WO2023112280A1 - 端末、無線通信方法及び基地局 - Google Patents
端末、無線通信方法及び基地局 Download PDFInfo
- Publication number
- WO2023112280A1 WO2023112280A1 PCT/JP2021/046615 JP2021046615W WO2023112280A1 WO 2023112280 A1 WO2023112280 A1 WO 2023112280A1 JP 2021046615 W JP2021046615 W JP 2021046615W WO 2023112280 A1 WO2023112280 A1 WO 2023112280A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference signal
- information
- channel
- dci
- dmrs
- Prior art date
Links
- 238000004891 communication Methods 0.000 title description 84
- 238000000034 method Methods 0.000 title description 47
- 230000005540 biological transmission Effects 0.000 claims description 102
- 125000004122 cyclic group Chemical group 0.000 claims description 9
- 238000013507 mapping Methods 0.000 description 66
- 238000012545 processing Methods 0.000 description 64
- 230000011664 signaling Effects 0.000 description 56
- 238000010586 diagram Methods 0.000 description 39
- 238000005259 measurement Methods 0.000 description 26
- 238000005070 sampling Methods 0.000 description 20
- 238000010801 machine learning Methods 0.000 description 18
- 238000013473 artificial intelligence Methods 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 13
- 230000008859 change Effects 0.000 description 11
- 230000009977 dual effect Effects 0.000 description 10
- 238000007726 management method Methods 0.000 description 9
- 238000010295 mobile communication Methods 0.000 description 9
- 238000001914 filtration Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 238000011112 process operation Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 3
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000013468 resource allocation Methods 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
- LTE Long Term Evolution
- 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
- LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
- 5G 5th generation mobile communication system
- 5G+ 5th generation mobile communication system
- 6G 6th generation mobile communication system
- NR New Radio
- AI artificial intelligence
- ML machine learning
- RS reference signals
- one of the objects of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can realize suitable use of RS resources.
- a terminal includes a receiving unit that receives one or more reference signal configurations, and at least one of the reference signal configurations based on at least one of information about reference signals and a specific condition. and a control for controlling the application of the signal settings.
- suitable use of RS resources can be realized.
- FIG. 1 is a diagram showing an example of setting reference signals according to option 1-1 of the first embodiment.
- FIG. 2 is a diagram showing an example of setting reference signals according to option 1-2 of the first embodiment.
- FIG. 3 is a diagram illustrating an example of conditions regarding reference signals according to the first embodiment.
- 4A and 4B are diagrams illustrating examples of sampling of reference signals.
- 5A and 5B are diagrams illustrating an example of mapping of reference signals according to the second embodiment.
- FIG. 6 is a diagram illustrating another example of mapping of reference signals according to the second embodiment.
- 7A and 7B are diagrams illustrating an example of mapping of reference signals according to option 2-2-1 of the second embodiment.
- FIG. 8 is a diagram showing an example of mapping of reference signals according to option 2-2-2 of the second embodiment.
- FIG. 9A and 9B are diagrams showing an example of sequence determination according to option 2-3-2 of the second embodiment.
- 10A and 10B are diagrams showing an example of application of information on reference signals according to option 4-1 of the fourth embodiment.
- 11A and 11B are diagrams showing an example of application of information on reference signals according to option 4-2 of the fourth embodiment.
- FIG. 12 is a diagram illustrating an example of duplication of reference signals according to the fifth embodiment.
- FIG. 13 is a diagram illustrating an example of PDSCH decoding time determination according to option 6-2 of the sixth embodiment.
- FIG. 14 is a diagram showing an example bit width of the MAC CE/DCI field according to option 7-1 of the seventh embodiment.
- FIG. 15 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment;
- FIG. 15 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment;
- FIG. 16 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
- FIG. 17 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment;
- FIG. 18 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to an embodiment.
- FIG. 19 is a diagram illustrating an example of a vehicle according to one embodiment;
- AI artificial intelligence
- channel estimation also referred to as channel measurement
- decoding of received signals and the like.
- Channel estimation for example, Channel State Information Reference Signal (CSI-RS), Synchronization Signal (SS), Synchronization Signal/Physical Broadcast Channel (SS/PBCH )) block, demodulation reference signal (DMRS), measurement reference signal (SRS), or the like.
- CSI-RS Channel State Information Reference Signal
- SS Synchronization Signal
- SS/PBCH Synchronization Signal/Physical Broadcast Channel
- DMRS demodulation reference signal
- SRS measurement reference signal
- AI artificial intelligence
- ML machine learning
- AI/ML complementation is being used to reduce resources for reference signals (RS) while maintaining channel estimation accuracy.
- RS reference signals
- RS reception measurement capable of high channel estimation accuracy
- the following requirements may be required: - Transmitting and receiving RS in a wide band (contributes to the improvement of reception quality), - Repeated transmission of RSs to combine received channels/signals (combined reception) on the receiving side (contributes to improved reception quality); • High time/frequency density of RS resources (contributes to obtaining good time/frequency correlation).
- mapping of reference signals (DMRS/PTRS) is performed with the following granularity: ⁇ For each configured grant PUSCH. • For each DCI format (DCI format 0_1/0_2/1_1/1_2). • For each PUSCH/PDSCH mapping type A or B. - Whether it is a PUSCH that transmits message A (Msg. A PUSCH).
- the present inventors came up with a suitable RS resource allocation/utilization method.
- each embodiment of the present disclosure may be applied when AI/ML/prediction is not used. In this case, it is possible to reduce the delay/overhead and change the configuration of the RS without RRC reconfiguration.
- the UE/BS trains the ML model in training mode and implements the ML model in test mode (also called test mode, testing mode, etc.).
- test mode also called test mode, testing mode, etc.
- validation of the accuracy of the ML model trained in the training mode may be performed.
- the UE/BS inputs channel state information, reference signal measurements, etc. to the ML model to obtain highly accurate channel state information/measurements/beam selection/position, future channel state information / Radio link quality etc. may be output.
- AI may be read as an object (also called object, object, data, function, program, etc.) having (implementing) at least one of the following characteristics: Estimates based on observed or collected information; - Choices based on information observed or collected; • Predictions based on observed or collected information.
- the object may be, for example, a terminal, a device such as a base station, or a device. Also, the object may correspond to a program included in the device.
- an ML model may be read as an object that has (enforces) at least one of the following characteristics: Generating an estimate by feeding, Informed to predict estimates; ⁇ Discover characteristics by giving information, • Selecting actions by giving information.
- the ML model may be read as at least one of AI model, predictive analytics, predictive analysis model, and the like. Also, the ML model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machines, random forests, neural networks, deep learning, and the like. In this disclosure, model may be translated as at least one of encoder, decoder, tool, and the like.
- regression analysis e.g., linear regression analysis, multiple regression analysis, logistic regression analysis
- model may be translated as at least one of encoder, decoder, tool, and the like.
- the ML model outputs at least one information such as estimated value, predicted value, selected action, classification, etc., based on the input information.
- the UE and the BS are the relevant subjects in order to explain the ML model for communication between the UE and the BS, but the application of each embodiment of the present disclosure is not limited to this.
- the UE and BS in the following embodiments may be read as the first UE and the second UE.
- any UE, BS, etc. in this disclosure may be read as any UE/BS.
- A/B and “at least one of A and B” may be read interchangeably.
- activate, deactivate, indicate (or indicate), select, configure, update, determine, etc. may be read interchangeably.
- supporting, controlling, controllable, operating, and capable of operating may be read interchangeably.
- Radio Resource Control RRC
- RRC parameters RRC parameters
- RRC messages higher layer parameters
- information elements IEs
- settings may be read interchangeably.
- MAC Control Element (CE) Medium Access Control Control Element
- update command update command
- activation/deactivation command may be read interchangeably.
- indexes, IDs, indicators, and resource IDs may be read interchangeably.
- sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
- a beam report may be read interchangeably as a beam measurement report, a CSI report, a CSI measurement report, a predicted beam report, a predicted CSI report, and the like.
- CSI-RS refers to Non Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS and CSI Interference Measurement (CSI-IM)). At least one may be read interchangeably.
- NZP Non Zero Power
- ZP Zero Power
- CSI-IM CSI Interference Measurement
- measured/reported RS may mean RS measured/reported for beam reporting.
- timing, time, time, slot, subslot, symbol, subframe, etc. may be read interchangeably.
- directions, axes, dimensions, polarizations, polarization components, etc. may be read interchangeably.
- estimation, prediction, and inference may be read interchangeably. Also, in the present disclosure, estimate, predict, and infer may be read interchangeably.
- the RS may be, for example, CSI-RS, SS/PBCH block (SS block (SSB)), and the like.
- the RS index may be a CSI-RS resource indicator (CRI), an SS/PBCH block resource indicator (SS/PBCH block indicator (SSBRI)), or the like.
- CSI feedback CSI feedback information
- CSI report CSI report
- CSI transmission CSI information, CSI, etc.
- a subband may be interchanged with a physical resource block (PRB), a subcarrier, an arbitrary frequency resource unit, or the like.
- PRB physical resource block
- a subcarrier an arbitrary frequency resource unit, or the like.
- the (particular) reference signal described in each embodiment of the present disclosure is a demodulation reference signal (DMRS), a phase tracking reference signal (PTRS), and others described in the present disclosure.
- DMRS demodulation reference signal
- PTRS phase tracking reference signal
- any reference signal that is In this disclosure, reference signals, DMRS, PTRS, and any other reference signals described in this disclosure may be read interchangeably.
- the reference signal described in each embodiment of the present disclosure may be a UL reference signal (reference signal for UL channel) or a DL reference signal (reference signal for DL channel) good too.
- DMRS Downlink Reference Signal
- assigning reference signals, mapping, transmitting, and receiving may be read interchangeably.
- the UE may determine reference signal mapping according to at least one of options 1-1 to 1-3 below.
- the UE may determine/select one reference signal configuration from multiple configurations regarding reference signals.
- the determination/selection of the one reference signal configuration may be performed based on specific conditions/instructions from the base station. Specific conditions/instructions from the base station will be detailed later.
- the UE when transmitting the UL channel (e.g., PUSCH), and at least one of receiving the DL channel (e.g., PDSCH) , may determine/select one reference signal setting (reference signal setting X or reference signal setting Y).
- reference signal configuration X and reference signal configuration Y when transmitting the UL channel (e.g., PUSCH), and at least one of receiving the DL channel (e.g., PDSCH) , may determine/select one reference signal setting (reference signal setting X or reference signal setting Y).
- the number of multiple reference signal settings may be two as described above, or may be two or more.
- the reference signal setting X may be interchangeably read as the first reference signal setting
- the reference signal setting Y may be interchangeably read as the second reference signal setting.
- the UE may determine one reference signal configuration among multiple reference signal configurations to be the default reference signal configuration.
- the default reference signal configuration may mean the configuration to select/determine when the UE has not received a signal specifying/instructing the selection/determination from the base station (network). .
- a plurality of reference signal configurations are, for example, demodulation reference signal (DMRS) uplink configuration (eg, higher layer parameter “DMRS-UplinkConfig”) and demodulation reference signal (DMRS) downlink configuration (eg, higher layer parameter “DMRS-DownlinkConfig”).
- DMRS demodulation reference signal
- uplink configuration eg, higher layer parameter “DMRS-UplinkConfig”
- DMRS-DownlinkConfig demodulation reference signal
- a multiple reference signal setting may be a setting that includes at least one of the following elements/parameters: • The type of setup of the reference signal (eg DMRS). • Number of Code Division Multiplexing (CDM) groups (not used for data). - The number of additional DMRS (Additional DMRS) symbols. • Maximum number of OFDM symbols for front loaded DMRS. • Frequency resources (eg, subcarriers) for transmitting reference signals. • The symbol position of the first DMRS (eg starting DMRS) for a particular mapping type (eg mapping type A). • Frequency density/time density of PTRS. • The frequency (eg, subcarrier) offset of the PTRS. • Energy per resource element (EPRE) ratio of PTRS and DL channels (eg PDSCH). - PTRS transmit power boosting factor.
- CDM Code Division Multiplexing
- Additional DMRS Additional DMRS
- Frequency resources eg, sub
- FIG. 1 is a diagram showing an example of setting reference signals according to Option 1-1 of the first embodiment.
- the UE selects/determines one reference signal setting from a plurality of reference signal settings (DMRS setting X and DMRS setting Y) based on a specific condition/instruction from the base station.
- DMRS setting X and DMRS setting Y reference signal settings
- DMRS configuration X includes PTRS configuration (elements/parameters related to PTRS, e.g., frequency density/time density of PTRS, frequency (e.g., subcarrier) offset of PTRS, PTRS and DL channel (e.g., EPRE ratio of PDSCH) and at least one of transmission power boosting factor of PTRS) are not included, and DMRS setting Y includes at least one setting of PTRS. Note that it may be arbitrary whether or not the configuration of the PTRS is included in the configuration of a plurality of reference signals.
- the UE selects/determines one DMRS configuration (DMRS configuration X) based on specific conditions/instructions from the base station.
- the UE may change/update some/all of the configuration with one reference signal configuration based on specific conditions/instructions from the base station.
- the UE changes / updates the reference signal mapping type of the reference signal configuration (DMRS configuration) already selected / configured, and when transmitting the UL channel (eg, PUSCH) and the DL channel (eg, PDSCH) may be applied to at least one of the reception of
- DMRS configuration the reference signal mapping type of the reference signal configuration
- the changed/updated setting may be a setting that includes at least one of the following elements/parameters: • The type of setup of the reference signal (eg DMRS). • Number of Code Division Multiplexing (CDM) groups (not used for data). - The number of additional DMRS (Additional DMRS) symbols. • Maximum number of OFDM symbols for front loaded DMRS. • Frequency resources (eg, subcarriers) for transmitting reference signals. • The symbol position of the first DMRS (eg starting DMRS) for a particular mapping type (eg mapping type A). • Frequency density/time density of PTRS. • The frequency (eg, subcarrier) offset of the PTRS. • EPRE ratio of PTRS and DL channels (eg PDSCH). - PTRS transmit power boosting factor.
- CDM Code Division Multiplexing
- Additional DMRS Additional DMRS
- Frequency resources eg, subcarriers
- FIG. 2 is a diagram showing an example of setting reference signals according to option 1-2 of the first embodiment.
- the UE changes some/all of the reference signal settings from the already set/selected reference signal settings (DMRS setting X) based on specific conditions/instructions from the base station.
- DMRS setting X already set/selected reference signal settings
- the UE receives information from the base station instructing to change the number of additional DMRS symbols. At this time, the UE changes the number of DMRS (additional DMRS) symbols based on the information.
- the UE receives information from the base station instructing to change the maximum number of OFDM symbols for frontloaded DMRS. At this time, the UE changes the number of DMRS (additional DMRS) symbols based on the information.
- the UE may first use option 1-1 above to select/determine one reference signal configuration for a certain channel. After that, the UE may change/update the reference signal configuration for the channel using options 1-2 above.
- the UE may first use option 1-1 above to select/determine one reference signal configuration for a certain channel (first channel). The UE may then change/update the reference signal configuration for the first channel using options 1-2 above. Furthermore, the UE may select/determine one reference signal configuration for a channel (second channel) different from the current channel using option 1-1 above. The UE may then change/update the reference signal configuration for the second channel using options 1-2 above.
- the UE may ignore the configuration/change of the first channel.
- the UE may maintain the configuration/change of the first channel.
- the UE may receive indication information regarding mapping of reference signals from the base station (network).
- the indication information regarding mapping of reference signals may be received based on the method described in the third embodiment below.
- the instruction information on mapping of reference signals may be information on reference signals described in the second embodiment below.
- the UE when transmitting the UL channel (e.g., PUSCH), and at least one of when receiving the DL channel (e.g., PDSCH), based on whether or not a specific condition is satisfied, determines the mapping of the reference signal / may decide.
- the UL channel e.g., PUSCH
- the DL channel e.g., PDSCH
- Specific conditions may be determined based on specific rules. Certain conditions may also be determined based on information received according to the method described in the third embodiment below.
- the UE when transmitting the UL channel (e.g., PUSCH), and at least one of when receiving the DL channel (e.g., PDSCH), based on whether a specific condition is met, the mapping of the reference signal to apply and/or whether to apply information about the received reference signal.
- the UL channel e.g., PUSCH
- the DL channel e.g., PDSCH
- the UE may determine to apply a specific reference signal configuration when a specific condition is satisfied. Also, the UE may decide to apply information on the received reference signals if certain conditions are met.
- the UE may apply reference signal configuration based on a specific method if a specific condition is not met.
- the specific method may be a reference signal setting method defined in existing specifications (eg, Rel.15/16).
- the particular method may be the default setting in option 1-1 above.
- the specific method may be a (default) setting to which the change (instruction) in option 1-2 above is not applied.
- a particular condition may be at least one of the following conditions: - Whether reference signal bundling (eg DMRS bundling) is applied. - Whether or not at least one of UL channel (eg, PUSCH) transmission and DL channel (eg, PDSCH) reception is performed across multiple time resources (eg, slots). • Whether the resource (eg, RE) for receiving the configured CSI-RS overlaps with the mapping resource for the reference signal based on the received information. • Modulation order (for UL/DL channels). • Number of layers (for UL/DL channels). • Number of DMRS ports (for UL/DL channels). • DCI format to allocate (schedule/activate) UL channels (eg PUSCH)/DL channels (eg PDSCH).
- DMRS bundling eg DMRS bundling
- RNTI Radio Network Temporary Identifier
- CRC Cyclic Redundancy Check
- Per configured grant configuration index ConfiguredGrantConfigIndex
- DMRS bundling means transmitting DMRS (for example, one) while maintaining equal power and phase continuity in multiple time resources (for example, slots).
- time resources for example, slots
- DMRS bundling, cross-slot channel estimation, cross-repetition channel estimation, and using common DMRS in multiple time resources may be read interchangeably.
- UL channel / DL channel spanning multiple time resources eg, slots
- time resources eg, slots
- TB transport block
- PUSCH PUSCH
- DL channel e.g., PDSCH
- the specific UL channel/DL channel is, for example, PUSCH of message A (eg, message A) for a random access procedure of a specific type (eg, type 2), configured grant (type 1/2) PUSCH, It may be at least one of a semi-persistent scheduling (SPS) PDSCH and a DCI scheduled/activated PUSCH/PDSCH.
- SPS semi-persistent scheduling
- the RNTI may be, for example, at least one of Cell (C-) RNTI, Configured Scheduling (CS-) RNTI, Modulation Coding Scheme Cell (MCS-C-) RNTI, and any other RNTI.
- C- Cell
- CS- Configured Scheduling
- MCS-C- Modulation Coding Scheme Cell
- the index of the configured grant to be applied to the DCI/MAC CE including the information on the reference signal may be included.
- DCI that allocates (schedules/activates) UL channels (eg, PUSCH)/DL channels (eg, PDSCH) includes information on reference signals will be described in detail in the fourth embodiment below.
- the UE velocity/UE velocity direction may be based on, for example, whether or not the UE is identified as being included in a specific mobile object (eg, car, train).
- the speed of the UE/direction of speed/the identity of the UE may be determined by the UE (e.g., based on sensors the UE has), and information about the speed/direction of the UE/the identity of the UE may be obtained from the base station. You may be notified and determined.
- the specific condition may be a combination of at least two of the multiple examples of the above specific conditions.
- the UE may apply information about reference signals included in DCI/MAC CE if certain conditions are met.
- part/all of the setting by one reference signal setting may be changed/updated based on the information on the reference signal included in the DCI/MAC CE.
- FIG. 3 is a diagram showing an example of conditions regarding reference signals according to the first embodiment.
- the UE makes a decision based on whether DMRS bundling is applied.
- the UE determines whether or not PUSCH transmission opportunities for multiple slots are set/instructed for 1 TB allocation. If the UE determines that DMRS bundling is not applied, it determines to apply DMRS configuration A.
- the UE when the UE determines that multiple slots of PUSCH transmission opportunities are configured/instructed for allocation of 1 TB, it determines that DMRS configuration B is applied. If the UE determines that multi-slot PUSCH transmission opportunities are not configured/indicated for the 1 TB allocation, it determines to apply DMRS configuration A.
- DMRS settings A and B are merely examples, and the setting name and the number to be set are not limited to these.
- the UE may receive information on reference signals from the base station (network).
- the information about the reference signal may include the index of the reference signal configuration applied to the mapping of the reference signal.
- the index of the reference signal configuration to be applied to the mapping of the reference signal may be an index that indicates one reference signal configuration to be applied among multiple reference signal configurations.
