WO2023112469A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2023112469A1
WO2023112469A1 PCT/JP2022/038882 JP2022038882W WO2023112469A1 WO 2023112469 A1 WO2023112469 A1 WO 2023112469A1 JP 2022038882 W JP2022038882 W JP 2022038882W WO 2023112469 A1 WO2023112469 A1 WO 2023112469A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical sensor
food
light
refrigerator
light source
Prior art date
Application number
PCT/JP2022/038882
Other languages
French (fr)
Japanese (ja)
Inventor
健一 柿田
桂 南部
剛樹 平井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023112469A1 publication Critical patent/WO2023112469A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • This disclosure relates to refrigerators.
  • Patent Document 1 discloses a refrigerator that detects the color distribution of food from an acquired image. This refrigerator judges the state of food from an image acquired by a photographing device such as a camera.
  • the imaging device such as a camera is relatively large and expensive, and the image processing algorithm is also complicated.
  • the present disclosure provides a refrigerator capable of judging the color balance of food in the container without providing an imaging device.
  • a refrigerator includes a storage unit installed in a storage room, a light source that irradiates food stored in the storage unit with visible light, and an optical sensor that receives light reflected from the food upon receiving irradiation from the light source. And prepare. Further, the refrigerator according to the present disclosure includes a determination unit that determines the color balance inside the container based on the wavelength spectrum of the light received by the optical sensor.
  • the refrigerator according to the present disclosure can determine the color balance of food in the container without providing an imaging device.
  • FIG. 1 is a cross-sectional view showing the configuration of a refrigerator according to Embodiment 1.
  • FIG. 2 is a cross-sectional view of main parts showing the configuration of the vegetable compartment of the refrigerator according to Embodiment 1.
  • FIG. 3 is a diagram showing reflection spectra of fruits and vegetables according to Embodiment 1.
  • FIG. 4 is a diagram showing the spectral distribution of LEDs (Light-Emitting Diodes) of the refrigerator according to Embodiment 1.
  • FIG. 5 is a diagram showing RGB reflected light detected by the photosensor of the refrigerator according to Embodiment 1.
  • FIG. FIG. 6 is a diagram showing an RGB lighting pattern example of the light source of the refrigerator according to the first embodiment.
  • FIG. 7 is a diagram showing an example of detection color classification based on the RGB received light intensity of the photosensor of the refrigerator according to the first embodiment.
  • 8 is a diagram showing a display example of the color balance detected by the refrigerator according to Embodiment 1.
  • FIG. 9 is a diagram showing an example in which two optical sensor units are installed in the switching compartment of the refrigerator according to Embodiment 1.
  • FIG. 10 is a table showing whether the detection results in FIG. 9 of the refrigerator according to Embodiment 1 are correct or incorrect.
  • 11 is a block diagram showing a control configuration for food detection of the refrigerator according to Embodiment 1.
  • FIG. 12 is a diagram showing an example of display output to the communication device of the refrigerator according to Embodiment 1.
  • FIG. 13A and 13B are diagrams showing states of reflected light of the photosensor unit of the refrigerator according to Embodiment 2.
  • a known method for managing the inventory stored in the refrigerator is to use the images of food that have been acquired.
  • it is necessary to process a huge amount of image data and perform food judgment.
  • the present disclosure provides a refrigerator capable of determining color balance without providing an imaging device.
  • the present disclosure includes a light source that irradiates food with visible light, an optical sensor that receives light reflected from the food that has been irradiated with visible light, and a wavelength intensity of light received by the optical sensor and a food wavelength.
  • Embodiment 1 Embodiment 1 of the present disclosure will be described below with reference to FIGS. 1 to 12.
  • FIG. 1 Embodiment 1 of the present disclosure will be described below with reference to FIGS. 1 to 12.
  • FIG. 1 is a cross-sectional view showing the configuration of refrigerator 1 according to Embodiment 1.
  • FIG. 2 is a cross-sectional view of essential parts showing the configuration of the vegetable compartment 9 of the refrigerator 1.
  • the vertical direction in the state where the refrigerator 1 is installed as shown in FIG. the side where the vegetable compartment door 19 is present may be referred to as the front side, the opposite side may be referred to as the rear side, and the left-right direction when viewed from the front side of the refrigerator 1 may simply be referred to as left and right.
  • the heat insulating box body 2 of the refrigerator 1 includes an outer box 3 mainly using steel plates, an inner box 4 made of ABS resin or the like, and a space between the outer box 3 and the inner box 4. It is composed of a foamed heat insulating material 2a such as hard foamed urethane, which is filled and foamed in the space.
  • the heat insulating box 2 is insulated from the surroundings and divided into a plurality of storage compartments.
  • a refrigerating chamber 5 as a first storage chamber is provided at the top of the heat insulating box body 2, and a switchable chamber 6 as a fourth storage chamber and a fifth storage chamber are arranged horizontally below the refrigerating chamber 5.
  • An ice making chamber 7 (not shown) is provided side by side.
  • a freezer compartment 8 as a second storage compartment is provided below the switching compartment 6 and the ice making compartment 7, and a vegetable compartment 9 as a third storage compartment is arranged at the bottom of the heat insulating box body 2. It has become.
  • each storage room is set as follows as an example.
  • the refrigerating chamber 5 is normally kept at a temperature of 1°C to 5°C with a lower limit of non-freezing temperature for refrigerated storage.
  • the switchable compartment 6 has a refrigerating temperature range set at 1°C to 5°C, a vegetable temperature range set at 2°C to 7°C, and a freezing temperature range normally set at -22°C to -15°C. , can be switched to a preset temperature range between the refrigeration temperature range and the freezing temperature range.
  • many of the switching compartments 6 are storage compartments provided with an independent door provided side by side with the ice making compartment 7 .
  • the freezer compartment 8 is set in a freezing temperature range, and is normally set at -22°C to -15°C for frozen storage. It may be set at a low temperature of °C.
  • the vegetable compartment 9 has a temperature setting of 2° C. to 7° C. suitable for vegetables, which is equal to or slightly higher than that of the refrigerating compartment 5, and is generally of a drawer type with a vegetable compartment door 19 on the front.
  • the switchable compartment 6 is a storage compartment including refrigeration and freezing temperature ranges.
  • the storage room may be specialized for switching only the above temperature zone between freezing and freezing.
  • the switching chamber 6 may be a storage chamber fixed to a specific temperature zone.
  • the ice-making chamber 7 makes ice with an automatic ice-making machine (not shown) installed in the upper part of the room with water sent from a water storage tank (not shown) in the refrigerating room 5, and an ice storage container (not shown) arranged in the lower part of the room. (not shown).
  • the top surface of the heat insulating box body 2 has a stepped recess toward the back of the refrigerator 1.
  • a machine room is formed in this stepped recess to house a compressor 10 and a dryer ( (not shown) and other high-pressure side components of the refrigeration cycle are accommodated. That is, the machine room in which the compressor 10 is installed is formed by cutting into the uppermost rear region in the refrigerating room 5 .
  • the present disclosure may be applied to a type of conventional refrigerator in which a machine room is provided in the lowermost storage room rear region of the heat insulating box body 2 and the compressor 10 is arranged therein.
  • the refrigerator of the present disclosure may be a refrigerator having a so-called bottom freezer configuration in which the positions of the freezer compartment 8 and the vegetable compartment 9 are interchanged.
  • a cooling chamber 11 for generating cool air is provided on the back of the freezer compartment 8 and the vegetable compartment 9, and between the freezer compartment 8 and the cooling compartment 11 or between the vegetable compartment 9 and the cooling compartment 11, each having heat insulation.
  • a rear partition wall 12 is formed to separate each room with heat insulation from the air passage for carrying cold air to the room.
  • a cooler 13 is arranged in the cooling chamber 11 .
  • a cooling fan 14 is arranged in the upper space of the cooler 13 to send the cold air cooled by the cooler 13 to the refrigerator compartment 5, the switching compartment 6, the ice making compartment 7, the freezer compartment 8 and the vegetable compartment 9 by forced convection.
  • a radiant heater 15 made of a glass tube is provided for defrosting frost and ice adhering to the cooler 13 and its surroundings during cooling.
  • a drain pan 16 for receiving defrosted water generated during defrosting is formed at the lower part thereof, a drain tube 17 penetrating from the deepest part thereof to the outside of the chamber is formed, and an evaporating plate 18 is formed downstream of the drain pan 16 outside the chamber.
  • each storage room is divided as follows. That is, the switchable compartment 6 is partitioned by an upper refrigerator compartment 5 and a first partition wall 21, and a lower freezer compartment 8 and a second partition wall 22, respectively.
  • a third partition wall 23 is provided for heat insulation.
  • a vegetable compartment door 19 is provided on the front surface of the vegetable compartment 9, and food 24 can be taken in and out from the outside.
  • food 24 can be taken in and out from the outside.
  • a storage section 20 is installed at the top as a container for storing food 24, which is the object of the present embodiment.
  • an optical sensor unit 25 is embedded in the third partition wall 23 on the top surface of the vegetable compartment 9 .
  • the photosensor unit 25 has a substrate on which a light source 26 and a photosensor 27 are mounted. That is, the light source 26 and the optical sensor 27 are mounted on a single substrate on the same wall surface, and it is preferable to use a printed wiring board as the substrate.
  • the surface of the optical sensor unit 25 on the side of the vegetable compartment 9 is covered with a cover member 28, and the optical axis where the light source 26 emits light and the optical sensor 27 receives light is made of a colorless and transparent material that transmits visible light.
  • the optical sensor 27 receives the reflected light when the food 24 is irradiated with the visible light emitted by the light source 26 .
  • a light shielding portion 29 is arranged between the light source 26 and the optical sensor 27 to shield light.
  • the light shielding part 29 prevents the light from the light source 26 from directly entering the optical sensor 27 and eliminates the influence of disturbance light from outside the designed optical axis. If the light blocking portion 29 is integrated with the cover member 28, there is no need to provide a new additional member.
  • Inexpensive monochromatic LEDs are used as the light source 26 used here, for example, red (R) with a peak wavelength of about 700 nm, green (G) with a peak wavelength of about 546 nm, and blue (B) with a peak wavelength of about 436 nm. If space saving is required, a 3-in-1 product capable of emitting three colors in one package may be adopted.
  • the optical sensor 27 for example, it is common to use a photodiode sensitive to the entire visible light range (approximately 400 nm to 800 nm). If selectivity is given, the performance can be further improved.
  • FIG. 11 is a block diagram showing a control configuration for food detection of the refrigerator 1. As shown in FIG.
  • the light source 26 and the optical sensor 27 are connected to the detection section 32.
  • the light source 26 irradiates the food 24 accommodated in the accommodation portion 20 with visible light in response to the input of the signal S1 from the detection portion 32 .
  • the optical sensor 27 receives light reflected from the food 24 and outputs a signal S2 based on the received reflected light to the detector 32 .
  • the detection unit 32 outputs the data detected based on the signal S2 to the determination unit 33 as the signal S3.
  • the determination unit 33 receives the signal S3 as an input, performs a color balance determination process (described later) of the food 24 in the storage unit 20, and outputs the result as a signal S4 to the communication device 34 such as a smartphone, a tablet, or a cloud server. Output.
  • the communication device 34 displays the color balance of the food 24 stored in the refrigerator 1 based on the signal S4.
  • the detection unit 32 and the determination unit 33 may be hardware circuits designed exclusively for realizing these functions, or the functions are realized by the processor executing a program stored in the memory. Anything is fine. In other words, the detection unit 32 and the determination unit 33 may realize their functions through the cooperation of hardware and software.
  • the program stored in the memory may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through an electric communication line such as the Internet.
  • FIG. 3 is a diagram showing reflection spectra of fruits and vegetables.
  • FIG. 4 is a diagram showing the spectrum distribution of LEDs of the refrigerator 1.
  • FIG. 5 is a diagram showing RGB reflected light detected by the optical sensor 27 of the refrigerator 1.
  • FIG. 7 is a diagram showing an example of detected color classification based on the RGB received light intensity of the optical sensor 27. As shown in FIG.
  • the reflection spectrum (also referred to as “reflected light spectrum” or “light wavelength spectrum” in the present disclosure) possessed by representative fruits and vegetables when fruits and vegetables are targeted as the food 24 will be described.
  • spinach has a reflectance peak near 540 nm, and the reflectance decreases with increasing distance from the peak wavelength.
  • Tomatoes have a low reflectance up to 670 nm, after which the reflectance increases sharply, and after 700 nm it maintains a high reflectance.
  • Lemon has low reflectance up to 550 nm, sharply increases thereafter, and maintains high reflectance beyond 600 nm.
  • radish maintains a high reflectance in the entire visible light wavelength range.
  • spinach is perceived as green by human vision, which means that it has a very high reflectance in the vicinity of green wavelengths.
