WO2023112392A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2023112392A1
WO2023112392A1 PCT/JP2022/031596 JP2022031596W WO2023112392A1 WO 2023112392 A1 WO2023112392 A1 WO 2023112392A1 JP 2022031596 W JP2022031596 W JP 2022031596W WO 2023112392 A1 WO2023112392 A1 WO 2023112392A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color temperature
wavelength
mrgc
stimulation
Prior art date
Application number
PCT/JP2022/031596
Other languages
French (fr)
Japanese (ja)
Inventor
弘 桐原
健 森田
Original Assignee
株式会社エルム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エルム filed Critical 株式会社エルム
Publication of WO2023112392A1 publication Critical patent/WO2023112392A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M21/02Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis for inducing sleep or relaxation, e.g. by direct nerve stimulation, hypnosis, analgesia
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to a light-emitting device capable of adjusting biorhythm.
  • the innate biorhythms of humans are affected by the light environment such as the illuminance, color temperature, and spectral distribution of light experienced over time.
  • the light environment is involved in the quality of sleep, such as the sleep-wake rhythm of the daily biorhythm, falling asleep at bedtime, awakening in the middle of sleep, and the feeling of deep sleep when waking up, and the quality of sleep affects human health. affect. Therefore, a suitable light environment is necessary for a healthy life of human beings.
  • the biorhythms of inpatients and people requiring nursing care who spend most of their day on or around a bed in a hospital room in a medical facility or a living room in a nursing care facility are strongly affected by the artificial lighting environment.
  • inpatients and people requiring nursing care who spend their time near corridors, where natural light is often insufficient even in sickrooms and living rooms are more strongly affected by the artificial lighting environment.
  • the artificial lighting used in hospital rooms and living rooms includes the brightness (illuminance) and color temperature necessary for the work and behavior of the inpatients and nursing care recipients, as well as the brightness (illuminance) and color temperature necessary for the work and behavior of the inpatients and nursing care recipients.
  • a high color rendering property is required to accurately grasp the skin color and facial expressions of people.
  • living under such a light environment of artificial lighting disturbs the biorhythms of hospitalized patients and those requiring nursing care, and reduces the quality of their sleep. Disturbances in the biorhythms of hospitalized patients and those requiring nursing care, as well as poor sleep quality, increase the burden on nurses and caregivers at night. It has been pointed out that
  • a specific light source blue light source
  • a light source for dimming consisting of a white light source and a light bulb color light source
  • a control unit that controls the emission intensity of each light source.
  • a lighting system capable of improving the biorhythm while performing daily life by changing the emission intensity of a specific light source according to the time period. It is known that blue light (light having a wavelength of around 460 nm) contained in the light emitted from the specific light source suppresses melatonin secretion. High melatonin secretion promotes sleep, while low melatonin secretion inhibits sleep.
  • the luminescence intensity of the specific light source is set to be low during the period, and the luminescence intensity of the specific light source is set to be high during other time periods.
  • Patent Document 2 A lighting system has been proposed (Patent Document 2).
  • the lighting system described in Patent Document 1 does not take color rendering into consideration, and depending on the object, it may look unnatural.
  • the lighting system described in Patent Document 2 takes into consideration the color rendering properties, the glare is high in the daytime and the illuminance is low in the hours before bedtime. It was inadequate to apply to a living room.
  • the problem to be solved by the present invention is to provide a light-emitting device capable of creating a light environment in which the biorhythm can be adjusted and ensuring high color rendering properties at various color temperatures.
  • a light-emitting device which has been made to solve the above problems, A first light emitter that emits light having a wavelength width characteristic that has a peak wavelength within a wavelength range of 480 nm to 510 nm and a half-value wavelength width on both sides of 20 nm or less, and a peak wavelength within a wavelength range of 440 nm to 480 nm. , a second light emitter that emits light having a wavelength width characteristic in which both side half-value wavelength widths are 20 nm or less; and a peak wavelength of light emitted by the first light emitter and the second light emitter within a wavelength range of 450 nm to 700 nm.
  • a light-emitting unit including a wide light-emitting body that emits light having a wavelength width characteristic in which the peak wavelength is different from any of the above and the half-value wavelength width on the long wavelength side is 30 nm or more;
  • a control unit capable of independently controlling the emission intensity of the light emitted from the first light emitter, the second light emitter, and the wide light emitter is provided.
  • the "peak wavelength” means the wavelength of the top of the peak (peak top) seen on the spectrum of the light emitted by the light emitter.
  • the "half-value wavelength width on both sides” means the wavelength width of the peak at the position where the emission intensity is 50% of the peak top
  • the "half-value wavelength width on the long wavelength side” and the “half-value wavelength width on the short wavelength side” are the width on the longer wavelength side and the width on the shorter wavelength side than the peak wavelength in the wavelength width of the peak at the position where the emission intensity is 50% of the peak top.
  • the first luminous body, the second luminous body, and the wide light luminous body preferably use a light emitting diode (LED) as a light source in terms of ease of control of light emission intensity, but not limited to this.
  • LED light emitting diode
  • each luminous body may be composed of one light source, or may be composed of a plurality of light sources. When the luminous body is composed of a plurality of light sources, all the light sources may be of the same type, or a plurality of types of light sources may be mixed.
  • Non-Patent Document 1 In general, light information received by the retina is transmitted to the brain through two different routes. One is transmitted to the visual cortex of the brain through cones and rods, resulting in the perception of brightness and color, which are functions of the visual system. The other is transmitted to the suprachiasmatic nucleus, which is the center of the biological clock, and causes non-visual system effects such as the light response of the biorhythm (regulation of the core body temperature and the phase and amplitude of the melatonin secretion rhythm, etc.). Retinal ganglion cells containing melanopsin (melanopsin expressing Retinal Ganglion Cell, hereinafter referred to as "mRGC”) play an important role in non-visual system actions (Non-Patent Document 1).
  • the cones L-cones, M-cones, S-cones
  • rods and mRGC cells that play a role in transmitting light received by the retina to the brain are referred to as "photoreceptors.”
  • Non-Patent Document 2 The present inventors clarified the effects of multi-wavelength light sources such as red, green, and blue light with localized spectral distributions and high/low color temperature light with ubiquitous spectral distributions on melatonin secretion in the pineal gland. and pointed out the problem of the spectral distribution of artificial lighting used in living environments (Non-Patent Document 2). Then, by adjusting the wavelength composition of the illumination light and using metamerism (a phenomenon in which two objects appear to have the same color under certain light wavelength composition conditions), After ensuring brightness (illuminance), light color (color temperature), and color rendering properties, we established a method to selectively and independently stimulate photoreceptors on the retina.
  • metamerism a phenomenon in which two objects appear to have the same color under certain light wavelength composition conditions
  • the peak wavelength of the light emitted by the first light emitter is close to the sensitivity peak wavelength (505 nm) of the rods of the light receivers on the retina
  • the peak wavelength of the light emitted by the second light emitter is , close to the sensitivity peak wavelength of S-cones (445 nm) and the sensitivity peak wavelength of mRGCs (490 nm).
  • the broad light emitter emits light of a broad wavelength spectrum with a wide (or large) half-value wavelength width.
  • the wavelength (540 nm) of the sensitivity peak wavelength of the L-cones (570 nm) may be included. Since the light-emitting portion is composed of a light-emitting body having such characteristic wavelength characteristics, the above method can be realized by using the light-emitting device according to the present invention.
  • the amount of stimulus to the rods can be controlled, and the light emitted by the second light emitter can be controlled.
  • the amount of stimulation to the S-cones can be controlled.
  • the amount of stimulation to rods, mRGCs, M-cones, and L-cones can be controlled.
  • the illuminance, color temperature, and color rendering properties of the emitted light from the light emitter and the amount of stimulus to each light receiver can be adjusted. can be adjusted. Therefore, the amount of stimulation to cones and rods (brightness, color, illuminance of light) is maintained constant while the amount of stimulation to mRGCs is varied, or the amount of stimulation to mRGCs is maintained constant while the amount of stimulation to cones and rods is varied. It is also possible to vary the amount of stimulus to the rods.
  • the amount of stimulus that the light emitted from the light-emitting unit gives to the light receiver is obtained by multiplying the spectral radiant energy distribution of the emitted light and the spectral sensitivity distribution of the light receiver.
  • the present inventors have so far applied metamerism to an LED lighting device equipped with a plurality of LEDs with different emission wavelengths, and have applied cones (L-cones, M-cones, S-cones ), the amount of light stimulation to mRGCs in humans affects melatonin secretion behavior and sleep sensation under the condition that the amount of stimulation to rods is constant and the output of each LED is adjusted to change the amount of stimulation to mRGCs. I have been researching the influence (Non-Patent Document 3).
  • the wide light-emitting body is A third light emitter that emits light having a wavelength width characteristic of having a peak wavelength within a wavelength range of 450 nm to 470 nm, a half-value wavelength width of 20 nm or less on the short wavelength side, and a half-value wavelength width of 50 nm or more on the long wavelength side.
  • a fourth light emitter that emits light having a wavelength width characteristic in which the peak wavelength is within a wavelength range of 540 nm to 550 nm and the half-value wavelength width on the short wavelength side and the long wavelength side is 30 nm or more;
  • the control unit can independently control the light emission intensity of the light emitted by the third to fifth light emitters.
  • the peak wavelength of light emitted by the third light emitter is close to the sensitivity peak wavelength of mRGC
  • the peak wavelength of light emitted by the fourth light emitter is close to the sensitivity peak wavelength of the M-cone
  • the peak wavelength of the light emitted by the five emitters is close to the sensitivity peak wavelength of the L-cones.
  • the emitted light from the light emitting unit can be adjusted to the amount of stimulus to mRGC, color temperature, brightness (illuminance), color rendering index (general color rendering index, Special color rendering index) can be adjusted to the optimum state.
  • the control section controls the emission intensity of the light emitted from each of the light emitters so that the color temperature of the light emitted from the light emitting section is in the range of 2500K to 15000K.
  • the light emitting device further includes a setting unit for setting the color temperature and the amount of mRGC stimulation; the color temperature and mRCG stimulus amount of the light emitted from the light emitting unit, and the emission intensity of the light emitted by each of the first light emitter, the second light emitter, and the wide light emitters (third to fifth light emitters); and a storage unit that stores information indicating the relationship of Based on the information, the control unit controls the emission intensity of each light emitter so that the color temperature and the amount of mRCG stimulation of the light emitted from the light emitting unit become the color temperature and the amount of mRCG stimulation set by the setting unit.
  • a setting unit for setting the color temperature and the amount of mRGC stimulation
  • the color temperature and mRCG stimulus amount of the light emitted from the light emitting unit the emission intensity of the light emitted by each of the first light emitter, the second light emitter, and the wide light emitters (third to fifth light emitters)
  • a storage unit that stores information
  • the information stored in the storage section can be obtained, for example, by the following procedure. That is, the luminescence distribution characteristics of each luminous body are measured in advance, and the luminous intensity of the light emitted by each luminous body when the color temperature of the emitted light from the light emitting part reaches a specified value (luminous intensity of the luminous body) is obtained by calculation, and the combination of the emission intensities of all the light emitters constituting the light emitting section is made to correspond to the color temperature of the light emitted from the light emitting section.
  • luminous intensity of the luminous body luminous intensity of the light emitters constituting the light emitting section
  • the amount of stimulus to mRGC, the general color rendering index, and the special color rendering index are calculated for a plurality of combinations of luminous intensities corresponding to the color temperatures. For example, if the emission intensity of five types of light emitters can be changed in 100 steps, for 1005 (10 billion) combinations, the amount of stimulation to mRGC (mRGC stimulation amount), the average color rendering index, and Calculate the special color rendering index. Then, from among the 100 5 combinations, a combination with the same mRGC stimulation amount is extracted, and a combination of luminous intensities with a high general color rendering index and a high special color rendering index from among those combinations ( (referred to as the “optimum combination”). When the optimum combination is selected for a plurality of combinations of luminescence intensities of light emitters corresponding to all color temperatures, the optimum combination is stored in the storage unit as information of a data table linked with color temperature and mRGC stimulation amount. do.
  • the control unit can determine the combination of the light emission intensity corresponding to the color temperature and the mRGC stimulation amount set in the setting unit. It is possible to read from the data table and adjust the emission intensity of each light emitter. By using such a data table, the emission intensity of each light emitter can be controlled without delay after the color temperature and the amount of mRGC stimulation are set. In addition, it becomes possible to easily change the amount of mRGC stimulation while maintaining a constant color temperature, or to change the color temperature while maintaining a constant amount of mRGC stimulation.
  • the setting unit may have values of the color temperature and the amount of mRGC stimulation set in advance.
  • the values of the color temperature and the amount of mRGC stimulation input through may be set in the setting unit.
  • a control program time schedule
  • the setting unit may set the color temperature and the amount of mRGC stimulation, and the control unit may control the light emission intensity of each light emitter.
  • the light-emitting device By using the light-emitting device according to the present invention, it is possible to create a light environment in which the biorhythm can be adjusted, and to ensure high color rendering properties at various color temperatures.
  • FIG. 1 is a schematic configuration diagram of a first embodiment of a light emitting device of the present invention
  • FIG. FIG. 4 is a light characteristic diagram of first to fifth light emitters (LEDs)
  • An example of a distribution map of color temperature and mRGC stimulation that satisfies the following conditions: general color rendering index (Ra) ⁇ 70, special color rendering index R9 (red), R15 (skin color) ⁇ 70.
  • FIG. 1 is a schematic configuration diagram of a light emitting device.
  • the light emitting device 1 includes a light emitting section 10 and a light emission control section 20 .
  • the light emitting unit 10 includes a rectangular container-shaped housing 11, a substrate 12 arranged on the inner bottom, LEDs 101 to 105 which are five types of light emitters arranged on the substrate 12, and these LEDs 101 to 105. and a drive circuit 13 of.
  • One surface of the housing 11 is open, and the opening is closed with a diffusion plate (not shown) that transmits and diffuses the light from the light emitters 101 to 105 .
  • FIG. 1 shows an example in which a round LED is mounted on the substrate 12, the shape of the LED is not limited to a round shape, and may be rectangular or bulb-shaped.
  • the light emission control unit 20 controls the operation of the light emitters 101 to 105 of the light emission unit 10, and includes a light emission control circuit 201, a storage unit 202, a setting unit 203, a wireless communication unit 204, and a clock circuit 205 as functional blocks. I have. It also has an input section 21 and a display section 22 .
  • the storage unit 202 stores a plurality of data sets each including a combination of values of illuminance, color temperature, and mRCG stimulation amount of the light emitted from the light emitting unit 10, and data of the light emitted by the light emitters 101 to 105 corresponding to each data set.
  • a data table is stored showing the relationship with the emission intensity.
  • the storage unit 202 stores a timetable showing the emission intensity of the light emitted by the light emitters 101 to 105 on each day of the year. These data table and time table will be described later.
  • the substance of the above light emission control unit 20 is a general computer, and the functions of the above functional blocks are realized by operating dedicated control software installed in the computer on the computer. Therefore, the input unit 21 includes pointing devices such as a keyboard and a mouse.
  • the light-emitting device 1 can input values of illuminance, color temperature, and mRGC through the input unit 21 , and these input values are set in the setting unit 203 .
  • the light emission control unit 20 also includes an external connection terminal 206 that is a wired communication network connection terminal such as a USB port, an Ethernet port, an RS-232C port, and the like.
  • the light emission control unit 20 can transmit and receive data to and from external devices such as a personal computer through the external connection terminal 206 .
  • the wireless communication unit 204 can communicate with a mobile terminal 30 such as a smartphone, and the user sets the color temperature and mRGC of the emitted light of the light emitting unit 10 in the setting unit 203 by operating the mobile terminal 30. can do.