- the UE may apply the default reference signal configuration if it does not receive information about the reference signal including the index of the reference signal configuration.
- the default reference signal may be determined according to a specific rule, or may be determined based on RRC signaling configuration.
- the information about reference signals may include parameters for setting reference signals.
- the parameter may be at least one of the following parameters: • The type of setup of the reference signal (eg DMRS). • Number of Code Division Multiplexing (CDM) groups (not used for data). - The number of additional DMRS (Additional DMRS) symbols. • Maximum number of OFDM symbols for front loaded DMRS. • Frequency resources (eg, subcarriers) for transmitting reference signals. • The symbol position of the first DMRS (eg starting DMRS) for a particular mapping type (eg mapping type A). • Frequency density/time density of PTRS. • The frequency (eg, subcarrier) offset of the PTRS.
- the sampling offset may be an offset value for determining the symbol for starting sampling.
- a sampling offset may be an offset value for determining a subcarrier to start sampling.
- sampling of reference signals may mean determining/changing symbols/subcarriers to/from which reference signals are mapped.
- FIG. 4A and 4B are diagrams showing an example of sampling of reference signals.
- the UE determines DMRS symbols based on the indicated sampling interval and offset.
- Information about reference signals may include information about time resources to which reference signals are not mapped. Information about time resources to which reference signals are not mapped may be determined according to at least one of options 2-1-1 to 2-1-3 below.
- the information about time resources to which reference signals are not mapped may be information indicating symbols to which reference signals are not mapped.
- Information indicating symbols to which no reference signal is mapped may be a bitmap.
- the UE may determine symbols to which reference signals are not mapped based on information (bitmap) indicating symbols to which reference signals are not mapped.
- the UE assumes (expects) that no reference signal is mapped in (OFDM) symbols corresponding to bits whose indicated bitmap value is the first value (e.g., 1 (or may be 0)). / You may judge.
- Each bit (value) of the bitmap may correspond to one or more symbols.
- Each bit (value) of the bitmap may correspond to X symbols (where X is an integer such that X ⁇ 1).
- the X may be specified in advance, may be determined based on a specific rule, may be configured by RRC signaling, or may be determined based on reporting of UE capability information. may be
- bitmap length may be specified in advance, may be determined based on a specific rule, may be set by RRC signaling, or may be UE capability information. ) reports.
- the length of the bitmap may be N slots/number of symbols of the reference signal in the repeated transmission.
- the length of the bitmap may be the number of symbols of the additional reference signal (eg, additional DMRS) plus M.
- the length of the bitmap may be determined based on the number of allocated symbols for the UL channel (eg, PUSCH)/DL channel (eg, PDSCH). For example, the bitmap length may be the number of allocated symbols for the UL channel (eg, PUSCH)/DL channel (eg, PDSCH).
- repeated transmission/TBoMS is applied to UL channel (e.g. PUSCH)/DL channel (e.g. PDSCH), number of symbols of reference signal in N slots/repeated transmission, number of symbols of additional reference signal plus M and the number of allocated symbols for the UL channel/DL channel multiplied by the number of repetitions/number of allocated slots.
- UL channel e.g. PUSCH
- DL channel e.g. PDSCH
- the length of the bitmap is N slots/the number of symbols of the reference signal in the repeated transmissions
- an additional A value obtained by multiplying at least one of a value obtained by adding M to the number of reference signal symbols and the number of symbols assigned to the UL channel/DL channel by the number of repetitions/the number of assigned slots may be used.
- repeated transmission/TBoMS is applied to UL channel (e.g. PUSCH)/DL channel (e.g. PDSCH), in each slot, number of symbols of reference signal in N slots/repeated transmission, number of symbols of additional reference signal
- the bitmap length may be determined based on at least one of a value obtained by adding M to , and the number of allocated symbols for the UL channel/DL channel. For example, if repeated transmissions/TBoMS are applied to the UL channel (e.g. PUSCH)/DL channel (e.g. PDSCH), the length of the bitmap is N slots/symbols of the reference signal within the repeated transmission in each slot. number, the number of additional reference signal symbols plus M, and the number of allocated symbols for the UL channel/DL channel.
- the length of the bitmap may be determined based on the number of repetitions in allocatable slots based on the RRC parameters.
- the bitmap length may be the number of repetitions in allocatable slots based on the RRC parameters.
- the length of the bitmap is equal to the number of symbols of the reference signal in N slots/repeated transmission, plus the number of symbols of the additional reference signal. It may be determined based on a value obtained by multiplying at least one of the value obtained by adding M and the number of symbols to be assigned to the UL channel/DL channel and multiplying the value by 1/X and rounding it up.
- bit (value) in the bitmap corresponds to multiple (X) symbols
- the length of the bitmap is N slots/number of reference signal symbols in repeated transmissions
- additional reference signal symbols A value obtained by multiplying at least one of a value obtained by adding M to the number and the number of symbols assigned to the UL channel/DL channel and multiplying the value by 1/X and rounding up the value may be used.
- the UE may receive indices associated with bitmaps based on RRC signaling/specific rules using DCI/MAC CE.
- FIGS. 5A and 5B are diagrams showing examples of mapping of reference signals according to the second embodiment.
- a bitmap with a bit length equal to the number of symbols of reference signals (DMRS) in one slot is indicated to the UE.
- the number of repeated transmissions is two, and the number of symbols (X above) corresponding to each bit of the bitmap is two.
- the UE maps the DMRS to the DMRS OFDM symbol corresponding to 0, and maps the DMRS to the DMRS OFDM symbol corresponding to 1. Determine that the DMRS is not mapped.
- FIG. 5B shows the case where the bitmap indicated to the UE is applied to each slot.
- the number of repeated transmissions is two
- the number of symbols (X above) corresponding to each bit of the bitmap is two.
- the UE maps the DMRS to the DMRS OFDM symbol corresponding to 0 in each slot, and 1 to 1. It is determined that no DMRS is mapped to the corresponding DMRS OFDM symbol.
- the information about time resources to which reference signals are not mapped may be information indicating slots to which reference signals are not mapped.
- Information indicating slots to which no reference signal is mapped may be a bitmap.
- the UE may determine slots to which reference signals are not mapped based on information (bitmap) indicating slots to which reference signals are not mapped.
- the UE assumes (expects)/determines that the reference signal is not mapped in the slot corresponding to the bit whose indicated bitmap value is the first value (eg, 1 (or may be 0)).
- Each bit (value) of the bitmap may correspond to one or more slots.
- Each bit (value) of the bitmap may correspond to X slots (X is an integer of X ⁇ 1).
- the X may be specified in advance, may be determined based on a specific rule, may be configured by RRC signaling, or may be determined based on reporting of UE capability information. may be
- bitmap length may be specified in advance, may be determined based on a specific rule, may be set by RRC signaling, or may be UE capability information. ) reports.
- the bitmap length may be determined based on the number of repetitions if repeated transmissions are applied to the UL channel (eg PUSCH)/DL channel (eg PDSCH). For example, the bitmap length may be the number of repetitions if repeated transmissions are applied to the UL channel (eg PUSCH)/DL channel (eg PDSCH).
- the bitmap length may be determined based on the number of allocated slots when TBoMS is applied to the UL channel (eg, PUSCH)/DL channel (eg, PDSCH). For example, the bitmap length may be the number of allocated slots when TBoMS is applied on the UL channel (eg, PUSCH)/DL channel (eg, PDSCH).
- the length of the bitmap may be determined based on the number of repetitions in allocatable slots based on the RRC parameters.
- the bitmap length may be the number of repetitions in allocatable slots based on the RRC parameters.
- the bitmap length may be determined based on the maximum number of repetitions/number of allocated slots configured in RRC signaling.
- the bitmap length may be the maximum number of repetitions/number of allocated slots configured in RRC signaling. In this case, the bitmap length can be determined without depending on the contents of the DCI.
- the length of the bitmap is the number of repetitions, the number of allocated slots, the number of repetitions in allocatable slots based on RRC parameters, and It may be determined based on a value obtained by multiplying at least one of the maximum number of repetitions/number of allocated slots configured in RRC signaling and multiplying by 1/X, rounded up.
- the length of the bitmap is the number of repetitions, the number of allocated slots, the number of repetitions in allocatable slots based on RRC parameters, Also, it may be a value obtained by multiplying at least one of the maximum number of repetitions/number of allocated slots set by RRC signaling and rounding up the value obtained by multiplying 1/X.
- the UE may receive indices associated with bitmaps based on RRC signaling/specific rules using DCI/MAC CE.
- FIG. 6 is a diagram showing another example of mapping of reference signals according to the second embodiment.
- the number of repeated transmissions is 4, and the number of slots (X above) corresponding to each bit of the bitmap is 2.
- the UE determines that the slot corresponding to 0 is mapped with DMRS and the slot corresponding to 1 is not mapped with DMRS. do.
- DMRS is mapped in the first two slots, and DMRS is not mapped in the following two slots.
- Information about reference signals may include information about frequency resources to which reference signals are not mapped.
- the information about frequency resources to which reference signals are not mapped may be information indicating subcarriers to which reference signals are not mapped.
- Information about frequency resources (eg, subcarriers) to which reference signals are not mapped may be determined according to at least one of options 2-2-1 to 2-2-3 below.
- Information about subcarriers to which reference signals are not mapped may be information based on information specifying (limiting) sequence values corresponding to frequency resources of reference signals.
- the sequence may be an Orthogonal Cover Code (OCC) sequence (eg, w f (k′) and/or wt (k′)).
- OCC Orthogonal Cover Code
- the value of the series (for example, the value designated (limited) as k') may be the first value (for example, "0") or the second value (for example, "1").
- the UE determines the reference signal based on the formula for the reference signal sequence given in Equation 1 below. Mapping may be determined.
- ⁇ k,l (p, ⁇ ) in Equation 1 above is a complex value of RE(k, l) corresponding to antenna port p and subcarrier spacing setting ⁇ .
- ⁇ PDSCH DMRS is the scaling factor of the reference signal
- w f is the OCC sequence in the frequency direction
- w t is the OCC sequence in the time direction
- r is the sequence of the reference signal.
- k is a subcarrier index
- l is a symbol index
- ⁇ indicates an offset value.
- the above formula 1 differs from the formula defined by the existing specifications (up to Rel. 16) in that the variable of the series r is only n. By using it for the mapping of the reference signal in Equation 1 above, even when k' is limited, the values of the sequence can be used as continuous values.
- the UE determines the reference signal based on the formula for the reference signal sequence given in Equation 2 below. Mapping may be determined.
- Equation 2 is the same as the formula relating to mapping of reference signals (PDSCH DMRS) defined in existing specifications (up to Rel. 16).
- PDSCH DMRS mapping of reference signals
- Equations 1 and 2 above may be appropriately applied not only to the DL channel (eg PDSCH) but also to the UL channel (eg PUSCH).
- the parameters for PDSCH may be appropriately read and applied to PUSCH.
- the UE may assume that the reference signal is not multiplexed between the UEs when the value (k') of the sequence is different between the UEs.
- the UE may determine possible values of the sequence value (k') based on the DMRS port.
- FIGS. 7A and 7B are diagrams showing an example of mapping of reference signals according to option 2-2-1 of the second embodiment.
- the UE receives the information based on the information specifying (limiting) the sequence values corresponding to the frequency resources of the reference signals, it performs reference signal mapping as described in FIGS. 7A and 7B.
- the UE determines the corresponding reference signal mapping when the value of k' is limited to 0 and when the value of k' is limited to 1, respectively.
- the UE determines the corresponding reference signal mapping when the value of k' is limited to 0 and when the value of k' is limited to 1, respectively.
- the information about frequency resources to which reference signals are not mapped may be information indicating subcarriers to/from which reference signals are not mapped.
- Information indicating subcarriers to/from which reference signals are not mapped may be a bitmap.
- the UE may determine subcarriers to/from which reference signals are mapped based on information (bitmap) indicating subcarriers to/from which reference signals are not mapped.
- the UE assumes (expects)/determines that the reference signal is not mapped in the subcarriers corresponding to the bits whose indicated bitmap values are the first value (eg, 0 (or may be 1)). You may
- Each bit (value) of the bitmap may correspond to one or more subcarriers.
- Each bit (value) of the bitmap may correspond to X (X is an integer of X ⁇ 1) subcarriers.
- the X may be specified in advance, may be determined based on a specific rule, may be configured by RRC signaling, or may be determined based on reporting of UE capability information. may be
- Each bit (value) of the bitmap may correspond to the variable n in at least one of Equation 1 and Equation 2 above.
- the bitmap length may be specified in advance, may be determined based on a specific rule, may be set by RRC signaling, or may be reported in UE capability information. may be determined based on
- the length of the bitmap may be determined based on the maximum number of reference signal subcarriers mappable in Y (where Y is an integer equal to or greater than 1) RB/RE.
- the bitmap length may be the maximum number of reference signal subcarriers that can be mapped in Y RB/REs.
- the Y may be specified in advance, may be determined based on a specific rule, may be set by RRC signaling, or may be determined based on reporting of UE capability information. may be
- the length of the bitmap is the number of allocated subcarriers and Y (Y is an integer of 1 or more) RB/ Maximum number of subcarriers of reference signals that can be mapped in RE, number defined in advance in specifications, number determined based on specific rules, number set by RRC signaling, and UE capability information , multiplied by 1/X, rounded up.
- the length of the bitmap is the number of allocated subcarriers and Y (Y is an integer of 1 or more) RB
- Y is an integer of 1 or more
- the UE may receive indices associated with bitmaps based on RRC signaling/specific rules using DCI/MAC CE.
- FIG. 8 is a diagram showing an example of mapping of reference signals according to option 2-2-2 of the second embodiment.
- FIG. 8 shows a case where the bitmap length is the number of subcarriers (here, 6) of reference signals mapped to 1 RB (12 subcarriers).
- FIG. 8 shows a case where "101010” or "010001" is notified to the UE as the bitmap value.
- the UE determines that reference signals are mapped to subcarriers corresponding to '1' and no reference signals are mapped to subcarriers corresponding to '0'.
- the most significant bit (MSB) of the bitmap corresponds to the lowest subcarrier.
- (LSB) may correspond to the lowest subcarrier.
- the UE may determine a sequence (eg, OCC sequence) in the frequency direction (frequency domain) regarding mapping of reference signals.
- a sequence eg, OCC sequence
- the UE may determine the sequence in the frequency direction for reference signal mapping based on at least one of the following options 2-3-1 and 2-3-2.
- the UE determines whether to apply option 2-3-1/2-3-2 or whether to apply either option 2-3-1 and 2-3-2 according to a specific rule. may be set by RRC signaling, or may be determined based on information on reference signals included in DCI/MAC CE.
- option 2-3-1/2-3-2 When the UE applies option 2-3-1/2-3-2, other UEs that do not apply option 2-3-1/2-3-2 (same option), and options that the UE applies It may be assumed that inter-UE multiplexing of reference signals is not performed with at least one other UE applying a different option.
- the UE may assume/determine the value of the sequence in the frequency direction (eg, the OCC sequence) (eg, the value of w f (k′) in Equations 1 and 2 above) to be a fixed value.
- the fixed value may be 1 (or may be -1).
- the number of applicable DMRS ports is a specific value (for example, 1000 or 1001 (offset ( ⁇ ) may be limited to only 0 or 1) respectively. Also, different reference signal (eg, DMRS) ports may be configured based on the value of k'.
- the number of applicable DMRS ports is a specific value (eg, 1000, 1001 or 1002 (offset ( ⁇ ) may be limited to only 0, 2 or 4) respectively.
- the CDM groups at ports 1000, 1001 and 1002 may be 0, 1 and 2 respectively.
- different reference signal (eg, DMRS) ports may be configured based on the value of k'.
- ⁇ Option 2-3-2 ⁇ UE calculates a frequency direction sequence (eg, OCC sequence) based on a specific number (eg, N (N is an integer of 1 or more)) of a specific sequence, and maps the reference signal to the specific number of subcarriers may be applied to each
- the specific sequence may be, for example, a cyclic shift sequence.
- the UE may determine a sequence in the frequency direction at each reference signal (DMRS) port based on N cyclic shift sequences of sequence length N whose rotation phase amount is shifted by 2 ⁇ /N.
- DMRS reference signal
- the N may be specified in advance, may be determined based on a specific rule, may be set by RRC signaling, or may be based on information on reference signals included in DCI/MAC CE. may be determined by
- option 2-3-2 it can be preferably applied when the reference signal is mapped to N subcarriers, and multiplexing for N UEs (inter-UE multiplex) is possible.
- FIGS. 9A and 9B are diagrams showing an example of sequence determination according to option 2-3-2 of the second embodiment.
- the example shown in FIGS. 9A and 9B shows the case where the above N is 3.
- FIG. 9A and 9B shows the case where the above N is 3.
- the UE generates OCC sequences in the frequency direction at each reference signal (DMRS) port based on three cyclic shift sequences (see FIG. 9A ) whose sequence length is 3 and whose rotation phase amount is shifted by 2 ⁇ /3. may decide.
- This method can be preferably applied when a reference signal is allocated for each subcarrier divided by 3 from the total number of subcarriers to be allocated.
- the UE may apply the OCC sequence every 4 subcarriers in the entire RB. Also, the UE may apply the OCC sequence to every third subcarrier out of the subcarriers to which the DMRS is mapped.
- the second embodiment it is possible to appropriately define/determine information on reference signals for determining mapping of reference signals.
- the UE may receive information about reference signals using higher layer signaling (RRC signaling/MAC CE)/physical layer signaling (DCI).
- RRC signaling/MAC CE higher layer signaling
- DCI physical layer signaling
- a UE may receive one or more reference signal configurations using RRC signaling.
- One or more (or multiple) reference signal configurations may be configured for the UE.
- One or more (or multiple) resource mappings of reference signals may be configured for the UE.
- the condition of which reference signal to apply among a plurality of reference signal configurations may be set using RRC signaling.
- the mapping of the reference signal may be associated with the Time Domain Resource Assignment (TDRA) of the UL channel (eg, PUSCH)/DL channel (eg, PDSCH).
- TDRA Time Domain Resource Assignment
- each row index of TDRA may be associated with each reference signal mapping setting.
- the UE may determine to apply the reference signal configuration corresponding to the row index indicated by the DCI when scheduling the UL channel (eg, PUSCH)/DL channel (eg, PDSCH).
- the UE may receive at least one piece of information regarding the reference signal in the second embodiment using RRC signaling.
- the UE may receive instructions regarding one or more reference signal configurations using MAC CE.
- the UE may be instructed using MAC CE which reference signal configuration to apply among multiple reference signal configurations configured using RRC signaling.
- the UE may receive at least one piece of information regarding the reference signal in the second embodiment using MAC CE.
- the UE may receive information about reference signals using DCI.
- the DCI may be a DCI that is transmitted individually to the UE.
- the DCI may be a DCI transmitted in a UE-specific control resource set (CORESET)/PDCCH/search space set.
- the RNTI that scrambles the CRC of the DCI may be a specific RNTI (eg, C-RNTI/CS-RNTI/MCS-C-RNTI).
- each UE can report to the base station (network) whether the DCI has been decoded.
- This DCI may be a DCI that schedules/activates UL channels (eg, PUSCH)/DL channels (eg, PDSCH).
- UL channels eg, PUSCH
- DL channels eg, PDSCH
- the DCI may be a DCI (groupcast/multicast DCI) that is commonly transmitted to multiple UEs.
- the DCI may be DCI transmitted in a control resource set (CORESET)/PDCCH/search space set common to multiple UEs.
- the RNTI that scrambles the CRC of the DCI may be an existing RNTI (for example, C-RNTI/CS-RNTI/MCS-C-RNTI) or another (newly defined RNTI).
- the UE may determine the discrimination information regarding the RNTI to be used based on a specific rule, may determine based on the setting by RRC signaling, or may determine the reference signal received using DCI/MAC CE may be determined based on information about
- the UE may be configured with PDCCH/CORESET/search space for receiving the DCI.
- the UE may report/transmit HARQ-ACK information for the DCI.
- the UE reports HARQ-ACK information about decoding of the DCI after a specific number (eg, N (N is an integer of 1 or more)) symbols/slots/ms from the last symbol of the PDCCH corresponding to the received DCI.
- N may be determined based on a specific rule, may be determined based on the configuration by RRC signaling, may be determined based on the report of UE capability information, may be determined based on the received DCI may be determined for each neuronology (eg, subcarrier spacing setting) based on the
- a UE may transmit HARQ-ACK (NACK) information only when transmitting ACK (or NACK) when receiving information on reference signals using a DCI common to multiple UEs.
