WO2023112294A1 - Vital sign measurement device, vital sign measurement method, and vital sign measurement system - Google Patents

Vital sign measurement device, vital sign measurement method, and vital sign measurement system Download PDF

Info

Publication number
WO2023112294A1
WO2023112294A1 PCT/JP2021/046684 JP2021046684W WO2023112294A1 WO 2023112294 A1 WO2023112294 A1 WO 2023112294A1 JP 2021046684 W JP2021046684 W JP 2021046684W WO 2023112294 A1 WO2023112294 A1 WO 2023112294A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
vital
map
complex
Prior art date
Application number
PCT/JP2021/046684
Other languages
French (fr)
Japanese (ja)
Inventor
尭之 北村
聡 影目
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/046684 priority Critical patent/WO2023112294A1/en
Priority to JP2023561265A priority patent/JP7433554B2/en
Publication of WO2023112294A1 publication Critical patent/WO2023112294A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing

Definitions

  • the present disclosure relates to a vital measurement device, a vital measurement method, and a vital measurement system.
  • the measuring device transmits microwaves to a person to be measured who is present in the room, receives the reflected waves, which are the microwaves after being reflected by the person to be measured, and outputs the received signals of the reflected waves. It has Further, the measuring device includes a first mixer for extracting an in-phase signal included in the received signal output from the antenna, and a first mixer for extracting a quadrature signal included in the received signal output from the antenna. 2 mixers and a signal processor for generating a complex signal including the in-phase signal and the quadrature signal.
  • the complex signal generated by the signal processing device is similar to the complex signal related to the wave reflected by the person being measured. , and a complex signal related to the wave reflected by the wall are superimposed. Since the wall is a stationary object, the phase of the complex signal related to the wave reflected by the wall is constant. On the other hand, since the subject's chest reciprocates with respiration, the phase of the complex signal related to the wave reflected by the subject changes over time.
  • the signal processing device acquires a complex signal related to the wave reflected by the subject by removing the complex signal having a constant phase from the generated complex signals, and obtains the complex signal related to the wave reflected by the subject. to detect the vitals of the subject.
  • a vital measurement apparatus includes a signal acquisition unit that acquires a received signal of a reflected wave from an antenna that receives a reflected wave from a target object; and a conversion unit.
  • the vital measurement device includes a map calculation unit that calculates a two-dimensional azimuth map of complex power corresponding to each of the plurality of distance bins from the vital measurement device using the signal after the Fourier transform by the Fourier transform unit; Based on the time change of the two-dimensional azimuth map of the complex power corresponding to each distance bin calculated by the calculation unit, the position where the person to be measured is included in the target object is identified, and the position where the person to be measured exists is determined.
  • a vital estimator for estimating the vitals of the person to be measured from the time change of the phase of the complex power at the position where the measurement is performed.
  • the vitals of each subject can be detected.
  • FIG. 1 is a configuration diagram showing a vital measurement system including a vital measurement device 20 according to Embodiment 1.
  • FIG. 2 is a hardware configuration diagram showing hardware of the vital measurement device 20 according to Embodiment 1.
  • FIG. 2 is a hardware configuration diagram of a computer when the vital measurement device 20 is implemented by software, firmware, or the like.
  • FIG. 4 is a flowchart showing a vital measurement method, which is a processing procedure of the vital measurement device 20.
  • FIG. 4 is an explanatory diagram showing N signals S(r, g, h, c) after Fourier transform in a certain transmission cycle c;
  • FIG. 10 is an explanatory diagram showing temporal changes in phase in complex power CP(r, az, el, c) belonging to the same distance bin r and belonging to the same two-dimensional direction (az, el);
  • FIG. 10 is an explanatory diagram showing a phase change signal ⁇ (r, c) calculated by an existence position specifying unit 25;
  • FIG. 4 is an explanatory diagram showing an example of a respiratory spectrum S RR (r, sf); It is explanatory drawing which shows an example of a scalogram.
  • FIG. 4 is an explanatory diagram showing an example of a two-dimensional spectrum W(r, f, sf) in the slow time direction;
  • FIG. 7 is an explanatory diagram showing maximum ratio combining processing by a heart rate estimating unit 28;
  • 4 is an explanatory diagram showing an example of a heartbeat spectrum S HR (r, sf) obtained by a heart rate estimator 28;
  • FIG. 11 is a configuration diagram showing a vital measurement system including a vital measurement device 20 according to Embodiment 2; 2 is a hardware configuration diagram showing hardware of a vital measurement device 20 according to Embodiment 2.
  • FIG. FIG. 4 is an explanatory diagram showing up-chirp signals Tx(1) to Tx(N) with a number of hits Q generated by a signal generator 12a;
  • FIG. 18A shows reception data S (t, g, h, c) acquired by the signal acquisition unit 21 after transmission waves are radiated from the antennas 11-1 to 11-N by a TDM (Time Division Multiplexing) method.
  • FIG. 18B is an explanatory diagram showing reception data S′(t, g, h, c) after AD offset correction ;
  • FIG. 11 is a configuration diagram showing a vital measurement system including a vital measurement device 20 according to Embodiment 3;
  • FIG. 11 is a hardware configuration diagram showing hardware of a vital measurement device 20 according to Embodiment 3;
  • FIG. 1 is a configuration diagram showing a vital measurement system including a vital measurement device 20 according to Embodiment 1.
  • FIG. 2 is a hardware configuration diagram showing hardware of the vital measurement device 20 according to the first embodiment.
  • the vitals measurement system shown in FIG. 1 includes a sensor 10 and a vitals measurement device 20 .
  • the sensor 10 includes N antennas 11-1 to 11-N, a signal transmitter 12, N circulators 13-1 to 13-N, and N signal receivers 14-1 to 14-N. .
  • N is an integer of 2 or more.
  • Each of the antennas 11-1 to 11-N is a transmission/reception antenna.
  • FIG. 1 is a configuration diagram showing a vital measurement system including a vital measurement device 20 according to Embodiment 1.
  • FIG. 2 is a hardware configuration diagram showing hardware of the vital measurement device 20 according to the first embodiment.
  • the vitals measurement system shown in FIG. 1 includes a sensor 10 and a vitals measurement device 20 .
  • the sensor 10 includes N antennas 11-1 to 11-
  • the sensor 10 has N antennas 11-1 to 11-N in order to increase the resolution of received signals by MIMO (Multiple-Input Multiple-Output).
  • MIMO Multiple-Input Multiple-Output
  • Each of the antennas 11-1 to 11-N also serves as a transmitting antenna and a receiving antenna.
  • the sensor 10 may have separate transmitting and receiving antennas.
  • one antenna that radiates the transmission wave is selected from among the antennas 11-1 to 11-N.
  • the transmission order of transmission waves in the antennas 11-1 to 11-N is fixed. For example, the transmission order is determined in the order of antenna 11-1, antenna 11-2, . . . , antenna 11-N. However, this is only an example, and for example, the transmission order may be determined in the order of the antennas 11-N, .
  • Each of the antennas 11-1 to 11-N receives a reflected wave from the target object and outputs a received signal of the reflected wave to the circulator 13-n.
  • the signal transmitter 12 includes a signal generator 12a and an output destination selector 12b.
  • the signal transmission unit 12 sequentially selects one antenna 11-n from among the N antennas 11-1 to 11-N to radiate transmission waves.
  • the signal transmitter 12 outputs a transmission signal to the circulator 13-n connected to the selected antenna 11-n so that the selected antenna 11-n emits a transmission wave into space.
  • the signal generator 12a generates, for example, a transmission signal whose frequency changes over time or a pulse transmission signal. Transmission signals whose frequency changes over time include, for example, up-chirp signals and down-chirp signals.
  • the signal generator 12a outputs the transmission signal to the output destination selector 12b.
  • the output destination selection unit 12b generates a signal for the circulator 13-n connected to the antenna 11-n in the order of radiating the transmission wave next among the N circulators 13-1 to 13-N. outputs the transmission signal generated by the device 12a.
  • the reception processing includes, for example, processing for down-converting the frequency of the received signal and processing for converting the frequency-converted received signal from an analog signal to a digital signal.
  • the signal receiver 14-n outputs the received data S(t, g, h, c), which is a digital signal, to the vital measurement device 20.
  • FIG. t is the reception time of the reflected wave by the antenna 11-n.
  • the vital measurement device 20 includes a signal acquisition section 21 , a Fourier transform section 22 , a map calculation section 23 and a vital estimation section 24 .
  • the signal acquisition unit 21 is implemented by, for example, the signal acquisition circuit 31 shown in FIG.
  • the signal acquisition unit 21 acquires the reception data S(t, g, h, c) as the reception signal of the reflected wave from each of the signal reception units 14-1 to 14-N, and obtains the reception data S(t, g , h, c) to the Fourier transform unit 22 .
  • the Fourier transform unit 22 is realized by, for example, a Fourier transform circuit 32 shown in FIG. Each time the signal acquisition unit 21 acquires the reception data S(t, g, h, c) from the signal reception units 14-1 to 14-N, the Fourier transform unit 22 converts the reception data S(t , g, h, and c) in the time direction.
  • Fourier transform includes, for example, Fast Fourier Transform (FFT) or Discrete Fourier Transform (DFT).
  • FFT Fast Fourier Transform
  • DFT Discrete Fourier Transform
  • the Fourier transform unit 22 outputs the signal S(r, g, h, c) after each Fourier transform to the map calculator 23 .
  • the vital estimation unit 24 is realized by, for example, the vital estimation circuit 34 shown in FIG.
  • the vitals estimation unit 24 includes an existence position identification unit 25 and a vitals estimation processing unit 26 .
  • the vital estimator 24 estimates the vitals of each subject k from the phase change over time of the complex power CP(r, az, el, c) at the position where each subject k is present. .
  • the presence position specifying unit 25 generates a phase change signal ⁇ (r, c) indicating the time change of the phase of the complex power CP(r, az, el, c) at the position where each subject k is present. Output to the vital estimation processing unit 26 .
  • the vitals estimation processing unit 26 includes a respiratory rate estimation unit 27 and a heart rate estimation unit 28 .
  • the respiratory rate estimator 27 estimates the respiratory rate RR of each subject k based on the phase change signal ⁇ (r, c) for each subject k.
  • the heart rate estimator 28 estimates the heart rate HR of each subject k based on the phase change signal ⁇ (r, c) for each subject k.
  • each of the signal acquisition unit 21, the Fourier transform unit 22, the map calculation unit 23, and the vital estimation unit 24, which are components of the vital measurement device 20, is realized by dedicated hardware as shown in FIG. Assuming something. That is, it is assumed that the vital measurement device 20 is implemented by a signal acquisition circuit 31, a Fourier transform circuit 32, a map calculation circuit 33, and a vital estimation circuit .
  • Each of the signal acquisition circuit 31, the Fourier transform circuit 32, the map calculation circuit 33, and the vital estimation circuit 34 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated Circuit). , FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the components of the vital measurement device 20 are not limited to those realized by dedicated hardware, but the vital measurement device 20 may be realized by software, firmware, or a combination of software and firmware. good too.
  • Software or firmware is stored as a program in a computer's memory.
  • a computer means hardware that executes a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
  • FIG. 3 is a hardware configuration diagram of a computer when the vital measurement device 20 is implemented by software, firmware, or the like.
  • a program for causing a computer to execute each processing procedure in the signal acquisition unit 21, the Fourier transform unit 22, the map calculation unit 23, and the vital estimation unit 24 is stored in the memory. 41.
  • the processor 42 of the computer executes the program stored in the memory 41 .
  • FIG. 2 shows an example in which each component of the vital measurement device 20 is implemented by dedicated hardware
  • FIG. 3 shows an example in which the vital measurement device 20 is implemented by software, firmware, or the like.
  • this is only an example, and some of the components of the vital measurement device 20 may be implemented by dedicated hardware, and the remaining components may be implemented by software, firmware, or the like.
  • FIG. 4 is a flow chart showing a vital measurement method, which is a processing procedure of the vital measurement device 20.
  • the signal generator 12a of the signal transmission unit 12 uses, as a transmission signal, for example, a frequency modulated continuous wave (FMCW) method or a fast chirp modulation (FCM: Fast-Chirp Modulation) method. A signal or down-chirp signal is generated.
  • the signal generator 12a as shown in FIG. 1, the signal generator 12a, as shown in FIG.
  • the up-chirp signal Tx(n) is repeatedly generated for the same amount of time. Therefore, the signal generator 12a generates a total of N ⁇ C up-chirp signals Tx(n).
  • FIG. 1 is a flow chart showing a vital measurement method, which is a processing procedure of the vital measurement device 20.
  • the signal generator 12a of the signal transmission unit 12 uses, as a transmission signal, for example, a frequency modulated continuous wave (FMCW) method or a fast chirp modulation (FCM: Fast-Chir
  • the high frequency band is, for example, a millimeter wave band of about 30 to 300 GHz.
  • the output destination selection unit 12b outputs the transmission signal to the circulator 13-n connected to the antenna 11-n in the order of radiating the transmission wave next among the N circulators 13-1 to 13-N.
  • Output Tx'(n) For example, if the antenna 11-n in the order to radiate the transmission wave next is the antenna 11-1, the output destination selection unit 12b outputs the transmission signal Tx′(1) to the circulator 13-1, and then transmits it. If the antenna 11-n in order to radiate waves is the antenna 11-2, it outputs the transmission signal Tx'(2) to the circulator 13-2. Further, the output destination selection unit 12b outputs the transmission signal Tx'(N) to the circulator 13-N, for example, if the antenna 11-n in the order to radiate the transmission wave next is the antenna 11-N.
  • Circulator 13-n receives transmission signal Tx'(n) from output destination selector 12b and outputs transmission signal Tx'(n) to antenna 11-n.
  • Each of the antennas 11-1 to 11-N receives the reflected wave N times in each transmission cycle c.
  • the signal receiver 14-n outputs the reception data S(t, g, h, c), which are N digital signals, to the vital measurement device 20 in each transmission cycle c.
  • the signal acquisition unit 21 of the vital measurement device 20 receives N ⁇ N pieces of received data S ( t, g, h, c) are obtained (step ST1 in FIG. 4).
  • the signal acquisition unit 21 outputs N ⁇ N received data S(t, g, h, c) to the Fourier transform unit 22 in each transmission cycle c.
  • a signal S(r, g, h, c) after the Fourier transform of is generated.
  • the signal S(r, g, h, c) after the Fourier transform by the Fourier transform unit 22 is a signal representing the complex power corresponding to the distance bin r, as shown in FIG.
  • FIG. 6 is an explanatory diagram showing N signals S(r, g, h, c) after Fourier transform in a certain transmission cycle c. In FIG. 6, the horizontal axis indicates distance bins, and the vertical axis indicates complex power.
  • the Fourier transform unit 22 outputs N signals S(r, g, h, c) after the Fourier transform to the map calculator 23 in each transmission cycle c.
  • the map calculation unit 23 performs two-dimensional angle measurement processing by DBF (Digital Beam Forming) for each distance bin r on the signals S (r, g, h, c) after the Fourier transform. .
  • DBF Digital Beam Forming
  • a two-dimensional azimuth map indicating the complex power CP(r, az, el, c) for the two-dimensional azimuth (az, el) is obtained by the map calculation unit 23 performing two-dimensional angle measurement processing.
  • the two-dimensional angle measurement processing here is two-dimensional angle measurement processing in the azimuth direction and the elevation direction.
  • the map calculator 23 uses DBF as an angle measurement method.
  • the map calculation unit 23 may perform two-dimensional angle measurement processing using another angle measurement method such as the Capon method. Note that the two-dimensional angle measurement process itself is a well-known technique, and detailed description thereof will be omitted.
  • the map calculator 23 acquires N Fourier-transformed signals S(r, g, h, c). If so, N ⁇ 1000 two-dimensional orientation maps are calculated from N signals S(r, g, h, c) after Fourier transform.
  • the map calculator 23 performs synthesis processing of N two-dimensional orientation maps corresponding to each distance bin r.
  • Synthesis processing of N two-dimensional orientation maps corresponding to each distance bin r includes, for example, complex power CP(r, az, el, c) or averaging of complex powers CP(r, az, el, c) of the same two-dimensional direction.
  • the map calculator 23 outputs the synthesized two-dimensional azimuth map corresponding to each distance bin r to the vital estimator 24 in each transmission cycle c.
  • a respiratory signal is a signal that indicates phase fluctuation caused by the reciprocating motion of the chest of the subject k. Therefore, the complex powers CP(r, az, el, c) belonging to the same range bin r and belonging to the same two-dimensional orientation (az, el) are shown in FIG. Circumferentially reciprocating motion over time.
  • FIG. 8 is an explanatory diagram showing temporal changes in phase in complex power CP(r, az, el, c) belonging to the same range bin r and belonging to the same two-dimensional direction (az, el). be.
  • the complex power CP(r, az, el, c) performs circular reciprocating motion in the complex signal space.
  • the optimal fitting circle Circ(r, az, el) is calculated by finding ⁇ and ⁇ that minimize the evaluation function J( ⁇ , ⁇ ) shown in the following equation (1).
  • is the center of the fitting circle Circ(r,az,el) and ⁇ is the radius of the fitting circle Circ(r,az,el).
  • the subscript c of s c is a variable indicating the transmission cycle.
  • the number of fitting circles Circ(r, az, el) calculated by the existence position specifying unit 25 is R ⁇ AZ ⁇ EL.
  • AZ is the number of cells corresponding to the resolution in the azimuth direction of the complex data sc
  • EL is the number of cells corresponding to the resolution in the elevation direction of the complex data sc .
  • the evaluation function J ( ⁇ , ⁇ ) can be expressed in a matrix format as shown in the following equation (2) by transforming the equation.
  • the location identifying unit 25 estimates the parameter vector p shown in Equation (2) using the method of least squares, as shown in Equation (3) below.
  • + is a mathematical symbol representing a pseudo-inverse matrix.
  • displayed above the letter p is a symbol indicating the result of estimating the parameter vector p.
  • the existence position specifying unit 25 calculates the fitting circle Circ We can find the center ⁇ of (r, az, el) and the radius ⁇ of the fitting circle Circ(r, az, el). Once the center ⁇ of the fitting circle Circ(r, az, el) and the radius ⁇ of the fitting circle Circ(r, az, el) are obtained, the fitting circle Circ(r, az, el) is calculated. Become.
  • the existence position specifying unit 25 calculates a fitting circle Circ(r, az, el) using a circle fitting method called Kasa fit.
  • a circle fitting method such as Pratt fit, Taubin fit, or Hyper fit to calculate the fitting circle Circ(r, az, el).
  • the existence position specifying unit 25 calculates a fitting error E(az, el), which is the error of the fitting circle Circ(r, az, el), as shown in the following equation (7).
  • S(r, az, el, c) is the two-dimensional azimuth spectrum, which is divided into range bins r corresponds to the complex power CP(r,az,el) for the two-dimensional orientation (az,el) corresponding to .
  • ⁇ (r,az,el) is the center of the fitting circle Circ(r,az,el) and ⁇ (r,az,el) is the radius of the fitting circle Circ(r,az,el).
  • the existing position identifying unit 25 compares the radius ⁇ of the calculated R ⁇ AZ ⁇ EL fitting circles Circ(r, az, el) with the first threshold value Th1 .
  • the first threshold Th 1 may be stored in the internal memory of the location identifying unit 25 or may be given from the outside of the vitals measuring device 20 .
  • the existence position identifying unit 25 determines the fitting circle Circ(r, az, el).
  • the existence position identifying unit 25 determines the fitting error E(az, el) of one or more fitting circles Circ(r, az, el) whose radius ⁇ is equal to or greater than the first threshold Th 1 , and the second Compare with threshold Th2 .
  • the second threshold Th 2 may be stored in the internal memory of the location identifying unit 25 or may be given from the outside of the vitals measuring device 20 .
