに関する。 The present invention relates to exterior materials, as well as solid-state batteries and electronic devices. Specifically, the present invention relates to a sheath, a solid-state battery comprising the sheath, and an electronic device comprising the sheath.
 外装材は、電子デバイスの周囲を覆うように設けられて電子デバイスを保護する。外装材によって保護される電子デバイスとしては、例えば、電池、回路基板、複合モジュール、および電子部品等がある。 The exterior material is provided to cover the electronic device and protect the electronic device. Examples of electronic devices protected by exterior materials include batteries, circuit boards, composite modules, and electronic components.
 電池には、充放電が繰り返し可能な二次電池がある。従前より充放電が繰り返し可能な二次電池は様々な用途に用いられている。例えば、二次電池は、スマートフォン、ノートパソコン等の電子機器の電源として用いられている。 Batteries include secondary batteries that can be repeatedly charged and discharged. Secondary batteries that can be repeatedly charged and discharged have been used for various purposes. For example, secondary batteries are used as power sources for electronic devices such as smartphones and laptop computers.
 当該二次電池においてはイオンを移動させるための媒体として有機溶媒等の液体の電解質(電解液)が従来から使用されている。しかしながら、電解液を用いた二次電池においては、電解液の漏液等の問題がある。そのため、液体の電解質に代えて固体電解質を有して成る固体電池の開発が進められている。 In the secondary battery, a liquid electrolyte (electrolytic solution) such as an organic solvent has conventionally been used as a medium for moving ions. However, secondary batteries using an electrolytic solution have problems such as leakage of the electrolytic solution. Therefore, development of a solid battery having a solid electrolyte instead of a liquid electrolyte is underway.
特許第6179576号公報Japanese Patent No. 6179576
 ここで、従前における外装材として、金属層と、金属層の両側に位置する樹脂層と、金属層と樹脂層との間に位置する接着剤層とを備えるラミネート構造を有するものが用いられる場合がある。この場合において、外装材の接着剤層の性質によっては接着剤層の接着性を好適に維持できない虞がある。そのため、外装材が固体電池等の電子デバイスの周囲を覆うように設けられる場合において、かかる接着剤層を介して固体電池等の電子デバイス内へと水蒸気が浸入する虞がある。 Here, when a conventional exterior material having a laminate structure including a metal layer, resin layers positioned on both sides of the metal layer, and adhesive layers positioned between the metal layer and the resin layer is used. There is In this case, depending on the properties of the adhesive layer of the exterior material, there is a possibility that the adhesiveness of the adhesive layer cannot be maintained appropriately. Therefore, when the exterior material is provided so as to cover the periphery of an electronic device such as a solid-state battery, water vapor may enter the electronic device such as a solid-state battery through the adhesive layer.
 本発明はかかる事情に鑑みたものである。本発明は、水蒸気の浸入を抑制可能な外装材、ならびに上記外装材を備えた固体電池等の電子デバイスを提供することを目的とする。 The present invention is in view of such circumstances. An object of the present invention is to provide an exterior material capable of suppressing permeation of water vapor, and an electronic device such as a solid-state battery including the exterior material.
 本発明の一実施形態では、
金属層と、前記金属層の第1の主面側に位置する第1の熱可塑性樹脂層と、前記金属層の第2の主面側に位置する第2の熱可塑性樹脂層とを含み、
 前記第1の熱可塑性樹脂層の融点と前記第2の熱可塑性樹脂層の融点とがともに260℃よりも高い、外装材が提供される。
In one embodiment of the invention,
A metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer,
An exterior material is provided in which both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C.
 また、本発明の一実施形態では、
 正極層、負極層、および前記正極層と前記負極層との間に介在する固体電解質層を備えた電池要素と、前記電池要素を覆う外装材と、前記電池要素から外部へ電気を取り出し可能な導通部とを含み、
 前記外装材が、金属層と、前記金属層の第1の主面側に位置する第1の熱可塑性樹脂層と、前記金属層の第2の主面側に位置する第2の熱可塑性樹脂層とを含み、
 前記第1の熱可塑性樹脂層の融点と前記第2の熱可塑性樹脂層の融点とがともに260℃よりも高い外装材である、固体電池が提供される。
Also, in one embodiment of the present invention,
A battery element comprising a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer; an exterior material covering the battery element; a conducting portion;
The exterior material comprises a metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer. a layer and
A solid battery is provided, which is an exterior material in which both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C.
 更に、本発明の一実施形態では、
 電子デバイスと、前記電子デバイスを覆う外装材とを備え、
 前記外装材が、金属層と、前記金属層の第1の主面側に位置する第1の熱可塑性樹脂層と、前記金属層の第2の主面側に位置する第2の熱可塑性樹脂層とを含み、
 前記第1の熱可塑性樹脂層の融点と前記第2の熱可塑性樹脂層の融点とがともに260℃よりも高い外装材である、電子デバイスに関する。
Furthermore, in one embodiment of the present invention,
An electronic device and an exterior material covering the electronic device,
The exterior material comprises a metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer. a layer and
The present invention relates to an electronic device which is an exterior material in which both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C.
 本発明の一実施形態に係る外装材によれば、水蒸気の浸入を抑制できる。また、本発明の一実施形態に係る固体電池および電子デバイスによれば、その内部への水蒸気の浸入を抑制できる。 According to the exterior material according to one embodiment of the present invention, it is possible to suppress the infiltration of water vapor. Further, according to the solid-state battery and the electronic device according to one embodiment of the present invention, it is possible to suppress the infiltration of water vapor into the interior thereof.
図1は、本発明の一実施形態に係る外装材を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an exterior material according to one embodiment of the present invention. 図2は、本発明の一実施形態に係る外装材の製造工程を示す模式図である。FIG. 2 is a schematic diagram showing the manufacturing process of the exterior material according to one embodiment of the present invention. 図3は、本発明の一実施形態に係る固体電池を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention. 図4は、本発明の一実施形態に係る固体電池を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention. 図5は、本発明の一実施形態に係る固体電池を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention. 図6は、本発明の一実施形態に係る固体電池による水蒸気浸入の防止態様を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing how the solid-state battery according to one embodiment of the present invention prevents water vapor intrusion. 図7は、本発明の一実施形態に係る固体電池を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention. 図8は、本発明の一実施形態に係る固体電池を模式的に示す斜視図である。FIG. 8 is a perspective view schematically showing a solid-state battery according to one embodiment of the invention. 図9は、本発明の一実施形態に係る固体電池(膨張状態)を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a solid-state battery (expanded state) according to one embodiment of the present invention. 図10は、本発明の一実施形態(シーラント付)に係る固体電池を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a solid-state battery according to one embodiment (with sealant) of the present invention. 図11は、本発明の別の実施形態に係る固体電池を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing a solid-state battery according to another embodiment of the invention. 図12は、本発明の別の実施形態に係る固体電池を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing a solid-state battery according to another embodiment of the invention. 図13は、本発明の一実施形態にかかる電子デバイスを模式的に示す断面図である。FIG. 13 is a cross-sectional view schematically showing an electronic device according to one embodiment of the invention. 図14は、本発明の一実施形態に係る固体電池の製造工程を示す模式図である。FIG. 14 is a schematic diagram showing a manufacturing process of a solid-state battery according to one embodiment of the present invention. 図15は、従来の外装材を模式的に示す断面図である。FIG. 15 is a cross-sectional view schematically showing a conventional exterior material. 図16は、従来の固体電池を模式的に示す断面図である。FIG. 16 is a cross-sectional view schematically showing a conventional solid-state battery. 図17は、従来の固体電池を模式的に示す斜視図である。FIG. 17 is a perspective view schematically showing a conventional solid-state battery.
[本発明の外装材]
 以下、本発明の一実施形態に係る外装材を詳細に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本発明の理解のために模式的かつ例示的に示したにすぎず、概観や寸法比等は実部と異なり得る。
[Exterior material of the present invention]
Hereinafter, an exterior material according to one embodiment of the present invention will be described in detail. Although the description will be made with reference to the drawings as necessary, the illustrated contents are only schematically and exemplarily shown for understanding of the present invention, and the appearance, dimensional ratios, etc. may differ from the actual part.
 図1は、本発明の一実施形態に係る外装材を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing an exterior material according to one embodiment of the present invention.
 本発明の一実施形態に係る外装材11は、図1に示すように、金属層11bと、金属層11bの第1の主面側に位置する第1の熱可塑性樹脂層11aと、金属層11bの第2の主面側に位置する第2の熱可塑性樹脂層11cとを含み、第1の熱可塑性樹脂層11aの融点と第2の熱可塑性樹脂層11cの融点とがともに260℃よりも高いことを特徴とする。なお、本明細書で言う「熱可塑性樹脂」は熱を加えることにより軟化し、冷却により固化し、軟化と固化を可逆的に繰り返すことができる樹脂である。熱可塑性樹脂は、熱融着性を有する樹脂であってよい。 As shown in FIG. 1, the exterior material 11 according to one embodiment of the present invention includes a metal layer 11b, a first thermoplastic resin layer 11a located on the first main surface side of the metal layer 11b, and a metal layer The second thermoplastic resin layer 11c located on the second main surface side of 11b is included, and both the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c are higher than 260°C. is also high. The “thermoplastic resin” referred to in this specification is a resin that can be softened by applying heat, solidified by cooling, and can be reversibly softened and solidified. The thermoplastic resin may be a resin having heat-sealing properties.
 従前では、樹脂層と金属層等の被接着体を接合するために、樹脂層と被接着体との間に接着剤層を介在させていた。例えば、図15に示す従前の外装材11’は、樹脂層11a’と金属層11b’との間に接着剤層11d’を有する(金属層11b’と樹脂層c’との間にも接着剤層11e’を有する場合がある)。これに対して、本発明の外装材11では、金属層11bの第1の主面側と第2の主面側に位置する2つの樹脂層11a,11cは、ともに熱可塑性を有しかつその融点が実装温度上限値を上回る融点を有する樹脂層である(図1参照)。 Conventionally, an adhesive layer was interposed between the resin layer and the adherend in order to join the adherend such as the resin layer and the metal layer. For example, the conventional exterior material 11' shown in FIG. may have an agent layer 11e'). In contrast, in the exterior material 11 of the present invention, the two resin layers 11a and 11c located on the first main surface side and the second main surface side of the metal layer 11b both have thermoplasticity and It is a resin layer having a melting point higher than the mounting temperature upper limit (see FIG. 1).
 この場合において、従来の外装材と比べて、金属層を挟み込むように2つの熱可塑性樹脂層が設けられていることおよび/または各熱可塑性樹脂層の性質(熱を加えることにより軟化し、冷却により固化するような性質)に起因して加熱による樹脂表面の軟化によって金属層表面の凹凸に追従しその結果、樹脂層の表面と金属層表面の接触面積が増大することに加え、金属層表面の官能基と熱可塑性樹脂層の官能基が化学的結合および/または金属層表面と熱可塑性樹脂層との分子間力による物理的結合を生じさせ得る。これにより、接着剤層を必ずしも用いなくとも、2つの熱可塑性を有する樹脂層とその間に位置する金属層等の被接着体とを相互に接合可能となる。その結果、接着剤層を必ずしも用いなくとも積層構造の外装体の形態を維持できる。 In this case, compared to conventional exterior materials, two thermoplastic resin layers are provided so as to sandwich a metal layer and/or the properties of each thermoplastic resin layer (softening by applying heat and cooling Due to the softening of the resin surface due to heating, it follows the unevenness of the metal layer surface, and as a result, the contact area between the resin layer surface and the metal layer surface increases, and the metal layer surface and the functional groups of the thermoplastic resin layer can cause chemical bonding and/or physical bonding between the metal layer surface and the thermoplastic resin layer due to intermolecular forces. As a result, two thermoplastic resin layers and an adherend such as a metal layer positioned therebetween can be mutually bonded without necessarily using an adhesive layer. As a result, it is possible to maintain the shape of the outer package having a laminated structure without necessarily using an adhesive layer.
 従って、従前のような接着剤層を用いることを必須とする外装材は接着剤を介して水蒸気が侵入する虞があるためそれと比べて、本発明は外装材自体への水蒸気の浸入を抑制可能となる。これにより、水蒸気浸入が抑制された外装材を固体電池等の電子デバイスの周囲を覆うように設ける場合において、当該固体電池等の電子デバイス内への水蒸気浸入抑制も可能となる。換言すると、外装材それ自体が水蒸気バリア膜としての機能を有し得る。 Therefore, compared with conventional exterior materials that require the use of an adhesive layer, water vapor may enter through the adhesive, and the present invention can prevent water vapor from entering the exterior materials themselves. becomes. As a result, in the case of providing an exterior material in which penetration of water vapor is suppressed so as to cover the periphery of an electronic device such as a solid-state battery, it is possible to suppress the penetration of water vapor into the electronic device such as the solid-state battery. In other words, the exterior material itself can function as a water vapor barrier film.
 又、本発明の一実施形態では、接着剤層を必ずしも用いなくとも、2つの熱可塑性を有する樹脂層とその間に位置する金属層等の被接着体とを相互に接合可能となるため、外装材の全厚を減じることも可能となる。すなわち、外装材が電池等の電子デバイスと一体化して設けられる場合において、その一体化物自体のサイズの低減化に貢献できる。一体化物自体のサイズの低減化によって、例えば、エネルギー密度の向上、または省スペース化等に貢献できる。 In one embodiment of the present invention, two thermoplastic resin layers and an adherend such as a metal layer positioned between them can be bonded to each other without necessarily using an adhesive layer. It is also possible to reduce the overall thickness of the material. In other words, when the exterior material is integrated with an electronic device such as a battery, it can contribute to reducing the size of the integrated product itself. Reducing the size of the integrated body itself can contribute to, for example, improving energy density or saving space.
 また、本発明の一実施形態では、接着剤層を必ずしも用いなくてもよいため、接着剤層の塗布工程および接着剤層の硬化工程を省略し得る。したがって、本発明の一実施形態の外装材は低コストな外装材であり得る。 In addition, in one embodiment of the present invention, since the adhesive layer is not necessarily used, the step of applying the adhesive layer and the step of curing the adhesive layer can be omitted. Therefore, the facing material of one embodiment of the present invention can be a low cost facing material.
 以下、本発明の一実施形態に係る外装材の構成要素に具体的に述べる。 The constituent elements of the exterior material according to one embodiment of the present invention will be specifically described below.
[金属層]
 金属層11bは、図1に示すように、外装材11を構成する層のうち中間の層に位置付けられる層である。換言すると、金属層11bは、第1の熱可塑性樹脂層11aと第2の熱可塑性樹脂層11cとによって挟持される層である。金属層11bは、面状に延在する層である。面状に延在する層であるがゆえ、金属層11bは2つの主面を有して成る。具体的には、金属層11bの第1の主面とその金属層11bの第2の主面が対向するように金属層11bは延在している。外装材11に用いられる金属層11bとして、例えば、金属箔を用いてもよい。金属層11bは、水蒸気および/またはガス等に対して実質的に透過性を有さない層であってよい。
[Metal layer]
The metal layer 11b is, as shown in FIG. In other words, the metal layer 11b is a layer sandwiched between the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c. The metal layer 11b is a layer extending planarly. Since it is a layer extending planarly, the metal layer 11b has two main surfaces. Specifically, the metal layer 11b extends so that the first main surface of the metal layer 11b faces the second main surface of the metal layer 11b. As the metal layer 11b used for the exterior material 11, for example, a metal foil may be used. Metal layer 11b may be a layer that is substantially impermeable to water vapor and/or gases.
[第1の熱可塑性樹脂層]
 第1の熱可塑性樹脂層11aは、図1に示すように、金属層11bの第1の主面側に位置する。換言すると、第1の熱可塑性樹脂層11aは、金属層11bが有する主面のうち第1の主面上に位置する。ここでいう「位置する」とは、第1の熱可塑性樹脂層11aが金属層11bに直接接して設けられていることであってよく、または第1の熱可塑性樹脂層11aが他の層を介して第1の主面に間接的に設けられていることであってよい。換言すると、第1の熱可塑性樹脂層11aと金属層との間に他の層を有していてもよく、または他の層を有さなくてもよいことを意味する。第1の熱可塑性樹脂層11aは電子デバイスを保護するために用いられ、具体的には、外部からの水蒸気の浸入防止(水蒸気バリア層)、または電子デバイスの損傷防止のために用いられる。必要に応じて、第1の熱可塑性樹脂層11aは耐薬品性、絶縁性等も有してもよい。
[First thermoplastic resin layer]
The first thermoplastic resin layer 11a is located on the first main surface side of the metal layer 11b, as shown in FIG. In other words, the first thermoplastic resin layer 11a is located on the first main surface among the main surfaces of the metal layer 11b. The term "positioned" as used herein may mean that the first thermoplastic resin layer 11a is provided in direct contact with the metal layer 11b, or that the first thermoplastic resin layer 11a is provided in contact with another layer. It may be indirectly provided on the first main surface via the first main surface. In other words, it means that there may or may not be another layer between the first thermoplastic resin layer 11a and the metal layer. The first thermoplastic resin layer 11a is used to protect the electronic device, specifically to prevent water vapor from entering from the outside (water vapor barrier layer) or to prevent damage to the electronic device. If necessary, the first thermoplastic resin layer 11a may also have chemical resistance, insulating properties, and the like.
 第1の熱可塑性樹脂層11aは、主成分として熱可塑性樹脂を含む層である。熱可塑性樹脂は、熱を加えることにより金属層等の被接着体と接合できる樹脂である。また、熱可塑性樹脂は熱を加えることにより軟化し、冷却により固化し、軟化と固化を可逆的に繰り返すことができる樹脂である。第1の熱可塑性樹脂層11aは、熱可塑性樹脂のみからなっていてよい。第1の熱可塑性樹脂層11aは、単層からなっていてもよく、2層以上からなる一体化物により構成されていてもよい。熱可塑性樹脂は、熱融着性を有する樹脂であってよい。 The first thermoplastic resin layer 11a is a layer containing a thermoplastic resin as a main component. A thermoplastic resin is a resin that can be bonded to an adherend such as a metal layer by applying heat. A thermoplastic resin is a resin that can be softened by applying heat and solidified by cooling, and can reversibly repeat softening and solidifying. The first thermoplastic resin layer 11a may be made of thermoplastic resin only. The first thermoplastic resin layer 11a may be composed of a single layer, or may be composed of an integrated body composed of two or more layers. The thermoplastic resin may be a resin having heat-sealing properties.
 第1の熱可塑性樹脂層11aの融点は、260℃よりも高いことが好ましい。本発明でいう「第1の熱可塑性樹脂層の融点」とは、例えば、第1の熱可塑性樹脂層11aが融解する温度であってよいが、詳しくは下記で詳述する融点であってよい。また、第1の熱可塑性樹脂層11aが2層以上からなる場合、これらの層に使用される材料の融点は、260℃よりも高いことが好ましい。 The melting point of the first thermoplastic resin layer 11a is preferably higher than 260°C. The "melting point of the first thermoplastic resin layer" as used in the present invention may be, for example, the temperature at which the first thermoplastic resin layer 11a melts, and may be the melting point described in detail below. . Moreover, when the first thermoplastic resin layer 11a is composed of two or more layers, the melting point of the material used for these layers is preferably higher than 260.degree.
[第2の熱可塑性樹脂層]
 第2の熱可塑性樹脂層11cは、図1に示すように、金属層11bの第2の主面側に位置する。換言すると、第2の熱可塑性樹脂層11cは、金属層11bが有する主面のうち第2の主面上に位置する。第2の熱可塑性樹脂層11cは、金属層11bの主面のうち、第1の熱可塑性樹脂層11aが位置する主面側とは異なる主面側に位置する。ここでいう「位置する」とは、第2の熱可塑性樹脂層11cが金属層11bに直接接して設けられていることであってもよく、または第2の熱可塑性樹脂層11cが他の層を介して第2の主面に間接的に設けられていることであってよい。換言すると、第2の熱可塑性樹脂層11cと金属層11bとの間に他の層を有していてもよく、他の層を有さなくてもよいことを意味する。第2の熱可塑性樹脂層11cは電子デバイスを保護するために用いられ、具体的には、外部からの水蒸気の浸入防止(水蒸気バリア層)、または電子デバイスの損傷防止するために用いられる。必要に応じて、第2の熱可塑性樹脂層11cは耐薬品性、絶縁性等も有してもよい。
[Second thermoplastic resin layer]
The second thermoplastic resin layer 11c is located on the second main surface side of the metal layer 11b, as shown in FIG. In other words, the second thermoplastic resin layer 11c is located on the second main surface among the main surfaces of the metal layer 11b. The second thermoplastic resin layer 11c is located on the main surface side of the metal layer 11b, which is different from the main surface side on which the first thermoplastic resin layer 11a is located. The term "positioned" as used herein may mean that the second thermoplastic resin layer 11c is provided in direct contact with the metal layer 11b, or that the second thermoplastic resin layer 11c is provided in another layer. may be indirectly provided on the second main surface via the In other words, it means that there may or may not be another layer between the second thermoplastic resin layer 11c and the metal layer 11b. The second thermoplastic resin layer 11c is used to protect the electronic device, specifically to prevent water vapor from entering from the outside (water vapor barrier layer) or to prevent damage to the electronic device. If necessary, the second thermoplastic resin layer 11c may also have chemical resistance, insulating properties, and the like.
 第2の熱可塑性樹脂層11cは、主成分として熱可塑性樹脂を含む層である。第2の熱可塑性樹脂層11cに用いられる熱可塑性樹脂は、上記第1の熱可塑性樹脂で用いられる熱可塑性樹脂と同様の特徴を有する樹脂である。第2の熱可塑性樹脂層11cは、熱可塑性樹脂のみからなっていてもよい。第2の熱可塑性樹脂層11cは、単層であってもよく、2層以上からなる一体化物により構成されていてもよい。 The second thermoplastic resin layer 11c is a layer containing a thermoplastic resin as a main component. The thermoplastic resin used for the second thermoplastic resin layer 11c is a resin having the same characteristics as the thermoplastic resin used for the first thermoplastic resin. The second thermoplastic resin layer 11c may be made of thermoplastic resin only. The second thermoplastic resin layer 11c may be a single layer, or may be composed of an integrated body composed of two or more layers.
 第2の熱可塑性樹脂層11cの融点は、260℃よりも高いことが好ましい。本発明でいう「第2の熱可塑性樹脂層の融点」とは、例えば、第2の熱可塑性樹脂層11cが融解する温度であってよいが、詳しくは下記で詳述する融点であってよい。また、第2の熱可塑性樹脂層11cが2層以上からなる場合、これらの層に使用される材料の融点は、260℃よりも高いことが好ましい。 The melting point of the second thermoplastic resin layer 11c is preferably higher than 260°C. The "melting point of the second thermoplastic resin layer" as used in the present invention may be, for example, the temperature at which the second thermoplastic resin layer 11c melts, but may be the melting point described in detail below. . Moreover, when the second thermoplastic resin layer 11c is composed of two or more layers, the melting point of the material used for these layers is preferably higher than 260.degree.
 第1の熱可塑性樹脂層11aの融点および第2の熱可塑性樹脂層11cの融点は、従前に知られている方法で測定した値を用いてよい。例えば、第1の熱可塑性樹脂層11aの融点および第2の熱可塑性樹脂層11cの融点は、JIS K7121-2012に記載の方法に準拠して求められた値を用いてもよい。 For the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c, values measured by a conventionally known method may be used. For example, the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c may be values determined according to the method described in JIS K7121-2012.
 第1の熱可塑性樹脂層11aの融点および第2の熱可塑性樹脂層11cの融点は、従前に知られている方法で制御できる。例えば、第1の熱可塑性樹脂層11aの融点および第2の熱可塑性樹脂層11cの融点は、熱可塑性樹脂を構成する高分子の分子量、重合度、分子量分布、結晶化度、共重合比、および高分子結晶の大きさ等を調整することで制御できる。 The melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c can be controlled by a conventionally known method. For example, the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c are the molecular weight, polymerization degree, molecular weight distribution, crystallinity degree, copolymerization ratio, and And it can be controlled by adjusting the size of the polymer crystal.
 第1の熱可塑性樹脂層11aの融点は、本発明の外装材を備える電子デバイスを基板等へ実装する際の実装温度で第1の熱可塑性樹脂層11aが融解しなければ特に制限はない。第1の熱可塑性樹脂層11aが実装温度で融解することをさらに防ぐ観点から、第1の熱可塑性樹脂層11aの融点は好ましくは270℃以上、より好ましくは280℃以上、さらに好ましくは290℃以上あればよい。一方で、第1の熱可塑性樹脂層11aの融点が高過ぎる場合、第1の熱可塑性樹脂層11aが軟化し難くなるため加工し難くなること、さらに高温熱源が必要となるため製造コストが高くなる。加工性向上、および/または製造コストを抑える観点から、第1の熱可塑性樹脂層11aの融点は、好ましくは400℃以下であってよく、より好ましくは370℃以下、さらに好ましくは350℃以下、特に好ましくは330℃以下であってよい。 The melting point of the first thermoplastic resin layer 11a is not particularly limited as long as the first thermoplastic resin layer 11a does not melt at the mounting temperature when mounting the electronic device provided with the exterior material of the present invention on a substrate or the like. From the viewpoint of further preventing the first thermoplastic resin layer 11a from melting at the mounting temperature, the melting point of the first thermoplastic resin layer 11a is preferably 270°C or higher, more preferably 280°C or higher, and still more preferably 290°C. That's all there is to it. On the other hand, if the melting point of the first thermoplastic resin layer 11a is too high, the first thermoplastic resin layer 11a is difficult to soften, making it difficult to process. Become. From the viewpoint of improving workability and/or reducing manufacturing costs, the melting point of the first thermoplastic resin layer 11a may be preferably 400° C. or lower, more preferably 370° C. or lower, and still more preferably 350° C. or lower. Especially preferably, it may be 330° C. or lower.
 第2の熱可塑性樹脂層11cの融点は、本発明の外装材を備える電子デバイスを基板等へ実装する際の実装温度で第2の熱可塑性樹脂層11cが融解しなければ特に制限はない。第2の熱可塑性樹脂層11cが実装温度で融解することをさらに防ぐ観点から、第2の熱可塑性樹脂層11cの融点は好ましくは270℃以上、より好ましくは280℃以上、さらに好ましくは290℃以上あればよい。一方で、第2の熱可塑性樹脂層11cの融点が高すぎる場合、第2の熱可塑性樹脂層11cが軟化し難くなるため加工し難くなること、さらに高温熱源が必要となるため製造コストが高くなる。加工性向上、または製造コストを抑える観点から、第2の熱可塑性樹脂層11cの融点は、好ましくは400℃以下であってよく、より好ましくは370℃以下、さらに好ましくは350℃以下、特に好ましくは330℃以下であってよい。 The melting point of the second thermoplastic resin layer 11c is not particularly limited as long as the second thermoplastic resin layer 11c does not melt at the mounting temperature when mounting the electronic device provided with the exterior material of the present invention on a substrate or the like. From the viewpoint of further preventing the second thermoplastic resin layer 11c from melting at the mounting temperature, the melting point of the second thermoplastic resin layer 11c is preferably 270°C or higher, more preferably 280°C or higher, and still more preferably 290°C. That's all there is to it. On the other hand, when the melting point of the second thermoplastic resin layer 11c is too high, the second thermoplastic resin layer 11c becomes difficult to soften, making it difficult to process. Become. From the viewpoint of improving workability or reducing manufacturing costs, the melting point of the second thermoplastic resin layer 11c may be preferably 400° C. or lower, more preferably 370° C. or lower, still more preferably 350° C. or lower, and particularly preferably 350° C. or lower. may be 330° C. or lower.