- NACK HARQ-ACK
- the UE may transmit/report information identifying the UE (eg, C-RNTI) in addition to HARQ-ACK information.
- C-RNTI information identifying the UE
- the UE may be instructed to use DCI for one reference signal configuration among multiple reference signal configurations configured using RRC signaling/MAC CE.
- the UE may receive at least one piece of information regarding the reference signal in the second embodiment using DCI.
- the third embodiment it is possible to appropriately notify/transmit/receive information about reference signals.
- the fourth embodiment describes a period of applying information on reference signals.
- the UE may determine the period for applying information on reference signals according to at least one of options 4-1 to 4-3 below.
- a UL channel e.g., PUSCH
- DL channel e.g., PDSCH
- the UL channel/DL channel may include at least one of SPS PDSCH, configured grant (CG) PUSCH (for example, CG type 2 PUSCH), and repeated transmission of PUSCH/PDSCH.
- CG configured grant
- the UE may apply the information on the reference signal included in the DCI to all of the UL/DL channels.
- the UE may receive a specified number of transmission/reception opportunities (e.g., N times) from the first transmission/reception opportunity of the UL/DL channel.
- Information about reference signals included in the DCI may be applied to the UL channel/DL channel.
- the N may be determined based on a specific rule, may be determined based on configuration by RRC signaling, or may be determined based on reporting UE capability information.
- the UE When the UL/DL channel is scheduled/activated by DCI, the UE shall select the reference signal included in the DCI for the UL/DL channel at the first transmission/reception opportunity among the UL/DL channels. may apply.
- FIGS. 10A and 10B are diagrams showing an example of application of information on reference signals according to option 4-1 of the fourth embodiment.
- the UE receives DCI that activates the CG PUSCH.
- the DCI includes information indicating addition of one additional DMRS as information on the reference signal.
- the UE applies the information on the reference signal included in the DCI to (all of) the CG PUSCHs activated by the DCI.
- the UE applies the information on the reference signal included in the DCI to the CG PUSCH in the first transmission opportunity among the CG PUSCHs activated by the DCI.
- the UE does not apply information about reference signals included in DCI to CG PUSCHs other than the CG PUSCH in the first transmission opportunity.
- Option 4-2 mainly describes the timing of applying information on reference signals (starting application of information on reference signals).
- the UE may determine/determine the timing to start applying information on reference signals according to at least one of options 4-2-1 to 4-2-3 below.
- the UE receives the information on the reference signal (including DCI/MAC CE), the time resources (symbols/slots/subslots) after a certain number (eg, N) of time resources (symbols/slots/subslots/ms) ), the application of the information on the reference signal may be started.
- UE from the transmission of the UL channel (eg, PUCCH / PUSCH) containing HARQ-ACK information corresponding to the information on the reference signal (including DCI / MAC CE), a specific number (eg, N) time resources (symbol / (slot/subslot/ms) later time resource (symbol/slot/subslot), the application of the information on the reference signal may start.
- the UL channel eg, PUCCH / PUSCH
- HARQ-ACK information corresponding to the information on the reference signal including DCI / MAC CE
- a specific number eg, N
- time resources symbol / (slot/subslot/ms) later time resource (symbol/slot/subslot
- a DCI that schedules/activates a UL channel (e.g., PUSCH)/DL channel (e.g., PDSCH) includes information about reference signals
- the UE may specify the specific UL channel/DL channel that is scheduled/activated by that DCI.
- the application of the information on that reference signal may start in the (eg, first) UL/DL channel time resources (symbols/slots/subslots).
- N in options 4-2-1 to 4-2-3 above may be 0 or more.
- N in the above options 4-2-1 to 4-2-3 may be specified in advance, may be determined by a specific rule, may be set using RRC signaling, It may be determined based on UE capability information, may be determined based on information about reference signals included in DCI/MAC CE, or may be determined based on received DCI/MAC CE by neumerology (for example, sub setting of carrier spacing).
- Whether any of the above options 4-2-1 to 4-2-3 is applied may be specified in advance, may be determined by a specific rule, or may be set using RRC signaling. may be determined based on UE capability information, or may be determined based on information on reference signals included in DCI/MAC CE.
- any specific UL channel / DL channel may be determined by a specific rule, may be configured using RRC signaling, UE capability information or based on information on the reference signal included in the DCI/MAC CE.
- the particular UL channel/DL channel is, for example, at least one of a PUSCH carrying message A, a CG (Type 1/2) PUSCH, an SPS PDSCH, and a DCI scheduled/activated PUSCH/PDSCH, good too.
- FIG. 11A and 11B are diagrams showing an example of application of information on reference signals according to option 4-2 of the fourth embodiment.
- N slots after the last symbol of reception of DCI/MAC CE containing information on reference signals the application of the information starts (option 4-2-1 above).
- the application of the information starts N slots after the transmission of the HARQ-ACK information corresponding to the information on the reference signal (option 4-2-2 above).
- Option 4-3 mainly describes the timing of ending the application of information on reference signals.
- the UE may determine/determine the timing to terminate application of information on reference signals according to at least one of options 4-3-1 to 4-3-9 below.
- the UE receives a time resource (symbol/ slot/sub-slot), the application of the information on the reference signal may be terminated.
- the UE may stop applying information on the reference signal in time resources (symbols/slots/subslots) after entering RRC inactive mode/RRC idle mode.
- the UE receives the information (including DCI/MAC CE) about the new reference signal, and after a certain number (eg, M) time resources (symbols/slots/subslots/ms) later time resources (symbols/slots/ sub-slot), the application of the information on the reference signals up to that point may be terminated.
- a certain number eg, M
- the UE may stop applying the information on the previous reference signal at the timing of (starting) the application of the information on the new reference signal (including DCI/MAC CE).
- the application (start) timing of the information on the new reference signal may be at least one of the timings described in option 4-2 above.
- the UE receives the information on the reference signal (including DCI/MAC CE), the time resource (symbol/slot/subslot) after a certain number (e.g., M) of time resources (symbol/slot/subslot/ms) ), the application of the information on the reference signal may be terminated.
- UE from the transmission of the UL channel (eg, PUCCH / PUSCH) containing HARQ-ACK information corresponding to the information on the reference signal (including DCI / MAC CE), a specific number of (eg, M) time resources (symbol / (slot/subslot/ms) later time resource (symbol/slot/subslot), the application of the information on the reference signal may be terminated.
- the UL channel eg, PUCCH / PUSCH
- HARQ-ACK information corresponding to the information on the reference signal including DCI / MAC CE
- the UE may select one of the UL channels/DL channels scheduled/activated by that DCI.
- a time resource eg, M
- a certain number eg, M
- time resources e.g, symbols/slot/subslot/ms
- the application of the information on the reference signal may be terminated.
- the UE selects a UL channel (e.g., PDSCH) containing HARQ-ACK information corresponding to the (last) DL channel to be scheduled/activated PUCCH/PUSCH) transmission, in time resources (symbols/slots/subslots) after a specific number (e.g., M) of time resources (symbols/slots/subslots/ms), apply information on the reference signal. may be terminated.
- a UL channel e.g., PDSCH
- M specific number
- the UE starts applying information on reference signals after a certain number (eg, M) of time resources (symbols/slots/subslots/ms) and after L UL channel transmissions/DL channel receptions. , the application of information on the reference signal may be terminated in time resources (symbols/slots/subslots) in at least one of .
- N and L in options 4-3-1 to 4-3-9 above may be 0 or more.
- N and L in options 4-3-1 to 4-3-9 above may be specified in advance, may be determined by specific rules, or may be set using RRC signaling and may be determined based on UE capability information, may be determined based on information about reference signals included in DCI/MAC CE, or may be determined based on received DCI/MAC CE by numerology (e.g. , setting of subcarrier spacing).
- Whether any of the above options 4-3-1 to 4-3-9 is applied may be specified in advance, may be determined by a specific rule, or may be set using RRC signaling. may be determined based on UE capability information, or may be determined based on information on reference signals included in DCI/MAC CE.
- any specific UL channel / DL channel may be determined by a specific rule, may be configured using RRC signaling, UE capability information or based on information on the reference signal included in the DCI/MAC CE.
- the particular UL channel/DL channel is, for example, at least one of a PUSCH carrying message A, a CG (Type 1/2) PUSCH, an SPS PDSCH, and a DCI scheduled/activated PUSCH/PDSCH, good too.
- first reference signal overlaps with another reference signal (second reference signal) different from the reference signal.
- the first reference signal may mean the reference signal in the first to fourth and sixth to ninth embodiments.
- the second reference signal may be, for example, CSI-RS.
- the UE does not include an indication that the first reference signal resource and the second reference signal resource indicated by the information overlap in the information (including DCI/MAC CE) regarding the first reference signal. can be assumed.
- the resources of the first reference signal may be, for example, at least one of DMRS resources, CDM group DMRS resources associated with PDSCH potential DMRS ports, and PTRS resources.
- the CDM group associated with the potential DMRS port may mean a CDM group for DMRS mapped to contiguous/discontinuous resources in the frequency direction to which DMRS may be mapped.
- the UE may operate according to certain rules.
- the specific rule may be at least one of options 5-1 to 5-3 below.
- the UE may apply the information regarding the first reference signal.
- the UE may not receive/decode the (resources of) the second reference signal that overlaps (resources of) the first reference signal.
- the UE may not apply the information regarding the first reference signal.
- the UE may not apply all of the information regarding the first reference signal.
- the UE may apply part of the information regarding the first reference signal and not apply the rest of the information regarding the first reference signal.
- the UE may apply the information by changing the resource for mapping the first reference signal so as not to overlap with the second reference signal.
- the UE maps the first reference signal so that the portion of the first reference signal that overlaps with the second reference signal does not overlap with the second reference signal.
- the resources to be used may be staggered by a certain number of symbols.
- Whether any of the above options 5-1 to 5-3 is applied may be specified in advance, may be determined by a specific rule, or may be set using RRC signaling. and may be determined based on UE capability information.
- FIG. 12 is a diagram showing an example of duplication of reference signals according to the fifth embodiment.
- the UE is receiving the SPS PDSCH.
- the first reference signal (PDSCH DMRS) and the second reference signal (CSI-RS) do not overlap.
- the UE receives information on the first reference signal and transmits additional DMRS at the third reception opportunity.
- the above option 5-2 and 5-3 may apply.
- PDSCH process operation time may mean the elapsed time (symbols) from the last symbol of PDSCH until the HARQ-ACK corresponding to the PDSCH is transmitted.
- the PDSCH process operation time may be determined based on the PDSCH decoding time (PDSCH decoding time).
- PDSCH decoding time (PDSCH decoding time) may be included in PDSCH process operation time (PDSCH processing procedure time).
- the PDSCH process operation time (PDSCH processing procedure time) / PDSCH decoding time (PDSCH decoding time) is determined based on at least one of the following options 6-1 and 6-2 / You may judge.
- the UE determines the PDSCH processing procedure time/PDSCH decoding time based on certain higher layer (RRC) parameters/ may decide.
- RRC higher layer
- the specific higher layer (RRC) parameter may be information about additional DMRS positions (eg, dmrs-AdditionalPosition) included in the DL DMRS configuration (eg, DMRS-downlinkConfig).
- the specific higher layer (RRC) parameters may be parameters that are set before receiving information on reference signals.
- the UE may determine/determine the PDSCH processing procedure time/PDSCH decoding time based on information about the reference signal.
- the information about the reference signal may be information about the number of additional reference signal symbols (for example, the number of additional DMRS OFDM symbols).
- a setting of PDSCH processing procedure time/PDSCH decoding time corresponding to the number of additional reference signal symbols may be defined.
- FIG. 13 is a diagram showing an example of PDSCH decoding time determination according to option 6-2 of the sixth embodiment.
- the UE determines/determines PDSCH processing procedure time/PDSCH decoding time based on the correspondence (eg, table) shown in FIG. 13 .
- the number of OFDM symbols of the additional DMRS is 0, whether the number of OFDM symbols of the additional DMRS is 1 or more, and the setting ( ⁇ ) of the PDSCH subcarrier interval
- the conditions and time values within the correspondence are only examples.
- the number of OFDM symbols of additional DMRS as a condition may be an arbitrary value
- the number of rows indicating the number of OFDM symbols of additional DMRS as a condition may be 3 or more.
- Whether the above option 6-1 or 6-2 is applied may be specified in advance, may be determined by a specific rule, or may be set using RRC signaling and may be determined based on UE capability information.
- PDSCH processing procedure time / PDSCH decoding time time can be determined/judged appropriately.
- At least one of options 7-1 and 7-2 below may be applied to the bit field of the information on the reference signal included in the MAC CE/DCI (format).
- a UE may not expect to receive a DCI/MAC CE containing information about reference signals whose bit-fields are to be changed in width.
- the UE may determine/determine the bit width of the information on the reference signal based on the specific bit width configuration.
- the specific bit width setting may be, for example, a reference signal setting that requires the longest (or maximum) bit width.
- the UE should set the bit width equal to the longest bit width. It may be assumed that the MSB (or LSB) of the field is padded with a fixed value (eg, 0 (or 1)).
- FIG. 14 is a diagram showing an example bit width of the MAC CE/DCI field according to option 7-1 of the seventh embodiment.
- multiple reference signal configurations DMRS configurations X and Y
- DMRS configurations X and Y are configured for the UE.
- the bit field of the information on the reference signal related to DMRS configuration X (the antenna port field for DMRS configuration X in the example of FIG. 14) is the information on the reference signal related to DMRS configuration Y. Shorter than bitfield.
- the bit width of the information contained in MAC CE/DCI is calculated based on the bit width of the bit field of the information related to the reference signal associated with DMRS setting Y, which requires a longer (longest) bit field. be done.
- bit width of the information about the reference signal related to the DMRS setting X is padded with a fixed value (0) so that it is equal to the bit width of the information about the reference signal related to the DMRS setting Y.
- ⁇ Option 7-2 ⁇ For the UE, it may be configured whether the bit width of the bit field of the information on the reference signal included in the MAC CE/DCI (format) can be changed.
- This setting may be performed using higher layer signaling (RRC signaling/MAC CE)/physical layer signaling (DCI).
- RRC signaling/MAC CE higher layer signaling
- DCI physical layer signaling
- the UE uses the following options 7-2-1 to 7-2- 3, may operate according to at least one of
- the UE may not expect to receive MAC CE/DCI containing information about the bit width modified reference signal.
- the UE may receive the MAC CE/DCI containing information about the reference signal whose bit width is changed.
- the UE does not have to apply the information on the reference signal included in the MAC CE/DCI.
- the UE may receive the MAC CE/DCI containing information about the reference signal whose bit width is changed.
- the UE may apply the information on the reference signal included in the MAC CE/DCI in specific cases.
- the information about the reference signal may be shorter than the already set bit width required for setting the reference signal. Also, in the specific case, for example, the information about the reference signal may be equal to the bit width required for setting the reference signal that has already been set.
- the UE does not have to assume reception of MAC CE/DCI containing information on reference signals that are changed to a bit width longer than the bit width required for the already set reference signal settings.
- the UE When the UE receives a DCI/MAC CE associated with a reference signal configuration corresponding to a bit width that is short compared to the longest bit width, the UE shall adjust the bit field so that it equals the same bit width as the longest bit width. It may be assumed that the MSB (or LSB) is padded with a fixed value (eg, 0 (or 1)).
- the UE When receiving MAC CE/DCI including information on reference signals that are changed to a bit width longer than the bit width required for the already set reference signal configuration, the UE does not apply all of the information on reference signals. good too.
- the UE When receiving MAC CE/DCI containing information on reference signals that are changed to a bit width longer than the bit width required for the already set reference signal settings, the UE applies only part of the information on reference signals.
- Whether any of the above options 7-2-1 to 7-2-3 is applied may be specified in advance in the specification, may be determined by a specific rule, or may be set using RRC signaling. or determined based on UE capability information.
- the seventh embodiment even when the mapping of reference signals is dynamically set/instructed, it is possible to appropriately determine bit fields of information on reference signals.
- the eighth embodiment describes restrictions on additional reference signals.
- At least one of options 8-1 and 8-2 below may be applied to the number of additional reference signal symbols.
- the additional reference signal and the additional DMRS may be read interchangeably.
- the number of additional reference signal symbols and the number of additional DMRS OFDM symbols may be read interchangeably.
- the number of symbols of additional reference signals may be limited/determined based on the symbol position of the first (first) reference signal.
- the first (initial) reference signal may be a reference signal of a specific mapping type (eg, mapping type A).
- the number of symbols of additional reference signals may be limited/determined based on the symbol positions of frontloaded reference signals.
- the above restrictions are higher layer parameters indicating the position of the first (first) reference signal (eg, dmrs-TypeA-Position), the mapping type of the UL/DL channel, and the UL/DL channel may mean that the number of additional reference signal symbols is limited based on at least one of the duration of .
- the above limitation means that the number of additional reference signal symbols is limited based on a higher layer parameter (for example, maxLength) indicating the maximum number of frontloaded reference signals. good.
- a higher layer parameter for example, maxLength
- the UE may assume that the information on the reference signals does not include any configuration/indication that exceeds the limit on the number of symbols for additional reference signals.
- the UE operates based on at least one of the following options 8-2-1 and 8-2-2 good too.
- the UE may apply the information regarding the reference signals regardless of the symbol number limit of the additional reference signals.
- the UE may not apply information about reference signals to direct reference signal mapping beyond the limit of the number of symbols for additional reference signals.
- the UE does not have to apply all the information about the received reference signals.
- the UE may not apply only part of the information about the received reference signals.
- Whether one of the options 8-2-1 and 8-2-2 is applied may be specified in advance, may be determined by a specific rule, or may be set using RRC signaling. or determined based on UE capability information.
- ⁇ Ninth Embodiment> At least one of the embodiments described above may only be applied to UEs that have reported or support a particular UE capability.
- the specific UE capabilities may indicate at least one of the following: - Whether to support specific operations/information for each embodiment. - Whether or not to support the application of each option/combination of options in each embodiment.
- the above UE capability may be reported by whether or not the UE can handle it.
- the UE capabilities may be reported for all frequencies, per frequency, or for frequency ranges (eg, Frequency Range 1 (FR1), Frequency Range 2 (FR2), FR2-1, FR2- 2) may be reported for each, may be reported for each cell, or may be reported for each subcarrier spacing (SCS).
- FR1 Frequency Range 1
- FR2 Frequency Range 2
- SCS subcarrier spacing
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the above embodiments may be applied if the UE is configured with specific information related to the above embodiments by higher layer signaling.
- the specific information may be reduced CSI feedback/information indicating enabling reduced CSI feedback, any RRC parameters for a specific release (eg, Rel.18), etc. .
- the UE can implement the above functions while maintaining compatibility with existing specifications.
- wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
- communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
- FIG. 15 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
- the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
- LTE Long Term Evolution
- 5G NR 5th generation mobile communication system New Radio
- 3GPP Third Generation Partnership Project
- the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
- RATs Radio Access Technologies
- MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
- RATs Radio Access Technologies
- MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
- LTE Evolved Universal Terrestrial Radio Access
- EN-DC E-UTRA-NR Dual Connectivity
- NE-DC NR-E -UTRA Dual Connectivity
- the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
- the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
- the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
- dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
- gNB NR base stations
- a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
- a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
- the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
- the user terminal 20 may connect to at least one of the multiple base stations 10 .
- the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
- CA carrier aggregation
- CC component carriers
- DC dual connectivity
- Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
- Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
- FR1 may be a frequency band below 6 GHz (sub-6 GHz)
- FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
- the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
- wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
- IAB Integrated Access Backhaul
- relay station relay station
- the base station 10 may be connected to the core network 30 directly or via another base station 10 .
- the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
- a radio access scheme based on orthogonal frequency division multiplexing may be used.
- OFDM orthogonal frequency division multiplexing
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- a radio access method may be called a waveform.
- other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
- the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
- a downlink shared channel Physical Downlink Shared Channel (PDSCH)
- PDSCH Physical Downlink Shared Channel
- PBCH Physical Broadcast Channel
- PDCCH Physical Downlink Control Channel
- an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
- PUSCH uplink shared channel
- PUCCH uplink control channel
- PRACH Physical Random Access Channel
- User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
- User data, higher layer control information, and the like may be transmitted by PUSCH.
- a Master Information Block (MIB) may be transmitted by the PBCH.
- Lower layer control information may be transmitted by the PDCCH.
- the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
- DCI downlink control information
- the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
- the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
- PDSCH may be replaced with DL data
- PUSCH may be replaced with UL data.