  • the existence position specifying unit 25 determines that the fitting error E(az, el) is set to the second threshold value in one or more fitting circles Circ(r, az, el) whose radius ⁇ is equal to or greater than the first threshold value Th1.
  • a fitting circle Circ(r, az, el) that is less than or equal to Th 2 is searched.
  • the presence position specifying unit 25 determines, as shown in FIG. , a phase change signal ⁇ (r, c) indicating the time change of the phase in the complex power CP(r, az, el, c).
  • the presence position specifying unit 25 uses AD (Arctangent Demodulation) method or CSD (Complex Signal Demodulation) method can be used.
  • FIG. 9 is an explanatory diagram showing the phase change signal ⁇ (r, c) calculated by the existence position identifying section 25.
  • the horizontal axis indicates the time corresponding to the transmission cycle c
  • the vertical axis indicates the phase [rad] of the complex power CP(r, az, el, c) at the distance bin r.
  • the position specifying unit 25 outputs the phase change signal ⁇ (r, c) for each subject k to the respiratory rate estimating unit 27 and the heart rate estimating unit 28, respectively.
  • the respiratory rate estimator 27 estimates the respiratory rate RR of each subject k by Fourier transforming the phase change signal ⁇ (r, c) for each subject k (step ST5 in FIG. 4). ).
  • the process of estimating the respiratory rate RR by the respiratory rate estimator 27 will be specifically described below.
  • the waveform of the respiration signal indicating respiration of the person to be measured k is generally a sine wave. Therefore, sinusoidal fluctuations in the phase change signal ⁇ (r, c) are due to the respiration of the subject k.
  • the respiratory rate estimating unit 27 performs a Fourier transform on the phase change signal ⁇ (r, c) for each person k to be measured in the slow time direction to obtain a respiratory spectrum S RR (r, sf) as shown in FIG. get The slow time is the transmission time of the transmission wave.
  • the respiratory spectrum S RR (r, sf) is the Fourier transform result of the phase change signal ⁇ (r, c), where sf is the frequency in the slow time direction.
  • FIG. 10 is an explanatory diagram showing an example of the respiratory spectrum S RR (r, sf). In FIG. 10, the horizontal axis is the respiratory rate RR [bpm], and the vertical axis is the respiratory spectrum [dB].
  • the respiratory rate estimator 27 searches for a respiratory spectrum S RR equal to or greater than the third threshold Th 3 among the respiratory spectrum S RR (r, sf) for each subject k.
  • the third threshold Th3 may be stored in the internal memory of the respiration rate estimator 27 or may be given from the outside of the vital measurement device 20 .
  • the respiratory spectra S RR (r, sf) there are one or more respiratory spectra S RR that are equal to or greater than the third threshold Th 3 .
  • the respiratory rate estimator 27 searches for a respiratory rate RR equal to or greater than the fourth threshold Th4 among the respiratory rates RR corresponding to the respiratory spectrum SRR equal to or greater than the third threshold Th3.
  • the fourth threshold Th 4 may be stored in the internal memory of the respiration rate estimator 27 or may be given from the outside of the vital measurement device 20 .
  • the respiratory rate estimating unit 27 determines that the respiratory rate RR corresponding to the respiratory spectrum S RR equal to or greater than the third threshold Th 3 , the respiratory rate RR equal to or greater than the fourth threshold Th 4 is the respiratory rate RR of the subject k.
  • the respiratory rate estimating unit 27 determines that, among the respiratory spectrum S RR (r, sf), the respiratory spectrum S RR equal to or greater than the third threshold Th 3 and the respiratory rate corresponding to the respiratory spectrum S RR If the RR is greater than or equal to the fourth threshold Th4 , the respiratory rate RR is assumed to be the respiratory rate RR of the subject k. However, this is only an example, and the respiratory rate estimator 27 determines that the respiratory rate RR corresponding to the maximum respiratory spectrum S RR among the respiratory spectrum S RR equal to or greater than the third threshold Th 3 is determined by the subject k may be estimated to be the respiratory rate RR of .
  • the heart rate estimator 28 estimates the heart rate HR of the subject k based on the phase change signal ⁇ (r, c) for each subject k (step ST6 in FIG. 4).
  • the estimation processing of the heart rate HR by the heart rate estimator 28 will be specifically described below.
  • the heart rate estimating unit 28 passes the phase change signal ⁇ (r, c) for each person k to be measured through a high-pass filter (HPF) (not shown) to obtain a phase change signal ⁇ ( Remove the respiratory signal superimposed on r, c).
  • the heart rate estimator 28 obtains a scalogram as shown in FIG. 11 by performing continuous wavelet transform on the phase change signal ⁇ ′(r, c) after removal of each respiratory signal.
  • the scalogram is the continuous wavelet transform result of the phase-changed signal ⁇ '(r,c) after removing the respiratory signal.
  • FIG. 11 is an explanatory diagram showing an example of a scalogram. In FIG. 11, the horizontal axis is the transmission cycle c, and the vertical axis is the frequency [Hz]. In the scalogram, as shown in FIG. 11, stripes appear at positions where heartbeat signals are generated.
  • the heart rate estimator 28 obtains a two-dimensional spectrum W(r, f, sf) in the slow time direction as shown in FIG. 12 by Fourier transforming the absolute value of the scalogram in the slow time direction. f is the frequency component.
  • FIG. 12 is an explanatory diagram showing an example of the two-dimensional spectrum W(r, f, sf) in the slow time direction.
  • the horizontal axis is the heart rate HR [bpm]
  • the vertical axis is the frequency [Hz].
  • heartbeat signals are dispersed in a plurality of frequency components f.
  • a heartbeat spectrum S HR (r, sf) in which the heartbeat signal is emphasized is obtained by maximally synthesizing the spectrum of the high frequency region in which the heartbeat signal is dispersed.
  • the heart rate estimator 28 defines a matrix U representing high frequency components contained in the two-dimensional spectrum W(r, f, sf) for each subject k, as shown in the following equation (8). do.
  • Equation (8) fL is the lower limit frequency of the high frequency component, and fH is the upper limit frequency of the high frequency component.
  • H is the mathematical symbol for the Hermitian transpose.
  • the heart rate estimation unit 28 performs maximum ratio synthesis by projecting the matrix U in the direction indicated by the first eigenvector u1 as shown in the following equation (10), and the heart rate spectrum as shown in FIG. Obtain S HR (r, sf).
  • FIG. 13 is an explanatory diagram showing the maximum ratio combination processing by the heart rate estimator 28.
  • the horizontal axis is heart rate HR [bpm]
  • the vertical axis is frequency [Hz].
  • FIG. 14 is an explanatory diagram showing an example of the heartbeat spectrum S HR (r, sf) obtained by the heart rate estimator 28.
  • the horizontal axis is the heart rate HR [bpm]
  • the vertical axis is the heart rate spectrum [dB].
  • the heart rate estimator 28 searches for a heart rate spectrum S HR that is equal to or greater than the fifth threshold Th 5 among the heart rate spectrum S HR ( r , sf) for each subject k.
  • the fifth threshold Th 5 may be stored in the internal memory of the heart rate estimator 28 or may be given from the outside of the vital measurement device 20 . If subject k is present, the heartbeat spectrum SHR is greater than or equal to the fifth threshold Th5 .
  • the heart rate estimator 28 estimates that the heart rate HR corresponding to the heart rate spectrum S HR equal to or greater than the fifth threshold Th 5 is the heart rate HR of the subject k.
  • the signal acquiring unit 21 acquires the received signal of the reflected wave from the antennas 11-1 to 11-N that receive the reflected wave from the target object, and the received signal acquired by the signal acquiring unit 21
  • the vital measurement device 20 is configured to include a Fourier transform unit 22 that Fourier-transforms in the time direction.
  • the vital measurement device 20 uses the signal after the Fourier transform by the Fourier transformation unit 22 to calculate a two-dimensional azimuth map of the complex power corresponding to each of the plurality of distance bins from the vital measurement device 20.
  • the vitals measuring device 20 can detect the vitals of each subject.
  • the presence position specifying unit 25 determines that the position where each subject k is present has the radius ⁇ equal to or greater than the first threshold value Th and the fitting error E (az , el) of the fitting circle Circ(r, az, el) that is less than or equal to the second threshold Th2 , the azimuth direction az, and the elevation direction el.
  • the presence position specifying unit 25 determines the position of each person k to be measured by using a fitting circle Circ( r , az, el), the azimuth direction az and the elevation direction el may be specified.
  • the presence position specifying unit 25 determines the position where each subject k is present, and the fitting circle Circ( r , az, el ), the azimuth direction az, and the elevation direction el may be specified.
  • Embodiment 2 a vital measurement apparatus 20 including a signal suppression unit 29 that suppresses a signal related to a reflected wave from a moving body, which is included in the received signal acquired by the signal acquisition unit 21, will be described.
  • FIG. 15 is a configuration diagram showing a vital measurement system including the vital measurement device 20 according to Embodiment 2. As shown in FIG. In FIG. 15, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, so description thereof will be omitted.
  • FIG. 16 is a hardware configuration diagram showing hardware of the vital measurement device 20 according to the second embodiment. In FIG. 16, the same reference numerals as those in FIG. 2 denote the same or corresponding parts, so description thereof will be omitted.
  • the signal suppression unit 29 is implemented by, for example, a signal suppression circuit 35 shown in FIG. Each time the signal acquisition unit 21 acquires the reception data S(t, g, h, c) from the signal reception units 14-1 to 14-N, the signal suppression unit 29 suppresses the reception data S(t , g, h, and c) are suppressed.
  • the signal suppression unit 29 outputs the received data S′(t, g, h, c) after each signal suppression to the Fourier transform unit 22 .
  • each of the signal acquisition unit 21, the signal suppression unit 29, the Fourier transform unit 22, the map calculation unit 23, and the vitals estimation unit 24, which are components of the vital measurement device 20, is provided with dedicated hardware as shown in FIG. It is assumed that it will be realized by hardware. That is, it is assumed that the vital measurement device 20 is realized by the signal acquisition circuit 31, the signal suppression circuit 35, the Fourier transform circuit 32, the map calculation circuit 33, and the vital estimation circuit .
  • Each of the signal acquisition circuit 31, the signal suppression circuit 35, the Fourier transform circuit 32, the map calculation circuit 33, and the vital estimation circuit 34 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, An FPGA or a combination thereof is applicable.
  • the components of the vital measurement device 20 are not limited to those realized by dedicated hardware, but the vital measurement device 20 may be realized by software, firmware, or a combination of software and firmware. good too.
  • the computer executes the respective processing procedures in the signal acquisition unit 21, the signal suppression unit 29, the Fourier transform unit 22, the map calculation unit 23, and the vital estimation unit 24.
  • a program for this is stored in the memory 41 shown in FIG.
  • the processor 42 shown in FIG. 3 executes the program stored in the memory 41 .
  • FIG. 16 shows an example in which each component of the vital measurement device 20 is implemented by dedicated hardware
  • FIG. 3 shows an example in which the vital measurement device 20 is implemented by software, firmware, or the like.
  • this is only an example, and some of the components of the vital measurement device 20 may be implemented by dedicated hardware, and the remaining components may be implemented by software, firmware, or the like.
  • Q is an integer of 2 or more.
  • FIG. 17 is an explanatory diagram showing the up-chirp signals Tx(1) to Tx(N) with the number of hits Q generated by the signal generator 12a.
  • N 3.
  • Each of the transmitted waves is radiated into the space in which the object of interest resides.
  • the person to be measured k is, for example, a generally stationary person lying on a bed or a generally stationary person sitting on a chair or the like.
  • a moving object is a person or the like moving in a space in which the transmitted wave is emitted.
  • N receive reflected waves from the subject k and the moving object in each transmission cycle c.
  • the circulator 13-n outputs N ⁇ Q received signals output from the antenna 11-n to the signal receiver 14-n in each transmission cycle c.
  • the signal receiver 14-n outputs each of the N ⁇ Q received data S(t, g, h, c) to the vital measurement device 20 in each transmission cycle c.
  • a total of N ⁇ Q ⁇ C received data S (t, g, h, c) are received from the signal receivers 14-1 to 14-N, and the vital measuring device 20 given to
  • the signal acquisition unit 21 of the vital measurement device 20 receives N ⁇ Q pieces of received data S ( t, g, h, c).
  • the signal acquisition unit 21 outputs each of the N ⁇ Q reception data S(t, g, h, c) to the signal suppression unit 29 in each transmission cycle c.
  • the signal suppression unit 29 suppresses signals related to waves reflected by moving objects, which are included in each of the N ⁇ Q pieces of received data S(t, g, h, c) in each transmission cycle c.
  • the signal suppression unit 29 outputs N ⁇ Q reception data SY (t, g, h, c) to the Fourier transform unit 22 as a signal after signal suppression in each transmission cycle c.
  • the signal suppression processing by the signal suppression unit 29 will be specifically described below.
  • FIG. 18A shows reception data S (t, g, h, c) acquired by the signal acquisition unit 21 after transmission waves are radiated from the antennas 11-1 to 11-N by a TDM (Time Division Multiplexing) method. showing.
  • the horizontal axis indicates time and the vertical axis indicates amplitude.
  • the number of virtual channels by MIMO Multiple-Input Multiple-Output
  • G ⁇ H The number of virtual channels by MIMO (Multiple-Input Multiple-Output)
  • the received data S(t, g, h, c) is superimposed with a DC (Direct Current) offset component caused by the receiving system hardware.
  • the signal suppression unit 29 performs an AD (Analog-to-Digital) offset for removing a DC offset component superimposed on the received data S (t, g, h, c) for each virtual channel. Make corrections. Since the AD offset correction itself is a known technique, detailed description thereof will be omitted.
  • FIG. 18B shows received data S′(t, g, h, c) after AD offset correction. In FIG. 18B, the horizontal axis indicates time and the vertical axis indicates amplitude.
  • the signal suppression unit 29 averages G ⁇ H received data S′(t, g, h, c) after AD offset correction for each virtual channel in each transmission cycle c. become By averaging the received data S′(t, g, h, c) by the signal suppression unit 29, the reflection by the moving body included in the received data S′(t, g, h, c) is reduced. Wave-related signals are suppressed.
  • the signal suppression unit 29 generates N received data S Y (t, g, h, c) after signal suppression as N received data S (t, g, h, c). is output to the Fourier transform unit 22 .
  • FIG. 18C shows received data S Y (t, g, h, c) after signal suppression related to reflected waves from moving objects.
  • the horizontal axis indicates time and the vertical axis indicates amplitude. Since the processing after the Fourier transform unit 22 is the same as that of the vital measurement device 20 shown in FIG. 1, the description is omitted.
  • the signal suppression unit 29 is provided for suppressing the signal related to the reflected wave from the moving body, which is included in the received signal acquired by the signal acquisition unit 21, and the Fourier transform unit 22 suppresses the signal.
  • the vital measuring apparatus 20 shown in FIG. 15 is configured so as to Fourier transform the received signal after signal suppression by the unit 29 in the time direction. Therefore, the vital measurement device 20 shown in FIG. 15, like the vital measurement device 20 shown in FIG. , the vitals of the subject can be detected even if a moving object exists in the space.
  • Embodiment 3 a vital measuring device 20 including a moving body detection section 30 that detects a moving body based on the received signal acquired by the signal acquisition section 21 will be described.
  • FIG. 19 is a configuration diagram showing a vital measurement system including the vital measurement device 20 according to Embodiment 3. As shown in FIG. In FIG. 19, the same reference numerals as those in FIG. 15 denote the same or corresponding parts, so description thereof will be omitted.
  • FIG. 20 is a hardware configuration diagram showing the hardware of the vital measurement device 20 according to Embodiment 3. As shown in FIG. In FIG. 20, the same reference numerals as those in FIG. 16 denote the same or corresponding parts, so description thereof will be omitted.
  • the moving body detection unit 30 is realized by, for example, a moving body detection circuit 36 shown in FIG.
  • the moving object detection unit 30 extracts signals related to waves reflected by the moving object, which are included in the reception data S(t, g, h, c) acquired by the signal acquisition unit 21 .
  • the moving object detection unit 30 detects the moving object based on the signal related to the wave reflected by the moving object.
  • each of the signal acquisition unit 21, the signal suppression unit 29, the Fourier transform unit 22, the map calculation unit 23, the vital estimation unit 24, and the moving object detection unit 30, which are components of the vital measurement device 20, is shown in FIG. It is assumed to be realized by dedicated hardware as shown. That is, it is assumed that the vital measuring device 20 is realized by a signal acquiring circuit 31, a signal suppressing circuit 35, a Fourier transforming circuit 32, a map calculating circuit 33, a vital estimating circuit 34, and a moving body detecting circuit .
  • Each of the signal acquisition circuit 31, the signal suppression circuit 35, the Fourier transform circuit 32, the map calculation circuit 33, the vital estimation circuit 34, and the moving object detection circuit 36 can be, for example, a single circuit, a composite circuit, a programmed processor, a parallel program, processors, ASICs, FPGAs, or combinations thereof.
  • the components of the vital measurement device 20 are not limited to those realized by dedicated hardware, but the vital measurement device 20 may be realized by software, firmware, or a combination of software and firmware. good too.
  • the processing in the signal acquisition unit 21, the signal suppression unit 29, the Fourier transform unit 22, the map calculation unit 23, the vital estimation unit 24, and the moving body detection unit 30 A program for causing the computer to execute the procedure is stored in the memory 41 shown in FIG. Then, the processor 42 shown in FIG. 3 executes the program stored in the memory 41 .
  • FIG. 20 shows an example in which each component of the vital measurement device 20 is implemented by dedicated hardware
  • FIG. 3 shows an example in which the vital measurement device 20 is implemented by software, firmware, or the like.
  • this is only an example, and some of the components of the vital measurement device 20 may be implemented by dedicated hardware, and the remaining components may be implemented by software, firmware, or the like.
  • the vital measurement system is the same as that shown in FIG. Therefore, only the operation of the moving object detection unit 30 will be described here.
  • the moving object detection unit 30 detects the two-dimensional direction in which the moving object exists based on the estimation result of the existing position of the moving object.
  • the two-dimensional orientation is the azimuth direction when the mobile body is viewed from the vital measurement device 20 and the elevation direction when the mobile body is viewed from the vital measurement device 20 .
  • the moving object detection unit 30 estimates the existing position of the moving object by performing tracking processing of the moving object existing in space.
  • the moving body detection unit 30 Fourier transforms the N ⁇ C pieces of received data S(t, g, h, c) in the hit direction to obtain the Doppler frequency fd of the moving body as You may make it calculate.
  • the Doppler frequency fd of the moving object By calculating the Doppler frequency fd of the moving object, the speed of the moving object can be calculated.
  • the vital measuring device 20 shown in FIG. 19 is configured to include the moving body detection section 30 that detects a moving body based on the received signal acquired by the signal acquisition section 21 . Therefore, even if there are a plurality of subjects, the vital measurement apparatus 20 shown in FIG. , can detect moving objects.
  • the present disclosure is suitable for vital measurement devices, vital measurement methods, and vital measurement systems.
  • 10 sensors 11-1 to 11-N antennas, 12 signal transmitters, 12a signal generators, 12b output destination selectors, 13-1 to 13-N circulators, 14-1 to 14-N signal receivers, 20 vitals Measurement device, 21 signal acquisition unit, 22 Fourier transform unit, 23 map calculation unit, 24 vital estimation unit, 25 existence position identification unit, 26 vital estimation processing unit, 27 breathing rate estimation unit, 28 heart rate estimation unit, 29 signal suppression section, 30 mobile detection section, 31 signal acquisition circuit, 32 Fourier transform circuit, 33 map calculation circuit, 34 vital estimation circuit, 35 signal suppression circuit, 36 mobile detection circuit, 41 memory, 42 processor.