 外装材が電池等の電子デバイスと一体化した際に得られる一体化物のサイズをより低減する観点から、外装材11の厚みは1μm以上500μm以下であることが好ましく、より好ましくは、5μm以上300μm以下、さらに好ましくは10μm以上200μm以下、特に好ましくは20μm以上150μmであってよい。 From the viewpoint of further reducing the size of an integrated product obtained when the exterior material is integrated with an electronic device such as a battery, the thickness of the exterior material 11 is preferably 1 μm or more and 500 μm or less, more preferably 5 μm or more and 300 μm. It is more preferably 10 μm or more and 200 μm or less, and particularly preferably 20 μm or more and 150 μm.
 金属層11bの厚みは、例えば、1μm以上200μm以下であってよい。外装材11の全厚をより減じる観点から、金属層11bの厚みは、1μm以上100μm以下であってよく、好ましくは10μm以上100μm以下、より好ましくは10μm以上50μm以下、さらに好ましくは20μm以上50μm以下であってよい。 The thickness of the metal layer 11b may be, for example, 1 μm or more and 200 μm or less. From the viewpoint of further reducing the total thickness of the exterior material 11, the thickness of the metal layer 11b may be 1 μm or more and 100 μm or less, preferably 10 μm or more and 100 μm or less, more preferably 10 μm or more and 50 μm or less, and still more preferably 20 μm or more and 50 μm or less. can be
 第1の熱可塑性樹脂層11aの厚みは、外装材11の全厚をより減じる観点から、1μm以上500μm以下であることが好ましく、より好ましくは、2μm以上300μm以下、さらに好ましくは3μm以上100μm以下であってよい。 The thickness of the first thermoplastic resin layer 11a is preferably 1 μm or more and 500 μm or less, more preferably 2 μm or more and 300 μm or less, still more preferably 3 μm or more and 100 μm or less, from the viewpoint of further reducing the total thickness of the exterior material 11. can be
 第2の熱可塑性樹脂層11cの厚みは、外装材11の全厚をより減じる観点から、1μm以上500μm以下であることが好ましく、より好ましくは、2μm以上300μm以下、さらに好ましくは3μm以上100μm以下であってよい。 The thickness of the second thermoplastic resin layer 11c is preferably 1 μm or more and 500 μm or less, more preferably 2 μm or more and 300 μm or less, still more preferably 3 μm or more and 100 μm or less, from the viewpoint of further reducing the total thickness of the exterior material 11. can be
 本発明の一実施形態に係る外装材11は、金属層11bと、金属層11bの第1の主面側に位置する第1の熱可塑性樹脂層11aとの間に他の層があってもよく、金属層11bの第2の主面側に位置する第2の熱可塑性樹脂層11cとの間にさらなる他の層があってもよい。そのような他の層およびさらなる他の層としては、例えば水蒸気バリア層、絶縁層、耐薬品層、耐熱層、または損傷防止層であってよい。 In the exterior material 11 according to one embodiment of the present invention, even if there is another layer between the metal layer 11b and the first thermoplastic resin layer 11a located on the first main surface side of the metal layer 11b, There may well be another layer between the second thermoplastic resin layer 11c located on the second main surface side of the metal layer 11b. Such other layers and further layers may be, for example, water vapor barrier layers, insulating layers, chemical resistant layers, heat resistant layers, or damage prevention layers.
 本発明の一実施形態に係る外装材11は、第1の熱可塑性樹脂層11aを覆う第1サブ層があってもよく、第2の熱可塑性樹脂層11cを覆う第2サブ層があってもよい。具体的には、金属層11bの第1の主面と対向しているまたは接している第1の熱可塑性樹脂層11aの主面とは異なる第1の熱可塑性樹脂層11aの主面上に第1サブ層があってもよい。かかる一実施形態では、第1の熱可塑性樹脂層が、第1サブ層と金属層との間に位置する。金属層11bの第2の主面と対向しているまたは接している第2の熱可塑性樹脂層11cの主面とは異なる第2の熱可塑性樹脂層11cの主面上に第2サブ層があってもよい。かかる一実施形態では、第2の熱可塑性樹脂層が、第2サブ層と金属層との間に位置する。そのような第1サブ層および第2サブ層は、例えば、さらなる水蒸気バリア層、耐薬品層、耐熱外装材、または耐損傷防止層であってよい。具体的には、例えば、さらなる金属層、またはスパッタ等により形成された金属めっき層であってもよい。 The exterior material 11 according to one embodiment of the present invention may have a first sub-layer covering the first thermoplastic resin layer 11a, and may have a second sub-layer covering the second thermoplastic resin layer 11c. good too. Specifically, on the main surface of the first thermoplastic resin layer 11a different from the main surface of the first thermoplastic resin layer 11a facing or in contact with the first main surface of the metal layer 11b There may be a first sublayer. In one such embodiment, the first thermoplastic layer is located between the first sublayer and the metal layer. A second sub-layer is formed on the major surface of the second thermoplastic resin layer 11c that is different from the major surface of the second thermoplastic resin layer 11c facing or in contact with the second major surface of the metal layer 11b. There may be. In one such embodiment, a second thermoplastic layer is located between the second sub-layer and the metal layer. Such first and second sub-layers may be, for example, additional water vapor barrier layers, chemical resistant layers, heat resistant cladding, or damage resistant layers. Specifically, for example, it may be an additional metal layer or a metal plating layer formed by sputtering or the like.
 本発明の一実施形態に係る外装材11は、上記の効果で記載した通り、水蒸気の浸入を抑制する観点から、接着剤層を用いないか、あるいは相対的に厚さが薄い接着剤層を用いてもよい。接着剤層を用いない場合、接着剤層を介して水蒸気が浸入する虞がないため、外装材の水蒸気バリア性を向上できる。さらに、融点が260℃よりも高い材料を使用することで、はんだ実装に耐えうる外装が提供できる。相対的に厚さが薄い接着剤を用いる場合、当該接着剤としては、例えば、実装工程前後において接着力が維持できる接着剤であってもよい。 As described in the above effect, the exterior material 11 according to one embodiment of the present invention does not use an adhesive layer or uses a relatively thin adhesive layer from the viewpoint of suppressing the infiltration of water vapor. may be used. When the adhesive layer is not used, there is no concern that water vapor may enter through the adhesive layer, so the water vapor barrier properties of the exterior material can be improved. Furthermore, by using a material with a melting point higher than 260° C., it is possible to provide an exterior that can withstand solder mounting. When using an adhesive with a relatively thin thickness, the adhesive may be, for example, an adhesive that can maintain adhesive strength before and after the mounting process.
 本発明の一実施形態に係る外装材は、下記態様を採ってもよい。 The exterior material according to one embodiment of the present invention may adopt the following aspects.
 本発明の一実施形態では、第1の熱可塑性樹脂層11aおよび第2の熱可塑性樹脂層11cの少なくとも一方の樹脂層は、金属層11bと直接接合していてもよい。 In one embodiment of the present invention, at least one of the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be directly bonded to the metal layer 11b.
 熱可塑性樹樹脂層と金属層11bとが直接接合するとは、熱可塑性樹樹脂層と金属層11bとの間に他の層が介在することなく、熱可塑性樹樹脂層と金属層11bとが直接互いに接合していることを意味する。そのような一実施形態としては、例えば、熱可塑性樹樹脂層と金属層11bとの間に接着剤層が介在することなく、熱可塑性樹樹脂層と金属層11bとが直接互いに接合していることが挙げられる。ここでいう「接合」とは、例えば、2つの物体が接している状態において、その2つの物体に対して外部から力をかけない限り、その接している2つの物体は互いに分離しないことを意味する。直接接合する層は、例えば、第1の熱可塑性樹脂層11aと金属層11bとが互いに直接接合していてもよく、または第2の熱可塑性樹脂層11cと金属層11bとが互いに直接接合していてもよい。水蒸気の浸入をより抑制する観点から、第1の熱可塑性樹脂層11aおよび第2の熱可塑性樹脂層11cの双方が金属層11bと直接接合していてもよい。 Direct bonding between the thermoplastic resin layer and the metal layer 11b means that the thermoplastic resin layer and the metal layer 11b are directly bonded without any other layer interposed between the thermoplastic resin layer and the metal layer 11b. It means that they are connected to each other. As such an embodiment, for example, the thermoplastic resin layer and the metal layer 11b are directly bonded to each other without an adhesive layer interposed between the thermoplastic resin layer and the metal layer 11b. Things are mentioned. The term "joining" as used herein means, for example, that in a state in which two objects are in contact with each other, the two objects in contact with each other do not separate from each other unless a force is applied to the two objects from the outside. do. As for the directly bonded layer, for example, the first thermoplastic resin layer 11a and the metal layer 11b may be directly bonded to each other, or the second thermoplastic resin layer 11c and the metal layer 11b may be directly bonded to each other. may be From the viewpoint of further suppressing the penetration of water vapor, both the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be directly bonded to the metal layer 11b.
 熱可塑性樹脂層と金属層11bとの直接接合は、例えば、熱可塑性樹脂層と金属層11bとを圧着させて達成してもよい。圧着とは、熱可塑性樹脂層および金属層11bの少なくとも一方を加圧または圧迫して熱可塑性樹脂層と金属層11bとを接合することを意味する。例えば、圧着は、第1の熱可塑性樹脂層11aと金属層11bとを重ね合わせた状態にし、重なり合った状態の第1の熱可塑性樹脂層11aと金属層11bとを挟み込むように力を加えることによりなされてもよい。第2の熱可塑性樹脂層11cと金属層11bとを圧着させる場合も、上記と同様の方法によりなされてもよい。熱可塑性樹脂層と金属層11bとを直接接合させる際、接着剤層を用いなくてもよい。外装材に用いられる熱可塑性樹脂層は、それ自体が接着性を有する。そのため、熱可塑性樹脂層と金属層11bは、接着剤層を用いずとも接着が可能である。熱可塑性樹脂層それ自体が結合力を有するメカニズムは明らかではないが、例えば、熱可塑性樹脂中に含まれる結合力に資する分子構造、もしくはその分子中の官能基、または熱可塑性樹脂が被接着体の微細な凹凸に入り込むこと等が要因と考えられる。 Direct bonding between the thermoplastic resin layer and the metal layer 11b may be achieved by, for example, pressing the thermoplastic resin layer and the metal layer 11b together. Crimping means bonding the thermoplastic resin layer and the metal layer 11b by pressurizing or compressing at least one of the thermoplastic resin layer and the metal layer 11b. For example, crimping is performed by superimposing the first thermoplastic resin layer 11a and the metal layer 11b and applying a force so as to sandwich the superimposed first thermoplastic resin layer 11a and the metal layer 11b. may be made by When the second thermoplastic resin layer 11c and the metal layer 11b are press-bonded together, the same method as described above may be used. When directly bonding the thermoplastic resin layer and the metal layer 11b, an adhesive layer may not be used. The thermoplastic resin layer used for the exterior material itself has adhesiveness. Therefore, the thermoplastic resin layer and the metal layer 11b can be adhered without using an adhesive layer. Although the mechanism by which the thermoplastic resin layer itself has a binding force is not clear, for example, the molecular structure that contributes to the binding force contained in the thermoplastic resin, or the functional group in the molecule, or the thermoplastic resin is the adherend. It is considered that the reason is that it enters into the fine unevenness of the surface.
 第1の熱可塑性樹脂層11aの融点と第2の熱可塑性樹脂層11cの融点の差は20℃以上であってよい。具体的には、第1の熱可塑性樹脂層11aの融点が第2の熱可塑性樹脂層11cの融点より20℃以上高くてもよく、第1の熱可塑性樹脂層11aの融点が第2の熱可塑性樹脂層11cの融点より20℃以上低くてもよい。第1の熱可塑性樹脂層11aの融点と第2の熱可塑性樹脂層11cの融点の差が20℃以上ある場合、外装材11を製造し易くなる。具体的には、後述する外装材11の製造方法において、金属層11bの第1の主面側に相対的に高融点の熱可塑性樹脂層を熱ラミネートし、次いで金属層11bの第2の主面側に相対的に低融点の熱可塑性樹脂層を熱ラミネートすることが可能となる。 The difference between the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c may be 20°C or more. Specifically, the melting point of the first thermoplastic resin layer 11a may be higher than the melting point of the second thermoplastic resin layer 11c by 20° C. or more, and the melting point of the first thermoplastic resin layer 11a may be the second heat. It may be 20° C. or more lower than the melting point of the plastic resin layer 11c. When the difference between the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c is 20° C. or more, the exterior material 11 can be easily manufactured. Specifically, in the manufacturing method of the exterior material 11 described later, a thermoplastic resin layer having a relatively high melting point is thermally laminated on the first main surface side of the metal layer 11b, and then the second main surface of the metal layer 11b is laminated. It becomes possible to thermally laminate a thermoplastic resin layer having a relatively low melting point on the face side.
 第1の熱可塑性樹脂層11aの融点と第2の熱可塑性樹脂層11cの融点との差は、外装材11の製造をより容易にする観点から、好ましくは25℃以上、より好ましくは30℃以上、さらに好ましくは35℃以上、特に好ましくは40℃以上であってよい。一方で、外装材11の製造時における熱ラミネート時および/または冷却時の温度管理を容易にする観点から、第1の熱可塑性樹脂層11aの融点と第2の熱可塑性樹脂層11cの融点の差は、100℃以下であってよく、好ましくは80℃以下、より好ましくは70℃以下、さらに好ましくは60℃以下、特に好ましくは50℃以下であってよい。 The difference between the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c is preferably 25° C. or more, more preferably 30° C., from the viewpoint of facilitating the manufacture of the exterior material 11. above, more preferably 35° C. or higher, particularly preferably 40° C. or higher. On the other hand, from the viewpoint of facilitating temperature control during thermal lamination and/or cooling during manufacturing of the exterior material 11, the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c The difference may be 100°C or less, preferably 80°C or less, more preferably 70°C or less, even more preferably 60°C or less, particularly preferably 50°C or less.
 以下に、本発明の一実施形態に係る外装材に使用できる金属層、第1の熱可塑性樹脂、および第2の熱可塑性樹脂の種類について詳述する。 The types of the metal layer, the first thermoplastic resin, and the second thermoplastic resin that can be used for the exterior material according to one embodiment of the present invention are described below.
[金属層の種類]
 金属層11bを構成する金属材料としては、例えば、アルミニウム(またはその合金)、ステンレス、銅、ニッケル、チタン、およびニッケルメッキ鋼板等から成る群から選択される少なくとも1種を挙げることができる。金属層11bは市販品のものを使用できる。
[Type of metal layer]
Examples of the metal material forming the metal layer 11b include at least one selected from the group consisting of aluminum (or its alloy), stainless steel, copper, nickel, titanium, nickel-plated steel plate, and the like. A commercial product can be used for the metal layer 11b.
 金属層11bにアルミニウム(またはその合金)を用いる場合、例えば、従前に用いられてきたアルミニウム材料を用いてもよい。金属層11bにアルミニウム合金を用いる場合、例えば、JIS A8021、またはJIS 8079で規定される組成を備えるアルミニウム合金等を用いていてもよい。 When aluminum (or its alloy) is used for the metal layer 11b, for example, an aluminum material that has been used in the past may be used. When an aluminum alloy is used for the metal layer 11b, for example, an aluminum alloy having a composition specified by JIS A8021 or JIS 8079 may be used.
[第1熱可塑性樹脂層と第2の熱可塑性樹脂層の種類]
 第1の熱可塑性樹脂層11aおよび第2の熱可塑性樹脂層11cに用いられる熱可塑性樹脂は融点が260℃を超える温度であれば特に限定されず、例えば、液晶ポリマー、芳香族ポリエステル系樹脂(例えばポリエチレンナフタレート)、芳香族ポリエーテルケトン系樹脂、フッ素系樹脂、ポリフェニレンサルファイド系樹脂、ポリアミド系樹脂、熱可塑性ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリエーテルイミド系樹脂、フェノール系樹脂、アクリル系樹脂、ポリウレタン系樹脂、シリコーン系樹脂、またはこれらの変性物であってもよい。また、スーパーエンジニアプラスチックに分類される樹脂を用いていてもよい。第1の熱可塑性樹脂層11aおよび第2の熱可塑性樹脂層11cは、上記樹脂の単独重合物、または共重合体物であってもよい。第1の熱可塑性樹脂層11aおよび第2の熱可塑性樹脂層11cは、上記樹脂を単独品で用いてもよく、2種類以上の樹脂を組み合せて構成されるコンパウンド品であってもよい。第1の熱可塑性樹脂層11aおよび第2の熱可塑性樹脂層11cは、単層であってもよく、2層以上により構成されていてもよい。第1の熱可塑性樹脂層11aおよび第2の熱可塑性樹脂層11cは市販品のものを使用できる。
[Types of First Thermoplastic Resin Layer and Second Thermoplastic Resin Layer]
The thermoplastic resin used for the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c is not particularly limited as long as the melting point exceeds 260° C. For example, liquid crystal polymer, aromatic polyester resin ( polyethylene naphthalate), aromatic polyether ketone resins, fluorine resins, polyphenylene sulfide resins, polyamide resins, thermoplastic polyimide resins, polyamideimide resins, polyetherimide resins, phenolic resins, acrylic resins Resins, polyurethane resins, silicone resins, or modified products thereof may be used. Also, resins classified as super engineering plastics may be used. The first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be homopolymers or copolymers of the above resins. For the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c, the above resin may be used as a single product, or a compound product configured by combining two or more types of resin may be used. The first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be a single layer, or may be composed of two or more layers. Commercially available products can be used for the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c.
 上記樹脂のうち、水蒸気の浸入をより抑制する観点から、第1の熱可塑性樹脂層11aおよび第2の熱可塑性樹脂層11cが、液晶ポリマー、ポリエチレンナフタレート、芳香族ポリエーテルケトン系樹脂、フッ素系樹脂、ポリアミド系樹脂、およびポリフェニレンサルファイド系樹脂からなる群より選択される少なくとも1種の樹脂から構成されていてよい。 Among the above resins, the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c are composed of liquid crystal polymer, polyethylene naphthalate, aromatic polyether ketone resin, and fluorine resin, from the viewpoint of further suppressing the infiltration of water vapor. may be composed of at least one resin selected from the group consisting of system resins, polyamide system resins, and polyphenylene sulfide system resins.
 液晶ポリマーには、溶融状態で液晶性を示すサーモトロピック型の液晶ポリマーと、溶液状態で液晶性を示すレオトロピック型の液晶ポリマーとがある。本発明では何れの液晶ポリマーも用いてもよいが、水蒸気の浸入をより抑制する観点および/またはリフロー温度で融解することを防ぐ観点から、サーモトロピック型の液晶ポリマーを用いてもよい。 Liquid crystal polymers include thermotropic liquid crystal polymers that exhibit liquid crystallinity in a molten state and rheotropic liquid crystal polymers that exhibit liquid crystallinity in a solution state. Although any liquid crystal polymer may be used in the present invention, a thermotropic liquid crystal polymer may be used from the viewpoint of further suppressing the penetration of water vapor and/or from the viewpoint of preventing melting at the reflow temperature.
 サーモトロピック型の液晶ポリマーのうちサーモトロピック型の液晶ポリエステル(以下、単に「液晶ポリエステル」という)とは、例えば、芳香族ヒドロキシカルボン酸を必須のモノマーとし、芳香族ジカルボン酸や芳香族ジオール等のモノマーと反応させることにより得られる芳香族ポリエステルであって、溶融時に液晶性を示すものである。その代表的なものとしては、パラヒドロキシ安息香酸(PHB)と、フタル酸と、4,4’-ビフェノールから合成されるI型[下式(1)]、PHBと2,6-ヒドロキシナフトエ酸から合成されるII型[下式(2)]、PHBと、テレフタル酸と、エチレングリコールから合成されるIII型[下式(3)]が挙げられる。 Among thermotropic liquid crystal polymers, thermotropic liquid crystal polyester (hereinafter simply referred to as “liquid crystal polyester”) is, for example, an aromatic hydroxycarboxylic acid as an essential monomer, and an aromatic dicarboxylic acid, an aromatic diol, or the like. It is an aromatic polyester obtained by reacting with a monomer and exhibits liquid crystallinity when melted. Representative examples include Type I [formula (1) below] synthesized from parahydroxybenzoic acid (PHB), phthalic acid, and 4,4'-biphenol, PHB and 2,6-hydroxynaphthoic acid. Type II [formula (2)] synthesized from PHB, terephthalic acid, and type III [formula (3)] synthesized from ethylene glycol.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 外装材に用いる液晶ポリマーとしては、耐熱性や耐加水分解性により優れることから、上記のうちI型液晶ポリエステルとII型液晶ポリエステルであってもよい。 As the liquid crystal polymer used for the exterior material, type I liquid crystal polyester and type II liquid crystal polyester among the above may be used because they are superior in heat resistance and hydrolysis resistance.
 芳香族ポリエステル系樹脂は、芳香族ジカルボン酸成分とグリコール成分を基本骨格とするである。本発明では、特に、ナフタレンジカルボン酸成分とアルキレングリコール成分を基本骨格とする芳香族ポリエステル系樹脂を用いてもよく、具体的にはポリエチレンナフタレートを用いてもよい。ポリエチレンナフタレートとしては、上記ナフタレンジカルボン酸成分として2,6-ナフタレンジカルボン酸、または2,7-ナフタレンジカルボン酸、およびアルキレングリコール成分としてエチレングリコールとを反応させることで得られるポリエチレンナフタレートを用いてもよい。 Aromatic polyester-based resins are based on an aromatic dicarboxylic acid component and a glycol component. In the present invention, in particular, an aromatic polyester resin having a basic skeleton of a naphthalene dicarboxylic acid component and an alkylene glycol component may be used, and specifically polyethylene naphthalate may be used. As the polyethylene naphthalate, polyethylene naphthalate obtained by reacting 2,6-naphthalenedicarboxylic acid or 2,7-naphthalenedicarboxylic acid as the naphthalenedicarboxylic acid component and ethylene glycol as the alkylene glycol component is used. good too.
 芳香族ポリエーテルケトン系樹脂は、芳香環にケトン基とエーテル基が連結した構造を有する樹脂である。芳香族ポリエーテルケトン系樹脂は、その構成繰り返し単位中の芳香環、ケトン基、およびエーテル基の配列順や数によって種々の種類が存在するが、何れの芳香族ポリエーテルケトン系樹脂を使用してもよい。具体的には、本発明では芳香族ポリエーテルケトン系樹脂として、例えば、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリルエーテルケトン(PAEK)、またはポリエーテルケトンエーテルケトンケトン(PEKEKK)等を用いてもよい。 Aromatic polyether ketone resin is a resin that has a structure in which a ketone group and an ether group are linked to an aromatic ring. There are various types of aromatic polyether ketone resins depending on the arrangement order and number of aromatic rings, ketone groups, and ether groups in the constituent repeating units. may Specifically, in the present invention, examples of aromatic polyetherketone-based resins include polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), and polyallyl ether. Ketone (PAEK), polyetherketoneetherketoneketone (PEKEKK), or the like may also be used.
 フッ素系樹脂とは、フッ素を含むオレフィンを重合して得られる樹脂である。フッ素系樹脂としては、ポリエチレンテレフタレート(PETF)、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)、エチレンテトラフルオロエチレンコポリマー(ETFE)等を用いてもよい。 A fluororesin is a resin obtained by polymerizing an olefin containing fluorine. As the fluororesin, polyethylene terephthalate (PETF), perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), ethylenetetrafluoroethylene copolymer (ETFE), and the like may be used.
 ポリフェニレンサルファイドとは、高分子の構造繰り返し単位中に芳香環とスルフィド結合を含む樹脂である。ポリフェニレンサルファイドには、直鎖型、架橋型、半架橋型等があるが、いずれの型を用いてもよい。 Polyphenylene sulfide is a resin that contains aromatic rings and sulfide bonds in the structural repeating units of the polymer. Polyphenylene sulfide includes a linear type, a cross-linked type, a semi-cross-linked type, and the like, and any type may be used.
 ポリアミド系樹脂は、ジアミン成分とカルボン酸成分を基本骨格とする樹脂であり、高分子の構造繰り返し単位中にアミド結合を含む樹脂である。本発明では、ポリアミド系樹脂として、相対的に融点が高い芳香族ポリアミド系樹脂を用いてもよく、または高耐熱性ポリアミド(HTPA)系樹脂を用いてもよい。 A polyamide resin is a resin that has a basic skeleton of a diamine component and a carboxylic acid component, and contains an amide bond in the structural repeating unit of the polymer. In the present invention, as the polyamide-based resin, an aromatic polyamide-based resin having a relatively high melting point may be used, or a highly heat-resistant polyamide (HTPA)-based resin may be used.
 第1の熱可塑性樹脂層11aおよび第2の熱可塑性樹脂層11cに用いる樹脂は、結晶性樹脂または非昌性樹脂を使用してもよい。水蒸気の浸入を抑制する観点から、一般的に水蒸気が透過し難い結晶性樹脂を用いてもよい。 The resin used for the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be a crystalline resin or an amorphous resin. From the viewpoint of suppressing permeation of water vapor, a crystalline resin that generally does not allow water vapor to permeate may be used.
 第1の熱可塑性樹脂層11aおよび第2の熱可塑性樹脂層11cは、フィラーを含んでいてもよい。フィラーは、例えば、炭素繊維、ガラス繊維、シリカ、タルク、または無機粒子等を用いてもよい。フィラーは、第1の熱可塑性樹脂層11a中に例えば50体積%以下含まれていてよく、第2の熱可塑性樹脂層11c中に例えば50体積%以下含まれていてもよい。 The first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may contain filler. The filler may be, for example, carbon fiber, glass fiber, silica, talc, inorganic particles, or the like. The filler may be contained in the first thermoplastic resin layer 11a in an amount of, for example, 50% by volume or less, and may be contained in the second thermoplastic resin layer 11c in an amount of, for example, 50% by volume or less.
 本発明の一実施形態に係る外装材は、第1の熱可塑性樹脂層11aと第2の熱可塑性樹脂層11cとが同一種の熱可塑性樹脂から構成されていてよい。係る構成を採ることにより、同一種の材料を取り扱うゆえに外装材11を製造するための設備等を統一し易くなり、製造効率の向上に貢献し得る。ここでいう「同一種」の「種」とは、高分子の分子構造の繰り返し単位および/または高分子材料の特性に基づいて決められる高分子材料の種類を意味する。例えば、「第1の熱可塑性樹脂層11aと第2の熱可塑性樹脂層11cとが同一種の熱可塑性樹脂から構成されている」とは、第1の熱可塑性樹脂として液晶性を示す液晶ポリマーが選択されている場合、第2の熱可塑性樹脂も同様に液晶性を示す液晶ポリマーが選択されていることを意味する。例えば、第1の熱可塑性樹脂として芳香環を含むポリエステル種である芳香族ポリエステル系樹脂が選択されている場合、第2の熱可塑性樹脂として芳香環を含むポリエステル種である芳香族ポリエステル系樹脂が選択されていることを意味する。例えば、第1の熱可塑性樹脂として芳香環、エーテル結合、およびケトン基を含むポリマー種である芳香族ポリエーテルケトン系樹脂が選択されている場合、第2の熱可塑性樹脂として芳香環、エーテル結合、およびケトン基を含むポリマー種である芳香族ポリエーテルケトン系樹脂が選択されていることを意味する。 In the exterior material according to one embodiment of the present invention, the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be made of the same type of thermoplastic resin. By adopting such a configuration, since the same type of material is handled, it becomes easier to unify the equipment and the like for manufacturing the exterior material 11, which can contribute to the improvement of manufacturing efficiency. As used herein, the term "species" of "the same species" means the type of polymeric material determined based on the repeating units of the molecular structure of the polymer and/or the properties of the polymeric material. For example, "the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c are made of the same type of thermoplastic resin" means that the first thermoplastic resin is a liquid crystal polymer exhibiting liquid crystallinity. is selected, it means that a liquid crystal polymer exhibiting liquid crystallinity is also selected as the second thermoplastic resin. For example, when an aromatic polyester-based resin that is a polyester type containing an aromatic ring is selected as the first thermoplastic resin, an aromatic polyester-based resin that is a polyester type containing an aromatic ring is selected as the second thermoplastic resin. means it is selected. For example, when an aromatic polyether ketone-based resin, which is a polymer species containing an aromatic ring, an ether bond, and a ketone group, is selected as the first thermoplastic resin, the second thermoplastic resin is an aromatic ring, an ether bond, , and an aromatic polyetherketone-based resin, which is a polymer species containing ketone groups.