  • yellow lemons, red tomatoes, and white radishes have high reflectances of visible light wavelengths corresponding to their colors.
  • colored fruits and vegetables have unique reflection spectral characteristics, and the refrigerator 1 in the first embodiment uses this characteristic to estimate the type of the fruits and vegetables.
  • red, green, and blue single-color LEDs are used as visible light in the light source 26
  • the spectrum distribution of the LEDs is, for example, about 700 nm for red, about 546 nm for green, and It is common to have a peak wavelength at about 436 nm.
  • the point here is that the spectral distribution of each color has a half-value width. For example, looking at red and green LEDs, there is a portion where the intensity overlaps with the maximum around 620 nm between the respective peak wavelengths. Also, the overlap between blue and green peaks at around 490 nm.
  • the light source 26 can produce orange, yellow, and purple detection colors, as shown in FIG. .
  • FIG. 5 shows the result of measurement by the optical sensor 27 that receives the reflectance of the fruits and vegetables described above, using the RGB LEDs as the light source 26 .
  • tomato has a high reflectance only in red (R)
  • lemon has high reflectance in green (G) and red (R) and low in blue (B).
  • Green (G) is prominently high in spinach, and radish has high reflectance in all three colors. This is a result that agrees with the reflection spectral characteristics peculiar to fruits and vegetables shown in FIG. 3, and the color of fruits and vegetables can be detected by observing the difference in the reflectance of RGB.
  • the refrigerator 1 is equipped with the optical sensor unit 25, and the operation of judging (detecting) the color balance of fruits and vegetables mixed as food 24 will be described using the control block diagram of FIG.
  • the detection section 32 outputs a detection command signal S1 to the light source 26, and the light source 26 emits LEDs of RGB colors.
  • the food 24 is illuminated sequentially with a preset lighting intensity and pattern.
  • the reflected light from the food 24 when lit is received by the optical sensor 27, and the result of the reflection intensity is output to the detection unit 32 as a signal S2. Then, the detection unit 32 calculates the reflectance based on the signal S2 and outputs the result to the determination unit 33 as the signal S3.
  • the determination unit 33 estimates (determines) the color balance in the detection area (that is, inside the storage unit 20) of the thrown-in food 24, and finally outputs the result to the communication device 34 as a signal S4. As a result, the user can be notified of the color balance of the food 24 stored in the refrigerator using the communication device 34, which is a display device or a terminal device.
  • FIG. 6 is a diagram showing an RGB lighting pattern example of the light source 26 of the refrigerator 1.
  • FIG. 8 is a diagram showing a display example of the color balance detected by the refrigerator 1.
  • FIG. 12 is a diagram showing an example of display output to the communication device 34 of the refrigerator 1. As shown in FIG.
  • the red LED of the light source 26 is strongly lit and the detector 32 detects its reflectance.
  • the red LED and green LED are lighted weakly to detect the reflectance of the orange/yellow food 24 .
  • Lighting pattern 3 is strong lighting of the green LED for the green food 24
  • lighting pattern 4 is weak lighting of the red LED and strong lighting of the blue LED is lighting the purple food 24
  • lighting pattern 5 is weak lighting of all the RGB LEDs. , the reflectance of the white food 24 is detected.
  • each reflectance detected by the detection unit 32 is output as a signal S3 to the determination unit 33, and the determination unit 33 processes it into color balance display data as shown in the pie chart of FIG. 8, for example.
  • the light source 26 may include all visible wavelengths of RGB, for example, a white LED, and the light receiving surface of the optical sensor 27 may be provided with a filter that selectively transmits only the RGB wavelengths. becomes possible.
  • the reflectance of each color can be obtained by switching the RGB transmission order of the optical sensor 27 and detecting the intensity while the light source 26 is lit at a constant intensity.
  • the processed color balance display data is sent from the determination unit 33 to the communication device 34 as a signal S4.
  • the communication device 34 is a smartphone, for example, as shown in FIG. 12, the user is notified of the ideal intake balance of fruits and vegetables and the color balance of the currently stocked food along with health advice.
  • health advice green fruits and vegetables are less than ideal in this case, so broccoli and spinach, which are representative of green fruits and vegetables, as shown in FIG. 6 are recommended.
  • FIG. 9 is a diagram showing an example in which two optical sensor units are installed in the switching compartment 6 of the refrigerator 1. As shown in FIG. 9 shows an application example in the switching chamber 6 , in which the first optical sensor unit 30 and the second optical sensor unit 31 are embedded in the top surface of the first partition wall 21 .
  • FIG. 10 is a table showing whether the detection results of the refrigerator 1 in FIG. 9 are correct or incorrect.
  • the number of food items 24 detected at position A is 1, but the number of food items 24 detected at position B is erroneously 0.5. , the number of food items 24 detected at position C is erroneously zero. Then, the total number of detections for determining (estimating) the color balance is erroneously determined as 1.5 instead of the correct 3.
  • the number of food items 24 detected at position A is 0, and the number of food items 24 detected at position B is 0.5. , the number of food items 24 detected at position C is exactly one. Then, the total number of detections for determining (estimating) the color balance is erroneously determined as 1.5 instead of the correct 3.
  • the food 24 at positions A, B, and C are all correctly detected as one, and the total number of detections is positive. There are three, and accurate color balance determination (estimation) is possible.
  • the refrigerator 1 includes the storage unit 20 installed in the storage room, the light source 26 for irradiating the food 24 stored in the storage unit 20 with visible light, and the irradiation from the light source 26. a light sensor 27 for receiving light reflected from food 24 . Refrigerator 1 also includes determination unit 33 that determines the color balance in storage unit 20 based on the wavelength spectrum of the light received by optical sensor 27 .
  • the determination unit 33 may determine the color balance in the storage unit 20 based on the wavelength intensity of the light received by the optical sensor 27.
  • determination unit 33 compares the wavelength intensity of light received by optical sensor 27 with the wavelength spectrum of food 24 (see, for example, FIG.
  • the color balance in the container 20 is estimated.
  • the light source 26 uses RGB single-wavelength LEDs, and the optical sensor 27 uses a photodiode that detects the entire visible light wavelength region. Estimate the color balance of the detection area (within the container 20) by comparison with the ratio.
  • the refrigerator 1 determines the color balance of the food 24 in the storage area (storage unit 20) in a state where multiple types of food 24 stored in the storage unit 20 are mixed, without using an imaging device such as a camera. can. Therefore, the refrigerator 1 can minimize the installation space for the parts necessary for determining the color balance of the food 24, and the light source 26 and the optical sensor 27 are also general-purpose products, so compared with an imaging device such as a camera. , the color balance can be determined with an inexpensive configuration.
  • the food 24 may be fruits and vegetables.
  • the storage compartments can be set to a temperature range suitable for vegetables, and the refrigerator 1 includes the storage section 20 and the optical sensor 27 in the storage compartment. (Vegetable compartment 9, switching compartment 6) may be provided.
  • the refrigerator 1 can be used to improve eating habits because the user can know the amount of fruits and vegetables in the storage section 20 of the refrigerator 1 .
  • refrigerator 1 may arrange light source 26 and optical sensor 27 in the same space facing food 24 .
  • the light source 26 and the optical sensor 27 may be arranged on the same wall surface of the storage compartment (vegetable compartment 9, switching compartment 6).
  • a light blocking part 29 that blocks light may be arranged between the light source 26 and the optical sensor 27 as in the present embodiment.
  • the refrigerator 1 can prevent the light emitted by the light source 26 from directly entering the optical sensor 27 and eliminate the influence of unnecessary disturbance light, so the optical sensor 27 can perform higher-quality detection.
  • the refrigerator 1 includes a photosensor unit 25 having a substrate on which a light source 26 and a photosensor 27 are mounted. It may be removably arranged on the wall surface. That is, the light source 26 and the photosensor 27 may be arranged on a single substrate on the same plane to form the photosensor unit 25 .
  • the installation distance between the light source 26 and the optical sensor 27 becomes closer, and the vertical component of the reflected light from the food 24 increases. And you can easily connect the electrical harness. Moreover, since the optical sensor unit 25 is detachably arranged, maintenance can be easily performed.
  • a plurality of optical sensor units may be installed on the same wall surface of the storage room (switching room 6).
  • the refrigerator 1 can detect all the stored foods 24, so it is possible to accurately estimate the color balance.
  • the number of optical sensor units provided in the refrigerator of the present disclosure may be one or a plurality of three or more. It may be a storage compartment (for example, the vegetable compartment 9).
  • the refrigerator of the present disclosure may be provided with a number of optical sensor units that can detect all the stored foods according to the size of the storage compartment of the storage compartment that can be set to a temperature range suitable for vegetables. good.
  • the refrigerator 1 may output the color balance (the color balance of the food 24 ) inside the container 20 determined by the determination unit 33 to the communication device 34 .
  • the user can obtain information even at a remote location away from the refrigerator 1, so the refrigerator 1 can enhance the convenience of selecting foods to be purchased at shopping destinations, for example.
  • FIG. 13 is a diagram showing the state of reflected light from the optical sensor unit of refrigerator 1 according to the second embodiment.
  • the photosensor unit of the second embodiment is composed of a light source 26 and a photosensor 37, and differs from the photosensor unit 25 of the first embodiment in that a photosensor 37 is provided instead of the photosensor 27.
  • the optical sensor 37 is composed of an optical sensor narrow-angle portion 35 and an optical sensor wide-angle portion 36 .
  • Light emitted from the light source 26 to the food 24 at a specified incident angle is specularly reflected at a reflection angle that is the same as the incident angle, and is received by the optical sensor narrow-angle portion 35 set on the optical axis.
  • the surface of the food 24 is not flat, there is some diffuse reflection due to the surface roughness. there is
  • the determination unit 33 in the second embodiment determines the glossiness of the food 24 ( (to be described later) is different from the determination unit 33 of the first embodiment.
  • the light source 26 irradiates the food 24 and the reflected light is received by the optical sensor narrow-angle portion 35 and the optical sensor wide-angle portion 36. do. Then, the intensity of the received light is input as a signal S2 to the detection unit 32 of the second embodiment, and arithmetic processing of the reflectance is performed.
  • the reflectance (assumed to be R1) of the reflected light received by the optical sensor narrow-angle portion 35 is due to specular reflection, and increases as the surface of the food 24 becomes flatter.
  • the reflectance (assumed to be R2) of the reflected light received by the optical sensor wide-angle portion 36 is due to diffuse reflection, and increases as the surface of the food 24 becomes uneven and rough.
  • the glossiness that quantifies the flatness of the surface of the food 24 is represented by the reflection ratio R1/R2. , is determined (estimated) by the determining unit 33 of the second embodiment. Furthermore, the degree of glossiness is output as a signal S4 from the determination unit 33 of the second embodiment to the communication device 34, and the refrigerator 1 of the second embodiment notifies the user.
  • the determination unit 33 of Embodiment 2 determines glossiness instead of color balance determination, but glossiness determination may be performed in addition to color balance determination.
  • the optical sensor 37 includes the optical sensor narrow-angle portion 35 as an example of a specular reflection detection portion with narrow-angle directivity, and the optical sensor narrow-angle portion 35 as an example of a diffuse reflection detection portion with wide-angle directivity. and a photosensor wide-angle portion 36.
  • the determination unit 33 determines the specular reflectance detected by the optical sensor narrow-angle portion 35 and the optical sensor The glossiness of the food 24 is determined from the diffuse reflectance ratio detected by the wide-angle portion 36 .
  • the refrigerator 1 in Embodiment 2 can estimate the surface state of the food 24, and can predict the deterioration of the freshness of the food 24 by observing the change in gloss over time.
  • Embodiments 1 and 2 have been described as examples of the technology of the present disclosure.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like.
  • Embodiments 1 and 2 fruits and vegetables are used as the food 24, but the food of the present disclosure may be fresh food such as meat and fish stored in the refrigerator 1.
  • Embodiment 1 an application example of the vegetable compartment 9 and the switching compartment 6 is shown, but the storage compartment of the present disclosure may be another storage compartment such as the refrigerating compartment 5 or the like.
  • RGB three-color LEDs are used as the light source 26, but if the food 24 is limited, it is possible to use only single-color LEDs. For example, if it is limited to the detection of green fruits and vegetables, a configuration using only green LEDs is possible.
  • the content to be notified to the user by the communication device 34 is limited to the color intake balance. convenience will be further improved.
  • the present disclosure is applicable to refrigerators. Specifically, the present disclosure is applicable to, for example, household or commercial refrigerators.