- a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
- CORESET corresponds to a resource searching for DCI.
- the search space corresponds to the search area and search method of PDCCH candidates.
- a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
- One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
- PUCCH channel state information
- acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
- SR scheduling request
- a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
- downlink, uplink, etc. may be expressed without adding "link”.
- various channels may be expressed without adding "Physical" to the head.
- synchronization signals SS
- downlink reference signals DL-RS
- the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
- CRS cell-specific reference signal
- CSI-RS channel state information reference signal
- DMRS Demodulation reference signal
- PRS Positioning Reference Signal
- PTRS Phase Tracking Reference Signal
- the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
- SS, SSB, etc. may also be referred to as reference signals.
- DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
- FIG. 16 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
- the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
- One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
- this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
- the control unit 110 controls the base station 10 as a whole.
- the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
- the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like.
- the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
- the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
- the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
- the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
- the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
- the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
- the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
- the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
- the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
- the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
- the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
- the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
- digital beamforming eg, precoding
- analog beamforming eg, phase rotation
- the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control for example, HARQ retransmission control
- the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
- channel coding which may include error correction coding
- modulation modulation
- mapping mapping
- filtering filtering
- DFT discrete Fourier transform
- DFT discrete Fourier transform
- the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
- the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
- the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
- FFT Fast Fourier transform
- IDFT Inverse Discrete Fourier transform
- the transmitting/receiving unit 120 may measure the received signal.
- the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
- the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
- RSRP Reference Signal Received Power
- RSSQ Reference Signal Received Quality
- SINR Signal to Noise Ratio
- RSSI Received Signal Strength Indicator
- channel information for example, CSI
- the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
- the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140.
- the transmitting/receiving unit 120 may transmit one or more reference signal settings.
- the control unit 110 performs at least transmission and reception of the reference signal to which at least part of at least one of the reference signal configurations is applied, based on at least one of information about the reference signal and a specific condition.
- One may be controlled (first embodiment).
- the transmitting/receiving unit 120 transmits one or more reference signal settings using (Radio Resource Control (RRC)) signaling, and transmits information about the reference signals as downlink control information (DCI) and Medium Access Control (MAC) control elements ( Control Element (CE)) may be used for transmission.
- RRC Radio Resource Control
- DCI downlink control information
- MAC Medium Access Control
- CE Control Element
- the control unit 110 may determine the mapping of the reference signals using the reference signal configuration and the information on the reference signals (second and third embodiments).
- the transmitting/receiving unit 120 may transmit one or more reference signal settings and information on reference signals.
- the control unit 110 may determine the application period of the information on the reference signals, and determine the mapping of the reference signals using the reference signal configuration and the information on the reference signals (fourth embodiment).
- the transmitting/receiving unit 120 may use at least one of downlink control information (DCI) and medium access control (MAC) control element (CE) to transmit information about the reference signal.
- DCI downlink control information
- MAC medium access control
- CE control element
- FIG. 17 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
- the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
- One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
- this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
- the control unit 210 controls the user terminal 20 as a whole.
- the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
- the control unit 210 may control signal generation, mapping, and the like.
- the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
- the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals and transfer them to the transmission/reception unit 220 .
- the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
- the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
- the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
- the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
- the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
- the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
- the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
- the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
- the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
- digital beamforming eg, precoding
- analog beamforming eg, phase rotation
- the transmitting/receiving unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (eg, RLC retransmission control), MAC layer processing (eg, , HARQ retransmission control) and the like may be performed to generate a bit string to be transmitted.
- RLC layer processing eg, RLC retransmission control
- MAC layer processing eg, HARQ retransmission control
- the transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
- Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
- the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
- the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
- the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
- the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
- the transmitting/receiving section 220 may measure the received signal.
- the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
- the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
- a measurement result may be output to the control unit 210 .
- the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
- the transceiver 220 may receive one or more reference signal configurations.
- the control unit 210 may control application of at least one of the reference signal configurations based on at least one of information about reference signals and a specific condition (first embodiment).
- the reference signal setting may include at least one of demodulation reference signal setting and phase tracking reference signal setting (first embodiment).
- the control unit 210 may select/determine one reference signal setting from a plurality of the reference signal settings based on the information about the reference signal and the specific condition (first embodiment).
- the specific conditions include application of reference signal bundling, whether or not transmission of a channel spanning a plurality of slots is performed, overlap with other reference signals different from the reference signal, modulation order, number of layers, the Number of reference signal ports, format of downlink control information for scheduling physical downlink shared channels or physical uplink shared channels, whether or not the reference signal is used for a specific channel, cyclic redundancy check of the downlink control information Radio network temporary identifier used for scrambling, configured grant setting, whether the downlink control information includes information about the reference signal, the state of the terminal corresponding to the learning state, and the terminal speed (first embodiment).
- the transmitting/receiving unit 220 receives one or more reference signal settings using (Radio Resource Control (RRC)) signaling, and transmits information on the reference signals as downlink control information (DCI) and Medium Access Control (MAC) control elements ( Control Element (CE)) may be used for reception.
- RRC Radio Resource Control
- DCI downlink control information
- MAC Medium Access Control
- CE Control Element
- the control unit 210 may control the mapping of the reference signals based on the reference signal configuration and information on the reference signals (second and third embodiments).
- the control unit 210 may determine at least one of slots and symbols to which the reference signal is not mapped based on the information on the reference signal (second embodiment).
- the control unit 210 may determine subcarriers to which the reference signal is not mapped based on the information on the reference signal (second embodiment).
- the control unit 210 may determine an orthogonal cover code sequence to be applied to the reference signal based on the information on the reference signal (second embodiment).
- the transmitting/receiving unit 220 may receive one or more reference signal settings and information about the reference signals.
- the control unit 210 may determine the application period of the information on the reference signals, and determine the mapping of the reference signals based on the reference signal configuration and the information on the reference signals (fourth embodiment).
- control unit 210 may apply the information on the reference signal to all of the channels (fourth embodiment ).
- control unit 210 may apply information about the reference signal in the first transmission opportunity of the channel (first 4).
- the control unit 210 controls the first period after the reception of the information on the reference signal and the first time after the reception of the Hybrid Automatic Repeat ReQuest ACKnowledgement (HARQ-ACK) for the downlink control information including the information on the reference signal. At least one of the start and end of application of the information on the reference signal may be determined after the period of 2 has elapsed (fourth embodiment).
- HARQ-ACK Hybrid Automatic Repeat ReQuest ACKnowledgement
- the transmitting/receiving unit 220 may use at least one of downlink control information (DCI) and medium access control (MAC) control element (CE) to receive information about the reference signal.
- DCI downlink control information
- MAC medium access control
- CE control element
- the control unit 210 may determine the decoding time of the physical downlink shared channel based on information on additional reference signals included in the DCI (sixth embodiment).
- control unit 210 may It may be determined that the bit width of the information is a fixed value, or it may be assumed that the bit width is padded to the fixed value (seventh embodiment).
- the control unit 210 may determine whether or not the information on the reference signals includes an instruction to exceed the limit on the number of additional reference signal symbols (eighth embodiment).
- each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
- a functional block may be implemented by combining software in the one device or the plurality of devices.
- function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
- a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
- a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 18 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to an embodiment.
- the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
- processor 1001 may be implemented by one or more chips.
- predetermined software program
- the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
- the processor 1001 operates an operating system and controls the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
- CPU central processing unit
- control unit 110 210
- transmission/reception unit 120 220
- FIG. 10 FIG. 10
- the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
- programs program codes
- software modules software modules
- data etc.
- the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
- the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
- the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
- the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
- a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
- the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
- the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
- the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
- the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
- Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
- the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
- DSP digital signal processor
- ASIC application specific integrated circuit
- PLD programmable logic device
- FPGA field programmable gate array
- a signal may also be a message.
- a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
- a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