Abstract

The present invention provides a vital sign measurement device (20) comprising: a signal acquisition unit (21) for acquiring, from antennas (11-1) to (11-N) that receive waves reflected by objects, a reception signal of the reflected waves; and a Fourier transform unit (22) for performing a Fourier transform in the time direction on the reception signal acquired by the signal acquisition unit (21). The vital sign measurement device (20) also comprises: a map calculation unit (23) for using a signal that has been Fourier-transformed by the Fourier transform unit (22) to calculate a two-dimensional azimuth map of complex electrical power corresponding to each of a plurality of distance bins from the vital sign measurement device (20); and a vital sign estimation unit (24) for identifying, on the basis of the time change in the two-dimensional azimuth map of the complex electrical power corresponding to each of the distance bins calculated by the map calculation unit (23), the position where a subject included among the object is present, and estimating vital signs of the subject from the time change in the phase of the complex electrical power for the position where the subject is present.

Description

バイタル測定装置、バイタル測定方法及びバイタル測定システムVital measuring device, vital measuring method and vital measuring system
 本開示は、バイタル測定装置、バイタル測定方法及びバイタル測定システムに関するものである。 The present disclosure relates to a vital measurement device, a vital measurement method, and a vital measurement system.
 被測定者のバイタルを測定する測定装置がある(特許文献1を参照)。当該測定装置は、室内に存在している被測定者に向けてマイクロ波を送信したのち、被測定者による反射後のマイクロ波である反射波を受信し、反射波の受信信号を出力するアンテナを備えている。また、当該測定装置は、アンテナから出力された受信信号に含まれている同相信号を抽出する第1の混合器と、アンテナから出力された受信信号に含まれている直交信号を抽出する第2の混合器と、当該同相信号と当該直交信号とを含む複素信号を生成する信号処理装置とを備えている。
 アンテナから送信されたマイクロ波が、被測定者だけでなく、室内の壁に反射されたような場合、当該信号処理装置により生成される複素信号は、被測定者による反射波に係る複素信号と、壁による反射波に係る複素信号とが重ね合わされた信号となる。壁は、静止物であるため、壁による反射波に係る複素信号の位相は、一定である。一方、被測定者の胸部は、呼吸に伴って往復運動するため、被測定者による反射波に係る複素信号の位相は、時間の経過に伴って変化する。当該信号処理装置は、生成した複素信号の中から、位相が一定の複素信号を除去することで、被測定者による反射波に係る複素信号を取得し、被測定者による反射波に係る複素信号から、被測定者のバイタルを検出する。
There is a measuring device that measures the vitals of a subject (see Patent Document 1). The measuring device transmits microwaves to a person to be measured who is present in the room, receives the reflected waves, which are the microwaves after being reflected by the person to be measured, and outputs the received signals of the reflected waves. It has Further, the measuring device includes a first mixer for extracting an in-phase signal included in the received signal output from the antenna, and a first mixer for extracting a quadrature signal included in the received signal output from the antenna. 2 mixers and a signal processor for generating a complex signal including the in-phase signal and the quadrature signal.
When the microwave transmitted from the antenna is reflected not only by the person being measured but also by the wall in the room, the complex signal generated by the signal processing device is similar to the complex signal related to the wave reflected by the person being measured. , and a complex signal related to the wave reflected by the wall are superimposed. Since the wall is a stationary object, the phase of the complex signal related to the wave reflected by the wall is constant. On the other hand, since the subject's chest reciprocates with respiration, the phase of the complex signal related to the wave reflected by the subject changes over time. The signal processing device acquires a complex signal related to the wave reflected by the subject by removing the complex signal having a constant phase from the generated complex signals, and obtains the complex signal related to the wave reflected by the subject. to detect the vitals of the subject.
特開2020-157000号公報Japanese Patent Application Laid-Open No. 2020-157000
 特許文献1に開示されている測定装置では、複数の被測定者が室内に存在していれば、それぞれの被測定者のバイタルに係る複素信号が互いに重ね合わされる。信号処理装置は、生成した複素信号の中から、位相が一定の複素信号を除去したとしても、それぞれの被測定者による反射波に係る複素信号を分離することができない。このため、当該信号処理装置は、それぞれの被測定者のバイタルを検出することができないという課題があった。 In the measuring device disclosed in Patent Document 1, if a plurality of subjects are present in the room, the complex signals related to the vitals of the subjects are superimposed on each other. Even if the signal processing apparatus removes the complex signal with a constant phase from the generated complex signals, it cannot separate the complex signals related to the waves reflected by the subjects. Therefore, there is a problem that the signal processing device cannot detect the vitals of each subject.
 本開示は、上記のような課題を解決するためになされたもので、被測定者が複数の場合であっても、それぞれの被測定者のバイタルを検出することができるバイタル測定装置及びバイタル測定方法を得ることを目的とする。 DISCLOSURE OF THE INVENTION The present disclosure has been made in order to solve the above-described problems. Aim to get a method.
 本開示に係るバイタル測定装置は、対象物体による反射波を受信するアンテナから、反射波の受信信号を取得する信号取得部と、信号取得部により取得された受信信号を時間方向にフーリエ変換するフーリエ変換部とを備えている。また、バイタル測定装置は、フーリエ変換部によるフーリエ変換後の信号を用いて、バイタル測定装置からの複数の距離ビンのそれぞれに対応する複素電力の2次元方位マップを算出するマップ算出部と、マップ算出部により算出されたそれぞれの距離ビンに対応する複素電力の2次元方位マップの時間変化に基づいて、対象物体に含まれる被測定者が存在している位置を特定し、被測定者が存在している位置についての複素電力の位相の時間変化から、被測定者のバイタルを推定するバイタル推定部とを備えている。 A vital measurement apparatus according to the present disclosure includes a signal acquisition unit that acquires a received signal of a reflected wave from an antenna that receives a reflected wave from a target object; and a conversion unit. In addition, the vital measurement device includes a map calculation unit that calculates a two-dimensional azimuth map of complex power corresponding to each of the plurality of distance bins from the vital measurement device using the signal after the Fourier transform by the Fourier transform unit; Based on the time change of the two-dimensional azimuth map of the complex power corresponding to each distance bin calculated by the calculation unit, the position where the person to be measured is included in the target object is identified, and the position where the person to be measured exists is determined. a vital estimator for estimating the vitals of the person to be measured from the time change of the phase of the complex power at the position where the measurement is performed.
 本開示によれば、被測定者が複数の場合であっても、それぞれの被測定者のバイタルを検出することができる。 According to the present disclosure, even if there are multiple subjects, the vitals of each subject can be detected.
実施の形態1に係るバイタル測定装置20を含むバイタル測定システムを示す構成図である。1 is a configuration diagram showing a vital measurement system including a vital measurement device 20 according to Embodiment 1. FIG. 実施の形態1に係るバイタル測定装置20のハードウェアを示すハードウェア構成図である。2 is a hardware configuration diagram showing hardware of the vital measurement device 20 according to Embodiment 1. FIG. バイタル測定装置20が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。2 is a hardware configuration diagram of a computer when the vital measurement device 20 is implemented by software, firmware, or the like. FIG. バイタル測定装置20の処理手順であるバイタル測定方法を示すフローチャートである。4 is a flowchart showing a vital measurement method, which is a processing procedure of the vital measurement device 20. FIG. それぞれの送信サイクルc(c=1,・・・,C)において、信号発生器12aにより生成されるアップチャープの信号Tx(1)~Tx(N)を示す説明図である。FIG. 4 is an explanatory diagram showing up-chirp signals Tx(1) to Tx(N) generated by a signal generator 12a in respective transmission cycles c (c=1, . . . , C); 或る送信サイクルcにおけるN個のフーリエ変換後の信号S(r,g,h,c)を示す説明図である。FIG. 4 is an explanatory diagram showing N signals S(r, g, h, c) after Fourier transform in a certain transmission cycle c; それぞれの距離ビンr(r=1,・・・,R)に対応する複素電力CP(r,az,el,c)の2次元方位マップを示す説明図である。FIG. 4 is an explanatory diagram showing a two-dimensional orientation map of complex power CP(r, az, el, c) corresponding to respective range bins r (r=1, . . . , R); 同一の距離ビンrに属し、かつ、同一の2次元方位(az,el)に属している複素電力CP(r,az,el,c)における位相の時間変化を示す説明図である。FIG. 10 is an explanatory diagram showing temporal changes in phase in complex power CP(r, az, el, c) belonging to the same distance bin r and belonging to the same two-dimensional direction (az, el); 存在位置特定部25により算出される位相変化信号θ(r,c)を示す説明図である。FIG. 10 is an explanatory diagram showing a phase change signal θ(r, c) calculated by an existence position specifying unit 25; 呼吸スペクトルSRR(r,sf)の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a respiratory spectrum S RR (r, sf); スカログラムの一例を示す説明図である。It is explanatory drawing which shows an example of a scalogram. スロータイム方向の2次元スペクトルW(r,f,sf)の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a two-dimensional spectrum W(r, f, sf) in the slow time direction; 心拍数推定部28による最大比合成処理を示す説明図である。FIG. 7 is an explanatory diagram showing maximum ratio combining processing by a heart rate estimating unit 28; 心拍数推定部28により得られる心拍スペクトルSHR(r,sf)の一例を示す説明図である。4 is an explanatory diagram showing an example of a heartbeat spectrum S HR (r, sf) obtained by a heart rate estimator 28; FIG. 実施の形態2に係るバイタル測定装置20を含むバイタル測定システムを示す構成図である。FIG. 11 is a configuration diagram showing a vital measurement system including a vital measurement device 20 according to Embodiment 2; 実施の形態2に係るバイタル測定装置20のハードウェアを示すハードウェア構成図である。2 is a hardware configuration diagram showing hardware of a vital measurement device 20 according to Embodiment 2. FIG. 信号発生器12aにより生成されるヒット数Qのアップチャープの信号Tx(1)~Tx(N)を示す説明図である。FIG. 4 is an explanatory diagram showing up-chirp signals Tx(1) to Tx(N) with a number of hits Q generated by a signal generator 12a; 図18Aは、アンテナ11-1~11-NからTDM(Time Division Multiplexing)方式で送信波が放射されたのち、信号取得部21により取得される受信データS(t,g,h,c)を示す説明図、図18Bは、ADオフセット補正後の受信データS’(t,g,h,c)を示す説明図、図18Cは、移動体による反射波に係る信号抑圧後の受信データS(t,g,h,c)を示す説明図である。FIG. 18A shows reception data S (t, g, h, c) acquired by the signal acquisition unit 21 after transmission waves are radiated from the antennas 11-1 to 11-N by a TDM (Time Division Multiplexing) method. FIG. 18B is an explanatory diagram showing reception data S′(t, g, h, c) after AD offset correction ; FIG. It is an explanatory view showing (t, g, h, c). 実施の形態3に係るバイタル測定装置20を含むバイタル測定システムを示す構成図である。FIG. 11 is a configuration diagram showing a vital measurement system including a vital measurement device 20 according to Embodiment 3; 実施の形態3に係るバイタル測定装置20のハードウェアを示すハードウェア構成図である。FIG. 11 is a hardware configuration diagram showing hardware of a vital measurement device 20 according to Embodiment 3;
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to describe the present disclosure in more detail, embodiments for carrying out the present disclosure will be described according to the attached drawings.
実施の形態1.
 図1は、実施の形態1に係るバイタル測定装置20を含むバイタル測定システムを示す構成図である。
 図2は、実施の形態1に係るバイタル測定装置20のハードウェアを示すハードウェア構成図である。
 図1に示すバイタル測定システムは、センサ10及びバイタル測定装置20を備えている。
 センサ10は、N個のアンテナ11-1~11-N、信号送信部12、N個のサーキュレータ13-1~13-N及びN個の信号受信部14-1~14-Nを備えている。Nは、2以上の整数である。
 アンテナ11-1~11-Nのそれぞれは、送受信アンテナである。
 図1に示すバイタル測定システムでは、MIMO(Multiple-Input Multiple-Output)によって受信信号の分解能を高めるために、センサ10が、N個のアンテナ11-1~11-Nを備えている。そして、アンテナ11-1~11-Nのそれぞれが、送信アンテナと受信アンテナとを兼ねている。しかし、これは一例に過ぎず、センサ10が、送信アンテナと受信アンテナとを別々に備えていてもよい。
Embodiment 1.
FIG. 1 is a configuration diagram showing a vital measurement system including a vital measurement device 20 according to Embodiment 1. As shown in FIG.
FIG. 2 is a hardware configuration diagram showing hardware of the vital measurement device 20 according to the first embodiment.
The vitals measurement system shown in FIG. 1 includes a sensor 10 and a vitals measurement device 20 .
The sensor 10 includes N antennas 11-1 to 11-N, a signal transmitter 12, N circulators 13-1 to 13-N, and N signal receivers 14-1 to 14-N. . N is an integer of 2 or more.
Each of the antennas 11-1 to 11-N is a transmission/reception antenna.
In the vital measurement system shown in FIG. 1, the sensor 10 has N antennas 11-1 to 11-N in order to increase the resolution of received signals by MIMO (Multiple-Input Multiple-Output). Each of the antennas 11-1 to 11-N also serves as a transmitting antenna and a receiving antenna. However, this is only an example, and the sensor 10 may have separate transmitting and receiving antennas.
 センサ10から送信波が放射されるときは、アンテナ11-1~11-Nの中から、送信波を放射する1つのアンテナが選択される。
 アンテナ11-1~11-Nにおける送信波の送信順序は、決まっている。例えば、アンテナ11-1、アンテナ11-2、・・・、アンテナ11-Nの順番に送信順序が決まっている。ただし、これは一例に過ぎず、例えば、アンテナ11-N、・・・、アンテナ11-2、アンテナ11-1の順番に送信順序が決まっていてもよい。
 アンテナ11-n(n=1,・・・,N)は、サーキュレータ13-nから出力された送信信号に係る送信波を対象物体が存在している空間に放射する。アンテナ11-nから放射された送信波は、対象物体によって反射される。対象物体の中には、空間に存在している1人以上の被測定者kのほか、空間を形成している部屋の壁、又は、空間に存在している机等の静止物が含まれる。k=1,・・・,Kであり、Kは、1以上の整数である。
 アンテナ11-1~11-Nのそれぞれは、対象物体による反射波を受信し、反射波の受信信号をサーキュレータ13-nに出力する。
When the sensor 10 radiates a transmission wave, one antenna that radiates the transmission wave is selected from among the antennas 11-1 to 11-N.
The transmission order of transmission waves in the antennas 11-1 to 11-N is fixed. For example, the transmission order is determined in the order of antenna 11-1, antenna 11-2, . . . , antenna 11-N. However, this is only an example, and for example, the transmission order may be determined in the order of the antennas 11-N, .
Antenna 11-n (n=1, . . . , N) radiates a transmission wave associated with a transmission signal output from circulator 13-n to a space in which a target object exists. A transmitted wave emitted from the antenna 11-n is reflected by the target object. The target objects include one or more subjects k existing in the space, walls of the room forming the space, and stationary objects such as desks existing in the space. . k=1, . . . , K, where K is an integer of 1 or more.
Each of the antennas 11-1 to 11-N receives a reflected wave from the target object and outputs a received signal of the reflected wave to the circulator 13-n.
 信号送信部12は、信号発生器12a及び出力先選択部12bを備えている。
 信号送信部12は、N個のアンテナ11-1~11-Nの中から、送信波を放射させる1つのアンテナ11-nを順番に選択する。
 信号送信部12は、選択したアンテナ11-nから送信波を空間に放射させるために、選択したアンテナ11-nと接続されているサーキュレータ13-nに送信信号を出力する。
 信号発生器12aは、例えば、時間の経過に伴って周波数が変化する送信信号、又は、パルスの送信信号を発生させる。時間の経過に伴って周波数が変化する送信信号としては、例えば、アップチャープの信号、又は、ダウンチャープの信号がある。
 信号発生器12aは、送信信号を出力先選択部12bに出力する。
 出力先選択部12bは、N個のサーキュレータ13-1~13-Nの中で、次に送信波を放射させる順番のアンテナ11-nと接続されているサーキュレータ13-nに対して、信号発生器12aにより発生された送信信号を出力する。
The signal transmitter 12 includes a signal generator 12a and an output destination selector 12b.
The signal transmission unit 12 sequentially selects one antenna 11-n from among the N antennas 11-1 to 11-N to radiate transmission waves.
The signal transmitter 12 outputs a transmission signal to the circulator 13-n connected to the selected antenna 11-n so that the selected antenna 11-n emits a transmission wave into space.
The signal generator 12a generates, for example, a transmission signal whose frequency changes over time or a pulse transmission signal. Transmission signals whose frequency changes over time include, for example, up-chirp signals and down-chirp signals.
The signal generator 12a outputs the transmission signal to the output destination selector 12b.
The output destination selection unit 12b generates a signal for the circulator 13-n connected to the antenna 11-n in the order of radiating the transmission wave next among the N circulators 13-1 to 13-N. outputs the transmission signal generated by the device 12a.
 サーキュレータ13-n(n=1,・・・,N)は、出力先選択部12bから出力された送信信号をアンテナ11-nに出力する。
 また、サーキュレータ13-nは、アンテナ11-nから出力された受信信号を信号受信部14-nに出力する。
The circulator 13-n (n=1, . . . , N) outputs the transmission signal output from the output destination selector 12b to the antenna 11-n.
Also, the circulator 13-n outputs the received signal output from the antenna 11-n to the signal receiver 14-n.
 信号受信部14-n(n=1,・・・,N)は、サーキュレータ13-nから出力された受信信号に対する受信処理を実施する。受信処理としては、例えば、受信信号の周波数をダウンコンバートする処理のほか、周波数変換後の受信信号をアナログ信号からデジタル信号に変換する処理がある。
 信号受信部14-nは、デジタル信号である受信データS(t,g,h,c)をバイタル測定装置20に出力する。
 tは、アンテナ11-nによる反射波の受信時刻である。gは、送信波を放射したアンテナ11-nを識別する変数であり、g=1,・・・,Nである。hは、反射波を受信したアンテナ11-nを識別する変数であり、h=1,・・・,Nである。cは、アンテナ11-1~11-Nによる送信波の送信サイクルを識別する変数であり、c=1,・・・,Cである。Cは、2以上の整数である。
The signal receiver 14-n (n=1, . . . , N) performs reception processing on the received signal output from the circulator 13-n. The reception processing includes, for example, processing for down-converting the frequency of the received signal and processing for converting the frequency-converted received signal from an analog signal to a digital signal.
The signal receiver 14-n outputs the received data S(t, g, h, c), which is a digital signal, to the vital measurement device 20. FIG.
t is the reception time of the reflected wave by the antenna 11-n. g is a variable for identifying the antenna 11-n that radiated the transmission wave, where g=1, . . . , N; h is a variable that identifies the antenna 11-n that received the reflected wave, where h=1, . . . , N; c is a variable that identifies the transmission cycle of the transmission wave by the antennas 11-1 to 11-N, where c=1, . C is an integer of 2 or more.
 バイタル測定装置20は、信号取得部21、フーリエ変換部22、マップ算出部23及びバイタル推定部24を備えている。
 信号取得部21は、例えば、図2に示す信号取得回路31によって実現される。
 信号取得部21は、信号受信部14-1~14-Nのそれぞれから、反射波の受信信号として、受信データS(t,g,h,c)を取得し、受信データS(t,g,h,c)をフーリエ変換部22に出力する。
The vital measurement device 20 includes a signal acquisition section 21 , a Fourier transform section 22 , a map calculation section 23 and a vital estimation section 24 .
The signal acquisition unit 21 is implemented by, for example, the signal acquisition circuit 31 shown in FIG.
The signal acquisition unit 21 acquires the reception data S(t, g, h, c) as the reception signal of the reflected wave from each of the signal reception units 14-1 to 14-N, and obtains the reception data S(t, g , h, c) to the Fourier transform unit 22 .
 フーリエ変換部22は、例えば、図2に示すフーリエ変換回路32によって実現される。
 フーリエ変換部22は、信号取得部21によって、信号受信部14-1~14-Nからの受信データS(t,g,h,c)が取得される毎に、それぞれの受信データS(t,g,h,c)を時間方向にフーリエ変換する。フーリエ変換としては、例えば、高速フーリエ変換(FFT:Fast Fourier Transform)、又は、離散フーリエ変換(DFT:Discrete Fourier Transform)がある。
 フーリエ変換部22は、それぞれのフーリエ変換後の信号S(r,g,h,c)をマップ算出部23に出力する。rは、バイタル測定装置20からの距離ビンを識別する変数である。r=1,・・・,Rである。Rは、2以上の整数である。
The Fourier transform unit 22 is realized by, for example, a Fourier transform circuit 32 shown in FIG.
Each time the signal acquisition unit 21 acquires the reception data S(t, g, h, c) from the signal reception units 14-1 to 14-N, the Fourier transform unit 22 converts the reception data S(t , g, h, and c) in the time direction. Fourier transform includes, for example, Fast Fourier Transform (FFT) or Discrete Fourier Transform (DFT).
The Fourier transform unit 22 outputs the signal S(r, g, h, c) after each Fourier transform to the map calculator 23 . r is a variable that identifies the distance bin from the vital measurement device 20; r=1, . . . , R. R is an integer of 2 or more.
 マップ算出部23は、例えば、図2に示すマップ算出回路33によって実現される。
 マップ算出部23は、フーリエ変換部22によって、それぞれの受信データS(t,g,h,c)がフーリエ変換される毎に、それぞれのフーリエ変換後の信号S(r,g,h,c)を用いて、バイタル測定装置20からのそれぞれの距離ビンr(r=1,・・・,R)に対応する複素電力CP(r,az,el,c)の2次元方位マップを算出する。
 マップ算出部23は、それぞれの距離ビンrに対応する複素電力CP(r,az,el,c)の2次元方位マップをバイタル推定部24に出力する。
The map calculator 23 is implemented by, for example, a map calculator circuit 33 shown in FIG.
Each time the Fourier transform unit 22 Fourier transforms the received data S(t, g, h, c), the map calculator 23 converts the Fourier transform signal S(r, g, h, c ) to compute a two-dimensional orientation map of the complex power CP(r, az, el, c) corresponding to each range bin r (r=1, . . . , R) from the vital measurement device 20 .
The map calculator 23 outputs the two-dimensional orientation map of the complex power CP(r, az, el, c) corresponding to each distance bin r to the vital estimator 24 .
 バイタル推定部24は、例えば、図2に示すバイタル推定回路34によって実現される。
 バイタル推定部24は、存在位置特定部25及びバイタル推定処理部26を備えている。
 バイタル推定部24は、マップ算出部23によって、それぞれの距離ビンr(r=1,・・・,R)に対応する複素電力CP(r,az,el,c)の2次元方位マップが算出される毎に、2次元方位マップを取得する。
 バイタル推定部24は、それぞれの距離ビンrに対応する複素電力CP(r,az,el,c)の2次元方位マップの時間変化に基づいて、対象物体に含まれる被測定者k(k=1,・・・,K)が存在している位置を特定する。
 バイタル推定部24は、それぞれの被測定者kが存在している位置についての複素電力CP(r,az,el,c)の位相の時間変化から、それぞれの被測定者kのバイタルを推定する。
The vital estimation unit 24 is realized by, for example, the vital estimation circuit 34 shown in FIG.
The vitals estimation unit 24 includes an existence position identification unit 25 and a vitals estimation processing unit 26 .
The map calculator 23 of the vital estimator 24 calculates a two-dimensional azimuth map of the complex power CP (r, az, el, c) corresponding to each distance bin r (r=1, . . . , R). A two-dimensional orientation map is obtained each time.
The vital estimator 24 calculates the subject k (k= 1, . . . , K) are located.
The vital estimator 24 estimates the vitals of each subject k from the phase change over time of the complex power CP(r, az, el, c) at the position where each subject k is present. .