  • the five types of LEDs 101 to 105 have different peak wavelengths, and are arranged on the substrate 12 in the order of LEDs 101, 102, 103, 104, and 105 in multiple rows. In FIG. 1, the five types of LEDs 101 to 105 are represented by different patterns.
  • FIG. 2 is a light characteristic diagram of the LEDs 101-105.
  • the LED 101 corresponds to the first light emitter of the present invention, and is a single-wavelength cyan LED having a peak wavelength of 505 nm and a half-value wavelength width of about ⁇ 10 nm (both-side half-value wavelength widths of 20 nm).
  • the LED 102 corresponds to the second light emitter of the present invention, and is a single-wavelength blue LED having a peak wavelength of 445 nm and a half-value wavelength width of about ⁇ 10 nm (both sides half-value wavelength width of 20 nm).
  • the LED 103 corresponds to the third light emitter of the present invention, and has a wavelength width characteristic of a peak wavelength of 455 nm to 460 nm and a half-value wavelength width of about +50 nm (the half-value wavelength width on the long wavelength side is 50 nm).
  • the LED 104 corresponds to the fourth luminous body of the present invention, and has wavelength width characteristics such as a peak wavelength of 540 nm and a half-value wavelength width of about +30 nm (the half-value wavelength width on the long wavelength side is 30 nm).
  • the LED 105 corresponds to the fifth luminous body of the present invention, and has wavelength width characteristics such that the peak wavelength is 640 nm and the half-value wavelength width is ⁇ 60 nm (the half-value wavelength width on the short wavelength side is 60 nm, and the half-value wavelength width on the long wavelength side is 60 nm). is an LED having Moreover, the LEDs 103 to 105 also correspond to the wide light emitters of the present invention. In this embodiment, each of the LEDs 103 to 105 is made to have the peak wavelength and wavelength width characteristics described above by applying a phosphor to the blue LED. In FIG. 2, the light spectra of the LEDs 101 to 105 are normalized so that the peak levels are the same. An appropriate value may be set according to the color temperature and the amount of mRCG stimulation.
  • the data table corresponds to a plurality of data sets consisting of combinations of values of the illuminance, color temperature, and mRCG stimulation amount of the light emitted from the light emitting unit 10, and the light emission intensity of the light emitted by the LEDs 101 to 105. It is what I let you do.
  • the light emission control circuit 201 includes a circuit that changes the light emission intensity of the first to fifth LEDs 101 to 105 by PWM control. For example, in the case of PWM control with 8-bit resolution, it is possible to control the emission intensity with a numerical value from 0 to 255. That is, when the numerical value is 0, the light is turned off, and when the numerical value is 255, the maximum emission intensity is obtained.
  • the spectral irradiance of the maximum emission intensity of each of the first to fifth LEDs 101 to 105 is measured with a spectral irradiance meter (Konica Minolta: CL -500A), and each light receiver (L, M, S-cone, mRGC , rods) are multiplied by the measured spectral irradiance and integrated over the wavelength range of 400 nm to 750 nm, and the amount of stimulus to mRGCs (Melanopic ELR).
  • FIG. 3 is a distribution diagram of each set of color temperature and mRGC stimulation amount included in the data table obtained as described above.
  • the vertical axis indicates the color temperature (K)
  • the horizontal axis indicates the mRGC stimulation level (Melanopic ELR, mW/lm).
  • one combination of the PWM output values (0 to 255) of the first to fifth LEDs 101 to 105 for realizing emitted light with a color temperature of, for example, 12000K is as shown in Table 1 below. I understand.
  • the color temperature and the mRGC stimulation amount that satisfy the conditions of general color rendering index (Ra) ⁇ 90, special color rendering index R9 (red), and R15 (skin color) ⁇ 90.
  • the sets include a plurality of sets with the same color temperature and different mRGC stimulation amounts, and a plurality of sets with the same mRGC stimulation amounts and different color temperatures.
  • the amount of mRGC stimulation for a color temperature of 3000K is 0.6-0.8mW/lm
  • the amount of mRGC stimulation for a color temperature of 5000K is 1.0-1.2mW/lm
  • the amount of mRGC stimulation for a color temperature of 12000K is 0.6-0.8mW/lm.
  • the mRGC stimulation amount can be varied between 1.5 and 1.8 mW/lm.
  • the color temperature can be changed between 4000 and 5000 K when the mRGC stimulation level is 1 mW/lm and between 7000 and 11000 K when the mRGC stimulation level is 1.5 mW/lm. .
  • Fig. 4 is a distribution map with circled numbers and arrows
  • the amount of mRGC stimulation is gradually decreased while maintaining the constant (2 ⁇ 3)
  • the color temperature is decreased while maintaining the mRGC stimulation constant (3-6)
  • the color temperature is changed from medium color temperature/medium mRGC stimulation amount to low color temperature/
  • a light-emitting device 1 capable of transitioning to a low mRGC stimulation amount (6-14) can be realized.
  • the color temperature is maintained while maintaining the general color rendering index (Ra) ⁇ 90, the special color rendering index R9 (red), R15 (skin color) ⁇ 90, and maintaining the illuminance constant. is gradually changed from 12000K to 3000K, the amount of mRGC stimulation at each color temperature can be controlled within a range of change of 0.2 to 0.3 mW/lm.
  • the time table is obtained by setting appropriate pairs of color temperature and mRGC stimulus amount for each time slot from the above data table.
  • Table 3 shows an example of a timetable.
  • the storage unit 202 stores color temperature and color temperature conditions other than the conditions of general color rendering index (Ra) ⁇ 90, special color rendering index R9 (red), and R15 (skin color) ⁇ 90 under certain illuminance conditions.
  • a data table that associates sets of mRGC stimulation amounts with sets of emission intensities of the first to fifth LEDs 101 to 105 may be stored.
  • FIG. 5 shows a distribution map of color temperature and mRGC stimulation amount satisfying the conditions of general color rendering index (Ra) ⁇ 70, special color rendering index R9 (red), R15 (skin color) ⁇ 70
  • FIG. shows a distribution map of color temperature and mRGC stimulation amount satisfying the conditions of illuminance 500lx, general color rendering index (Ra) ⁇ 80, special color rendering index R9 (red), R15 (skin color) ⁇ 80. .
  • Example 1 The light emission conditions of the light emitting device were changed in an artificial climate room in which the outside light was blocked, saliva was collected from 22 subjects (males in their twenties) over three days, and melatonin concentration was measured from the collected saliva. Luminescent conditions were measured using a spectral irradiometer CL-500A manufactured by Konica Minolta, and melatonin was analyzed using ELISA manufactured by BULMANN.
  • Fig. 7 shows the experiment schedule. Subjects enter the experimental room at 10:00 on the first day of the experiment and stay there for four days. After that, sleep in complete darkness from 24:00 to 7:00 in the morning, and from the second day onwards, under either the condition A shown in Table 4-1 or the condition B shown in Table 4-2 below. spent in
  • condition A the light environment was such that a constant illuminance was maintained from 7:00 to 24:00 in the morning, and the mRGC stimulation level was maintained at 1.2 mW/lm.
  • condition B a constant illuminance was maintained from 7:00 to 24:00, and the mRGC stimulation level was increased to 1.8 mW/lm at a color temperature of 20,000 K to 12,000 K only for 30 minutes from 7:00. Overnight, the mRGC stimulation dose was tapered down to 0.6 mW/lm.
  • FIG. 9 shows the difference between the average melatonin concentration from 18:00 to 19:00 and the average melatonin concentration from 23:00 to 24:00. This difference corresponds to the amount of change in melatonin secretion during the night.
  • condition B showed a phase advance in the melatonin secretion behavior from the evening to the night before bedtime, or (and) an increase in the total amount of melatonin secreted at night, than under condition A.
  • the phase advance of melatonin secretion behavior and the increase in the total amount of melatonin secreted at night lead to the smooth onset of sleep and the securing of deep sleep. It is considered to be
  • Experiment 2 In Experiment 2, in addition to the lighting conditions of Experiment 1, the experiment was conducted under the lighting conditions in which strong mRGC stimulation was added in the evening to reduce the influence of blue light emitted from the screens of mobile devices such as smartphones on falling asleep at night. did
  • Luminescent conditions were measured using a spectral irradiometer CL-500A manufactured by Konica Minolta, and melatonin was analyzed using ELISA manufactured by BULMANN.
  • Fig. 10 shows the experiment schedule.
  • the first and second days were spent under the condition A, the third day under the condition B, and the fourth day under the condition C.
  • the subjects lived in the laboratory except for emergencies, including meals, excretion, and showering. Saliva was collected hourly from 18:00 until 24:00.
  • Table 7 shows the details of the set emission conditions.
  • Table 8 shows the results of melatonin concentration in Experiment 2.
  • FIG. 11 is a graph showing changes in the total increase in melatonin secretion from 21:00 to 24:00.
  • the total amount of melatonin secreted until going to bed at night increased by about 12% under the condition B of the biorhythm-adjusting light environment compared to the condition A of the general living light environment.
  • An increase of approximately 28% was observed in condition C, in which a strong mRGC stimulation experience was added in the evening.
  • the light environment that provides strong stimulation to mRGCs in the evening is considered to bring about very desirable results, and in particular, the light environment of condition C is considered to bring about beneficial effects on human health.
  • FIG. 12 shows a modification of the light emitting device.
  • the light emitting device includes a rectangular plate-shaped light guide plate 401 and a pair of rod-shaped light emitting portions 10 arranged on the left and right sides of the light guide plate 401 . Note that illustration of the light emission control unit is omitted in FIG. In this configuration, the light emitted from the light emitter (not shown) included in the light emitting section 10 is diffused within the light guide plate 401 and can be emitted from the surface of the light guide plate 401 as uniform light.
  • the light-emitting units 10 of the light-emitting device may be arranged at three locations, ie, the upper portion and the left and right portions of the rectangular mirror 402 .
  • illustration of the light emission control unit is omitted.
  • the light emitted from the light emitting unit 10 has a color temperature of 12000 K, an illuminance of 500 lx or more, a general color rendering index (Ra) ⁇ 90, a special color rendering index of R9 (red), R15 (skin color) ⁇ 90, and mRGC.
  • a light environment with a stimulus level of 1.8 mW/lm (Melanopic ELR) or more can be realized in front of a mirror.
  • makeup can be applied in a light environment with high color rendering, so that the ease of applying makeup and the beauty of the finish are improved.
  • the average time spent applying makeup in front of a mirror is about 15 to 30 minutes.
  • the light-emitting device according to the present invention is suitable as a light-emitting device for use in hospital rooms and living rooms in medical facilities and nursing care facilities, but it can also be used as a light-emitting device for lighting indoors in offices, schools, ordinary homes, and the like. may Further, in the above embodiment, the case of adjusting the human biorhythm using the light emitting device has been described. , the biorhythm and behavior of insects, and the germination, growth, and photosynthesis of plants.
  • the wide light emitter is composed of three types of light emitters (LED103 to LED105), but the number of light emitters constituting the wide light emitter may be one, two, or four or more. It's okay. Also, each of the first light emitter and the second light emitter may be composed of two or more types of light emitters.
  • the light-emitting device is a first light emitter that emits light having a wavelength width characteristic that has a peak wavelength in a wavelength range of 480 nm to 510 nm and a half-value wavelength width on both sides of 20 nm or less;
  • a second light emitter that emits light having a wavelength width characteristic with a half-value wavelength width of 20 nm or less, and a peak wavelength of light emitted by the first light emitter and the second light emitter in a wavelength range of 450 nm to 700 nm.
  • a light-emitting unit including a wide light-emitting body that emits light having different peak wavelengths and having a wavelength width characteristic in which the half-value wavelength width on the long wavelength side is 30 nm or more; and a controller capable of independently controlling the emission intensity of the light emitted by the first light emitter, the second light emitter, and the wide light emitter.
  • the light-emitting device according to Section 2 is the light-emitting device according to Section 1,
  • the wide light emitter is a third light emitter that emits light having a wavelength width characteristic of having a peak wavelength in a wavelength range of 450 nm to 470 nm, a half-value wavelength width of 20 nm or less on the short wavelength side, and a half-value wavelength width of 50 nm or more on the long wavelength side;
  • a fourth light emitter that emits light having a wavelength width characteristic that has a peak wavelength in a wavelength range of 540 nm to 550 nm and has a half-value wavelength width of 30 nm or more on the short wavelength side and the long wavelength side
  • a fifth light emitter that emits light having a wavelength width characteristic of having a peak wavelength in a wavelength range of 620 nm to 650 nm, a half-value wavelength width of 30 nm or more on the short wavelength side, and a half-value wavelength width of 40 nm
  • the light-emitting device according to the third term is the light-emitting device according to the first or second term, wherein the control unit controls the color temperature of the light emitted from the light-emitting unit to be in the range of 2500K to 15000K. Second, the emission intensity of the light emitted by the light emitter is controlled.
  • the light-emitting device according to Section 4 is the light-emitting device according to any one of Sections 1 to 3, moreover, a setting unit for setting the color temperature and the amount of mRGC stimulation; Information indicating the relationship between the color temperature and mRCG stimulus amount of the light emitted from the light emitting unit and the emission intensity of the light emitted by each of the first light emitter, the second light emitter, and the wide light emitter is stored. a storage unit containing Based on the information, the control unit controls the emission intensity of each light emitter so that the color temperature and the amount of mRCG stimulation of the light emitted from the light emitting unit become the color temperature and the amount of mRCG stimulation set by the setting unit. to control.
  • the light-emitting device according to Section 5 is the light-emitting device according to Section 4, wherein the information stored in the storage unit includes a plurality of sets having the same color temperature and different mRGC stimulation amounts. It contains information in which the emission intensities of the light emitters are associated with each other.
  • the light-emitting device according to Section 6 is the light-emitting device according to Section 4 or 5, wherein the information stored in the storage unit includes a plurality of light-emitting devices having the same mRGC stimulation amount and different color temperatures.
  • the set includes information in which the emission intensities of the light emitters are associated with each other.
  • the operation method of the light emitting device according to Section 7 is 7.
  • a method for operating a light-emitting device according to any one of items 4 to 6, wherein light having a predetermined color temperature and mRGC stimulation amount is emitted in order to adjust the biological rhythm of the subject Based on the information stored in the storage unit, the control unit determines that the color temperature and the amount of mRGC stimulation of the light emitted from the light emitting unit during a period of 60 minutes to 120 minutes from the subject's wake-up time adjusting the light emission intensity of the light emitted by the first light emitter, the second light emitter, and the wide light emitter, respectively, so that the color temperature and the amount of mRGC stimulation of the light emitted from the light emitting unit in the time zone of In the time zone from the time 10 hours to 12 hours after the wake-up time to the subject's bedtime, the color temperature and the mRGC stimulation amount of the light emitted from the light emitting unit are the same as the light emission in
  • the method for operating the light-emitting device according to Section 8 is 7.
  • a method for operating a light-emitting device according to any one of items 4 to 6, wherein light having a predetermined color temperature and mRGC stimulation amount is emitted in order to adjust the biological rhythm of the subject Based on the information stored in the storage unit, the control unit determines that the color temperature and the amount of mRGC stimulation of the light emitted from the light emitting unit during a period of 60 minutes to 120 minutes from the subject's wake-up time adjusting the light emission intensity of the light emitted by the first light emitter, the second light emitter, and the wide light emitter, respectively, so that the color temperature and the amount of mRGC stimulation of the light emitted from the light emitting unit in the time zone of In a time period of 60 minutes to 120 minutes after 10 hours to 12 hours have passed since the wake-up time, the color temperature and mRGC stimulation amount of the light emitted from the light emitting unit are the same as those of the
  • the emission intensity of the light emitted from the first light emitter, the second light emitter, and the wide light emitter is adjusted so that the color temperature and the mRGC stimulation amount of the emitted light are higher than those of the first light emitter, the second light emitter, and the wide light emitter.