- a radio frame may consist of one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
- a subframe may consist of one or more slots in the time domain.
- a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
- a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
- Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
- a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- a slot may also be a unit of time based on numerology.
- a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
- a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
- PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
- Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
- one subframe may be called a TTI
- a plurality of consecutive subframes may be called a TTI
- one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum scheduling time unit in wireless communication.
- a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
- radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
- a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
- one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
- a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
- the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
- the short TTI e.g., shortened TTI, etc.
- a TTI having the above TTI length may be read instead.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
- the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
- the number of subcarriers included in an RB may be determined based on neumerology.
- an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
- One TTI, one subframe, etc. may each be configured with one or more resource blocks.
- One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
- PRB Physical Resource Block
- SCG Sub-Carrier Group
- REG Resource Element Group
- PRB pair RB Also called a pair.
- a resource block may be composed of one or more resource elements (Resource Element (RE)).
- RE resource elements
- 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
- a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
- the common RB may be identified by an RB index based on the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
- BWP for UL
- BWP for DL DL BWP
- One or multiple BWPs may be configured for a UE within one carrier.
- At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
- BWP bitmap
- radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
- the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
- the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
- information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
- Information, signals, etc. may be input and output through multiple network nodes.
- Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
- Uplink Control Information (UCI) Uplink Control Information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
- RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
- MAC signaling may be notified using, for example, a MAC Control Element (CE).
- CE MAC Control Element
- notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
- the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
- Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
- a “network” may refer to devices (eg, base stations) included in a network.
- precoding "precoding weight”
- QCL Quality of Co-Location
- TCI state Transmission Configuration Indication state
- spatialal patial relation
- spatialal domain filter "transmission power”
- phase rotation "antenna port
- antenna port group "layer”
- number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
- base station BS
- radio base station fixed station
- NodeB NodeB
- eNB eNodeB
- gNB gNodeB
- Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
- a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
- a base station can accommodate one or more (eg, three) cells.
- the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
- a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
- RRH Head
- the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
- MS Mobile Station
- UE User Equipment
- Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
- the moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary.
- Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them.
- the mobile body may be a mobile body that autonomously travels based on an operation command.
- the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
- a vehicle e.g., car, airplane, etc.
- an unmanned mobile object e.g., drone, self-driving car, etc.
- a robot manned or unmanned .
- at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
- at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- FIG. 19 is a diagram showing an example of a vehicle according to one embodiment.
- the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service unit 59 and communication module 60.
- various sensors current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58
- information service unit 59 and communication module 60.
- the driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
- the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
- the electronic control unit 49 is composed of a microprocessor 61 , a memory (ROM, RAM) 62 , and a communication port (eg, input/output (IO) port) 63 . Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 .
- the electronic control unit 49 may be called an Electronic Control Unit (ECU).
- ECU Electronic Control Unit
- the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52.
- air pressure signal of front wheels 46/rear wheels 47 vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor
- the information service unit 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. and one or more ECUs that control The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
- various information/services for example, multimedia information/multimedia services
- the information service unit 59 may include an input device (e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.) that receives input from the outside, and an output device that outputs to the outside (e.g., display, speaker, LED lamp, touch panel, etc.).
- an input device e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.
- an output device e.g., display, speaker, LED lamp, touch panel, etc.
- the driving support system unit 64 includes a millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., Global Navigation Satellite System (GNSS), etc.), map information (e.g., High Definition (HD)) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMU), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more devices that control these devices ECU.
- the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
- the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 .
- the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
- the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
- Communication module 60 may be internal or external to electronic control 49 .
- the external device may be, for example, the above-described base station 10, user terminal 20, or the like.
- the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (and may function as at least one of the base station 10 and the user terminal 20).
- the communication module 60 receives signals from the various sensors 50 to 58 described above input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. may be transmitted to the external device via wireless communication.
- the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be called an input unit that receives input.
- the PUSCH transmitted by communication module 60 may include information based on the above inputs.
- the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle.
- the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as displays and speakers based on the PDSCH received by the communication module 60 (or data/information decoded from the PDSCH)). may be called
- the communication module 60 stores various information received from an external device in a memory 62 that can be used by the microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
- the base station in the present disclosure may be read as a user terminal.
- communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
- the user terminal 20 may have the functions of the base station 10 described above.
- words such as "uplink” and “downlink” may be replaced with words corresponding to communication between terminals (for example, "sidelink”).
- uplink channels, downlink channels, etc. may be read as sidelink channels.
- user terminals in the present disclosure may be read as base stations.
- the base station 10 may have the functions of the user terminal 20 described above.
- operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
- various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- LTE-B LTE-Beyond
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- xG x is, for example, an integer or a decimal number
- Future Radio Access FAA
- RAT New-Radio Access Technology
- NR New Radio
- NX New radio access
- FX Future generation radio access
- GSM registered trademark
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- IEEE 802 .11 Wi-Fi®
- IEEE 802.16 WiMAX®
- IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these.
- any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
- determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
- determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
- determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
- connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
- radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
- a and B are different may mean “A and B are different from each other.”
- the term may also mean that "A and B are different from C”.
- Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本開示の一態様に係る端末は、1つ以上の参照信号設定を受信する受信部と、参照信号に関する情報及び特定の条件の少なくとも一方に基づいて、前記参照信号設定のうちの少なくとも1つの参照信号設定の適用を制御する制御部と、を有する。本開示の一態様によれば、好適なRSリソースの利用を実現できる。
Description
本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のような人工知能(Artificial Intelligence(AI))技術を活用することが検討されている。例えば、AI/MLによる補完を用いて、参照信号(Reference Signal(RS))のリソースを削減することが検討されている。
しかしながら、当該RSリソース削減の具体的な内容については、まだ検討が進んでいない。これらを適切に規定しなければ、高効率なリソース利用が達成できず、通信スループット又は通信品質の向上が抑制されるおそれがある。
そこで、本開示は、好適なRSリソースの利用を実現できる端末、無線通信方法及び基地局を提供することを目的の1つとする。
本開示の一態様に係る端末は、1つ以上の参照信号設定を受信する受信部と、参照信号に関する情報及び特定の条件の少なくとも一方に基づいて、前記参照信号設定のうちの少なくとも1つの参照信号設定の適用を制御する制御部と、を有する。
本開示の一態様によれば、好適なRSリソースの利用を実現できる。
(無線通信への人工知能(Artificial Intelligence(AI))技術の適用)
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、AI技術を活用することが検討されている。
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、AI技術を活用することが検討されている。
例えば、将来の無線通信技術について、特に、ビームを用いる通信において、ビーム管理、受信信号の復号などのために、チャネル推定(チャネル測定と呼ばれてもよい)の高精度化が望まれている。
チャネル推定は、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号(Synchronization Signal(SS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、復調用参照信号(DeModulation Reference Signal(DMRS))、測定用参照信号(Sounding Reference Signal(SRS))などの少なくとも1つを用いて行われてもよい。
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のような人工知能(Artificial Intelligence(AI))技術を活用することが検討されている。
例えば、AI/MLによる補完を用いて、チャネル推定精度を維持しつつ参照信号(Reference Signal(RS))のリソースを削減することが検討されている。
例えば、端末(ユーザ端末、User Equipment(UE)などともいう)/基地局においてAI/MLを利用する学習が行われていない(終わっていない)場合、高いチャネル推定精度が可能なRS受信測定、又は、学習に用いる正確なRS受信測定を達成するためには、下記の要件等が必要となることが考えられる:
・広帯域においてRSを送受信すること(受信品質向上に寄与)、
・受信側において受信したチャネル/信号を合成(合成受信)するためにRSを繰り返し送信すること(受信品質向上に寄与)、
・RSリソースの時間/周波数密度が高いこと(時間/周波数の適切な相関の取得に寄与)。
・広帯域においてRSを送受信すること(受信品質向上に寄与)、
・受信側において受信したチャネル/信号を合成(合成受信)するためにRSを繰り返し送信すること(受信品質向上に寄与)、
・RSリソースの時間/周波数密度が高いこと(時間/周波数の適切な相関の取得に寄与)。
これらを踏まえると、AI/MLの学習が十分に行われている場合と、そうでない場合とで、適切なRSの割り当てが異なると考えられる。そのため、適切なRSリソースを動的に割り当てる方法フレームワークの導入が望ましい。
しかしながら、当該フレームワークの具体的な内容については、まだ検討が進んでいない。これらを適切に規定しなければ、高効率なリソース利用が達成できず、通信スループット又は通信品質の向上が抑制されるおそれがある。
また、既存の仕様(Rel.16まで)においては、参照信号(DMRS/PTRS)のマッピングの設定は、以下の粒度で行われることが仕様化されている:
・コンフィギュアドグラントPUSCHごと。
・DCIフォーマット(DCIフォーマット0_1/0_2/1_1/1_2)ごと。
・PUSCH/PDSCHのマッピングタイプA又はBごと。
・メッセージAを伝送するPUSCH(Msg.A PUSCH)か否か。
・コンフィギュアドグラントPUSCHごと。
・DCIフォーマット(DCIフォーマット0_1/0_2/1_1/1_2)ごと。
・PUSCH/PDSCHのマッピングタイプA又はBごと。
・メッセージAを伝送するPUSCH(Msg.A PUSCH)か否か。
上述のように高効率なリソース利用を達成するためには、さらに柔軟かつ動的な参照信号のマッピングの設定が導入されることが望ましい。
そこで、本発明者らは、好適なRSリソースの割り当て/利用方法を着想した。
なお、本開示の各実施形態は、AI/ML/予測が利用されない場合に適用されてもよい。この場合、RRC再設定なしでも、遅延/オーバヘッドを削減して、RSの設定を変更することが可能になる。
本開示の一実施形態では、UE/BSは、訓練モード(training mode)においてMLモデルの訓練を行い、テストモード(test mode、testing modeなどとも呼ばれる)においてMLモデルを実施する。テストモードでは、訓練モードにおいて訓練されたMLモデル(trained ML model)の精度の検証(バリデーション)が行われてもよい。
本開示においては、UE/BSは、MLモデルに対して、チャネル状態情報、参照信号測定値などを入力して、高精度なチャネル状態情報/測定値/ビーム選択/位置、将来のチャネル状態情報/無線リンク品質などを出力してもよい。
なお、本開示において、AIは、以下の少なくとも1つの特徴を有する(実施する)オブジェクト(対象、客体、データ、関数、プログラムなどとも呼ばれる)で読み替えられてもよい:
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
本開示において、当該物体は、例えば、端末、基地局などの装置、デバイスなどであってもよい。また、当該物体は、当該装置に含まれるプログラムに該当してもよい。
また、本開示において、MLモデルは、以下の少なくとも1つの特徴を有する(実施する)オブジェクトで読み替えられてもよい:
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
また、本開示において、MLモデルは、AIモデル、予測分析(predictive analytics)、予測分析モデルなどの少なくとも1つで読み替えられてもよい。また、MLモデルは、回帰分析(例えば、線形回帰分析、重回帰分析、ロジスティック回帰分析)、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク、ディープラーニングなどの少なくとも1つを用いて導出されてもよい。本開示において、モデルは、エンコーダー、デコーダー、ツールなどの少なくとも1つで読み替えられてもよい。
MLモデルは、入力される情報に基づいて、推定値、予測値、選択される動作、分類、などの少なくとも1つの情報を出力する。
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
以下の実施形態では、UE-BS間の通信に関するMLモデルを説明するため、関連する主体はUE及びBSであるが、本開示の各実施形態の適用は、これに限られない。例えば、別の主体間の通信(例えば、UE-UE間の通信)については、下記実施形態のUE及びBSを、第1のUE及び第2のUEで読み替えてもよい。言い換えると、本開示のUE、BSなどは、いずれも任意のUE/BSで読み替えられてもよい。
本開示において、「A/B」、「A及びBの少なくとも一方」、は互いに読み替えられてもよい。
本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できる、は互いに読み替えられてもよい。
本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定、は互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンド、は互いに読み替えられてもよい。