Abstract

A refrigerator according to embodiment 1 of the present disclosure comprises an accommodation part (20) installed in a vegetable chamber (9), which is one example of a storage chamber. The refrigerator according to embodiment 1 also comprises a light source (26) for irradiating a food product (24) accommodated in the accommodation part (20) with visible light, and a light sensor (27) for receiving the radiation from the light source (26) and receiving light reflected from the food product (24). The refrigerator according to embodiment 1 also comprises an assessment unit for assessing the color balance within the accommodation part (20) on the basis of the wavelength spectrum of the light received by the light sensor (27).

Description

冷蔵庫refrigerator
 本開示は、冷蔵庫に関する。 This disclosure relates to refrigerators.
 例えば、特許文献1は、食品の色分布を取得した画像から検知する冷蔵庫を開示する。この冷蔵庫は、カメラ等の撮影装置で取得された画像から、食品の状態の判定を行っている。 For example, Patent Document 1 discloses a refrigerator that detects the color distribution of food from an acquired image. This refrigerator judges the state of food from an image acquired by a photographing device such as a camera.
国際公開第2018/020541号WO2018/020541
 しかしながら、取得した画像に基づいて、収容部に収容された食品の色彩バランスを検知する場合、カメラ等の撮影装置は、比較的大型で高価であり、さらに画像処理アルゴリズムも複雑になる。 However, when detecting the color balance of the food stored in the storage unit based on the acquired image, the imaging device such as a camera is relatively large and expensive, and the image processing algorithm is also complicated.
 そのため、本開示は、撮影装置を設けることなく、収容部内の食品の色彩バランスを判定することが可能な冷蔵庫を提供する。 Therefore, the present disclosure provides a refrigerator capable of judging the color balance of food in the container without providing an imaging device.
 本開示における冷蔵庫は、貯蔵室に設置される収容部と、収容部に収容した食品に可視光を照射する光源と、光源からの照射を受けて、食品から反射された光を受光する光センサーと、を備える。また、本開示における冷蔵庫は、光センサーが受光した光の波長スペクトルに基づいて収容部内の色彩バランスを判定する判定部を備える。 A refrigerator according to the present disclosure includes a storage unit installed in a storage room, a light source that irradiates food stored in the storage unit with visible light, and an optical sensor that receives light reflected from the food upon receiving irradiation from the light source. And prepare. Further, the refrigerator according to the present disclosure includes a determination unit that determines the color balance inside the container based on the wavelength spectrum of the light received by the optical sensor.
 本開示における冷蔵庫は、撮影装置を設けることなく、収容部内の食品の色彩バランスを判定できる。 The refrigerator according to the present disclosure can determine the color balance of food in the container without providing an imaging device.
図1は、実施の形態1における冷蔵庫の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the configuration of a refrigerator according to Embodiment 1. FIG. 図2は、実施の形態1における冷蔵庫の野菜室の構成を示す要部断面図である。FIG. 2 is a cross-sectional view of main parts showing the configuration of the vegetable compartment of the refrigerator according to Embodiment 1. FIG. 図3は、実施の形態1における青果物の反射スペクトルを示す図である。3 is a diagram showing reflection spectra of fruits and vegetables according to Embodiment 1. FIG. 図4は、実施の形態1における冷蔵庫のLED(Light-Emitting Diode)のスペクトル分布を示す図である。FIG. 4 is a diagram showing the spectral distribution of LEDs (Light-Emitting Diodes) of the refrigerator according to Embodiment 1. FIG. 図5は、実施の形態1における冷蔵庫の光センサーが検知するRGB反射光を示す図である。5 is a diagram showing RGB reflected light detected by the photosensor of the refrigerator according to Embodiment 1. FIG. 図6は、実施の形態1における冷蔵庫の光源のRGB点灯パターン例を示す図である。FIG. 6 is a diagram showing an RGB lighting pattern example of the light source of the refrigerator according to the first embodiment. 図7は、実施の形態1における冷蔵庫の光センサーのRGB受光強度による検知色分類例を示す図である。FIG. 7 is a diagram showing an example of detection color classification based on the RGB received light intensity of the photosensor of the refrigerator according to the first embodiment. 図8は、実施の形態1における冷蔵庫の検知した色彩バランスの表示例を示す図である。8 is a diagram showing a display example of the color balance detected by the refrigerator according to Embodiment 1. FIG. 図9は、実施の形態1における冷蔵庫の切替室に光センサーユニットを2個設置した例を示す図である。9 is a diagram showing an example in which two optical sensor units are installed in the switching compartment of the refrigerator according to Embodiment 1. FIG. 図10は、実施の形態1における冷蔵庫の図9における検知結果の正誤を示す表である。10 is a table showing whether the detection results in FIG. 9 of the refrigerator according to Embodiment 1 are correct or incorrect. 図11は、実施の形態1における冷蔵庫の食品検知の制御構成を示すブロック図である。11 is a block diagram showing a control configuration for food detection of the refrigerator according to Embodiment 1. FIG. 図12は、実施の形態1における冷蔵庫の通信機器への表示出力例を示す図である。12 is a diagram showing an example of display output to the communication device of the refrigerator according to Embodiment 1. FIG. 図13は、実施の形態2における冷蔵庫の光センサーユニットの反射光の状態を示す図である。13A and 13B are diagrams showing states of reflected light of the photosensor unit of the refrigerator according to Embodiment 2. FIG.
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、健康な食生活を実現したいという社会背景があり、家庭においても栄養バランス良く食事することが、厚生労働省からの指針として出されている。そのため、冷蔵庫で保存する食品の栄養成分を簡単に把握したいという要望がある。
(Knowledge, etc. on which this disclosure is based)
At the time when the inventors came up with the present disclosure, there was a social background of wanting to achieve a healthy diet, and the Ministry of Health, Labor and Welfare issued a guideline to eat a well-balanced diet even at home. Therefore, there is a demand for easily grasping the nutritional components of food to be stored in a refrigerator.
 冷蔵庫で保存する在庫の管理方法として、取得した食品の画像を用いる方法が知られている。しかしながら、栄養成分まで数値化するには、膨大な量の画像データを処理し、食品判定を行う必要がある。 A known method for managing the inventory stored in the refrigerator is to use the images of food that have been acquired. However, in order to quantify even nutritional components, it is necessary to process a huge amount of image data and perform food judgment.
 また、画像に基づいて食品色の色彩バランスを判定することにより、簡易的に栄養成分の取得を実現することも考えられる。しかしながら、カメラ等の撮影装置による画像取得は、一般的に、装置が大型化しデータ解析も複雑であるという課題を発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。 It is also conceivable to easily obtain nutritional ingredients by determining the color balance of food colors based on images. However, the inventors found a problem that image acquisition by a photographing device such as a camera generally requires a large device and complicated data analysis. came to.
 そこで本開示は、撮影装置を設けることなく、色彩バランスを判定することが可能な冷蔵庫を提供する。具体的には、本開示は、食品に可視光を照射する光源と、可視光が照射された食品から反射された光を受光する光センサーと、光センサーの受光した光の波長強度と食品波長スペクトルを比較した結果から、食品が複数種類混在した色彩バランスを推測する冷蔵庫を提供する。 Therefore, the present disclosure provides a refrigerator capable of determining color balance without providing an imaging device. Specifically, the present disclosure includes a light source that irradiates food with visible light, an optical sensor that receives light reflected from the food that has been irradiated with visible light, and a wavelength intensity of light received by the optical sensor and a food wavelength. To provide a refrigerator for estimating a color balance in which a plurality of kinds of foods are mixed from the result of spectral comparison.
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters or redundant descriptions of substantially the same configurations may be omitted. This is to avoid the following description from becoming more redundant than necessary and to facilitate understanding by those skilled in the art.
 尚、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter of the claims.
 (実施の形態1)
 以下、図1~図12を用いて、本開示の実施の形態1を説明する。
(Embodiment 1)
Embodiment 1 of the present disclosure will be described below with reference to FIGS. 1 to 12. FIG.
 [1-1.構成]
 図1は、実施の形態1における冷蔵庫1の構成を示す断面図である。図2は、冷蔵庫1の野菜室9の構成を示す要部断面図である。尚、以下では、図1に示すように冷蔵庫1が設置された状態(以下、「設置状態」ともいう)での鉛直方向を上下方向、上面を天面、下面を底面として記載する場合がある。また、冷蔵庫1の設置状態において、野菜室扉19が存在する側を前方側、反対側を後方側、冷蔵庫1の前方側から見た場合の左右方向を、単に左右と記載する場合がある。これらのことは、その他の実施の形態に係る冷蔵庫1においても同様である。
[1-1. composition]
FIG. 1 is a cross-sectional view showing the configuration of refrigerator 1 according to Embodiment 1. As shown in FIG. FIG. 2 is a cross-sectional view of essential parts showing the configuration of the vegetable compartment 9 of the refrigerator 1. As shown in FIG. In the following description, the vertical direction in the state where the refrigerator 1 is installed as shown in FIG. . In addition, in the installed state of the refrigerator 1, the side where the vegetable compartment door 19 is present may be referred to as the front side, the opposite side may be referred to as the rear side, and the left-right direction when viewed from the front side of the refrigerator 1 may simply be referred to as left and right. These things are the same also in the refrigerator 1 which concerns on other embodiment.
 図1に示すように、冷蔵庫1の断熱箱体2は、主に鋼板を用いた外箱3と、ABS樹脂などで成型された内箱4と、外箱3と内箱4との間の空間に充填発泡される、例えば硬質発泡ウレタンなどの発泡断熱材2aとからなる。断熱箱体2は周囲と断熱し、複数の貯蔵室に区分されている。 As shown in FIG. 1, the heat insulating box body 2 of the refrigerator 1 includes an outer box 3 mainly using steel plates, an inner box 4 made of ABS resin or the like, and a space between the outer box 3 and the inner box 4. It is composed of a foamed heat insulating material 2a such as hard foamed urethane, which is filled and foamed in the space. The heat insulating box 2 is insulated from the surroundings and divided into a plurality of storage compartments.
 断熱箱体2の最上部には第一の貯蔵室としての冷蔵室5が設けられ、その冷蔵室5の下部に左右に並んで第四の貯蔵室としての切替室6と第五の貯蔵室としての製氷室7(図示せず)とが横並びに設けられている。またその切替室6と製氷室7の下方に第二の貯蔵室としての冷凍室8が設けられ、そして断熱箱体2の最下部に第三の貯蔵室としての野菜室9が配置される構成となっている。 A refrigerating chamber 5 as a first storage chamber is provided at the top of the heat insulating box body 2, and a switchable chamber 6 as a fourth storage chamber and a fifth storage chamber are arranged horizontally below the refrigerating chamber 5. An ice making chamber 7 (not shown) is provided side by side. A freezer compartment 8 as a second storage compartment is provided below the switching compartment 6 and the ice making compartment 7, and a vegetable compartment 9 as a third storage compartment is arranged at the bottom of the heat insulating box body 2. It has become.
 本実施の形態では、各貯蔵室は一例として以下のように設定されているものとする。冷蔵室5は、冷蔵保存のために凍らない温度を下限に通常1℃~5℃とする。また切替室6は、1℃~5℃で設定される冷蔵温度帯、2℃~7℃で設定される野菜用温度帯、通常-22℃~-15℃で設定される冷凍温度帯以外に、冷蔵温度帯から冷凍温度帯の間で予め設定された温度帯に切換えることができる。また切替室6は製氷室7に並設された独立扉を備えた貯蔵室が多い。 In this embodiment, each storage room is set as follows as an example. The refrigerating chamber 5 is normally kept at a temperature of 1°C to 5°C with a lower limit of non-freezing temperature for refrigerated storage. In addition, the switchable compartment 6 has a refrigerating temperature range set at 1°C to 5°C, a vegetable temperature range set at 2°C to 7°C, and a freezing temperature range normally set at -22°C to -15°C. , can be switched to a preset temperature range between the refrigeration temperature range and the freezing temperature range. Moreover, many of the switching compartments 6 are storage compartments provided with an independent door provided side by side with the ice making compartment 7 .
 冷凍室8は、冷凍温度帯に設定されており、冷凍保存のために通常-22℃~-15℃で設定されているが、冷凍保存状態の向上のために、例えば-30℃や-25℃の低温で設定されることもある。野菜室9は、冷蔵室5と同等もしくは若干高い野菜に適した温度設定の2℃~7℃としており、前面に野菜室扉19がある引出し方式が一般的である。 The freezer compartment 8 is set in a freezing temperature range, and is normally set at -22°C to -15°C for frozen storage. It may be set at a low temperature of °C. The vegetable compartment 9 has a temperature setting of 2° C. to 7° C. suitable for vegetables, which is equal to or slightly higher than that of the refrigerating compartment 5, and is generally of a drawer type with a vegetable compartment door 19 on the front.
 尚、本実施の形態では、切替室6は冷蔵、冷凍の温度帯までを含めた貯蔵室としているが、冷蔵は、冷蔵室5および野菜室9、冷凍は、冷凍室8に委ねて、冷蔵と冷凍の中間の上記温度帯のみの切替えに特化した貯蔵室としても構わない。また、切替室6は特定の温度帯に固定された貯蔵室でもかまわない。 In the present embodiment, the switchable compartment 6 is a storage compartment including refrigeration and freezing temperature ranges. The storage room may be specialized for switching only the above temperature zone between freezing and freezing. Also, the switching chamber 6 may be a storage chamber fixed to a specific temperature zone.
 製氷室7は、冷蔵室5内の貯水タンク(図示せず)から送られた水で室内上部に設けられた自動製氷機(図示せず)で氷を作り、室内下部に配置した貯氷容器(図示せず)に貯蔵する。 The ice-making chamber 7 makes ice with an automatic ice-making machine (not shown) installed in the upper part of the room with water sent from a water storage tank (not shown) in the refrigerating room 5, and an ice storage container (not shown) arranged in the lower part of the room. (not shown).