  • the operating method of the light emitting device according to Section 9 is A method for operating the light-emitting device according to any one of items 4 to 6, Based on the information stored in the storage unit, the control unit maintains the color temperature of the light emitted from the light emitting unit within a predetermined range, and controls the amount of mRGC stimulation of the emitted light to change. The emission intensity of the light emitted by each of the first light emitter, the second light emitter, and the wide light emitter is controlled.

Abstract

Provided is a light-emitting device capable of creating a light environment in which biological rhythms can be adjusted and ensuring high color rendering properties at various color temperatures. A light-emitting device of the present invention is characterized by comprising: a first light-emitting body that emits light having a peak wavelength in a wavelength range of 480-510 nm and having a wavelength width characteristic that has a half-value wavelength width on both sides of 20 nm or less, a second light-emitting body that emits light having a peak wavelength in a wavelength range of 440-480 nm and having a wavelength width characteristic that has a half-value wavelength width on both sides of 20 nm or less, and a wide-light light-emitting body that emits light having a peak wavelength different from the peak wavelengths of light emitted by the first light-emitting body and the second light-emitting body in a wavelength range of 450-700 nm and having a wavelength width characteristic that has a half-value wavelength width on both sides of 30 nm or more; and a controller capable of independently controlling the emission intensity of the light emitted from the first light-emitting body, the second light-emitting body, and the wide-light light-emitting body.

Description

発光装置light emitting device
 本発明は、生体リズムを調整することができる発光装置に関する。 The present invention relates to a light-emitting device capable of adjusting biorhythm.
 ヒトが生得的に持つ生体リズムは、経時的に経験する光の照度、色温度、分光分布等といった光環境による影響を受ける。光環境は、1日の生体リズムのうちの睡眠-覚醒リズム、就寝時の寝つき、睡眠中における中途覚醒、起床時の熟睡感等の睡眠の質に関与し、睡眠の質はヒトの健康に影響を及ぼす。したがって、ヒトの健康な生活には適切な光環境が必要である。 The innate biorhythms of humans are affected by the light environment such as the illuminance, color temperature, and spectral distribution of light experienced over time. The light environment is involved in the quality of sleep, such as the sleep-wake rhythm of the daily biorhythm, falling asleep at bedtime, awakening in the middle of sleep, and the feeling of deep sleep when waking up, and the quality of sleep affects human health. affect. Therefore, a suitable light environment is necessary for a healthy life of human beings.
 例えば、24時間化する現代社会における人工照明の光環境下での生活は、ヒトに睡眠障害やうつ症状を生じさせることが知られている。この問題を解決するためには、生体リズムを改善する必要があることから、特に夜間における光環境の照度をできるだけ低くしたり、短波長光域を少なくしたりすることが提案されている。ところが、日常生活における作業性、安全性等を確保するためには一定量以上の明るさが必要である。また、極端な短波長光のカットは演色性の低下をもたらす。このように、人工照明の改善には、生体リズムに対する悪影響の低減と、日常生活に必要な明るさと演色性の確保というジレンマを抱えている。 For example, it is known that living in a 24-hour modern society under artificial lighting environment causes sleep disorders and depressive symptoms in humans. In order to solve this problem, it is necessary to improve the biorhythm, so it has been proposed to reduce the illuminance of the light environment, especially at night, as much as possible and to reduce the short-wavelength light region. However, in order to ensure workability and safety in daily life, a certain amount or more of brightness is required. Also, cutting short-wavelength light to an extreme extent results in a decrease in color rendering properties. Thus, the improvement of artificial lighting faces the dilemma of reducing adverse effects on biorhythms and ensuring the brightness and color rendering properties necessary for daily life.
 また、例えば医療施設の病室や介護施設の居室において1日の大半をベッドの上、若しくはその周辺で過ごす入院者、要介護者の生体リズムは、人工照明環境の影響を強く受ける。特に、病室・居室内でも自然光が十分に得られないことが多い廊下側付近で過ごす入院者、要介護者は、人工照明環境の影響をより強く受ける。 In addition, for example, the biorhythms of inpatients and people requiring nursing care who spend most of their day on or around a bed in a hospital room in a medical facility or a living room in a nursing care facility are strongly affected by the artificial lighting environment. In particular, inpatients and people requiring nursing care who spend their time near corridors, where natural light is often insufficient even in sickrooms and living rooms, are more strongly affected by the artificial lighting environment.
 病室・居室に使用される人工照明には、入院者・要介護者の作業、行動に必要な明るさ(照度)、色温度に加え、医師・看護者・介護者が入院者・要介護者の肌の色や表情等を正確に把握するための高い演色性が求められる。ところが、そのような人工照明の光環境下での生活は、入院者・要介護者の生体リズムを乱し、睡眠の質を低下させる。入院者・要介護者の生体リズムの乱れ、睡眠の質の低下は、夜間の看護者・介護者の負担を増加させることから、生体リズムを調整する上で人工照明の光環境の改善が必要であることが指摘されている。 The artificial lighting used in hospital rooms and living rooms includes the brightness (illuminance) and color temperature necessary for the work and behavior of the inpatients and nursing care recipients, as well as the brightness (illuminance) and color temperature necessary for the work and behavior of the inpatients and nursing care recipients. A high color rendering property is required to accurately grasp the skin color and facial expressions of people. However, living under such a light environment of artificial lighting disturbs the biorhythms of hospitalized patients and those requiring nursing care, and reduces the quality of their sleep. Disturbances in the biorhythms of hospitalized patients and those requiring nursing care, as well as poor sleep quality, increase the burden on nurses and caregivers at night. It has been pointed out that
 例えば特許文献1には、450nm~480nmの範囲にピーク波長を有する特定光源(青色光源)、白色光源と電球色光源とからなる調光用光源、及び各光源の発光強度を制御する制御部を備え、時間帯に応じて特定光源の発光強度を変化させることで、日常生活を行いながら、生体リズムを改善させることが可能な照明システムが開示されている。特定光源の出射光に含まれる青色光(波長460nm付近の光)はメラトニン分泌を抑制することが知られている。メラトニン分泌量が多いと睡眠が促進され、少ないと睡眠が抑制されることから、上記照明システムでは、夕方(17:00)から翌朝の起床時刻(5:00)までの睡眠時間帯を含む時間帯における特定光源の発光強度を小さく、それ以外の時間帯における特定光源の発光強度を大きく設定している。 For example, in Patent Document 1, a specific light source (blue light source) having a peak wavelength in the range of 450 nm to 480 nm, a light source for dimming consisting of a white light source and a light bulb color light source, and a control unit that controls the emission intensity of each light source. Disclosed is a lighting system capable of improving the biorhythm while performing daily life by changing the emission intensity of a specific light source according to the time period. It is known that blue light (light having a wavelength of around 460 nm) contained in the light emitted from the specific light source suppresses melatonin secretion. High melatonin secretion promotes sleep, while low melatonin secretion inhibits sleep. The luminescence intensity of the specific light source is set to be low during the period, and the luminescence intensity of the specific light source is set to be high during other time periods.
 また、光色と配光が異なる2種類の光源を用い、これら2種類の光源の出力比を適宜の値に調整することで、見え方に違和感を感じることなく、生体リズムを整える光環境を作り出すことができるようにした照明システムが提案されている(特許文献2)。 In addition, by using two types of light sources with different light colors and light distributions, and adjusting the output ratio of these two types of light sources to an appropriate value, we can create a lighting environment that adjusts the biorhythm without giving a sense of discomfort. A lighting system has been proposed (Patent Document 2).
特開2014-54290号公報Japanese Patent Application Laid-Open No. 2014-54290 特開2018-32538号公報Japanese Patent Application Laid-Open No. 2018-32538
 特許文献1に記載されている照明システムは、演色性が考慮されておらず、対象によっては見え方が不自然になることがある。また、特許文献2に記載の照明システムでは演色性は考慮されているものの、昼間において高グレアになったり、就寝前の時間帯において照度が低下したりするため、医療施設の病室や介護施設の居室に適用するには不十分であった。 The lighting system described in Patent Document 1 does not take color rendering into consideration, and depending on the object, it may look unnatural. In addition, although the lighting system described in Patent Document 2 takes into consideration the color rendering properties, the glare is high in the daytime and the illuminance is low in the hours before bedtime. It was inadequate to apply to a living room.
 本発明が解決しようとする課題は、生体リズムを調整可能な光環境を作り出すことができ、且つ多様な色温度において高い演色性を確保することができる発光装置を提供することである。 The problem to be solved by the present invention is to provide a light-emitting device capable of creating a light environment in which the biorhythm can be adjusted and ensuring high color rendering properties at various color temperatures.
 上記課題を解決するために成された本発明に係る発光装置は、
 480nmから510nmの波長範囲内にピーク波長を有し、両側半値波長幅が20nm以下である波長幅特性を有する光を発する第1発光体と、440nmから480nmの波長範囲内にピーク波長を有し、両側半値波長幅が20nm以下である波長幅特性を有する光を発する第2発光体と、450nmから700nmの波長範囲内に、前記第1発光体及び前記第2発光体が発する光のピーク波長のいずれとも異なるピーク波長を有し、長波長側の半値波長幅が30nm以上である波長幅特性を有する光を発する幅広光発光体とを含む発光部と、
 前記第1発光体、前記第2発光体、及び前記幅広光発光体が発する光の発光強度をそれぞれ独立に制御可能な制御部とを備えることを特徴とする。
A light-emitting device according to the present invention, which has been made to solve the above problems,
A first light emitter that emits light having a wavelength width characteristic that has a peak wavelength within a wavelength range of 480 nm to 510 nm and a half-value wavelength width on both sides of 20 nm or less, and a peak wavelength within a wavelength range of 440 nm to 480 nm. , a second light emitter that emits light having a wavelength width characteristic in which both side half-value wavelength widths are 20 nm or less; and a peak wavelength of light emitted by the first light emitter and the second light emitter within a wavelength range of 450 nm to 700 nm. a light-emitting unit including a wide light-emitting body that emits light having a wavelength width characteristic in which the peak wavelength is different from any of the above and the half-value wavelength width on the long wavelength side is 30 nm or more;
A control unit capable of independently controlling the emission intensity of the light emitted from the first light emitter, the second light emitter, and the wide light emitter is provided.
 本発明において、「ピーク波長」は、発光体が発する光のスペクトル上にみられるピークの頂部(ピークトップ)の波長を意味する。また、「両側半値波長幅」とは、発光強度がピークトップの50%となる位置におけるピークの波長幅を意味し、「長波長側の半値波長幅」、「短波長側の半値波長幅」は、それぞれ発光強度がピークトップの50%となる位置におけるピークの波長幅のうちピーク波長よりも長波長側の幅、短波長側の幅を意味する。 In the present invention, the "peak wavelength" means the wavelength of the top of the peak (peak top) seen on the spectrum of the light emitted by the light emitter. In addition, the "half-value wavelength width on both sides" means the wavelength width of the peak at the position where the emission intensity is 50% of the peak top, and the "half-value wavelength width on the long wavelength side" and the "half-value wavelength width on the short wavelength side". are the width on the longer wavelength side and the width on the shorter wavelength side than the peak wavelength in the wavelength width of the peak at the position where the emission intensity is 50% of the peak top.
 前記第1発光体、前記第2発光体、及び前記幅広光発光体は、いずれも発光強度の制御の容易性の点で発光ダイオード(LED)を光源とするものが好ましいが、これに限らず例えば白熱電球や蛍光灯等を用いてもよい。また、各発光体は、1個の光源から構成されていてもよく、複数個の光源から構成されていてもよい。発光体が複数個の光源から構成されている場合、全ての光源が同じ種類でもよく、複数種類の光源が混在していてもよい。 The first luminous body, the second luminous body, and the wide light luminous body preferably use a light emitting diode (LED) as a light source in terms of ease of control of light emission intensity, but not limited to this. For example, an incandescent lamp, a fluorescent lamp, or the like may be used. Further, each luminous body may be composed of one light source, or may be composed of a plurality of light sources. When the luminous body is composed of a plurality of light sources, all the light sources may be of the same type, or a plurality of types of light sources may be mixed.
 一般に、網膜で受光した光の情報は、異なる2つの経路を通して脳に伝えられる。一つは、錐体と桿体を通じて脳の視覚野に伝えられ、視覚系作用である明るさや色の知覚をもたらす。もう一つは、生物時計の中枢である視交叉上核に伝えられ、生体リズムの光反応(深部体温やメラトニン分泌リズムの位相・振幅の調節など)を代表とする非視覚系作用をもたらす。非視覚系作用には、メラノプシンを含む網膜神経節細胞(melanopsin expressing Retinal Ganglion Cell、以下「mRGC」とする)が重要な役割を担っている(非特許文献1)。以下の説明では、錐体(L-錐体、M-錐体、S-錐体)、桿体、mRGCの網膜で受光した光を脳に伝える役割を果たす細胞を「受光器」と呼ぶ。 In general, light information received by the retina is transmitted to the brain through two different routes. One is transmitted to the visual cortex of the brain through cones and rods, resulting in the perception of brightness and color, which are functions of the visual system. The other is transmitted to the suprachiasmatic nucleus, which is the center of the biological clock, and causes non-visual system effects such as the light response of the biorhythm (regulation of the core body temperature and the phase and amplitude of the melatonin secretion rhythm, etc.). Retinal ganglion cells containing melanopsin (melanopsin expressing Retinal Ganglion Cell, hereinafter referred to as "mRGC") play an important role in non-visual system actions (Non-Patent Document 1). In the following description, the cones (L-cones, M-cones, S-cones), rods, and mRGC cells that play a role in transmitting light received by the retina to the brain are referred to as "photoreceptors."
 本発明者らは、分光分布が局在する赤・緑・青色光や、分光分布が遍在する高・低色温度光などの多波長光源が、松果体におけるメラトニン分泌に及ぼす影響を明らかにし、生活環境において用いられる人工照明の分光分布の問題点を指摘してきた(非特許文献2)。そして、照明光の波長構成を調整し、条件等色(メタメリズム:ある特定の光波長構成条件のもとで、二つの物体の色が等しく見える現象)手法を使うことにより、生活行為に必要な明るさ(照度)、光の色(色温度)、演色性を確保した上で、網膜上の受光器を選択的に独立して刺激する方法を確立した。 The present inventors clarified the effects of multi-wavelength light sources such as red, green, and blue light with localized spectral distributions and high/low color temperature light with ubiquitous spectral distributions on melatonin secretion in the pineal gland. and pointed out the problem of the spectral distribution of artificial lighting used in living environments (Non-Patent Document 2). Then, by adjusting the wavelength composition of the illumination light and using metamerism (a phenomenon in which two objects appear to have the same color under certain light wavelength composition conditions), After ensuring brightness (illuminance), light color (color temperature), and color rendering properties, we established a method to selectively and independently stimulate photoreceptors on the retina.
 本発明に係る発光装置において、第1発光体が発する光のピーク波長は、網膜上の受光器のうち桿体の感度ピーク波長(505nm)に近く、第2発光体が発する光のピーク波長は、S-錐体の感度ピーク波長(445nm)及びmRGCの感度ピーク波長(490nm)に近い。また、幅広光発光体は、半値波長幅が広く(or大きく)ブロードな波長スペクトルの光を発し、その光には桿体の感度ピーク波長、mRGCの感度ピーク波長、M-錐体の感度ピーク波長(540nm)L-錐体の感度ピーク波長(570nm)が含まれ得る。このような特徴的な波長特性を有する発光体から発光部が構成されているため、本発明に係る発光装置を用いることにより、上記の方法を実現することができる。 In the light emitting device according to the present invention, the peak wavelength of the light emitted by the first light emitter is close to the sensitivity peak wavelength (505 nm) of the rods of the light receivers on the retina, and the peak wavelength of the light emitted by the second light emitter is , close to the sensitivity peak wavelength of S-cones (445 nm) and the sensitivity peak wavelength of mRGCs (490 nm). In addition, the broad light emitter emits light of a broad wavelength spectrum with a wide (or large) half-value wavelength width. The wavelength (540 nm) of the sensitivity peak wavelength of the L-cones (570 nm) may be included. Since the light-emitting portion is composed of a light-emitting body having such characteristic wavelength characteristics, the above method can be realized by using the light-emitting device according to the present invention.