 第1の熱可塑性樹脂層11aと第2の熱可塑性樹脂層11cとが同一種の熱可塑性樹脂から構成されていれば、第1の熱可塑性樹脂層11aと第2の熱可塑性樹脂層11cそれぞれの物性は異なっていてもよい。例えば、第1の熱可塑性樹脂層11aと第2の熱可塑性樹脂層11cとが同一種の熱可塑性樹脂から構成されている場合において、第1の熱可塑性樹脂層11aと第2の熱可塑性樹脂層11cの熱的特性(例えば、融点、熱膨張率、熱伝導率)、力学的特性(例えば、引張強さ、曲げ強さ、圧縮強度)、抵抗率、および耐薬品性等は異なっていてよい。 If the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c are made of the same type of thermoplastic resin, the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c properties may be different. For example, when the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c are made of the same type of thermoplastic resin, the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11a Thermal properties (e.g. melting point, coefficient of thermal expansion, thermal conductivity), mechanical properties (e.g. tensile strength, flexural strength, compressive strength), resistivity, chemical resistance, etc. of layer 11c are different. good.
 なお、製造効率のさらなる向上の観点から、第1の熱可塑性樹脂層11aと第2の熱可塑性樹脂層11cとが同一材料の熱可塑性樹脂から構成されていてよい。ここでいう「同一材料」とは、高分子の分子構造の繰り返し単位が同じ材料を意味する。例えば、第1の熱可塑性樹脂としてナフタレンジカルボン酸とエチレングリコールの繰り返し単位で構成されているポリエチレンナフタレートが選択されている場合、第2の熱可塑性樹脂も同様の繰り返し単位で構成されているポリエチレンナフタレートが選択されていることを意味する。例えば、第1の熱可塑性樹脂としてエーテル結合、エーテル結合、およびケトン基がこの順で繰り返し単位として現れるポリエーテルエーテルケトンが選択されている場合、第2の熱可塑性樹脂も同様の繰り返し単位から構成されるポリエーテルエーテルケトンが選択されていることを意味する。 From the viewpoint of further improving manufacturing efficiency, the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c may be made of the same thermoplastic resin material. The “same material” as used herein means a material having the same repeating unit of the molecular structure of the polymer. For example, when polyethylene naphthalate composed of repeating units of naphthalene dicarboxylic acid and ethylene glycol is selected as the first thermoplastic resin, the second thermoplastic resin is polyethylene composed of similar repeating units. It means that naphthalate is selected. For example, when polyether ether ketone, in which an ether bond, an ether bond, and a ketone group appear in this order as repeating units, is selected as the first thermoplastic resin, the second thermoplastic resin is also composed of similar repeating units. This means that the polyetheretherketone that is used is selected.
 第1の熱可塑性樹脂層11aと第2の熱可塑性樹脂層11cとが同一材料の熱可塑性樹脂から構成されていれば、第1の熱可塑性樹脂層11aと第2の熱可塑性樹脂層11cそれぞれの物性は異なっていてもよい。例えば、第1の熱可塑性樹脂層11aと第2の熱可塑性樹脂層11cとが同一材料の熱可塑性樹脂から構成されている場合において、第1の熱可塑性樹脂層11aと第2の熱可塑性樹脂層11cの熱的特性(例えば、融点、熱膨張率、熱伝導率)、力学的特性(例えば、引張強さ、曲げ強さ、圧縮強度)、抵抗率、および耐薬品性等は異なっていてよい。 If the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c are made of the same thermoplastic resin material, the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c properties may be different. For example, when the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c are made of the same thermoplastic resin, the first thermoplastic resin layer 11a and the second thermoplastic resin Thermal properties (e.g. melting point, coefficient of thermal expansion, thermal conductivity), mechanical properties (e.g. tensile strength, flexural strength, compressive strength), resistivity, chemical resistance, etc. of layer 11c are different. good.
(本発明の外装材の製造方法)
 以下、本発明の一実施形態に係る外装材の製造方法について説明する。本発明の一実施形態に係る外装材の製造方法は、大きくは以下の(i)および(ii)の工程を順に含む(図2参照)。
(Method for manufacturing exterior material of the present invention)
A method for manufacturing an exterior material according to an embodiment of the present invention will be described below. A method for manufacturing an exterior material according to an embodiment of the present invention roughly includes the following steps (i) and (ii) in order (see FIG. 2).
 (i)金属層511bの第1の主面に第1の熱可塑性樹脂材511aが位置するように、金属層511bおよび第1の熱可塑性樹脂材511aを第1加熱ロール401と第1冷却ロール501との間に通す工程と、
 (ii)金属層511bの第2の主面に第2の熱可塑性樹脂材511cが位置するように、金属層511bおよび第1の熱可塑性樹脂材を第2加熱ロール402と第2冷却ロール502に通す工程。
(i) The metal layer 511b and the first thermoplastic resin material 511a are placed on the first heating roll 401 and the first cooling roll so that the first thermoplastic resin material 511a is positioned on the first main surface of the metal layer 511b. 501;
(ii) The metal layer 511b and the first thermoplastic resin material are placed on the second heating roll 402 and the second cooling roll 502 so that the second thermoplastic resin material 511c is positioned on the second main surface of the metal layer 511b. The process of passing through.
 まず、熱ラミネート法により、第1の熱可塑性樹脂材511aを金属層511bの第1の主面に接着する。具体的には、金属層511bの第1の主面と第1の熱可塑性樹脂材511aとが重なるように、金属層511bと第1の熱可塑性樹脂材511aを第1加熱ロール401と第1冷却ロール501との間に通す。このとき、金属層511bは第1加熱ロール401と接触し、第1の熱可塑性樹脂材511aは第1冷却ロール501と接触するように通す。これにより、加熱された金属層511bと接触した部分の第1の熱可塑性樹脂材11aは軟化し、軟化した第1の熱可塑性樹脂材511aは金属層511bと接着(熱融着)する。その後、第1加熱ロール401と第1冷却ロール501との間からは、金属層511bと第1の熱可塑性樹脂材511aとの一体化物が得られる。 First, the first thermoplastic resin material 511a is adhered to the first main surface of the metal layer 511b by thermal lamination. Specifically, the metal layer 511b and the first thermoplastic resin material 511a are placed together with the first heating roll 401 so that the first main surface of the metal layer 511b and the first thermoplastic resin material 511a overlap each other. Pass between the cooling roll 501 . At this time, the metal layer 511b is brought into contact with the first heating roll 401, and the first thermoplastic resin material 511a is brought into contact with the first cooling roll 501. Then, as shown in FIG. As a result, the portion of the first thermoplastic resin material 11a in contact with the heated metal layer 511b is softened, and the softened first thermoplastic resin material 511a is adhered (thermally fused) to the metal layer 511b. After that, from between the first heating roll 401 and the first cooling roll 501, an integrated product of the metal layer 511b and the first thermoplastic resin material 511a is obtained.
 次いで、金属層511bと第1の熱可塑性樹脂材511aとの一体化物は、熱ラミネート法により、金属層511bの残りの第2の主面に第2の熱可塑性樹脂材511cを接着する。具体的には、金属層511bの残りの第2の主面と第2の熱可塑性樹脂材511cとが重なるように、金属層511bと第2の熱可塑性樹脂材511cを第2加熱ロール402と第2冷却ロール502との間に通す。これにより、加熱された金属層511bと接触した部分の第2の熱可塑性樹脂材511cは軟化し、軟化した第2の熱可塑性樹脂材511cは金属層511bと接着(熱融着)する。このとき、金属層511bは第2加熱ロール402と接触し、第2の熱可塑性樹脂材511cは第2冷却ロール502と接触するように通す。第2加熱ロール402と第2冷却ロール502とのロール間からは、本発明の一実施形態に係る外装材11が得られる。 Next, the integrated product of the metal layer 511b and the first thermoplastic resin material 511a is bonded with the second thermoplastic resin material 511c to the remaining second main surface of the metal layer 511b by thermal lamination. Specifically, the metal layer 511b and the second thermoplastic resin material 511c are placed together with the second heating roll 402 so that the remaining second main surface of the metal layer 511b and the second thermoplastic resin material 511c overlap each other. Pass between the second cooling roll 502 . As a result, the portion of the second thermoplastic resin material 511c in contact with the heated metal layer 511b is softened, and the softened second thermoplastic resin material 511c is bonded (heat-sealed) to the metal layer 511b. At this time, the metal layer 511b is brought into contact with the second heating roll 402, and the second thermoplastic resin material 511c is brought into contact with the second cooling roll 502. Then, as shown in FIG. From between the rolls of the second heating roll 402 and the second cooling roll 502, the exterior material 11 according to one embodiment of the present invention is obtained.
 本発明では、最初に熱融着する熱可塑性樹脂材の融点が、次いで熱融着する熱可塑性樹脂材の融点よりも20℃以上高いことが好ましい。なお、最初に熱融着する熱可塑性樹脂材を第1の熱可塑性樹脂材とし、次いで熱融着する熱可塑性樹脂材を第2の熱可塑性樹脂材と称する。つまり、第1の熱可塑性樹脂材の融点が、第2の熱可塑性樹脂材の融点よりも高いことが好ましい。より好ましくは、第1の熱可塑性樹脂材の融点が、第2の熱可塑性樹脂材の融点よりも20℃以上高いとよい。 In the present invention, the melting point of the thermoplastic resin material to be heat-sealed first is preferably 20°C or more higher than the melting point of the thermoplastic resin material to be heat-sealed subsequently. The thermoplastic resin material that is heat-sealed first is called the first thermoplastic resin material, and the thermoplastic resin material that is heat-sealed next is called the second thermoplastic resin material. In other words, the melting point of the first thermoplastic resin material is preferably higher than the melting point of the second thermoplastic resin material. More preferably, the melting point of the first thermoplastic resin material is 20° C. or more higher than the melting point of the second thermoplastic resin material.
 上記製造方法によれば、後れて金属層511bの第2の主面側に相対的に低融点の熱可塑性樹脂材を熱ラミネートする際、先立って金属層511bの第1の主面側に熱ラミネートされた相対的に高融点の熱可塑性樹脂材は軟化し得ず、金属層との接着を維持し得る。このような理由により、金属層511bの第1の主面側に相対的に高融点の熱可塑性樹脂材を熱ラミネートし、次いで金属層511bの第2の主面側に相対的に低融点の熱可塑性樹脂材を熱ラミネートすることが可能となる。なお、上記態様では、先立って金属層と樹脂材とを熱ラミネートする第1加熱ロール401は後続の第2加熱ロール402よりも高い温度であることが好ましい。 According to the above manufacturing method, when the thermoplastic resin material having a relatively low melting point is thermally laminated on the second main surface side of the metal layer 511b later, the first main surface side of the metal layer 511b is preceded by The relatively high melting point thermoplastic material that is heat laminated cannot soften and remains adhered to the metal layer. For this reason, a thermoplastic resin material having a relatively high melting point is thermally laminated to the first main surface side of the metal layer 511b, and then a relatively low melting point thermoplastic resin material is laminated to the second main surface side of the metal layer 511b. It becomes possible to thermally laminate a thermoplastic resin material. In the above-described mode, the temperature of the first heating roll 401 that thermally laminates the metal layer and the resin material first is preferably higher than that of the subsequent second heating roll 402 .
 なお、接着剤層を用いる場合、接着剤層は、予め金属層511bおよび/または熱可塑性樹脂層に設けられていてもよい When using an adhesive layer, the adhesive layer may be provided in advance on the metal layer 511b and/or the thermoplastic resin layer.
 第1加熱ロール401の温度は、金属層511bと第1の熱可塑性樹脂材511aとが熱融着できれば特に制限されず、例えば200℃以上400℃以下であってよく、好ましくは200℃以上350℃以下、より好ましくは230℃以上350℃以下、さらに好ましくは230℃以上330℃以下、特に好ましくは230℃以上310℃以下であってよい。 The temperature of the first heating roll 401 is not particularly limited as long as the metal layer 511b and the first thermoplastic resin material 511a can be heat-sealed. C. or less, more preferably 230.degree. C. or higher and 350.degree. C. or lower, still more preferably 230.degree.
 第2加熱ロール402の温度は、金属層511bと第2の熱可塑性樹脂材511cとが熱融着できれば特に制限されず、例えば200℃以上400℃以下であってよく、好ましくは200℃以上350℃以下、より好ましくは230℃以上350℃以下、さらに好ましくは230℃以上330℃以下、特に好ましくは230℃以上310℃以下であってよい。 The temperature of the second heating roll 402 is not particularly limited as long as the metal layer 511b and the second thermoplastic resin material 511c can be heat-sealed. C. or less, more preferably 230.degree. C. or higher and 350.degree. C. or lower, still more preferably 230.degree.
[電子デバイス]
 以下、本発明の一実施形態に係る外装材を適用できる電子デバイスについて説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本発明の理解のために模式的かつ例示的に示したにすぎず、概観や寸法比等は実部と異なり得る。
[Electronic device]
An electronic device to which the exterior material according to one embodiment of the present invention can be applied will be described below. Although the description will be made with reference to the drawings as necessary, the illustrated contents are only schematically and exemplarily shown for understanding of the present invention, and the appearance, dimensional ratios, etc. may differ from the actual part.
 本発明の一実施形態に係る外装材を適用できる電子デバイスについては、本発明の一実施形態に係る外装材を用いることを除き、特に制限されない。ここでいう電子デバイスとは、例えば、回路基板、複合モジュール、電池、電子部品等が挙げられる。電池としては、二次電池、特に固体電池が挙げられる。電子部品としては、コンデンサ、抵抗器、コイル、ダイオード、フィルタ、発振子および/またはトランジスタ等が挙げられる。外装材以外の電子デバイス要素(例えば電池の場合、端子、電極、セパレーター、または電解液等を指し、例えばコンデンサの場合、電極、誘電体、または端子等を指す)等については、電子デバイスに適用されるものであれば特に制限されない。例えば、そのような電子デバイス要素は従前から用いられるものであってもよい。 The electronic device to which the exterior material according to one embodiment of the present invention can be applied is not particularly limited except for using the exterior material according to one embodiment of the present invention. Examples of electronic devices here include circuit boards, composite modules, batteries, and electronic parts. Batteries include secondary batteries, particularly solid-state batteries. Electronic components include capacitors, resistors, coils, diodes, filters, oscillators and/or transistors, and the like. Electronic device elements other than exterior materials (e.g., batteries refer to terminals, electrodes, separators, electrolytes, etc., and capacitors refer to electrodes, dielectrics, terminals, etc.) apply to electronic devices. There is no particular limitation as long as it is For example, such electronic device elements may be pre-existing.
 本発明の一実施形態では、電子デバイスと、電子デバイスを覆う外装材とを備える。当該外装材は、金属層と、金属層の第1の主面側に位置する第1の熱可塑性樹脂層と、金属層の第2の主面側に位置する第2の熱可塑性樹脂層とを含み、第1の熱可塑性樹脂層の融点と第2の熱可塑性樹脂層の融点とがともに260℃よりも高い外装材である。 An embodiment of the present invention includes an electronic device and an exterior material covering the electronic device. The exterior material includes a metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer. wherein both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C.
 本発明の一実施形態にかかる外装材は、上記外装材の特徴でも記載した通り、外装材自体への水蒸気の浸入を抑制可能となる。これにより、水蒸気浸入が抑制された外装材を電子デバイスの周囲を覆うように設ける場合において、当該電子デバイス内への水蒸気浸入抑制も可能となる。 As described in the characteristics of the exterior material, the exterior material according to one embodiment of the present invention can suppress permeation of water vapor into the exterior material itself. As a result, in the case of providing an exterior material that suppresses permeation of water vapor so as to cover the periphery of the electronic device, it is possible to suppress permeation of water vapor into the electronic device.
 また、本発明の一実施形態では、接着剤層を必ずしも用いなくとも、2つの熱可塑性を有する樹脂層とその間に位置する金属層等の被接着体とを相互に接合可能となるため、外装材の全厚を減じることも可能となる。すなわち、外装材が電子部品や電子デバイスと一体化して設けられる場合において、その一体化物自体のサイズの低減化に貢献できる。一体化物自体のサイズの低減化によって、省スペース化等に貢献できる。 In addition, in one embodiment of the present invention, two thermoplastic resin layers and an adherend such as a metal layer positioned between them can be bonded to each other without necessarily using an adhesive layer. It is also possible to reduce the overall thickness of the material. That is, in the case where the exterior material is integrated with an electronic component or an electronic device, it can contribute to the reduction of the size of the integrated product itself. By reducing the size of the integrated body itself, it is possible to contribute to space saving and the like.
 また、本発明の一実施形態では、接着剤層を必ずしも用いなくてもよいため、接着剤層の塗布工程および接着剤層の硬化工程を省略し得る。また、高価なセラミックパッケージを使用せずとも、はんだ実装可能な電子デバイスを提供することができる。したがって、本発明の一実施形態の電子デバイスは低コストな電子デバイスとなり得る。 In addition, in one embodiment of the present invention, since the adhesive layer is not necessarily used, the step of applying the adhesive layer and the step of curing the adhesive layer can be omitted. Moreover, it is possible to provide an electronic device that can be solder-mounted without using an expensive ceramic package. Therefore, the electronic device of one embodiment of the present invention can be a low-cost electronic device.
[固体電池]
 以下では、上記電子デバイスのうち電池、特に固体電池を例に挙げ、その固体電池に本発明の一実施形態に係る外装材を適用した場合について詳細に説明する。具体的には、固体電池の電池要素を覆うように当該外装材が適用される。この場合、外部環境から内部の電池要素が保護された構成となるため、全体として、固体電池がパッケージ化された状態となり得る。即ち、外装材付きの固体電池を固体電池パッケージと称することもできる。なお、図3~図12は、本発明の一実施形態に係る外装材が電池要素100を覆った形態を模式的に示しているが、本発明の一実施形態に係る外装材を固体電池以外の電子デバイスに適用した場合、上記図中の電池要素100を電子デバイス要素としてもよい。
[Solid battery]
In the following, a battery, particularly a solid-state battery, is taken as an example of the electronic device, and a case where the exterior material according to one embodiment of the present invention is applied to the solid-state battery will be described in detail. Specifically, the exterior material is applied so as to cover the battery elements of the solid-state battery. In this case, since the internal battery element is protected from the external environment, the solid battery can be packaged as a whole. That is, a solid battery with an exterior material can also be called a solid battery package. 3 to 12 schematically show the form in which the battery element 100 is covered with the exterior material according to one embodiment of the present invention, but the exterior material according to one embodiment of the present invention can be applied to a battery other than a solid battery. When applied to the electronic device, the battery element 100 in the above drawings may be used as the electronic device element.
 本発明の一実施形態に係る外装材が適用される固体電池については、本発明の一実施形態に係る外装材を用いることを除き、特に制限されない。具体的には、外装材以外の電池要素(例えば、電極、固体電解質、導電部等)等については、固体電池に適用されるものであれば特に制限されない。例えば、そのような電池素子は従前から用いられるものであってもよい。 A solid-state battery to which the exterior material according to one embodiment of the present invention is applied is not particularly limited except for using the exterior material according to one embodiment of the present invention. Specifically, battery elements (eg, electrodes, solid electrolytes, conductive parts, etc.) other than the exterior material are not particularly limited as long as they are applied to solid batteries. For example, such battery elements may be conventional.
(固体電池の基本的構成)
 以下、固体電池の基本的構成について説明する。固体電池は、正極・負極の電極層と固体電解質とを少なくとも有して成る。具体的には固体電池は、正極層、負極層、およびそれらの間に介在する固体電解質から成る電池構成単位を含んだ電池要素を有して成る。
(Basic configuration of solid-state battery)
The basic configuration of the solid-state battery will be described below. A solid battery comprises at least positive and negative electrode layers and a solid electrolyte. Specifically, a solid battery has a battery element including a battery structural unit composed of a positive electrode layer, a negative electrode layer, and a solid electrolyte interposed therebetween.
 本発明でいう「固体電池」は、広義にはその構成要素が固体から構成されている電池を指し、協議にはその電池構成要素(得に好ましくは全ての電池構成要素)が固体から構成されている全固体電池を指している。ある好適な態様では、本発明における固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼結体から成っている。なお、「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」のみならず、放電のみが可能な「一次電池」をも包含する。本発明のある好適な態様に従うと、「固体電池」は二次電池である。「二次電池」は、その名称に過度に拘泥されるものでなく、例えば、蓄電デバイス等も包含し得る。 The term "solid battery" as used in the present invention broadly refers to a battery whose components are composed of solids, and in terms of discussion, the battery components (particularly preferably all battery components) are composed of solids. It refers to an all-solid-state battery that In a preferred embodiment, the solid-state battery in the present invention is a stacked-type solid-state battery configured such that each layer forming a battery structural unit is stacked with each other, and each such layer is preferably made of a sintered body. The term "solid battery" includes not only a so-called "secondary battery" that can be repeatedly charged and discharged, but also a "primary battery" that can only be discharged. According to one preferred aspect of the invention, the "solid battery" is a secondary battery. "Secondary battery" is not limited to its name, and can include, for example, power storage devices.
 本明細書でいう「断面視」とは、固体電池を構成する電池要素の厚み方向に対して略垂直な方向からみたときの状態のことである。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。 The term "cross-sectional view" as used in this specification refers to a state when viewed from a direction substantially perpendicular to the thickness direction of the battery element that constitutes the solid-state battery. "Up-down direction" and "left-right direction" used directly or indirectly in this specification correspond to the up-down direction and left-right direction in the drawings, respectively. Unless otherwise specified, the same reference numerals or symbols indicate the same members/parts or the same meanings. In a preferred embodiment, the downward vertical direction (that is, the direction in which gravity acts) corresponds to the "downward direction", and the opposite direction corresponds to the "upward direction".
 固体電池は、それを構成する各層が焼成によって形成されていてもよく、正極層、負極層および固体電解質等が焼結層を成していてもよい。好ましくは、正極層、負極層および固体電解質は、それぞれが互いに一体焼成されており、それゆえ電池要素が一体焼結体を成していてもよい。 In the solid battery, each layer that constitutes it may be formed by firing, or the positive electrode layer, negative electrode layer, solid electrolyte, etc. may form a sintered layer. Preferably, the positive electrode layer, the negative electrode layer and the solid electrolyte are each integrally sintered with each other, so that the battery element may form an integral sintered body.
 正極層は、少なくとも正極活物質を含んで成る電極層である。正極層は、更に固体電解質を含んで成っていてよい。例えば、正極層は、正極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されている。一態様では、正極層が、正極活物質粒子および固体電解質粒子のみを実質的に含む焼結体から構成されている。一方、負極層は、少なくとも負極活物質を含んで成る電極層である。負極層は、更に固体電解質を含んで成っていてよい。例えば、負極層は、負極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されている。一態様では、負極層が、負極活物質粒子および固体電解質粒子のみを実質的に含む焼結体から構成されている。 The positive electrode layer is an electrode layer containing at least a positive electrode active material. The positive electrode layer may further comprise a solid electrolyte. For example, the positive electrode layer is composed of a sintered body containing at least positive electrode active material particles and solid electrolyte particles. In one aspect, the positive electrode layer is composed of a sintered body that substantially contains only positive electrode active material particles and solid electrolyte particles. On the other hand, the negative electrode layer is an electrode layer containing at least a negative electrode active material. The negative electrode layer may further comprise a solid electrolyte. For example, the negative electrode layer is composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles. In one aspect, the negative electrode layer is composed of a sintered body that substantially contains only negative electrode active material particles and solid electrolyte particles.
 正極活物質および負極活物質は、固体電池において電子の受け渡しに関与する物質である。固体電解質を介してイオンは正極層と負極層との間で移動(伝導)して電子の受け渡しが行われることで充放電がなされる。正極層および負極層は特にリチウムイオンまたはナトリウムイオンを吸蔵放出可能な層であってもよい。つまり、固体電池は、固体電解質を介してリチウムイオンまたはナトリウムイオンが正極層と負極層との間で移動して電池の充放電が行われる全固体型二次電池であってもよい。 The positive electrode active material and negative electrode active material are substances involved in the transfer of electrons in solid-state batteries. Ions are transferred (conducted) between the positive electrode layer and the negative electrode layer via the solid electrolyte, and electrons are transferred, whereby charging and discharging are performed. The positive electrode layer and the negative electrode layer may in particular be layers capable of intercalating and deintercalating lithium ions or sodium ions. That is, the solid-state battery may be an all-solid-state secondary battery in which lithium ions or sodium ions move between the positive electrode layer and the negative electrode layer via a solid electrolyte to charge and discharge the battery.
(正極活物質)
 正極層に含まれる正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、および、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO、LiFePO、および/またはLiMnPO等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO、LiCo1/3Ni1/3Mn1/3等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn、および/またはLiNi0.5Mn1.5等が挙げられる。リチウム化合物の種類は、特に限定されないが、例えば、リチウム遷移金属複合酸化物およびリチウム遷移金属リン酸化合物としてよい。リチウム遷移金属複合酸化物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含む酸化物の総称であると共に、リチウム遷移金属リン酸化合物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含むリン酸化合物の総称である。遷移金属元素の種類は、特に限定されないが、例えば、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)および鉄(Fe)などである。 
(Positive electrode active material)
Examples of the positive electrode active material contained in the positive electrode layer include a lithium-containing phosphate compound having a Nasicon type structure, a lithium-containing phosphate compound having an olivine type structure, a lithium-containing layered oxide, and a lithium-containing compound having a spinel type structure. At least one selected from the group consisting of oxides and the like can be mentioned. Li3V2 ( PO4 ) 3 etc. are mentioned as an example of the lithium containing phosphate compound which has a Nasicon type structure. Examples of lithium-containing phosphate compounds having an olivine structure include Li3Fe2 ( PO4 ) 3 , LiFePO4 , and/or LiMnPO4 . Examples of lithium-containing layered oxides include LiCoO 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 . Examples of lithium-containing oxides having a spinel structure include LiMn 2 O 4 and/or LiNi 0.5 Mn 1.5 O 4 . Although the type of lithium compound is not particularly limited, for example, a lithium transition metal composite oxide and a lithium transition metal phosphate compound may be used. Lithium transition metal composite oxide is a general term for oxides containing lithium and one or more transition metal elements as constituent elements, and lithium transition metal phosphate compounds are lithium and one or more transition metal elements. is a general term for phosphoric acid compounds containing transition metal elements as constituent elements. The types of transition metal elements are not particularly limited, but examples include cobalt (Co), nickel (Ni), manganese (Mn) and iron (Fe).