本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、TRP、空間関係情報(SRI)、空間関係、SRSリソース識別子(SRS Resource Indicator(SRI))、SRSリソース、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード、基地局、参照信号、所定のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、所定のアンテナポートグループ(例えば、DMRSポートグループ)、所定のグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、所定の参照信号グループ、CORESETグループ)、所定のリソース(例えば、所定の参照信号リソース)、所定のリソースセット(例えば、所定の参照信号リソースセット)、CORESETプール、PUCCHグループ(PUCCHリソースグループ)、空間関係グループ、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
本開示において、インデックス、ID、インディケーター、リソースID、は互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
本開示において、ビームレポートは、ビーム測定レポート、CSIレポート、CSI測定レポート、予測ビームレポート、予測CSIレポートなどと互いに読み替えられてもよい。
本開示において、CSI-RSは、ノンゼロパワー(Non Zero Power(NZP))CSI-RS、ゼロパワー(Zero Power(ZP))CSI-RS及びCSI干渉測定(CSI Interference Measurement(CSI-IM))の少なくとも1つと互いに読み替えられてもよい。
本開示において、測定/報告されるRSは、ビームレポートのために測定/報告されるRSを意味してもよい。
なお、本開示において、タイミング、時刻、時間、スロット、サブスロット、シンボル、サブフレームなどは、互いに読み替えられてもよい。
なお、本開示において、方向、軸、次元、偏波、偏波成分などは、互いに読み替えられてもよい。
なお、本開示において、推定(estimation)、予測(prediction)、推論(inference)は、互いに読み替えられてもよい。また、本開示において、推定する(estimate)、予測する(predict)、推論する(infer)は、互いに読み替えられてもよい。
なお、本開示において、RSは、例えば、CSI-RS、SS/PBCHブロック(SSブロック(SSB))などであってもよい。また、RSインデックスは、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Indicator(SSBRI))などであってもよい。
なお、本開示において、CSIフィードバック、CSIフィードバック情報、CSIレポート、CSI報告、CSI送信、CSI情報、CSIなどは互いに読み替えられてもよい。
また、本開示において、サブバンドは、物理リソースブロック(Physical Resource Block(PRB))、サブキャリア、任意の周波数リソース単位などと互いに読み替えられてもよい。
(無線通信方法)
本開示の各実施形態に記載される(特定の)参照信号は、復調用参照信号(DeModulation Reference Signal(DMRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))、その他本開示において記載される任意の参照信号、の少なくとも1つであってもよい。本開示において、参照信号、DMRS、PTRS、その他本開示において記載される任意の参照信号、は互いに読み替えられてもよい。
本開示の各実施形態に記載される(特定の)参照信号は、復調用参照信号(DeModulation Reference Signal(DMRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))、その他本開示において記載される任意の参照信号、の少なくとも1つであってもよい。本開示において、参照信号、DMRS、PTRS、その他本開示において記載される任意の参照信号、は互いに読み替えられてもよい。
本開示の各実施形態に記載される参照信号は、ULの参照信号(ULチャネルのための参照信号)であってもよいし、DLの参照信号(DLチャネルのための参照信号)であってもよい。
以下本開示の各実施形態では、主にDMRSを一例に説明するが、参照信号はDMRSに限られず、任意の参照信号に適用可能である。
本開示において、参照信号が割り当てられること、マッピングされること、送信されること、受信されること、は互いに読み替えられてもよい。
<第1の実施形態>
第1の実施形態では、参照信号のマッピングの決定方法について説明する。
第1の実施形態では、参照信号のマッピングの決定方法について説明する。
UEは、参照信号のマッピングを、以下のオプション1-1から1-3の少なくとも1つに従って決定してもよい。
《オプション1-1》
UEは、参照信号に関する複数の設定から、1つの参照信号設定を決定/選択してもよい。
UEは、参照信号に関する複数の設定から、1つの参照信号設定を決定/選択してもよい。
当該1つの参照信号設定の決定/選択は、特定の条件/基地局からの指示に基づいて行われてもよい。特定の条件/基地局からの指示については、後に詳述する。
例えば、UEは、複数の参照信号設定(参照信号設定X及び参照信号設定Y)から、ULチャネル(例えば、PUSCH)の送信時、及び、DLチャネル(例えば、PDSCH)の受信時の少なくとも一方において、1つの参照信号設定(参照信号設定X又は参照信号設定Y)を決定/選択してもよい。
なお、複数の参照信号設定の個数は、上記のように2つであってもよいし、2つ以上の数であってもよい。本開示において、参照信号設定Xは、第1の参照信号設定と互いに読み替えられてもよいし、参照信号設定Yは、第2の参照信号設定と互いに読み替えられてもよい。
UEは、複数の参照信号設定のうちの1つの参照信号設定を、デフォルトの参照信号設定であると判断してもよい。
本開示において、デフォルトの参照信号設定とは、UEが基地局(ネットワーク)から選択/決定を指定/指示する信号を受信していない場合に、選択/決定する設定のことを意味してもよい。
複数の参照信号設定(参照信号設定X及び参照信号設定Y)は、例えば、復調用参照信号(DMRS)の上りリンク設定(例えば、上位レイヤパラメータ「DMRS-UplinkConfig」)、及び、復調用参照信号(DMRS)の下りリンク設定(例えば、上位レイヤパラメータ「DMRS-DownlinkConfig」)の少なくとも1つに対応してもよい。
複数の参照信号設定は、以下の要素/パラメータを少なくとも1つ含む設定であってもよい:
・参照信号(例えば、DMRS)の設定のタイプ。
・(データに使用しない)符号分割多重(Code Division Multiplexing(CDM))グループの数。
・追加のDMRS(Additional DMRS)のシンボル数。
・フロントロード(フロントローディッド(front loaded))DMRSのための最大OFDMシンボル数。
・参照信号を送信する周波数リソース(例えば、サブキャリア)。
・特定のマッピングタイプ(例えば、マッピングタイプA)時の第1のDMRS(例えば、開始DMRS)のシンボル位置。
・PTRSの周波数密度/時間密度。
・PTRSの周波数(例えば、サブキャリア)オフセット。
・PTRSとDLチャネル(例えば、PDSCH)のリソースエレメントあたりの電力(Energy per resource element(EPRE))比。
・PTRSの送信パワーブースティングファクタ(power boosting factor)。
・参照信号(例えば、DMRS)の設定のタイプ。
・(データに使用しない)符号分割多重(Code Division Multiplexing(CDM))グループの数。
・追加のDMRS(Additional DMRS)のシンボル数。
・フロントロード(フロントローディッド(front loaded))DMRSのための最大OFDMシンボル数。
・参照信号を送信する周波数リソース(例えば、サブキャリア)。
・特定のマッピングタイプ(例えば、マッピングタイプA)時の第1のDMRS(例えば、開始DMRS)のシンボル位置。
・PTRSの周波数密度/時間密度。
・PTRSの周波数(例えば、サブキャリア)オフセット。
・PTRSとDLチャネル(例えば、PDSCH)のリソースエレメントあたりの電力(Energy per resource element(EPRE))比。
・PTRSの送信パワーブースティングファクタ(power boosting factor)。
図1は、第1の実施形態のオプション1-1に係る参照信号の設定の一例を示す図である。図1において、UEは、参照信号に関する複数の設定(DMRS設定X及びDMRS設定Y)から、特定の条件/基地局からの指示に基づいて、1つの参照信号に関する設定を選択/決定する。
図1に示す例において、DMRS設定XにはPTRSの設定(PTRSに関する要素/パラメータ、例えば、PTRSの周波数密度/時間密度、PTRSの周波数(例えば、サブキャリア)オフセット、PTRSとDLチャネル(例えば、PDSCH)のEPRE比、PTRSの送信パワーブースティングファクタ(power boosting factor)の少なくとも1つ)は含まれず、DMRS設定YにはPTRSの設定が少なくとも1つ含まれることを示している。なお、複数の参照信号の設定において、PTRSの設定が含まれるか否かは任意であってもよい。
図1に示す例において、UEは、特定の条件/基地局からの指示に基づいて、1つのDMRS設定(DMRS設定X)を選択/決定する。
《オプション1-2》
UEは、1つの参照信号設定による設定の一部/全部を、特定の条件/基地局からの指示に基づいて、変更/更新してもよい。
UEは、1つの参照信号設定による設定の一部/全部を、特定の条件/基地局からの指示に基づいて、変更/更新してもよい。
例えば、UEは、すでに選択/設定された参照信号設定(DMRS設定)の参照信号のマッピングタイプを変更/更新し、ULチャネル(例えば、PUSCH)の送信時、及び、DLチャネル(例えば、PDSCH)の受信時の少なくとも一方に適用してもよい。
また、例えば、変更/更新される設定は、以下の要素/パラメータを少なくとも1つ含む設定であってもよい:
・参照信号(例えば、DMRS)の設定のタイプ。
・(データに使用しない)符号分割多重(Code Division Multiplexing(CDM))グループの数。
・追加のDMRS(Additional DMRS)のシンボル数。
・フロントロード(フロントローディッド(front loaded))DMRSのための最大OFDMシンボル数。
・参照信号を送信する周波数リソース(例えば、サブキャリア)。
・特定のマッピングタイプ(例えば、マッピングタイプA)時の第1のDMRS(例えば、開始DMRS)のシンボル位置。
・PTRSの周波数密度/時間密度。
・PTRSの周波数(例えば、サブキャリア)オフセット。
・PTRSとDLチャネル(例えば、PDSCH)のEPRE比。
・PTRSの送信パワーブースティングファクタ(power boosting factor)。
・参照信号(例えば、DMRS)の設定のタイプ。
・(データに使用しない)符号分割多重(Code Division Multiplexing(CDM))グループの数。
・追加のDMRS(Additional DMRS)のシンボル数。
・フロントロード(フロントローディッド(front loaded))DMRSのための最大OFDMシンボル数。
・参照信号を送信する周波数リソース(例えば、サブキャリア)。
・特定のマッピングタイプ(例えば、マッピングタイプA)時の第1のDMRS(例えば、開始DMRS)のシンボル位置。
・PTRSの周波数密度/時間密度。
・PTRSの周波数(例えば、サブキャリア)オフセット。
・PTRSとDLチャネル(例えば、PDSCH)のEPRE比。
・PTRSの送信パワーブースティングファクタ(power boosting factor)。
図2は、第1の実施形態のオプション1-2に係る参照信号の設定の一例を示す図である。図2において、UEは、すでに設定/選択された参照信号設定(DMRS設定X)から、特定の条件/基地局からの指示に基づいて、参照信号設定のうちの一部/全部を変更する。
図2に示す例において、例えば、UEが基地局から追加のDMRSシンボル数の変更を指示する情報を受信する。このとき、UEは、当該情報に基づいて、DMRS(追加のDMRS)のシンボル数を変更する。
図2に示す例において、例えば、UEが基地局からフロントローディッドDMRSのための最大OFDMシンボル数の変更を指示する情報を受信する。このとき、UEは、当該情報に基づいて、DMRS(追加のDMRS)のシンボル数を変更する。
《オプション1-3》
上述のオプション1-1及び1-2は、組み合わせて適用されてもよい。
上述のオプション1-1及び1-2は、組み合わせて適用されてもよい。
例えば、UEは、まず上記オプション1-1を利用して、あるチャネルに対する1つの参照信号設定を選択/決定してもよい。その後、UEは、上記オプション1-2を利用して当該チャネルに対する参照信号設定の変更/更新をしてもよい。
また、例えば、UEは、まず上記オプション1-1を利用して、あるチャネル(第1のチャネル)に対する1つの参照信号設定を選択/決定してもよい。その後、UEは、上記オプション1-2を利用して当該第1のチャネルに対する参照信号設定の変更/更新をしてもよい。さらに、UEは、当該チャネルとは異なるチャネル(第2のチャネル)に対する1つの参照信号設定を、上記オプション1-1を利用して選択/決定してもよい。その後、UEは、上記オプション1-2を利用して当該第2のチャネルに対する参照信号設定の変更/更新をしてもよい。
このように、複数の異なるチャネルに対して参照信号設定の選択/決定/変更/更新が行われるとき、UEは、第1のチャネルの設定/変更を無視してもよい。
また、このように、複数の異なるチャネルに対して参照信号設定の選択/決定/変更/更新が行われるとき、UEは、第1のチャネルの設定/変更を維持してもよい。
以下では、上記特定の条件/基地局からの指示に関して説明する。
UEは、基地局(ネットワーク)から、参照信号のマッピングに関する指示情報を受信してもよい。
参照信号のマッピングに関する指示情報は、下記第3の実施形態に記載する方法に基づいて受信されてもよい。
参照信号のマッピングに関する指示情報は、下記第2の実施形態に記載する参照信号に関する情報であってもよい。
UEは、ULチャネル(例えば、PUSCH)の送信時、及び、DLチャネル(例えば、PDSCH)の受信時の少なくとも一方において、特定の条件を満たすか否かに基づいて、参照信号のマッピングについて判断/決定してもよい。
特定の条件は、特定のルールに基づいて決定されてもよい。また、特定の条件は、下記第3の実施形態に記載する方法に従って受信した情報に基づいて決定されてもよい。
UEは、ULチャネル(例えば、PUSCH)の送信時、及び、DLチャネル(例えば、PDSCH)の受信時の少なくとも一方において、特定の条件を満たしているか否かに基づいて、適用する参照信号のマッピングの決定、及び、受信した参照信号に関する情報を適用するか否かの判断、の少なくとも一方を行ってもよい。
例えば、UEは、特定の条件を満たしている場合、特定の参照信号設定の適用を行うことを判断してもよい。また、UEは、特定の条件を満たしている場合、受信した参照信号に関する情報の適用を行うことを判断してもよい。
一方、UEは、特定の条件を満たしていない場合、特定の方法に基づいて参照信号設定の適用を行ってもよい。当該特定の方法は、既存の仕様(例えば、Rel.15/16)で規定される参照信号の設定方法であってもよい。また、当該特定の方法は、上記オプション1-1におけるデフォルトの設定であってもよい。また、当該特定の方法は、上記オプション1-2における変更(指示)が適用されていない(デフォルトの)設定であってもよい。
特定の条件は、以下に示す条件の少なくとも1つであってもよい:
・参照信号のバンドリング(例えば、DMRSバンドリング(bundling))が適用されるか否か。
・複数の時間リソース(例えば、スロット)にまたがって、ULチャネル(例えば、PUSCH)の送信、及び、DLチャネル(例えば、PDSCH)の受信の少なくとも一方が行われるか否か。
・設定されるCSI-RSを受信するリソース(例えば、RE)と、受信した情報に基づく参照信号のマッピングリソースとが重複するか否か。
・(UL/DLチャネルのための)変調オーダ(変調次数)。
・(UL/DLチャネルのための)レイヤ数。
・(UL/DLチャネルのための)DMRSポート数。
・ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)を割り当てる(スケジュールする/アクティベートする)DCIフォーマット。
・特定のULチャネル/DLチャネルか否か。
・ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)をスケジュール/アクティベートするDCIのCRC(Cyclic Redundancy Check)をスクランブルするRNTI(Radio Network Temporary Identifier)。
・コンフィギュアドグラント設定インデックス(CofiguredGrantConfigIndex)ごと。
・ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)を割り当てる(スケジュールする/アクティベートする)DCIに、参照信号に関する情報が含まれるか否か。
・学習状態、又は、学習後の状態、に対応するUEの状態(state)。
・UEの速度/UEの速度方向。
・参照信号のバンドリング(例えば、DMRSバンドリング(bundling))が適用されるか否か。
・複数の時間リソース(例えば、スロット)にまたがって、ULチャネル(例えば、PUSCH)の送信、及び、DLチャネル(例えば、PDSCH)の受信の少なくとも一方が行われるか否か。
・設定されるCSI-RSを受信するリソース(例えば、RE)と、受信した情報に基づく参照信号のマッピングリソースとが重複するか否か。
・(UL/DLチャネルのための)変調オーダ(変調次数)。
・(UL/DLチャネルのための)レイヤ数。
・(UL/DLチャネルのための)DMRSポート数。
・ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)を割り当てる(スケジュールする/アクティベートする)DCIフォーマット。
・特定のULチャネル/DLチャネルか否か。
・ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)をスケジュール/アクティベートするDCIのCRC(Cyclic Redundancy Check)をスクランブルするRNTI(Radio Network Temporary Identifier)。
・コンフィギュアドグラント設定インデックス(CofiguredGrantConfigIndex)ごと。
・ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)を割り当てる(スケジュールする/アクティベートする)DCIに、参照信号に関する情報が含まれるか否か。
・学習状態、又は、学習後の状態、に対応するUEの状態(state)。
・UEの速度/UEの速度方向。
DMRSバンドリングが適用されるか否かに基づいて判断することで、DMRSバンドリングによってチャネル推定精度が向上/改善されるため、DMRSのシンボル数が減少したとしても推定精度を維持することが可能になる。
なお、本開示において、「DMRSバンドリング」は、複数の時間リソース(例えば、スロット)において、等電力かつ位相の連続性(phase continuity)を維持しつつ(例えば、1つの)DMRSを送信することを意味してもよい。本開示において、DMRSバンドリング、クロススロットチャネル推定、クロスレペティションチャネル推定、複数の時間リソースにおいて共通のDMRSを用いること、は互いに読み替えられてもよい。
複数の時間リソース(例えば、スロット)にまたがるULチャネル/DLチャネルは、例えば、繰り返し送信(repetition)、及び、複数スロットに跨るトランスポートブロック(TB)プロセス(TB processing over multi-slots(TBoMS))の少なくとも一方であってもよい。
設定されるCSI-RSを受信するリソース(例えば、RE)と、受信した情報に基づく参照信号のマッピングリソースとの重複については、下記第5の実施形態において詳述する。
ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)を割り当てる(スケジュールする/アクティベートする)、特定のDCIフォーマット(例えば、DCIフォーマット0_0/1_0)に対しては、参照信号に関する情報(参照信号のマッピングに関する情報)を含まない構成としてもよい。これによれば、当該特定のDCIフォーマットで、動的な参照信号のマッピングの適用をしない構成とすることができる。
上記特定のULチャネル/DLチャネルは、例えば、特定のタイプ(例えば、タイプ2)のランダムアクセス手順用のメッセージA(例えば、メッセージA)のPUSCH、コンフィギュアドグラント(タイプ1/2)PUSCH、セミパーシステントスケジューリング(SPS)PDSCH、及び、DCIでスケジュール/アクティベートされるPUSCH/PDSCH、の少なくとも1つであってもよい。
上記RNTIは、例えば、Cell(C-)RNTI、Configured Scheduling(CS-)RNTI、Modulcation Coding Scheme Cell(MCS-C-)RNTI、及び、その他任意のRNTIの少なくとも1つであってもよい。
コンフィギュアドグラント設定インデックス(CofiguredGrantConfigIndex)ごとに対応する参照信号に関する情報を適用する場合、参照信号に関する情報を含むDCI/MAC CEに、適用するコンフィギュアドグラントのインデックス(コンフィギュアドグラント設定インデックス)が含まれてもよい。
ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)を割り当てる(スケジュールする/アクティベートする)DCIに、参照信号に関する情報が含まれる場合については、下記第4の実施形態において詳述する。
UEの速度/UEの速度方向については、例えば、UEが、特定の移動体(例えば、車、電車)に含まれるなどの識別(Identification)がなされているか否かに基づいてもよい。UEの速度/UEの速度方向/当該識別は、UEによって(例えば、UEが有するセンサに基づいて)判断されてもよいし、基地局からUEの速度/UEの速度方向/当該識別に関する情報が通知されて判断されてもよい。
特定の条件は、上記特定の条件の複数の例のうちの少なくとも2つが組み合わされた条件であってもよい。
例えば、UEは、特定の条件を満たしている場合、DCI/MAC CEに含まれる参照信号に関する情報を適用してもよい。
また、UEは、特定の条件を満たしている場合、1つの参照信号設定による設定の一部/全部を、DCI/MAC CEに含まれる参照信号に関する情報に基づいて変更/更新してもよい。
図3は、第1の実施形態に係る参照信号に関する条件の一例を示す図である。図3に示す例において、UEは、DMRSバンドリングが適用されるか否かに基づく判断を行う。
図3において、UEがDMRSバンドリングが適用されると判断した場合、1TBの割り当てに対して複数スロットのPUSCH送信機会が設定/指示されるか否かを判断する。UEがDMRSバンドリングが適用されないと判断した場合、DMRS設定Aを適用すると判断する。
図3において、UEが、1TBの割り当てに対して複数スロットのPUSCH送信機会が設定/指示されると判断した場合、DMRS設定Bを適用すると判断する。UEが、1TBの割り当てに対して複数スロットのPUSCH送信機会が設定/指示されないと判断した場合、DMRS設定Aを適用すると判断する。
なお、これらDMRS設定A及びBはあくまで一例であり、設定名及び設定される数はこれに限られない。
以上第1の実施形態によれば、参照信号のマッピングの選択/決定/変更/更新を、適切に行うことが可能になる。
<第2の実施形態>
第2の実施形態では、参照信号に関する情報について説明する。
第2の実施形態では、参照信号に関する情報について説明する。
UEは、基地局(ネットワーク)から、参照信号に関する情報を受信してもよい。
参照信号に関する情報には、参照信号のマッピングに適用する参照信号設定のインデックスが含まれてもよい。
参照信号のマッピングに適用する参照信号設定のインデックスは、複数設定された参照信号設定のうち、適用する1つの参照信号設定を指示するインデックスであってもよい。
参照信号設定のインデックスを含む参照信号に関する情報を受信しなかった場合、UEは、デフォルトの参照信号設定を適用してもよい。デフォルトの参照信号は、特定のルールで決定されてもよいし、RRCシグナリングの設定に基づいて決定されてもよい。
参照信号に関する情報には、参照信号設定用のパラメータが含まれてもよい。当該パラメータは、以下のパラメータの少なくとも1つであってもよい:
・参照信号(例えば、DMRS)の設定のタイプ。
・(データに使用しない)符号分割多重(Code Division Multiplexing(CDM))グループの数。
・追加のDMRS(Additional DMRS)のシンボル数。
・フロントロード(フロントローディッド(front loaded))DMRSのための最大OFDMシンボル数。
・参照信号を送信する周波数リソース(例えば、サブキャリア)。
・特定のマッピングタイプ(例えば、マッピングタイプA)時の第1のDMRS(例えば、開始DMRS)のシンボル位置。
・PTRSの周波数密度/時間密度。
・PTRSの周波数(例えば、サブキャリア)オフセット。
・PTRSとDLチャネル(例えば、PDSCH)のリソースエレメントあたりの電力(Energy per resource element(EPRE))比。
・PTRSの送信パワーブースティングファクタ(power boosting factor)。
・REレベル(REごと)/リソースブロック(RB)レベル(RBごと)のDMRS 櫛(コム(comb))数。
・参照信号のシンボルのサンプリング時におけるサンプル数/サンプリング間隔/サンプリングオフセット。
・参照信号のサブキャリアのサンプリング時におけるサンプル数/サンプリング間隔/サンプリングオフセット。
・サンプル数/サンプリング間隔/サンプリングオフセットと関連するインデックス。
・参照信号(例えば、DMRS)の設定のタイプ。
・(データに使用しない)符号分割多重(Code Division Multiplexing(CDM))グループの数。
・追加のDMRS(Additional DMRS)のシンボル数。
・フロントロード(フロントローディッド(front loaded))DMRSのための最大OFDMシンボル数。
・参照信号を送信する周波数リソース(例えば、サブキャリア)。
・特定のマッピングタイプ(例えば、マッピングタイプA)時の第1のDMRS(例えば、開始DMRS)のシンボル位置。
・PTRSの周波数密度/時間密度。
・PTRSの周波数(例えば、サブキャリア)オフセット。
・PTRSとDLチャネル(例えば、PDSCH)のリソースエレメントあたりの電力(Energy per resource element(EPRE))比。
・PTRSの送信パワーブースティングファクタ(power boosting factor)。
・REレベル(REごと)/リソースブロック(RB)レベル(RBごと)のDMRS 櫛(コム(comb))数。
・参照信号のシンボルのサンプリング時におけるサンプル数/サンプリング間隔/サンプリングオフセット。
・参照信号のサブキャリアのサンプリング時におけるサンプル数/サンプリング間隔/サンプリングオフセット。
・サンプル数/サンプリング間隔/サンプリングオフセットと関連するインデックス。
サンプリングオフセットは、サンプリングを開始するシンボルを決定するためのオフセット値であってもよい。サンプリングオフセットは、サンプリングを開始するサブキャリアを決定するためのオフセット値であってもよい。
なお、本開示において、参照信号のサンプリングは、参照信号がマッピングされる/されないシンボル/サブキャリアを決定/変更することを意味してもよい。
図4A及び図4Bは、参照信号のサンプリングの一例を示す図である。図4Aはサンプリン間隔=2、サンプリングオフセット=0のケースを示している。図4Bは、サンプリング間隔=2、サンプリングオフセット=1のケースを示している。
図4A及び図4Bに示す例において、UEは、指示されるサンプリング間隔及びオフセットに基づいて、DMRSのシンボルを決定する。
参照信号に関する情報には、参照信号がマッピングされない時間リソースに関する情報が含まれてもよい。参照信号がマッピングされない時間リソースに関する情報は、下記オプション2-1-1から2-1-3の少なくとも1つにしたがって決定されてもよい。
《オプション2-1-1》
参照信号がマッピングされない時間リソースに関する情報は、参照信号がマッピングされないシンボルを指示する情報であってもよい。
参照信号がマッピングされない時間リソースに関する情報は、参照信号がマッピングされないシンボルを指示する情報であってもよい。
参照信号がマッピングされないシンボルを指示する情報は、ビットマップであってもよい。
UEは、参照信号がマッピングされないシンボルを指示する情報(ビットマップ)に基づいて、参照信号がマッピングされないシンボルを判断してもよい。
UEは、指示されたビットマップの値が第1の値(例えば、1(又は0であってもよい))のビットに対応する(OFDM)シンボルにおいて、参照信号がマッピングされないと想定(期待)/判断してもよい。
ビットマップの各ビット(値)が、1つ以上のシンボルと対応してもよい。ビットマップの各ビット(値)が、X個(Xは、X≧1の整数)のシンボルと対応してもよい。当該Xは、予め仕様で規定されてもよいし、特定のルールに基づいて決定されてもよいし、RRCシグナリングで設定されてもよいし、UE能力情報(capabilty information)の報告に基づいて決定されてもよい。
ビットマップの長さ(ビット長)は、予め仕様で規定されてもよいし、特定のルールに基づいて決定されてもよいし、RRCシグナリングで設定されてもよいし、UE能力情報(capabilty information)の報告に基づいて決定されてもよい。
ビットマップの長さは、Nスロット(Nは整数、例えば、N=1)/繰り返し送信(repetition)内の参照信号のシンボル数に基づいて決定されてもよい。例えば、ビットマップの長さは、Nスロット/繰り返し送信内の参照信号のシンボル数であってもよい。
ビットマップの長さは、追加の参照信号(例えば、追加DMRS)のシンボル数にM(Mは整数、例えば、M=1)を加算した値に基づいて決定されてもよい。例えば、ビットマップの長さは、追加の参照信号(例えば、追加DMRS)のシンボル数にMを加算した値であってもよい。
ビットマップの長さは、ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)の割り当てシンボル数に基づいて決定されてもよい。例えば、ビットマップの長さは、ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)の割り当てシンボル数であってもよい。
ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)に繰り返し送信/TBoMSが適用される場合、Nスロット/繰り返し送信内の参照信号のシンボル数、追加の参照信号のシンボル数にMを加算した値、及び、ULチャネル/DLチャネルの割り当てシンボル数、の少なくとも1つに、繰り返し数/割り当てスロット数を乗算した値に基づいてビットマップの長さが決定されてもよい。例えば、ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)に繰り返し送信/TBoMSが適用される場合、ビットマップの長さは、Nスロット/繰り返し送信内の参照信号のシンボル数、追加の参照信号のシンボル数にMを加算した値、及び、ULチャネル/DLチャネルの割り当てシンボル数、の少なくとも1つに、繰り返し数/割り当てスロット数を乗算した値であってもよい。
ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)に繰り返し送信/TBoMSが適用される場合、各スロットにおける、Nスロット/繰り返し送信内の参照信号のシンボル数、追加の参照信号のシンボル数にMを加算した値、及び、ULチャネル/DLチャネルの割り当てシンボル数、の少なくとも1つに基づいてビットマップの長さが決定されてもよい。例えば、ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)に繰り返し送信/TBoMSが適用される場合、ビットマップの長さは、各スロットにおける、Nスロット/繰り返し送信内の参照信号のシンボル数、追加の参照信号のシンボル数にMを加算した値、及び、ULチャネル/DLチャネルの割り当てシンボル数、の少なくとも1つであってもよい。
ビットマップの長さは、RRCパラメータに基づく割り当て可能なスロットにおける繰り返し数に基づいて決定されてもよい。例えば、ビットマップの長さは、RRCパラメータに基づく割り当て可能なスロットにおける繰り返し数であってもよい。
ビットマップの各ビット(値)が、複数(X個)のシンボルと対応する場合、ビットマップの長さは、Nスロット/繰り返し送信内の参照信号のシンボル数、追加の参照信号のシンボル数にMを加算した値、及び、ULチャネル/DLチャネルの割り当てシンボル数、の少なくとも1つに、1/Xを乗算した値を切り上げた値に基づいて決定されてもよい。例えば、ビットマップの各ビット(値)が、複数(X個)のシンボルと対応する場合、ビットマップの長さは、Nスロット/繰り返し送信内の参照信号のシンボル数、追加の参照信号のシンボル数にMを加算した値、及び、ULチャネル/DLチャネルの割り当てシンボル数、の少なくとも1つに、1/Xを乗算した値を切り上げた値であってもよい。
UEは、RRCシグナリング/特定のルールに基づいてビットマップと関連付けられるインデックスを、DCI/MAC CEを用いて受信してもよい。
図5A及び図5Bは、第2の実施形態に係る参照信号のマッピングの一例を示す図である。
図5Aに示す例では、1スロット内の参照信号(DMRS)のシンボル数と等しいビット長のビットマップがUEに指示される。図5Aに示す例において、繰り返し送信数は2であり、ビットマップの各ビットが対応するシンボル数(上記X)は2であるケースを記載している。
図5Aに示すように、UEに対しビットマップとして「0110」が指示されるとき、UEは、0に対応するDMRS用OFDMシンボルにはDMRSがマッピングされ、1に対応するDMRS用OFDMシンボルにはDMRSがマッピングされないと判断する。
図5Bに示す例では、UEに指示されるビットマップは、各スロットに適用されるケースを示している。図5Bに示す例では、図5Aと同様、繰り返し送信数は2であり、ビットマップの各ビットが対応するシンボル数(上記X)は2であるケースを記載している。
図5Bに示すように、図5Aと同様、UEに対しビットマップとして「01」が指示されるとき、UEは各スロットにおいて、0に対応するDMRS用OFDMシンボルにはDMRSがマッピングされ、1に対応するDMRS用OFDMシンボルにはDMRSがマッピングされないと判断する。
《オプション2-1-2》
参照信号がマッピングされない時間リソースに関する情報は、参照信号がマッピングされないスロットを指示する情報であってもよい。
参照信号がマッピングされない時間リソースに関する情報は、参照信号がマッピングされないスロットを指示する情報であってもよい。
参照信号がマッピングされないスロットを指示する情報は、ビットマップであってもよい。
UEは、参照信号がマッピングされないスロットを指示する情報(ビットマップ)に基づいて、参照信号がマッピングされないスロットを判断してもよい。
UEは、指示されたビットマップの値が第1の値(例えば、1(又は0であってもよい))のビットに対応するスロットにおいて、参照信号がマッピングされないと想定(期待)/判断してもよい。
ビットマップの各ビット(値)が、1つ以上のスロットと対応してもよい。ビットマップの各ビット(値)が、X個(Xは、X≧1の整数)のスロットと対応してもよい。当該Xは、予め仕様で規定されてもよいし、特定のルールに基づいて決定されてもよいし、RRCシグナリングで設定されてもよいし、UE能力情報(capabilty information)の報告に基づいて決定されてもよい。
ビットマップの長さ(ビット長)は、予め仕様で規定されてもよいし、特定のルールに基づいて決定されてもよいし、RRCシグナリングで設定されてもよいし、UE能力情報(capabilty information)の報告に基づいて決定されてもよい。
ビットマップの長さは、ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)に繰り返し送信が適用される場合、繰り返し数に基づいて決定されてもよい。例えば、ビットマップの長さは、ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)に繰り返し送信が適用される場合、繰り返し数であってもよい。
ビットマップの長さは、ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)にTBoMSが適用される場合、割り当てスロット数に基づいて決定されてもよい。例えば、ビットマップの長さは、ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)にTBoMSが適用される場合、割り当てスロット数であってもよい。
ビットマップの長さは、RRCパラメータに基づく割り当て可能なスロットにおける繰り返し数に基づいて決定されてもよい。例えば、ビットマップの長さは、RRCパラメータに基づく割り当て可能なスロットにおける繰り返し数であってもよい。
ビットマップの長さは、RRCシグナリングで設定される最大の繰り返し数/割り当てスロット数に基づいて決定されてもよい。例えば、ビットマップの長さは、RRCシグナリングで設定される最大の繰り返し数/割り当てスロット数であってもよい。この場合、DCIの内容に依存せず、ビットマップの長さを決定することができる。
ビットマップの各ビット(値)が、複数(X個)のスロットと対応する場合、ビットマップの長さは、繰り返し数、割り当てスロット数、RRCパラメータに基づく割り当て可能なスロットにおける繰り返し数、及び、RRCシグナリングで設定される最大の繰り返し数/割り当てスロット数、の少なくとも1つに、1/Xを乗算した値を切り上げた値に基づいて決定されてもよい。例えば、ビットマップの各ビット(値)が、複数(X個)のシンボルと対応する場合、ビットマップの長さは、繰り返し数、割り当てスロット数、RRCパラメータに基づく割り当て可能なスロットにおける繰り返し数、及び、RRCシグナリングで設定される最大の繰り返し数/割り当てスロット数、の少なくとも1つに、1/Xを乗算した値を切り上げた値であってもよい。
UEは、RRCシグナリング/特定のルールに基づいてビットマップと関連付けられるインデックスを、DCI/MAC CEを用いて受信してもよい。
図6は、第2の実施形態に係る参照信号のマッピングの他の例を示す図である。
図6に示す例において、繰り返し送信数は4であり、ビットマップの各ビットが対応するスロット数(上記X)は2であるケースを記載している。
図6に示すように、UEに対しビットマップとして「01」が指示されるとき、UEは、0に対応するスロットにはDMRSがマッピングされ、1に対応するスロットにはDMRSがマッピングされないと判断する。図6の例では、最初の2スロットにおいてDMRSがマッピングされ、続く2スロットにおいてDMRSがマッピングされない。
《オプション2-1-3》
上記オプション2-1-1及び2-1-2は組み合わされて適用されてもよい。
上記オプション2-1-1及び2-1-2は組み合わされて適用されてもよい。
以上オプション2-1-1から2-1-3によれば、参照信号が送信される時間リソースを適切に判断することが可能になる。
参照信号に関する情報には、参照信号がマッピングされない周波数リソースに関する情報が含まれてもよい。
参照信号がマッピングされない周波数リソースに関する情報は、参照信号がマッピングされないサブキャリアを指示する情報であってもよい。
参照信号がマッピングされない周波数リソース(例えば、サブキャリア)に関する情報は、下記オプション2-2-1から2-2-3の少なくとも1つにしたがって決定されてもよい。
《オプション2-2-1》
参照信号がマッピングされないサブキャリアに関する情報は、参照信号の周波数リソースに対応する系列の値を指定(限定)する情報に基づく情報であってもよい。
参照信号がマッピングされないサブキャリアに関する情報は、参照信号の周波数リソースに対応する系列の値を指定(限定)する情報に基づく情報であってもよい。
当該系列は、直交カバーコード(Orthogonal Cover Code(OCC))系列(例えば、wf(k’)、及び、wt(k’)の少なくとも一方)であってもよい。
当該系列の値(例えば、k’として指定(限定)される値)は、第1の値(例えば、「0」)又は第2の値(例えば、「1」)であってもよい。
当該系列の値(k’)が1つの値(第1の値又は第2の値)に限定されるとき、UEは、下記式1で与えられる参照信号の系列に関する数式に基づいて参照信号のマッピングを判断してもよい。
ここで、上記式1のαk,l
(p,μ)は、アンテナポートp、サブキャリア間隔設定μに対応するRE(k,l)の複素数値(complex value)である。また、βPDSCH
DMRSは参照信号のスケーリングファクタであり、wfは周波数方向のOCC系列であり、wtは時間方向のOCC系列であり、rは参照信号の系列である。kはサブキャリアのインデックスであり、lはシンボルのインデックスであり、Δはオフセット値を示す。
上記式1は、既存の仕様(Rel.16まで)で規定される数式と比較して、系列rの変数がnのみとなっている点で異なる。上記式1の参照信号のマッピングに用いることで、k’が限定される場合であっても、系列の値を連続する値として用いることができる。
当該系列の値(k’)が1つの値(第1の値又は第2の値)に限定されるとき、UEは、下記式2で与えられる参照信号の系列に関する数式に基づいて参照信号のマッピングを判断してもよい。
上記式2は、既存の仕様(Rel.16まで)で規定される参照信号(PDSCHのDMRS)のマッピングに関する数式と同様である。式2の各パラメータは式1と同様である。
なお、上記式1及び式2は、DLチャネル(例えば、PDSCH)だけでなくULチャネル(例えば、PUSCH)にも適宜適用されてもよい。例えば、上記式1及び式2をPUSCHに適用する場合、各パラメータをPDSCH用からPUSCHに適宜読み替えて適用してもよい。
UEは、UE間において当該系列の値(k’)のとりうる値が異なる場合は、参照信号がUE間で多重されないと想定してもよい。
UEは、DMRSポートに基づいて当該系列の値(k’)のとりうる値を決定してもよい。
図7A及び図7Bは、第2の実施形態のオプション2-2-1に係る参照信号のマッピングの一例を示す図である。UEが参照信号の周波数リソースに対応する系列の値を指定(限定)する情報に基づく情報を受信するとき、図7A及び図7Bに記載するように参照信号のマッピングを行う。
例えば、図7Aに記載される参照信号のマッピングは、上記式1における、設定タイプ1(Configutation type 1)であり、かつオフセット(Δ)=0のケースに対応する。UEは、k’の値が0に限定されるとき、及び、k’の値が1に限定されるとき、のそれぞれに対応する参照信号のマッピングを判断する。
例えば、図7Bに記載される参照信号のマッピングは、上記式2における、設定タイプ2(Configutation type 2)であり、かつオフセット(Δ)=0のケースに対応する。UEは、k’の値が0に限定されるとき、及び、k’の値が1に限定されるとき、のそれぞれに対応する参照信号のマッピングを判断する。
《オプション2-2-2》
参照信号がマッピングされない周波数リソースに関する情報は、参照信号がマッピングされる/されないサブキャリアを指示する情報であってもよい。
参照信号がマッピングされない周波数リソースに関する情報は、参照信号がマッピングされる/されないサブキャリアを指示する情報であってもよい。
参照信号がマッピングされる/されないサブキャリアを指示する情報は、ビットマップであってもよい。
UEは、参照信号がマッピングされる/されないサブキャリアを指示する情報(ビットマップ)に基づいて、参照信号がマッピングされる/されないサブキャリアを判断してもよい。
UEは、指示されたビットマップの値が第1の値(例えば、0(又は1であってもよい))のビットに対応するサブキャリアにおいて、参照信号がマッピングされないと想定(期待)/判断してもよい。
ビットマップの各ビット(値)が、1つ以上のサブキャリアと対応してもよい。ビットマップの各ビット(値)が、X個(Xは、X≧1の整数)のサブキャリアと対応してもよい。当該Xは、予め仕様で規定されてもよいし、特定のルールに基づいて決定されてもよいし、RRCシグナリングで設定されてもよいし、UE能力情報(capabilty information)の報告に基づいて決定されてもよい。
ビットマップの各ビット(値)が、上記式1及び式2の少なくとも一方における変数nと対応してもよい。
ビットマップの長さは、予め仕様で規定されてもよいし、特定のルールに基づいて決定されてもよいし、RRCシグナリングで設定されてもよいし、UE能力情報(capabilty information)の報告に基づいて決定されてもよい。
例えば、Y個(Yは1以上の整数)のRB/REにおいてマッピング可能な最大の参照信号のサブキャリア数に基づいて決定されてもよい。例えば、ビットマップの長さは、Y個(Yは1以上の整数)RB/REにおいてマッピング可能な最大の参照信号のサブキャリア数に基づいて決定されてもよい。また、例えば、ビットマップの長さは、Y個のRB/REにおいてマッピング可能な最大の参照信号のサブキャリア数であってもよい。当該Yは、予め仕様で規定されてもよいし、特定のルールに基づいて決定されてもよいし、RRCシグナリングで設定されてもよいし、UE能力情報(capabilty information)の報告に基づいて決定されてもよい。
ビットマップの各ビット(値)が、複数(X個)のサブキャリアと対応する場合、ビットマップの長さは、割り当てられるサブキャリア数、及び、Y個(Yは1以上の整数)RB/REにおいてマッピング可能な最大の参照信号のサブキャリア数、予め仕様で規定される数、特定のルールに基づいて決定される数、RRCシグナリングで設定される数、及び、UE能力情報(capabilty information)の報告に基づく数、の少なくとも1つに、1/Xを乗算した値を切り上げた値に基づいて決定されてもよい。例えば、ビットマップの各ビット(値)が、複数(X個)のシンボルと対応する場合、ビットマップの長さは、割り当てられるサブキャリア数、及び、Y個(Yは1以上の整数)RB/REにおいてマッピング可能な最大の参照信号のサブキャリア数、予め仕様で規定される数、特定のルールに基づいて決定される数、RRCシグナリングで設定される数、及び、UE能力情報(capabilty information)の報告に基づく数、の少なくとも1つに、1/Xを乗算した値を切り上げた値であってもよい。
UEは、RRCシグナリング/特定のルールに基づいてビットマップと関連付けられるインデックスを、DCI/MAC CEを用いて受信してもよい。
図8は、第2の実施形態のオプション2-2-2に係る参照信号のマッピングの一例を示す図である。図8は、ビットマップの長さが、1RB(12サブキャリア)にマッピングされる参照信号のサブキャリア数(ここでは6)の場合を示している。
図8に示す例では、UEに対してビットマップの値として「101010」又は「010001」が通知される場合を示している。UEは、「1」に対応するサブキャリアに対して参照信号がマッピングされ、「0」に対応するサブキャリアに対して参照信号がマッピングされないことを判断する。
なお、図8に示す例では、ビットマップの最上位ビット(Most Significant Bit(MSB))が、最低のサブキャリアに対応するケースを説明しているが、ビットマップの最下位ビット(Least Significant Bit(LSB))が最低のサブキャリアに対応してもよい。
《オプション2-2-3》
上記オプション2-2-1及び2-2-2は組み合わされて適用されてもよい。
上記オプション2-2-1及び2-2-2は組み合わされて適用されてもよい。
以上オプション2-2-1から2-2-3によれば、参照信号が送信される周波数リソースを適切に判断することが可能になる。
UEは、参照信号のマッピングに関する周波数方向(周波数ドメイン)の系列(例えば、OCC系列)を判断してもよい。
UEは、以下のオプション2-3-1及び2-3-2の少なくとも一方に基づいて、参照信号のマッピングに関する周波数方向の系列を判断してもよい。
UEは、オプション2-3-1/2-3-2を適用するか否か、オプション2-3-1及び2-3-2のいずれかを適用するかを、特定のルールに従って決定してもよいし、RRCシグナリングによって設定されてもよいし、DCI/MAC CEに含まれる参照信号に関する情報に基づいて決定してもよい。
UEは、オプション2-3-1/2-3-2を適用する場合、オプション2-3-1/2-3-2(同じオプション)を適用しない他のUE、及び、UEが適用するオプションとは異なるオプションを適用する他のUE、の少なくとも一方の他のUEと、参照信号のUE間多重が行われないと想定してもよい。
《オプション2-3-1》
UEは、周波数方向の系列(例えば、OCC系列)の値(例えば、上記式1及び式2におけるwf(k’)の値)を、固定値であると想定/決定してもよい。
UEは、周波数方向の系列(例えば、OCC系列)の値(例えば、上記式1及び式2におけるwf(k’)の値)を、固定値であると想定/決定してもよい。
例えば、当該固定値は、1(又は-1であってもよい)であってもよい。
オプション2-3-1において、第1の設定タイプ(例えば、設定タイプ1(Configutation type 1))の場合、適用可能なDMRSポート数は、特定の値(例えば、1000又は1001(オフセット(Δ)はそれぞれ0又は1)のみ)に限定されてもよい。また、k’の値に基づいて、異なる参照信号(例えば、DMRS)ポートが設定されてもよい。
オプション2-3-1において、第2の設定タイプ(例えば、設定タイプ2(Configutation type 2))の場合、適用可能なDMRSポート数は、特定の値(例えば、1000、1001又は1002(オフセット(Δ)はそれぞれ0、2又は4)のみ)に限定されてもよい。ポート1000、1001及び1002におけるCDMグループは、それぞれ0、1及び2であってもよい。また、k’の値に基づいて、異なる参照信号(例えば、DMRS)ポートが設定されてもよい。
《オプション2-3-2》
UEは、特定数(例えば、N(Nは1以上の整数))の特定の系列に基づいて周波数方向の系列(例えば、OCC系列)を算出し、参照信号をマッピングする当該特定数のサブキャリアごとに適用してもよい。
UEは、特定数(例えば、N(Nは1以上の整数))の特定の系列に基づいて周波数方向の系列(例えば、OCC系列)を算出し、参照信号をマッピングする当該特定数のサブキャリアごとに適用してもよい。
当該特定の系列は、例えば、サイクリックシフトの系列であってもよい。
UEは、回転位相量が2π/NずつシフトするN個の系列長Nであるサイクリックシフト系列に基づいて、各参照信号(DMRS)ポートにおける周波数方向の系列を決定してもよい。
当該Nは、予め仕様で規定されてもよいし、特定のルールに基づいて決定されてもよいし、RRCシグナリングで設定されてもよいし、DCI/MAC CEに含まれる参照信号に関する情報に基づいて決定されてもよい。
オプション2-3-2によれば、参照信号がN個のサブキャリアにマッピングされる場合に好適に適用が可能であり、周波数ドメインの系列(OCC)のみでN個のUEについて多重(UE間多重)が可能になる。
図9A及び図9Bは、第2の実施形態のオプション2-3-2にかかる系列の決定の一例を示す図である。図9A及び図9Bに示す例では、上記Nが3であるケースを示している。
例えば、UEは、回転位相量が2π/3ずつシフトする3個の系列長3であるサイクリックシフト系列(図9A参照)に基づいて、各参照信号(DMRS)ポートにおける周波数方向のOCC系列を決定してもよい。この方法によれば、割り当てられる総サブキャリアを3で割った数のサブキャリアごとに、参照信号が割り当てられる場合に好適に適用が可能である。
図9Bに示すように、UEは、OCC系列を、RB全体の中で4サブキャリアごとに適用してもよい。また、UEは、OCC系列を、DMRSがマッピングされているサブキャリアの中から3サブキャリアごとに適用してもよい。
以上第2の実施形態によれば、参照信号のマッピングを決定するための参照信号に関する情報を、適切に規定/決定することが可能になる。
<第3の実施形態>
第3の実施形態では、参照信号に関する情報の通知/受信/送信方法について説明する。
第3の実施形態では、参照信号に関する情報の通知/受信/送信方法について説明する。
UEは、参照信号に関する情報を、上位レイヤシグナリング(RRCシグナリング/MAC CE)/物理レイヤシグナリング(DCI)を用いて受信してもよい。
UEは、RRCシグナリングを用いて、1つ以上の参照信号設定を受信してもよい。
UEに対し、1つ以上(又は複数)の参照信号設定(例えば、上記第1の実施形態における参照信号設定X及びY)が設定されてもよい。UEに対し、参照信号のリソースマッピングが1つ以上(又は複数)設定されてもよい。
UEに対し、複数の参照信号設定のうち、どの参照信号を適用するかの条件がRRCシグナリングを用いて設定されてもよい。
参照信号のマッピングは、ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)の時間ドメインリソース割り当て(Time Domain Resource Assignment(TDRA))に関連付けられてもよい。
例えば、TDRAの各行インデックス(row index)と各参照信号のマッピングの設定とが関連付けられてもよい。UEは、ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)のスケジュール時に、DCIによって指示された行インデックス(row index)に対応する参照信号設定を適用すると判断してもよい。
UEは、上記第2の実施形態における参照信号に関する情報の少なくとも1つを、RRCシグナリングを用いて受信してもよい。
UEは、MAC CEを用いて、1つ以上の参照信号設定に関する指示を受信してもよい。
例えば、UEは、RRCシグナリングを用いて複数設定された参照信号設定のうち、どの参照信号設定を適用するかを、MAC CEを用いて指示されてもよい。
UEは、上記第2の実施形態における参照信号に関する情報の少なくとも1つを、MAC CEを用いて受信してもよい。
UEは、DCIを用いて参照信号に関する情報を受信してもよい。
当該DCIは、UE個別に送信されるDCIであってもよい。言い換えれば、当該DCIは、UE個別の制御リソースセット(CORESET)/PDCCH/サーチスペースセットにおいて送信されるDCIであってもよい。当該DCIのCRCをスクランブルするRNTIは、特定のRNTI(例えば、C-RNTI/CS-RNTI/MCS-C-RNTI)であってもよい。
当該DCIをUE個別のDCIとすることで、各UEにおいてDCIが復号できたかを基地局(ネットワーク)に報告することができる。
当該DCIは、ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)をスケジュール/アクティベートするDCIであってもよい。
また、当該DCIは、複数UEに共通に送信されるDCI(グループキャスト/マルチキャストされるDCI)であってもよい。言い換えれば、当該DCIは、複数UE共通の制御リソースセット(CORESET)/PDCCH/サーチスペースセットにおいて送信されるDCIであってもよい。当該DCIを複数UE共通のDCIとすることで、例えば帯域ごと(BWPごと、サブバンドごと、セルごと)に学習の度合いが異なる場合に、同帯域を使用している複数UEに対して、一括に変更/指示が可能となる。
当該DCI(複数UE共通のDCI)のCRCをスクランブルするRNTIは、既存のRNTI(例えば、C-RNTI/CS-RNTI/MCS-C-RNTI)であってもよいし、他の(新たに規定される)RNTIであってもよい。
UEは、使用する当該RNTIに関する判別情報を、特定のルールに基づいて決定してもよいし、RRCシグナリングによる設定に基づいて決定してもよいし、DCI/MAC CEを用いて受信した参照信号に関する情報に基づいて決定してもよい。
UEは、当該DCIを受信するPDCCH/CORESET/サーチスペースを設定されてもよい。
UEは、当該DCIに対するHARQ-ACK情報の報告/送信を行ってもよい。
UEは、受信したDCIに対応するPDCCHの最後のシンボルから、特定数(例えば、N(Nは1以上の整数))のシンボル/スロット/ms後に、当該DCIの復号に関するHARQ-ACK情報を報告してもよい。当該Nは、特定のルールに基づいて決定されてもよいし、RRCシグナリングによる設定に基づいて決定されてもよいし、UE能力情報の報告に基づいて決定されてもよいし、受信したDCIに基づいてニューメロロジー(例えば、サブキャリア間隔の設定)ごとに決定されてもよい。
UEは、複数UEに共通のDCIを用いて参照信号に関する情報を受信した場合、ACK(又は、NACK)を送信するときのみ、HARQ-ACK(NACK)情報を送信してもよい。
UEは、複数UEに共通のDCIを用いて参照信号に関する情報を受信した場合、HARQ-ACK情報に加え、UEを特定する情報(例えば、C-RNTI)を送信/報告してもよい。
UEは、RRCシグナリング/MAC CEを用いて設定された複数の参照信号設定のうち、1つの参照信号設定をDCIを用いて指示されてもよい。
UEは、上記第2の実施形態における参照信号に関する情報の少なくとも1つを、DCIを用いて受信してもよい。
以上第3の実施形態によれば、参照信号に関する情報を、適切に通知/送信/受信することが可能になる。
<第4の実施形態>
第4の実施形態は、参照信号に関する情報を適用する期間について説明する。
第4の実施形態は、参照信号に関する情報を適用する期間について説明する。
UEは、参照信号に関する情報を適用する期間について、下記オプション4-1から4-3の少なくとも1つに従って、当該期間を決定してもよい。
《オプション4-1》
ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)をスケジュール/アクティベートするDCIに参照信号に関する情報が含まれる場合、当該DCIでスケジュール/アクティベートされるULチャネル/DLチャネルに対して参照信号に関する情報(又は、参照信号に関する情報による設定の変更)を適用してもよい。
ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)をスケジュール/アクティベートするDCIに参照信号に関する情報が含まれる場合、当該DCIでスケジュール/アクティベートされるULチャネル/DLチャネルに対して参照信号に関する情報(又は、参照信号に関する情報による設定の変更)を適用してもよい。
当該ULチャネル/DLチャネルには、SPS PDSCH、コンフィギュアドグラント(CG)PUSCH(例えば、CGタイプ2のPUSCH)、PUSCH/PDSCHの繰り返し送信、の少なくとも1つが含まれてもよい。
当該ULチャネル/DLチャネルがDCIによってスケジュール/アクティベートされるとき、UEは、当該ULチャネル/DLチャネルの全てに、当該DCIに含まれる参照信号に関する情報を適用してもよい。
当該ULチャネル/DLチャネルがDCIによってスケジュール/アクティベートされるとき、UEは、当該ULチャネル/DLチャネルのうち、最初の送信/受信機会から特定の回数(例えば、N回)の送信/受信機会におけるULチャネル/DLチャネルに対し、当該DCIに含まれる参照信号に関する情報を適用してもよい。当該Nは、特定のルールに基づいて決定されてもよいし、RRCシグナリングによる設定に基づいて決定されてもよいし、UE能力情報の報告に基づいて決定されてもよい。
当該ULチャネル/DLチャネルがDCIによってスケジュール/アクティベートされるとき、UEは、当該ULチャネル/DLチャネルのうち、最初の送信/受信機会におけるULチャネル/DLチャネルに対し、当該DCIに含まれる参照信号に関する情報を適用してもよい。
図10A及び図10Bは、第4の実施形態のオプション4-1に係る参照信号に関する情報の適用の一例を示す図である。図10A及び図10Bにおいて、UEは、CG PUSCHをアクティベートするDCIを受信する。当該DCIには、参照信号に関する情報として、追加DMRSを1つ追加することを指示する情報が含まれる。
図10Aに示す例では、UEは、当該DCIによってアクティベートされるCG PUSCH(の全て)に、DCIに含まれる参照信号に関する情報を適用する。
図10Bに示す例では、UEは、当該DCIによってアクティベートされるCG PUSCHのうち、最初の送信機会におけるCG PUSCHにDCIに含まれる参照信号に関する情報を適用する。一方、UEは、当該最初の送信機会におけるCG PUSCH以外のCG PUSCHに対しては、DCIに含まれる参照信号に関する情報を適用しない。
《オプション4-2》
オプション4-2では、主に参照信号に関する情報を適用する(参照信号に関する情報の適用を開始する)タイミングについて説明する。
オプション4-2では、主に参照信号に関する情報を適用する(参照信号に関する情報の適用を開始する)タイミングについて説明する。
UEは、下記オプション4-2-1から4-2-3の少なくとも1つに従って、参照信号に関する情報の適用を開始するタイミングを判断/決定してもよい。
[オプション4-2-1]
UEは、参照信号に関する情報(を含むDCI/MAC CE)の受信から、特定数(例えば、N)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を開始してもよい。
UEは、参照信号に関する情報(を含むDCI/MAC CE)の受信から、特定数(例えば、N)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を開始してもよい。
[オプション4-2-2]
UEは、参照信号に関する情報(を含むDCI/MAC CE)に対応するHARQ-ACK情報を含むULチャネル(例えば、PUCCH/PUSCH)の送信から、特定数(例えば、N)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を開始してもよい。