 すなわち、発光部を構成する発光体の一つである第1発光体が発する光の発光強度を増減させることにより、桿体への刺激量を制御することができ、第2発光体が発する光の発光強度を増減させることにより、mRGC、S-錐体への刺激量を制御することができる。また、幅広光発光体が発する光の発光強度を増減させることにより、桿体、mRGC、M-錐体、L-錐体への刺激量を制御することができる。つまり、発光部を構成する全ての発光体が発する光の発光強度をそれぞれ独立的に増減させることにより、発光部の出射光の照度、色温度、演色性とともに、各受光器への刺激量を調整することができる。したがって、錐体・桿体への刺激量(光の輝度、色、照度)を一定に維持しつつmRGCへの刺激量を異ならせたり、mRGCへの刺激量を一定に維持しつつ錐体・桿体への刺激量を異ならせたりすることも可能となる。 That is, by increasing or decreasing the emission intensity of the light emitted by the first light emitter, which is one of the light emitters constituting the light emitting part, the amount of stimulus to the rods can be controlled, and the light emitted by the second light emitter can be controlled. By increasing or decreasing the luminescence intensity of mRGCs, the amount of stimulation to the S-cones can be controlled. In addition, by increasing or decreasing the emission intensity of the light emitted by the wide light emitter, the amount of stimulation to rods, mRGCs, M-cones, and L-cones can be controlled. In other words, by independently increasing or decreasing the emission intensity of the light emitted by all the light emitters that make up the light emitter, the illuminance, color temperature, and color rendering properties of the emitted light from the light emitter and the amount of stimulus to each light receiver can be adjusted. can be adjusted. Therefore, the amount of stimulation to cones and rods (brightness, color, illuminance of light) is maintained constant while the amount of stimulation to mRGCs is varied, or the amount of stimulation to mRGCs is maintained constant while the amount of stimulation to cones and rods is varied. It is also possible to vary the amount of stimulus to the rods.
 なお、発光部の出射光が受光器にもたらす刺激量は、該出射光の分光放射エネルギー分布と受光器の分光感度分布の積によって求められる。本発明者らは、これまでに発光波長の異なる複数のLEDを備えたLED照明装置に、条件等色の手法を適用し、錐体(L-錐体,M-錐体,S-錐体)、桿体への刺激量は一定で、mRGCへの刺激量を変化するように各LEDの出力を調整した条件で、ヒトにおけるmRGCへの光刺激量がメラトニンの分泌挙動及び睡眠感に及ぼす影響について研究を行ってきた(非特許文献3)。この研究で得られた知見に基づき、1日における第1及び第2発光体並びに幅広光発光体が発する光の発光強度をそれぞれ適切に増減させれば、日常生活における作業性や行動を損なうことなく、生体リズムを調整することが可能な光環境を得ることができる。 It should be noted that the amount of stimulus that the light emitted from the light-emitting unit gives to the light receiver is obtained by multiplying the spectral radiant energy distribution of the emitted light and the spectral sensitivity distribution of the light receiver. The present inventors have so far applied metamerism to an LED lighting device equipped with a plurality of LEDs with different emission wavelengths, and have applied cones (L-cones, M-cones, S-cones ), the amount of light stimulation to mRGCs in humans affects melatonin secretion behavior and sleep sensation under the condition that the amount of stimulation to rods is constant and the output of each LED is adjusted to change the amount of stimulation to mRGCs. I have been researching the influence (Non-Patent Document 3). Based on the knowledge obtained in this research, if the emission intensity of the light emitted by the first and second light emitters and the wide light emitter in a day is appropriately increased or decreased, workability and behavior in daily life will be impaired. It is possible to obtain a light environment in which the biorhythm can be adjusted.
 本発明に係る発光装置においては、前記幅広光発光体が、
 450nmから470nmの波長範囲内にピーク波長を有し、短波長側の半値波長幅が20nm以下であり、長波長側の半値波長幅が50nm以上の波長幅特性を有する光を発する第3発光体と、
 540nmから550nmの波長範囲内にピーク波長を有し、短波長側及び長波長側の半値波長幅がそれぞれ30nm以上である波長幅特性を有する光を発する第4発光体と、
 620nmから650nmの波長範囲内にピーク波長を有し、短波長側の半値波長幅が30nm以上であり、長波長側の半値波長幅が40nm以上である波長幅特性を有する光を発する第5発光体と
 を含み、
 前記制御部が、前記第3~第5発光体が発する光の発光強度をそれぞれ独立に制御することができるものとすることが好ましい。
In the light-emitting device according to the present invention, the wide light-emitting body is
A third light emitter that emits light having a wavelength width characteristic of having a peak wavelength within a wavelength range of 450 nm to 470 nm, a half-value wavelength width of 20 nm or less on the short wavelength side, and a half-value wavelength width of 50 nm or more on the long wavelength side. and,
a fourth light emitter that emits light having a wavelength width characteristic in which the peak wavelength is within a wavelength range of 540 nm to 550 nm and the half-value wavelength width on the short wavelength side and the long wavelength side is 30 nm or more;
A fifth emission emitting light having a wavelength width characteristic of having a peak wavelength within a wavelength range of 620 nm to 650 nm, a half-value wavelength width of 30 nm or more on the short wavelength side, and a half-value wavelength width of 40 nm or more on the long wavelength side. including the body and
It is preferable that the control unit can independently control the light emission intensity of the light emitted by the third to fifth light emitters.
 上記構成の発光装置において、第3発光体が発する光のピーク波長は、mRGCの感度ピーク波長に近く、第4発光体が発する光のピーク波長はM-錐体の感度ピーク波長に近く、第5発光体が発する光のピーク波長はL-錐体の感度ピーク波長に近い。このように網膜上の5種類の光受容体の感度ピーク波長にそれぞれ対応する5種類の発光体を用いることにより、発光部の出射光が5種類の光受容体の各々に及ぼす刺激量を細かく調整することができる。したがって、各発光体が発する光の発光強度を適切に制御することにより、発光部の出射光を、mRGCへの刺激量、色温度、明るさ(照度)、演色評価数(平均演色評価数、特殊演色評価数)が最適な状態となるように調整することができる。 In the light-emitting device having the above configuration, the peak wavelength of light emitted by the third light emitter is close to the sensitivity peak wavelength of mRGC, the peak wavelength of light emitted by the fourth light emitter is close to the sensitivity peak wavelength of the M-cone, and The peak wavelength of the light emitted by the five emitters is close to the sensitivity peak wavelength of the L-cones. By using five types of light emitters corresponding to the sensitivity peak wavelengths of the five types of photoreceptors on the retina in this manner, the amount of stimulation that the emitted light from the light emitting unit exerts on each of the five types of photoreceptors can be finely adjusted. can be adjusted. Therefore, by appropriately controlling the emission intensity of the light emitted by each light emitter, the emitted light from the light emitting unit can be adjusted to the amount of stimulus to mRGC, color temperature, brightness (illuminance), color rendering index (general color rendering index, Special color rendering index) can be adjusted to the optimum state.
 上記構成の発光装置においては、前記制御部が、前記発光部の出射光の色温度が2500Kから15000Kの範囲となるように、前記各発光体が発する光の発光強度を制御すると良い。これにより、市販されている様々な人工光源(白熱電球、蛍光灯(電球色~昼光色))が発する光に相当する出射光、様々な時間帯、天候時に屋内外において経験する自然光(太陽光)に概ね相当する出射光を得ることができる。 In the light emitting device having the above configuration, it is preferable that the control section controls the emission intensity of the light emitted from each of the light emitters so that the color temperature of the light emitted from the light emitting section is in the range of 2500K to 15000K. As a result, the output light equivalent to the light emitted by various commercially available artificial light sources (incandescent light bulbs, fluorescent lights (bulb color to daylight color)), and the natural light (sunlight) experienced indoors and outdoors in various time periods and weather conditions can be obtained.
 本発明に係る発光装置は、さらに、色温度とmRGC刺激量を設定する設定部と、
 前記発光部の出射光の色温度及びmRCG刺激量と、前記第1発光体、前記第2発光体及び前記幅広光発光体(第3~第5発光体)のそれぞれが発する光の発光強度との関係を示す情報が記憶されている記憶部とを備え、
 前記制御部が、前記情報に基づいて、前記発光部の出射光の色温度及びmRCG刺激量が、前記設定部において設定された色温度とmRGC刺激量となるように、各発光体の発光強度を制御するように構成されていることが好ましい。
The light emitting device according to the present invention further includes a setting unit for setting the color temperature and the amount of mRGC stimulation;
the color temperature and mRCG stimulus amount of the light emitted from the light emitting unit, and the emission intensity of the light emitted by each of the first light emitter, the second light emitter, and the wide light emitters (third to fifth light emitters); and a storage unit that stores information indicating the relationship of
Based on the information, the control unit controls the emission intensity of each light emitter so that the color temperature and the amount of mRCG stimulation of the light emitted from the light emitting unit become the color temperature and the amount of mRCG stimulation set by the setting unit. is preferably configured to control the
 前記記憶部に記憶されている情報は、例えば次の手順により得たものとすることができる。
 すなわち、各発光体の発光分布特性を事前に測定しておき、発光部の出射光の色温度が指定された値になるときの各発光体が発する光の発光強度(発光体の発光強度)を計算により求め、発光部の出射光の色温度に、該発光部を構成する全ての発光体の発光強度の組み合わせを対応させる。通常、出射光の色温度が指定された値になるときの、発光体の発光強度の組み合わせは複数存在するため、一つの色温度に、複数の、発光体の発光強度の組み合わせが対応することになる。
The information stored in the storage section can be obtained, for example, by the following procedure.
That is, the luminescence distribution characteristics of each luminous body are measured in advance, and the luminous intensity of the light emitted by each luminous body when the color temperature of the emitted light from the light emitting part reaches a specified value (luminous intensity of the luminous body) is obtained by calculation, and the combination of the emission intensities of all the light emitters constituting the light emitting section is made to correspond to the color temperature of the light emitted from the light emitting section. Usually, there are multiple combinations of luminous intensities when the color temperature of emitted light is a specified value, so one color temperature corresponds to a plurality of combinations of luminous intensities. become.
 次に、色温度に対応する発光体の発光強度の複数の組み合わせについて、mRGCへの刺激量、平均演色性評価数、及び特殊演色評価数をそれぞれ計算する。例えば5種類の発光体の発光強度がそれぞれ100段階に変更可能である場合、100通り(100億通り)の組み合わせについて、mRGCへの刺激量(mRGC刺激量)、平均演色性評価数、及び特殊演色評価数を計算する。
 そして、100通りの組み合わせの中から、mRGC刺激量が同じである組み合わせを抽出し、それらの組み合わせの中から平均演色性評価数及び特殊演色評価数が高い、発光体の発光強度の組み合わせ(「最適組み合わせ」と呼ぶ)を選択する。
 全ての色温度に対応する発光体の発光強度の複数の組み合わせについて最適組み合わせが選択されると、それら最適組み合わせを、色温度、mRGC刺激量と紐づけたデータテーブルの情報として、記憶部に記憶する。
Next, the amount of stimulus to mRGC, the general color rendering index, and the special color rendering index are calculated for a plurality of combinations of luminous intensities corresponding to the color temperatures. For example, if the emission intensity of five types of light emitters can be changed in 100 steps, for 1005 (10 billion) combinations, the amount of stimulation to mRGC (mRGC stimulation amount), the average color rendering index, and Calculate the special color rendering index.
Then, from among the 100 5 combinations, a combination with the same mRGC stimulation amount is extracted, and a combination of luminous intensities with a high general color rendering index and a high special color rendering index from among those combinations ( (referred to as the “optimum combination”).
When the optimum combination is selected for a plurality of combinations of luminescence intensities of light emitters corresponding to all color temperatures, the optimum combination is stored in the storage unit as information of a data table linked with color temperature and mRGC stimulation amount. do.
 以上の手順により得られたデータテーブルを前記記憶部に記憶しておくことにより、前記制御部は、前記設定部において設定された色温度とmRGC刺激量に対応する発光体の発光強度の組み合わせをデータテーブルから読みだし、各発光体の発光強度を調整することができる。このようなデータテーブルを使用することにより、色温度とmRGC刺激量が設定されてから、遅延なく、各発光体の発光強度を制御することができる。また、色温度を一定に維持したままmRGC刺激量を変化させたり、mRGC刺激量を一定に維持したまま色温度を変化させたりすることも容易にできるようになる。 By storing the data table obtained by the above procedure in the storage unit, the control unit can determine the combination of the light emission intensity corresponding to the color temperature and the mRGC stimulation amount set in the setting unit. It is possible to read from the data table and adjust the emission intensity of each light emitter. By using such a data table, the emission intensity of each light emitter can be controlled without delay after the color temperature and the amount of mRGC stimulation are set. In addition, it becomes possible to easily change the amount of mRGC stimulation while maintaining a constant color temperature, or to change the color temperature while maintaining a constant amount of mRGC stimulation.
 また、上述した発光強度の最適組み合わせをデータテーブルとして記憶しておくことにより、色温度やmRGC刺激量を増減させても各発光体の発光強度を迅速に対応させることができ、平均演色性評価数並びに特殊演色評価数を常に最適な状態に維持することができるため、日常生活における作業性や行動に及ぼす影響を小さくすることができる。 In addition, by storing the above-mentioned optimum combinations of luminous intensities as a data table, it is possible to quickly correspond the luminous intensity of each light emitter even if the color temperature and the amount of mRGC stimulation are increased or decreased, and the average color rendering property evaluation can be performed. and the special color rendering index can always be maintained in an optimum state, it is possible to reduce the influence on workability and behavior in daily life.
 なお、設定部には予め色温度とmRGC刺激量の値が設定されていてもよく、色温度とmRGC刺激量の値をユーザが入力するための設定値入力部を設け、該設定値入力部を通して入力された色温度とmRGC刺激量の値が前記設定部に設定されるようにしてもよい。
 また、1日の生体リズムを調整するために必要な時計機能を使用して、時間帯によって色温度とmRGC刺激量が増減するような制御プログラム(タイムスケジュール)を記憶部に記憶しておき、前記制御プログラムに従って、設定部が色温度、mRGC刺激量を設定し、制御部が、各発光体の発光強度を制御するようにしてもよい。
Note that the setting unit may have values of the color temperature and the amount of mRGC stimulation set in advance. The values of the color temperature and the amount of mRGC stimulation input through , may be set in the setting unit.
In addition, a control program (time schedule) is stored in the storage unit to increase or decrease the color temperature and the amount of mRGC stimulation depending on the time of day using the clock function necessary to adjust the biological rhythm of the day, According to the control program, the setting unit may set the color temperature and the amount of mRGC stimulation, and the control unit may control the light emission intensity of each light emitter.
 本発明に係る発光装置を用いることにより、生体リズムを調整可能な光環境を作り出すことができ、且つ多様な色温度において高い演色性を確保できる。 By using the light-emitting device according to the present invention, it is possible to create a light environment in which the biorhythm can be adjusted, and to ensure high color rendering properties at various color temperatures.