 存在位置特定部25は、マップ算出部23によって、それぞれの距離ビンr(r=1,・・・,R)に対応する複素電力CP(r,az,el,c)の2次元方位マップが算出される毎に、2次元方位マップを取得する。
 存在位置特定部25は、それぞれの距離ビンrに対応する複素電力CP(r,az,el,c)の2次元方位マップの時間変化に基づいて、それぞれの被測定者k(k=1,・・・,K)が存在している位置を特定する。
 存在位置特定部25は、それぞれの被測定者kが存在している位置についての複素電力CP(r,az,el,c)の位相の時間変化を示す位相変化信号θ(r,c)をバイタル推定処理部26に出力する。
The existence position identifying unit 25 obtains a two-dimensional direction map of the complex power CP (r, az, el, c) corresponding to each distance bin r (r=1, . . . , R) by the map calculating unit 23. A two-dimensional orientation map is acquired each time it is calculated.
The existence position specifying unit 25 determines each subject k (k=1, , K) are located.
The presence position specifying unit 25 generates a phase change signal θ(r, c) indicating the time change of the phase of the complex power CP(r, az, el, c) at the position where each subject k is present. Output to the vital estimation processing unit 26 .
 バイタル推定処理部26は、呼吸数推定部27及び心拍数推定部28を備えている。
 バイタル推定処理部26は、存在位置特定部25から出力されたそれぞれの被測定者k(k=1,・・・,K)についての位相変化信号θ(r,c)に基づいて、それぞれの被測定者kのバイタルを推定する。
 呼吸数推定部27は、それぞれの被測定者kについての位相変化信号θ(r,c)に基づいて、それぞれの被測定者kの呼吸数RRを推定する。
 心拍数推定部28は、それぞれの被測定者kについての位相変化信号θ(r,c)に基づいて、それぞれの被測定者kの心拍数HRを推定する。
The vitals estimation processing unit 26 includes a respiratory rate estimation unit 27 and a heart rate estimation unit 28 .
Based on the phase change signal θ(r, c) for each subject k (k=1, . Estimate the vitals of subject k.
The respiratory rate estimator 27 estimates the respiratory rate RR of each subject k based on the phase change signal θ(r, c) for each subject k.
The heart rate estimator 28 estimates the heart rate HR of each subject k based on the phase change signal θ(r, c) for each subject k.
 図1では、バイタル測定装置20の構成要素である信号取得部21、フーリエ変換部22、マップ算出部23及びバイタル推定部24のそれぞれが、図2に示すような専用のハードウェアによって実現されるものを想定している。即ち、バイタル測定装置20が、信号取得回路31、フーリエ変換回路32、マップ算出回路33及びバイタル推定回路34によって実現されるものを想定している。
 信号取得回路31、フーリエ変換回路32、マップ算出回路33及びバイタル推定回路34のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
In FIG. 1, each of the signal acquisition unit 21, the Fourier transform unit 22, the map calculation unit 23, and the vital estimation unit 24, which are components of the vital measurement device 20, is realized by dedicated hardware as shown in FIG. Assuming something. That is, it is assumed that the vital measurement device 20 is implemented by a signal acquisition circuit 31, a Fourier transform circuit 32, a map calculation circuit 33, and a vital estimation circuit .
Each of the signal acquisition circuit 31, the Fourier transform circuit 32, the map calculation circuit 33, and the vital estimation circuit 34 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated Circuit). , FPGA (Field-Programmable Gate Array), or a combination thereof.
 バイタル測定装置20の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、バイタル測定装置20が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
The components of the vital measurement device 20 are not limited to those realized by dedicated hardware, but the vital measurement device 20 may be realized by software, firmware, or a combination of software and firmware. good too.
Software or firmware is stored as a program in a computer's memory. A computer means hardware that executes a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
 図3は、バイタル測定装置20が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 バイタル測定装置20が、ソフトウェア又はファームウェア等によって実現される場合、信号取得部21、フーリエ変換部22、マップ算出部23及びバイタル推定部24におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ41に格納される。そして、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行する。
FIG. 3 is a hardware configuration diagram of a computer when the vital measurement device 20 is implemented by software, firmware, or the like.
When the vital measurement device 20 is realized by software or firmware, a program for causing a computer to execute each processing procedure in the signal acquisition unit 21, the Fourier transform unit 22, the map calculation unit 23, and the vital estimation unit 24 is stored in the memory. 41. Then, the processor 42 of the computer executes the program stored in the memory 41 .
 また、図2では、バイタル測定装置20の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図3では、バイタル測定装置20がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、バイタル測定装置20における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。 2 shows an example in which each component of the vital measurement device 20 is implemented by dedicated hardware, and FIG. 3 shows an example in which the vital measurement device 20 is implemented by software, firmware, or the like. . However, this is only an example, and some of the components of the vital measurement device 20 may be implemented by dedicated hardware, and the remaining components may be implemented by software, firmware, or the like.
 次に、図1に示すバイタル測定システムの動作について説明する。
 図4は、バイタル測定装置20の処理手順であるバイタル測定方法を示すフローチャートである。
 信号送信部12の信号発生器12aは、送信信号として、例えば、周波数変調連続波(FMCW:Frequency Modulated Continuous Wave)方式、又は、高速チャープ変調(FCM:Fast-Chirp Modulation)方式に従って、アップチャープの信号、又は、ダウンチャープの信号を生成する。
 図1に示すバイタル測定システムでは、信号発生器12aが、図5に示すように、それぞれの送信サイクルc(c=1,・・・,C)において、アンテナ11-1~11-Nの数分だけ、アップチャープの信号Tx(n)を繰り返し生成している。したがって、信号発生器12aは、全部で、N×C個のアップチャープの信号Tx(n)を生成している。
 図5は、それぞれの送信サイクルc(c=1,・・・,C)において、信号発生器12aにより生成されるアップチャープの信号Tx(1)~Tx(N)を示す説明図である。図5の例では、N=3である。
 信号発生器12aは、生成したアップチャープの信号Tx(n)(n=1,・・・,N)の周波数を高周波数帯の信号にアップコンバートし、アップコンバート後の信号を送信信号Tx’(n)として、出力先選択部12bに出力する。高周波数帯としては、例えば、30~300GHz程度のミリ波帯である。
Next, the operation of the vital measurement system shown in FIG. 1 will be described.
FIG. 4 is a flow chart showing a vital measurement method, which is a processing procedure of the vital measurement device 20. As shown in FIG.
The signal generator 12a of the signal transmission unit 12 uses, as a transmission signal, for example, a frequency modulated continuous wave (FMCW) method or a fast chirp modulation (FCM: Fast-Chirp Modulation) method. A signal or down-chirp signal is generated.
In the vital measurement system shown in FIG. 1, the signal generator 12a, as shown in FIG. The up-chirp signal Tx(n) is repeatedly generated for the same amount of time. Therefore, the signal generator 12a generates a total of N×C up-chirp signals Tx(n).
FIG. 5 is an explanatory diagram showing up-chirp signals Tx(1) to Tx(N) generated by the signal generator 12a in each transmission cycle c (c=1, . . . , C). In the example of FIG. 5, N=3.
The signal generator 12a up-converts the frequency of the generated up-chirp signal Tx(n) (n=1, . (n) and output to the output destination selection unit 12b. The high frequency band is, for example, a millimeter wave band of about 30 to 300 GHz.
 出力先選択部12bは、信号発生器12aから、それぞれの送信サイクルc(c=1,・・・,C)において、送信信号Tx’(n)を取得する。
 出力先選択部12bは、N個のサーキュレータ13-1~13-Nの中で、次に送信波を放射する順番のアンテナ11-nと接続されているサーキュレータ13-nに対して、送信信号Tx’(n)を出力する。
 出力先選択部12bは、例えば、次に送信波を放射する順番のアンテナ11-nがアンテナ11-1であれば、送信信号Tx’(1)をサーキュレータ13-1に出力し、次に送信波を放射する順番のアンテナ11-nがアンテナ11-2であれば、送信信号Tx’(2)をサーキュレータ13-2に出力する。
 また、出力先選択部12bは、例えば、次に送信波を放射する順番のアンテナ11-nがアンテナ11-Nであれば、送信信号Tx’(N)をサーキュレータ13-Nに出力する。
The output destination selector 12b acquires the transmission signal Tx'(n) from the signal generator 12a in each transmission cycle c (c=1, . . . , C).
The output destination selection unit 12b outputs the transmission signal to the circulator 13-n connected to the antenna 11-n in the order of radiating the transmission wave next among the N circulators 13-1 to 13-N. Output Tx'(n).
For example, if the antenna 11-n in the order to radiate the transmission wave next is the antenna 11-1, the output destination selection unit 12b outputs the transmission signal Tx′(1) to the circulator 13-1, and then transmits it. If the antenna 11-n in order to radiate waves is the antenna 11-2, it outputs the transmission signal Tx'(2) to the circulator 13-2.
Further, the output destination selection unit 12b outputs the transmission signal Tx'(N) to the circulator 13-N, for example, if the antenna 11-n in the order to radiate the transmission wave next is the antenna 11-N.
 サーキュレータ13-n(n=1,・・・,N)は、出力先選択部12bから送信信号Tx’(n)を受けると、送信信号Tx’(n)をアンテナ11-nに出力する。
 アンテナ11-n(n=1,・・・,N)は、サーキュレータ13-nから送信信号Tx’(n)を受けると、送信信号Tx’(n)に係る電波である送信波を対象物体が存在している空間に放射する。アンテナ11-nから放射された送信波は、対象物体によって反射される。即ち、アンテナ11-nから放射された送信波は、それぞれの被測定者kによって反射されるほか、空間を形成している壁等によって反射される。
 それぞれの送信サイクルc(c=1,・・・,C)において、N個のアンテナ11-1~11-Nの中の1つのアンテナが、送信波を順番にN回空間に放射するため、アンテナ11-1~11-Nのそれぞれは、それぞれの送信サイクルcにおいて、反射波をN回受信する。
 アンテナ11-n(n=1,・・・,N)は、それぞれの反射波の受信信号をサーキュレータ13-nに出力する。
 サーキュレータ13-n(n=1,・・・,N)は、アンテナ11-nから出力された受信信号を信号受信部14-nに出力する。
Circulator 13-n (n=1, . . . , N) receives transmission signal Tx'(n) from output destination selector 12b and outputs transmission signal Tx'(n) to antenna 11-n.
When receiving the transmission signal Tx'(n) from the circulator 13-n, the antenna 11-n (n=1, . radiate into the space in which A transmitted wave emitted from the antenna 11-n is reflected by the target object. That is, the transmitted wave radiated from the antenna 11-n is reflected by each person k to be measured, and is also reflected by walls or the like forming the space.
In each transmission cycle c (c=1, . Each of the antennas 11-1 to 11-N receives the reflected wave N times in each transmission cycle c.
The antenna 11-n (n=1, . . . , N) outputs the received signal of each reflected wave to the circulator 13-n.
The circulator 13-n (n=1, . . . , N) outputs the received signal output from the antenna 11-n to the signal receiver 14-n.
 信号受信部14-n(n=1,・・・,N)は、それぞれの送信サイクルc(c=1,・・・,C)において、サーキュレータ13-nから出力されたN個の受信信号のそれぞれに対する受信処理を実施する。
 信号受信部14-nは、受信信号に対する受信処理として、例えば、受信信号の周波数を中間周波数帯の周波数にダウンコンバートする処理のほか、周波数変換後の受信信号をアナログ信号からデジタル信号に変換する処理を行う。
 信号受信部14-nは、それぞれの送信サイクルcにおいて、N個のデジタル信号である受信データS(t,g,h,c)のそれぞれをバイタル測定装置20に出力する。
 これにより、それぞれの送信サイクルc(c=1,・・・,C)において、信号受信部14-1~14-Nから、全部でN×N(=G×H)個の受信データS(t,g,h,c)がバイタル測定装置20に与えられる。
The signal receiver 14-n (n=1, . . . , N) receives N received signals output from the circulator 13-n in each transmission cycle c (c=1, . receive processing for each of
The signal receiving unit 14-n performs reception processing on the received signal, for example, down-converts the frequency of the received signal to a frequency in the intermediate frequency band, and converts the frequency-converted received signal from an analog signal to a digital signal. process.
The signal receiver 14-n outputs the reception data S(t, g, h, c), which are N digital signals, to the vital measurement device 20 in each transmission cycle c.
As a result, in each transmission cycle c (c=1, . . . , C), a total of N×N (=G×H) received data S ( t, g, h, c) are provided to the vital measurement device 20 .
 バイタル測定装置20の信号取得部21は、信号受信部14-1~14-Nから、それぞれの送信サイクルc(c=1,・・・,C)において、N×N個の受信データS(t,g,h,c)を取得する(図4のステップST1)。
 信号取得部21は、それぞれの送信サイクルcにおいて、N×N個の受信データS(t,g,h,c)をフーリエ変換部22に出力する。
The signal acquisition unit 21 of the vital measurement device 20 receives N×N pieces of received data S ( t, g, h, c) are obtained (step ST1 in FIG. 4).
The signal acquisition unit 21 outputs N×N received data S(t, g, h, c) to the Fourier transform unit 22 in each transmission cycle c.
 フーリエ変換部22は、信号取得部21から、それぞれの送信サイクルc(c=1,・・・,C)において、N×N個の受信データS(t,g,h,c)を取得する。
 フーリエ変換部22は、それぞれの送信サイクルcにおいて、N×N個の受信データS(t,g,h,c)の中から、反射波を受信したそれぞれのアンテナ11-n(n=1,・・・,N)に係るN個の受信データS(t,g,h=n,c)の取り出しを行う。
 フーリエ変換部22は、それぞれの送信サイクルcにおいて、それぞれのアンテナ11-nに係るN個の受信データS(t,g,h=n,c)のそれぞれを時間方向にフーリエ変換する(図4のステップST2)。
 それぞれの送信サイクルcにおいて、それぞれのアンテナ11-nに係るN個の受信データS(t,g,h=n,c)のそれぞれが、フーリエ変換部22によってフーリエ変換されることで、N個のフーリエ変換後の信号S(r,g,h,c)が生成される。
 フーリエ変換部22によるフーリエ変換後の信号S(r,g,h,c)は、図6に示すように、距離ビンrに対応する複素電力を示す信号である。
 図6は、或る送信サイクルcにおけるN個のフーリエ変換後の信号S(r,g,h,c)を示す説明図である。
 図6において、横軸は、距離ビンを示し、縦軸は、複素電力を示している。
 フーリエ変換部22は、それぞれの送信サイクルcにおいて、N個のフーリエ変換後の信号S(r,g,h,c)をマップ算出部23に出力する。
The Fourier transform unit 22 acquires N×N reception data S(t, g, h, c) from the signal acquisition unit 21 in each transmission cycle c (c=1, . . . , C). .
The Fourier transform unit 22 selects each antenna 11-n (n=1, . . , N) are retrieved.
In each transmission cycle c, the Fourier transform unit 22 Fourier transforms each of the N received data S (t, g, h=n, c) associated with each antenna 11-n in the time direction (FIG. 4 step ST2).
In each transmission cycle c, each of the N received data S(t, g, h=n, c) associated with each antenna 11-n is Fourier transformed by the Fourier transform unit 22 to obtain N A signal S(r, g, h, c) after the Fourier transform of is generated.
The signal S(r, g, h, c) after the Fourier transform by the Fourier transform unit 22 is a signal representing the complex power corresponding to the distance bin r, as shown in FIG.
FIG. 6 is an explanatory diagram showing N signals S(r, g, h, c) after Fourier transform in a certain transmission cycle c.
In FIG. 6, the horizontal axis indicates distance bins, and the vertical axis indicates complex power.
The Fourier transform unit 22 outputs N signals S(r, g, h, c) after the Fourier transform to the map calculator 23 in each transmission cycle c.
 マップ算出部23は、フーリエ変換部22から、それぞれの送信サイクルc(c=1,・・・,C)において、N個のフーリエ変換後の信号S(r,g,h,c)を取得する。
 マップ算出部23は、それぞれの送信サイクルcにおいて、図7に示すように、それぞれのフーリエ変換後の信号S(r,g,h,c)から、それぞれの距離ビンr(r=1,・・・,R)に対応する複素電力CP(r,az,el,c)の2次元方位マップを算出する(図4のステップST3)。
 図7は、それぞれの距離ビンr(r=1,・・・,R)に対応する複素電力CP(r,az,el,c)の2次元方位マップを示す説明図である。
 図7において、横軸は、アジマス方向を示し、縦軸は、エレベーション方向を示している。
 具体的には、マップ算出部23は、それぞれのフーリエ変換後の信号S(r,g,h,c)について、距離ビンr毎に、DBF(Digital Beam Forming)による2次元測角処理を行う。マップ算出部23が2次元測角処理を行うことで、2次元方位(az,el)についての複素電力CP(r,az,el,c)を示す2次元方位マップが得られる。ここでの2次元測角処理は、アジマス方向とエレベーション方向との2次元測角処理である。また、マップ算出部23は、測角手法として、DBFを用いている。しかし、これは一例に過ぎず、マップ算出部23は、Capon法等の他の測角手法を用いて、2次元測角処理を行うようにしてもよい。なお、2次元測角処理自体は、公知の技術であるため詳細な説明を省略する。
 それぞれの送信サイクルcにおいて、マップ算出部23が、N個のフーリエ変換後の信号S(r,g,h,c)を取得しているため、距離ビンrの数が例えばR=1000個であれば、N個のフーリエ変換後の信号S(r,g,h,c)から、N×1000個の2次元方位マップが算出される。
 マップ算出部23は、それぞれの距離ビンrに対応するN個の2次元方位マップの合成処理を行う。それぞれの距離ビンrに対応するN個の2次元方位マップの合成処理としては、例えば、N個の2次元方位マップに含まれている同一の2次元方位同士の複素電力CP(r,az,el,c)の加算処理、あるいは、同一の2次元方位同士の複素電力CP(r,az,el,c)の平均処理がある。
 マップ算出部23は、それぞれの送信サイクルcにおいて、それぞれの距離ビンrに対応する合成処理後の2次元方位マップをバイタル推定部24に出力する。
The map calculator 23 acquires N Fourier-transformed signals S (r, g, h, c) from the Fourier transform unit 22 in each transmission cycle c (c=1, . . . , C). do.
In each transmission cycle c, as shown in FIG. 7, the map calculator 23 calculates distance bins r (r=1, .multidot. . . , R), a two-dimensional azimuth map of the complex power CP(r, az, el, c) is calculated (step ST3 in FIG. 4).
FIG. 7 is an explanatory diagram showing a two-dimensional orientation map of the complex power CP(r, az, el, c) corresponding to each range bin r (r=1, . . . , R).
In FIG. 7, the horizontal axis indicates the azimuth direction, and the vertical axis indicates the elevation direction.
Specifically, the map calculation unit 23 performs two-dimensional angle measurement processing by DBF (Digital Beam Forming) for each distance bin r on the signals S (r, g, h, c) after the Fourier transform. . A two-dimensional azimuth map indicating the complex power CP(r, az, el, c) for the two-dimensional azimuth (az, el) is obtained by the map calculation unit 23 performing two-dimensional angle measurement processing. The two-dimensional angle measurement processing here is two-dimensional angle measurement processing in the azimuth direction and the elevation direction. Further, the map calculator 23 uses DBF as an angle measurement method. However, this is only an example, and the map calculation unit 23 may perform two-dimensional angle measurement processing using another angle measurement method such as the Capon method. Note that the two-dimensional angle measurement process itself is a well-known technique, and detailed description thereof will be omitted.
In each transmission cycle c, the map calculator 23 acquires N Fourier-transformed signals S(r, g, h, c). If so, N×1000 two-dimensional orientation maps are calculated from N signals S(r, g, h, c) after Fourier transform.
The map calculator 23 performs synthesis processing of N two-dimensional orientation maps corresponding to each distance bin r. Synthesis processing of N two-dimensional orientation maps corresponding to each distance bin r includes, for example, complex power CP(r, az, el, c) or averaging of complex powers CP(r, az, el, c) of the same two-dimensional direction.
The map calculator 23 outputs the synthesized two-dimensional azimuth map corresponding to each distance bin r to the vital estimator 24 in each transmission cycle c.
 バイタル推定部24の存在位置特定部25は、マップ算出部23から、それぞれの送信サイクルc(c=1,・・・,C)において、それぞれの距離ビンrに対応する合成処理後の2次元方位マップを取得する。
 存在位置特定部25は、それぞれの距離ビンrに対応する合成処理後の2次元方位マップの時間変化に基づいて、対象物体に含まれる被測定者k(k=1,・・・,K)が存在している位置を特定する(図4のステップST4)。
 以下、存在位置特定部25による位置の特定処理を具体的に説明する。
The existence position identifying unit 25 of the vitals estimating unit 24 receives from the map calculating unit 23, in each transmission cycle c (c=1, . Get an orientation map.
The existence position specifying unit 25 determines the measured person k (k=1, . is located (step ST4 in FIG. 4).
The position identification processing by the existence position identification unit 25 will be specifically described below.
 被測定者k(k=1,・・・,K)による反射波には、被測定者kの呼吸を示す呼吸信号と、被測定者kの心拍を示す心拍信号とが重畳されているものの、複素電力CP(r,az,el,c)の大部分は、呼吸信号の電力である。呼吸信号は、被測定者kの胸部における往復運動によって生じる位相変動を示す信号である。このため、同一の距離ビンrに属し、かつ、同一の2次元方位(az,el)に属している複素電力CP(r,az,el,c)は、複素信号空間において、図8に示すように、時間の経過に伴って円周上の往復運動を行う。
 図8は、同一の距離ビンrに属し、かつ、同一の2次元方位(az,el)に属している複素電力CP(r,az,el,c)における位相の時間変化を示す説明図である。図8では、複素電力CP(r,az,el,c)が、複素信号空間において、円周上の往復運動を行っている。
 図8において、●は、送信サイクルc=1~Cにおける複素電力CP(r,az,el,c)の位相θ(r,az,el,c)を示し、C個の●がプロットされている。
Although the reflected wave from the subject k (k=1, . , the majority of the complex power CP(r,az,el,c) is the power of the respiratory signal. A respiratory signal is a signal that indicates phase fluctuation caused by the reciprocating motion of the chest of the subject k. Therefore, the complex powers CP(r, az, el, c) belonging to the same range bin r and belonging to the same two-dimensional orientation (az, el) are shown in FIG. Circumferentially reciprocating motion over time.
FIG. 8 is an explanatory diagram showing temporal changes in phase in complex power CP(r, az, el, c) belonging to the same range bin r and belonging to the same two-dimensional direction (az, el). be. In FIG. 8, the complex power CP(r, az, el, c) performs circular reciprocating motion in the complex signal space.
In FIG. 8, ● indicates the phase θ(r, az, el, c) of the complex power CP(r, az, el, c) in the transmission cycle c=1 to C, and C ● are plotted. there is
 存在位置特定部25は、それぞれの距離ビンr(r=1,・・・,R)に対応する2次元方位(az,el)についての複素電力CP(r,az,el,c)における位相の時間変化が描くフィッティング円Circ(r,az,el)を算出する。
 具体的には、存在位置特定部25は、送信サイクルc(c=1,・・・,C)の複素電力CP(r,az,el,c)を示す複素データがsであるとして、以下の式(1)に示す評価関数J(α,β)が最小になるα,βを求めることで、最適なフィッティング円Circ(r,az,el)を算出する。αは、フィッティング円Circ(r,az,el)の中心であり、βは、フィッティング円Circ(r,az,el)の半径である。sの下付きのcは、送信サイクルを示す変数である。
 存在位置特定部25によるフィッティング円Circ(r,az,el)の算出数は、R×AZ×ELである。AZは、複素データsにおけるアジマス方向の分解能に対応するセル数、ELは、複素データsにおけるエレベーション方向の分解能に対応するセル数である。
The position identification unit 25 determines the phase of the complex power CP (r, az, el, c) for the two-dimensional orientation (az, el) corresponding to each distance bin r (r=1, . . . , R). A fitting circle Circ(r, az, el) drawn by the temporal change of is calculated.
Specifically, the presence position identifying unit 25 assumes that the complex data indicating the complex power CP(r, az, el, c) of the transmission cycle c (c=1, . . . , C) is s c , The optimal fitting circle Circ(r, az, el) is calculated by finding α and β that minimize the evaluation function J(α, β) shown in the following equation (1). α is the center of the fitting circle Circ(r,az,el) and β is the radius of the fitting circle Circ(r,az,el). The subscript c of s c is a variable indicating the transmission cycle.
The number of fitting circles Circ(r, az, el) calculated by the existence position specifying unit 25 is R×AZ×EL. AZ is the number of cells corresponding to the resolution in the azimuth direction of the complex data sc , and EL is the number of cells corresponding to the resolution in the elevation direction of the complex data sc .
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 評価関数J(α,β)は、式変形によって、以下の式(2)に示すような行列形式で表すことができる。 The evaluation function J (α, β) can be expressed in a matrix format as shown in the following equation (2) by transforming the equation.
             