 断熱箱体2の天面部は、冷蔵庫1の背面方向に向かって階段状に凹みを設けた形状であり、この階段状の凹部に機械室を形成して圧縮機10、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。すなわち、圧縮機10を配設する機械室は、冷蔵室5内の最上部の後方領域に食い込んで形成されることになる。 The top surface of the heat insulating box body 2 has a stepped recess toward the back of the refrigerator 1. A machine room is formed in this stepped recess to house a compressor 10 and a dryer ( (not shown) and other high-pressure side components of the refrigeration cycle are accommodated. That is, the machine room in which the compressor 10 is installed is formed by cutting into the uppermost rear region in the refrigerating room 5 .
 尚、本開示は、従来一般的であった断熱箱体2の最下部の貯蔵室後方領域に機械室を設けて、そこに圧縮機10を配置するタイプの冷蔵庫に適用しても構わない。また、本開示の冷蔵庫は冷凍室8と野菜室9の配置を入れ替えた、いわゆるボトムフリーザーの構成の冷蔵庫であっても構わない。 It should be noted that the present disclosure may be applied to a type of conventional refrigerator in which a machine room is provided in the lowermost storage room rear region of the heat insulating box body 2 and the compressor 10 is arranged therein. In addition, the refrigerator of the present disclosure may be a refrigerator having a so-called bottom freezer configuration in which the positions of the freezer compartment 8 and the vegetable compartment 9 are interchanged.
 冷凍室8と野菜室9の背面には冷気を生成する冷却室11が設けられ、冷凍室8と冷却室11の間もしくは野菜室9と冷却室11との間には、断熱性を有する各室への冷気の搬送風路が各室と断熱区画するために構成された奥面仕切り壁12で構成されている。 A cooling chamber 11 for generating cool air is provided on the back of the freezer compartment 8 and the vegetable compartment 9, and between the freezer compartment 8 and the cooling compartment 11 or between the vegetable compartment 9 and the cooling compartment 11, each having heat insulation. A rear partition wall 12 is formed to separate each room with heat insulation from the air passage for carrying cold air to the room.
 冷却室11内には、冷却器13が配設されている。冷却器13の上部空間には強制対流方式により冷却器13で冷却した冷気を冷蔵室5、切替室6、製氷室7、冷凍室8および野菜室9に送風する冷却ファン14が配置されている。また冷却器13の下部空間には、冷却時に冷却器13やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアントヒータ15が設けられている。さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン16、その最深部から庫外に貫通したドレンチューブ17が構成され、その下流側の庫外に蒸発皿18が構成されている。 A cooler 13 is arranged in the cooling chamber 11 . A cooling fan 14 is arranged in the upper space of the cooler 13 to send the cold air cooled by the cooler 13 to the refrigerator compartment 5, the switching compartment 6, the ice making compartment 7, the freezer compartment 8 and the vegetable compartment 9 by forced convection. . In the lower space of the cooler 13, a radiant heater 15 made of a glass tube is provided for defrosting frost and ice adhering to the cooler 13 and its surroundings during cooling. Furthermore, a drain pan 16 for receiving defrosted water generated during defrosting is formed at the lower part thereof, a drain tube 17 penetrating from the deepest part thereof to the outside of the chamber is formed, and an evaporating plate 18 is formed downstream of the drain pan 16 outside the chamber. .
 また、各貯蔵室は、以下のように区画されている。すなわち、切替室6は、上部の冷蔵室5と第一の仕切り壁21で、下部の冷凍室8と第二の仕切り壁22でそれぞれ断熱区画され、冷凍室8の下部は、野菜室9と第三の仕切り壁23で断熱区画されている。 In addition, each storage room is divided as follows. That is, the switchable compartment 6 is partitioned by an upper refrigerator compartment 5 and a first partition wall 21, and a lower freezer compartment 8 and a second partition wall 22, respectively. A third partition wall 23 is provided for heat insulation.
 野菜室9の前面には野菜室扉19が設けられ、外部からの食品24の出し入れが行える。また、野菜室9の内部には複数の収納ケースがあり、本実施の形態において対象となる食品24を収納する容器として最上段に収容部20が設置されている。 A vegetable compartment door 19 is provided on the front surface of the vegetable compartment 9, and food 24 can be taken in and out from the outside. In addition, there are a plurality of storage cases inside the vegetable compartment 9, and a storage section 20 is installed at the top as a container for storing food 24, which is the object of the present embodiment.
 さらに、野菜室9の天面の第三の仕切り壁23には、光センサーユニット25が埋設されている。図2に示すように、光センサーユニット25は、光源26と光センサー27とを実装する基板を有する。すなわち、光源26と光センサー27が同一壁面上の一枚基板に実装配置されており、基板としてはプリント配線板を用いるのが良い。 Furthermore, an optical sensor unit 25 is embedded in the third partition wall 23 on the top surface of the vegetable compartment 9 . As shown in FIG. 2, the photosensor unit 25 has a substrate on which a light source 26 and a photosensor 27 are mounted. That is, the light source 26 and the optical sensor 27 are mounted on a single substrate on the same wall surface, and it is preferable to use a printed wiring board as the substrate.
 また、光センサーユニット25の野菜室9側の面はカバー部材28で覆われており、光源26の発光および光センサー27の受光する光軸個所は可視光が透過する無色透明の材料としている。 In addition, the surface of the optical sensor unit 25 on the side of the vegetable compartment 9 is covered with a cover member 28, and the optical axis where the light source 26 emits light and the optical sensor 27 receives light is made of a colorless and transparent material that transmits visible light.
 これにより、光センサーユニット25と食品24とが対向するので、光源26が発光した可視光が食品24を照射した時の反射光を、光センサー27が受光する構成となる。 As a result, since the optical sensor unit 25 and the food 24 face each other, the optical sensor 27 receives the reflected light when the food 24 is irradiated with the visible light emitted by the light source 26 .
 さらに、光源26と光センサー27の間には光を遮蔽する遮光部29が配置されている。遮光部29は光源26の光が光センサー27に直接入射するのを抑制し、設計した光軸以外からの外乱光の影響を排除する。尚、遮光部29はカバー部材28と一体化すれば、新たな追加部材を設ける必要はない。 Furthermore, a light shielding portion 29 is arranged between the light source 26 and the optical sensor 27 to shield light. The light shielding part 29 prevents the light from the light source 26 from directly entering the optical sensor 27 and eliminates the influence of disturbance light from outside the designed optical axis. If the light blocking portion 29 is integrated with the cover member 28, there is no need to provide a new additional member.
 ここで使用する光源26としては安価な単色LEDを用いることとし、例えばピーク波長が約700nmの赤色(R)、約546nmの緑色(G)、約436nmの青色(B)とする。尚、省スペース化が必要であれば、1パッケージで三色発光可能な3in1品が採用されても構わない。 Inexpensive monochromatic LEDs are used as the light source 26 used here, for example, red (R) with a peak wavelength of about 700 nm, green (G) with a peak wavelength of about 546 nm, and blue (B) with a peak wavelength of about 436 nm. If space saving is required, a 3-in-1 product capable of emitting three colors in one package may be adopted.
 次に、光センサー27としては、例えば可視光域(約400nm~800nm)の全てに感度のあるフォトダイオードを用いることが一般的だが、三色に特化したRGBカラーセンサーや、カラーフィルターでRGB選択性を持たせれば、さらに性能は向上できる。 Next, as the optical sensor 27, for example, it is common to use a photodiode sensitive to the entire visible light range (approximately 400 nm to 800 nm). If selectivity is given, the performance can be further improved.
 次に、具体的に食品24の状態を検知するための、電気的な構成を、図11を用いて説明する。図11は、冷蔵庫1の食品検知の制御構成を示すブロック図である。 Next, the electrical configuration for specifically detecting the state of food 24 will be described using FIG. FIG. 11 is a block diagram showing a control configuration for food detection of the refrigerator 1. As shown in FIG.
 図11に示すように、光源26と光センサー27は検知部32に接続されている。光源26は検知部32からの信号S1の入力を契機として収容部20に収容した食品24に可視光を照射する。光センサー27は食品24から反射された光を受光し、受光した反射光に基づく信号S2を検知部32へ出力する。検知部32は信号S2に基づき検出したデータを信号S3として判定部33へ出力する。 As shown in FIG. 11, the light source 26 and the optical sensor 27 are connected to the detection section 32. The light source 26 irradiates the food 24 accommodated in the accommodation portion 20 with visible light in response to the input of the signal S1 from the detection portion 32 . The optical sensor 27 receives light reflected from the food 24 and outputs a signal S2 based on the received reflected light to the detector 32 . The detection unit 32 outputs the data detected based on the signal S2 to the determination unit 33 as the signal S3.
 判定部33は信号S3を入力として、収容部20内の食品24の色彩バランスの判定処理(後述する)を行い、その結果を信号S4として、例えばスマートフォン、タブレット、クラウドサーバーといった通信機器34へそれぞれ出力する。通信機器34は信号S4に基づいて、冷蔵庫1内に保存される食品24の色彩バランスに関する表示を行う。 The determination unit 33 receives the signal S3 as an input, performs a color balance determination process (described later) of the food 24 in the storage unit 20, and outputs the result as a signal S4 to the communication device 34 such as a smartphone, a tablet, or a cloud server. Output. The communication device 34 displays the color balance of the food 24 stored in the refrigerator 1 based on the signal S4.
 尚、検知部32および判定部33は、これらの機能を実現する、専用に設計されたハードウェア回路でもよいし、プロセッサがメモリに格納されているプログラムを実行することにより、その機能を実現するものでもよい。つまり、検知部32および判定部33は、ハードウェアとソフトウェアの協働によりその機能を実現するものでもよい。尚、メモリに格納されているプログラムは、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。 Note that the detection unit 32 and the determination unit 33 may be hardware circuits designed exclusively for realizing these functions, or the functions are realized by the processor executing a program stored in the memory. Anything is fine. In other words, the detection unit 32 and the determination unit 33 may realize their functions through the cooperation of hardware and software. The program stored in the memory may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through an electric communication line such as the Internet.
 [1-2.動作]
 以上のように構成された冷蔵庫1について、その動作、作用を説明する。図3は、青果物の反射スペクトルを示す図である。図4は、冷蔵庫1のLEDのスペクトル分布を示す図である。図5は、冷蔵庫1の光センサー27が検知するRGB反射光を示す図である。図7は、光センサー27のRGB受光強度による検知色分類例を示す図である。
[1-2. motion]
The operation and effects of the refrigerator 1 configured as described above will be described. FIG. 3 is a diagram showing reflection spectra of fruits and vegetables. FIG. 4 is a diagram showing the spectrum distribution of LEDs of the refrigerator 1. As shown in FIG. FIG. 5 is a diagram showing RGB reflected light detected by the optical sensor 27 of the refrigerator 1. As shown in FIG. FIG. 7 is a diagram showing an example of detected color classification based on the RGB received light intensity of the optical sensor 27. As shown in FIG.
 まず始めに図3で、食品24として青果物を対象とした場合に、その代表的な青果物が持つ反射スペクトル(本開示では、「反射光スペクトル」または「光の波長スペクトル」ともいう)を説明する。図3に示すように、ほうれんそうは540nm付近で反射率にピークを持ち、ピーク波長から遠ざかると反射率は減少する特性を持つ。 First, referring to FIG. 3, the reflection spectrum (also referred to as “reflected light spectrum” or “light wavelength spectrum” in the present disclosure) possessed by representative fruits and vegetables when fruits and vegetables are targeted as the food 24 will be described. . As shown in FIG. 3, spinach has a reflectance peak near 540 nm, and the reflectance decreases with increasing distance from the peak wavelength.
 トマトは670nmまでは反射率は低く、それ以降は急激に反射率が増加し、700nm以降は高反射率を維持する。レモンは550nmまでは反射率は低く、それ以降は急激に反射率が増加し、600nm以降は高反射率を維持する。 Tomatoes have a low reflectance up to 670 nm, after which the reflectance increases sharply, and after 700 nm it maintains a high reflectance. Lemon has low reflectance up to 550 nm, sharply increases thereafter, and maintains high reflectance beyond 600 nm.
 また、だいこんは全可視光波長全領域で反射率は高い状態を維持する。つまり、ほうれんそうを、人は視覚で緑色と判断するが、それは緑色の波長付近の反射率が非常に高いことを意味している。同様に黄色のレモン、赤色のトマト、白色のだいこんも同様にその色に応じた可視光波長の反射率が高いのである。すなわち、色彩のある青果物には固有の反射スペクトル特性があり、本実施の形態1における冷蔵庫1はこの特性を利用して青果物の種類を推定するものである。 In addition, radish maintains a high reflectance in the entire visible light wavelength range. In other words, spinach is perceived as green by human vision, which means that it has a very high reflectance in the vicinity of green wavelengths. Similarly, yellow lemons, red tomatoes, and white radishes have high reflectances of visible light wavelengths corresponding to their colors. In other words, colored fruits and vegetables have unique reflection spectral characteristics, and the refrigerator 1 in the first embodiment uses this characteristic to estimate the type of the fruits and vegetables.
 また、光源26で可視光として赤色、緑色、青色の各単色のLEDを使用する場合、そのLEDのスペクトル分布は図4に示すように、例えば、赤色では約700nm、緑色では約546nm、青色では約436nmにピーク波長があるものが一般的である。但し、ここでポイントとなるのは、各色のスペクトル分布には半値幅があることである。例えば、赤色と緑色のLEDをみれば、各ピーク波長の中間の620nm付近を最大に、強度が重なり合う部分がある。また、青色と緑色では490nm付近で重なりが最大になる。 When red, green, and blue single-color LEDs are used as visible light in the light source 26, the spectrum distribution of the LEDs is, for example, about 700 nm for red, about 546 nm for green, and It is common to have a peak wavelength at about 436 nm. However, the point here is that the spectral distribution of each color has a half-value width. For example, looking at red and green LEDs, there is a portion where the intensity overlaps with the maximum around 620 nm between the respective peak wavelengths. Also, the overlap between blue and green peaks at around 490 nm.
 従って、この光源26のRGBのLEDの発光状態と照射強度とを可変することで、光源26は、例えば図7のように、橙、黄系、紫系の検知色を作ることが可能となる。 Therefore, by varying the light emission state and irradiation intensity of the RGB LEDs of the light source 26, the light source 26 can produce orange, yellow, and purple detection colors, as shown in FIG. .