本発明の発光装置の第1実施形態の概略構成図。1 is a schematic configuration diagram of a first embodiment of a light emitting device of the present invention; FIG. 第1~第5発光体(LED)の光特性図。FIG. 4 is a light characteristic diagram of first to fifth light emitters (LEDs); 平均演色評価数(Ra)≧90、特殊演色評価数のR9(赤)、R15(肌の色)≧90の条件を満たす色温度とmRGC刺激量の分布図の例。An example of a distribution map of color temperature and mRGC stimulation that satisfies the conditions of general color rendering index (Ra) ≥ 90, special color rendering index R9 (red), and R15 (skin color) ≥ 90. 色温度、mRGC刺激量を増減させる方法の説明図。Explanatory drawing of the method to increase/decrease the color temperature and the amount of mRGC stimulation. 平均演色評価数(Ra)≧70、特殊演色評価数のR9(赤)、R15(肌の色)≧70の条件を満たす色温度とmRGC刺激量の分布図の例。An example of a distribution map of color temperature and mRGC stimulation that satisfies the following conditions: general color rendering index (Ra) ≥ 70, special color rendering index R9 (red), R15 (skin color) ≥ 70. 平均演色評価数(Ra)≧80、特殊演色評価数のR9(赤)、R15(肌の色)≧80の条件を満たす色温度とmRGC刺激量の分布図の例。An example of a distribution map of color temperature and mRGC stimulation that satisfies the conditions of general color rendering index (Ra) ≥ 80, special color rendering index R9 (red), and R15 (skin color) ≥ 80. 実験1のスケジュールを示す表。Table showing the schedule of Experiment 1. 18時から24時までの各時刻におけるメラトニン濃度の平均値を示すグラフ。Graph showing the average melatonin concentration at each time from 18:00 to 24:00. 18時~19時におけるメラトニン濃度の平均値から23時~24時におけるメラトニン濃度の平均値への変化量を示すグラフ。Graph showing the amount of change in the average melatonin concentration from 18:00 to 19:00 to the average melatonin concentration from 23:00 to 24:00. 実験2のスケジュールを示す表。Table showing the schedule for Experiment 2. 21時から24時までのメラトニン分泌増加総量の変化の様子のグラフ。Graph showing changes in total melatonin secretion increase from 21:00 to 24:00. 本発明に係る発光装置の変形例を示す図。The figure which shows the modification of the light-emitting device which concerns on this invention. 本発明に係る発光装置が周囲に設置された鏡の概略構成図。1 is a schematic configuration diagram of a mirror around which a light emitting device according to the present invention is installed; FIG.
 以下、本発明を医療施設の病室や介護施設の居室の天井に設置される発光装置に適用した一実施形態について図面を参照して説明する。
 図1は発光装置の概略的な構成図である。この発光装置1は、発光部10と、発光制御部20とを備えている。
An embodiment in which the present invention is applied to a light-emitting device installed on the ceiling of a hospital room in a medical facility or a living room in a nursing facility will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a light emitting device. The light emitting device 1 includes a light emitting section 10 and a light emission control section 20 .
 発光部10は、矩形容器状の筐体11と、その内底部に配置された基板12と、該基板12の上に配置された5種類の発光体であるLED101~105と、これらLED101~105の駆動回路13とを備えている。筐体11は一面が開口しており、該開口は発光体101~105からの光を透過し拡散する拡散板(図示せず)で塞がれている。図1には、丸型のLEDが基板12上に実装されている例が示されているが、LEDの形状は丸型に限らず、角型、電球型でもよい。 The light emitting unit 10 includes a rectangular container-shaped housing 11, a substrate 12 arranged on the inner bottom, LEDs 101 to 105 which are five types of light emitters arranged on the substrate 12, and these LEDs 101 to 105. and a drive circuit 13 of. One surface of the housing 11 is open, and the opening is closed with a diffusion plate (not shown) that transmits and diffuses the light from the light emitters 101 to 105 . Although FIG. 1 shows an example in which a round LED is mounted on the substrate 12, the shape of the LED is not limited to a round shape, and may be rectangular or bulb-shaped.
 発光制御部20は、発光部10の発光体101~105の動作を制御するものであって、発光制御回路201、記憶部202、設定部203、無線通信部204及び時計回路205を機能ブロックとして備えている。また、入力部21、表示部22を備えている。
 記憶部202には、発光部10の出射光の照度、色温度、mRCG刺激量それぞれの値の組み合わせからなる複数のデータセットと、各データセットに対応する前記発光体101~105が発する光の発光強度との関係を示すデータテーブルが記憶されている。また、記憶部202には、1年間の各1日における発光体101~105が発する光の発光強度を示すタイムテーブルが記憶されている。これらデータテーブル、タイムテーブルについては後述する。
The light emission control unit 20 controls the operation of the light emitters 101 to 105 of the light emission unit 10, and includes a light emission control circuit 201, a storage unit 202, a setting unit 203, a wireless communication unit 204, and a clock circuit 205 as functional blocks. I have. It also has an input section 21 and a display section 22 .
The storage unit 202 stores a plurality of data sets each including a combination of values of illuminance, color temperature, and mRCG stimulation amount of the light emitted from the light emitting unit 10, and data of the light emitted by the light emitters 101 to 105 corresponding to each data set. A data table is stored showing the relationship with the emission intensity. In addition, the storage unit 202 stores a timetable showing the emission intensity of the light emitted by the light emitters 101 to 105 on each day of the year. These data table and time table will be described later.
 上記の発光制御部20の実体は一般的なコンピュータであり、該コンピュータにインストールされた専用の制御ソフトウェアをコンピュータ上で動作させることで上記各機能ブロックの機能が実現される。したがって、入力部21はキーボードやマウス等のポインティングデバイスを含む。発光装置1は、入力部21を通して照度、色温度、mRGCの値を入力できるようになっており、これら入力された値は設定部203に設定される。 The substance of the above light emission control unit 20 is a general computer, and the functions of the above functional blocks are realized by operating dedicated control software installed in the computer on the computer. Therefore, the input unit 21 includes pointing devices such as a keyboard and a mouse. The light-emitting device 1 can input values of illuminance, color temperature, and mRGC through the input unit 21 , and these input values are set in the setting unit 203 .
 また、発光制御部20は、USBポート、イーサネットポート、RS-232Cポート等の有線通信ネットワークの接続端子である外部接続端子206を備えている。発光制御部20は外部接続端子206を通じてパーソナルコンピュータその他の外部機器との間でデータを送受信することができる。 The light emission control unit 20 also includes an external connection terminal 206 that is a wired communication network connection terminal such as a USB port, an Ethernet port, an RS-232C port, and the like. The light emission control unit 20 can transmit and receive data to and from external devices such as a personal computer through the external connection terminal 206 .
 また、無線通信部204はスマートフォンなどの携帯端末30との間で通信が可能であり、ユーザは携帯端末30を操作することによって発光部10の出射光の色温度、mRGCを設定部203に設定することができる。 Also, the wireless communication unit 204 can communicate with a mobile terminal 30 such as a smartphone, and the user sets the color temperature and mRGC of the emitted light of the light emitting unit 10 in the setting unit 203 by operating the mobile terminal 30. can do.
 5種類のLED101~105は互いにピーク波長が異なっており、それぞれ複数個ずつ、LED101、102、103、104、105の順に、且つ複数列に並ぶように基板12上に配置されている。なお、図1では、5種類のLED101~105を、その模様を異ならせることで表現している。 The five types of LEDs 101 to 105 have different peak wavelengths, and are arranged on the substrate 12 in the order of LEDs 101, 102, 103, 104, and 105 in multiple rows. In FIG. 1, the five types of LEDs 101 to 105 are represented by different patterns.
 図2は、LED101~105の光特性図である。LED101は本発明の第1発光体に相当し、ピーク波長が505nm、半値波長幅が±10nm(両側半値波長幅が20nm)程度の単波長シアンLEDである。LED102は本発明の第2発光体に相当し、ピーク波長が445nm、半値波長幅が±10nm(両側半値波長幅が20nm)程度の単波長青色LEDである。LED103は本発明の第3発光体に相当し、ピーク波長が455nm~460nm、半値波長幅が+50nm(長波長側の半値波長幅が50nm)程度の波長幅特性を有するLEDである。LED104は本発明の第4発光体に相当し、ピーク波長が540nm、半値波長幅が+30nm(長波長側の半値波長幅が30nm)程度の波長幅特性を有するLEDである。LED105は本発明の第5発光体に相当し、ピーク波長が640nm、半値波長幅が±60nm(短波長側の半値波長幅が60nm、長波長側の半値波長幅が60nm)程度の波長幅特性を有するLEDである。また、LED103~LED105は本発明の幅広光発光体にも相当する。本実施形態では、LED103~LED105は、いずれも青色LEDに蛍光体を塗布することで上述したピーク波長、波長幅特性となるようにしたものである。なお、図2では、LED101~105の光スペクトルを、ピークレベルが同じになるように正規化して示しているが、各LED101~105のピークレベルの比率は、発光部10の出射光の照度、色温度、mRCG刺激量に応じて適宜の値に設定すればよい。 FIG. 2 is a light characteristic diagram of the LEDs 101-105. The LED 101 corresponds to the first light emitter of the present invention, and is a single-wavelength cyan LED having a peak wavelength of 505 nm and a half-value wavelength width of about ±10 nm (both-side half-value wavelength widths of 20 nm). The LED 102 corresponds to the second light emitter of the present invention, and is a single-wavelength blue LED having a peak wavelength of 445 nm and a half-value wavelength width of about ±10 nm (both sides half-value wavelength width of 20 nm). The LED 103 corresponds to the third light emitter of the present invention, and has a wavelength width characteristic of a peak wavelength of 455 nm to 460 nm and a half-value wavelength width of about +50 nm (the half-value wavelength width on the long wavelength side is 50 nm). The LED 104 corresponds to the fourth luminous body of the present invention, and has wavelength width characteristics such as a peak wavelength of 540 nm and a half-value wavelength width of about +30 nm (the half-value wavelength width on the long wavelength side is 30 nm). The LED 105 corresponds to the fifth luminous body of the present invention, and has wavelength width characteristics such that the peak wavelength is 640 nm and the half-value wavelength width is ±60 nm (the half-value wavelength width on the short wavelength side is 60 nm, and the half-value wavelength width on the long wavelength side is 60 nm). is an LED having Moreover, the LEDs 103 to 105 also correspond to the wide light emitters of the present invention. In this embodiment, each of the LEDs 103 to 105 is made to have the peak wavelength and wavelength width characteristics described above by applying a phosphor to the blue LED. In FIG. 2, the light spectra of the LEDs 101 to 105 are normalized so that the peak levels are the same. An appropriate value may be set according to the color temperature and the amount of mRCG stimulation.
 次に、データテーブル、タイムテーブルについて説明する。
 上述したように、データテーブルは、発光部10の出射光の照度、色温度、mRCG刺激量それぞれの値の組み合わせからなる複数のデータセットと、前記LED101~105が発する光の発光強度とを対応させたものである。
Next, the data table and timetable will be explained.
As described above, the data table corresponds to a plurality of data sets consisting of combinations of values of the illuminance, color temperature, and mRCG stimulation amount of the light emitted from the light emitting unit 10, and the light emission intensity of the light emitted by the LEDs 101 to 105. It is what I let you do.
 発光制御回路201は、PWM制御にて第1~第5LED101~105の発光強度をそれぞれ変更する回路を備えている。例えば8ビットの分解能でPWM制御する場合、発光強度を0~255までの数値で制御することが可能となる。つまり、数値が0のときに消灯、255のときに最大の発光強度となる。 The light emission control circuit 201 includes a circuit that changes the light emission intensity of the first to fifth LEDs 101 to 105 by PWM control. For example, in the case of PWM control with 8-bit resolution, it is possible to control the emission intensity with a numerical value from 0 to 255. That is, when the numerical value is 0, the light is turned off, and when the numerical value is 255, the maximum emission intensity is obtained.
 そこで、まず第1~第5LED101~105それぞれの最大発光強度の分光放射照度を分光放射照度計(コニカミノルタ:CL -500A)で測定し、各受光器(L、M、S-錐体、mRGC、桿体)の分光感度係数を分光放射照度の測定結果と掛け合わせて400nm~750nmの波長域において積分し、CIE S 026/E:2018 に定義された計算方法によりmRGCへの刺激量(Melanopic ELR)を算出する。そして、その算出結果を使って、第1~第5LED101~105PWM出力値を変化させたときの、色温度、mRGC刺激量、照度、平均演色評価数(Ra)、特殊演色評価数のR9(赤)及びR15(肌の色)を算出し、それらのうち、平均演色評価数(Ra)≧90、特殊演色評価数のR9(赤)、R15(肌の色)≧90の条件を満たす色温度とmRGC刺激量の組(データセット)と、そのときの第1~第5LED101~105の発光強度の組を対応させたデータテーブルを記憶部202に記憶させる。 Therefore, first, the spectral irradiance of the maximum emission intensity of each of the first to fifth LEDs 101 to 105 is measured with a spectral irradiance meter (Konica Minolta: CL -500A), and each light receiver (L, M, S-cone, mRGC , rods) are multiplied by the measured spectral irradiance and integrated over the wavelength range of 400 nm to 750 nm, and the amount of stimulus to mRGCs (Melanopic ELR). Then, using the calculation results, color temperature, mRGC stimulation amount, illuminance, general color rendering index (Ra), special color rendering index R9 (red ) and R15 (skin color), and among them, a color temperature that satisfies the conditions of general color rendering index (Ra) ≥ 90, special color rendering index R9 (red), and R15 (skin color) ≥ 90 and mRGC stimulation amounts (data set), and the corresponding sets of emission intensities of the first to fifth LEDs 101 to 105 at that time are stored in the storage unit 202.
 図3は、上記のようにして求められたデータテーブルに含まれる各組の色温度とmRGC刺激量の分布図である。図3の分布図の縦軸は色温度(K)を、横軸はmRGC刺激量(Melanopic ELR、mW/lm)を示している。 FIG. 3 is a distribution diagram of each set of color temperature and mRGC stimulation amount included in the data table obtained as described above. In the distribution diagram of FIG. 3, the vertical axis indicates the color temperature (K), and the horizontal axis indicates the mRGC stimulation level (Melanopic ELR, mW/lm).
 図3の分布図より、例えば12000Kの色温度の出射光を実現するための第1~第5LED101~105のPWM出力値(0~255)の一つの組み合わせは下記の表1のようになることが分かる。
Figure JPOXMLDOC01-appb-T000001
From the distribution diagram in FIG. 3, one combination of the PWM output values (0 to 255) of the first to fifth LEDs 101 to 105 for realizing emitted light with a color temperature of, for example, 12000K is as shown in Table 1 below. I understand.
Figure JPOXMLDOC01-appb-T000001
 また、例えば3000Kの色温度の出射光を実現するための第1~第5LED101~105のPWM出力値の一つの組み合わせは下記の表2のようになることが分かる。
Figure JPOXMLDOC01-appb-T000002
Also, one combination of the PWM output values of the first to fifth LEDs 101 to 105 for realizing emitted light with a color temperature of 3000K, for example, is shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 さらに、図3の分布図からわかるように、平均演色評価数(Ra)≧90、特殊演色評価数のR9(赤)、R15(肌の色)≧90の条件を満たす色温度とmRGC刺激量の組には、色温度が同じでmRGC刺激量が異なる複数の組、mRGC刺激量が同じで色温度が異なる複数の組、がそれぞれ含まれる。このことから、色温度3000Kの場合のmRGC刺激量は0.6~0.8mW/lm、色温度5000Kの場合のmRGC刺激量は1.0~1.2mW/lm、色温度12000Kの場合のmRGC刺激量は1.5~1.8mW/lmで変化させることが可能であることが分かる。
 同様に、mRGC刺激量が1mW/lmの場合の色温度は、4000~5000K、mRGC刺激量が1.5mW/lmの場合の色温度は7000~11000Kで変化させることが可能であることが分かる。
Furthermore, as can be seen from the distribution chart in Fig. 3, the color temperature and the mRGC stimulation amount that satisfy the conditions of general color rendering index (Ra) ≥ 90, special color rendering index R9 (red), and R15 (skin color) ≥ 90. The sets include a plurality of sets with the same color temperature and different mRGC stimulation amounts, and a plurality of sets with the same mRGC stimulation amounts and different color temperatures. From this, the amount of mRGC stimulation for a color temperature of 3000K is 0.6-0.8mW/lm, the amount of mRGC stimulation for a color temperature of 5000K is 1.0-1.2mW/lm, and the amount of mRGC stimulation for a color temperature of 12000K is 0.6-0.8mW/lm. It can be seen that the mRGC stimulation amount can be varied between 1.5 and 1.8 mW/lm.