Figure JPOXMLDOC01-appb-I000002
 式(2)において、*は、複素共役を表す数学記号である。

Figure JPOXMLDOC01-appb-I000002
In equation (2), * is a mathematical symbol representing complex conjugate.
 存在位置特定部25は、以下の式(3)に示すように、最小2乗法を用いて、式(2)に示すパラメータベクトルpを推定する。 The location identifying unit 25 estimates the parameter vector p shown in Equation (2) using the method of least squares, as shown in Equation (3) below.
Figure JPOXMLDOC01-appb-I000003

 式(3)において、+は、疑似逆行列を表す数学記号である。pの文字の上に表示されている“~”は、パラメータベクトルpの推定結果であることを示す記号である。
Figure JPOXMLDOC01-appb-I000003

In equation (3), + is a mathematical symbol representing a pseudo-inverse matrix. "~" displayed above the letter p is a symbol indicating the result of estimating the parameter vector p.
 パラメータベクトルpの推定結果が、以下の式(4)のように表されるとすれば、存在位置特定部25は、以下の式(5)及び式(6)に示すように、フィッティング円Circ(r,az,el)の中心αと、フィッティング円Circ(r,az,el)の半径βとを求めることができる。フィッティング円Circ(r,az,el)の中心αと、フィッティング円Circ(r,az,el)の半径βとが求まれば、フィッティング円Circ(r,az,el)が算出されたことになる。 Assuming that the estimation result of the parameter vector p is represented by the following equation (4), the existence position specifying unit 25 calculates the fitting circle Circ We can find the center α of (r, az, el) and the radius β of the fitting circle Circ(r, az, el). Once the center α of the fitting circle Circ(r, az, el) and the radius β of the fitting circle Circ(r, az, el) are obtained, the fitting circle Circ(r, az, el) is calculated. Become.
Figure JPOXMLDOC01-appb-I000004
 式(5)及び式(6)において、Re(□)は、複素数である□の実部であることを表し、Im(□)は、複素数である□の虚部であることを表している。
 ここでは、存在位置特定部25が、Kasa fitと呼ばれる円フィッティング手法を用いて、フィッティング円Circ(r,az,el)を算出している。しかし、これは一例に過ぎず、存在位置特定部25が、Pratt fit、Taubin fit、又は、Hyper fit等の円フィッティング手法を用いて、フィッティング円Circ(r,az,el)を算出するようにしてもよい。
Figure JPOXMLDOC01-appb-I000004
In equations (5) and (6), Re(□) represents the real part of □ which is a complex number, and Im(□) represents the imaginary part of □ which is a complex number. .
Here, the existence position specifying unit 25 calculates a fitting circle Circ(r, az, el) using a circle fitting method called Kasa fit. However, this is only an example, and the existence position specifying unit 25 uses a circle fitting method such as Pratt fit, Taubin fit, or Hyper fit to calculate the fitting circle Circ(r, az, el). may
 次に、存在位置特定部25は、以下の式(7)に示すように、フィッティング円Circ(r,az,el)の誤差であるフィッティング誤差E(az,el)を算出する。 Next, the existence position specifying unit 25 calculates a fitting error E(az, el), which is the error of the fitting circle Circ(r, az, el), as shown in the following equation (7).
 式(7)において、S(r,az,el,c)は、2次元方位スペクトルであり、2次元方位スペクトルは、送信サイクルc(c=1,・・・,C)における、距離ビンrに対応する2次元方位(az,el)についての複素電力CP(r,az,el)に相当する。
 α(r,az,el)は、フィッティング円Circ(r,az,el)の中心であり、β(r,az,el)は、フィッティング円Circ(r,az,el)の半径である。
In equation (7), S(r, az, el, c) is the two-dimensional azimuth spectrum, which is divided into range bins r corresponds to the complex power CP(r,az,el) for the two-dimensional orientation (az,el) corresponding to .
α(r,az,el) is the center of the fitting circle Circ(r,az,el) and β(r,az,el) is the radius of the fitting circle Circ(r,az,el).
 被測定者kの呼吸を示す呼吸信号と、被測定者kの心拍を示す心拍信号とが反射波に重畳されていれば、フィッティング円Circ(r,az,el)の半径βが大きくなり、かつ、フィッティング誤差E(az,el)が小さくなる。一方、反射波が、壁等の静止物による反射波であれば、フィッティング円Circ(r,az,el)の半径βが小さくなり、かつ、フィッティング誤差E(az,el)が大きくなる。
 存在位置特定部25は、算出したR×AZ×EL個のフィッティング円Circ(r,az,el)の半径βと、第1の閾値Thとを比較する。第1の閾値Thは、存在位置特定部25の内部メモリに格納されていてもよいし、バイタル測定装置20の外部から与えられるものであってもよい。
 存在位置特定部25は、算出したR×AZ×EL個のフィッティング円Circ(r,az,el)の中で、半径βが第1の閾値Th以上となるフィッティング円Circ(r,az,el)を探索する。
If the respiration signal indicating the respiration of the subject k and the heartbeat signal indicating the heartbeat of the subject k are superimposed on the reflected wave, the radius β of the fitting circle Circ(r, az, el) increases, Also, the fitting error E(az, el) is reduced. On the other hand, if the reflected wave is a reflected wave from a stationary object such as a wall, the radius β of the fitting circle Circ(r, az, el) becomes small and the fitting error E(az, el) becomes large.
The existing position identifying unit 25 compares the radius β of the calculated R×AZ×EL fitting circles Circ(r, az, el) with the first threshold value Th1 . The first threshold Th 1 may be stored in the internal memory of the location identifying unit 25 or may be given from the outside of the vitals measuring device 20 .
The existence position identifying unit 25 determines the fitting circle Circ(r, az, el).
 次に、存在位置特定部25は、半径βが第1の閾値Th以上となる1つ以上のフィッティング円Circ(r,az,el)のフィッティング誤差E(az,el)と、第2の閾値Thとを比較する。第2の閾値Thは、存在位置特定部25の内部メモリに格納されていてもよいし、バイタル測定装置20の外部から与えられるものであってもよい。
 存在位置特定部25は、半径βが第1の閾値Th以上となる1つ以上のフィッティング円Circ(r,az,el)の中で、フィッティング誤差E(az,el)が第2の閾値Th以下となるフィッティング円Circ(r,az,el)を探索する。
Next, the existence position identifying unit 25 determines the fitting error E(az, el) of one or more fitting circles Circ(r, az, el) whose radius β is equal to or greater than the first threshold Th 1 , and the second Compare with threshold Th2 . The second threshold Th 2 may be stored in the internal memory of the location identifying unit 25 or may be given from the outside of the vitals measuring device 20 .
The existence position specifying unit 25 determines that the fitting error E(az, el) is set to the second threshold value in one or more fitting circles Circ(r, az, el) whose radius β is equal to or greater than the first threshold value Th1. A fitting circle Circ(r, az, el) that is less than or equal to Th 2 is searched.
 存在位置特定部25は、それぞれの被測定者k(k=1,・・・,K)が存在している位置として、半径βが第1の閾値Th以上となり、かつ、フィッティング誤差E(az,el)が第2の閾値Th以下となるフィッティング円Circ(r,az,el)に係る距離ビンr、アジマス方向az及びエレベーション方向elのそれぞれを特定する。
 存在位置特定部25は、送信サイクルc=1~Cにおける、それぞれの被測定者kが存在している位置についての複素電力CP(r,az,el,c)から、図9に示すような、複素電力CP(r,az,el,c)における位相の時間変化を示す位相変化信号θ(r,c)を算出する。
 存在位置特定部25は、被測定者kが存在している位置についての複素電力CP(r,az,el,c)から位相変化信号θ(r,c)を算出する方法として、例えば、AD(Arctangent Demodulation)法、又は、CSD(Complex Signal Demodulation)法を用いることができる。
The existence position specifying unit 25 determines the position where each subject k (k= 1 , . az, el) is less than or equal to the second threshold value Th2 .
The presence position specifying unit 25 determines, as shown in FIG. , a phase change signal θ(r, c) indicating the time change of the phase in the complex power CP(r, az, el, c).
The presence position specifying unit 25 uses AD (Arctangent Demodulation) method or CSD (Complex Signal Demodulation) method can be used.
 図9は、存在位置特定部25により算出される位相変化信号θ(r,c)を示す説明図である。
 図9において、横軸は、送信サイクルcに対応する時間、縦軸は、距離ビンrにおける複素電力CP(r,az,el,c)の位相[rad]を示している。
 存在位置特定部25は、それぞれの被測定者kについての位相変化信号θ(r,c)を呼吸数推定部27及び心拍数推定部28のそれぞれに出力する。
FIG. 9 is an explanatory diagram showing the phase change signal θ(r, c) calculated by the existence position identifying section 25. As shown in FIG.
In FIG. 9, the horizontal axis indicates the time corresponding to the transmission cycle c, and the vertical axis indicates the phase [rad] of the complex power CP(r, az, el, c) at the distance bin r.
The position specifying unit 25 outputs the phase change signal θ(r, c) for each subject k to the respiratory rate estimating unit 27 and the heart rate estimating unit 28, respectively.
 呼吸数推定部27は、存在位置特定部25から、それぞれの被測定者k(k=1,・・・,K)についての位相変化信号θ(r,c)を取得する。
 呼吸数推定部27は、それぞれの被測定者kについての位相変化信号θ(r,c)をフーリエ変換することで、それぞれの被測定者kの呼吸数RRを推定する(図4のステップST5)。
 以下、呼吸数推定部27による呼吸数RRの推定処理を具体的に説明する。
The respiratory rate estimator 27 acquires the phase change signal θ(r, c) for each subject k (k=1, . . . , K) from the position identifying unit 25 .
The respiratory rate estimator 27 estimates the respiratory rate RR of each subject k by Fourier transforming the phase change signal θ(r, c) for each subject k (step ST5 in FIG. 4). ).
The process of estimating the respiratory rate RR by the respiratory rate estimator 27 will be specifically described below.
 被測定者kの呼吸を示す呼吸信号の波形は、概ね正弦波である。このため、位相変化信号θ(r,c)の中の正弦波的な変動は、被測定者kの呼吸によるものである。
 呼吸数推定部27は、それぞれの被測定者kについての位相変化信号θ(r,c)をスロータイム方向にフーリエ変換することで、図10に示すような呼吸スペクトルSRR(r,sf)を得る。スロータイムは、送信波の送信時刻である。呼吸スペクトルSRR(r,sf)は、位相変化信号θ(r,c)のフーリエ変換結果であり、sfは、スロータイム方向の周波数である。
 図10は、呼吸スペクトルSRR(r,sf)の一例を示す説明図である。
 図10において、横軸は、呼吸数RR[bpm]、縦軸は、呼吸スペクトル[dB]である。
The waveform of the respiration signal indicating respiration of the person to be measured k is generally a sine wave. Therefore, sinusoidal fluctuations in the phase change signal θ(r, c) are due to the respiration of the subject k.
The respiratory rate estimating unit 27 performs a Fourier transform on the phase change signal θ(r, c) for each person k to be measured in the slow time direction to obtain a respiratory spectrum S RR (r, sf) as shown in FIG. get The slow time is the transmission time of the transmission wave. The respiratory spectrum S RR (r, sf) is the Fourier transform result of the phase change signal θ(r, c), where sf is the frequency in the slow time direction.
FIG. 10 is an explanatory diagram showing an example of the respiratory spectrum S RR (r, sf).
In FIG. 10, the horizontal axis is the respiratory rate RR [bpm], and the vertical axis is the respiratory spectrum [dB].
 呼吸数推定部27は、それぞれの被測定者kについての呼吸スペクトルSRR(r,sf)の中で、第3の閾値Th以上の呼吸スペクトルSRRを探索する。第3の閾値Thは、呼吸数推定部27の内部メモリに格納されていてもよいし、バイタル測定装置20の外部から与えられるものであってもよい。呼吸スペクトルSRR(r,sf)の中には、第3の閾値Th以上になる呼吸スペクトルSRRが1つ以上存在している。
 呼吸数推定部27は、第3の閾値Th以上の呼吸スペクトルSRRに対応する呼吸数RRの中で、第4の閾値Th以上の呼吸数RRを探索する。第4の閾値Thは、呼吸数推定部27の内部メモリに格納されていてもよいし、バイタル測定装置20の外部から与えられるものであってもよい。
 呼吸数推定部27は、第3の閾値Th以上の呼吸スペクトルSRRに対応する呼吸数RRの中で、第4の閾値Th以上の呼吸数RRが、被測定者kの呼吸数RRであると推定する。
The respiratory rate estimator 27 searches for a respiratory spectrum S RR equal to or greater than the third threshold Th 3 among the respiratory spectrum S RR (r, sf) for each subject k. The third threshold Th3 may be stored in the internal memory of the respiration rate estimator 27 or may be given from the outside of the vital measurement device 20 . Among the respiratory spectra S RR (r, sf), there are one or more respiratory spectra S RR that are equal to or greater than the third threshold Th 3 .
The respiratory rate estimator 27 searches for a respiratory rate RR equal to or greater than the fourth threshold Th4 among the respiratory rates RR corresponding to the respiratory spectrum SRR equal to or greater than the third threshold Th3. The fourth threshold Th 4 may be stored in the internal memory of the respiration rate estimator 27 or may be given from the outside of the vital measurement device 20 .
The respiratory rate estimating unit 27 determines that the respiratory rate RR corresponding to the respiratory spectrum S RR equal to or greater than the third threshold Th 3 , the respiratory rate RR equal to or greater than the fourth threshold Th 4 is the respiratory rate RR of the subject k. We assume that
 ここでは、呼吸数推定部27が、呼吸スペクトルSRR(r,sf)の中で、第3の閾値Th以上の呼吸スペクトルSRRであり、かつ、当該呼吸スペクトルSRRに対応する呼吸数RRが第4の閾値Th以上であれば、当該呼吸数RRが被測定者kの呼吸数RRであると推定している。しかし、これは一例に過ぎず、呼吸数推定部27が、第3の閾値Th以上の呼吸スペクトルSRRの中で、最大の呼吸スペクトルSRRに対応する呼吸数RRが、被測定者kの呼吸数RRであると推定するようにしてもよい。 Here, the respiratory rate estimating unit 27 determines that, among the respiratory spectrum S RR (r, sf), the respiratory spectrum S RR equal to or greater than the third threshold Th 3 and the respiratory rate corresponding to the respiratory spectrum S RR If the RR is greater than or equal to the fourth threshold Th4 , the respiratory rate RR is assumed to be the respiratory rate RR of the subject k. However, this is only an example, and the respiratory rate estimator 27 determines that the respiratory rate RR corresponding to the maximum respiratory spectrum S RR among the respiratory spectrum S RR equal to or greater than the third threshold Th 3 is determined by the subject k may be estimated to be the respiratory rate RR of .
 心拍数推定部28は、存在位置特定部25から、それぞれの被測定者k(k=1,・・・,K)についての位相変化信号θ(r,c)を取得する。
 心拍数推定部28は、それぞれの被測定者kについての位相変化信号θ(r,c)に基づいて、被測定者kの心拍数HRを推定する(図4のステップST6)。
 以下、心拍数推定部28による心拍数HRの推定処理を具体的に説明する。
The heart rate estimator 28 acquires the phase change signal θ(r, c) for each subject k (k=1, . . . , K) from the location identifying unit 25 .
The heart rate estimator 28 estimates the heart rate HR of the subject k based on the phase change signal θ(r, c) for each subject k (step ST6 in FIG. 4).
The estimation processing of the heart rate HR by the heart rate estimator 28 will be specifically described below.
 まず、心拍数推定部28は、それぞれの被測定者kについての位相変化信号θ(r,c)を図示せぬハイパスフィルタ(HPF:High-Pass Filter)に通すことで、位相変化信号θ(r,c)に重畳されている呼吸信号を除去する。
 次に、心拍数推定部28は、それぞれの呼吸信号除去後の位相変化信号θ’(r,c)を連続ウェーブレット変換することで、図11に示すようなスカログラムを得る。スカログラムは、呼吸信号除去後の位相変化信号θ’(r,c)の連続ウェーブレット変換結果である。
 図11は、スカログラムの一例を示す説明図である。
 図11において、横軸は、送信サイクルcであり、縦軸は、周波数[Hz]である。
 スカログラムには、図11に示すように、心拍信号が生じている位置に縞状が現れる。
First, the heart rate estimating unit 28 passes the phase change signal θ(r, c) for each person k to be measured through a high-pass filter (HPF) (not shown) to obtain a phase change signal θ( Remove the respiratory signal superimposed on r, c).
Next, the heart rate estimator 28 obtains a scalogram as shown in FIG. 11 by performing continuous wavelet transform on the phase change signal θ′(r, c) after removal of each respiratory signal. The scalogram is the continuous wavelet transform result of the phase-changed signal θ'(r,c) after removing the respiratory signal.
FIG. 11 is an explanatory diagram showing an example of a scalogram.
In FIG. 11, the horizontal axis is the transmission cycle c, and the vertical axis is the frequency [Hz].
In the scalogram, as shown in FIG. 11, stripes appear at positions where heartbeat signals are generated.
 心拍数推定部28は、スカログラムの絶対値をスロータイム方向にフーリエ変換することで、図12に示すような、スロータイム方向の2次元スペクトルW(r,f,sf)を得る。fは、周波数成分である。
 図12は、スロータイム方向の2次元スペクトルW(r,f,sf)の一例を示す説明図である。
 図12において、横軸は、心拍数HR[bpm]、縦軸は、周波数[Hz]である。
 2次元スペクトルW(r,f,sf)には、図12に示すように、複数の周波数成分fに心拍信号が分散している。心拍信号が分散している高周波領域のスペクトルを最大比合成することで、心拍信号が強調されている心拍スペクトルSHR(r,sf)が得られる。
The heart rate estimator 28 obtains a two-dimensional spectrum W(r, f, sf) in the slow time direction as shown in FIG. 12 by Fourier transforming the absolute value of the scalogram in the slow time direction. f is the frequency component.
FIG. 12 is an explanatory diagram showing an example of the two-dimensional spectrum W(r, f, sf) in the slow time direction.
In FIG. 12, the horizontal axis is the heart rate HR [bpm], and the vertical axis is the frequency [Hz].
In the two-dimensional spectrum W(r, f, sf), as shown in FIG. 12, heartbeat signals are dispersed in a plurality of frequency components f. A heartbeat spectrum S HR (r, sf) in which the heartbeat signal is emphasized is obtained by maximally synthesizing the spectrum of the high frequency region in which the heartbeat signal is dispersed.
 心拍数推定部28は、以下の式(8)に示すように、それぞれの被測定者kについての2次元スペクトルW(r,f,sf)に含まれている高周波成分を示す行列Uを定義する。 The heart rate estimator 28 defines a matrix U representing high frequency components contained in the two-dimensional spectrum W(r, f, sf) for each subject k, as shown in the following equation (8). do.