 次に、RGBのLEDを光源26として、前述の青果物の反射率を受光する光センサー27で測定した結果を図5に示す。図5に示すように、トマトでは明らかに赤色(R)のみの反射率が高く、レモンでは緑色(G)と赤色(R)が高くて青色(B)が低い。ほうれんそうでは緑色(G)が突出して高く、だいこんは三色とも高い反射率である。これは、図3に示した青果物特有の反射スペクトル特性と合致する結果であり、このRGBの反射率の差を見ることで青果物の色彩が検知できるのである。 Next, FIG. 5 shows the result of measurement by the optical sensor 27 that receives the reflectance of the fruits and vegetables described above, using the RGB LEDs as the light source 26 . As shown in FIG. 5, tomato has a high reflectance only in red (R), while lemon has high reflectance in green (G) and red (R) and low in blue (B). Green (G) is prominently high in spinach, and radish has high reflectance in all three colors. This is a result that agrees with the reflection spectral characteristics peculiar to fruits and vegetables shown in FIG. 3, and the color of fruits and vegetables can be detected by observing the difference in the reflectance of RGB.
 以上の原理に基づき、冷蔵庫1に光センサーユニット25を搭載し、食品24として混在した青果物の色彩バランスを判定(検知)する動作を、図11の制御ブロック図を用いて説明する。 Based on the above principle, the refrigerator 1 is equipped with the optical sensor unit 25, and the operation of judging (detecting) the color balance of fruits and vegetables mixed as food 24 will be described using the control block diagram of FIG.
 まず、食品24が野菜室9の収容部20に投入され、野菜室扉19が閉扉されると、検知部32から検知指令の信号S1が光源26へ出力され、光源26はRGB各色のLEDを予め設定された点灯の強度、パターンで順次、食品24を照射するよう点灯する。 First, when the food 24 is put into the storage section 20 of the vegetable compartment 9 and the vegetable compartment door 19 is closed, the detection section 32 outputs a detection command signal S1 to the light source 26, and the light source 26 emits LEDs of RGB colors. The food 24 is illuminated sequentially with a preset lighting intensity and pattern.
 点灯した時の食品24からの反射光は光センサー27が受光し、反射強度の結果を信号S2として検知部32へ出力する。そして、検知部32は信号S2に基づいて反射率を演算し、その結果を信号S3として判定部33へ出力する。 The reflected light from the food 24 when lit is received by the optical sensor 27, and the result of the reflection intensity is output to the detection unit 32 as a signal S2. Then, the detection unit 32 calculates the reflectance based on the signal S2 and outputs the result to the determination unit 33 as the signal S3.
 判定部33では、投入された食品24の検知エリア(即ち収容部20内)における色彩バランスが推定(判定)され、最後に判定部33はその結果を信号S4として通信機器34へ出力する。これにより、表示装置や端末機器である通信機器34を用いてユーザーに庫内に保存される食品24の色彩バランスをお知らせすることができる。 The determination unit 33 estimates (determines) the color balance in the detection area (that is, inside the storage unit 20) of the thrown-in food 24, and finally outputs the result to the communication device 34 as a signal S4. As a result, the user can be notified of the color balance of the food 24 stored in the refrigerator using the communication device 34, which is a display device or a terminal device.
 ここで、詳しく色彩バランスを判定する動作を、図6および図8を用いて説明する。図6は、冷蔵庫1の光源26のRGB点灯パターン例を示す図である。図8は、冷蔵庫1の検知した色彩バランスの表示例を示す図である。図12は、冷蔵庫1の通信機器34への表示出力例を示す図である。 Here, the operation of determining the color balance will be described in detail with reference to FIGS. 6 and 8. FIG. FIG. 6 is a diagram showing an RGB lighting pattern example of the light source 26 of the refrigerator 1. As shown in FIG. FIG. 8 is a diagram showing a display example of the color balance detected by the refrigerator 1. As shown in FIG. FIG. 12 is a diagram showing an example of display output to the communication device 34 of the refrigerator 1. As shown in FIG.
 まず、最初に点灯パターン1は赤色系の食品24を検知(推定)するために、光源26の赤LEDを強点灯させて検知部32でその反射率を検知する。 First, in lighting pattern 1, in order to detect (estimate) the red food 24, the red LED of the light source 26 is strongly lit and the detector 32 detects its reflectance.
 次に点灯パターン2は、赤LEDと緑LEDを弱点灯させて橙・黄色系の食品24の反射率を検知する。そして、点灯パターン3は緑LEDの強点灯で緑系の食品24の、点灯パターン4は赤LED弱点灯と青LED強点灯で紫系の食品24の、点灯パターン5はRGB全てのLED弱点灯で白色系の食品24の反射率を検知する。 Next, in lighting pattern 2, the red LED and green LED are lighted weakly to detect the reflectance of the orange/yellow food 24 . Lighting pattern 3 is strong lighting of the green LED for the green food 24, lighting pattern 4 is weak lighting of the red LED and strong lighting of the blue LED is lighting the purple food 24, and lighting pattern 5 is weak lighting of all the RGB LEDs. , the reflectance of the white food 24 is detected.
 そして、これらの検知部32で検知した各反射率は信号S3として判定部33に出力され、判定部33は例えば図8の円グラフに示すような色彩バランス表示データに加工する。 Then, each reflectance detected by the detection unit 32 is output as a signal S3 to the determination unit 33, and the determination unit 33 processes it into color balance display data as shown in the pie chart of FIG. 8, for example.
 また、別の検知方法として、光源26をRGBの可視光波長を全て含む例えば白色LEDとし、光センサー27の受光面にRGB各波長のみを選択的に透過させるフィルターを設けても、色彩バランス検知は可能になる。 As another detection method, the light source 26 may include all visible wavelengths of RGB, for example, a white LED, and the light receiving surface of the optical sensor 27 may be provided with a filter that selectively transmits only the RGB wavelengths. becomes possible.
 具体的には、図7に示すように、一定強度の光源26の点灯状態で、光センサー27のRGB透過順を切り替えて、その強度を検知すれば各色の反射率を得ることができる。 Specifically, as shown in FIG. 7, the reflectance of each color can be obtained by switching the RGB transmission order of the optical sensor 27 and detecting the intensity while the light source 26 is lit at a constant intensity.
 続いて、加工された色彩バランス表示データは、判定部33から信号S4として通信機器34へ送られる。そして、通信機器34が例えばスマートフォンの場合には図12に示すように、青果物の理想摂取バランス表示とともに、現在の在庫食品の色彩バランスを健康アドバイスとともに表示してユーザーにお知らせする。健康アドバイスの例としては、この場合緑系青果物が理想よりも少ないので、図6に示すような緑系青果物の代表のブロッコリーやほうれんそうを推奨する。 Subsequently, the processed color balance display data is sent from the determination unit 33 to the communication device 34 as a signal S4. When the communication device 34 is a smartphone, for example, as shown in FIG. 12, the user is notified of the ideal intake balance of fruits and vegetables and the color balance of the currently stocked food along with health advice. As an example of health advice, green fruits and vegetables are less than ideal in this case, so broccoli and spinach, which are representative of green fruits and vegetables, as shown in FIG. 6 are recommended.
 次に、収容部20の容量が大きく、光センサーユニット25が1個だけでは、食品24を全て検知できない場合は、図9に示すように複数個設置(ここでは2個)すれば検知精度が向上できる。図9は、冷蔵庫1の切替室6に光センサーユニットを2個設置した例を示す図である。図9は切替室6での適用例を示しており、第一の仕切り壁21の天面に第一の光センサーユニット30と第二の光センサーユニット31とが埋設されている。 Next, if the storage unit 20 has a large capacity and it is not possible to detect all of the food 24 with only one light sensor unit 25, a plurality of light sensor units 25 (here, two) may be installed as shown in FIG. 9 to increase the detection accuracy. can improve. FIG. 9 is a diagram showing an example in which two optical sensor units are installed in the switching compartment 6 of the refrigerator 1. As shown in FIG. FIG. 9 shows an application example in the switching chamber 6 , in which the first optical sensor unit 30 and the second optical sensor unit 31 are embedded in the top surface of the first partition wall 21 .
 判り易いために収容部20に食品24が3個収納された場合(図9の位置A、B、Cに1個ずつ食品24を収納)を例に、図10を用いて説明する。図10は、冷蔵庫1の図9における検知結果の正誤を示す表である。 For ease of understanding, a case where three food items 24 are stored in the storage unit 20 (one food item 24 is stored in each of positions A, B, and C in FIG. 9) will be described with reference to FIG. FIG. 10 is a table showing whether the detection results of the refrigerator 1 in FIG. 9 are correct or incorrect.
 まず、第一の光センサーユニット30のみを使用して検知した場合、位置Aでの食品24の検出数は正しく1個となるが、位置Bでの食品24の検出数は誤った0.5個、位置Cでの食品24の検出数は誤った0個となる。そして、色彩バランスを判定(推定)するための検出数合計は、正しい3個ではなく1.5個と誤判定してしまう。 First, when only the first optical sensor unit 30 is used for detection, the number of food items 24 detected at position A is 1, but the number of food items 24 detected at position B is erroneously 0.5. , the number of food items 24 detected at position C is erroneously zero. Then, the total number of detections for determining (estimating) the color balance is erroneously determined as 1.5 instead of the correct 3.
 同様に、第二の光センサーユニット31のみを使用して検知した場合、位置Aでの食品24の検出数は誤った0個、位置Bでの食品24の検出数は誤った0.5個、位置Cでの食品24の検出数は正しく1個となる。そして、色彩バランスを判定(推定)するための検出数合計は、正しい3個ではなく1.5個と誤判定してしまう。 Similarly, when only the second optical sensor unit 31 is used for detection, the number of food items 24 detected at position A is 0, and the number of food items 24 detected at position B is 0.5. , the number of food items 24 detected at position C is exactly one. Then, the total number of detections for determining (estimating) the color balance is erroneously determined as 1.5 instead of the correct 3.
 ここで、第一の光センサーユニット30と第二の光センサーユニット31とを同時に使用すると、位置A、B、Cでの食品24は全て正しく1個と検知され、検出数合計も正判定の3個となり、正確な色彩バランス判定(推定)が可能になる。 Here, when the first optical sensor unit 30 and the second optical sensor unit 31 are used at the same time, the food 24 at positions A, B, and C are all correctly detected as one, and the total number of detections is positive. There are three, and accurate color balance determination (estimation) is possible.
 [1-3.効果等]
 以上のように、本実施の形態において、冷蔵庫1は、貯蔵室に設置される収容部20と、収容部20に収容した食品24に可視光を照射する光源26と、光源26からの照射を受けて、食品24から反射された光を受光する光センサー27と、を備える。また、冷蔵庫1は、光センサー27が受光した光の波長スペクトルに基づいて収容部20内の色彩バランスを判定する判定部33を備える。
[1-3. effects, etc.]
As described above, in the present embodiment, the refrigerator 1 includes the storage unit 20 installed in the storage room, the light source 26 for irradiating the food 24 stored in the storage unit 20 with visible light, and the irradiation from the light source 26. a light sensor 27 for receiving light reflected from food 24 . Refrigerator 1 also includes determination unit 33 that determines the color balance in storage unit 20 based on the wavelength spectrum of the light received by optical sensor 27 .
 また、本実施の形態において、判定部33は、光センサー27が受光した光の波長強度に基づいて、収容部20内の色彩バランスを判定してもよい。 Further, in the present embodiment, the determination unit 33 may determine the color balance in the storage unit 20 based on the wavelength intensity of the light received by the optical sensor 27.
 より具体的には、本実施の形態において、判定部33は、光センサー27が受光した光の波長強度と食品24の波長スペクトル(例えば図3参照)を比較して、食品24が複数種類混在した収容部20内の色彩バランスを推測する。光源26にはRGBの単波長LED、光センサー27には可視光全波長領域を検知するフォトダイオードを用いて、冷蔵庫1は、各RGB波長での反射率を検知し、食品24固有のRGB反射率との比較で、検知エリア(収容部20内)の色彩バランスを推定する。 More specifically, in the present embodiment, determination unit 33 compares the wavelength intensity of light received by optical sensor 27 with the wavelength spectrum of food 24 (see, for example, FIG. The color balance in the container 20 is estimated. The light source 26 uses RGB single-wavelength LEDs, and the optical sensor 27 uses a photodiode that detects the entire visible light wavelength region. Estimate the color balance of the detection area (within the container 20) by comparison with the ratio.
 これにより、冷蔵庫1は、収容部20に貯蔵した食品24が複数種混在した状態での、収容エリア(収容部20)での食品24の色彩バランスを、カメラ等の画像装置を用いることなく判定できる。そのため、冷蔵庫1は、食品24の色彩バランスの判定に必要な部品の取付スペースも最小限に抑えることができ、光源26と光センサー27も汎用品を用いるので、カメラ等の画像装置と比較し、安価な構成で色彩バランスの判定ができる。 As a result, the refrigerator 1 determines the color balance of the food 24 in the storage area (storage unit 20) in a state where multiple types of food 24 stored in the storage unit 20 are mixed, without using an imaging device such as a camera. can. Therefore, the refrigerator 1 can minimize the installation space for the parts necessary for determining the color balance of the food 24, and the light source 26 and the optical sensor 27 are also general-purpose products, so compared with an imaging device such as a camera. , the color balance can be determined with an inexpensive configuration.
 また、本実施の形態のように、食品24は青果物にしてもよい。 Also, as in the present embodiment, the food 24 may be fruits and vegetables.
 また、本実施の形態のように、貯蔵室(野菜室9、切替室6)は、野菜に適した温度帯に設定可能であり、冷蔵庫1は、収容部20と光センサー27とを貯蔵室(野菜室9、切替室6)に備えてもよい。 In addition, as in the present embodiment, the storage compartments (vegetable compartment 9, switchable compartment 6) can be set to a temperature range suitable for vegetables, and the refrigerator 1 includes the storage section 20 and the optical sensor 27 in the storage compartment. (Vegetable compartment 9, switching compartment 6) may be provided.
 これにより、健康バロメーターである青果物の色彩バランスが把握できる。そのため、冷蔵庫1の収容部20内で過不足している青果物をユーザーが知り得るので、冷蔵庫1は、食生活の改善に役立てることができる。 This makes it possible to grasp the color balance of fruits and vegetables, which is a health barometer. Therefore, the refrigerator 1 can be used to improve eating habits because the user can know the amount of fruits and vegetables in the storage section 20 of the refrigerator 1 .
 また、本実施の形態のように、冷蔵庫1は、光源26と光センサー27を、食品24と対峙する同一空間内に配置するようにしてもよい。 Further, as in the present embodiment, refrigerator 1 may arrange light source 26 and optical sensor 27 in the same space facing food 24 .
 また、本実施の形態のように、光源26と光センサー27とは、貯蔵室(野菜室9、切替室6)の同一壁面上に配置されてもよい。 Also, as in the present embodiment, the light source 26 and the optical sensor 27 may be arranged on the same wall surface of the storage compartment (vegetable compartment 9, switching compartment 6).