 また、ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。例えば、ナトリウム含有リン酸化合物の場合、Na(PO、NaCoFe(PO、NaNiFe(PO、NaFe(PO、NaFeP、NaFe(PO(P)、およびナトリウム含有層状酸化物としてNaFeOから成る群から選択される少なくとも一種が挙げられる。 Examples of positive electrode active materials capable of occluding and releasing sodium ions include sodium-containing phosphate compounds having a Nasicon-type structure, sodium-containing phosphate compounds having an olivine-type structure, sodium-containing layered oxides, and sodium-containing compounds having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned. For example, in the case of sodium-containing phosphate compounds, Na3V2 ( PO4 ) 3 , NaCoFe2 ( PO4 ) 3 , Na2Ni2Fe ( PO4 ) 3 , Na3Fe2 ( PO4 ) 3 , Na 2 FeP 2 O 7 , Na 4 Fe 3 (PO 4 ) 2 (P 2 O 7 ), and at least one selected from the group consisting of NaFeO 2 as the sodium-containing layered oxide.
 この他、正極活物質は、例えば、酸化物、二硫化物、カルコゲン化物または導電性高分子等でもよい。酸化物は、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガン等でもよい。二硫化物は、例えば、二硫化チタンまたは硫化モリブデン等である。カルコゲン化物は、例えば、セレン化ニオブ等でもよい。導電性高分子は、例えば、ジスルフィド、ポリピロール、ポリアニリン、ポリチオフェン、ポリパラスチレン、ポリアセチレンまたはポリアセン等でもよい。 In addition, the positive electrode active material may be, for example, an oxide, a disulfide, a chalcogenide, or a conductive polymer. The oxide may be, for example, titanium oxide, vanadium oxide, manganese dioxide, or the like. Disulfides are, for example, titanium disulfide or molybdenum sulfide. The chalcogenide may be, for example, niobium selenide. The conductive polymer may be, for example, disulfide, polypyrrole, polyaniline, polythiophene, polyparastyrene, polyacetylene, polyacene, or the like.
 (負極活物質)
 負極層に含まれる負極活物質としては、例えば、Ti、Si、Sn、Cr、Fe、NbおよびMoから成る群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛等の炭素材料、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、ならびに、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO、および/またはLiTi2(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO、および/またはLiCuPO等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiTi12等が挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material contained in the negative electrode layer include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, carbon materials such as graphite, and graphite-lithium. at least one selected from the group consisting of compounds, lithium alloys, lithium-containing phosphate compounds having a Nasicon-type structure, lithium-containing phosphate compounds having an olivine-type structure, and lithium-containing oxides having a spinel-type structure. be done. Examples of lithium alloys include Li—Al and the like. Li3V2 ( PO4 ) 3 and/or LiTi2( PO4 ) 3 etc. are mentioned as an example of the lithium containing phosphate compound which has a Nasicon type structure. Examples of lithium-containing phosphate compounds having an olivine structure include Li3Fe2 ( PO4 ) 3 and/or LiCuPO4 . An example of a lithium-containing oxide having a spinel structure includes Li 4 Ti 5 O 12 and the like.
 また、ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。なお、ある好適な態様の本発明の固体電池では、正極層と負極層とが同一材料から成っていてもよい。 The negative electrode active material capable of absorbing and releasing sodium ions includes a sodium-containing phosphate compound having a Nasicon type structure, a sodium-containing phosphate compound having an olivine type structure, and a sodium-containing oxide having a spinel type structure. At least one selected from the group is included. In a preferred embodiment of the solid-state battery of the present invention, the positive electrode layer and the negative electrode layer may be made of the same material.
 正極層および/または負極層は、導電性材料を含んでいてもよい。正極層および負極層に含まれる導電性材料として、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケル等の金属材料、ならびに炭素等から成る少なくとも1種を挙げることができる。 The positive electrode layer and/or the negative electrode layer may contain a conductive material. At least one of metal materials such as silver, palladium, gold, platinum, aluminum, copper and nickel, carbon and the like can be used as the conductive material contained in the positive electrode layer and the negative electrode layer.
さらに、正極層および/または負極層は、焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマスおよび酸化リンから成る群から選択される少なくとも1種を挙げることができる。 Furthermore, the positive electrode layer and/or the negative electrode layer may contain a sintering aid. Sintering aids include at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide and phosphorus oxide.
 なお、ある好適な態様の本発明の固体電池では、正極層と負極層とが同一材料から成っている。本発明の固体電池は、正極層および負極層が同一材料から成っていてよい(例えば、そのような場合、正極活物質と負極活物質とが同一種類となり得る)。 It should be noted that in a preferred embodiment of the solid-state battery of the present invention, the positive electrode layer and the negative electrode layer are made of the same material. In the solid state battery of the present invention, the positive electrode layer and the negative electrode layer may be made of the same material (eg, in such cases, the positive electrode active material and the negative electrode active material may be of the same type).
 (固体電解質)
 固体電解質は、リチウムイオンが伝導可能な材質である。特に固体電池で電池構成単位を成す固体電解質は、正極層と負極層との間においてリチウムイオンが伝導可能な層を成している。なお、固体電解質は、正極層と負極層との間に少なくとも設けられていればよい。つまり、固体電解質は、正極層と負極層との間からはみ出すように当該正極層および/または負極層の周囲においても存在していてもよい。具体的な固体電解質としては、例えば酸化物系であってよく、例示するとナシコン型構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物、酸化物ガラスセラミックス系リチウムイオン伝導体等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれる少なくとも一種)が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。酸化物ガラスセラミックス系リチウムイオン伝導体としては、例えば、リチウム、アルミニウムおよびチタンを構成元素に含むリン酸化合物(LATP)、リチウム、アルミニウムおよびゲルマニウムを構成元素に含むリン酸化合物(LAGP)を用いることができる。
(solid electrolyte)
A solid electrolyte is a material that can conduct lithium ions. In particular, a solid electrolyte, which constitutes a battery structural unit in a solid battery, forms a layer capable of conducting lithium ions between the positive electrode layer and the negative electrode layer. Note that the solid electrolyte may be provided at least between the positive electrode layer and the negative electrode layer. That is, the solid electrolyte may also exist around the positive electrode layer and/or the negative electrode layer so as to protrude from between the positive electrode layer and the negative electrode layer. A specific solid electrolyte may be, for example, an oxide system, and examples include a lithium-containing phosphate compound having a Nasicon type structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet-like structure, and an oxide. material glass-ceramics-based lithium ion conductors, and the like. Lithium-containing phosphate compounds having a Nasicon type structure include Li x My (PO 4 ) 3 (1≤x≤2, 1≤y≤2, M is the group consisting of Ti, Ge, Al, Ga and Zr). at least one selected from). An example of the lithium-containing phosphate compound having a Nasicon-type structure includes Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like. An example of an oxide having a perovskite structure is La 0.55 Li 0.35 TiO 3 or the like. An example of an oxide having a garnet-type or garnet-like structure is Li7La3Zr2O12 . As the oxide glass-ceramic lithium ion conductor, for example, a phosphate compound (LATP) containing lithium, aluminum and titanium as constituent elements, and a phosphate compound (LAGP) containing lithium, aluminum and germanium as constituent elements can be used. can be done.
 また、ナトリウムイオンが伝導可能な固体電解質としては、例えば、ナシコン型構造を有するナトリウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン型構造を有するナトリウム含有リン酸化合物としては、NaxMy(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。 Solid electrolytes capable of conducting sodium ions include, for example, sodium-containing phosphate compounds having a Nasicon-type structure, oxides having a perovskite structure, and oxides having a garnet-type or garnet-like structure. NaxMy(PO 4 ) 3 (1≦x≦2, 1≦y≦2, M is selected from the group consisting of Ti, Ge, Al, Ga and Zr) as the sodium-containing phosphate compound having a Nasicon-type structure. at least one).
 固体電解質は、焼結助剤を含んでいてもよい。固体電解質に含まれる焼結助剤は、例えば、正極層・負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。 The solid electrolyte may contain a sintering aid. The sintering aid contained in the solid electrolyte may be selected, for example, from materials similar to those of the sintering aid that can be contained in the positive electrode layer and the negative electrode layer.
 固体電解質層の厚みは特に限定されず、例えば、1μm以上15μm以下、特に1μm以上5μm以下であってもよい。 The thickness of the solid electrolyte layer is not particularly limited, and may be, for example, 1 μm or more and 15 μm or less, particularly 1 μm or more and 5 μm or less.
(正極集電層および負極集電層)
 正極層および負極層は、それぞれ正極集電層および負極集電層を備えていてもよい。正極集電層および負極集電層はそれぞれ箔の形態を有していてもよいが、一体焼成による固体電池の製造コスト低減および固体電池の内部抵抗低減等の観点から、焼結体の形態を有していてもよい。正極集電層を構成する正極集電体および負極集電層を構成する負極集電体としては、導電率が大きい材料を用いるのが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケル等を用いてもよい。特に、銅は正極活物質、負極活物質および固体電解質材と反応し難く、固体電池の内部抵抗の低減に効果があることから、銅を用いてもよい。なお、正極集電層および負極集電層が焼結体の形態を有する場合、導電性材料および焼結助剤を含む焼結体により構成されてもよい。正極集電層および負極集電層に含まれる導電性材料は、例えば、正極層および負極層に含まれ得る導電性材料と同様の材料から選択されてよい。正極集電層および負極集電層に含まれる焼結助剤は、例えば、正極層・負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。なお、固体電池において、正極集電層および負極集電層が必須というわけではなく、そのような正極集電層および負極集電層が設けられていない固体電池も考えられる。つまり、本発明における固体電池は、集電層レスの固体電池であってもよい。
(Positive collector layer and negative collector layer)
The positive electrode layer and the negative electrode layer may each include a positive current collecting layer and a negative current collecting layer. The positive electrode current collecting layer and the negative electrode current collecting layer may each have the form of a foil, but from the viewpoint of reducing the production cost of the solid battery by co-firing and reducing the internal resistance of the solid battery, etc., the form of the sintered body is preferred. may have. As the positive electrode current collector that constitutes the positive electrode current collecting layer and the negative electrode current collector that constitutes the negative electrode current collecting layer, it is preferable to use materials having high electrical conductivity, such as silver, palladium, gold, platinum, aluminum, and copper. , nickel, etc. may be used. In particular, copper may be used because it hardly reacts with the positive electrode active material, the negative electrode active material, and the solid electrolyte material, and is effective in reducing the internal resistance of the solid battery. When the positive electrode current collecting layer and the negative electrode current collecting layer have the form of a sintered body, they may be composed of a sintered body containing a conductive material and a sintering aid. The conductive material contained in the positive electrode current collecting layer and the negative electrode current collecting layer may be selected from, for example, the same conductive materials that can be contained in the positive electrode layer and the negative electrode layer. The sintering aid contained in the positive electrode current collecting layer and the negative electrode current collecting layer may be selected, for example, from materials similar to those of the sintering aid that can be contained in the positive electrode layer and the negative electrode layer. It should be noted that the positive electrode current collecting layer and the negative electrode current collecting layer are not essential in the solid battery, and a solid battery without such a positive electrode current collecting layer and the negative electrode current collecting layer is also conceivable. In other words, the solid-state battery in the present invention may be a collector-layer-less solid-state battery.
 正極層および負極層の厚みは特に限定されないが、例えば、それぞれ独立して、2μm以上50μm以下、特に5μm以上30μm以下であってもよい。 Although the thickness of the positive electrode layer and the negative electrode layer is not particularly limited, for example, each may be independently 2 μm or more and 50 μm or less, particularly 5 μm or more and 30 μm or less.
 固体電池、具体的には電池要素には、一般に端子(例えば外部電極)が設けられている。特に、端面電極は電池要素の側面に設けられている。より具体的には、正極層と接続された正極側の端面電極と、負極層と接続された負極側の端面電極とが設けられている。そのような端面電極は、導電率が大きい材料を含んで成ってもよい。端面電極の具体的な材質としては、特に制限されるわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。また、端面電極の端部には、タブリードと呼ばれる発生した電気を外部へと取り出す端子が設けられている。タブリードの材質は、端面電極と同様、導電率が大きい材料を含んで成ってもよい。タブリードの具体的な材質としては、特に制限されるわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。 Solid-state batteries, specifically battery elements, are generally provided with terminals (eg, external electrodes). In particular, the end face electrodes are provided on the side faces of the battery element. More specifically, there are provided a positive electrode side face electrode connected to the positive electrode layer and a negative electrode side face electrode connected to the negative electrode layer. Such edge electrodes may comprise a highly conductive material. Specific materials for the end face electrodes are not particularly limited, but at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin and nickel can be mentioned. In addition, terminals called tab leads are provided at the ends of the end face electrodes for taking out the generated electricity to the outside. The material of the tab lead may contain a material with high electrical conductivity, similar to the material of the end face electrodes. A specific material for the tab lead is not particularly limited, but at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin and nickel can be mentioned.
(本発明の固体電池の特徴部分)
 本発明の一実施形態に係る外装材が適用される固体電池としては、正極層、負極層、および正極層と負極層との間に介在する固体電解質層を備えた電池要素と、電池要素を覆う外装材と、電池要素から外部へ電気を取り出し可能な導通部とを備えるものであってよい。上記外装材は、金属層と、金属層の第1の主面側に位置する第1の熱可塑性樹脂層と、金属層の第2の主面側に位置する第2の熱可塑性樹脂層とを含み、第1の熱可塑性樹脂層の融点と第2の熱可塑性樹脂層の融点とがともに260℃よりも高いことを特徴とし、すなわち上記で述べた本発明の外装材である。
(Characteristic part of the solid-state battery of the present invention)
A solid battery to which the exterior material according to one embodiment of the present invention is applied includes a battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, and a battery element. It may include an exterior covering material and a conducting portion capable of extracting electricity from the battery element to the outside. The exterior material includes a metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer. and wherein both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C, that is, the exterior material of the present invention described above.
 本発明の一実施形態にかかる外装材は、上記外装材の特徴でも記載した通り、外装材自体への水蒸気の浸入を抑制可能となる。これにより、水蒸気浸入が抑制された外装材を固体電池の周囲を覆うように設ける場合において、当該固体電池内への水蒸気浸入抑制も可能となる。 As described in the characteristics of the exterior material, the exterior material according to one embodiment of the present invention can suppress permeation of water vapor into the exterior material itself. As a result, in the case where an exterior material that suppresses the permeation of water vapor is provided so as to cover the periphery of the solid-state battery, it is possible to suppress the permeation of water vapor into the solid-state battery.
 また、本発明の一実施形態では、接着剤層を必ずしも用いなくとも、2つの熱可塑性を有する樹脂層とその間に位置する金属層等の被接着体とを相互に接合可能となるため、外装材の全厚を減じることも可能となる。すなわち、外装材が固体電池と一体化して設けられる場合において、その一体化物自体のサイズの低減化に貢献できる。一体化物自体のサイズの低減化によって、省スペース化等に貢献できる。 In addition, in one embodiment of the present invention, two thermoplastic resin layers and an adherend such as a metal layer positioned between them can be bonded to each other without necessarily using an adhesive layer. It is also possible to reduce the overall thickness of the material. That is, in the case where the exterior material is integrated with the solid-state battery, it can contribute to the reduction of the size of the integrated product itself. By reducing the size of the integrated body itself, it is possible to contribute to space saving and the like.
 また、本発明の一実施形態では、接着剤層を必ずしも用いなくてもよいため、接着剤層の塗布工程および接着剤層の硬化工程を省略し得る。したがって、本発明の一実施形態の固体電池は低コストな固体電池となり得る。 In addition, in one embodiment of the present invention, since the adhesive layer is not necessarily used, the step of applying the adhesive layer and the step of curing the adhesive layer can be omitted. Therefore, the solid-state battery of one embodiment of the present invention can be a low-cost solid-state battery.
 外装材が固体電池を覆う形態は特に制限されず、従来採られてきた形態を採り得る。いずれの形態であっても、外装材と電池要素とが一体化して得られる固体電池は本発明の上記効果を奏し得る。本発明の外装材が電池要素を覆う態様は、例えば以下の実施態様を採り得る。 The form in which the exterior material covers the solid battery is not particularly limited, and conventional forms can be adopted. Regardless of the form, the solid battery obtained by integrating the exterior material and the battery element can exhibit the above effects of the present invention. The form in which the exterior material of the present invention covers the battery element can adopt, for example, the following embodiments.
 第1実施態様は、図3~図4に示すように、外装材が連続する単一構造体から構成され、当該単一構造体の外装材が電池要素を取り囲んでいる実施態様である。第2実施態様は、図5~図12に示すように、外装材が第1の外装材および第2の外装材からなる外装複合体となっており、上記外装複合体が電池要素を取り囲んでいる実施態様である。 The first embodiment, as shown in FIGS. 3 and 4, is an embodiment in which the exterior material is composed of a continuous single structure, and the exterior material of the single structure surrounds the battery element. In the second embodiment, as shown in FIGS. 5 to 12, the exterior material is an exterior composite composed of a first exterior material and a second exterior material, and the exterior composite surrounds the battery element. It is an embodiment.
<第1実施態様>
 図3は、本発明の一実施形態に係る固体電池を模式的に示す断面図である。図4は、本発明の一実施形態に係る固体電池を模式的に示す断面図である。
<First Embodiment>
FIG. 3 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention. FIG. 4 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention.
 固体電池を表面実装する観点から、例えば、図3に示すような実施形態を採ってもよい。図3は、電池要素100が単一の外装材11によって覆われ、端面電極21およびタブリード22から成る導通部20を有して成る固体電池200を示す。タブリード22の一方の端部には端面電極21が接続されており、タブリード22の他方の端部は外部に露出している。図3の固体電池200は、露出したタブリード22の端部を介して、基板への表面実装が可能である。 From the viewpoint of surface-mounting solid-state batteries, for example, an embodiment as shown in FIG. 3 may be adopted. FIG. 3 shows a solid state battery 200 comprising a battery element 100 covered by a single sheathing material 11 and having a conducting part 20 consisting of an end face electrode 21 and a tab lead 22. FIG. The end surface electrode 21 is connected to one end of the tab lead 22, and the other end of the tab lead 22 is exposed to the outside. The solid state battery 200 of FIG. 3 is surface mountable to a substrate through the exposed tab lead 22 ends.
 一態様では、図4に示すように、導通部20(タブリード22)を外部に引き出し、引き出した導通部20のタブリード22を電池要素100の輪郭面に沿って設けてもよい。換言すると、導通部20のタブリード22および外装材11が電池要素100の輪郭面に沿って設けてられていてもよい。 In one aspect, as shown in FIG. 4 , the conductive portion 20 (tab lead 22 ) may be drawn out and the tab lead 22 of the drawn conductive portion 20 may be provided along the contour surface of the battery element 100 . In other words, the tab leads 22 of the conducting portion 20 and the outer covering 11 may be provided along the contour surface of the battery element 100 .
 本明細書において「電池要素100の輪郭面」とは、電池要素100の形状又は外観を形作る表面を意味する。本明細書において「導通部20のタブリード22と外装材11が電池要素100の輪郭面に沿って設けられている」とは、導通部20のタブリード22と外装材11が、電池要素100の輪郭面の延在方向と略平行に設けられている状態を意味する。 In this specification, the "contour surface of the battery element 100" means a surface that forms the shape or appearance of the battery element 100. In this specification, “the tab leads 22 of the conductive portion 20 and the exterior material 11 are provided along the contour surface of the battery element 100 ” means that the tab lead 22 of the conductive portion 20 and the exterior material 11 are provided along the outline of the battery element 100 . It means a state of being provided substantially parallel to the extending direction of the surface.
 すなわち、導通部20のタブリード22と外装材11が電池要素100の輪郭面の延在方向と略同一方向に延在していてもよい。本明細書において「電池要素100の輪郭面の延在方向」とは、輪郭面が長手方向に進む方向を意味する。導通部20と外装材11は、少なくとも一見して電池要素100の輪郭面の延在方向と略同一方向に延在していればよく、導通部20と外装材11が電池要素100の輪郭面の延在方向と完全に同一方向に必ずしも延在していることを要しない。例えば、導通部20、外装材11及び電池要素100の各々の位置関係に起因して、導通部20の一部と外装材11の一部が電池要素100の輪郭面の延在方向と略同一平行に延在していない箇所があってもよい。 In other words, the tab leads 22 of the conductive portion 20 and the exterior material 11 may extend in substantially the same direction as the extending direction of the contour surface of the battery element 100 . In this specification, the term “extending direction of the contoured surface of the battery element 100” means the direction in which the contoured surface extends in the longitudinal direction. The conductive portion 20 and the exterior material 11 may at least at first glance extend in substantially the same direction as the extending direction of the contour surface of the battery element 100 . It does not necessarily need to extend completely in the same direction as the extending direction of . For example, due to the positional relationship among each of the conducting portion 20, the exterior material 11, and the battery element 100, a portion of the conducting portion 20 and a portion of the exterior material 11 extend substantially in the same direction as the outline surface of the battery element 100. There may be portions that do not extend in parallel.
 導通部20のタブリード22が電池要素100の輪郭に沿った形態とすることで、表面実装において、図4で示す固体電池200の導通部20は基板との接触面積を大きくできる。導通部20と基板との接触面積が大きいと、固体電池200はより強固に基材に表面実装され易くなる。 By forming the tab leads 22 of the conducting part 20 along the outline of the battery element 100, the conducting part 20 of the solid battery 200 shown in FIG. 4 can have a large contact area with the substrate in surface mounting. When the contact area between the conductive portion 20 and the substrate is large, the solid-state battery 200 can be more firmly surface-mounted on the substrate.
 一態様では、導通部20の外部への引き出し部分(タブリード22に相当)が屈曲部分20Aを含んでいてよい。ここでいう屈曲部分とは、折れ曲がっている部分のことを意味する。屈曲の形態に特に制限はなく、例えば、図4に示すように、導通部20が端面電極21にタブリード22から成る形態において、導通部20の外部への引出し部分が直角部分を有するようになっていても屈曲部分を意味する。または、導通部20の外部への引出し部分が弧(カーブ状)を描く部分を有するように屈曲していてもよく、具体的には外装材11の表面を沿うように屈曲してもよい。 In one aspect, the lead-out portion (corresponding to the tab lead 22) of the conducting portion 20 to the outside may include the bent portion 20A. The bent portion here means a bent portion. There is no particular limitation on the form of bending. For example, as shown in FIG. 4, in a form in which the conductive part 20 is composed of an end surface electrode 21 and a tab lead 22, the portion leading to the outside of the conductive part 20 has a right-angled portion. It means a bent part even if it is Alternatively, the lead-out portion of the conducting portion 20 to the outside may be bent so as to have an arc (curved) portion.
 導通部20の外部への引き出し部分(タブリード22に相当)は、本発明の一実施形態に係る固体電池200を表面実装する際に電子基材等に接続される。その際、本発明の一実施形態に係る固体電池200の実装面積、又は固体電池200と電子基材等の位置関係、固体電池200と電子基材等の接続方法に応じて、導通部20の外部への引き出し部分(タブリード22に相当)を屈曲形態とすることができる。 A portion (corresponding to the tab lead 22) of the conductive portion 20 that is led out to the outside is connected to an electronic substrate or the like when the solid-state battery 200 according to one embodiment of the present invention is surface-mounted. At that time, depending on the mounting area of the solid battery 200 according to one embodiment of the present invention, the positional relationship between the solid battery 200 and the electronic base material, etc., and the connection method between the solid battery 200 and the electronic base material, etc. A part drawn out to the outside (corresponding to the tab lead 22) can be bent.
 外部へと引き出す導通部20の長さは、導通部20から電気を取り出すことができるのであれば特に限定されるものではない。電池要素100の輪郭に沿う導通部20(具体的にはタブリード22)はその端部が固体電池200の上面側又は下面側、例えば下面側に設けられていてもよい。これにより、電子基材上に同列状に固体電池200を実装することができ、全体的な表面実装面積をより小さくすることができる。また、全体的な表面実装面積をより小さくし、かつ固体電池200の表面実装をより確実に達成する観点から、導通部20の引出し部分の少なくとも一部が電子基材の表面と“面”で接触してもよい。“面”で接触することにより、導通部20と電子基材との接触面積を大きくすることができる。係る形態は、図4のように、導通部20の外部への引き出し部分の少なくとも一部が電子基材の表面と略平行となるように、導通部20の引出し部分に屈曲部分が設けることで達成できる。 The length of the conducting portion 20 drawn out to the outside is not particularly limited as long as electricity can be extracted from the conducting portion 20 . The conductive portion 20 (specifically, the tab lead 22) along the contour of the battery element 100 may have its end portion provided on the upper surface side or the lower surface side of the solid battery 200, for example, the lower surface side. As a result, the solid-state batteries 200 can be mounted in parallel on the electronic substrate, and the overall surface mounting area can be further reduced. In addition, from the viewpoint of further reducing the overall surface mounting area and achieving more reliable surface mounting of the solid battery 200, at least a part of the lead-out portion of the conductive portion 20 is "flat" with the surface of the electronic substrate. may come into contact. The contact area between the conducting part 20 and the electronic substrate can be increased by making contact with the "surface". As shown in FIG. 4, such a form is provided with a bent portion in the lead portion of the conductive portion 20 so that at least a portion of the lead portion of the conductive portion 20 to the outside is substantially parallel to the surface of the electronic substrate. achievable.
 なお、引き出された導通部20の端部につき、必ずしも外装材11に固定する必要はなく端部が自由に可動できる自由端であってもよい。この点につき、実装面積を小さくする観点から、一態様では、少なくとも引き出された導通部20の端部が外装材11に固定されている形態であってもよい。 It should be noted that the end of the conductive portion 20 drawn out does not necessarily have to be fixed to the exterior material 11, and the end may be a free end that can be freely moved. In this respect, from the viewpoint of reducing the mounting area, in one aspect, at least the end of the conductive portion 20 drawn out may be fixed to the exterior material 11 .
 係る形態を取ることで、引き出された導通部20の端部が電池要素100の側面に沿うように密着し、当該密着状態を維持することが可能となる。 By adopting such a form, the end of the conductive portion 20 drawn out is brought into close contact along the side surface of the battery element 100, and the close contact state can be maintained.
 さらに、上記密着状態が維持されることで、引き出された導通部20の端部に対し外部から力が作用した際、引き出された導通部20の端部が折り曲げられ、変形することを好適に防ぐことができる。その結果、固体電池200を電子基材上に適切に表面実装することができる。 Furthermore, by maintaining the close contact state, when an external force acts on the pulled-out end of the conducting portion 20, the pulled-out end of the conducting portion 20 is preferably bent and deformed. can be prevented. As a result, the solid-state battery 200 can be appropriately surface-mounted on the electronic substrate.