Similarly, it can be seen that the color temperature can be changed between 4000 and 5000 K when the mRGC stimulation level is 1 mW/lm and between 7000 and 11000 K when the mRGC stimulation level is 1.5 mW/lm. .
 つまり、分布図に丸数字と矢印を加えた図4に示すように、高色温度・高mRGC刺激量から中色温度・中mRGC刺激量へ移行させたり(1→2)、色温度を一定に維持したままmRGC刺激量を漸減させたり(2→3)、mRGC刺激を一定に維持したまま色温度を低下させたり(3~6)、中色温度・中mRGC刺激量から低色温度・低mRGC刺激量へ移行させたり(6~14)することが可能な発光装置1を実現できる。 In other words, as shown in Fig. 4, which is a distribution map with circled numbers and arrows, it is possible to shift from a high color temperature and high mRGC stimulation amount to a medium color temperature and medium mRGC stimulation amount (1 → 2), or to keep the color temperature constant. The amount of mRGC stimulation is gradually decreased while maintaining the constant (2 → 3), the color temperature is decreased while maintaining the mRGC stimulation constant (3-6), and the color temperature is changed from medium color temperature/medium mRGC stimulation amount to low color temperature/ A light-emitting device 1 capable of transitioning to a low mRGC stimulation amount (6-14) can be realized.
 また、例えば1日の中で、平均演色評価数(Ra)≧90、特殊演色評価数のR9(赤)、R15(肌の色)≧90を維持し、照度を一定に保ちながら、色温度を12000Kから3000Kまで徐々に変化させた場合は、各色温度におけるmRGC刺激量を0.2~0.3mW/lmの変化幅で制御することができる。 Also, for example, in one day, the color temperature is maintained while maintaining the general color rendering index (Ra) ≥ 90, the special color rendering index R9 (red), R15 (skin color) ≥ 90, and maintaining the illuminance constant. is gradually changed from 12000K to 3000K, the amount of mRGC stimulation at each color temperature can be controlled within a range of change of 0.2 to 0.3 mW/lm.
 タイムテーブルは上記データテーブルから、時間帯毎に適切な色温度、mRGC刺激量の組が設定されたものである。表3にタイムテーブルの例を示す。
Figure JPOXMLDOC01-appb-T000003
The time table is obtained by setting appropriate pairs of color temperature and mRGC stimulus amount for each time slot from the above data table. Table 3 shows an example of a timetable.
Figure JPOXMLDOC01-appb-T000003
 なお、記憶部202には、ある照度条件における平均演色評価数(Ra)≧90、特殊演色評価数のR9(赤)、R15(肌の色)≧90の条件以外の条件を満たす色温度とmRGC刺激量の組と第1~第5LED101~105の発光強度の組を対応させたデータテーブルを記憶させてもよい。 Note that the storage unit 202 stores color temperature and color temperature conditions other than the conditions of general color rendering index (Ra)≧90, special color rendering index R9 (red), and R15 (skin color)≧90 under certain illuminance conditions. A data table that associates sets of mRGC stimulation amounts with sets of emission intensities of the first to fifth LEDs 101 to 105 may be stored.
 例えば図5は、平均演色評価数(Ra)≧70、特殊演色評価数のR9(赤)、R15(肌の色)≧70の条件を満たす色温度とmRGC刺激量の分布図を、図6は、照度500lx、平均演色評価数(Ra)≧80、特殊演色評価数のR9(赤)、R15(肌の色)≧80の条件を満たす色温度とmRGC刺激量の分布図を示している。 For example, FIG. 5 shows a distribution map of color temperature and mRGC stimulation amount satisfying the conditions of general color rendering index (Ra)≧70, special color rendering index R9 (red), R15 (skin color)≧70, and FIG. shows a distribution map of color temperature and mRGC stimulation amount satisfying the conditions of illuminance 500lx, general color rendering index (Ra) ≥ 80, special color rendering index R9 (red), R15 (skin color) ≥ 80. .
 次に、上記発光装置1を用いて行った実験について説明する。
[実験1]
 外光を遮断した人工気候室内にて発光装置の発光条件を変更し、3日間における被験者22名(20代男性)の唾液を採取し、採取した唾液からメラトニン濃度を測定した。発光条件の測定は、分光放射照度計 コニカミノルタ製 CL-500Aを使用し、メラトニンの分析にはBULMANN社のELISAを用いた。
Next, an experiment performed using the light emitting device 1 will be described.
[Experiment 1]
The light emission conditions of the light emitting device were changed in an artificial climate room in which the outside light was blocked, saliva was collected from 22 subjects (males in their twenties) over three days, and melatonin concentration was measured from the collected saliva. Luminescent conditions were measured using a spectral irradiometer CL-500A manufactured by Konica Minolta, and melatonin was analyzed using ELISA manufactured by BULMANN.
 実験スケジュールを図7に示す。被験者は、実験初日の10時に実験室へ入室し、4日間滞在する。その後、24時から朝の7時まで完全暗状態で睡眠をとり、2日目以降は、以下の表4-1に示す条件A、表4-2に示す条件Bのどちらかの発光条件下で過ごした。 Fig. 7 shows the experiment schedule. Subjects enter the experimental room at 10:00 on the first day of the experiment and stay there for four days. After that, sleep in complete darkness from 24:00 to 7:00 in the morning, and from the second day onwards, under either the condition A shown in Table 4-1 or the condition B shown in Table 4-2 below. spent in
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実験中、被験者は緊急時を除き、食事や排泄・シャワーを含め、すべて実験室で生活し、食事は、8時、12時、18時に一定の食事が提供された。飲水は自由とするが、間食は禁止した。 During the experiment, except for emergencies, the subjects lived in the laboratory, including meals, excretion, and showering, and were provided regular meals at 8:00, 12:00, and 18:00. Drinking water was allowed ad libitum, but no snacks were allowed.
 唾液は、18時から1時間毎に24時まで採取した。 Saliva was collected every hour from 18:00 until 24:00.
 実験中は、データ収集時刻を除き自由に過ごせることとした。ただし、過度な運動や昼寝は結果に影響を与えるため禁止した。自由時間は、本を読んだり、レポートを書いたりすることができ、パソコンなどのディスプレイや、スマートフォンの使用は、画面の明るさを暗く設定した上で、朝10時から夕方16時30分までの時間内で使用を許可した。 Except for the data collection time, we decided to spend the time freely during the experiment. However, excessive exercise and naps were prohibited because they affected the results. During free time, you can read a book or write a report, and when using a computer display or smartphone, set the brightness of the screen to dark and from 10:00 in the morning to 16:30 in the evening. allowed to use within
 被験者22名のうち実験進行に問題のあった3名を除いた19名のデータを使用し、条件A、Bの光条件下での実験3日目のメラトニン濃度の全体平均値を求めた。その結果を表5及び図8に示す。  Out of 22 subjects, 3 subjects who had problems with the progress of the experiment were excluded, and data from 19 subjects were used to determine the overall average melatonin concentration on the third day of the experiment under conditions A and B. The results are shown in Table 5 and FIG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 条件Aでは、朝7時から24時まで一定の照度を保ち、mRGC刺激量も1.2mW/lmを保つ光環境とした。また、条件Bでは、朝7時から24時まで一定の照度を保ち、朝7時から30分間のみ20000K~12000Kの色温度でmRGC刺激量を1.8mW/lmまで強め、その後、昼から夕方夜にかけて、mRGC刺激量を0.6mW/lmまで斬減させた。 In condition A, the light environment was such that a constant illuminance was maintained from 7:00 to 24:00 in the morning, and the mRGC stimulation level was maintained at 1.2 mW/lm. In condition B, a constant illuminance was maintained from 7:00 to 24:00, and the mRGC stimulation level was increased to 1.8 mW/lm at a color temperature of 20,000 K to 12,000 K only for 30 minutes from 7:00. Overnight, the mRGC stimulation dose was tapered down to 0.6 mW/lm.
 表5及び図8より、メラトニン濃度の平均値は18時から23時までは条件Aと条件Bの間に大きな差はなかった。一方、24時の時点において、統計的に有意ではないが、条件Bの光条件下は、条件Aの光条件下に対してメラトニンの濃度増加傾向が見られた。 From Table 5 and Fig. 8, there was no significant difference in the average melatonin concentration between Condition A and Condition B from 18:00 to 23:00. On the other hand, at 24:00, there was a trend toward an increase in the concentration of melatonin under the lighting conditions of condition B compared to that under the lighting conditions of condition A, although this was not statistically significant.
 そこで、表5に示す値から夜間の前半である18時~19時と就寝直前の23時~24時におけるメラトニン濃度の平均値を求めた。その結果を表6に示す。また、18時~19時におけるメラトニン濃度の平均値と23時~24時におけるメラトニン濃度の平均値の差を図9に示す。この差は、夜間のメラトニン分泌量の変化量に相当する。 Therefore, from the values shown in Table 5, the average melatonin concentration in the first half of the night from 18:00 to 19:00 and from 23:00 to 24:00 just before going to bed was obtained. Table 6 shows the results. FIG. 9 shows the difference between the average melatonin concentration from 18:00 to 19:00 and the average melatonin concentration from 23:00 to 24:00. This difference corresponds to the amount of change in melatonin secretion during the night.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 条件Aと条件Bの光条件下における夜間の前半から就寝直前へのメラトニン分泌変化量について、関連のある2群の母平均の差の検定(対応のあるt検定)を行ったところ、両者に危険率5%以下(p=0.015)で統計的有意差が検出され、条件Bの方が条件Aに比べて、夕方から深夜(就寝直前)に大きな分泌量の増加が認められた。 Regarding the change in melatonin secretion from the first half of the night to just before going to bed under the lighting conditions of condition A and condition B, a test (paired t-test) of the difference in the population mean of the two related groups was performed. A statistically significant difference was detected at a risk rate of 5% or less (p=0.015), and a greater increase in secretion was observed from evening to midnight (just before bedtime) under condition B than under condition A.
 このことから、条件Aよりも条件Bの方が、夕方から就寝前の夜間においてメラトニン分泌挙動の位相前進、または(および)夜間のメラトニン分泌総量の増加がみられたことが推測される。メラトニン分泌挙動の位相前進、夜間のメラトニン分泌総量の増加は、スムーズな入眠の導入と深い睡眠の確保につながることから、条件Bは、ヒトの健康面に対して有効な光・照明環境の制御であると考えられる。 From this, it is speculated that condition B showed a phase advance in the melatonin secretion behavior from the evening to the night before bedtime, or (and) an increase in the total amount of melatonin secreted at night, than under condition A. The phase advance of melatonin secretion behavior and the increase in the total amount of melatonin secreted at night lead to the smooth onset of sleep and the securing of deep sleep. It is considered to be
[実験2]
 実験2では、実験1の光条件に、夜間におけるスマートフォンなどの携帯端末の画面から発せられるブルーライトの入眠への影響を低減するために、夕方に強いmRGCへの刺激を加えた光条件で実験を行った。
[Experiment 2]
In Experiment 2, in addition to the lighting conditions of Experiment 1, the experiment was conducted under the lighting conditions in which strong mRGC stimulation was added in the evening to reduce the influence of blue light emitted from the screens of mobile devices such as smartphones on falling asleep at night. did
 外光を遮断した室内にて発光装置の発光条件を変更し、5日間における被験者1名(50代男性)の唾液を採取し、採取した唾液からメラトニン濃度を測定した。発光条件の測定は、分光放射照度計 コニカミノルタ製 CL-500Aを使用し、メラトニンの分析にはBULMANN社のELISAを用いた。 We changed the lighting conditions of the light-emitting device in a room where outside light was blocked, collected saliva from one subject (male in his 50s) over 5 days, and measured the melatonin concentration from the collected saliva. Luminescent conditions were measured using a spectral irradiometer CL-500A manufactured by Konica Minolta, and melatonin was analyzed using ELISA manufactured by BULMANN.
 実験スケジュールを図10に示す。被験者は、実験初日の10時に実験室へ入室し、5日間滞在した。1日目、2日目は条件A、3日目は条件B、4日目は条件Cの発光条件下で過ごした。実験中、被験者は緊急時を除き、食事や排泄・シャワーを含め、すべて実験室で生活し、食事は、7時、12時、18時に一定の食事を提供した。唾液は、18時から1時間毎に24時まで採取した。 Fig. 10 shows the experiment schedule. The subjects entered the experimental room at 10:00 on the first day of the experiment and stayed there for 5 days. The first and second days were spent under the condition A, the third day under the condition B, and the fourth day under the condition C. During the experiment, the subjects lived in the laboratory except for emergencies, including meals, excretion, and showering. Saliva was collected hourly from 18:00 until 24:00.
 実験中は自由に過ごせることとしたが、過度な運動や昼寝は結果に影響を与えるため禁止した。朝8時から夕方16時までは、パソコンなどのディスプレイや、スマートフォンを通常通り使用可能とした。 They were allowed to spend their time freely during the experiment, but excessive exercise and naps were prohibited as they would affect the results. From 8:00 a.m. to 4:00 p.m., computers and other displays and smartphones can be used as usual.
 20時から24時まで目から30cm~40cmの距離にスマートフォンを置いて毎日動画視聴を行なった。 I watched videos every day from 20:00 to 24:00 with a smartphone placed at a distance of 30-40 cm from my eyes.
 表7に、設定した発光条件の内容を示す。
Figure JPOXMLDOC01-appb-T000008
Table 7 shows the details of the set emission conditions.
Figure JPOXMLDOC01-appb-T000008
 表8に、実験2におけるメラトニン濃度の結果を示す。また、図11に21時から24時までのメラトニン分泌増加総量の変化の様子のグラフに示す。 Table 8 shows the results of melatonin concentration in Experiment 2. FIG. 11 is a graph showing changes in the total increase in melatonin secretion from 21:00 to 24:00.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 20時から24時の就寝直前まで経験する携帯端末モニターからの光によりメラトニン分泌が抑制され、その後の就寝に影響する問題に対して、事前の人為的光履歴を用いた対応の効果の有無が今回の確認の中心と考え、表5より、18時から20時までのメラトニン濃度の平均値を基準とし、その後の21時から24時までの4時間のメラトニン分泌増加総量にまとめ直したものを表9に示す。 The light from the mobile terminal monitor experienced from 20:00 to 24:00 just before going to bed suppresses melatonin secretion, and the problem that affects subsequent sleep is whether or not there is an effect using prior artificial light history. Considering the focus of this confirmation, from Table 5, the average melatonin concentration from 18:00 to 20:00 was used as the standard, and the total increase in melatonin secretion for the subsequent 4 hours from 21:00 to 24:00 was recalculated. Table 9 shows.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表9より、18時から20時までのメラトニン分泌平均値に対する21時から24時までのメラトニン分泌増加総量(21,22,23,24時の合計)は、条件Aで2.5pg/4時間、条件Bで2.8pg/4時間、条件Cで3.2pg/4時間となった。 From Table 9, the total increase in melatonin secretion from 21:00 to 24:00 relative to the average value of melatonin secretion from 18:00 to 20:00 (sum of 21:00, 22:00, 23:00, and 24:00) was 2.5 pg/4 hours under condition A. , 2.8 pg/4 hours under condition B and 3.2 pg/4 hours under condition C.