 これにより、光源26からの照射光と、光センサー27が受ける反射光の、それぞれの光軸を遮断する障害物の介在をなくせるので、高精度な検知ができる。 This eliminates the presence of obstacles that block the optical axes of the light emitted from the light source 26 and the reflected light received by the optical sensor 27, enabling highly accurate detection.
 本実施の形態のように、光源26と光センサー27との間に、光を遮蔽する遮光部29が配置されてもよい。 A light blocking part 29 that blocks light may be arranged between the light source 26 and the optical sensor 27 as in the present embodiment.
 これにより、冷蔵庫1は、光源26が照射した光が直接光センサー27に入射することを抑制し、不要な外乱光の影響を排除できるので、光センサー27は、より高品位の検知ができる。 As a result, the refrigerator 1 can prevent the light emitted by the light source 26 from directly entering the optical sensor 27 and eliminate the influence of unnecessary disturbance light, so the optical sensor 27 can perform higher-quality detection.
 本実施の形態のように、冷蔵庫1は、光源26と光センサー27とを実装する基板を有する光センサーユニット25を備え、光センサーユニット25は、貯蔵室(野菜室9、切替室6)の壁面に取り外し可能に配置されてもよい。すなわち、光源26と光センサー27は、同一面上の一枚基板上に配置されて光センサーユニット25を構成するようにしてもよい。 As in this embodiment, the refrigerator 1 includes a photosensor unit 25 having a substrate on which a light source 26 and a photosensor 27 are mounted. It may be removably arranged on the wall surface. That is, the light source 26 and the photosensor 27 may be arranged on a single substrate on the same plane to form the photosensor unit 25 .
 これにより、光源26と光センサー27との設置距離が近づき、食品24からの反射光の鉛直方向成分が多くなるので、冷蔵庫1は、高精度な検出が可能になるだけでなく、最小設置スペースで、電気ハーネスの接続も容易にできる。また、光センサーユニット25が取り外し可能に配置されているため、メンテナンスを容易に行うことができる。 As a result, the installation distance between the light source 26 and the optical sensor 27 becomes closer, and the vertical component of the reflected light from the food 24 increases. And you can easily connect the electrical harness. Moreover, since the optical sensor unit 25 is detachably arranged, maintenance can be easily performed.
 本実施の形態のように、光センサーユニットは、貯蔵室(切替室6)の同一壁面上に複数設置されてもよい。 As in the present embodiment, a plurality of optical sensor units may be installed on the same wall surface of the storage room (switching room 6).
 これにより、収容部20の容積が大きく検知するエリアが広い場合でも、冷蔵庫1は、収納された食品24を全て検知可能になるので、精度の良い色彩バランスの推定ができる。 As a result, even if the storage unit 20 has a large volume and the area to be detected is wide, the refrigerator 1 can detect all the stored foods 24, so it is possible to accurately estimate the color balance.
 尚、本実施の形態では、複数の光センサーユニットの配置例として、2個の光センサーユニット(第一の光センサーユニット30および第二の光センサーユニット31)が切替室6に配置される例を説明した。しかしながら、本開示の冷蔵庫が備える光センサーユニットの数は、1個でも3個以上の複数でもよく、複数の光センサーユニットが配置される場所は、野菜に適した温度帯に設定可能な他の貯蔵室(例えば野菜室9)でもよい。即ち、本開示の冷蔵庫は、野菜に適した温度帯に設定可能な貯蔵室の収容部のサイズに応じて、収容された食品が全て検知可能になるような数の光センサーユニットを備えてもよい。 In the present embodiment, as an arrangement example of a plurality of optical sensor units, two optical sensor units (the first optical sensor unit 30 and the second optical sensor unit 31) are arranged in the switching chamber 6. explained. However, the number of optical sensor units provided in the refrigerator of the present disclosure may be one or a plurality of three or more. It may be a storage compartment (for example, the vegetable compartment 9). In other words, the refrigerator of the present disclosure may be provided with a number of optical sensor units that can detect all the stored foods according to the size of the storage compartment of the storage compartment that can be set to a temperature range suitable for vegetables. good.
 本実施の形態のように、冷蔵庫1は、判定部33により判定された収容部20内の色彩バランス(食品24の色彩バランス)を、通信機器34に出力するようにしてもよい。 As in the present embodiment, the refrigerator 1 may output the color balance (the color balance of the food 24 ) inside the container 20 determined by the determination unit 33 to the communication device 34 .
 これにより、ユーザーは冷蔵庫1から離れた遠隔地でも情報を得ることができるので、冷蔵庫1は、例えば買い物先で購入する食品選定の利便性を高めることができる。 As a result, the user can obtain information even at a remote location away from the refrigerator 1, so the refrigerator 1 can enhance the convenience of selecting foods to be purchased at shopping destinations, for example.
 (実施の形態2)
 以下、図13を用いて、実施の形態2を説明する。図13は、実施の形態2における冷蔵庫1の光センサーユニットの反射光の状態を示す図である。
(Embodiment 2)
Embodiment 2 will be described below with reference to FIG. FIG. 13 is a diagram showing the state of reflected light from the optical sensor unit of refrigerator 1 according to the second embodiment.
 [2-1.構成]
 図13において、実施の形態2の光センサーユニットは、光源26および光センサー37から構成され、光センサー27に代えて、光センサー37を備える点で、実施の形態1の光センサーユニット25と異なる。光センサー37は、光センサー狭角部35と、光センサー広角部36とで構成される。規定の入射角で光源26から食品24を照射した光は、入射角と同角度の反射角で正反射し、その光軸に設定された光センサー狭角部35が受光する。また、食品24の表面は平坦ではないので、表面粗さの影響で幾分の拡散反射があるため、その拡散反射の反射光を可能な限り受光できる位置に光センサー広角部36が設置されている。
[2-1. composition]
In FIG. 13, the photosensor unit of the second embodiment is composed of a light source 26 and a photosensor 37, and differs from the photosensor unit 25 of the first embodiment in that a photosensor 37 is provided instead of the photosensor 27. . The optical sensor 37 is composed of an optical sensor narrow-angle portion 35 and an optical sensor wide-angle portion 36 . Light emitted from the light source 26 to the food 24 at a specified incident angle is specularly reflected at a reflection angle that is the same as the incident angle, and is received by the optical sensor narrow-angle portion 35 set on the optical axis. In addition, since the surface of the food 24 is not flat, there is some diffuse reflection due to the surface roughness. there is
 また、実施の形態2における判定部33は、色彩バランスの判定に代えて、光センサー狭角部35および光センサー広角部36が受光した反射光の反射率に基づいて、食品24の光沢度(後述する)を判定する点で、実施の形態1の判定部33と異なる。 In addition, the determination unit 33 in the second embodiment determines the glossiness of the food 24 ( (to be described later) is different from the determination unit 33 of the first embodiment.
 [2-2.動作]
 以上のように構成された実施の形態2における冷蔵庫1について、その動作、作用を説明する。
[2-2. motion]
The operation and action of the refrigerator 1 according to the second embodiment configured as described above will be described.
 実施の形態1で説明したように、収容部20に食品24が投入されると、光源26が食品24を照射してその反射光を、光センサー狭角部35と光センサー広角部36が受光する。そして受光した反射強度が信号S2として実施の形態2の検知部32へ入力され反射率の演算処理が行われる。 As described in Embodiment 1, when the food 24 is put into the container 20, the light source 26 irradiates the food 24 and the reflected light is received by the optical sensor narrow-angle portion 35 and the optical sensor wide-angle portion 36. do. Then, the intensity of the received light is input as a signal S2 to the detection unit 32 of the second embodiment, and arithmetic processing of the reflectance is performed.
 この時、光センサー狭角部35が受光した反射光の反射率(R1とする)は正反射によるもので、食品24の表面が平坦であるほど大きくなる。また、光センサー広角部36が受光した反射光の反射率(R2とする)は拡散反射によるもので、食品24の表面に凹凸があり荒れているほど大きくなる。 At this time, the reflectance (assumed to be R1) of the reflected light received by the optical sensor narrow-angle portion 35 is due to specular reflection, and increases as the surface of the food 24 becomes flatter. Also, the reflectance (assumed to be R2) of the reflected light received by the optical sensor wide-angle portion 36 is due to diffuse reflection, and increases as the surface of the food 24 becomes uneven and rough.
 すなわち食品24の表面の平坦状態を数値化した光沢度は反射比率R1/R2で表され、例えば青果物の場合には光沢度が大きいと、表面が綺麗で萎れによる変形もない新鮮な状態だと、実施の形態2の判定部33が判定(推定)する。さらに、光沢度を実施の形態2の判定部33から信号S4として通信機器34へ出力し、実施の形態2の冷蔵庫1は、ユーザーにお知らせする。 That is, the glossiness that quantifies the flatness of the surface of the food 24 is represented by the reflection ratio R1/R2. , is determined (estimated) by the determining unit 33 of the second embodiment. Furthermore, the degree of glossiness is output as a signal S4 from the determination unit 33 of the second embodiment to the communication device 34, and the refrigerator 1 of the second embodiment notifies the user.
 尚、光沢度だけを検知する場合、光源26に使用する可視光波長はどのようなものでも可能で、特に食品24の色彩は不特定なので白色のLEDを使うのが好ましい。また、実施の形態2の判定部33は、色彩バランスの判定に代えて、光沢度の判定を行うものとしたが、色彩バランスの判定に加えて、光沢度の判定を行ってもよい。 When only the glossiness is detected, any wavelength of visible light can be used for the light source 26. Especially, since the color of the food 24 is unspecified, it is preferable to use a white LED. Further, the determination unit 33 of Embodiment 2 determines glossiness instead of color balance determination, but glossiness determination may be performed in addition to color balance determination.
 [2-3.効果等]
 以上のように、本実施の形態において、光センサー37は、指向性が狭角な正反射検知部の一例としての光センサー狭角部35と、指向性が広角な拡散反射検知部の一例としての光センサー広角部36と、で構成される。本実施の形態において判定部33は、光センサー狭角部35および光センサー広角部36における検知結果に基づいて、具体的には、光センサー狭角部35で検知した正反射率と、光センサー広角部36で検知した拡散反射率の比率から、食品24の光沢度を判定する。
[2-3. effects, etc.]
As described above, in the present embodiment, the optical sensor 37 includes the optical sensor narrow-angle portion 35 as an example of a specular reflection detection portion with narrow-angle directivity, and the optical sensor narrow-angle portion 35 as an example of a diffuse reflection detection portion with wide-angle directivity. and a photosensor wide-angle portion 36. In the present embodiment, the determination unit 33 determines the specular reflectance detected by the optical sensor narrow-angle portion 35 and the optical sensor The glossiness of the food 24 is determined from the diffuse reflectance ratio detected by the wide-angle portion 36 .
 これにより、実施の形態2における冷蔵庫1は、食品24の表面状態を推定することが可能になり、経時的に光沢度の変化を観測すれば、食品24の鮮度劣化の予測ができる。 As a result, the refrigerator 1 in Embodiment 2 can estimate the surface state of the food 24, and can predict the deterioration of the freshness of the food 24 by observing the change in gloss over time.
 (他の実施の形態)
 以上のように、本開示における技術の例示として、実施の形態1および2を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1および2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, Embodiments 1 and 2 have been described as examples of the technology of the present disclosure. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like. Also, it is possible to combine the constituent elements described in the first and second embodiments to form a new embodiment.
 そこで、以下、他の実施の形態を例示する。 Therefore, other embodiments will be exemplified below.
 実施の形態1および2では、食品24として青果物を用いているが、本開示の食品は、冷蔵庫1に貯蔵する肉の魚の生鮮食品であっても良い。 In Embodiments 1 and 2, fruits and vegetables are used as the food 24, but the food of the present disclosure may be fresh food such as meat and fish stored in the refrigerator 1.
 実施の形態1では、野菜室9と切替室6での適用例を示したが、本開示の貯蔵室は、冷蔵室5等の他の貯蔵室でも構わない。 In Embodiment 1, an application example of the vegetable compartment 9 and the switching compartment 6 is shown, but the storage compartment of the present disclosure may be another storage compartment such as the refrigerating compartment 5 or the like.
 実施の形態1では、光源26としてRGB三色のLEDを用いたが、食品24を限定すれば単色のLEDのみを使用することが可能である。例えば緑色系の青果物の検知に限定すれば、緑色LEDのみでの構成が可能である。 In Embodiment 1, RGB three-color LEDs are used as the light source 26, but if the food 24 is limited, it is possible to use only single-color LEDs. For example, if it is limited to the detection of green fruits and vegetables, a configuration using only green LEDs is possible.
 実施の形態1では、通信機器34でユーザーにお知らせする内容を、色彩の摂取バランスに留めたが、色による食品成分含有状態は一般に知られているので、その情報も食品成分摂取状態として報知すればさらに利便性が向上する。 In the first embodiment, the content to be notified to the user by the communication device 34 is limited to the color intake balance. convenience will be further improved.
 本開示は、冷蔵庫に適用可能である。具体的には、例えば家庭用または業務用冷蔵庫に、本開示は適用可能である。 The present disclosure is applicable to refrigerators. Specifically, the present disclosure is applicable to, for example, household or commercial refrigerators.
  1 冷蔵庫
  2 断熱箱体
  2a 発泡断熱材
  3 外箱
  4 内箱
  5 冷蔵室
  6 切替室
  7 製氷室
  8 冷凍室
  9 野菜室
 10 圧縮機
 11 冷却室
 12 奥面仕切り壁
 13 冷却器
 14 冷却ファン
 15 ラジアントヒータ
 16 ドレンパン
 17 ドレンチューブ
 18 蒸発皿
 19 野菜室扉
 20 収容部
 21 第一の仕切り壁
 22 第二の仕切り壁
 23 第三の仕切り壁
 24 食品
 25 光センサーユニット
 26 光源
 27 光センサー
 28 カバー部材
 29 遮光部
 30 第一の光センサーユニット
 31 第二の光センサーユニット
 32 検知部
 33 判定部
 34 通信機器
 35 光センサー狭角部
 36 光センサー広角部
 37 光センサー
 S1 信号
 S2 信号
 S3 信号
 S4 信号
REFERENCE SIGNS LIST 1 refrigerator 2 heat insulation box 2a foam insulation 3 outer box 4 inner box 5 refrigerator compartment 6 switching compartment 7 ice making compartment 8 freezer compartment 9 vegetable compartment 10 compressor 11 cooling compartment 12 rear partition wall 13 cooler 14 cooling fan 15 radiant Heater 16 Drain pan 17 Drain tube 18 Evaporating dish 19 Vegetable compartment door 20 Storage part 21 First partition wall 22 Second partition wall 23 Third partition wall 24 Food 25 Optical sensor unit 26 Light source 27 Optical sensor 28 Cover member 29 Light shielding Part 30 First optical sensor unit 31 Second optical sensor unit 32 Detection part 33 Judgment part 34 Communication device 35 Optical sensor narrow-angle part 36 Optical sensor wide-angle part 37 Optical sensor S1 signal S2 signal S3 signal S4 signal