 引き出された導通部20の端部を外装材11に固定する方法は、特に制限されるものではない。例えば、熱融着により、引き出された導通部20の端部を外装材11に固定してもよい。例えば、引き出された導通部20の端部を接着剤を用いて外装材11に固定してもよい。接着剤の形態は、例えば液状、ペースト状、シート状、固体状、粉状である。接着剤の種類は、例えば水系接着剤、化学反応系接着剤、溶剤系接着剤、ホットメルト接着剤である。接着剤は、リフロー工程の前後で接着剤の接着力が変化しなければ、特に制限はない。例えば、接着剤の材質は例えばシリコーン系樹脂、アクリル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等から成る群から選択される少なくとも一種を挙げることができる。 The method of fixing the drawn-out end of the conductive part 20 to the exterior material 11 is not particularly limited. For example, the drawn-out end portion of the conductive portion 20 may be fixed to the exterior material 11 by thermal fusion. For example, the drawn-out end of the conducting portion 20 may be fixed to the exterior material 11 using an adhesive. The form of the adhesive is, for example, liquid, paste, sheet, solid, and powder. Types of adhesives include, for example, water-based adhesives, chemical reaction adhesives, solvent-based adhesives, and hot-melt adhesives. The adhesive is not particularly limited as long as the adhesive strength of the adhesive does not change before and after the reflow process. For example, the material of the adhesive can be at least one selected from the group consisting of silicone-based resins, acrylic-based resins, epoxy-based resins, urethane-based resins, and the like.
 また、固体電池200の充放電時においては、正極層と負極層との間にて固体電解質層中をイオンが移動することに伴い、各電極層に含まれる活物質が積層方向に沿って膨張、収縮し得る。特に、積層方向に沿った活物質、即ち電極層の膨張が生じると、これに起因して上方向へと作用する引張応力と下方向へと作用する引張応力とが生じる。この点につき、本態様によれば、固体電池200が電子基材上に表面実装されると、固体電池200と電子基材との間に微小な空間を有することができる。係る空間の存在により、積層方向に沿った電極層の膨張による固体電池200の膨張する部分を受容することも可能となる。 During charging and discharging of the solid battery 200, the active material contained in each electrode layer expands along the stacking direction as ions move in the solid electrolyte layer between the positive electrode layer and the negative electrode layer. , can shrink. In particular, when the active material, that is, the electrode layer expands along the stacking direction, this causes upward acting tensile stress and downward acting tensile stress. In this regard, according to this aspect, when the solid-state battery 200 is surface-mounted on the electronic substrate, a minute space can be provided between the solid-state battery 200 and the electronic substrate. Due to the presence of such a space, it is also possible to accommodate the portion of the solid-state battery 200 that expands due to the expansion of the electrode layers along the stacking direction.
 外装材11は端面電極21に熱融着して固定してもよい。具体的には、外装材11の第1の熱可塑性樹脂層11aまたは第2の熱融着性樹脂層11cを端面電極21に熱融着してもよい。この場合、第1の熱可塑性樹脂層11aの融点と第2の熱可塑性樹脂層11cの融点との差が20℃以上であってよい。かかる態様において、第2の熱可塑性樹脂層11cの融点は第1の熱可塑性樹脂層11aの融点よりも低くてもよい。かかる形態を採ることにより、相対的に低融点である第2の熱可塑性樹脂層11cのみを端面電極21に熱融着させ易くなる。 The exterior material 11 may be fixed to the end face electrode 21 by thermal fusion. Specifically, the first thermoplastic resin layer 11 a or the second heat-sealable resin layer 11 c of the exterior material 11 may be heat-sealed to the end surface electrode 21 . In this case, the difference between the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c may be 20° C. or more. In this embodiment, the melting point of the second thermoplastic resin layer 11c may be lower than the melting point of the first thermoplastic resin layer 11a. By adopting such a form, it becomes easy to heat-seal only the second thermoplastic resin layer 11 c having a relatively low melting point to the end surface electrode 21 .
<第2実施態様>
 固体電池を表面実装する観点から、例えば、図5に示すような実施形態を採ってもよい。具体的には、図5に示す固体電池は、
 2つ以上の外装材からなる外装複合体が設けられ、2つ以上の外装材が第1の外装材と第2の外装材を含み、第1の外装材と第2の外装材とが相互に重なる重複領域を形成し、
 重複領域から外部へと導通部が引き出されている。
<Second embodiment>
From the viewpoint of surface-mounting a solid-state battery, for example, an embodiment as shown in FIG. 5 may be adopted. Specifically, the solid-state battery shown in FIG.
A cladding composite is provided of two or more claddings, the two or more claddings including a first cladding and a second cladding, the first cladding and the second cladding being interconnected. forming an overlapping region that overlaps with
A conductive portion is drawn out from the overlapping region to the outside.
図5は、本発明の一実施形態に係る固体電池を模式的に示す断面図である。図6は、本発明の一実施形態に係る固体電池により水蒸気浸入の防止態様を模式的に示す断面図である。図7は、本発明の一実施形態に係る固体電池を模式的に示す断面図である。図8は、本発明の一実施形態に係る固体電池を模式的に示す斜視図である。図9は、本発明の一実施形態に係る固体電池(膨張状態)を模式的に示す断面図である。図10は、本発明の一実施形態(シーラント付)に係る固体電池を模式的に示す断面図である。図11は、本発明の別の実施形態に係る固体電池を模式的に示す断面図である。図12は、本発明の別の実施形態に係る固体電池を模式的に示す断面図ある。 FIG. 5 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention. FIG. 6 is a cross-sectional view schematically showing how the solid-state battery according to one embodiment of the present invention prevents water vapor intrusion. FIG. 7 is a cross-sectional view schematically showing a solid-state battery according to one embodiment of the invention. FIG. 8 is a perspective view schematically showing a solid-state battery according to one embodiment of the invention. FIG. 9 is a cross-sectional view schematically showing a solid-state battery (expanded state) according to one embodiment of the present invention. FIG. 10 is a cross-sectional view schematically showing a solid-state battery according to one embodiment (with sealant) of the present invention. FIG. 11 is a cross-sectional view schematically showing a solid-state battery according to another embodiment of the invention. FIG. 12 is a cross-sectional view schematically showing a solid-state battery according to another embodiment of the invention.
 本明細書でいう「外装複合体」とは、2つ以上の外装材が集まって又は組み合わさって構成されたもの(構成体)を指し、外装組合体とも称し得る。本明細書でいう「複合」とは、二つ以上のものが集まって1つになる状態を指す。本明細書でいう「導通部」は、電池要素100に設けられた端面電極21と当該端面電極21に接続されたタブリード22等電気取り出しに寄与する部材の総称を指す。すなわち、導通部20は、上記電池要素100に設けられた端面電極21と当該端面電極21に接続されたタブリード22とを有して成るものである。 As used herein, the term "exterior composite" refers to a structure (structure) in which two or more exterior materials are assembled or combined, and can also be referred to as an exterior assembly. As used herein, "composite" refers to a state in which two or more things come together to become one. The term “conducting portion” as used in this specification is a general term for members that contribute to electricity extraction, such as the end face electrodes 21 provided on the battery element 100 and the tab leads 22 connected to the end face electrodes 21 . In other words, the conducting portion 20 has the end face electrode 21 provided on the battery element 100 and the tab lead 22 connected to the end face electrode 21 .
 すなわち、本発明の一実施形態では、電池要素100は、2つ以上の外装材が組み合わさって構成された外装複合体10により覆われている。換言すると、外装複合体10は電池要素100を囲んでいる。一例としては、図5に示すように、外装複合体10は、第1の外装材11と第2の外装材12とから構成されている。更に、本発明の一実施形態では、外装複合体10には、第1の外装材11と第2の外装材12とが相互に重なる重複領域50が形成されており、当該重複領域50から外部へと導通部20が引き出されている。 That is, in one embodiment of the present invention, the battery element 100 is covered with the exterior composite 10 configured by combining two or more exterior materials. In other words, the sheathing composite 10 surrounds the battery element 100 . As an example, as shown in FIG. 5, an exterior composite 10 is composed of a first exterior material 11 and a second exterior material 12 . Furthermore, in one embodiment of the present invention, the exterior composite 10 is formed with an overlapping region 50 in which the first exterior material 11 and the second exterior material 12 overlap each other, and the exterior from the overlap region 50 is formed. The conducting portion 20 is pulled out to the .
 第1の外装材11は、金属層11b、第1の熱可塑性樹脂層11a、および第2の熱可塑性樹脂層11cを有して成る。第2の外装材12は、金属層12b、第1の熱可塑性樹脂層12a、および第2の熱可塑性樹脂層12cを有して成る。第1の外装材11を構成するそれぞれの層と、第2の外装材12を構成するそれぞれの層は同じであってもよい。 The first exterior material 11 has a metal layer 11b, a first thermoplastic resin layer 11a, and a second thermoplastic resin layer 11c. The second exterior material 12 has a metal layer 12b, a first thermoplastic resin layer 12a, and a second thermoplastic resin layer 12c. Each layer constituting the first exterior material 11 and each layer constituting the second exterior material 12 may be the same.
 なお、重複領域50につき、第1の外装材11と第2の外装材12の位置関係は特に制限されず、例えば、第1の外装材11の外側に第2の外装材12が位置づけられてもよく、第2の外装材12の外側に第1の外装材11が位置づけられてよい。換言すると、重複領域50において、電池要素100に相対的に近位となる側に第1の外装材11が設けられており、電池要素100に相対的に遠位となる側に第2の外装材12が設けられていてもよい。または、重複領域50において、電池要素100に相対的に近位となる側に第2の外装材12が設けられており、電池要素100に相対的に遠位となる側に第1の外装材11が設けられていてもよい。重複領域50は2つより多い数の外装材から構成されてもよい。例えば図5に示す形態では、重複領域50が第1の外装材11と第2の外装材12の2つの層で構成されているが、例えば第3の外装材、第4の外装材も用いて重複領域が構成されてよい。 Note that the positional relationship between the first exterior material 11 and the second exterior material 12 in the overlap region 50 is not particularly limited. Alternatively, the first exterior material 11 may be positioned outside the second exterior material 12 . In other words, in the overlap region 50 , the first sheathing material 11 is provided on the side relatively proximal to the battery element 100 , and the second sheathing material is provided on the side relatively distal to the battery element 100 . Material 12 may be provided. Alternatively, in the overlap region 50 , the second sheathing material 12 is provided on the side relatively proximal to the battery element 100 and the first sheathing material is provided on the side relatively distal to the battery element 100 . 11 may be provided. Overlap region 50 may be composed of more than two claddings. For example, in the form shown in FIG. 5, the overlapping region 50 is composed of two layers of the first exterior material 11 and the second exterior material 12, but for example, a third exterior material and a fourth exterior material may also be used. An overlapping region may be configured by
 本明細書でいう「重複領域」とは、広義には第1の外装材11と第2の外装材12とが相互に重なる領域を指し、狭義には第1の外装材11の一部と第2の外装材12の一部とが相互に重なる領域を指す。「相互に重なる」とは、一方の外装材の主面と他方の外装材の主面が直接又は隣接して対向する状態を指す。すなわち、一方の外装材の主面と他方の外装材の主面との間に樹脂、金属等を介していても、上記の状態であれば「相互に重なる」とみなす。本明細書でいう「水蒸気」とは、特に気体状態の水に限定されず、液体状態の水等も包含している。つまり、物理的な状態は問わず、水に関連する事項を広く包含するものとして「水蒸気」といった用語を用いている。よって「水蒸気」は、水分等とも称することができ、特に液体状態の水としては、気体状態の水が凝縮した結露水等も包含され得る。 As used herein, the term “overlapping region” broadly refers to a region where the first exterior material 11 and the second exterior material 12 overlap each other, and in a narrow sense, overlaps with a part of the first exterior material 11. It refers to a region where a part of the second exterior material 12 overlaps with each other. "Mutually overlapping" refers to a state in which the main surface of one exterior material and the main surface of the other exterior material directly or adjacently face each other. In other words, even if resin, metal, or the like is interposed between the main surface of one exterior material and the main surface of the other exterior material, it is considered that they "overlap each other" in the above state. The term "steam" as used herein is not particularly limited to gaseous water, but also includes liquid water and the like. In other words, the term "water vapor" is used to broadly encompass items related to water regardless of its physical state. Therefore, "steam" can also be referred to as moisture, etc. In particular, water in a liquid state may include condensed water in which water in a gaseous state is condensed.
 本明細書でいう「引き出されている」とは、ある構成要素の中に位置する独立した他の構成要素の少なくとも一部が、当該ある構成要素から外部へと延在し、当該独立した他の構成要素の少なくとも一部が外部に露出している状態であることを意味する。即ち、本明細書でいう「導通部20が外装複合体10の重複領域50から外部へと引き出されている」とは、外装複合体10に覆われている電池要素100と電気的に接続可能な導通部20の一部が、図5に示すように、外装複合体10の重複領域50を形成している第1の外装材11と第2の外装材12との間を通って外部へと露出する状態を示す。 As used herein, the term “drawn out” means that at least a part of another independent component located in a component extends from the component to the outside, and the independent other means that at least part of the constituent elements of is exposed to the outside. That is, in this specification, "the conductive portion 20 is pulled out from the overlapping region 50 of the exterior composite 10" means that the battery element 100 covered with the exterior composite 10 can be electrically connected. As shown in FIG. 5, a part of the conductive portion 20 passes through between the first and second exterior materials 11 and 12 forming the overlap region 50 of the exterior composite body 10 to the outside. and exposed state.
 図5に示すように、外装複合体10の構成要素である第1の外装材11は、電池要素100全体を覆っている必要はなく、同様に、第2の外装材12も電池要素100全体を覆っている必要はない。最終的に、第1の外装材11と第2の外装材12によって電池要素100全体を覆うように第1の外装材11と第2の外装材12が配置されていればよい。すなわち、最終的に、外装複合体10が電池要素100全体を覆うように配置されていればよい。また、図5に示すように、重複領域50は、一方の外装材の一部と他方の外装材の一部とが互いに覆うように形成することができる。換言すると、重複領域50は、第1の外装材11の一部と第2の外装材12の一部とが互いに積み重なって形成することができる。重複領域50における第1と第2の外装材が積み重なっている方向は、電池要素100における正極層110、負極層120、および固体電解質層130の積層方向に対して略垂直方向である。また、導通部20が重複領域50から外部へと引き出されている方向は、重複領域50における第1と第2の外装材が積み重なっている方向に対し略垂直であり、一方で電池要素100の正極層110、負極層120、および固体電解質層130の積層方向と略平行となっている。係る構成をとることにより、図5の固体電池200のように、導通部20を構成するタブリード22の端面電極21との接続部分を除く大部分と電池要素100との間に第1の外装材11を介在させることができる。換言すると、タブリード22と電池要素100とを第1の外装材で隔てながら、タブリード22を端面電極21に接続できる。 As shown in FIG. 5, the first packaging material 11, which is a component of the packaging composite 10, does not need to cover the entire battery element 100. Similarly, the second packaging material 12 also covers the entire battery element 100. does not need to be covered. Ultimately, the first exterior material 11 and the second exterior material 12 may be arranged so as to cover the entire battery element 100 with the first exterior material 11 and the second exterior material 12 . That is, it is sufficient that the exterior composite 10 is finally arranged so as to cover the entire battery element 100 . Also, as shown in FIG. 5, the overlap region 50 can be formed such that a portion of one facing and a portion of the other facing cover each other. In other words, the overlap region 50 can be formed by stacking a portion of the first sheathing 11 and a portion of the second sheathing 12 on top of each other. The direction in which the first and second exterior materials are stacked in overlapping region 50 is substantially perpendicular to the stacking direction of positive electrode layer 110 , negative electrode layer 120 , and solid electrolyte layer 130 in battery element 100 . Moreover, the direction in which the conductive portion 20 is pulled out from the overlap region 50 is substantially perpendicular to the direction in which the first and second exterior materials are stacked in the overlap region 50, while the battery element 100 is It is substantially parallel to the stacking direction of the positive electrode layer 110 , the negative electrode layer 120 , and the solid electrolyte layer 130 . By adopting such a configuration, like the solid-state battery 200 of FIG. 11 can be interposed. In other words, the tab lead 22 can be connected to the end surface electrode 21 while separating the tab lead 22 and the battery element 100 with the first outer packaging material.
 上述のように、本発明の一実施形態に係る固体電池200では、導通部20が外装複合体10の重複領域50から外部へと引き出される構成が採られている。係る構成により、以下の技術的効果が奏され得る。 As described above, the solid-state battery 200 according to one embodiment of the present invention adopts a configuration in which the conducting portion 20 is pulled out from the overlapping region 50 of the exterior composite 10 to the outside. With such a configuration, the following technical effects can be achieved.
 電池要素に水蒸気が浸入すると、電池特性の劣化が引き起こされる虞がある。係る電池要素への水蒸気の浸入は、電池要素の周囲を水蒸気透過防止層としての外装材を覆うことで抑制され得る。この点につき、図16及び図17が示すように、従来の固体電池200’において、断面視で単一の外装材13’が電池要素100’を1周分覆うように構成されている。当該電池要素100’から外部へ電気を取り出すために、導通部の構成要素であるタブリード22’が外装材13’を横断して電池要素100’に接続され得る。換言すると、タブリード22’が外装材13’を横断し外部に向かって突出するように構成されている。係る構成では、タブリード22’は外装材13’を横断するため、タブリード22’と外装材13’との間に微小な間隙が生じ、当該間隙は水蒸気が外部から電池要素100’へと通じる通路となる虞がある。 If water vapor penetrates into the battery element, there is a risk that the battery characteristics will deteriorate. Infiltration of water vapor into such battery elements can be suppressed by covering the periphery of the battery elements with an exterior material as a water vapor permeation prevention layer. In this regard, as shown in FIGS. 16 and 17, in a conventional solid-state battery 200', a single exterior member 13' is configured to cover the battery element 100' by one turn in a cross-sectional view. In order to extract electricity from the battery element 100' to the outside, a tab lead 22', which is a component of the conductive portion, can be connected to the battery element 100' across the exterior material 13'. In other words, the tab lead 22' is configured to traverse the exterior material 13' and protrude outward. In such a configuration, since the tab lead 22' crosses the exterior material 13', a minute gap is generated between the tab lead 22' and the exterior material 13', and the gap is a passage through which water vapor communicates from the outside to the battery element 100'. There is a risk of becoming.
 この点につき、本発明の一実施形態に係る固体電池200では、図5および図6に示すように、電池要素100と接続されている導通部20が上記重複領域50から外部へ引き出されている。そのため、単一の外装材13’(すなわち、重複領域無し)により覆われている従前の固体電池200’と比較すると、断面視における重複領域50の延在方向(長手方向)において、電池の外部から電池要素100に至るまでの経路長さを重複領域50の長さ分長くすることができる。その結果、従前の固体電池200’と比べて、水蒸気40が外部から電池要素100まで到達することを好的に抑制することができる。 In this regard, in a solid-state battery 200 according to an embodiment of the present invention, as shown in FIGS. 5 and 6, the conductive portion 20 connected to the battery element 100 is pulled out from the overlapping region 50. . Therefore, compared to the conventional solid-state battery 200' covered with a single exterior material 13' (that is, no overlapping region), the outside of the battery in the extending direction (longitudinal direction) of the overlapping region 50 in cross-sectional view is to the battery element 100 can be increased by the length of the overlapping region 50 . As a result, compared with the conventional solid-state battery 200', water vapor 40 can be favorably suppressed from reaching the battery element 100 from the outside.
 又、重複領域50は、上記説明からわかるように一方の外装材と他方の外装材とが相互に重なっている状態となっている。すなわち、重複領域50は2層以上の外装材から構成される領域である。そのため、重複領域50の厚さは、重複領域50以外の他の部分における外装複合体10の厚さよりも厚い。これにより、断面視における重複領域50の厚み方向(短手方向)において、単一の外装材13’ (すなわち、重複領域無し)により覆われている従来の固体電池200’と比べ、重複領域50における外装材の厚みを、厚くすることができる。そのため、従前の固体電池200’と比べて、水蒸気40が外部から電池要素100まで到達することを好的に抑制することができる。 Also, as can be seen from the above description, the overlapping region 50 is in a state in which one exterior material and the other exterior material overlap each other. That is, the overlapping region 50 is a region composed of two or more layers of exterior materials. Therefore, the thickness of the overlapping region 50 is thicker than the thickness of the exterior composite 10 in the portions other than the overlapping region 50 . As a result, in the thickness direction (transverse direction) of the overlapping region 50 in a cross-sectional view, the overlapping region 50 The thickness of the exterior material in can be increased. Therefore, compared with the conventional solid-state battery 200', it is possible to favorably suppress the water vapor 40 from reaching the battery element 100 from the outside.
 これら外装材が水蒸気(水分およびガス(二酸化炭素)等)を透過させやすいと、電池要素の内部に水蒸気が浸入し、正極層、負極層および固体電解質層が水蒸気を吸着および吸収し、それによって電池性能が低下するおそれがある。係る点を鑑みて、外装材の厚み方向の水蒸気透過率は、例えば、5.0×10-3g/(m・day)未満、好ましくは0以上5.0×10-3g/(m・day)未満であり得る。なお、ここでいう「水蒸気透過率」は、MORESCO社製、型式WG-15Sのガス透過率測定装置を用いて、測定条件は85℃、85%RH、MA法によって得られた透過率のことを指している。 If these exterior materials easily permeate water vapor (moisture, gas (carbon dioxide), etc.), water vapor penetrates into the interior of the battery element, and the positive electrode layer, the negative electrode layer, and the solid electrolyte layer adsorb and absorb the water vapor, thereby Battery performance may deteriorate. In view of this point, the water vapor transmission rate in the thickness direction of the exterior material is, for example, less than 5.0×10 −3 g/(m 2 day), preferably 0 or more and 5.0×10 −3 g/( m 2 · day). The term "water vapor transmission rate" as used herein refers to the transmission rate obtained by the MA method using a gas transmission rate measuring device of model WG-15S manufactured by MORESCO under the measurement conditions of 85°C and 85% RH. pointing to
 あるいは、アドバンス理工(株)社製、型式GTms-1のガス透過率測定装置を用いて、測定条件は40℃、90%RH、差圧1atmによって得られた水蒸気透過率の値が1.0×10-3g/(m・day)未満であってもよい。 Alternatively, using a GTms-1 gas permeability measuring device manufactured by Advance Riko Co., Ltd., the measurement conditions are 40° C., 90% RH, and a differential pressure of 1 atm. The water vapor permeability value obtained is 1.0. It may be less than ×10 −3 g/(m 2 ·day).
 外装複合体10は、図5で示すように、第1の外装材11と第2の外装材12とが相互に重なることで形成する重複領域50を有する。本発明の一実施形態では、重複領域50は、図5で示すように、第1の外装材11を覆うように第2の外装材12を設けることで達成されてもよい。その場合、電池要素100の位置を基準として、重複領域50における第1の外装材11が相対的に内側に位置し、重複領域50における第2の外装材12が相対的に外側に位置することになる。係る第1の外装材11および第2の外装材12の位置付けにおいては、第1の外装材11の第1の熱可塑性樹脂層11aまたは第2の熱可塑性樹脂層11cと、第2の外装材12の第1の熱可塑性樹脂層12aまたは第2の熱可塑性樹脂層12cとが対向している。 As shown in FIG. 5, the exterior composite 10 has an overlap region 50 formed by overlapping the first exterior material 11 and the second exterior material 12 with each other. In one embodiment of the present invention, overlap region 50 may be achieved by providing second cladding 12 over first cladding 11, as shown in FIG. In that case, with the position of the battery element 100 as a reference, the first packaging material 11 in the overlap region 50 is positioned relatively inside, and the second packaging material 12 in the overlap region 50 is positioned relatively outside. become. In the positioning of the first exterior material 11 and the second exterior material 12, the first thermoplastic resin layer 11a or the second thermoplastic resin layer 11c of the first exterior material 11 and the second exterior material The twelve first thermoplastic resin layers 12a or the second thermoplastic resin layers 12c face each other.
 なお、ここでいう「対向している」とは、層と層とが向かい合っていることを意味し、例えば図7で示すように、第1の外装材11の第2の熱可塑性樹脂層11cと、第2の外装材12の第2の熱可塑性樹脂層12cとが向かい合っていることを意味する。 In addition, the term "facing" here means that the layers face each other. For example, as shown in FIG. and the second thermoplastic resin layer 12c of the second exterior material 12 face each other.
 本発明において、重複領域50における第1の外装材11の第1の熱可塑性樹脂層11aまたは第2の熱可塑性樹脂層11cと、第2の外装材12の第1の熱可塑性樹脂層12aまたは第2の熱可塑性樹脂層12cとが対向する対向態様は以下のパターンが挙げられる。
(対向態様1)
第1の外装材11の第1の熱可塑性樹脂層11aと、第2の外装材12の第1の熱可塑性樹脂層12aとが対向する。
(対向態様2)
第1の外装材11の第2の熱可塑性樹脂層11cと、第2の外装材12の第2の熱可塑性樹脂層12cとが対向する。
(対向態様3)
第1の外装材11の第1の熱可塑性樹脂層11aと、第2の外装材12の第2の熱可塑性樹脂層12cとが対向する。
(対向態様4)
第1の外装材11の第2の熱可塑性樹脂層11cと、第2の外装材12の第1の熱可塑性樹脂層12aとが対向する。
 上記対向態様1~4のうち、熱融着時の温度制御が容易となる観点および/または熱可塑性樹脂同士の熱融着をより容易にする観点から、本発明の固体電池は対向態様1および対向態様2としてもよい。
In the present invention, the first thermoplastic resin layer 11a or the second thermoplastic resin layer 11c of the first exterior material 11 in the overlap region 50 and the first thermoplastic resin layer 12a or the second thermoplastic resin layer 12a of the second exterior material 12 The following pattern is mentioned as the facing aspect which the 2nd thermoplastic resin layer 12c faces.
(Opposing mode 1)
The first thermoplastic resin layer 11a of the first exterior material 11 and the first thermoplastic resin layer 12a of the second exterior material 12 face each other.
(Opposing mode 2)
The second thermoplastic resin layer 11c of the first exterior material 11 and the second thermoplastic resin layer 12c of the second exterior material 12 face each other.
(Opposing mode 3)
The first thermoplastic resin layer 11a of the first exterior material 11 and the second thermoplastic resin layer 12c of the second exterior material 12 face each other.
(Opposing mode 4)
The second thermoplastic resin layer 11c of the first exterior material 11 and the first thermoplastic resin layer 12a of the second exterior material 12 face each other.
Among the above facing modes 1 to 4, from the viewpoint of facilitating temperature control during heat sealing and/or from the viewpoint of facilitating heat sealing between thermoplastic resins, the solid battery of the present invention is the facing mode 1 and It is good also as the facing aspect 2. FIG.