 即ち、夜間の就寝までの間におけるメラトニン分泌総量は、一般的な生活光環境の条件Aに比べて、生体リズム調整光環境の条件Bの方が約12%増加し、生体リズム調整光環境に夕方に強いmRGCへの刺激の経験を加えた条件Cでは、約28%増加することが認められた。 That is, the total amount of melatonin secreted until going to bed at night increased by about 12% under the condition B of the biorhythm-adjusting light environment compared to the condition A of the general living light environment. An increase of approximately 28% was observed in condition C, in which a strong mRGC stimulation experience was added in the evening.
 本実験では、メラトニン分泌挙動の把握を就寝前までに限定しており、就寝中のメラトニンの分泌挙動は把握していない。従って、夜間の就寝までの間におけるメラトニン分泌総量の増加が、条件Bや条件Cの光環境がメラトニンの分泌開始時刻を早めた(位相前進の)結果であったのか、分泌量そのものが増えた(振幅の拡大)結果であったのか、あるいはそれら両方の結果であったのかは不明である。 In this experiment, we limited the understanding of melatonin secretion behavior to before going to bed, and did not understand melatonin secretion behavior during sleep. Therefore, the increase in the total amount of melatonin secreted until going to bed at night may have been the result of the fact that the light environment under condition B or condition C accelerated the start time of melatonin secretion (phase advance), or the amount of melatonin itself increased. It is unclear whether it was the result of (magnification of amplitude) or both.
 しかし、位相前進にしろ、振幅拡大にしろ、あるいはその両方にしろ、ヒトの健康(快適な睡眠への導入とその確保)の視点で見ると、夕方に強いmRGCへの刺激を付与する光環境は、非常に望ましい結果をもたらすと考えられ、特に、条件Cの光環境は、ヒトの健康に有効な効果をもたらすものと考えられる。 However, whether it is phase advance, amplitude expansion, or both, from the viewpoint of human health (induction and maintenance of comfortable sleep), the light environment that provides strong stimulation to mRGCs in the evening is considered to bring about very desirable results, and in particular, the light environment of condition C is considered to bring about beneficial effects on human health.
 なお、本発明は上記した実施形態に限定されるものではなく、適宜の変更、追加が可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and appropriate modifications and additions are possible.
 例えば、図12は発光装置の変形例を示している。発光装置は、矩形板状の導光板401と、その左右に配置された一対の棒状の発光部10とを備えている。なお図8では、発光制御部の図示を省略している。この構成では、発光部10が備える発光体(図示せず)から発せられた光が導光板401内で拡散され、該導光板401の表面から均一の光として出射させることができる。 For example, FIG. 12 shows a modification of the light emitting device. The light emitting device includes a rectangular plate-shaped light guide plate 401 and a pair of rod-shaped light emitting portions 10 arranged on the left and right sides of the light guide plate 401 . Note that illustration of the light emission control unit is omitted in FIG. In this configuration, the light emitted from the light emitter (not shown) included in the light emitting section 10 is diffused within the light guide plate 401 and can be emitted from the surface of the light guide plate 401 as uniform light.
 また、図13に示すように、発光装置の発光部10を、矩形状の鏡402の上部及び左右部の3箇所に配置してもよい。図13においても、発光制御部の図示を省略している。
 例えば発光部10からの出射光を、色温度12000K、照度500lx以上、平均演色評価数(Ra)≧90、特殊演色評価数のR9(赤)、R15(肌の色)≧90、mRGCへの刺激量が1.8mW/lm (Melanopic ELR)以上の光環境を鏡の前に実現することができる。つまり、演色性が高い光環境で化粧をすることができるため、化粧のし易さ、仕上がりの美しさが向上する。
Further, as shown in FIG. 13, the light-emitting units 10 of the light-emitting device may be arranged at three locations, ie, the upper portion and the left and right portions of the rectangular mirror 402 . Also in FIG. 13, illustration of the light emission control unit is omitted.
For example, the light emitted from the light emitting unit 10 has a color temperature of 12000 K, an illuminance of 500 lx or more, a general color rendering index (Ra)≧90, a special color rendering index of R9 (red), R15 (skin color)≧90, and mRGC. A light environment with a stimulus level of 1.8 mW/lm (Melanopic ELR) or more can be realized in front of a mirror. In other words, makeup can be applied in a light environment with high color rendering, so that the ease of applying makeup and the beauty of the finish are improved.
 また、一般的に鏡の前で化粧にかける時間は平均15分から30分程度であると言われている。上記の鏡402を使うことにより、朝の例えば30分間、化粧をするときにmRGCへの刺激量が高い光環境で過ごすことができ、それにより、日中のセロトニンの分泌が促進され、生体リズムを調整することができる。 In addition, it is generally said that the average time spent applying makeup in front of a mirror is about 15 to 30 minutes. By using the above-mentioned mirror 402, it is possible to spend, for example, 30 minutes in the morning in a light environment where the amount of stimulus to mRGC is high when applying makeup, thereby promoting the secretion of serotonin during the day, and the biorhythm. can be adjusted.
 また、本発明に係る発光装置は、医療施設や介護施設の病室・居室に使用される発光装置として好適であるが、事業所や学校、一般家庭等の室内を照明する発光装置として使用可してもよい。また、上記実施形態では、発光装置を用いてヒトの生体リズムを調整する場合について説明したが、受光器の分光感度分布を適宜選定し制御対象とすることで、ヒト以外の動物や鳥、爬虫類、昆虫の生体リズムや行動、植物の発芽、成長、光合成に及ぼす影響を抑えた照明装置として利用することもできる。 The light-emitting device according to the present invention is suitable as a light-emitting device for use in hospital rooms and living rooms in medical facilities and nursing care facilities, but it can also be used as a light-emitting device for lighting indoors in offices, schools, ordinary homes, and the like. may Further, in the above embodiment, the case of adjusting the human biorhythm using the light emitting device has been described. , the biorhythm and behavior of insects, and the germination, growth, and photosynthesis of plants.
 また、上記実施形態では、3種類の発光体(LED103~LED105)から幅広光発光体を構成したが、幅広光発光体を構成する発光体の数は1種類又は2種類でもよく、4種類以上でもよい。また、第1発光体、第2発光体をそれぞれ2種類以上の発光体から構成してもよい。 Further, in the above embodiment, the wide light emitter is composed of three types of light emitters (LED103 to LED105), but the number of light emitters constituting the wide light emitter may be one, two, or four or more. It's okay. Also, each of the first light emitter and the second light emitter may be composed of two or more types of light emitters.
 さらに、上記実施形態はあくまでも本発明の一例にすぎず、本願請求項に記載の範囲で適宜変形、追加、削除等を行っても本発明に包含されることは明らかである。 Furthermore, the above-described embodiment is merely an example of the present invention, and it is clear that any modifications, additions, deletions, etc., made as appropriate within the scope of the claims of the present application are included in the present invention.
 [態様]
 上述した例示的な実施形態が以下の態様の具体例であることは、当業者には明らかである。
[Aspect]
Those skilled in the art will appreciate that the exemplary embodiments described above are specific examples of the following aspects.
 (第1項) 第1項に係る発光装置は、
 480nmから510nmの波長範囲にピーク波長を有し、両側半値波長幅が20nm以下である波長幅特性を有する光を発する第1発光体と、440nmから480nmの波長範囲にピーク波長を有し、両側半値波長幅が20nm以下である波長幅特性を有する光を発する第2発光体と、450nmから700nmの波長範囲に、前記第1発光体及び前記第2発光体が発する光のピーク波長のいずれとも異なるピーク波長を有し、長波長側の半値波長幅が30nm以上である波長幅特性を有する光を発する幅広光発光体とを含む発光部と、
 前記第1発光体、前記第2発光体、及び前記幅広光発光体が発する光の発光強度をそれぞれ独立に制御可能な制御部と
を備える。
(Section 1) The light-emitting device according to Section 1 is
a first light emitter that emits light having a wavelength width characteristic that has a peak wavelength in a wavelength range of 480 nm to 510 nm and a half-value wavelength width on both sides of 20 nm or less; A second light emitter that emits light having a wavelength width characteristic with a half-value wavelength width of 20 nm or less, and a peak wavelength of light emitted by the first light emitter and the second light emitter in a wavelength range of 450 nm to 700 nm. a light-emitting unit including a wide light-emitting body that emits light having different peak wavelengths and having a wavelength width characteristic in which the half-value wavelength width on the long wavelength side is 30 nm or more;
and a controller capable of independently controlling the emission intensity of the light emitted by the first light emitter, the second light emitter, and the wide light emitter.
 (第2項) 第2項に係る発光装置は、第1項に係る発光装置において、
 前記幅広光発光体が、
 450nmから470nmの波長範囲にピーク波長を有し、短波長側の半値波長幅が20nm以下であり、長波長側の半値波長幅が50nm以上の波長幅特性を有する光を発する第3発光体と、
 540nmから550nmの波長範囲にピーク波長を有し、短波長側及び長波長側の半値波長幅がそれぞれ30nm以上である波長幅特性を有する光を発する第4発光体と、
 620nmから650nmの波長範囲にピーク波長を有し、短波長側の半値波長幅が30nm以上であり、長波長側の半値波長幅が40nm以上である波長幅特性を有する光を発する第5発光体と
 を含み、
 前記制御部が、前記第3~第5発光体が発する光の発光強度をそれぞれ独立に制御可能である。
(Section 2) The light-emitting device according to Section 2 is the light-emitting device according to Section 1,
The wide light emitter is
a third light emitter that emits light having a wavelength width characteristic of having a peak wavelength in a wavelength range of 450 nm to 470 nm, a half-value wavelength width of 20 nm or less on the short wavelength side, and a half-value wavelength width of 50 nm or more on the long wavelength side; ,
a fourth light emitter that emits light having a wavelength width characteristic that has a peak wavelength in a wavelength range of 540 nm to 550 nm and has a half-value wavelength width of 30 nm or more on the short wavelength side and the long wavelength side;
A fifth light emitter that emits light having a wavelength width characteristic of having a peak wavelength in a wavelength range of 620 nm to 650 nm, a half-value wavelength width of 30 nm or more on the short wavelength side, and a half-value wavelength width of 40 nm or more on the long wavelength side. including and
The controller can independently control the light emission intensity of the light emitted by the third to fifth light emitters.
 (第3項) 第3項に係る発光装置は、第1項又は第2項に係る発光装置において、前記制御部が、前記発光部の出射光の色温度が2500Kから15000Kの範囲となるように、前記発光体が発する光の発光強度を制御する。 (Section 3) The light-emitting device according to the third term is the light-emitting device according to the first or second term, wherein the control unit controls the color temperature of the light emitted from the light-emitting unit to be in the range of 2500K to 15000K. Second, the emission intensity of the light emitted by the light emitter is controlled.
 (第4項) 第4項に係る発光装置は、第1項~第3項のいずれかに係る発光装置において、
 さらに、
 色温度とmRGC刺激量を設定する設定部と、
 前記発光部の出射光の色温度及びmRCG刺激量と、前記第1発光体、前記第2発光体、及び前記幅広光発光体のそれぞれが発する光の発光強度との関係を示す情報が記憶されている記憶部と
を備え、
 前記制御部が、前記情報に基づいて、前記発光部の出射光の色温度及びmRCG刺激量が、前記設定部において設定された色温度とmRGC刺激量となるように、各発光体の発光強度を制御する。
(Section 4) The light-emitting device according to Section 4 is the light-emitting device according to any one of Sections 1 to 3,
moreover,
a setting unit for setting the color temperature and the amount of mRGC stimulation;
Information indicating the relationship between the color temperature and mRCG stimulus amount of the light emitted from the light emitting unit and the emission intensity of the light emitted by each of the first light emitter, the second light emitter, and the wide light emitter is stored. a storage unit containing
Based on the information, the control unit controls the emission intensity of each light emitter so that the color temperature and the amount of mRCG stimulation of the light emitted from the light emitting unit become the color temperature and the amount of mRCG stimulation set by the setting unit. to control.
 (第5項) 第5項に係る発光装置は、第4項に係る発光装置において、前記記憶部に記憶されている情報に、色温度が同じでmRGC刺激量が異なる複数の組に、前記発光体の発光強度がそれぞれ対応付けられた情報が含まれている。 (Section 5) The light-emitting device according to Section 5 is the light-emitting device according to Section 4, wherein the information stored in the storage unit includes a plurality of sets having the same color temperature and different mRGC stimulation amounts. It contains information in which the emission intensities of the light emitters are associated with each other.
 (第6項) 第6項に係る発光装置は、第4項又は第5項に係る発光装置において、前記記憶部に記憶されている情報に、mRGC刺激量が同じで色温度が異なる複数の組に、前記発光体の発光強度がそれぞれ対応付けられた情報が含まれている。 (Section 6) The light-emitting device according to Section 6 is the light-emitting device according to Section 4 or 5, wherein the information stored in the storage unit includes a plurality of light-emitting devices having the same mRGC stimulation amount and different color temperatures. The set includes information in which the emission intensities of the light emitters are associated with each other.
 (第7項) 第7項に係る発光装置の作動方法は、
 対象者の生体リズムを調整するために、所定の色温度及びmRGC刺激量の光を出射する、第4項~第6項のいずれかに記載の発光装置の作動方法であって、
 前記制御部が、前記記憶部に記憶されている情報に基づき、前記対象者の起床時刻から60分間ないし120分間の時間帯は、前記発光部の出射光の色温度及びmRGC刺激量が、他の時間帯における前記発光部の出射光の色温度及びmRGC刺激量よりも大きくなるように、前記第1発光体、前記第2発光体及び前記幅広光発光体が発する光の発光強度をそれぞれ調整し、前記起床時刻から10時間~12時間が経過した時刻から前記対象者の就寝時刻までの時間帯は、前記発光部の出射光の色温度及びmRGC刺激量が、他の時間帯における前記発光部の出射光の色温度及びmRGC刺激量よりも小さくなるように、前記第1発光体、前記第2発光体及び前記幅広光発光体が発する光の発光強度をそれぞれ調整する。
(Section 7) The operation method of the light emitting device according to Section 7 is
7. A method for operating a light-emitting device according to any one of items 4 to 6, wherein light having a predetermined color temperature and mRGC stimulation amount is emitted in order to adjust the biological rhythm of the subject,
Based on the information stored in the storage unit, the control unit determines that the color temperature and the amount of mRGC stimulation of the light emitted from the light emitting unit during a period of 60 minutes to 120 minutes from the subject's wake-up time adjusting the light emission intensity of the light emitted by the first light emitter, the second light emitter, and the wide light emitter, respectively, so that the color temperature and the amount of mRGC stimulation of the light emitted from the light emitting unit in the time zone of In the time zone from the time 10 hours to 12 hours after the wake-up time to the subject's bedtime, the color temperature and the mRGC stimulation amount of the light emitted from the light emitting unit are the same as the light emission in the other time zone. The emission intensities of the light emitted from the first light emitter, the second light emitter, and the wide light emitter are each adjusted so that the color temperature and the mRGC stimulus amount of the emitted light from the part are lower than those.