Claims (9)

  1.  貯蔵室に設置される収容部と、
     前記収容部に収容した食品に可視光を照射する光源と、
     前記光源からの照射を受けて、前記食品から反射された光を受光する光センサーと、
     前記光センサーが受光した光の波長スペクトルに基づいて前記収容部内の色彩バランスを判定する判定部と、を備える
     冷蔵庫。
    a storage unit installed in the storage room;
    a light source that irradiates visible light to the food contained in the container;
    an optical sensor that receives illumination from the light source and receives light reflected from the food;
    a determination unit that determines the color balance in the storage unit based on the wavelength spectrum of the light received by the optical sensor.
  2.  前記判定部は、前記光センサーが受光した光の波長強度に基づいて、前記収容部内の色彩バランスを判定する
     請求項1に記載の冷蔵庫。
    2. The refrigerator according to claim 1, wherein the determination section determines the color balance in the storage section based on the wavelength intensity of the light received by the optical sensor.
  3.  前記貯蔵室は、野菜に適した温度帯に設定可能であり、
     前記収容部と前記光センサーとを前記貯蔵室に備える
     請求項1または2に記載の冷蔵庫。
    The storage room can be set to a temperature zone suitable for vegetables,
    The refrigerator according to claim 1 or 2, wherein the storage compartment and the optical sensor are provided in the storage compartment.
  4.  前記光源と前記光センサーとは、前記貯蔵室の同一壁面上に配置される
     請求項3に記載の冷蔵庫。
    4. The refrigerator according to claim 3, wherein the light source and the optical sensor are arranged on the same wall surface of the storage compartment.
  5.  前記光源と前記光センサーとの間に、光を遮蔽する遮光部が配置される
     請求項1から4のいずれか一項に記載の冷蔵庫。
    5. The refrigerator according to any one of claims 1 to 4, wherein a light shielding part that shields light is arranged between the light source and the optical sensor.
  6.  前記光源と前記光センサーとを実装する基板を有する光センサーユニットを備え、
     前記光センサーユニットは、前記貯蔵室の壁面に取り外し可能に配置される
     請求項3から5のいずれか1項に記載の冷蔵庫。
    An optical sensor unit having a substrate on which the light source and the optical sensor are mounted,
    The refrigerator according to any one of claims 3 to 5, wherein the optical sensor unit is detachably arranged on the wall surface of the storage compartment.
  7.  前記光センサーユニットは、前記貯蔵室の同一壁面上に複数設置される
     請求項6に記載の冷蔵庫。
    7. The refrigerator according to claim 6, wherein a plurality of said optical sensor units are installed on the same wall surface of said storage compartment.
  8.  前記判定部により判定された前記収容部内の色彩バランスを、通信機器に出力する
     請求項1から7のいずれか1項に記載の冷蔵庫。
    8. The refrigerator according to any one of claims 1 to 7, wherein the color balance in said container determined by said determination unit is output to a communication device.
  9.  前記光センサーは、指向性が狭角な正反射検知部と、指向性が広角な拡散反射検知部と、で構成され、
     前記判定部は、前記正反射検知部および前記拡散反射検知部における検知結果に基づいて、前記食品の光沢度を判定する
     請求項1から8のいずれか1項に記載の冷蔵庫。
    The optical sensor is composed of a specular reflection detection unit with a narrow directivity and a diffuse reflection detection unit with a wide directivity,
    The refrigerator according to any one of claims 1 to 8, wherein the determination section determines glossiness of the food based on detection results from the regular reflection detection section and the diffuse reflection detection section.
PCT/JP2022/038882 2021-12-17 2022-10-19 Refrigerator WO2023112469A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021204701A JP2023089993A (en) 2021-12-17 2021-12-17 refrigerator
JP2021-204701 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023112469A1 true WO2023112469A1 (en) 2023-06-22