 第1の外装材11および第2の外装材12それぞれが有する第1の熱可塑性樹脂層および第2の熱可塑性樹脂層のうち、相対的に低融点の熱可塑性樹脂層同士が重複領域50において対向していることが好ましい。例えば、重複領域50において相対的に低融点の熱可塑性樹脂層同士が互いに接していることが好ましい。かかる形態をとることにより、外部熱源を用いて重複領域50を加熱した際、対向する相対的に低融点の熱可塑性樹脂層同士のみを軟化して熱融着することができ、一方で、対向していない(すなわち最外装側の)相対的に高融点の熱可塑性樹脂層は軟化せず形状を維持できる。結果として、重複領域50における第1の外装材11と第2の外装材12とが対向する箇所を熱融着しつつ、固体電池200全体の形状を維持できる。第1の外装材11において、第1の熱可塑性樹脂層11aの融点と第2の熱可塑性樹脂層11cの融点との差が20℃以上あってもよい。第2の外装材12において、第1の熱可塑性樹脂層12aの融点と第2の熱可塑性樹脂層12cの融点との差が20℃以上あることが好ましい。かかる態様を採ることで、より一方の樹脂層同士を熱融着し易くなる。また、上記態様の場合、第1の外装材11において、第2の熱可塑性樹脂層11cの融点が第1の熱可塑性樹脂層11aの融点よりも低くてもよい。第2の外装材12において、第2の熱可塑性樹脂層11cの融点が第1の熱可塑性樹脂層11aの融点よりも低くてもよい。 Among the first thermoplastic resin layer and the second thermoplastic resin layer of each of the first exterior material 11 and the second exterior material 12, the thermoplastic resin layers having a relatively low melting point overlap in the overlapping region 50. They are preferably facing each other. For example, it is preferable that thermoplastic resin layers with relatively low melting points are in contact with each other in the overlap region 50 . By adopting such a configuration, when the overlapping region 50 is heated using an external heat source, only the relatively low melting point thermoplastic resin layers facing each other can be softened and heat-sealed. A thermoplastic resin layer having a relatively high melting point that is not exposed (that is, on the outermost side) is not softened and can maintain its shape. As a result, the shape of the solid battery 200 as a whole can be maintained while heat-sealing the portions where the first exterior material 11 and the second exterior material 12 face each other in the overlapping region 50 . In the first exterior material 11, the difference between the melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c may be 20° C. or more. In the second exterior material 12, it is preferable that the difference between the melting point of the first thermoplastic resin layer 12a and the melting point of the second thermoplastic resin layer 12c is 20° C. or more. By adopting such a mode, it becomes easier to heat-seal one resin layer to another. Further, in the case of the above aspect, in the first exterior material 11, the melting point of the second thermoplastic resin layer 11c may be lower than the melting point of the first thermoplastic resin layer 11a. In the second exterior material 12, the melting point of the second thermoplastic resin layer 11c may be lower than the melting point of the first thermoplastic resin layer 11a.
 相対的に低融点の熱可塑性樹脂層の融点は、相対的に高融点の熱可塑性樹脂層の融点よりも、20℃以上低いことが好ましい。かかる形態を採ることで、対向する相対的に低融点の熱可塑性樹脂層のみ同士を熱融着し易くなる。 The melting point of the thermoplastic resin layer with a relatively low melting point is preferably 20°C or more lower than the melting point of the thermoplastic resin layer with a relatively high melting point. By adopting such a form, only the opposing thermoplastic resin layers having a relatively low melting point are easily heat-sealed to each other.
 熱融着をより容易にする観点から、相対的に低融点の熱可塑性樹脂層の融点は、相対的に高融点の熱可塑性樹脂層の融点よりも、好ましくは40℃以上、より好ましくは60℃以上低くてもよい。一方で、外装材の製造時における熱ラミネート時の温度管理を容易にする観点から、相対的に低融点の熱可塑性樹脂層の融点は、相対的に高融点の熱可塑性樹脂層の融点よりも、120℃以下、好ましくは100℃以下、より好ましくは90℃以下低くてもよい。なお、「相対的に低融点の熱可塑性樹脂層」は「第2の熱可塑性樹脂層」であってよく、「相対的に高融点の熱可塑性樹脂層」は「第1の熱可塑性樹脂層」であってよい。 From the viewpoint of facilitating heat-sealing, the melting point of the thermoplastic resin layer with a relatively low melting point is preferably 40° C. or higher, more preferably 60° C., higher than the melting point of the thermoplastic resin layer with a relatively high melting point. °C or lower. On the other hand, from the viewpoint of facilitating temperature control during heat lamination in the manufacture of exterior materials, the melting point of the thermoplastic resin layer with a relatively low melting point is lower than the melting point of the thermoplastic resin layer with a relatively high melting point. , 120° C. or less, preferably 100° C. or less, more preferably 90° C. or less. The "relatively low melting point thermoplastic resin layer" may be the "second thermoplastic resin layer", and the "relatively high melting point thermoplastic resin layer" may be the "first thermoplastic resin layer." ' may be.
 本発明の一実施形態に係る外装材の熱可塑性樹脂はそれ自体が接着性を有するため、重複領域50に位置する導通部20に必ずしもシーラントを設ける必要はない。すなわち、第1の外装材11の第1の熱可塑性樹脂層11aが導通部20の一方の主面に直接接合されており、第2の外装材12の第1の熱可塑性樹脂層12aが導通部20の他方の主面に直接接合されていてよい。すなわち、シーラントレスの形態を採ることが可能である。または、第1の外装材11の第2の熱可塑性樹脂層11cが導通部20の一方の主面に直接接合されており、第2の外装材12の第2の熱可塑性樹脂層12cが導通部20の他方の主面に直接接合されていてよい。かかる形態を採ることにより、固体電池200内にシーラントを介して水蒸気が浸入を抑制し得る。また、シーラントを用いないため、重複領域50における外装複合体10の厚みも減じ得て、固体電池200のサイズの低減化に資する。 Since the thermoplastic resin of the exterior material according to one embodiment of the present invention itself has adhesiveness, it is not always necessary to provide the sealant on the conducting portion 20 located in the overlapping region 50 . That is, the first thermoplastic resin layer 11a of the first exterior material 11 is directly bonded to one main surface of the conductive portion 20, and the first thermoplastic resin layer 12a of the second exterior material 12 is conductive. It may be directly joined to the other main surface of the portion 20 . That is, it is possible to adopt a form without sealant. Alternatively, the second thermoplastic resin layer 11c of the first exterior material 11 is directly bonded to one main surface of the conductive portion 20, and the second thermoplastic resin layer 12c of the second exterior material 12 is conductive. It may be directly joined to the other main surface of the portion 20 . By adopting such a form, water vapor can be prevented from entering the solid-state battery 200 through the sealant. Moreover, since no sealant is used, the thickness of the exterior composite 10 in the overlapping region 50 can be reduced, which contributes to the reduction in the size of the solid-state battery 200 .
 重複領域50に位置する導通部20にシーラントを設ける場合、図10に示すように、重複領域50に位置する導通部20にシーラント24を設けてもよい。 When the sealant is provided on the conducting portion 20 positioned in the overlapping region 50, the sealant 24 may be provided on the conducting portion 20 positioned in the overlapping region 50 as shown in FIG.
 係るシーラント24の存在により、重複領域50に位置する導通部20と重複領域50を構成する2つの外装材11、12とを接着させることができる。これにより、重複領域50において、断面視で導通部20と2つの外装材11、12とをそれぞれ面接着させることが可能となり、より固体電池200の形状を維持し易くなる。 Due to the presence of the sealant 24 , the conducting portion 20 positioned in the overlapping area 50 and the two exterior materials 11 and 12 forming the overlapping area 50 can be adhered. As a result, in the overlapping region 50, the conducting portion 20 and the two exterior materials 11 and 12 can be surface-bonded in a cross-sectional view, and the shape of the solid-state battery 200 can be more easily maintained.
 シーラント24は、リフロー工程の前後でシーラントの接着力が変化しなければ、特に制限はない。例えば、シーラント24は、鉛フリーはんだリフロー時のピーク温度よりも高い融点を有する樹脂を含んでなっていてもよい。 The sealant 24 is not particularly limited as long as the adhesive strength of the sealant does not change before and after the reflow process. For example, sealant 24 may comprise a resin having a melting point higher than the peak temperature during lead-free solder reflow.
 本発明の一実施形態に係る固体電池は、さらに下記態様を採ってもよい。 A solid-state battery according to an embodiment of the present invention may further adopt the following aspects.
 一態様では、導通部20が外装複合体10を構成する第1の外装材11と第2の外装材12との間に挟み込まれるように設けられていてもよい(図5~図8等参照)。具体的には、第1の外装材11が導通部20と接触しており、および第2の外装材12が導通部20と接触しており、その状態で導通部20が第1の外装材11と第2の外装材12との間に挟み込まれている。別態様では、図5に示すように、第1の外装材11の外側表面と第2の外装材12の内側表面との間に導通部20が設けられていてもよい。係る形態では、導通部20が、第1の外装材11と第2の外装材12と略平行となるように、第1の外装材11と第2の外装材との間に挟み込まれている。 In one aspect, the conductive portion 20 may be provided so as to be sandwiched between the first exterior material 11 and the second exterior material 12 that constitute the exterior composite 10 (see FIGS. 5 to 8, etc. ). Specifically, the first exterior material 11 is in contact with the conductive portion 20, the second exterior material 12 is in contact with the conductive portion 20, and in that state, the conductive portion 20 is in contact with the first exterior material. It is sandwiched between 11 and the second exterior material 12 . Alternatively, as shown in FIG. 5, a conducting portion 20 may be provided between the outer surface of the first exterior material 11 and the inner surface of the second exterior material 12 . In such a configuration, the conductive portion 20 is sandwiched between the first exterior material 11 and the second exterior material 12 so as to be substantially parallel to the first exterior material 11 and the second exterior material 12. .
 すなわち、導通部20が第1の外装材11と第2の外装材12との間に位置づけられ、導通部20と第1の外装材11と第2の外装材12とが一体となっている形態であってもよい。係る構成を採ることで、断面視で導通部20の両側に外装材が位置づけられるため、導通部20を2つの外装材によりそれぞれ面接触させることが可能となり、導通部20と各外装材との間の微小な間隙を好適に減少することができる。これにより、水蒸気が重複領域50を通過することを好適に抑制することができる。 That is, the conducting portion 20 is positioned between the first exterior material 11 and the second exterior material 12, and the conducting portion 20, the first exterior material 11, and the second exterior material 12 are integrated. may be in the form By adopting such a configuration, the exterior materials are positioned on both sides of the conducting portion 20 in a cross-sectional view, so that the conducting portion 20 can be brought into surface contact with the two exterior materials, respectively, and the conducting portion 20 and each exterior material can be brought into contact with each other. A minute gap between them can be suitably reduced. As a result, it is possible to suitably prevent water vapor from passing through the overlapping region 50 .
 なお、正極側および負極側のいずれにおいても水蒸気が重複領域50を通過することを抑制する観点から、断面視で重複領域50としては、2つ設けられていてもよい。具体的には、正極側の導通部(タブリード22に相当)を挟み込むものと、負極側の導通部(タブリード22に相当)を挟み込むものとが設けられていてもよい。 From the viewpoint of suppressing water vapor from passing through the overlapping region 50 on both the positive electrode side and the negative electrode side, two overlapping regions 50 may be provided in a cross-sectional view. Specifically, there may be provided one for sandwiching the conductive portion on the positive electrode side (corresponding to the tab lead 22) and another for sandwiching the conductive portion on the negative electrode side (corresponding to the tab lead 22).
 一態様では、導通部20の端面電極と外装複合体10が電池要素100の輪郭面に沿って設けられていることが好ましい(図5~図12等参照)。 In one aspect, it is preferable that the end face electrodes of the conducting portion 20 and the exterior composite 10 are provided along the contour surface of the battery element 100 (see FIGS. 5 to 12, etc.).
 本明細書において「電池要素100の輪郭面」とは、電池要素100の形状又は外観を形作る表面を意味する。本明細書において「導通部20の端面電極と外装複合体10が電池要素100の輪郭面に沿って設けられている」とは、導通部20の端面電極と外装複合体10が、電池要素100の輪郭面の延在方向と略平行に設けられている状態を意味する。 In this specification, the "contour surface of the battery element 100" means a surface that forms the shape or appearance of the battery element 100. In this specification, “the end surface electrode of the conductive portion 20 and the exterior composite 10 are provided along the contour surface of the battery element 100” means that the end surface electrode of the conductive portion 20 and the exterior composite 10 It means a state in which it is provided substantially parallel to the extending direction of the contour surface of the.
 すなわち、導通部20の端面電極と外装複合体10が電池要素100の輪郭面の延在方向と略同一方向に延在していることが好ましい。本明細書において「電池要素100の輪郭面の延在方向」とは、輪郭面が長手方向に進む方向を意味する。導通部20と外装複合体10は、少なくとも一見して電池要素100の輪郭面の延在方向と略同一方向に延在していればよく、導通部20の端面電極と外装複合体10が電池要素100の輪郭面の延在方向と完全に同一方向に必ずしも延在していることを要しない。例えば、導通部20、外装複合体10及び電池要素100の各々の位置関係に起因して、導通部20の一部と外装複合体10の一部が電池要素100の輪郭面の延在方向と略同一平行に延在していない箇所があってもよい。 In other words, it is preferable that the end surface electrodes of the conducting portion 20 and the exterior composite 10 extend in substantially the same direction as the extending direction of the contour surface of the battery element 100 . In this specification, the term “extending direction of the contoured surface of the battery element 100” means the direction in which the contoured surface extends in the longitudinal direction. The conducting portion 20 and the exterior composite 10 may at least at first glance extend in substantially the same direction as the extending direction of the contour surface of the battery element 100. It does not necessarily have to extend in exactly the same direction as the extension of the contoured surface of element 100 . For example, due to the positional relationship among each of the conductive portion 20, the exterior composite 10, and the battery element 100, a portion of the conductive portion 20 and a portion of the exterior composite 10 are aligned with the extending direction of the contour surface of the battery element 100. There may be portions that do not extend substantially in parallel.
 従来の固体電池200’では、上述のように、導通部の構成要素であるタブリード22’が外装材13’を横断し外部に向かって突出するように構成されている。そのため、従来の固体電池200’において実装に要する面積は、外部へ突出しているタブリードの面積分さらに必要となる。また、このタブリードは固体電池から電気を取り出す部分であり、固体電池の発電に寄与しないため、突出している導通部の面積分に応じて固体電池の単位面積辺りの発電容量の低下につながり得る。 In the conventional solid-state battery 200', as described above, the tab lead 22', which is a constituent element of the conductive portion, is configured to cross the exterior material 13' and protrude outward. Therefore, the area required for mounting in the conventional solid-state battery 200' is further required for the area of the tab leads protruding to the outside. In addition, since this tab lead is a part that extracts electricity from the solid-state battery and does not contribute to the power generation of the solid-state battery, it can lead to a decrease in the power generation capacity per unit area of the solid-state battery depending on the area of the projecting conductive portion.
 この点につき、本発明の一実施形態では、導通部20が、第1の外装材11と第2の外装材12とが相互に重なる重複領域50から引き出されている。重複領域50は、電池要素100を覆う外装複合体10の構成要素であるため、概して電池要素100の輪郭に沿った形態となり得る。そのため、係る重複領域50から引き出される導通部20も電池要素100の輪郭に沿い突出が抑制された構造にし得る。導通部20(具体的にはタブリード22)を突出構造ではなく電池要素100の輪郭に沿った構造とし得るため、全体として、本発明の一実施形態に係る固体電池200を電子基材に表面実装させることができる。 Regarding this point, in one embodiment of the present invention, the conducting portion 20 is drawn out from the overlapping region 50 where the first covering material 11 and the second covering material 12 overlap each other. Overlapping region 50 is a component of exterior composite 10 that covers battery element 100 , and thus can generally follow the contours of battery element 100 . Therefore, the conductive portion 20 drawn out from the overlapping region 50 can also have a structure in which protrusion along the contour of the battery element 100 is suppressed. Since the conductive part 20 (specifically, the tab lead 22) can be configured along the contour of the battery element 100 instead of the projecting structure, the solid battery 200 according to one embodiment of the present invention as a whole can be surface-mounted on the electronic substrate. can be made
 一態様では、導通部20の外部への引き出し部分(タブリード22に相当)が屈曲部分20Aを有していることが好ましい(図6~図8等参照)。ここでいう屈曲部分とは、折れ曲がっている部分のことを意味する。屈曲の形態に特に制限はなく、例えば、図6~8に示すように、導通部20の外部への引出し部分が直角部分を有するように折れ曲がっていてもよい。または、導通部20の外部への引出し部分が弧(カーブ状)を描く部分を有するように折れ曲がっていてもよく、具体的には外装材の表面を沿うように折れ曲がっていてもよい。端面電極21に接続されたタブリード22が外部へ引き出される形態は特に制限はなく、例えば、図7で示すように、断面視でコの字型を含むように引き出されてもよい。換言すると、複数の屈曲部分を含むようなタブリード22の形態であってもよい。 In one aspect, it is preferable that the portion (corresponding to the tab lead 22) of the conductive portion 20 led out to the outside has a bent portion 20A (see FIGS. 6 to 8, etc.). The bent portion here means a bent portion. There is no particular limitation on the shape of the bend, and for example, as shown in FIGS. 6 to 8, the portion of the conductive portion 20 leading to the outside may be bent so as to have a right-angled portion. Alternatively, the lead-out portion of the conducting portion 20 to the outside may be bent so as to have an arc (curved) portion, specifically, it may be bent along the surface of the exterior material. The form in which the tab lead 22 connected to the end face electrode 21 is drawn out is not particularly limited, and for example, as shown in FIG. In other words, the tab lead 22 may be configured to include multiple bends.
 図6に示すように、導通部20の外部への引き出し部分(タブリード22に相当)は、本発明の一実施形態に係る固体電池200を表面実装する際に電子基材300等に接続される。その際、本発明の一実施形態に係る固体電池200の実装面積、又は固体電池200と電子基材300等の位置関係、固体電池200と電子基材300等の接続方法に応じて、導通部20の外部への引き出し部分(タブリード22に相当)を屈曲形態とすることができる。 As shown in FIG. 6, the portion (corresponding to the tab lead 22) of the conducting portion 20 that is led out to the outside is connected to the electronic substrate 300 or the like when the solid-state battery 200 according to one embodiment of the present invention is surface-mounted. . At that time, depending on the mounting area of the solid battery 200 according to one embodiment of the present invention, the positional relationship between the solid battery 200 and the electronic substrate 300, etc., the connection method between the solid battery 200 and the electronic substrate 300, etc., the conductive part A portion (corresponding to tab lead 22) of lead 20 to the outside can be bent.
 外部へと引き出す導通部20の長さは、導通部20から電気を取り出すことができるのであれば特に限定されるものではない。引き出された導通部20は、固体電池の好適な表面実装実施の観点から、引き出された導通部20の端部が第1の外装材11又は第2の外装材12により覆われた電池要素100の上面側および下面側の少なくとも一方に設けられていることが好ましい。具体的には、電池要素100の輪郭に沿う導通部20(具体的にはタブリード22)はその端部が固体電池200の上面側又は下面側、例えば下面側に設けられていることが好ましい。これにより、電子基材300上に同列状に固体電池200を実装することができ、全体的な表面実装面積をより小さくすることができる。また、全体的な表面実装面積をより小さくし、かつ固体電池200の表面実装をより確実に達成する観点から、導通部20の引出し部分の少なくとも一部が電子基材300の表面と“面”で接触することが好ましい。“面”で接触することにより、導通部20と電子基材300との接触面積を大きくすることができる。係る形態は、図6のように、導通部20の外部への引き出し部分の少なくとも一部が電子基材300の表面と略平行となるように、導通部20の引出し部分に屈曲部分が設けることで達成できる。 The length of the conducting portion 20 drawn out to the outside is not particularly limited as long as electricity can be extracted from the conducting portion 20 . From the viewpoint of suitable surface mounting of a solid-state battery, the lead-out conductive part 20 is covered with the first packaging material 11 or the second packaging material 12 at the end of the drawn-out conductive part 20 of the battery element 100 . is preferably provided on at least one of the upper surface side and the lower surface side of the . Specifically, the conductive portion 20 (specifically, the tab lead 22 ) along the contour of the battery element 100 is preferably provided with its end portion on the upper surface side or the lower surface side of the solid battery 200 , for example, the lower surface side. As a result, the solid-state batteries 200 can be mounted in parallel on the electronic substrate 300, and the overall surface mounting area can be further reduced. In addition, from the viewpoint of further reducing the overall surface mounting area and achieving more reliable surface mounting of the solid-state battery 200, at least a portion of the lead-out portion of the conductive portion 20 is “planed” with the surface of the electronic base 300. contact is preferred. The contact area between the conductive portion 20 and the electronic substrate 300 can be increased by making contact with the “surface”. In such a form, as shown in FIG. 6, a bent portion is provided in the drawn portion of the conductive portion 20 so that at least a portion of the drawn portion of the conductive portion 20 to the outside is substantially parallel to the surface of the electronic substrate 300. can be achieved with
 なお、引き出された導通部20の端部につき、必ずしも第1の外装材11又は第2の外装材12に固定する必要はなく端部が自由に可動できる自由端であってもよい。この点につき、実装面積を小さくする観点から、一態様では、少なくとも引き出された導通部20の端部が第1の外装材11又は第2の外装材12に固定されている形態が好ましい。 It should be noted that the end of the conductive portion 20 pulled out does not necessarily need to be fixed to the first exterior material 11 or the second exterior material 12, and the end may be a freely movable free end. In this respect, from the viewpoint of reducing the mounting area, in one aspect, at least the end of the conductive portion 20 drawn out is preferably fixed to the first exterior material 11 or the second exterior material 12 .
 係る形態を取ることで、引き出された導通部20の端部が電池要素100の側面に沿うように密着し、当該密着状態を維持することが可能となる。固体電池から突出する部分をより確実に抑制できるため、実装面積を小さくすることができる。 By adopting such a form, the end of the conductive portion 20 drawn out is brought into close contact along the side surface of the battery element 100, and the close contact state can be maintained. Since the portion protruding from the solid-state battery can be suppressed more reliably, the mounting area can be reduced.
 さらに、上記密着状態が維持されることで、引き出された導通部20の端部に対し外部から力が作用した際、引き出された導通部20の端部が折り曲げられ、変形することを好適に防ぐことができる。その結果、固体電池200を電子基材300上に適切に表面実装することができる。 Furthermore, by maintaining the close contact state, when an external force acts on the pulled-out end of the conducting portion 20, the pulled-out end of the conducting portion 20 is preferably bent and deformed. can be prevented. As a result, the solid-state battery 200 can be appropriately surface-mounted on the electronic substrate 300 .
 引き出された導通部20の端部を第1の外装材11又は第2の外装材12に固定する方法は、特に制限されるものではない。例えば、熱融着により、引き出された導通部20の端部を第1の外装材11又は第2の外装材12に固定してもよい。例えば、引き出された導通部20の端部を第1の外装材11又は第2の外装材12に接着剤を用いて固定してもよい。接着剤の形態は、例えば液状、ペースト状、シート状、固体状、粉状である。接着剤の種類は、例えば水系接着剤、化学反応系接着剤、溶剤系接着剤、ホットメルト接着剤である。上記接着剤については、リフロー工程の前後でその接着力が変化しなければ、特に制限されることはない。例えば、接着剤の材質は例えばシリコーン系樹脂、アクリル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等から成る群から選択される少なくとも一種を挙げることができる。 The method of fixing the drawn-out end of the conducting portion 20 to the first exterior material 11 or the second exterior material 12 is not particularly limited. For example, the drawn-out end portion of the conductive portion 20 may be fixed to the first exterior material 11 or the second exterior material 12 by heat sealing. For example, the drawn-out end of the conductive portion 20 may be fixed to the first exterior material 11 or the second exterior material 12 using an adhesive. The form of the adhesive is, for example, liquid, paste, sheet, solid, or powder. Types of adhesives include, for example, water-based adhesives, chemical reaction adhesives, solvent-based adhesives, and hot-melt adhesives. The adhesive is not particularly limited as long as its adhesive strength does not change before and after the reflow process. For example, the material of the adhesive can be at least one selected from the group consisting of silicone-based resins, acrylic-based resins, epoxy-based resins, urethane-based resins, and the like.
 図7で示すように、タブリード22は端面電極21に接続されており、電池要素100からタブリード22を介して外部に電気を取り出せる。タブリード22と端面電極21とを接続する方法は、タブリード22と端面電極21が電気的に接続されていれば、特に制限されない。例えば、タブリード22と端面電極21は、導電性ペーストにより接続されていてもよく、または溶接により接続されていてもよい。 As shown in FIG. 7, the tab leads 22 are connected to the end face electrodes 21, and electricity can be taken out from the battery element 100 via the tab leads 22 to the outside. A method for connecting the tab lead 22 and the edge electrode 21 is not particularly limited as long as the tab lead 22 and the edge electrode 21 are electrically connected. For example, the tab lead 22 and the end face electrode 21 may be connected by conductive paste or by welding.
 固体電池200の充放電時においては、正極層と負極層との間にて固体電解質層中をイオンが移動することに伴い、各電極層に含まれる活物質が積層方向に沿って膨張、収縮し得る。特に、積層方向に沿った活物質、即ち電極層の膨張が生じると、これに起因して上方向へと作用する引張応力と下方向へと作用する引張応力とが生じる。この点につき、本態様によれば、固体電池200が電子基材300上に表面実装されると、固体電池200と電子基材300との間に微小な空間を有することができる。係る空間の存在により、積層方向に沿った電極層の膨張による固体電池200の膨張する部分を受容することも可能となる(図9参照)。 During charging and discharging of the solid battery 200, the active material contained in each electrode layer expands and contracts along the stacking direction as ions move in the solid electrolyte layer between the positive electrode layer and the negative electrode layer. can. In particular, when the active material, that is, the electrode layer expands along the stacking direction, this causes upward acting tensile stress and downward acting tensile stress. In this respect, according to this aspect, when the solid-state battery 200 is surface-mounted on the electronic substrate 300 , a minute space can be provided between the solid-state battery 200 and the electronic substrate 300 . Due to the presence of such a space, it is also possible to accommodate the expanded portion of the solid-state battery 200 due to the expansion of the electrode layers along the stacking direction (see FIG. 9).
 一態様では、重複領域50が、電池要素100の側面に沿って設けられていてもよい。電池要素100の側面全体に沿って設けられていてもよい(図6~図9等参照)。本明細書でいう「側面」とは、電池要素100を構成する各々の面のうち、上面又は下面に対し、相対的に垂直方向に延在する面のことを意味している。上記説明からわかるように、「側面」は電池要素100の形態によって複数存在する。したがって、本発明でいう「重複領域が、電池要素100の側面に沿って設けられている」とは、電池要素100の上面又は下面以外の電池の面に対して、重複領域が設けられていることを意味する。 In one aspect, overlapping regions 50 may be provided along the sides of battery element 100 . It may be provided along the entire side surface of the battery element 100 (see FIGS. 6 to 9, etc.). As used herein, the term “side surface” means a surface that extends in a direction relatively perpendicular to the upper surface or the lower surface among the surfaces that constitute the battery element 100 . As can be seen from the above description, there are a plurality of “side surfaces” depending on the form of the battery element 100 . Therefore, in the present invention, "the overlapping region is provided along the side surface of the battery element 100" means that the overlapping region is provided on the surface of the battery other than the upper surface or the lower surface of the battery element 100. means that
 係る構成を採ることで、重複領域50が電池要素100から突出していないため、表面実装の際に必要な実装面積が小さくなる。特に、電池要素100の輪郭に沿う導通部20(具体的にはタブリード22)の端部が固体電池200の上面側又は下面側、例えば下面側に設けられる場合、導通部20(具体的にはタブリード22)の端部以外の部分を、電池要素100の側面に沿った重複領域50内に収めることができ、固体電池200の電子基材300への表面実装と電池内部への水蒸気の浸入抑止とを好適に両立することができる。 By adopting such a configuration, the overlapping area 50 does not protrude from the battery element 100, so the mounting area required for surface mounting is reduced. In particular, when the end portion of the conducting portion 20 (specifically, the tab lead 22) along the contour of the battery element 100 is provided on the upper surface side or the lower surface side of the solid battery 200, for example, the lower surface side, the conducting portion 20 (specifically, The portion other than the end of the tab lead 22) can be accommodated in the overlap region 50 along the side surface of the battery element 100, so that the solid battery 200 can be surface-mounted on the electronic substrate 300 and water vapor can be prevented from entering the battery. and can be suitably compatible.