Figure JPOXMLDOC01-appb-I000005
             (9)
 式(8)において、fは、高周波成分の下限周波数、fは、高周波成分の上限周波数である。
Figure JPOXMLDOC01-appb-I000005
(9)
In Equation (8), fL is the lower limit frequency of the high frequency component, and fH is the upper limit frequency of the high frequency component.
 次に、心拍数推定部28は、図13に示すように、行列Uの相関行列Rxx=UUを生成し、相関行列Rxxを固有値分解することで、第1の固有ベクトルuを得る。Hは、エルミート転置を示す数学記号である。
 心拍数推定部28は、以下の式(10)に示すように、第1の固有ベクトルuが示す方向に、行列Uを射影することで最大比合成を行い、図14に示すような心拍スペクトルSHR(r,sf)を得る。
Next, as shown in FIG. 13, the heart rate estimation unit 28 generates a correlation matrix R xx =UU H of the matrix U, and performs eigenvalue decomposition of the correlation matrix R xx to obtain the first eigenvector u 1 . H is the mathematical symbol for the Hermitian transpose.
The heart rate estimation unit 28 performs maximum ratio synthesis by projecting the matrix U in the direction indicated by the first eigenvector u1 as shown in the following equation (10), and the heart rate spectrum as shown in FIG. Obtain S HR (r, sf).
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
 図13は、心拍数推定部28による最大比合成処理を示す説明図である。
 図13において、横軸は、心拍数HR[bpm]、縦軸は、周波数[Hz]である。
 図14は、心拍数推定部28により得られる心拍スペクトルSHR(r,sf)の一例を示す説明図である。
 図14において、横軸は、心拍数HR[bpm]、縦軸は、心拍スペクトル[dB]である。
FIG. 13 is an explanatory diagram showing the maximum ratio combination processing by the heart rate estimator 28. As shown in FIG.
In FIG. 13, the horizontal axis is heart rate HR [bpm], and the vertical axis is frequency [Hz].
FIG. 14 is an explanatory diagram showing an example of the heartbeat spectrum S HR (r, sf) obtained by the heart rate estimator 28. As shown in FIG.
In FIG. 14, the horizontal axis is the heart rate HR [bpm], and the vertical axis is the heart rate spectrum [dB].
 心拍数推定部28は、それぞれの被測定者kについての心拍スペクトルSHR(r,sf)の中で、第5の閾値Th以上の心拍スペクトルSHRを探索する。第5の閾値Thは、心拍数推定部28の内部メモリに格納されていてもよいし、バイタル測定装置20の外部から与えられるものであってもよい。被測定者kが存在していれば、心拍スペクトルSHRが第5の閾値Th以上になる。
 心拍数推定部28は、第5の閾値Th以上の心拍スペクトルSHRに対応する心拍数HRが、被測定者kの心拍数HRであると推定する。
The heart rate estimator 28 searches for a heart rate spectrum S HR that is equal to or greater than the fifth threshold Th 5 among the heart rate spectrum S HR ( r , sf) for each subject k. The fifth threshold Th 5 may be stored in the internal memory of the heart rate estimator 28 or may be given from the outside of the vital measurement device 20 . If subject k is present, the heartbeat spectrum SHR is greater than or equal to the fifth threshold Th5 .
The heart rate estimator 28 estimates that the heart rate HR corresponding to the heart rate spectrum S HR equal to or greater than the fifth threshold Th 5 is the heart rate HR of the subject k.
 以上の実施の形態1では、対象物体による反射波を受信するアンテナ11-1~11-Nから、反射波の受信信号を取得する信号取得部21と、信号取得部21により取得された受信信号を時間方向にフーリエ変換するフーリエ変換部22とを備えるように、バイタル測定装置20を構成した。また、バイタル測定装置20は、フーリエ変換部22によるフーリエ変換後の信号を用いて、バイタル測定装置20からの複数の距離ビンのそれぞれに対応する複素電力の2次元方位マップを算出するマップ算出部23と、マップ算出部23により算出されたそれぞれの距離ビンに対応する複素電力の2次元方位マップの時間変化に基づいて、対象物体に含まれる被測定者が存在している位置を特定し、被測定者が存在している位置についての複素電力の位相の時間変化から、被測定者のバイタルを推定するバイタル推定部24とを備えている。したがって、バイタル測定装置20は、被測定者が複数の場合であっても、それぞれの被測定者のバイタルを検出することができる。 In the first embodiment described above, the signal acquiring unit 21 acquires the received signal of the reflected wave from the antennas 11-1 to 11-N that receive the reflected wave from the target object, and the received signal acquired by the signal acquiring unit 21 The vital measurement device 20 is configured to include a Fourier transform unit 22 that Fourier-transforms in the time direction. In addition, the vital measurement device 20 uses the signal after the Fourier transform by the Fourier transformation unit 22 to calculate a two-dimensional azimuth map of the complex power corresponding to each of the plurality of distance bins from the vital measurement device 20. 23, and the position where the subject included in the target object exists based on the time change of the two-dimensional azimuth map of the complex power corresponding to each distance bin calculated by the map calculation unit 23, and A vital estimating unit 24 for estimating the vitals of the person to be measured from the time change of the phase of the complex power at the position where the person to be measured is present. Therefore, even if there are a plurality of subjects, the vitals measuring device 20 can detect the vitals of each subject.
 図1に示すバイタル測定装置20では、存在位置特定部25が、それぞれの被測定者kが存在している位置として、半径βが第1の閾値Th以上となり、かつ、フィッティング誤差E(az,el)が第2の閾値Th以下となるフィッティング円Circ(r,az,el)に係る距離ビンr、アジマス方向az及びエレベーション方向elのそれぞれを特定している。しかし、これは一例に過ぎず、存在位置特定部25が、それぞれの被測定者kが存在している位置として、半径βが第1の閾値Th以上となるフィッティング円Circ(r,az,el)に係る距離ビンr、アジマス方向az及びエレベーション方向elのそれぞれを特定するようにしてもよい。
 また、存在位置特定部25が、それぞれの被測定者kが存在している位置として、フィッティング誤差E(az,el)が第2の閾値Th以下となるフィッティング円Circ(r,az,el)に係る距離ビンr、アジマス方向az及びエレベーション方向elのそれぞれを特定するようにしてもよい。
In the vital measurement device 20 shown in FIG. 1, the presence position specifying unit 25 determines that the position where each subject k is present has the radius β equal to or greater than the first threshold value Th and the fitting error E (az , el) of the fitting circle Circ(r, az, el) that is less than or equal to the second threshold Th2 , the azimuth direction az, and the elevation direction el. However, this is only an example, and the presence position specifying unit 25 determines the position of each person k to be measured by using a fitting circle Circ( r , az, el), the azimuth direction az and the elevation direction el may be specified.
Further, the presence position specifying unit 25 determines the position where each subject k is present, and the fitting circle Circ( r , az, el ), the azimuth direction az, and the elevation direction el may be specified.
実施の形態2.
 実施の形態2では、信号取得部21により取得された受信信号に含まれている、移動体による反射波に係る信号を抑圧する信号抑圧部29を備えているバイタル測定装置20について説明する。
Embodiment 2.
In Embodiment 2, a vital measurement apparatus 20 including a signal suppression unit 29 that suppresses a signal related to a reflected wave from a moving body, which is included in the received signal acquired by the signal acquisition unit 21, will be described.
 図15は、実施の形態2に係るバイタル測定装置20を含むバイタル測定システムを示す構成図である。図15において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 図16は、実施の形態2に係るバイタル測定装置20のハードウェアを示すハードウェア構成図である。図16において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
FIG. 15 is a configuration diagram showing a vital measurement system including the vital measurement device 20 according to Embodiment 2. As shown in FIG. In FIG. 15, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, so description thereof will be omitted.
FIG. 16 is a hardware configuration diagram showing hardware of the vital measurement device 20 according to the second embodiment. In FIG. 16, the same reference numerals as those in FIG. 2 denote the same or corresponding parts, so description thereof will be omitted.
 図15に示すバイタル測定装置20は、信号取得部21、信号抑圧部29、フーリエ変換部22、マップ算出部23及びバイタル推定部24を備えている。
 信号抑圧部29は、例えば、図16に示す信号抑圧回路35によって実現される。
 信号抑圧部29は、信号取得部21によって、信号受信部14-1~14-Nからの受信データS(t,g,h,c)が取得される毎に、それぞれの受信データS(t,g,h,c)に含まれている、移動体による反射波に係る信号を抑圧する。
 信号抑圧部29は、それぞれの信号抑圧後の受信データS’(t,g,h,c)をフーリエ変換部22に出力する。
A vitals measuring device 20 shown in FIG.
The signal suppression unit 29 is implemented by, for example, a signal suppression circuit 35 shown in FIG.
Each time the signal acquisition unit 21 acquires the reception data S(t, g, h, c) from the signal reception units 14-1 to 14-N, the signal suppression unit 29 suppresses the reception data S(t , g, h, and c) are suppressed.
The signal suppression unit 29 outputs the received data S′(t, g, h, c) after each signal suppression to the Fourier transform unit 22 .
 図15では、バイタル測定装置20の構成要素である信号取得部21、信号抑圧部29、フーリエ変換部22、マップ算出部23及びバイタル推定部24のそれぞれが、図16に示すような専用のハードウェアによって実現されるものを想定している。即ち、バイタル測定装置20が、信号取得回路31、信号抑圧回路35、フーリエ変換回路32、マップ算出回路33及びバイタル推定回路34によって実現されるものを想定している。
 信号取得回路31、信号抑圧回路35、フーリエ変換回路32、マップ算出回路33及びバイタル推定回路34のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
In FIG. 15, each of the signal acquisition unit 21, the signal suppression unit 29, the Fourier transform unit 22, the map calculation unit 23, and the vitals estimation unit 24, which are components of the vital measurement device 20, is provided with dedicated hardware as shown in FIG. It is assumed that it will be realized by hardware. That is, it is assumed that the vital measurement device 20 is realized by the signal acquisition circuit 31, the signal suppression circuit 35, the Fourier transform circuit 32, the map calculation circuit 33, and the vital estimation circuit .
Each of the signal acquisition circuit 31, the signal suppression circuit 35, the Fourier transform circuit 32, the map calculation circuit 33, and the vital estimation circuit 34 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, An FPGA or a combination thereof is applicable.
 バイタル測定装置20の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、バイタル測定装置20が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 バイタル測定装置20が、ソフトウェア又はファームウェア等によって実現される場合、信号取得部21、信号抑圧部29、フーリエ変換部22、マップ算出部23及びバイタル推定部24におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムが図3に示すメモリ41に格納される。そして、図3に示すプロセッサ42がメモリ41に格納されているプログラムを実行する。
The components of the vital measurement device 20 are not limited to those realized by dedicated hardware, but the vital measurement device 20 may be realized by software, firmware, or a combination of software and firmware. good too.
When the vital measurement device 20 is realized by software, firmware, or the like, the computer executes the respective processing procedures in the signal acquisition unit 21, the signal suppression unit 29, the Fourier transform unit 22, the map calculation unit 23, and the vital estimation unit 24. A program for this is stored in the memory 41 shown in FIG. Then, the processor 42 shown in FIG. 3 executes the program stored in the memory 41 .
 また、図16では、バイタル測定装置20の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図3では、バイタル測定装置20がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、バイタル測定装置20における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。 16 shows an example in which each component of the vital measurement device 20 is implemented by dedicated hardware, and FIG. 3 shows an example in which the vital measurement device 20 is implemented by software, firmware, or the like. . However, this is only an example, and some of the components of the vital measurement device 20 may be implemented by dedicated hardware, and the remaining components may be implemented by software, firmware, or the like.
 次に、図15に示すバイタル測定システムの動作について説明する。
 図1に示すバイタル測定システムでは、信号発生器12aが、図5に示すように、それぞれの送信サイクルc(c=1,・・・,C)において、アップチャープの信号Tx(1)~Tx(N)を生成している。
 図15に示すバイタル測定システムでは、信号発生器12aが、図17に示すように、それぞれの送信サイクルc(c=1,・・・,C)において、信号Tx(1)~Tx(N)をQ回繰り返し生成する。即ち、信号発生器12aは、それぞれの送信サイクルcにおいて、ヒットq(q=1,・・・,Q)の信号Tx(1)~Tx(N)を生成する。Qは、2以上の整数である。即ち、信号発生器12aは、それぞれの送信サイクルcにおいて、ヒット数Qの信号Tx(1)~Tx(N)を生成する。
 図17は、信号発生器12aにより生成されるヒット数Qのアップチャープの信号Tx(1)~Tx(N)を示す説明図である。図17の例では、N=3である。ヒット数Qは、例えば16である。
 このため、アンテナ11-n(n=1,・・・,N)は、それぞれの送信サイクルc(c=1,・・・,C)において、Q個の送信信号Tx’(n)に係る送信波のそれぞれを対象物体が存在している空間に放射する。
Next, operation of the vital measurement system shown in FIG. 15 will be described.
In the vital measurement system shown in FIG. 1, the signal generator 12a generates up-chirp signals Tx(1) to Tx in each transmission cycle c (c=1, . (N) is generated.
In the vital measurement system shown in FIG. 15, the signal generator 12a generates signals Tx(1) to Tx(N) in each transmission cycle c (c=1, . . . , C) as shown in FIG. is repeatedly generated Q times. That is, the signal generator 12a generates signals Tx(1) to Tx(N) for hits q (q=1, . . . , Q) in each transmission cycle c. Q is an integer of 2 or more. That is, the signal generator 12a generates signals Tx(1) to Tx(N) with the number of hits Q in each transmission cycle c.
FIG. 17 is an explanatory diagram showing the up-chirp signals Tx(1) to Tx(N) with the number of hits Q generated by the signal generator 12a. In the example of FIG. 17, N=3. The number of hits Q is 16, for example.
Therefore, the antennas 11-n (n=1, . Each of the transmitted waves is radiated into the space in which the object of interest resides.
 アンテナ11-1~11-Nのそれぞれは、それぞれの送信サイクルc(c=1,・・・,C)において、N×Q個の反射波を受信する。
 アンテナ11-nから送信波が放射された空間に、対象物体として、被測定者k(k=1,・・・,K)のほかに、移動体が存在していれば、移動体による反射波についてもアンテナ11-1~11-Nに入射される。
 被測定者kは、例えば、ベッドに寝ている概ね静止状態の人間、又は、椅子等に座っている概ね静止状態の人間である。移動体は、送信波が放射された空間内を移動している人間等である。
 アンテナ11-n(n=1,・・・,N)は、それぞれの送信サイクルcにおいて、対象物体による反射波を受信する。即ち、アンテナ11-n(n=1,・・・,N)は、それぞれの送信サイクルcにおいて、被測定者k及び移動体のそれぞれによる反射波を受信する。
 アンテナ11-n(n=1,・・・,N)は、それぞれの送信サイクルcにおいて、被測定者k及び移動体のそれぞれによる反射波の信号を含むN×Q個の受信信号のそれぞれをサーキュレータ13-nに出力する。
 サーキュレータ13-nは、それぞれの送信サイクルcにおいて、アンテナ11-nから出力されたN×Q個の受信信号を信号受信部14-nに出力する。
Each of the antennas 11-1 to 11-N receives N×Q reflected waves in each transmission cycle c (c=1, . . . , C).
If there is a moving object other than the person to be measured k (k=1, . Waves are also incident on the antennas 11-1 to 11-N.
The person to be measured k is, for example, a generally stationary person lying on a bed or a generally stationary person sitting on a chair or the like. A moving object is a person or the like moving in a space in which the transmitted wave is emitted.
Antennas 11-n (n=1, . . . , N) receive waves reflected by the target object in each transmission cycle c. That is, the antennas 11-n (n=1, . . . , N) receive reflected waves from the subject k and the moving object in each transmission cycle c.
Antenna 11-n (n=1, . Output to circulator 13-n.
The circulator 13-n outputs N×Q received signals output from the antenna 11-n to the signal receiver 14-n in each transmission cycle c.
 信号受信部14-n(n=1,・・・,N)は、それぞれの送信サイクルc(c=1,・・・,C)において、サーキュレータ13-nから出力されたN×Q個の受信信号のそれぞれに対する受信処理を実施する。
 信号受信部14-nは、それぞれの送信サイクルcにおいて、N×Q個の受信データS(t,g,h,c)のそれぞれをバイタル測定装置20に出力する。
 これにより、送信サイクルc=1~Cにおいて、信号受信部14-1~14-Nから、全部でN×Q×C個の受信データS(t,g,h,c)がバイタル測定装置20に与えられる。
The signal receiver 14-n (n=1, . Reception processing is performed on each of the received signals.
The signal receiver 14-n outputs each of the N×Q received data S(t, g, h, c) to the vital measurement device 20 in each transmission cycle c.
As a result, in the transmission cycle c=1 to C, a total of N×Q×C received data S (t, g, h, c) are received from the signal receivers 14-1 to 14-N, and the vital measuring device 20 given to
 バイタル測定装置20の信号取得部21は、信号受信部14-1~14-Nから、それぞれの送信サイクルc(c=1,・・・,C)において、N×Q個の受信データS(t,g,h,c)を取得する。
 信号取得部21は、それぞれの送信サイクルcにおいて、N×Q個の受信データS(t,g,h,c)のそれぞれを信号抑圧部29に出力する。
The signal acquisition unit 21 of the vital measurement device 20 receives N×Q pieces of received data S ( t, g, h, c).