Family

ID=86774445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038882 WO2023112469A1 (en) 2021-12-17 2022-10-19 Refrigerator

Country Status (2)

Country Link
JP (1) JP2023089993A (en)
WO (1) WO2023112469A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11327416A (en) * 1998-05-19 1999-11-26 Ricoh Co Ltd Image forming device
JP2000242748A (en) * 1999-02-22 2000-09-08 Dainippon Printing Co Ltd Genuineness identifying method, genuineness identifier and production thereof
JP2018087691A (en) * 2018-02-28 2018-06-07 三菱電機株式会社 refrigerator
JP2019145940A (en) * 2018-02-19 2019-08-29 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP2021004688A (en) * 2019-06-26 2021-01-14 パナソニックIpマネジメント株式会社 refrigerator
JP2021036191A (en) * 2020-11-16 2021-03-04 東芝ライフスタイル株式会社 refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11327416A (en) * 1998-05-19 1999-11-26 Ricoh Co Ltd Image forming device
JP2000242748A (en) * 1999-02-22 2000-09-08 Dainippon Printing Co Ltd Genuineness identifying method, genuineness identifier and production thereof
JP2019145940A (en) * 2018-02-19 2019-08-29 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP2018087691A (en) * 2018-02-28 2018-06-07 三菱電機株式会社 refrigerator
JP2021004688A (en) * 2019-06-26 2021-01-14 パナソニックIpマネジメント株式会社 refrigerator
JP2021036191A (en) * 2020-11-16 2021-03-04 東芝ライフスタイル株式会社 refrigerator

Also Published As

Publication number Publication date
JP2023089993A (en) 2023-06-29

Similar Documents

Publication Publication Date Title
EP1887298B1 (en) Refrigerator
US7866171B2 (en) Food keeping refrigerator
US20160138857A1 (en) Refrigeration appliance comprising a camera module
CN103874899A (en) Refrigerator
JP5348350B2 (en) refrigerator
JP7281628B2 (en) refrigerator
WO2013125186A1 (en) Refrigerator
WO2023112469A1 (en) Refrigerator
TWI617780B (en) Refrigerator
US10641545B2 (en) Domestic refrigeration device, and method of controlling a light source arrangement arranged therein
JP2018004213A (en) Refrigerator
KR20120011485A (en) Refrigerator
JP6564996B2 (en) refrigerator
US20210199373A1 (en) Household appliance device, in particular household refrigeration appliance device
JP5970653B2 (en) refrigerator
JP5870248B2 (en) refrigerator
JP2014035084A (en) Refrigerator
JP2013204894A (en) Refrigerator
JP5870249B2 (en) refrigerator
JP2023180924A (en) Food storage cabinet and food storage system
JP2022095245A (en) refrigerator
JP2014035083A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907004

Country of ref document: EP

Kind code of ref document: A1