 電池要素100への水蒸気浸入防止の観点から、重複領域50は広くてもよい。具体的には、断面視において、タブリード22の長手方向に沿った重複領域50の長さが長いほど好ましい。上記重複領域50の長さは、電池要素100の高さ(即ち電池要素100の上面から下面までの長さ)に対して、10%以上あればよく、好ましくは20%以上、30%以上あればよく、より好ましくは40%以上あればよい。また、外部に引き出される導通部20の位置や長さを調整し易くする観点から、上記重複領域50の長さは電池要素100の高さに対して、150%以下であればよく、好ましくは100%以下、より好ましくは80%以下、さらに好ましくは70%以下、特に好ましくは60%以下であればよい。重複領域50の長さは、重複領域50全般にわたって均一な長さでなくてもよい。例えば、図12の断面視で示すように、重複領域50の長さは異なっていてもよい。 From the viewpoint of preventing water vapor from entering the battery element 100, the overlapping region 50 may be wide. Specifically, in a cross-sectional view, it is preferable that the length of the overlapping region 50 along the longitudinal direction of the tab lead 22 is longer. The length of the overlap region 50 may be 10% or more, preferably 20% or more, or 30% or more of the height of the battery element 100 (that is, the length from the top surface to the bottom surface of the battery element 100). more preferably 40% or more. In addition, from the viewpoint of facilitating adjustment of the position and length of the conductive portion 20 drawn to the outside, the length of the overlapping region 50 should be 150% or less of the height of the battery element 100, preferably 100% or less, more preferably 80% or less, still more preferably 70% or less, particularly preferably 60% or less. The length of overlap region 50 need not be of uniform length throughout overlap region 50 . For example, overlap regions 50 may have different lengths, as shown in the cross-sectional view of FIG.
 一態様では、第1の外装材11および第2の外装材12は、中間層としての金属層11bおよび金属層12bを有して成る(図7参照)。第1の外装材11により電池要素100が覆われる際、当該外装材の中間層である金属層11bが、正極側の端面電極21及び負極側の端面電極21と導通し、当該金属層11bを介する短絡が生じることを防ぐ観点から、外装材の端面に絶縁材が設けられていてもよい。絶縁材を設けるための絶縁処理の方法は、特に制限されず、外装材を介した電池要素100の短絡防止に資するものであれば、いずれの方法でもよい。 In one aspect, the first exterior material 11 and the second exterior material 12 have a metal layer 11b and a metal layer 12b as intermediate layers (see FIG. 7). When the battery element 100 is covered with the first exterior material 11, the metal layer 11b, which is an intermediate layer of the exterior material, is electrically connected to the positive electrode side end surface electrode 21 and the negative electrode side end surface electrode 21, and the metal layer 11b is electrically connected to the end surface electrode 21 of the negative electrode side. An insulating material may be provided on the end face of the exterior material from the viewpoint of preventing a short circuit from occurring. The method of insulation treatment for providing the insulating material is not particularly limited, and any method may be used as long as it contributes to the prevention of short circuiting of the battery element 100 via the exterior material.
 なお、確認までに導通部20及び重複領域50のそれぞれの位置関係は特に制限されず、表面実装の形態に応じて任意の構造をとってもよい。例えば、図11および図12に示すような構造を採ることができる。一例として、図11の構造では、正極側と負極側の導通部20の露出部分が、電池要素100を介して対向するように位置づけられている。これにより、固体電池200の正極側の導通部20と負極側の導通部20の互いの距離がより離隔した位置づけとなるため、両極が短絡する恐れを減じ得る。また、図12のように、固体電池200の実装先に応じて、正極側と負極側の重複領域、およびタブリード22の設計を非対称に適宜設計変更し得る。これにより、固体電池200の表面実装先の表面形態に応じて柔軟な表面実装が可能となる。 The positional relationship between the conductive portion 20 and the overlapping region 50 is not particularly limited until confirmation, and any structure may be employed according to the form of surface mounting. For example, structures as shown in FIGS. 11 and 12 can be adopted. As an example, in the structure of FIG. 11 , the exposed portions of the conductive portions 20 on the positive electrode side and the negative electrode side are positioned to face each other with the battery element 100 interposed therebetween. As a result, the conductive portion 20 on the positive electrode side and the conductive portion 20 on the negative electrode side of the solid-state battery 200 are positioned further apart from each other, so that the possibility of short-circuiting between the two electrodes can be reduced. Further, as shown in FIG. 12, depending on where the solid-state battery 200 is mounted, the design of the overlapping region between the positive electrode side and the negative electrode side and the design of the tab lead 22 can be appropriately changed to be asymmetrical. This enables flexible surface mounting according to the surface configuration of the surface mounting destination of the solid battery 200 .
 又、上記重複領域50における厚みは、重複領域を形成する第1の外装材11と第2の外装材12の厚みにより決定される。 Also, the thickness of the overlap region 50 is determined by the thicknesses of the first exterior material 11 and the second exterior material 12 forming the overlap region.
 重複領域の厚みは、電池要素への水蒸気の浸入による電池性能の低下をより一層抑制する観点から、2μm以上1000μm以下であることが好ましく、より好ましくは、4μm以上600μm以下、さらに好ましくは6μm以上200μm以下の範囲、例えば100μmであってよい。 The thickness of the overlapping region is preferably 2 μm or more and 1000 μm or less, more preferably 4 μm or more and 600 μm or less, and still more preferably 6 μm or more, from the viewpoint of further suppressing the deterioration of the battery performance due to the penetration of water vapor into the battery element. It may be in the range of 200 μm or less, for example 100 μm.
 以上、本発明の外装材を備えた固体電池を例に挙げ、その固体電池に本発明の外装材を適用した場合について詳細に説明した。上記で説明した種々の固体電池の態様は、下記の実施態様で示すように、他の電子デバイスにも適用できる。 In the above, the case where the exterior material of the present invention is applied to a solid battery provided with the exterior material of the present invention has been described in detail. Aspects of the various solid state batteries described above are also applicable to other electronic devices, as shown in the embodiments below.
<第3実施態様>
 例えば、本発明の一実施形態に係る外装材は、図13で示すように、複数の電子デバイス(例えばコンデンサ、抵抗器、コイル、ダイオード、またはトランジスタ等)を備えた回路基板(または複合モジュール等)610に適用できる。図13は、パッケージ化された回路基板600を示しており、当該パッケージ化された回路基板600は、回路基板610を第1の外装材11と第2の外装材12から成る外装複合体10で覆うことで構成される。
<Third embodiment>
For example, as shown in FIG. 13, the exterior material according to one embodiment of the present invention is a circuit board (or composite module, etc.) provided with a plurality of electronic devices (for example, capacitors, resistors, coils, diodes, transistors, etc.). ) 610. FIG. 13 shows a packaged circuit board 600 in which a circuit board 610 is assembled with a sheath composite 10 consisting of a first sheath 11 and a second sheath 12 . Constructed by covering.
(本発明の固体電池の製造方法)
 以下、本発明の一実施形態に係る固体電池の製造方法について説明する。以下では、本発明の外装材を備える固体電池として、第1実施態様の固体電池の製造方法、および第2実施態様の固体電池の製造方法を記載する。これらの製造方法は、本発明の外装材を備える固体電池の製造方法の一例に過ぎず、本発明を限定するものではない。
(Manufacturing method of the solid-state battery of the present invention)
A method for manufacturing a solid-state battery according to an embodiment of the present invention will be described below. In the following, as solid-state batteries provided with the exterior material of the present invention, a manufacturing method of a solid-state battery of the first embodiment and a manufacturing method of a solid-state battery of the second embodiment will be described. These production methods are merely examples of the production method of the solid-state battery provided with the exterior material of the present invention, and do not limit the present invention.
 まず、第1実施態様の製造方法を説明する前に第2実施態様の製造方法を説明する。 First, before describing the manufacturing method of the first embodiment, the manufacturing method of the second embodiment will be described.
 本発明の一実施形態に係る固体電池の製造(第2実施態様)は、大きく分けて以下の工程(i)~(iv)を順に含む(図14(a)~図14(h)参照)。具体的には、本発明の一実施形態に係る固体電池の製造方法は、
 (i)正極層110、負極層120、および正極層110と負極層120との間に介在する固体電解質層130を備えた電池要素100を用意する工程と、
 (ii)電池要素100の一部を覆うように第1の外装材11を設ける工程と、
 (iii)電池要素100から外部へと電気を取り出し可能な導通部20を設ける工程と、
 (iv)電池要素100の一部以外の残りの部分を覆うように第2の外装材12を設ける工程とを含む。
 特に、本発明の一実施形態に係る固体電池の製造方法は、第1の外装材11と第2の外装材12とが相互に重なる重複領域50が形成され、かつ、当該重複領域50から外部へと導通部20が引き出されるように、第2の外装材12を設けることを特徴とする。
 また、上記第1の外装材11および上記第2の外装材12は、金属層と、金属層の第1の主面側に位置する第1の熱可塑性樹脂層と、金属層の第2の主面側に位置する第2の熱可塑性樹脂層とを含み、第1の熱可塑性樹脂層の融点と第2の熱可塑性樹脂層の融点とがともに260℃よりも高いことを特徴とする。
Manufacture of a solid-state battery according to an embodiment of the present invention (second embodiment) roughly includes the following steps (i) to (iv) in order (see FIGS. 14(a) to 14(h)): . Specifically, a method for manufacturing a solid-state battery according to an embodiment of the present invention includes:
(i) preparing a battery element 100 comprising a positive electrode layer 110, a negative electrode layer 120, and a solid electrolyte layer 130 interposed between the positive electrode layer 110 and the negative electrode layer 120;
(ii) providing a first exterior material 11 so as to partially cover the battery element 100;
(iii) providing a conductive portion 20 capable of extracting electricity from the battery element 100 to the outside;
(iv) providing the second exterior material 12 so as to cover the rest of the battery element 100 other than a portion thereof;
In particular, in the method for manufacturing a solid-state battery according to an embodiment of the present invention, an overlapping region 50 is formed in which the first exterior material 11 and the second exterior material 12 overlap each other, and A second exterior member 12 is provided so that the conductive portion 20 can be pulled out.
In addition, the first exterior material 11 and the second exterior material 12 are composed of a metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second layer of the metal layer. and a second thermoplastic resin layer positioned on the main surface side, wherein both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C.
 以下では、本発明のより良い理解のために、ある一つの製法を例示説明するが、本発明は当該方法に限定されない。また、以下の記載順序等経時的な事項は、あくまでも説明のための便益上のものに過ぎず、必ずしもそれに拘束されるわけではない。 For better understanding of the present invention, one manufacturing method will be illustrated below, but the present invention is not limited to this method. In addition, chronological matters such as the following order of description are merely for the convenience of explanation, and are not necessarily bound by it.
[第1の外装材の用意]
 まず、図14(a)に示すように、本発明の第1の外装材11を用意する。第1の外装材11は、金属層11bと、金属層11bの第1の主面側に位置する第1の熱可塑性樹脂層11aと、金属層11bの第2の主面側に位置する第2の熱可塑性樹脂層11cとを含む。第1の外装材11は、上記(本発明の外装材の製造方法)に従い作製して用意してもよい。
[Preparation of the first exterior material]
First, as shown in FIG. 14(a), the first exterior material 11 of the present invention is prepared. The first exterior material 11 includes a metal layer 11b, a first thermoplastic resin layer 11a located on the first main surface side of the metal layer 11b, and a second resin layer 11a located on the second main surface side of the metal layer 11b. 2 thermoplastic resin layers 11c. The first exterior material 11 may be produced and prepared according to the above (the manufacturing method of the exterior material of the present invention).
[第1の外装材の深絞り加工]
 次に、図14(b)に示すように、第1の外装材11に絞り加工を行うことで、電池要素100を覆うような形状に成形する。絞り加工は、第1の外装材11に圧力を加え絞り込むことで凹状(またはカップ状)に加工し、第1の外装材11が電池要素100を覆うような形状にする加工方法であれば特に制限はない。例えば、電池要素100の形状に沿った箱形状の金型の上に第1の外装材11を置き、その第1の外装材11の上から電池要素100の形状を模した金型で圧力を加えることで、電池要素100を覆う第1の外装材11を成形する。これに限定されることなく、第1の外装材11に電池要素100を押し付けて絞り加工をしても良い。
[Deep drawing of the first exterior material]
Next, as shown in FIG. 14B, the first exterior material 11 is formed into a shape that covers the battery element 100 by drawing. The drawing process is a processing method in which pressure is applied to the first exterior material 11 to draw it into a concave shape (or a cup shape) so that the first exterior material 11 covers the battery element 100. Especially, if it is a processing method. There are no restrictions. For example, the first packaging material 11 is placed on a box-shaped mold that follows the shape of the battery element 100, and pressure is applied from above the first packaging material 11 with a mold that imitates the shape of the battery element 100. By adding, the first exterior material 11 that covers the battery element 100 is formed. Without being limited to this, the drawing process may be performed by pressing the battery element 100 against the first exterior material 11 .
[第1の外装材11の取り付け]
 次に、図14(c)に示すように、上記方法で得られた第1の外装材11に電池要素100を挿入して、電池要素100に第1の外装材11を取り付ける。具体的には、第1の外装材を電池要素100の上面又は下面が一部露出するように覆う。ある好適な態様では、第1の外装材を電池要素100の上面又は下面以外の面を覆うように第1の外装材を取り付ける。より具体的には、第1の外装材の端面が電池要素100の上面と側面の境界線に位置するように、第1の外装材11を取り付ける。なお、電池要素100の側面には、端面電極21を予め取り付けてもよい。
[Installation of first exterior material 11]
Next, as shown in FIG. 14( c ), the battery element 100 is inserted into the first exterior material 11 obtained by the above method, and the first exterior material 11 is attached to the battery element 100 . Specifically, the first exterior material is covered so that the upper surface or the lower surface of the battery element 100 is partially exposed. In a preferred embodiment, the first exterior material is attached so as to cover surfaces other than the top surface or the bottom surface of the battery element 100 . More specifically, the first exterior material 11 is attached so that the end face of the first exterior material is located on the boundary line between the top surface and the side surface of the battery element 100 . Note that the end face electrodes 21 may be attached in advance to the side faces of the battery element 100 .
 第1の外装材11の端面には、電池要素100の短絡を防止するために絶縁材31を設けてもよい。絶縁材31は、電気絶縁性を有すれば特に制限はなく、例えば絶縁性樹脂であってもよい。絶縁性樹脂の材質は、エポキシ系樹脂、アクリル系樹脂、フェノール系樹脂、及び合成ゴムから成る群から選択される少なくとも一種を挙げることができる。 An insulating material 31 may be provided on the end face of the first exterior material 11 to prevent the battery element 100 from short-circuiting. The insulating material 31 is not particularly limited as long as it has electrical insulation, and may be, for example, an insulating resin. At least one selected from the group consisting of epoxy-based resins, acrylic-based resins, phenol-based resins, and synthetic rubbers can be used as the material of the insulating resin.
[タブリード22の取り付け]
 次に、図14(d)および図14(e)に示すように、第1の外装材11で覆われていない電池要素100に設けられた端面電極21にタブリード22を取り付ける。好ましくは、タブリード22の端部に導電性接着剤23をメタルマスク印刷で塗布し、それによって、タブリード22の端部と電池要素100の端面電極21とを互いに電気的に接続するように取り付ける。導電性接着剤23は、導電性ペーストでもよく、例えば導電性フィラーを含有する樹脂材料で構成されている。導電性フィラーとしては、ニッケル、銅、アルミニウム、金、およびカーボン等から成る群から選択される少なくとも一種を挙げることができ、樹脂材料はエポキシ系樹脂、アクリル系樹脂、シリコーン系樹脂、およびウレタン系樹脂等から成る群から選択される少なくとも一種を挙げることができる。
[Attachment of tab lead 22]
Next, as shown in FIGS. 14(d) and 14(e), the tab leads 22 are attached to the end face electrodes 21 provided on the battery element 100 not covered with the first exterior material 11. Next, as shown in FIG. Preferably, a conductive adhesive 23 is applied to the ends of the tab leads 22 by metal mask printing, so that the ends of the tab leads 22 and the end surface electrodes 21 of the battery element 100 are attached so as to be electrically connected to each other. The conductive adhesive 23 may be a conductive paste, and is made of, for example, a resin material containing a conductive filler. Examples of the conductive filler include at least one selected from the group consisting of nickel, copper, aluminum, gold, carbon, etc., and the resin material includes epoxy resin, acrylic resin, silicone resin, and urethane resin. At least one selected from the group consisting of resins and the like can be mentioned.
 次に、図14(f)に示すように、電池要素100の端面電極21に接続したタブリード22の端部を基点に、タブリード22を電池要素100の側面の輪郭面に沿わせるように位置づける。タブリード22を電池要素100の辺を横断して沿わせる際、タブリード22を屈曲させてもよい。 Next, as shown in FIG. 14(f), with the end of the tab lead 22 connected to the end face electrode 21 of the battery element 100 as a base point, the tab lead 22 is positioned along the outline of the side surface of the battery element 100. The tab lead 22 may be bent when the tab lead 22 is laid across the side of the battery element 100 .
[第2の外装材12の取り付け]
 次に、第2の外装材12を用意する。第2の外装材12は、金属層12bと、金属層12bの第1の主面側に位置する第1の熱可塑性樹脂層12aと、金属層12bの第2の主面側に位置する第2の熱可塑性樹脂層12cとを含む。第2の外装材12は、上記(本発明の外装材の製造方法)に従い作製して用意してもよい。図14(g)に示すように、電池要素100の側面の輪郭面にタブリード22を沿わせるように位置づけた後、第1の外装材11で覆われていない電池要素100の面側に対し、第2の外装材12を配置する。その後、第2の外装材12の端部を電池要素100の側面に沿わせるように配置していく。この際、電池要素100の側面には、既に第1の外装材11の端部が配置されているため、第2の外装材12と第1の外装材11が重なり合う重複領域50が形成される。具体的には、電池要素100から外部に向かって、電池要素100、第1の外装材11、タブリード22、及び第2の外装材12の順に並ぶ層が形成され、タブリード22が重複領域50から引き出されている状態となる。換言すると、端面電極21及びタブリード22から成る導通部20が重複領域から外部へと引き出されている状態になる。
[Installation of second exterior material 12]
Next, the second exterior material 12 is prepared. The second exterior material 12 includes a metal layer 12b, a first thermoplastic resin layer 12a positioned on the first main surface side of the metal layer 12b, and a second resin layer 12a positioned on the second main surface side of the metal layer 12b. 2 thermoplastic resin layers 12c. The second exterior material 12 may be produced and prepared according to the above (the manufacturing method of the exterior material of the present invention). As shown in FIG. 14(g), after positioning the tab lead 22 along the contoured side surface of the battery element 100, the surface side of the battery element 100 not covered with the first exterior material 11 is A second exterior material 12 is placed. After that, the end of the second exterior material 12 is arranged along the side surface of the battery element 100 . At this time, since the end of the first packaging material 11 is already arranged on the side surface of the battery element 100, an overlapping region 50 is formed where the second packaging material 12 and the first packaging material 11 overlap. . Specifically, from the battery element 100 toward the outside, layers are formed in which the battery element 100 , the first packaging material 11 , the tab lead 22 , and the second packaging material 12 are arranged in this order, and the tab lead 22 extends from the overlapping region 50 . It is pulled out. In other words, the conductive portion 20 composed of the end surface electrode 21 and the tab lead 22 is pulled out from the overlapping region.
 なお、上記重複領域50において、第1の外装材11の第1の熱可塑性樹脂層と第2の外装材12の第1の熱可塑性樹脂層とが対向するように、第1の外装材11および第2の外装材12を電池要素100に配置することが好ましい。また、上記重複領域50において、対向する熱可塑性樹脂は相対的に低融点であることが好ましい。 In addition, in the overlapping region 50, the first exterior material 11 is arranged so that the first thermoplastic resin layer of the first exterior material 11 and the first thermoplastic resin layer of the second exterior material 12 face each other. and the second packaging material 12 are preferably arranged on the battery element 100 . Also, in the overlapping region 50, the facing thermoplastic resin preferably has a relatively low melting point.
 電池要素100に水蒸気が浸入することを防止する観点から、当該重複領域50に位置する第1の外装材11、導通部20の構成要素としてのタブリード22、及び第2の外装材12を密着状態にしてもよい。密着させる方法は、特に限定されるものではないが、熱融着、機械的接合、圧着、溶着、接着剤等で密着させることができる。
 熱融着させる場合、例えば、図14(g)または図14(h)の際に、外部熱源を用いて重複領域50を加熱し、タブリード22に第1の外装材11と第2の外装材12を熱融着してもよい。または、図14(e)または(f)の際に、タブリード22を加熱し、加熱されたタブリード22に第1の外装材11と第2の外装材12を貼り合わせて熱融着してもよい。別の態様では、第1の外装材11、タブリード22、及び第2の外装材12間の密着状態より向上させる観点から、タブリード22に予めシーラント24を塗布して、重複領域50にシーラント24を供してもよい。例えば、シーラント24としては、リフロー工程の前後でシーラント24の接着力が変化しなければ、特に制限はない。例えば、シーラント24は、リフロー時のピーク温度よりも高い融点を有する樹脂を含んでなっていてもよい。なお、本発明の外装材を構成する第1の熱可塑性樹脂層11aおよび第2の熱可塑性樹脂層11cは、それら自体が向上した接着性を有するため、シーラント24を用いずともタブリード22と接合可能である。また、シーラント24を用いる場合でも、従前よりも厚みが薄いシーラントを用いることができる。
From the viewpoint of preventing water vapor from entering the battery element 100, the first exterior material 11 located in the overlap region 50, the tab lead 22 as a component of the conductive portion 20, and the second exterior material 12 are brought into close contact. can be The method of adhesion is not particularly limited, but adhesion can be achieved by heat fusion, mechanical bonding, crimping, welding, adhesives, or the like.
When heat-sealing, for example, in the case of FIG. 14(g) or FIG. 14(h), the overlapping region 50 is heated using an external heat source, and the tab lead 22 is bonded to the first exterior material 11 and the second exterior material. 12 may be heat-sealed. 14(e) or 14(f), the tab lead 22 is heated, and the first exterior material 11 and the second exterior material 12 are adhered to the heated tab lead 22 and heat-sealed. good. In another aspect, the sealant 24 is applied to the tab leads 22 in advance and the sealant 24 is applied to the overlap region 50 from the viewpoint of improving the adhesion between the first exterior material 11 , the tab lead 22 , and the second exterior material 12 . may be provided. For example, the sealant 24 is not particularly limited as long as the adhesive strength of the sealant 24 does not change before and after the reflow process. For example, sealant 24 may comprise a resin having a melting point higher than the peak temperature during reflow. Since the first thermoplastic resin layer 11a and the second thermoplastic resin layer 11c, which constitute the exterior material of the present invention, have improved adhesiveness, they can be bonded to the tab lead 22 without using the sealant 24. It is possible. Moreover, even when the sealant 24 is used, a thinner sealant than before can be used.
[タブリード22の固定]
 最後に、図14(h)に示すように、一方が自由端であるタブリード22、即ち電池要素100と接続されていない方のタブリード22の端部(即ち、引き出された導通部20の端部)を、電池要素100の輪郭面に沿わせるように位置づける。具体的には、第1の外装材11と接するようにタブリード22を屈曲させる。この際、タブリード22と第1の外装材11が接する箇所を加熱し、タブリード22に第1の外装材11を熱融着してもよい。または、タブリード22と第1の外装材11が接する箇所に、接着剤等を塗布し、タブリード22と第1の外装材11を接着固定してもよい。当該接着剤はリフロー工程の前後でシーラント24の接着力が変化しなければ、特に制限はない。
[Fixation of tab lead 22]
Finally, as shown in FIG. 14(h), the tab lead 22 with one free end, that is, the end of the tab lead 22 that is not connected to the battery element 100 (that is, the end of the conductive portion 20 drawn out) ) are positioned along the contour surface of the battery element 100 . Specifically, the tab lead 22 is bent so as to be in contact with the first exterior material 11 . At this time, the first packaging material 11 may be heat-sealed to the tab lead 22 by heating the portion where the tab lead 22 and the first packaging material 11 are in contact with each other. Alternatively, an adhesive or the like may be applied to a portion where the tab lead 22 and the first exterior material 11 are in contact, and the tab lead 22 and the first exterior material 11 may be bonded and fixed. The adhesive is not particularly limited as long as the adhesive strength of the sealant 24 does not change before and after the reflow process.
 係る工程を経て最終的に本発明の一実施形態に係る固体電池200を得ることができる(図14(h))。なお、上記[タブリード22の固定]におけるタブリード22の屈曲および第1の外装材への接着固定は、例えば、本発明の固体電池200を電子基材300へ表面実装する直前に実施してもよい。具体的には、図14(g)の状態となるまで製造した後、タブリード22を固定する前に製造を一旦止め、図14(g)の状態で一時的に保管してもよい。その後の表面実装する電子基材の形状等に応じて、タブリード22の屈曲の有無、タブリード22の引き出された部分の長さ、タブリード22の接着固定位置、屈曲箇所および屈曲方向等の設計事項を適宜決めてもよい。係る工程を採ることで、本発明の固体電池200を電子基材の形状に応じて柔軟に表面実装できる。 Through these steps, a solid-state battery 200 according to one embodiment of the present invention can be finally obtained (FIG. 14(h)). It should be noted that the bending of the tab lead 22 and the bonding and fixing to the first exterior material in the above [fixing the tab lead 22] may be performed, for example, immediately before the solid battery 200 of the present invention is surface-mounted on the electronic substrate 300. . Specifically, after manufacturing until the state shown in FIG. 14(g) is obtained, the manufacturing may be temporarily stopped before the tab lead 22 is fixed, and temporarily stored in the state shown in FIG. 14(g). Depending on the shape of the electronic base material to be surface-mounted after that, design items such as the presence or absence of bending of the tab lead 22, the length of the part where the tab lead 22 is pulled out, the adhesive fixing position of the tab lead 22, the bending point and the bending direction, etc. You can decide accordingly. By adopting such a process, the solid-state battery 200 of the present invention can be surface-mounted flexibly according to the shape of the electronic substrate.
 最終的に得られた本発明の一実施形態に係る固体電池200では、下記の作用効果が奏され得る。 The finally obtained solid battery 200 according to one embodiment of the present invention can exhibit the following effects.
 具体的には、得られる本発明の一実施形態に係る固体電池200では、電池要素100と接続されている導通部20が重複領域50から外部へ引き出されている。そのため、単一の外装材13’(すなわち、重複領域無し)により覆われている従前の固体電池200’と比較すると、断面視における重複領域50の延在方向(長手方向)において、電池の外部から電池要素100に至るまでの経路長さを重複領域50の長さ分長くすることができる。その結果、従前の固体電池200’と比べて、水蒸気40が外部から電池要素100まで到達することを好的に抑制することができる。 Specifically, in the obtained solid-state battery 200 according to one embodiment of the present invention, the conducting portion 20 connected to the battery element 100 is pulled out from the overlap region 50 to the outside. Therefore, compared to the conventional solid-state battery 200' covered with a single exterior material 13' (that is, no overlapping region), the outside of the battery in the extending direction (longitudinal direction) of the overlapping region 50 in cross-sectional view is to the battery element 100 can be increased by the length of the overlapping region 50 . As a result, compared with the conventional solid-state battery 200', water vapor 40 can be favorably suppressed from reaching the battery element 100 from the outside.