 (第8項) 第8項に係る発光装置の作動方法は、
 対象者の生体リズムを調整するために、所定の色温度及びmRGC刺激量の光を出射する、第4項~第6項のいずれかに記載の発光装置の作動方法であって、
 前記制御部が、前記記憶部に記憶されている情報に基づき、前記対象者の起床時刻から60分間ないし120分間の時間帯は、前記発光部の出射光の色温度及びmRGC刺激量が、他の時間帯における前記発光部の出射光の色温度及びmRGC刺激量よりも大きくなるように、前記第1発光体、前記第2発光体及び前記幅広光発光体が発する光の発光強度をそれぞれ調整し、前記起床時刻から10時間~12時間が経過した時刻から、60分間~120分間の時間帯は、前記発光部の出射光の色温度及びmRGC刺激量が、他の時間帯における前記発光部の出射光の色温度及びmRGC刺激量よりも大きくなるように、前記第1発光体、前記第2発光体及び前記幅広光発光体が発する光の発光強度をそれぞれ調整する。
(Section 8) The method for operating the light-emitting device according to Section 8 is
7. A method for operating a light-emitting device according to any one of items 4 to 6, wherein light having a predetermined color temperature and mRGC stimulation amount is emitted in order to adjust the biological rhythm of the subject,
Based on the information stored in the storage unit, the control unit determines that the color temperature and the amount of mRGC stimulation of the light emitted from the light emitting unit during a period of 60 minutes to 120 minutes from the subject's wake-up time adjusting the light emission intensity of the light emitted by the first light emitter, the second light emitter, and the wide light emitter, respectively, so that the color temperature and the amount of mRGC stimulation of the light emitted from the light emitting unit in the time zone of In a time period of 60 minutes to 120 minutes after 10 hours to 12 hours have passed since the wake-up time, the color temperature and mRGC stimulation amount of the light emitted from the light emitting unit are the same as those of the light emitting unit in the other time period. The emission intensity of the light emitted from the first light emitter, the second light emitter, and the wide light emitter is adjusted so that the color temperature and the mRGC stimulation amount of the emitted light are higher than those of the first light emitter, the second light emitter, and the wide light emitter.
 (第9項) 第9項に係る発光装置の作動方法は、
 第4項~第6項のいずれかに記載の発光装置の作動方法であって、
 前記制御部が、前記記憶部に記憶された前記情報に基づき、前記発光部の出射光の色温度を所定の範囲に維持しつつ、前記出射光のmRGC刺激量が変化するように、前記第1発光体、前記第2発光体及び前記幅広光発光体それぞれが発する光の発光強度を制御する。
(Section 9) The operating method of the light emitting device according to Section 9 is
A method for operating the light-emitting device according to any one of items 4 to 6,
Based on the information stored in the storage unit, the control unit maintains the color temperature of the light emitted from the light emitting unit within a predetermined range, and controls the amount of mRGC stimulation of the emitted light to change. The emission intensity of the light emitted by each of the first light emitter, the second light emitter, and the wide light emitter is controlled.
1…発光装置
10…発光部
 101~105…LED(発光体)
11…筐体
12…基板
13…駆動回路
20…発光制御部
 201…発光制御回路
 202…記憶部
 203…設定部
 204…無線通信部
 205…時計回路
 206…外部接続端子
21…入力部
22…表示部
30…携帯端末
401…導光板
402…鏡
DESCRIPTION OF SYMBOLS 1... Light-emitting device 10... Light-emitting part 101-105... LED (light-emitting body)
DESCRIPTION OF SYMBOLS 11... Case 12... Board 13... Drive circuit 20... Light emission control part 201... Light emission control circuit 202... Storage part 203... Setting part 204... Wireless communication part 205... Clock circuit 206... External connection terminal 21... Input part 22... Display Part 30... Portable terminal 401... Light guide plate 402... Mirror

Claims (9)

  1.  480nmから510nmの波長範囲にピーク波長を有し、両側半値波長幅が20nm以下である波長幅特性を有する光を発する第1発光体と、440nmから480nmの波長範囲にピーク波長を有し、両側半値波長幅が20nm以下である波長幅特性を有する光を発する第2発光体と、450nmから700nmの波長範囲に、前記第1発光体及び前記第2発光体が発する光のピーク波長のいずれとも異なるピーク波長を有し、長波長側の半値波長幅が30nm以上である波長幅特性を有する光を発する幅広光発光体とを含む発光部と、
     前記第1発光体、前記第2発光体、及び前記幅広光発光体が発する光の発光強度をそれぞれ独立に制御可能な制御部とを備えた発光装置。
    a first light emitter that emits light having a wavelength width characteristic that has a peak wavelength in a wavelength range of 480 nm to 510 nm and a half-value wavelength width on both sides of 20 nm or less; A second light emitter that emits light having a wavelength width characteristic with a half-value wavelength width of 20 nm or less, and a peak wavelength of light emitted by the first light emitter and the second light emitter in a wavelength range of 450 nm to 700 nm. a light-emitting unit including a wide light-emitting body that emits light having different peak wavelengths and having a wavelength width characteristic in which the half-value wavelength width on the long wavelength side is 30 nm or more;
    A light-emitting device comprising: a control unit capable of independently controlling emission intensities of light emitted from the first light-emitting body, the second light-emitting body, and the wide light-emitting body.
  2.  前記幅広光発光体が、
     450nmから470nmの波長範囲にピーク波長を有し、短波長側の半値波長幅が20nm以下であり、長波長側の半値波長幅が50nm以上の波長幅特性を有する光を発する第3発光体と、
     540nmから550nmの波長範囲にピーク波長を有し、短波長側及び長波長側の半値波長幅がそれぞれ30nm以上である波長幅特性を有する光を発する第4発光体と、
     620nmから650nmの波長範囲にピーク波長を有し、短波長側の半値波長幅が30nm以上であり、長波長側の半値波長幅が40nm以上である波長幅特性を有する光を発する第5発光体と
     を含み、
     前記制御部が、前記第3~第5発光体が発する光の発光強度をそれぞれ独立に制御可能である、請求項1に記載の発光装置。
    The wide light emitter is
    a third light emitter that emits light having a wavelength width characteristic of having a peak wavelength in a wavelength range of 450 nm to 470 nm, a half-value wavelength width of 20 nm or less on the short wavelength side, and a half-value wavelength width of 50 nm or more on the long wavelength side; ,
    a fourth light emitter that emits light having a wavelength width characteristic that has a peak wavelength in a wavelength range of 540 nm to 550 nm and has a half-value wavelength width of 30 nm or more on the short wavelength side and the long wavelength side;
    A fifth light emitter that emits light having a wavelength width characteristic of having a peak wavelength in a wavelength range of 620 nm to 650 nm, a half-value wavelength width of 30 nm or more on the short wavelength side, and a half-value wavelength width of 40 nm or more on the long wavelength side. including and
    2. The light emitting device according to claim 1, wherein said control section can independently control the light emission intensity of the light emitted by said third to fifth light emitters.
  3.  前記制御部が、前記発光部の出射光の色温度が2500Kから15000Kの範囲となるように、前記発光体が発する光の発光強度を制御する、請求項1又は2に記載の発光装置。 The light-emitting device according to claim 1 or 2, wherein the control section controls the emission intensity of the light emitted by the light emitter so that the color temperature of the light emitted from the light-emitting section is in the range of 2500K to 15000K.
  4.  さらに、
     色温度とmRGC刺激量を設定する設定部と、
     前記発光部の出射光の色温度及びmRCG刺激量と、前記第1発光体、前記第2発光体、及び前記幅広光発光体のそれぞれが発する光の発光強度との関係を示す情報が記憶されている記憶部と
    を備え、
     前記制御部が、前記情報に基づいて、前記発光部の出射光の色温度及びmRCG刺激量が、前記設定部において設定された色温度とmRGC刺激量となるように、各発光体の発光強度を制御する、請求項1又は2に記載の発光装置。
    moreover,
    a setting unit for setting the color temperature and the amount of mRGC stimulation;
    Information indicating the relationship between the color temperature and mRCG stimulus amount of the light emitted from the light emitting unit and the emission intensity of the light emitted by each of the first light emitter, the second light emitter, and the wide light emitter is stored. a storage unit containing
    Based on the information, the control unit controls the emission intensity of each light emitter so that the color temperature and the amount of mRCG stimulation of the light emitted from the light emitting unit become the color temperature and the amount of mRCG stimulation set by the setting unit. The light-emitting device according to claim 1 or 2, which controls the .
  5.  前記記憶部に記憶されている情報に、色温度が同じでmRGC刺激量が異なる複数の組に、前記発光体の発光強度がそれぞれ対応付けられた情報が含まれている、請求項4に記載の発光装置。 5. The information stored in the storage unit according to claim 4, wherein the information includes information in which the emission intensity of the light emitter is associated with a plurality of sets having the same color temperature and different mRGC stimulation amounts. luminous device.
  6.  前記記憶部に記憶されている情報に、mRGC刺激量が同じで色温度が異なる複数の組に、前記発光体の発光強度がそれぞれ対応付けられた情報が含まれている、請求項4に記載の発光装置。 5. The information stored in the storage unit according to claim 4, wherein the information includes information in which the emission intensity of the light emitter is associated with a plurality of sets having the same mRGC stimulation amount and different color temperatures. luminous device.
  7.  対象者の生体リズムを調整するために、所定の色温度及びmRGC刺激量の光を出射する、請求項4に記載の発光装置の作動方法であって、
     前記制御部が、前記記憶部に記憶されている情報に基づき、前記対象者の起床時刻から60分間ないし120分間の時間帯は、前記発光部の出射光の色温度及びmRGC刺激量が、他の時間帯における前記発光部の出射光の色温度及びmRGC刺激量よりも大きくなるように、前記第1発光体、前記第2発光体及び前記幅広光発光体が発する光の発光強度をそれぞれ調整し、前記起床時刻から10時間~12時間が経過した時刻から前記対象者の就寝時刻までの時間帯は、前記発光部の出射光の色温度及びmRGC刺激量が、他の時間帯における前記発光部の出射光の色温度及びmRGC刺激量よりも小さくなるように、前記第1発光体、前記第2発光体及び前記幅広光発光体が発する光の発光強度をそれぞれ調整する、発光装置の作動方法。
    5. The method of operating the light-emitting device according to claim 4, wherein light of a predetermined color temperature and mRGC stimulating amount is emitted in order to adjust the biological rhythm of the subject,
    Based on the information stored in the storage unit, the control unit determines that the color temperature and the amount of mRGC stimulation of the light emitted from the light emitting unit during a period of 60 minutes to 120 minutes from the subject's wake-up time adjusting the light emission intensity of the light emitted by the first light emitter, the second light emitter, and the wide light emitter, respectively, so that the color temperature and the amount of mRGC stimulation of the light emitted from the light emitting unit in the time zone of In the time zone from the time 10 hours to 12 hours after the wake-up time to the subject's bedtime, the color temperature and the mRGC stimulation amount of the light emitted from the light emitting unit are the same as the light emission in the other time zone. adjusting the emission intensity of the light emitted by the first light emitter, the second light emitter, and the wide light emitter, respectively, so that the color temperature and the mRGC stimulation amount of the emitted light from the part are smaller than the light emission intensity, respectively. Method.
  8.  対象者の生体リズムを調整するために、所定の色温度及びmRGC刺激量の光を出射する、請求項4に記載の発光装置の作動方法であって、
     前記制御部が、前記記憶部に記憶されている情報に基づき、前記対象者の起床時刻から60分間ないし120分間の時間帯は、前記発光部の出射光の色温度及びmRGC刺激量が、他の時間帯における前記発光部の出射光の色温度及びmRGC刺激量よりも大きくなるように、前記第1発光体、前記第2発光体及び前記幅広光発光体が発する光の発光強度をそれぞれ調整し、前記起床時刻から10時間~12時間が経過した時刻から、60分間~120分間の時間帯は、前記発光部の出射光の色温度及びmRGC刺激量が、他の時間帯における前記発光部の出射光の色温度及びmRGC刺激量よりも大きくなるように、前記第1発光体、前記第2発光体及び前記幅広光発光体が発する光の発光強度をそれぞれ調整する、発光装置の作動方法。
    5. The method of operating the light-emitting device according to claim 4, wherein light of a predetermined color temperature and mRGC stimulating amount is emitted in order to adjust the biological rhythm of the subject,
    Based on the information stored in the storage unit, the control unit determines that the color temperature and the amount of mRGC stimulation of the light emitted from the light emitting unit during a period of 60 minutes to 120 minutes from the subject's wake-up time adjusting the light emission intensity of the light emitted by the first light emitter, the second light emitter, and the wide light emitter, respectively, so that the color temperature and the amount of mRGC stimulation of the light emitted from the light emitting unit in the time zone of In a time period of 60 minutes to 120 minutes after 10 hours to 12 hours have passed since the wake-up time, the color temperature and mRGC stimulation amount of the light emitted from the light emitting unit are the same as those of the light emitting unit in the other time period. A method of operating a light-emitting device, wherein the emission intensity of the light emitted by the first light emitter, the second light emitter, and the wide light emitter is adjusted so that the color temperature and the mRGC stimulation amount of the emitted light are greater than .
  9.  請求項4に記載の発光装置の作動方法であって、
     前記制御部が、前記記憶部に記憶された前記情報に基づき、前記発光部の出射光の色温度を所定の範囲に維持しつつ、前記出射光のmRGC刺激量が変化するように、前記第1発光体、前記第2発光体及び前記幅広光発光体それぞれが発する光の発光強度を制御する、発光装置の作動方法。
    A method of operating a light emitting device according to claim 4, comprising:
    Based on the information stored in the storage unit, the control unit maintains the color temperature of the light emitted from the light emitting unit within a predetermined range, and controls the amount of mRGC stimulation of the emitted light to change. A method of operating a light emitting device, comprising controlling the light emission intensity of light emitted by each of the first light emitter, the second light emitter, and the wide light emitter.
PCT/JP2022/031596 2021-12-16 2022-08-22 Light-emitting device WO2023112392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-204652 2021-12-16
JP2021204652 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023112392A1 true WO2023112392A1 (en) 2023-06-22

Family

ID=86774197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031596 WO2023112392A1 (en) 2021-12-16 2022-08-22 Light-emitting device

Country Status (1)

Country Link
WO (1) WO2023112392A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130403A1 (en) * 2017-01-12 2018-07-19 Philips Lighting Holding B.V. Lighting system that maintains the melanopic dose during dimming or color tuning

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130403A1 (en) * 2017-01-12 2018-07-19 Philips Lighting Holding B.V. Lighting system that maintains the melanopic dose during dimming or color tuning

Similar Documents

Publication Publication Date Title
US11577091B2 (en) Lighting system for protecting circadian neuroendocrine function
US9635732B2 (en) Dynamic lighting system with a daily rhythm
US11808443B2 (en) Lighting device, lighting system and use thereof
TWI814977B (en) Bio-dimming lighting system
US20210290973A1 (en) Circadian optimized polychromatic light
Ellis et al. Auto-tuning daylight with LEDs: Sustainable lighting for health and wellbeing
JP2009259639A (en) Illumination device
JP7152690B2 (en) Lighting control system and lighting fixture.
Brawley Enriching lighting design
WO2020097580A1 (en) Bioactive panel lighting systems
CN108302335B (en) Lighting device and lamp comprising same
Chen A theoretical approach for therapeutic artificial supplementary lighting in elderly living spaces
JP2024026873A (en) Lighting equipment.
WO2023112392A1 (en) Light-emitting device
Ghosh et al. Internet of human centric lighting: a brief overview on Indian aspects
Noell-Waggoner Light: An essential intervention for Alzheimer's disease
Madias et al. Design and Development of a Sustainable Environmentally Friendly and Human Centric Luminaire
Liu Lighting evaluation and design for the stockholm metro system based on current models for non-visual responses
Perdahci et al. The Contribution of Neuroscience to Biodynamic Lighting System
WO2023125740A1 (en) Lighting devices, lighting systems, methods and components
WO2022144751A1 (en) Lighting devices, lighting systems, methods and components
Maganty Adaptive circadian rhythm a cognitive approach through dynamic light management
Davis et al. GATEWAY Demonstrations: Tuning the Light in Senior Care: Evaluating a Trial LED Lighting System at the ACC Care Center in Sacramento, CA
Davis et al. Tuning the light in senior care: Evaluating a trial LED lighting system at the ACC Care Center in Sacramento, CA
Tawfik et al. Natural lighting as a factor in providing a healthy environment in buildings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567537

Country of ref document: JP