The signal acquisition unit 21 outputs each of the N×Q reception data S(t, g, h, c) to the signal suppression unit 29 in each transmission cycle c.
 信号抑圧部29は、信号取得部21から、それぞれの送信サイクルc(c=1,・・・,C)において、N×Q個の受信データS(t,g,h,c)を取得する。
 信号抑圧部29は、それぞれの送信サイクルcにおいて、N×Q個の受信データS(t,g,h,c)のそれぞれに含まれている、移動体による反射波に係る信号を抑圧する。
 信号抑圧部29は、それぞれの送信サイクルcにおいて、信号抑圧後の信号として、N×Q個の受信データS(t,g,h,c)をフーリエ変換部22に出力する。
 以下、信号抑圧部29による信号抑圧処理を具体的に説明する。
The signal suppression unit 29 acquires N×Q reception data S(t, g, h, c) from the signal acquisition unit 21 in each transmission cycle c (c=1, . . . , C). .
The signal suppression unit 29 suppresses signals related to waves reflected by moving objects, which are included in each of the N×Q pieces of received data S(t, g, h, c) in each transmission cycle c.
The signal suppression unit 29 outputs N×Q reception data SY (t, g, h, c) to the Fourier transform unit 22 as a signal after signal suppression in each transmission cycle c.
The signal suppression processing by the signal suppression unit 29 will be specifically described below.
 図18Aは、アンテナ11-1~11-NからTDM(Time Division Multiplexing)方式で送信波が放射されたのち、信号取得部21により取得される受信データS(t,g,h,c)を示している。
 図18Aにおいて、横軸は、時間を示し、縦軸は、振幅を示している。MIMO(Multiple-Input Multiple-Output)による仮想チャネル数は、G×Hである。
 受信データS(t,g,h,c)には、図18Aに示すように、受信系ハードウェアに起因するDC(Direct Current)オフセット成分が重畳されている。
 信号取得部21から信号抑圧部29に与えられる受信データS(t,g,h,c)の数は、それぞれの送信サイクルc(c=1,・・・,C)において、N×Q個である。
FIG. 18A shows reception data S (t, g, h, c) acquired by the signal acquisition unit 21 after transmission waves are radiated from the antennas 11-1 to 11-N by a TDM (Time Division Multiplexing) method. showing.
In FIG. 18A, the horizontal axis indicates time and the vertical axis indicates amplitude. The number of virtual channels by MIMO (Multiple-Input Multiple-Output) is G×H.
As shown in FIG. 18A, the received data S(t, g, h, c) is superimposed with a DC (Direct Current) offset component caused by the receiving system hardware.
The number of reception data S(t, g, h, c) given from the signal acquisition unit 21 to the signal suppression unit 29 is N×Q in each transmission cycle c (c=1, . . . , C). is.
 信号抑圧部29は、図18Bに示すように、仮想チャネル毎に、受信データS(t,g,h,c)に重畳されているDCオフセット成分を除去するAD(Analog-to-Digital)オフセット補正を行う。ADオフセット補正自体は、公知の技術であるため詳細な説明を省略する。
 図18Bは、ADオフセット補正後の受信データS’(t,g,h,c)を示している。
 図18Bにおいて、横軸は、時間を示し、縦軸は、振幅を示している。
As shown in FIG. 18B, the signal suppression unit 29 performs an AD (Analog-to-Digital) offset for removing a DC offset component superimposed on the received data S (t, g, h, c) for each virtual channel. Make corrections. Since the AD offset correction itself is a known technique, detailed description thereof will be omitted.
FIG. 18B shows received data S′(t, g, h, c) after AD offset correction.
In FIG. 18B, the horizontal axis indicates time and the vertical axis indicates amplitude.
 信号抑圧部29は、図18Cに示すように、それぞれの送信サイクルcにおいて、仮想チャネル毎に、G×H個のADオフセット補正後の受信データS’(t,g,h,c)を平均化する。
 信号抑圧部29によって、受信データS’(t,g,h,c)が平均化されることで、受信データS’(t,g,h,c)に含まれている、移動体による反射波に係る信号が抑圧される。
 信号抑圧部29は、それぞれの送信サイクルcにおいて、N個の受信データS(t,g,h,c)として、N個の信号抑圧後の受信データS(t,g,h,c)をフーリエ変換部22に出力する。
 図18Cは、移動体による反射波に係る信号抑圧後の受信データS(t,g,h,c)を示している。
 図18Cにおいて、横軸は、時間を示し、縦軸は、振幅を示している。
 フーリエ変換部22以降の処理は、図1に示すバイタル測定装置20と同様であるため、説明を省略する。
As shown in FIG. 18C, the signal suppression unit 29 averages G×H received data S′(t, g, h, c) after AD offset correction for each virtual channel in each transmission cycle c. become
By averaging the received data S′(t, g, h, c) by the signal suppression unit 29, the reflection by the moving body included in the received data S′(t, g, h, c) is reduced. Wave-related signals are suppressed.
In each transmission cycle c, the signal suppression unit 29 generates N received data S Y (t, g, h, c) after signal suppression as N received data S (t, g, h, c). is output to the Fourier transform unit 22 .
FIG. 18C shows received data S Y (t, g, h, c) after signal suppression related to reflected waves from moving objects.
In FIG. 18C, the horizontal axis indicates time and the vertical axis indicates amplitude.
Since the processing after the Fourier transform unit 22 is the same as that of the vital measurement device 20 shown in FIG. 1, the description is omitted.
 以上の実施の形態2では、信号取得部21により取得された受信信号に含まれている、移動体による反射波に係る信号を抑圧する信号抑圧部29を備え、フーリエ変換部22が、信号抑圧部29による信号抑圧後の受信信号を時間方向にフーリエ変換するように、図15に示すバイタル測定装置20を構成した。したがって、図15に示すバイタル測定装置20は、図1に示すバイタル測定装置20と同様に、被測定者が複数の場合であっても、それぞれの被測定者のバイタルを検出することができるほか、空間内に移動体が存在していても、被測定者のバイタルを検出することができる。 In the second embodiment described above, the signal suppression unit 29 is provided for suppressing the signal related to the reflected wave from the moving body, which is included in the received signal acquired by the signal acquisition unit 21, and the Fourier transform unit 22 suppresses the signal. The vital measuring apparatus 20 shown in FIG. 15 is configured so as to Fourier transform the received signal after signal suppression by the unit 29 in the time direction. Therefore, the vital measurement device 20 shown in FIG. 15, like the vital measurement device 20 shown in FIG. , the vitals of the subject can be detected even if a moving object exists in the space.
実施の形態3.
 実施の形態3では、信号取得部21により取得された受信信号に基づいて、移動体を検出する移動体検出部30を備えるバイタル測定装置20について説明する。
Embodiment 3.
In Embodiment 3, a vital measuring device 20 including a moving body detection section 30 that detects a moving body based on the received signal acquired by the signal acquisition section 21 will be described.
 図19は、実施の形態3に係るバイタル測定装置20を含むバイタル測定システムを示す構成図である。図19において、図15と同一符号は同一又は相当部分を示すので説明を省略する。
 図20は、実施の形態3に係るバイタル測定装置20のハードウェアを示すハードウェア構成図である。図20において、図16と同一符号は同一又は相当部分を示すので説明を省略する。
FIG. 19 is a configuration diagram showing a vital measurement system including the vital measurement device 20 according to Embodiment 3. As shown in FIG. In FIG. 19, the same reference numerals as those in FIG. 15 denote the same or corresponding parts, so description thereof will be omitted.
FIG. 20 is a hardware configuration diagram showing the hardware of the vital measurement device 20 according to Embodiment 3. As shown in FIG. In FIG. 20, the same reference numerals as those in FIG. 16 denote the same or corresponding parts, so description thereof will be omitted.
 図19に示すバイタル測定装置20は、信号取得部21、信号抑圧部29、フーリエ変換部22、マップ算出部23、バイタル推定部24及び移動体検出部30を備えている。
 移動体検出部30は、例えば、図20に示す移動体検出回路36によって実現される。
 移動体検出部30は、信号取得部21により取得された受信データS(t,g,h,c)に含まれている、移動体による反射波に係る信号を抽出する。
 移動体検出部30は、移動体による反射波に係る信号に基づいて、移動体を検出する。
A vitals measuring device 20 shown in FIG.
The moving body detection unit 30 is realized by, for example, a moving body detection circuit 36 shown in FIG.
The moving object detection unit 30 extracts signals related to waves reflected by the moving object, which are included in the reception data S(t, g, h, c) acquired by the signal acquisition unit 21 .
The moving object detection unit 30 detects the moving object based on the signal related to the wave reflected by the moving object.
 図19では、バイタル測定装置20の構成要素である信号取得部21、信号抑圧部29、フーリエ変換部22、マップ算出部23、バイタル推定部24及び移動体検出部30のそれぞれが、図20に示すような専用のハードウェアによって実現されるものを想定している。即ち、バイタル測定装置20が、信号取得回路31、信号抑圧回路35、フーリエ変換回路32、マップ算出回路33、バイタル推定回路34及び移動体検出回路36によって実現されるものを想定している。
 信号取得回路31、信号抑圧回路35、フーリエ変換回路32、マップ算出回路33、バイタル推定回路34及び移動体検出回路36のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
In FIG. 19, each of the signal acquisition unit 21, the signal suppression unit 29, the Fourier transform unit 22, the map calculation unit 23, the vital estimation unit 24, and the moving object detection unit 30, which are components of the vital measurement device 20, is shown in FIG. It is assumed to be realized by dedicated hardware as shown. That is, it is assumed that the vital measuring device 20 is realized by a signal acquiring circuit 31, a signal suppressing circuit 35, a Fourier transforming circuit 32, a map calculating circuit 33, a vital estimating circuit 34, and a moving body detecting circuit .
Each of the signal acquisition circuit 31, the signal suppression circuit 35, the Fourier transform circuit 32, the map calculation circuit 33, the vital estimation circuit 34, and the moving object detection circuit 36 can be, for example, a single circuit, a composite circuit, a programmed processor, a parallel program, processors, ASICs, FPGAs, or combinations thereof.
 バイタル測定装置20の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、バイタル測定装置20が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 バイタル測定装置20が、ソフトウェア又はファームウェア等によって実現される場合、信号取得部21、信号抑圧部29、フーリエ変換部22、マップ算出部23、バイタル推定部24及び移動体検出部30におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムが図3に示すメモリ41に格納される。そして、図3に示すプロセッサ42がメモリ41に格納されているプログラムを実行する。
The components of the vital measurement device 20 are not limited to those realized by dedicated hardware, but the vital measurement device 20 may be realized by software, firmware, or a combination of software and firmware. good too.
When the vital measurement device 20 is realized by software or firmware, the processing in the signal acquisition unit 21, the signal suppression unit 29, the Fourier transform unit 22, the map calculation unit 23, the vital estimation unit 24, and the moving body detection unit 30 A program for causing the computer to execute the procedure is stored in the memory 41 shown in FIG. Then, the processor 42 shown in FIG. 3 executes the program stored in the memory 41 .
 また、図20では、バイタル測定装置20の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図3では、バイタル測定装置20がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、バイタル測定装置20における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。 20 shows an example in which each component of the vital measurement device 20 is implemented by dedicated hardware, and FIG. 3 shows an example in which the vital measurement device 20 is implemented by software, firmware, or the like. . However, this is only an example, and some of the components of the vital measurement device 20 may be implemented by dedicated hardware, and the remaining components may be implemented by software, firmware, or the like.
 次に、図19に示すバイタル測定システムの動作について説明する。移動体検出部30以外は、図15に示すバイタル測定システムと同様である。このため、ここでは、移動体検出部30の動作のみを説明する。 Next, the operation of the vital measurement system shown in FIG. 19 will be described. The vital measurement system is the same as that shown in FIG. Therefore, only the operation of the moving object detection unit 30 will be described here.
 移動体検出部30は、信号取得部21から、それぞれの送信サイクルc(c=1,・・・,C)において、N×C個の受信データS(t,g,h,c)を取得する。
 移動体検出部30は、N×C個の受信データS(t,g,h,c)に基づいて、空間に存在している移動体の追尾処理を実施することで、時刻の経過に伴って変化する、移動体の存在位置を推定する。移動体の追尾処理自体は、公知の技術であるため詳細な説明を省略する。
 例えば、空間に存在している移動体の数が1つであれば、1つの移動体の存在位置を推定する。例えば、2つの移動体として、第1の移動体と第2の移動体とが空間に存在していれば、第1の移動体の存在位置と、第2の移動体の存在位置とを推定する。
 移動体検出部30は、移動体の存在位置の推定結果に基づいて、移動体が存在している2次元方位を検出する。2次元方位は、バイタル測定装置20から移動体を見たアジマス方向と、バイタル測定装置20から移動体を見たエレベーション方向とである。
The moving object detection unit 30 acquires N×C reception data S(t, g, h, c) from the signal acquisition unit 21 in each transmission cycle c (c=1, . . . , C). do.
Based on the N×C pieces of received data S (t, g, h, c), the moving object detection unit 30 performs tracking processing for moving objects existing in space, thereby Estimates the existing position of a moving object that changes with time. Since the moving object tracking process itself is a well-known technique, detailed description thereof will be omitted.
For example, if the number of moving bodies existing in space is one, the existing position of one moving body is estimated. For example, if a first moving body and a second moving body exist in space as two moving bodies, the existing position of the first moving body and the existing position of the second moving body are estimated. do.
The moving object detection unit 30 detects the two-dimensional direction in which the moving object exists based on the estimation result of the existing position of the moving object. The two-dimensional orientation is the azimuth direction when the mobile body is viewed from the vital measurement device 20 and the elevation direction when the mobile body is viewed from the vital measurement device 20 .
 ここでは、移動体検出部30が、空間に存在している移動体の追尾処理を実施することで、移動体の存在位置を推定している。しかし、これは一例に過ぎず、移動体検出部30が、N×C個の受信データS(t,g,h,c)をヒット方向にフーリエ変換することで、移動体のドップラー周波数fdを算出するようにしてもよい。移動体のドップラー周波数fdを算出することで、移動体の速度を算出することができる。 Here, the moving object detection unit 30 estimates the existing position of the moving object by performing tracking processing of the moving object existing in space. However, this is only an example, and the moving body detection unit 30 Fourier transforms the N×C pieces of received data S(t, g, h, c) in the hit direction to obtain the Doppler frequency fd of the moving body as You may make it calculate. By calculating the Doppler frequency fd of the moving object, the speed of the moving object can be calculated.
 以上の実施の形態3では、信号取得部21により取得された受信信号に基づいて、移動体を検出する移動体検出部30を備えるように、図19に示すバイタル測定装置20を構成した。したがって、図19に示すバイタル測定装置20は、図15に示すバイタル測定装置20と同様に、被測定者が複数の場合であっても、それぞれの被測定者のバイタルを検出することができるほか、移動体を検出することができる。 In the third embodiment described above, the vital measuring device 20 shown in FIG. 19 is configured to include the moving body detection section 30 that detects a moving body based on the received signal acquired by the signal acquisition section 21 . Therefore, even if there are a plurality of subjects, the vital measurement apparatus 20 shown in FIG. , can detect moving objects.
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that the present disclosure allows free combination of each embodiment, modification of arbitrary constituent elements of each embodiment, or omission of arbitrary constituent elements in each embodiment.
 本開示は、バイタル測定装置、バイタル測定方法及びバイタル測定システムに適している。 The present disclosure is suitable for vital measurement devices, vital measurement methods, and vital measurement systems.
 10 センサ、11-1~11-N アンテナ、12 信号送信部、12a 信号発生器、12b 出力先選択部、13-1~13-N サーキュレータ、14-1~14-N 信号受信部、20 バイタル測定装置、21 信号取得部、22 フーリエ変換部、23 マップ算出部、24 バイタル推定部、25 存在位置特定部、26 バイタル推定処理部、27 呼吸数推定部、28 心拍数推定部、29 信号抑圧部、30 移動体検出部、31 信号取得回路、32 フーリエ変換回路、33 マップ算出回路、34 バイタル推定回路、35 信号抑圧回路、36 移動体検出回路、41 メモリ、42 プロセッサ。 10 sensors, 11-1 to 11-N antennas, 12 signal transmitters, 12a signal generators, 12b output destination selectors, 13-1 to 13-N circulators, 14-1 to 14-N signal receivers, 20 vitals Measurement device, 21 signal acquisition unit, 22 Fourier transform unit, 23 map calculation unit, 24 vital estimation unit, 25 existence position identification unit, 26 vital estimation processing unit, 27 breathing rate estimation unit, 28 heart rate estimation unit, 29 signal suppression section, 30 mobile detection section, 31 signal acquisition circuit, 32 Fourier transform circuit, 33 map calculation circuit, 34 vital estimation circuit, 35 signal suppression circuit, 36 mobile detection circuit, 41 memory, 42 processor.