 又、重複領域50は、上記説明からわかるように一方の外装材と他方の外装材とが相互に重なっている状態となっている。すなわち、重複領域50は2層以上の外装材から構成される領域である。そのため、重複領域50の厚さは、重複領域50以外の他の部分における外装複合体10の厚さよりも厚い。これにより、断面視における重複領域50の厚み方向(短手方向)において、単一の外装材13’ (すなわち、重複領域無し)により覆われている従来の固体電池200’と比べ、重複領域50における外装材の厚みを、厚くすることができる。そのため、従前の固体電池200’と比べて、水蒸気40が外部から電池要素100まで到達することを好的に抑制することができる。 Also, as can be seen from the above description, the overlapping region 50 is in a state in which one exterior material and the other exterior material overlap each other. That is, the overlapping region 50 is a region composed of two or more layers of exterior material. Therefore, the thickness of the overlapping region 50 is thicker than the thickness of the exterior composite 10 in the portions other than the overlapping region 50 . As a result, in the thickness direction (transverse direction) of the overlapping region 50 in a cross-sectional view, the overlapping region 50 The thickness of the exterior material in can be increased. Therefore, compared with the conventional solid-state battery 200', it is possible to favorably suppress the water vapor 40 from reaching the battery element 100 from the outside.
 又、本発明の一実施形態に係る固体電池の製造方法(第1実施態様)は、大きく分けて以下の工程(i)~(iv)を順に含む(図14(a)~図14(h)参照)。具体的には、本発明の一実施形態に係る固体電池の製造方法は、
 (i)正極層110、負極層120、および正極層110と負極層120との間に介在する固体電解質層130を備えた電池要素100を用意する工程と、
 (ii)電池要素100から外部へと電気を取り出し可能な端面電極21を設ける工程と、
 (iii)電池要素100の一部を覆うように外装材11を設ける工程と、を含む。
上記外装材11は、金属層11bと、金属層11bの第1の主面側に位置する第1の熱可塑性樹脂層11aと、金属層11bの第2の主面側に位置する第2の熱可塑性樹脂層11cとを含み、第1の熱可塑性樹脂層11aの融点と第2の熱可塑性樹脂層11cの融点とがともに260℃よりも高いことを特徴とする。
Further, a method for manufacturing a solid-state battery according to one embodiment of the present invention (first embodiment) roughly includes the following steps (i) to (iv) in order (FIGS. 14(a) to 14(h). )reference). Specifically, a method for manufacturing a solid-state battery according to an embodiment of the present invention includes:
(i) preparing a battery element 100 comprising a positive electrode layer 110, a negative electrode layer 120, and a solid electrolyte layer 130 interposed between the positive electrode layer 110 and the negative electrode layer 120;
(ii) a step of providing an end surface electrode 21 capable of extracting electricity from the battery element 100 to the outside;
(iii) providing the exterior material 11 so as to partially cover the battery element 100;
The exterior material 11 includes a metal layer 11b, a first thermoplastic resin layer 11a positioned on the first main surface side of the metal layer 11b, and a second thermoplastic resin layer 11a positioned on the second main surface side of the metal layer 11b. The melting point of the first thermoplastic resin layer 11a and the melting point of the second thermoplastic resin layer 11c are both higher than 260.degree.
 まず、上記<第2実施態様>の[第1の外装材の用意]で説明したように外装材11を用意する(図14a)。次いで、上記<第2実施態様>の[外装材11の深絞り加工]で説明したように外装材11を凹状(またはカップ状)に加工する(図14b)。次いで、凹状に加工した第1の外装材11に端面電極21を備える電池要素100を挿入して、外装材11を電池要素100に取り付ける(図14c)。 First, the exterior material 11 is prepared as described in [Preparation of the first exterior material] in <Second embodiment> above (Fig. 14a). Next, as described in [Deep drawing of exterior material 11] in <Second embodiment>, exterior material 11 is processed into a concave shape (or cup shape) (Fig. 14b). Next, the battery element 100 having the end face electrodes 21 is inserted into the recessed first packaging material 11, and the packaging material 11 is attached to the battery element 100 (FIG. 14c).
 端面電極21にタブリード22を取り付ける。次いで、凹状に加工した外装材11を取り付けた電池要素100に蓋をするように(凹状の外装材11によって覆われていない残りの電池要素100の部分に)外装材11を取り付ける。このとき、端面電極21に取り付けたタブリード22が外部に露出するように外装材11を取り付ける。以上の工程を経ることで、第1実施態様の固体電池が得られる。 Attach the tab lead 22 to the end face electrode 21 . Next, the exterior material 11 is attached so as to cover the battery element 100 to which the recessed exterior material 11 is attached (on the portion of the remaining battery element 100 not covered by the recessed exterior material 11). At this time, the exterior material 11 is attached so that the tab leads 22 attached to the end face electrodes 21 are exposed to the outside. Through the above steps, the solid battery of the first embodiment is obtained.
 以上、本発明の一実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。 Although one embodiment of the present invention has been described above, it is merely a typical example within the scope of application of the present invention. Therefore, those skilled in the art will easily understand that the present invention is not limited to this and that various modifications can be made.
 表1は、実施例1~5および比較例1の外装材の構成およびそれら外装材を備える固体電池の評価結果を示す。 Table 1 shows the configurations of the exterior materials of Examples 1 to 5 and Comparative Example 1 and the evaluation results of the solid-state batteries provided with these exterior materials.
<実施例1>
(第1の外装材の作製)
 第1の外装材を以下の通り作製した。
 まず、熱ラミネート法により、アルミニウム箔の一方の面に融点が(305℃)である高耐熱性ポリアミドを温度(290)℃で熱融着し、アルミニウム箔と高耐熱性ポリアミドの一体化物を作製した。次いで、当該一体化物のうち、アルミニウム箔の他方の面に融点が(269℃)であるポリエチレンナフタレートを温度(255℃)で熱融着し、第1の外装材を作製した。
<Example 1>
(Preparation of first exterior material)
A first exterior material was produced as follows.
First, using a heat lamination method, a highly heat-resistant polyamide with a melting point of (305°C) is heat-sealed to one side of an aluminum foil at a temperature of (290)°C to produce an integrated product of the aluminum foil and the highly heat-resistant polyamide. bottom. Next, polyethylene naphthalate having a melting point of (269° C.) was heat-sealed to the other surface of the aluminum foil of the integrated product at a temperature of (255° C.) to produce a first exterior material.
(第2の外装材の作製)
 第2の外装材は、第1の外装材と同様の方法により作製した。
(Production of the second exterior material)
The second exterior material was produced in the same manner as the first exterior material.
(電池要素の用意)
 正極層、負極層、および正極層と負極層との間に介在する固体電解質層を備えた電池要素を用意し、電池要素から外部へと電気を取り出し可能な端面電極を設けた。
(Preparation of battery elements)
A battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer was prepared, and an end face electrode capable of extracting electricity from the battery element to the outside was provided.
(外装材の成形)
 第1の外装材および第2の外装材に絞り加工を行い、第1の外装材および第2の外装材をカップ状の形状に成形した。成形において、カップ状の第1の外装材の外側が相対的に低融点の熱可塑性樹脂層になるように、カップ状の第2の外装材の内側が相対的に低融点の熱可塑性樹脂側になるように成形した。これにより、後刻形成される重複領域において、相対的に低融点の熱可塑性樹脂層同士が対向するようにした。
(Molding of exterior material)
Drawing processing was performed on the first exterior material and the second exterior material, and the first exterior material and the second exterior material were formed into a cup-like shape. In molding, the inner side of the cup-shaped second exterior material is a relatively low-melting thermoplastic resin layer so that the outer side of the cup-shaped first exterior material becomes a relatively low-melting thermoplastic resin layer. It was molded to become As a result, the thermoplastic resin layers with relatively low melting points are made to face each other in the overlapping region to be formed later.
 端面電極を設けた電池素体にカップ状の第1の外装材を装着した。次いで、第1の外装材11で覆われていない側にある、外部に露出している端面電極にタブリードを取り付けた。端面電極に装着したタブリードを電池要素の側面の輪郭面に沿わせるように位置づけた。次いで、カップ状の第2の外装材を、カップ状の第1の外装材で覆われていない電池要素の面を覆うように装着した。これにより、電池要素の側面には、第2の外装材と第1の外装材が重なり合う重複領域が形成された。該重複領域を加熱し、重複領域の第1の外装材と第2の外装材を熱融着し封止した。以上により、外装材で覆われた固体電池を得た。 A cup-shaped first exterior material was attached to the battery body provided with the end face electrodes. Next, a tab lead was attached to the end surface electrode exposed to the outside on the side not covered with the first packaging material 11 . The tab leads attached to the end face electrodes were positioned so as to follow the outline of the side face of the battery element. Next, a second cup-shaped exterior member was attached so as to cover the surface of the battery element that was not covered with the first cup-shaped exterior member. As a result, an overlapping region was formed on the side surface of the battery element where the second exterior material and the first exterior material were overlapped. The overlapping region was heated to heat-seal and seal the first exterior material and the second exterior material in the overlapping region. As described above, a solid battery covered with an exterior material was obtained.
<実施例2~5>
 表1の実施例2~5に記載の熱可塑性樹脂層を用いたこと以外、実施例1と同様の方法により実施例2~5を得た。
<Examples 2 to 5>
Examples 2 to 5 were obtained in the same manner as in Example 1, except that the thermoplastic resin layers described in Examples 2 to 5 in Table 1 were used.
<比較例1>
 表1の比較例1に記載の熱可塑性樹脂層を用いたこと以外、実施例1と同様の方法により比較例1を得た。
<Comparative Example 1>
Comparative Example 1 was obtained in the same manner as in Example 1, except that the thermoplastic resin layer described in Comparative Example 1 in Table 1 was used.
<表面実装評価>
外装材で覆われた固体電池をはんだペーストを用いて回路基板(FR4)に実装した。JIS C60068-2-58に基づき、表面実装性の評価を行った。その評価結果を表1に示す。
<Surface mounting evaluation>
A solid-state battery covered with an exterior material was mounted on a circuit board (FR4) using solder paste. Surface mountability was evaluated based on JIS C60068-2-58. Table 1 shows the evaluation results.
<水蒸気による電池要素の劣化評価>
外装材で覆われた固体電池をはんだペーストを用いて回路基板(FR4)に実装したのち、60℃90%RHの高温高湿下ならびに、60℃50%RHの環境下で特性評価を行った。その評価結果を表1に示す。
<Evaluation of deterioration of battery elements due to water vapor>
After mounting the solid battery covered with the exterior material on a circuit board (FR4) using solder paste, the characteristics were evaluated under high temperature and high humidity conditions of 60°C and 90% RH and 60°C and 50% RH. . Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、本発明の外装材を備える固体電池は、表面実装が可能であり、水蒸気による電池要素の劣化がなかったことが確認された。 From the above results, it was confirmed that the solid-state battery provided with the exterior material of the present invention could be surface-mounted, and the battery element was not deteriorated by water vapor.
 本発明の一実施形態に係る外装材は、水蒸気バリア性を必要とする様々な電子デバイスに利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る外装材は、電池(一次電池、二次電池、特に固体電池)、回路基板、複合モジュール、および電子部品等に利用できる。本発明の一実施形態に係る固体電池は、電池使用または蓄電が想定される様々な分野に利用することができる。また、本発明の一実施形態に係る電子デバイスは、電気制御を要する様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る固体電池は、モバイル機器等が使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、スマートウォッチ、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー等のモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車等の分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システム等の分野)、医療用途(イヤホン補聴器等の医療用機器分野)、医薬用途(服用管理システム等の分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船等の分野)等に利用することができる。 The exterior material according to one embodiment of the present invention can be used for various electronic devices that require water vapor barrier properties. Although merely an example, the exterior material according to one embodiment of the present invention can be used for batteries (primary batteries, secondary batteries, particularly solid batteries), circuit boards, composite modules, electronic components, and the like. A solid-state battery according to an embodiment of the present invention can be used in various fields in which battery use or power storage is assumed. Also, the electronic device according to one embodiment of the present invention can be used in various fields requiring electrical control. Although it is merely an example, the solid-state battery according to one embodiment of the present invention can be used in the electric, information, and communication fields where mobile devices and the like are used (for example, mobile phones, smartphones, smart watches, laptop computers and digital cameras, activities Weighing scales, arm computers, mobile devices such as electronic paper), household and small industrial applications (e.g. electric tools, golf carts, household, nursing care and industrial robots), large industrial applications (e.g. forklifts, elevators, harbor cranes), transportation systems (e.g. hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.), power system applications (e.g. various power generation, load conditioners, smart grids , general household installation type storage system, etc.), medical use (medical device field such as earphone hearing aid), medical use (field of medication management system, etc.), IoT field, space / deep sea use (for example, space exploration ), etc.).
 10:外装複合体
 11,11’:外装材、第1の外装材
 11a,11a’:第1の熱可塑性樹脂層
 11b,11b’:金属層
 11c,11c’:第2の熱可塑性樹脂層
 11d’(11e’):接着剤層
 12:第2の外装材
 12a:第1の熱可塑性樹脂層
 12b:金属層
 12c:第2の熱可塑性樹脂層
 13’:単一の外装材
 20:導通部
 20A:屈曲部分
 21:端面電極
 22、22’:タブリード
 23:導電性接着剤
 24:シーラント
 31:絶縁材
 40:水蒸気
 50:重複領域
 100,100’:電池要素
 110:正極層
 120:負極層
 130:固体電解質層
 200,200’:固体電池
 300:電子基材
 310:電子基材接続部
 401:第1加熱ロール
 402:第2加熱ロール
 501:第1冷却ロール
 502:第2冷却ロール
 511a:第1の熱可塑性樹脂材
 511b:金属層
 511c:第2の熱可塑性樹脂材
 600:パッケージ化された回路基板
 610:回路基板
10: Exterior Composite 11, 11': Exterior Material, First Exterior Material 11a, 11a': First Thermoplastic Resin Layer 11b, 11b': Metal Layer 11c, 11c': Second Thermoplastic Resin Layer 11d '(11e'): Adhesive layer 12: Second exterior material 12a: First thermoplastic resin layer 12b: Metal layer 12c: Second thermoplastic resin layer 13': Single exterior material 20: Conducting part 20A: bent portion 21: end face electrode 22, 22': tab lead 23: conductive adhesive 24: sealant 31: insulating material 40: water vapor 50: overlapping region 100, 100': battery element 110: positive electrode layer 120: negative electrode layer 130 : solid electrolyte layer 200, 200': solid battery 300: electronic base material 310: electronic base material connecting portion 401: first heating roll 402: second heating roll 501: first cooling roll 502: second cooling roll 511a: second 1 thermoplastic resin material 511b: metal layer 511c: second thermoplastic resin material 600: packaged circuit board 610: circuit board

Claims (22)

  1.  金属層と、前記金属層の第1の主面側に位置する第1の熱可塑性樹脂層と、前記金属層の第2の主面側に位置する第2の熱可塑性樹脂層とを含み、
     前記第1の熱可塑性樹脂層の融点と前記第2の熱可塑性樹脂層の融点とがともに260℃よりも高い、外装材。
    A metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer,
    The exterior material, wherein both the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are higher than 260°C.
  2.  前記第1の熱可塑性樹脂層および前記第2の熱可塑性樹脂層の少なくとも一方の樹脂層は、前記金属層と直接接合する、請求項1に記載の外装材。 The exterior material according to claim 1, wherein at least one of the first thermoplastic resin layer and the second thermoplastic resin layer is directly bonded to the metal layer.
  3.  前記第1の熱可塑性樹脂層の融点と前記第2の熱可塑性樹脂層の融点との差が20℃以上である、請求項1または2に記載の外装材。 The exterior material according to claim 1 or 2, wherein the difference between the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer is 20°C or more.
  4.  前記第1の熱可塑性樹脂層および前記第2の熱可塑性樹脂層が、液晶ポリマー、ポリエチレンナフタレート、芳香族ポリエーテルケトン系樹脂、フッ素系樹脂、ポリアミド系樹脂、およびポリフェニレンサルファイド系樹脂からなる群より選択される少なくとも1種の熱可塑性樹脂から構成される、請求項1~3のいずれかに記載の外装材。 A group in which the first thermoplastic resin layer and the second thermoplastic resin layer are composed of liquid crystal polymer, polyethylene naphthalate, aromatic polyetherketone resin, fluorine resin, polyamide resin, and polyphenylene sulfide resin. The exterior material according to any one of claims 1 to 3, which is composed of at least one thermoplastic resin selected from the above.
  5.  前記第1の熱可塑性樹脂層と前記第2の熱可塑性樹脂層とが同一種の熱可塑性樹脂から構成される、請求項1~4のいずれかに記載の外装材。 The exterior material according to any one of claims 1 to 4, wherein the first thermoplastic resin layer and the second thermoplastic resin layer are made of the same type of thermoplastic resin.
  6.  正極層、負極層、および前記正極層と前記負極層との間に介在する固体電解質層を備えた電池要素と、前記電池要素を覆う外装材と、前記電池要素から外部へ電気を取り出し可能な導通部とを含み、
     前記外装材が、金属層と、前記金属層の第1の主面側に位置する第1の熱可塑性樹脂層と、前記金属層の第2の主面側に位置する第2の熱可塑性樹脂層とを含み、
     前記第1の熱可塑性樹脂層の融点と前記第2の熱可塑性樹脂層の融点とがともに260℃よりも高い外装材である、固体電池。
    A battery element comprising a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer; an exterior material covering the battery element; a conducting portion;
    The exterior material comprises a metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer. a layer and
    A solid-state battery, wherein the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are both higher than 260°C, which is an exterior material.
  7.  前記第1の熱可塑性樹脂層の融点と前記第2の熱可塑性樹脂層の融点との差が20℃以上である、請求項6に記載の固体電池。 The solid-state battery according to claim 6, wherein the difference between the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer is 20°C or more.
  8.  前記第2の熱可塑性樹脂層の融点が前記第1の熱可塑性樹脂層の融点よりも低い、請求項6または7に記載の固体電池。 The solid state battery according to claim 6 or 7, wherein the second thermoplastic resin layer has a lower melting point than the first thermoplastic resin layer.
  9.  2つ以上の前記外装材からなる外装複合体が設けられ、前記2つ以上の前記外装材が第1の前記外装材と第2の前記外装材とを含み、前記第1の前記外装材と前記第2の前記外装材とが相互に重なる重複領域を形成し、
     前記重複領域から前記外部へと前記導通部が引き出されている、請求項6~8のいずれかに記載の固体電池。
    A sheathing composite is provided comprising two or more of said sheathing materials, said two or more said sheathing materials comprising a first said sheathing material and a second said sheathing material, said first said sheathing material and forming an overlapping region where the second exterior material overlaps with each other;
    The solid state battery according to any one of claims 6 to 8, wherein said conductive portion is drawn out from said overlapping region to said outside.
  10.  前記電池要素の位置を基準として、前記重複領域において前記第1の外装材が相対的に内側に位置し、前記第2の外装材が相対的に外側に位置し、
     前記第1の外装材の前記第1の熱可塑性樹脂層または前記第2の熱可塑性樹脂層と、前記第2の外装材の前記第1の熱可塑性樹脂層または前記第2の熱可塑性樹脂層とが、相互に対向している、請求項9に記載の固体電池。
    With respect to the position of the battery element, the first exterior material is positioned relatively inside and the second exterior material is positioned relatively outside in the overlap region,
    The first thermoplastic resin layer or the second thermoplastic resin layer of the first exterior material, and the first thermoplastic resin layer or the second thermoplastic resin layer of the second exterior material are facing each other.
  11.  前記第1の外装材の前記第2の熱可塑性樹脂層と、前記第2の外装材の前記第2の熱可塑性樹脂層とが、相互に対向している、請求項10に記載の固体電池。 11. The solid state battery according to claim 10, wherein said second thermoplastic resin layer of said first exterior material and said second thermoplastic resin layer of said second exterior material face each other. .
  12.  前記第1の外装材の前記第1の熱可塑性樹脂層と、前記第2の外装材の前記第1の熱可塑性樹脂層とが、相互に対向している、請求項10に記載の固体電池。 11. The solid state battery according to claim 10, wherein said first thermoplastic resin layer of said first exterior material and said first thermoplastic resin layer of said second exterior material face each other. .
  13.  前記第1の外装材の第2の熱可塑性樹脂層が前記導通部の一方の主面に直接接合されており、前記第2の外装材の第2の熱可塑性樹脂層が前記導通部の他方の主面に直接接合されている、請求項10又は11に記載の固体電池。 The second thermoplastic resin layer of the first exterior material is directly bonded to one main surface of the conducting portion, and the second thermoplastic resin layer of the second exterior material is the other main surface of the conducting portion. 12. The solid state battery according to claim 10 or 11, which is bonded directly to the main surface of the .
  14.  前記第1の外装材の第1の熱可塑性樹脂層が前記導通部の一方の主面に直接接合されており、前記第2の外装材の第1の熱可塑性樹脂層が前記導通部の他方の主面に直接接合されている、請求項10又は12に記載の固体電池。 The first thermoplastic resin layer of the first exterior material is directly bonded to one main surface of the conducting portion, and the first thermoplastic resin layer of the second exterior material is the other main surface of the conducting portion. 13. The solid state battery according to claim 10 or 12, wherein the solid state battery is bonded directly to the main surface of the .
  15.  前記重複領域の長さが前記電池要素の高さの少なくとも10%以上である、請求項9~14のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 9 to 14, wherein the length of said overlapping region is at least 10% or more of the height of said battery element.
  16.  前記重複領域が前記電池要素の側面に沿って設けられている、請求項9~15のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 9 to 15, wherein the overlap region is provided along the side surface of the battery element.
  17.  少なくとも引き出された前記導通部の端部が前記第1の外装材又は前記第2の外装材により覆われた前記電池要素の上面側および下面側の少なくとも一方に設けられている、請求項9~16のいずれかに記載の固体電池。 Claims 9 to 9, wherein at least the lead-out end of the conductive portion is provided on at least one of the upper surface side and the lower surface side of the battery element covered with the first exterior material or the second exterior material. 17. The solid battery according to any one of 16.
  18.  前記導通部および前記外装複合体が前記電池要素の輪郭面の延在方向と略同一方向に延在している、請求項9~17のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 9 to 17, wherein said conductive portion and said exterior composite extend in substantially the same direction as the extending direction of the contour surface of said battery element.
  19.  前記外装材が連続する単一構造体から構成され、前記単一構造体が電池要素を取り囲んでいる、請求項6~8のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 6 to 8, wherein the sheathing material is composed of a continuous single structure, and the single structure surrounds the battery element.
  20.  前記外装材が前記電池要素の輪郭面に沿って設けられている、請求項6~19のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 6 to 19, wherein the exterior material is provided along the contour surface of the battery element.
  21.  前記導通部の前記外部への引出し部分が屈曲部分を含む、請求項6~20のいずれかに記載の固体電池。 The solid-state battery according to any one of claims 6 to 20, wherein the lead-out portion of the conductive portion to the outside includes a bent portion.
  22.  電子デバイスと、前記電子デバイスを覆う外装材とを備え、
     前記外装材が、金属層と、前記金属層の第1の主面側に位置する第1の熱可塑性樹脂層と、前記金属層の第2の主面側に位置する第2の熱可塑性樹脂層とを含み、
     前記第1の熱可塑性樹脂層の融点と前記第2の熱可塑性樹脂層の融点とがともに260℃よりも高い外装材である、電子デバイス。
    An electronic device and an exterior material covering the electronic device,
    The exterior material comprises a metal layer, a first thermoplastic resin layer located on the first main surface side of the metal layer, and a second thermoplastic resin layer located on the second main surface side of the metal layer. a layer and
    An electronic device, wherein the melting point of the first thermoplastic resin layer and the melting point of the second thermoplastic resin layer are both higher than 260°C.
PCT/JP2022/039941 2021-12-14 2022-10-26 Exterior material, solid-state battery, and electronic device WO2023112503A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-202785 2021-12-14
JP2021202785 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023112503A1 true WO2023112503A1 (en) 2023-06-22

Family

ID=86774468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039941 WO2023112503A1 (en) 2021-12-14 2022-10-26 Exterior material, solid-state battery, and electronic device

Country Status (1)

Country Link
WO (1) WO2023112503A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213965A (en) * 1998-01-23 1999-08-06 Asahi Chem Ind Co Ltd Outer package body for battery and battery
JP2012238515A (en) * 2011-05-12 2012-12-06 Toppan Printing Co Ltd Sheath material for power storage device
WO2020004412A1 (en) * 2018-06-27 2020-01-02 凸版印刷株式会社 Resin film for terminal, and power storage device using resin film for terminal
WO2021235451A1 (en) * 2020-05-20 2021-11-25 株式会社村田製作所 Solid-state battery and exterior body for solid-state battery
WO2021256403A1 (en) * 2020-06-15 2021-12-23 株式会社村田製作所 Solid-state battery and method for producing solid-state battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213965A (en) * 1998-01-23 1999-08-06 Asahi Chem Ind Co Ltd Outer package body for battery and battery
JP2012238515A (en) * 2011-05-12 2012-12-06 Toppan Printing Co Ltd Sheath material for power storage device
WO2020004412A1 (en) * 2018-06-27 2020-01-02 凸版印刷株式会社 Resin film for terminal, and power storage device using resin film for terminal
WO2021235451A1 (en) * 2020-05-20 2021-11-25 株式会社村田製作所 Solid-state battery and exterior body for solid-state battery
WO2021256403A1 (en) * 2020-06-15 2021-12-23 株式会社村田製作所 Solid-state battery and method for producing solid-state battery

Similar Documents

Publication Publication Date Title
JP7192866B2 (en) solid state battery
EP2500972B1 (en) Lithium secondary battery having multi-directional lead-tab structure
JP5448964B2 (en) All solid-state lithium ion secondary battery
JP2018116917A (en) All-solid-state battery
WO2021256403A1 (en) Solid-state battery and method for producing solid-state battery
KR102488346B1 (en) Battery pack
WO2016195087A1 (en) Film-clad cell
JP7396352B2 (en) solid state battery
WO2005086258A1 (en) Film enclosed electric device and collector covering member for the film enclosed electric device
CN109742436B (en) Battery cell, power battery pack, power utilization device and manufacturing method
WO2018198461A1 (en) Lithium ion secondary battery
JP7322731B2 (en) All-solid battery
WO2021235451A1 (en) Solid-state battery and exterior body for solid-state battery
WO2023112503A1 (en) Exterior material, solid-state battery, and electronic device
US20230128747A1 (en) Solid state battery
JP7206836B2 (en) Electronic component manufacturing method
CN111095594A (en) Pouch case and secondary battery including the same
US20220013816A1 (en) Solid-state battery
JP5717193B2 (en) battery
WO2022004547A1 (en) Solid-state battery
WO2017057691A1 (en) Electrochemical device and method for manuacturing same
US20240047792A1 (en) Solid-state battery package
CN114391193A (en) Laminated battery and method for manufacturing laminated battery
WO2024014261A1 (en) Packaged solid-state battery
US20240047793A1 (en) Solid-state battery package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023567588

Country of ref document: JP

Kind code of ref document: A