Claims (10)

  1.  対象物体による反射波を受信するアンテナから、前記反射波の受信信号を取得する信号取得部と、
     前記信号取得部により取得された受信信号を時間方向にフーリエ変換するフーリエ変換部と、
     前記フーリエ変換部によるフーリエ変換後の信号を用いて、バイタル測定装置からの複数の距離ビンのそれぞれに対応する複素電力の2次元方位マップを算出するマップ算出部と、
     前記マップ算出部により算出されたそれぞれの距離ビンに対応する複素電力の2次元方位マップの時間変化に基づいて、前記対象物体に含まれる被測定者が存在している位置を特定し、前記被測定者が存在している位置についての複素電力の位相の時間変化から、前記被測定者のバイタルを推定するバイタル推定部と
     を備えたバイタル測定装置。
    a signal acquisition unit that acquires a received signal of the reflected wave from an antenna that receives the reflected wave from the target object;
    a Fourier transform unit that Fourier transforms the received signal acquired by the signal acquisition unit in the time direction;
    A map calculation unit that calculates a two-dimensional azimuth map of complex power corresponding to each of a plurality of distance bins from the vital measurement device using the signal after the Fourier transform by the Fourier transform unit;
    Based on the time change of the two-dimensional azimuth map of the complex power corresponding to each distance bin calculated by the map calculating unit, the position where the person to be measured is included in the target object is identified, and A vitals measuring device comprising: a vitals estimating unit for estimating the vitals of the person to be measured from the time change of the phase of the complex power at the position where the person is being measured.
  2.  前記対象物体の中に、1人以上の被測定者が含まれており、
     前記バイタル推定部は、
     前記マップ算出部により算出されたそれぞれの距離ビンに対応する複素電力の2次元方位マップの時間変化に基づいて、それぞれの被測定者が存在している位置を特定し、それぞれの被測定者が存在している位置についての複素電力の位相の時間変化を示す位相変化信号を出力する存在位置特定部と、
     前記存在位置特定部から出力されたそれぞれの位相変化信号に基づいて、それぞれの被測定者のバイタルを推定するバイタル推定処理部とを備えていることを特徴とする請求項1記載のバイタル測定装置。
    One or more persons to be measured are included in the target object,
    The vital estimation unit is
    Based on the time change of the two-dimensional azimuth map of the complex power corresponding to each distance bin calculated by the map calculation unit, the position where each subject is located is identified, and each subject is an existing position specifying unit that outputs a phase change signal indicating the time change of the phase of the complex power at the existing position;
    2. The vitals measuring apparatus according to claim 1, further comprising a vitals estimation processing unit for estimating the vitals of each subject based on each phase change signal output from the existence position specifying unit. .
  3.  前記存在位置特定部は、
     前記マップ算出部により算出された複数の2次元方位マップのそれぞれに含まれている複数の複素電力の中から、距離ビンが互いに同一であり、かつ、2次元方位が互いに同一である複素電力の組を複数抽出し、それぞれの組に含まれている複数の複素電力についての位相の時間変化を描くフィッティング円を算出し、被測定者が存在している位置として、算出した複数のフィッティング円の中で、第1の閾値以上の半径を有するフィッティング円に係る組に含まれている複素電力の位置を特定することを特徴とする請求項2記載のバイタル測定装置。
    The existence position specifying unit
    Among the plurality of complex powers included in each of the plurality of two-dimensional orientation maps calculated by the map calculation unit, the complex powers having the same distance bin and the same two-dimensional orientation A plurality of pairs are extracted, a fitting circle is calculated that depicts the time change of the phases of the multiple complex powers contained in each pair, and the position of the person to be measured is represented by the calculated fitting circles. 3. The vital measuring device according to claim 2, wherein the positions of complex powers included in a set of fitting circles having a radius greater than or equal to the first threshold are specified.
  4.  前記存在位置特定部は、
     前記マップ算出部により算出された複数の2次元方位マップのそれぞれに含まれている複数の複素電力の中から、距離ビンが互いに同一であり、かつ、2次元方位が互いに同一である複素電力の組を複数抽出し、それぞれの組に含まれている複数の複素電力についての位相の時間変化を描くフィッティング円を算出し、被測定者が存在している位置として、算出した複数のフィッティング円の中で、フィッティング円の誤差であるフィッティング誤差が第2の閾値以下であるフィッティング円に係る組に含まれている複素電力の位置を特定することを特徴とする請求項2記載のバイタル測定装置。
    The existence position specifying unit
    Among the plurality of complex powers included in each of the plurality of two-dimensional orientation maps calculated by the map calculation unit, the complex powers having the same distance bin and the same two-dimensional orientation A plurality of pairs are extracted, a fitting circle is calculated that depicts the time change of the phases of the multiple complex powers contained in each pair, and the position of the person to be measured is represented by the calculated fitting circles. 3. The vital measuring device according to claim 2, wherein the position of the complex power included in the set related to the fitting circle whose fitting error, which is the error of the fitting circle, is equal to or less than the second threshold is specified.
  5.  前記存在位置特定部は、
     前記マップ算出部により算出された複数の2次元方位マップのそれぞれに含まれている複数の複素電力の中から、距離ビンが互いに同一であり、かつ、2次元方位が互いに同一である複素電力の組を複数抽出し、それぞれの組に含まれている複数の複素電力についての位相の時間変化を描くフィッティング円を算出し、被測定者が存在している位置として、算出した複数のフィッティング円の中で、第1の閾値以上の半径を有し、かつ、フィッティング円の誤差であるフィッティング誤差が第2の閾値以下であるフィッティング円に係る組に含まれている複素電力の位置を特定することを特徴とする請求項2記載のバイタル測定装置。
    The existence position specifying unit
    Among the plurality of complex powers included in each of the plurality of two-dimensional orientation maps calculated by the map calculation unit, the complex powers having the same distance bin and the same two-dimensional orientation A plurality of pairs are extracted, a fitting circle is calculated that depicts the time change of the phases of the multiple complex powers contained in each pair, and the position of the person to be measured is represented by the calculated fitting circles. identifying the positions of the complex powers included in the set associated with the fitting circle having a radius greater than or equal to the first threshold and having a fitting error, which is the error of the fitting circle, less than or equal to the second threshold. The vitals measuring device according to claim 2, characterized by:
  6.  前記バイタル推定処理部は、
     前記存在位置特定部から出力されたそれぞれの位相変化信号に基づいて、それぞれの被測定者の呼吸数を推定する呼吸数推定部と、
     前記存在位置特定部から出力されたそれぞれの位相変化信号に基づいて、それぞれの被測定者の心拍数を推定する心拍数推定部とを備えていることを特徴とする請求項2記載のバイタル測定装置。
    The vital estimation processing unit,
    a breathing rate estimating section for estimating the breathing rate of each subject based on each phase change signal output from the position identifying section;
    3. The vital measurement according to claim 2, further comprising a heart rate estimating section for estimating the heart rate of each subject based on each phase change signal output from the existence position identifying section. Device.
  7.  前記信号取得部により取得された受信信号に含まれている、移動体による反射波に係る信号を抑圧する信号抑圧部を備え、
     前記フーリエ変換部は、
     前記信号抑圧部による信号抑圧後の受信信号を時間方向にフーリエ変換することを特徴とする請求項1記載のバイタル測定装置。
    A signal suppression unit that suppresses a signal related to a reflected wave from a moving object, which is included in the received signal acquired by the signal acquisition unit;
    The Fourier transform unit is
    2. The vitals measuring apparatus according to claim 1, wherein the received signal after signal suppression by said signal suppression unit is Fourier-transformed in the time direction.
  8.  前記信号取得部により取得された受信信号に基づいて、前記移動体を検出する移動体検出部を備えたことを特徴とする請求項7記載のバイタル測定装置。 The vitals measuring apparatus according to claim 7, further comprising a moving body detection section that detects the moving body based on the received signal acquired by the signal acquisition section.
  9.  信号取得部が、対象物体による反射波を受信するアンテナから、前記反射波の受信信号を取得し、
     フーリエ変換部が、前記信号取得部により取得された受信信号を時間方向にフーリエ変換し、
     マップ算出部が、前記フーリエ変換部によるフーリエ変換後の信号を用いて、バイタル測定装置からの複数の距離ビンのそれぞれに対応する複素電力の2次元方位マップを算出し、
     バイタル推定部が、前記マップ算出部により算出されたそれぞれの距離ビンに対応する複素電力の2次元方位マップの時間変化に基づいて、前記対象物体に含まれる被測定者が存在している位置を特定し、前記被測定者が存在している位置についての複素電力の位相の時間変化から、前記被測定者のバイタルを推定する
     バイタル測定方法。
    A signal acquisition unit acquires a received signal of the reflected wave from an antenna that receives the reflected wave from the target object,
    a Fourier transform unit Fourier transforming the received signal acquired by the signal acquisition unit in the time direction;
    A map calculation unit calculates a two-dimensional azimuth map of complex power corresponding to each of a plurality of distance bins from the vital measurement device using the signal after the Fourier transform by the Fourier transform unit,
    A vital estimator determines a position where the subject included in the target object exists, based on the time change of the two-dimensional azimuth map of the complex power corresponding to each distance bin calculated by the map calculator. A method of measuring vitals, comprising identifying and estimating the vitals of the person to be measured from changes in phase of complex power over time at a position where the person to be measured is present.
  10.  アンテナと、
     前記アンテナから、対象物体が存在している空間に送信波を放射させる信号送信部と、
     前記対象物体による反射後の送信波である反射波を受信する前記アンテナから、前記反射波の受信信号を取得する信号取得部と、
     前記信号取得部により取得された受信信号を時間方向にフーリエ変換するフーリエ変換部と、
     前記フーリエ変換部によるフーリエ変換後の信号を用いて、バイタル測定装置からの複数の距離ビンのそれぞれに対応する複素電力の2次元方位マップを算出するマップ算出部と、
     前記マップ算出部により算出されたそれぞれの距離ビンに対応する複素電力の2次元方位マップの時間変化に基づいて、前記対象物体に含まれる被測定者が存在している位置を特定し、前記被測定者が存在している位置についての複素電力の位相の時間変化から、前記被測定者のバイタルを推定するバイタル推定部と
     を備えたバイタル測定システム。
    an antenna;
    a signal transmitter that emits a transmission wave from the antenna to a space where the target object exists;
    a signal acquisition unit that acquires a received signal of the reflected wave from the antenna that receives the reflected wave, which is a transmission wave after being reflected by the target object;
    a Fourier transform unit that Fourier transforms the received signal acquired by the signal acquisition unit in the time direction;
    A map calculation unit that calculates a two-dimensional azimuth map of complex power corresponding to each of a plurality of distance bins from the vital measurement device using the signal after the Fourier transform by the Fourier transform unit;
    Based on the time change of the two-dimensional azimuth map of the complex power corresponding to each distance bin calculated by the map calculating unit, the position where the person to be measured is included in the target object is identified, and A vitals measuring system comprising: a vitals estimating unit for estimating the vitals of the person to be measured from the time change of the phase of the complex power with respect to the position where the person is being measured.
PCT/JP2021/046684 2021-12-17 2021-12-17 Vital sign measurement device, vital sign measurement method, and vital sign measurement system WO2023112294A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/046684 WO2023112294A1 (en) 2021-12-17 2021-12-17 Vital sign measurement device, vital sign measurement method, and vital sign measurement system
JP2023561265A JP7433554B2 (en) 2021-12-17 2021-12-17 Vital measuring device, vital measuring method, and vital measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046684 WO2023112294A1 (en) 2021-12-17 2021-12-17 Vital sign measurement device, vital sign measurement method, and vital sign measurement system

Publications (1)

Publication Number Publication Date
WO2023112294A1 true WO2023112294A1 (en) 2023-06-22

Family

ID=86773904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046684 WO2023112294A1 (en) 2021-12-17 2021-12-17 Vital sign measurement device, vital sign measurement method, and vital sign measurement system

Country Status (2)

Country Link
JP (1) JP7433554B2 (en)
WO (1) WO2023112294A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145111A (en) * 2010-01-12 2011-07-28 Panasonic Corp Uwb sensor system and reader device
WO2012115220A1 (en) * 2011-02-25 2012-08-30 株式会社産学連携機構九州 Living organism information detection system
US20210156980A1 (en) * 2018-05-07 2021-05-27 Arbe Robotics Ltd. FMCW Automotive Radar Incorporating Nonlinear Frequency Hopping Sequence Of Fractional Bandwidth Multiband Chirps
JP2021166704A (en) * 2020-03-27 2021-10-21 オリジン ワイヤレス, インコーポレイテッドOrigin Wireless, Inc. Method, apparatus, and system for wireless vital monitoring using high frequency signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145111A (en) * 2010-01-12 2011-07-28 Panasonic Corp Uwb sensor system and reader device
WO2012115220A1 (en) * 2011-02-25 2012-08-30 株式会社産学連携機構九州 Living organism information detection system
US20210156980A1 (en) * 2018-05-07 2021-05-27 Arbe Robotics Ltd. FMCW Automotive Radar Incorporating Nonlinear Frequency Hopping Sequence Of Fractional Bandwidth Multiband Chirps
JP2021166704A (en) * 2020-03-27 2021-10-21 オリジン ワイヤレス, インコーポレイテッドOrigin Wireless, Inc. Method, apparatus, and system for wireless vital monitoring using high frequency signals

Also Published As

Publication number Publication date
JP7433554B2 (en) 2024-02-19
JPWO2023112294A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
EP2983007B1 (en) Radar apparatus and object sensing method
US9759806B2 (en) Radar apparatus
US20210055386A1 (en) Wireless communication with enhanced maximum permissible exposure (mpe) compliance based on vital signs detection
US10126417B2 (en) Radar apparatus and object detecting method
JP2021505892A5 (en)
JP6576595B2 (en) Radar equipment
Han et al. Detection and localization of multiple humans based on curve length of I/Q signal trajectory using MIMO FMCW radar
US20160135694A1 (en) Medical radar method and system
EP3418769B1 (en) System for determining the direction of a target and method therefor
Islam et al. Contactless radar-based sensors: Recent advances in vital-signs monitoring of multiple subjects
JP2018197710A (en) Radar signal processor
JP2023533883A (en) Biometric information acquisition device and biometric information acquisition method
JP2014228291A (en) Radio detection device and radio detection method
JP6832534B2 (en) Estimator and estimation method
Li et al. Portable Doppler/FSK/FMCW radar systems for life activity sensing and human localization
Chen et al. Ultrawideband synthetic aperture radar for respiratory motion detection
WO2023112294A1 (en) Vital sign measurement device, vital sign measurement method, and vital sign measurement system
Xu et al. Life detection and location by MIMO ultra wideband radar
JP7146142B1 (en) Vital measuring device, vital measuring method and vital measuring system
KR20190040637A (en) SYSTEM AND METHOD FOR ESTIMATING RADAR DoA
JP6573748B2 (en) Radar equipment
Yamamoto et al. Remote sensing of heartbeat based on space diversity using MIMO FMCW radar
JP7459404B1 (en) Vital measuring device and vital measuring method
WO2019082269A1 (en) Radar device
US20200348407A1 (en) Radar device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968209

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023561265

Country of ref document: JP