UEは、参照信号に関する情報(を含むDCI/MAC CE)に対応するHARQ-ACK情報を含むULチャネル(例えば、PUCCH/PUSCH)の送信から、特定数(例えば、N)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を開始してもよい。
[オプション4-2-3]
ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)をスケジュール/アクティベートするDCIに参照信号に関する情報が含まれる場合、UEは、当該DCIによってスケジュール/アクティベートされるULチャネル/DLチャネルの特定の(例えば、最初の)ULチャネル/DLチャネルの時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を開始してもよい。
ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)をスケジュール/アクティベートするDCIに参照信号に関する情報が含まれる場合、UEは、当該DCIによってスケジュール/アクティベートされるULチャネル/DLチャネルの特定の(例えば、最初の)ULチャネル/DLチャネルの時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を開始してもよい。
上記オプション4-2-1から4-2-3におけるNは、0以上の値であってもよい。上記オプション4-2-1から4-2-3におけるNは、予め仕様で規定されてもよいし、特定のルールで決定されてもよいし、RRCシグナリングを用いて設定されてもよいし、UE能力情報に基づいて決定されてもよいし、DCI/MAC CEに含まれる参照信号に関する情報に基づいて決定されてもよいし、受信したDCI/MAC CEに基づいてニューメロロジー(例えば、サブキャリア間隔の設定)ごとに決定されてもよい。
上記オプション4-2-1から4-2-3のいずれかが適用されるかについて、予め仕様で規定されてもよいし、特定のルールで決定されてもよいし、RRCシグナリングを用いて設定されてもよいし、UE能力情報に基づいて決定されてもよいし、DCI/MAC CEに含まれる参照信号に関する情報に基づいて決定されてもよい。
オプション4-2について、どの特定のULチャネル/DLチャネルに対して適用するか否かが、特定のルールで決定されてもよいし、RRCシグナリングを用いて設定されてもよいし、UE能力情報に基づいて決定されてもよいし、DCI/MAC CEに含まれる参照信号に関する情報に基づいて決定されてもよい。当該特定のULチャネル/DLチャネルは、例えば、メッセージAを伝送するPUSCH、CG(タイプ1/2)PUSCH、SPS PDSCH、及び、DCIでスケジュール/アクティベートされるPUSCH/PDSCHの少なくとも1つであってもよい。
図11A及び図11Bは、第4の実施形態のオプション4-2に係る参照信号に関する情報の適用の一例を示す図である。図11Aにおいて、参照信号に関する情報を含むDCI/MAC CEの受信の最終シンボルからNスロット後に、当該情報の適用が開始される(上記オプション4-2-1)。また、図11Bにおいて、参照信号に関する情報に対応するHARQ-ACK情報の送信からNスロット後に、当該情報の適用が開始される(上記オプション4-2-2)。
《オプション4-3》
オプション4-3では、主に参照信号に関する情報の適用を終了するタイミングについて説明する。
オプション4-3では、主に参照信号に関する情報の適用を終了するタイミングについて説明する。
UEは、下記オプション4-3-1から4-3-9の少なくとも1つに従って、参照信号に関する情報の適用を終了するタイミングを判断/決定してもよい。
[オプション4-3-1]
UEは、RRC再設定メッセージ(を含むPDSCH)に対応するHARQ-ACK情報の送信から、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
UEは、RRC再設定メッセージ(を含むPDSCH)に対応するHARQ-ACK情報の送信から、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
[オプション4-3-2]
UEは、RRC非アクティブ(inactive)モード/RRCアイドルモードになった後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
UEは、RRC非アクティブ(inactive)モード/RRCアイドルモードになった後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
[オプション4-3-3]
UEは、新たな参照信号に関する情報(を含むDCI/MAC CE)の受信から、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、それまでの参照信号に関する情報の適用を終了してもよい。
UEは、新たな参照信号に関する情報(を含むDCI/MAC CE)の受信から、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、それまでの参照信号に関する情報の適用を終了してもよい。
[オプション4-3-4]
UEは、新たな参照信号に関する情報(を含むDCI/MAC CE)の適用(の開始)タイミングにおいて、それまでの参照信号に関する情報の適用を終了してもよい。
UEは、新たな参照信号に関する情報(を含むDCI/MAC CE)の適用(の開始)タイミングにおいて、それまでの参照信号に関する情報の適用を終了してもよい。
新たな参照信号に関する情報の適用(の開始)タイミングは、上記オプション4-2に記載した少なくとも1つのタイミングであってもよい。
[オプション4-3-5]
UEは、参照信号に関する情報(を含むDCI/MAC CE)の受信から、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
UEは、参照信号に関する情報(を含むDCI/MAC CE)の受信から、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
[オプション4-3-6]
UEは、参照信号に関する情報(を含むDCI/MAC CE)に対応するHARQ-ACK情報を含むULチャネル(例えば、PUCCH/PUSCH)の送信から、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
UEは、参照信号に関する情報(を含むDCI/MAC CE)に対応するHARQ-ACK情報を含むULチャネル(例えば、PUCCH/PUSCH)の送信から、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
[オプション4-3-7]
ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)をスケジュール/アクティベートするDCIに参照信号に関する情報が含まれる場合、UEは、当該DCIによってスケジュール/アクティベートされるULチャネル/DLチャネルのうちの特定の(例えば、最後の)ULチャネル/DLチャネルの時間リソース(シンボル/スロット/サブスロット)から、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
ULチャネル(例えば、PUSCH)/DLチャネル(例えば、PDSCH)をスケジュール/アクティベートするDCIに参照信号に関する情報が含まれる場合、UEは、当該DCIによってスケジュール/アクティベートされるULチャネル/DLチャネルのうちの特定の(例えば、最後の)ULチャネル/DLチャネルの時間リソース(シンボル/スロット/サブスロット)から、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
[オプション4-3-8]
DLチャネル(例えば、PDSCH)をスケジュール/アクティベートするDCIに参照信号に関する情報が含まれる場合、UEは、当該スケジュール/アクティベートされる(最後の)DLチャネルに対応するHARQ-ACK情報を含むULチャネル(PUCCH/PUSCH)の送信から、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
DLチャネル(例えば、PDSCH)をスケジュール/アクティベートするDCIに参照信号に関する情報が含まれる場合、UEは、当該スケジュール/アクティベートされる(最後の)DLチャネルに対応するHARQ-ACK情報を含むULチャネル(PUCCH/PUSCH)の送信から、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後の時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
[オプション4-3-9]
UEは、参照信号に関する情報の適用を開始してから、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後、及び、L回のULチャネル送信/DLチャネル受信後、の少なくとも一方における時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
UEは、参照信号に関する情報の適用を開始してから、特定数(例えば、M)の時間リソース(シンボル/スロット/サブスロット/ms)後、及び、L回のULチャネル送信/DLチャネル受信後、の少なくとも一方における時間リソース(シンボル/スロット/サブスロット)において、当該参照信号に関する情報の適用を終了してもよい。
上記オプション4-3-1から4-3-9におけるN及びLは、0以上の値であってもよい。上記オプション4-3-1から4-3-9におけるN及びLは、予め仕様で規定されてもよいし、特定のルールで決定されてもよいし、RRCシグナリングを用いて設定されてもよいし、UE能力情報に基づいて決定されてもよいし、DCI/MAC CEに含まれる参照信号に関する情報に基づいて決定されてもよいし、受信したDCI/MAC CEに基づいてニューメロロジー(例えば、サブキャリア間隔の設定)ごとに決定されてもよい。
上記オプション4-3-1から4-3-9のいずれかが適用されるかについて、予め仕様で規定されてもよいし、特定のルールで決定されてもよいし、RRCシグナリングを用いて設定されてもよいし、UE能力情報に基づいて決定されてもよいし、DCI/MAC CEに含まれる参照信号に関する情報に基づいて決定されてもよい。
オプション4-3について、どの特定のULチャネル/DLチャネルに対して適用するか否かが、特定のルールで決定されてもよいし、RRCシグナリングを用いて設定されてもよいし、UE能力情報に基づいて決定されてもよいし、DCI/MAC CEに含まれる参照信号に関する情報に基づいて決定されてもよい。当該特定のULチャネル/DLチャネルは、例えば、メッセージAを伝送するPUSCH、CG(タイプ1/2)PUSCH、SPS PDSCH、及び、DCIでスケジュール/アクティベートされるPUSCH/PDSCHの少なくとも1つであってもよい。
以上第4の実施形態によれば、参照信号に関する情報の適用期間を適切に決定することが可能になる。
<第5の実施形態>
第5の実施形態では、参照信号(第1の参照信号)と、当該参照信号とは異なる他の参照信号(第2の参照信号)とが重複するケースについて説明する。
第5の実施形態では、参照信号(第1の参照信号)と、当該参照信号とは異なる他の参照信号(第2の参照信号)とが重複するケースについて説明する。
本実施形態において、第1の参照信号は、第1-第4、第6-第9の実施形態における参照信号を意味してもよい。本実施形態において、第2の参照信号は、例えば、CSI-RSであってもよい。
UEは、第1の参照信号に関する情報(を含むDCI/MAC CE)に、当該情報によって指示される第1の参照信号のリソースと、第2の参照信号のリソースとが重複する指示を含まないことを想定してもよい。
第1の参照信号のリソースは、例えば、DMRSのリソース、PDSCHのポテンシャルDMRSポートに伴うCDMグループのDMRSリソース、PTRSのリソース、の少なくとも1つであってもよい。
なお、上記ポテンシャルDMRSポートに伴うCDMグループとは、DMRSがマッピングされる可能性のある周波数方向に連続する/不連続のリソースにマッピングされるDMRSについてのCDMグループを意味してもよい。
第1の参照信号に関する情報(を含むDCI/MAC CE)に、当該情報によって指示される第1の参照信号のリソースと、第2の参照信号のリソースとが重複する指示を含む場合、UEは、特定のルールに基づいて動作してもよい。
当該特定のルールは、以下のオプション5-1から5-3の少なくとも1つであってもよい。
《オプション5-1》
UEは、第1の参照信号に関する情報を適用してもよい。
UEは、第1の参照信号に関する情報を適用してもよい。
UEは、第1の参照信号(のリソース)に重複する第2の参照信号(のリソース)を受信/復号しなくてもよい。
《オプション5-2》
UEは、第1の参照信号に関する情報を適用しなくてもよい。
UEは、第1の参照信号に関する情報を適用しなくてもよい。
UEは、第1の参照信号に関する情報の全てを適用しなくてもよい。
UEは、第1の参照信号に関する情報の一部を適用し、第1の参照信号に関する残りの部分を適用しなくてもよい。
《オプション5-3》
UEは、第1の参照信号に関する情報の適用において、第2の参照信号と重複しないよう第1の参照信号をマッピングするリソースを変更して、当該情報を適用してもよい。
UEは、第1の参照信号に関する情報の適用において、第2の参照信号と重複しないよう第1の参照信号をマッピングするリソースを変更して、当該情報を適用してもよい。
例えば、UEは、第1の参照信号に関する情報の適用において、第1の参照信号のうち第2の参照信号と重複する部分について、第2の参照信号と重複しないよう第1の参照信号をマッピングするリソースを特定のシンボル数分ずらしてもよい。
上記オプション5-1から5-3のいずれかが適用されるかについて、予め仕様で規定されてもよいし、特定のルールで決定されてもよいし、RRCシグナリングを用いて設定されてもよいし、UE能力情報に基づいて決定されてもよい。
本実施形態は、例えば、上述の第1の実施形態のオプション1-2(又は1-3)においてのみ、適用が限定されてもよい。
図12は、第5の実施形態に係る参照信号の重複の一例を示す図である。図12において、UEは、SPS PDSCHを受信している。
SPS PDSCHのうち、第1の受信機会と第2の受信機会においては、第1の参照信号(PDSCHのDMRS)と、第2の参照信号(CSI-RS)とは重複しない。
図12に示す例において、UEは、3番目の受信機会において、第1の参照信号に関する情報を受信し、追加のDMRSを送信する。
図12に示す例のように、第1の参照信号に関する情報に基づく指示により、第1の参照信号と第2の参照信号とが重複するようなケースについて、例えば、上述のオプション5-2及び5-3の少なくとも1つが適用されてもよい。
以上第5の実施形態によれば、第1の参照信号と第2の参照信号とが重複するケースに対して適切な動作を規定することができる。
<第6の実施形態>
第6の実施形態では、PDSCHプロセス動作時間(PDSCH processing procedure time)/PDSCH復号時間(PDSCH decoding time)について説明する。
第6の実施形態では、PDSCHプロセス動作時間(PDSCH processing procedure time)/PDSCH復号時間(PDSCH decoding time)について説明する。
本開示において、PDSCHプロセス動作時間(PDSCH processing procedure time)とは、PDSCHの最後のシンボルから、当該PDSCHに対応するHARQ-ACKを送信するまでの経過時間(シンボル)を意味してもよい。
PDSCHプロセス動作時間(PDSCH processing procedure time)は、PDSCH復号時間(PDSCH decoding time)に基づいて決定されてもよい。PDSCH復号時間(PDSCH decoding time)は、PDSCHプロセス動作時間(PDSCH processing procedure time)に含まれてもよい。
UEは、参照信号に関する情報を受信した場合、PDSCHプロセス動作時間(PDSCH processing procedure time)/PDSCH復号時間(PDSCH decoding time)を、下記のオプション6-1及び6-2の少なくとも一方に基づいて決定/判断してもよい。
《オプション6-1》
UEは、参照信号に関する情報を受信した場合であっても、PDSCHプロセス動作時間(PDSCH processing procedure time)/PDSCH復号時間(PDSCH decoding time)を、特定の上位レイヤ(RRC)パラメータに基づいて判断/決定してもよい。
UEは、参照信号に関する情報を受信した場合であっても、PDSCHプロセス動作時間(PDSCH processing procedure time)/PDSCH復号時間(PDSCH decoding time)を、特定の上位レイヤ(RRC)パラメータに基づいて判断/決定してもよい。
当該特定の上位レイヤ(RRC)パラメータは、DLのDMRS設定(例えば、DMRS-downlinkConfig)に含まれるDMRSの追加位置に関する情報(例えば、dmrs-AdditionnalPosition)であってもよい。当該特定の上位レイヤ(RRC)パラメータは、参照信号に関する情報を受信する前に設定されるパラメータであってもよい。
《オプション6-2》
UEは、PDSCHプロセス動作時間(PDSCH processing procedure time)/PDSCH復号時間(PDSCH decoding time)を、参照信号に関する情報に基づいて決定/判断してもよい。
UEは、PDSCHプロセス動作時間(PDSCH processing procedure time)/PDSCH復号時間(PDSCH decoding time)を、参照信号に関する情報に基づいて決定/判断してもよい。
当該参照信号に関する情報は、追加の参照信号のシンボル数(例えば、追加DMRSのOFDMシンボル数)に関する情報であってもよい。
追加の参照信号のシンボル数に対応する、PDSCHプロセス動作時間(PDSCH processing procedure time)/PDSCH復号時間(PDSCH decoding time)の設定が規定されてもよい。
図13は、第6の実施形態のオプション6-2に係るPDSCH復号時間の決定の一例を示す図である。UEは、図13に示すような対応関係(例えば、テーブル)に基づいて、PDSCHプロセス動作時間(PDSCH processing procedure time)/PDSCH復号時間(PDSCH decoding time)を決定/判断する。
図13に示す例では、追加DMRSのOFDMシンボル数が0の場合であるかと、追加DMRSのOFDMシンボル数が1つ以上の場合であるかと、PDSCHのサブキャリア間隔の設定(μ)と、に基づく対応関係が記載されるが、対応関係内の条件及び時間の値はあくまで一例である。例えば、条件とされる追加DMRSのOFDMシンボル数は任意の値であってもよいし、条件とされる追加DMRSのOFDMシンボル数を示す行の数は3以上であってもよい。
上記オプション6-1又は6-2のいずれかが適用されるかについて、予め仕様で規定されてもよいし、特定のルールで決定されてもよいし、RRCシグナリングを用いて設定されてもよいし、UE能力情報に基づいて決定されてもよい。
以上第6の実施形態によれば、参照信号に関する情報により、動的に参照信号に関する設定が変更される場合であっても、PDSCHプロセス動作時間(PDSCH processing procedure time)/PDSCH復号時間(PDSCH decoding time)を適切に決定/判断することができる。
<第7の実施形態>
第7の実施形態では、参照信号に関する情報のビット幅(bitwidth)について説明する。
第7の実施形態では、参照信号に関する情報のビット幅(bitwidth)について説明する。
MAC CE/DCI(フォーマット)に含まれる参照信号に関する情報のビットフィールドについて、下記オプション7-1及び7-2の少なくとも一方が適用されてもよい。
《オプション7-1》
UEは、ビットフィールドのビット幅が変更される参照信号に関する情報を含んだDCI/MAC CEの受信を想定しなくてもよい。
UEは、ビットフィールドのビット幅が変更される参照信号に関する情報を含んだDCI/MAC CEの受信を想定しなくてもよい。
UEに対し複数の参照信号設定が設定される場合、UEは、特定のビット幅の設定に基づいて、参照信号に関する情報のビット幅を判断/決定してもよい。
当該特定のビット幅の設定は、例えば、最長(又は、最大)のビット幅を必要とする参照信号設定であってもよい。
例えば、UEが最長のビット幅と比較して短いビット幅に対応する参照信号設定に関連するDCI/MAC CEを受信する場合、UEは、最長のビット幅と同じビット幅と等しくなるよう、ビットフィールドのMSB(又は、LSB)に固定値(例えば、0(又は、1))を付加(パディング)されると想定してもよい。
図14は、第7の実施形態のオプション7-1に係るMAC CE/DCIフィールドのビット幅の一例を示す図である。図14に示す例では、UEに対し、複数の参照信号設定(DMRS設定X及びY)が設定される。
図14に示す例において、DMRS設定Xに関連する参照信号に関する情報(図14の例では、DMRS設定Xのためのアンテナポートフィールド)のビットフィールドは、DMRS設定Yに関連する参照信号に関する情報のビットフィールドより短い。この場合、MAC CE/DCIに含まれる当該情報のビット幅は、より長い(最長の)ビットフィールドを必要とする、DMRS設定Yに関連する参照信号に関する情報のビットフィールドのビット幅に基づいて計算される。
この場合、DMRS設定Xに関連する参照信号に関する情報のビット幅は、DMRS設定Yに関連する参照信号に関する情報のビット幅と等しくなるように固定値(0)がパディングされる。
《オプション7-2》
UEに対し、MAC CE/DCI(フォーマット)に含まれる参照信号に関する情報のビットフィールドのビット幅が変更されうるか否かが設定されてもよい。
UEに対し、MAC CE/DCI(フォーマット)に含まれる参照信号に関する情報のビットフィールドのビット幅が変更されうるか否かが設定されてもよい。
当該設定は、上位レイヤシグナリング(RRCシグナリング/MAC CE)/物理レイヤシグナリング(DCI)を用いて行われてもよい。
UEに対して、MAC CE/DCI(フォーマット)に含まれる参照信号に関する情報のビットフィールドのビット幅が変更されないことが設定される場合、UEは、下記オプション7-2-1から7-2-3の少なくとも1つに従って動作してもよい。
[オプション7-2-1]
UEは、ビット幅が変更される参照信号に関する情報を含むMAC CE/DCIの受信を想定しなくてもよい。
UEは、ビット幅が変更される参照信号に関する情報を含むMAC CE/DCIの受信を想定しなくてもよい。
[オプション7-2-2]
UEは、ビット幅が変更される参照信号に関する情報を含むMAC CE/DCIを受信してもよい。
UEは、ビット幅が変更される参照信号に関する情報を含むMAC CE/DCIを受信してもよい。
UEは、当該MAC CE/DCIに含まれる参照信号に関する情報を適用しなくてもよい。
[オプション7-2-3]
UEは、ビット幅が変更される参照信号に関する情報を含むMAC CE/DCIを受信してもよい。
UEは、ビット幅が変更される参照信号に関する情報を含むMAC CE/DCIを受信してもよい。
UEは、特定の場合において、当該MAC CE/DCIに含まれる参照信号に関する情報を適用してもよい。
当該特定の場合は、例えば、参照信号に関する情報が、すでに設定されている参照信号設定に必要なビット幅より短い場合であってもよい。また、当該特定の場合は、例えば、参照信号に関する情報が、すでに設定されている参照信号設定に必要なビット幅と等しい場合であってもよい。
UEは、すでに設定されている参照信号設定に必要なビット幅より長いビット幅に変更される参照信号に関する情報を含むMAC CE/DCIの受信を想定しなくてもよい。
UEが最長のビット幅と比較して短いビット幅に対応する参照信号設定に関連するDCI/MAC CEを受信する場合、UEは、最長のビット幅と同じビット幅と等しくなるよう、ビットフィールドのMSB(又は、LSB)に固定値(例えば、0(又は、1))を付加(パディング)されると想定してもよい。
すでに設定されている参照信号設定に必要なビット幅より長いビット幅に変更される参照信号に関する情報を含むMAC CE/DCIを受信する場合、UEは、参照信号に関する情報の全てを適用しなくてもよい。
すでに設定されている参照信号設定に必要なビット幅より長いビット幅に変更される参照信号に関する情報を含むMAC CE/DCIを受信する場合、UEは、参照信号に関する情報の一部のみを適用してもよい。
上記オプション7-2-1から7-2-3のいずれかが適用されるかについて、予め仕様で規定されてもよいし、特定のルールで決定されてもよいし、RRCシグナリングを用いて設定されてもよいし、UE能力情報に基づいて決定されてもよい。
以上第7の実施形態によれば、参照信号のマッピングが動的に設定/指示される場合であっても、参照信号に関する情報のビットフィールドを適切に決定することができる。
<第8の実施形態>
第8の実施形態では、追加の参照信号の制限について説明する。
第8の実施形態では、追加の参照信号の制限について説明する。
追加の参照信号のシンボル数について、下記オプション8-1及び8-2の少なくとも一方が適用されてもよい。
本実施形態において、追加の参照信号、及び、追加DMRSは、互いに読み替えられてもよい。また、本開示において、追加の参照信号のシンボル数、及び、追加DMRSのOFDMシンボル数は、互いに読み替えられてもよい。
本実施形態において、追加の参照信号のシンボル数は、第1の(最初の)参照信号のシンボル位置に基づいて制限/決定されてもよい。このとき、第1の(最初の)参照信号は、特定のマッピングタイプ(例えば、マッピングタイプA)の参照信号であってもよい。
本実施形態において、追加の参照信号のシンボル数は、フロントローディッド参照信号のシンボル位置に基づいて制限/決定されてもよい。
なお、本開示において、上記制限とは、最初(第1)の参照信号の位置を示す上位レイヤパラメータ(例えば、dmrs-TypeA-Position)と、UL/DLチャネルのマッピングタイプと、UL/DLチャネルの期間(duration)の少なくとも1つに基づいて、追加の参照信号のシンボル数が限定されることを意味してもよい。
なお、本開示において、上記制限とは、フロントローディッド参照信号の最大数を示す上位レイヤパラメータ(例えば、maxLength)に基づいて、追加の参照信号のシンボル数が限定されることを意味してもよい。
《オプション8-1》
UEは、参照信号に関する情報に、追加の参照信号のシンボル数の制限を超える設定/指示が含まれないと想定してもよい。
UEは、参照信号に関する情報に、追加の参照信号のシンボル数の制限を超える設定/指示が含まれないと想定してもよい。
《オプション8-2》
参照信号に関する情報に、追加の参照信号のシンボル数の制限を超える設定/指示が含まれる場合、UEは、下記オプション8-2-1及び8-2-2の少なくとも一方に基づいて動作してもよい。
参照信号に関する情報に、追加の参照信号のシンボル数の制限を超える設定/指示が含まれる場合、UEは、下記オプション8-2-1及び8-2-2の少なくとも一方に基づいて動作してもよい。
[オプション8-2-1]
UEは、追加の参照信号のシンボル数の制限に関係なく、参照信号に関する情報を適用してもよい。
UEは、追加の参照信号のシンボル数の制限に関係なく、参照信号に関する情報を適用してもよい。
[オプション8-2-2]
UEは、追加の参照信号のシンボル数の制限を超える参照信号のマッピングを指示する参照信号に関する情報を適用しなくてもよい。
UEは、追加の参照信号のシンボル数の制限を超える参照信号のマッピングを指示する参照信号に関する情報を適用しなくてもよい。
UEは、受信した参照信号に関する情報を全て適用しなくてもよい。
UEは、受信した参照信号に関する情報を一部のみ適用しなくてもよい。
上記オプション8-2-1及び8-2-2のいずれかが適用されるかについて、予め仕様で規定されてもよいし、特定のルールで決定されてもよいし、RRCシグナリングを用いて設定されてもよいし、UE能力情報に基づいて決定されてもよい。
以上第8の実施形態によれば、参照信号のマッピングが動的に設定/指示される場合であっても、追加の参照信号のシンボル数の制限に関連する動作を適切に行うことができる。
<第9の実施形態>
上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
当該特定のUE能力は、以下の少なくとも1つを示してもよい:
・各実施形態の特定の動作/情報をサポートするか否か。
・各実施形態における各オプション/オプションの組み合わせの適用をサポートするか否か。
・各実施形態の特定の動作/情報をサポートするか否か。
・各実施形態における各オプション/オプションの組み合わせの適用をサポートするか否か。
上記UE能力は、UEとして対応できるか否かで報告されてもよい。
上記UE能力は、全周波数について報告されてもよいし、周波数ごとに報告されてもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、Frequency Range 2(FR2)、FR2-1、FR2-2)ごとに報告されてもよいし、セルごとに報告されてもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとに報告されてもよい。
上記UE能力は、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))に共通に報告されてもよいし、独立に報告されてもよい。
また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい。例えば、当該特定の情報は、低減されたCSIフィードバック/低減されたCSIフィードバックを有効化することを示す情報、特定のリリース(例えば、Rel.18)向けの任意のRRCパラメータなどであってもよい。
以上第9の実施形態によれば、UEは、既存の仕様との互換性を保ちつつ、上記の機能を実現できる。
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図15は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
図16は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
図16は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
送受信部120は、1つ以上の参照信号設定を送信してもよい。制御部110は、参照信号に関する情報及び特定の条件の少なくとも一方に基づいて、前記参照信号設定のうちの少なくとも1つの参照信号設定の少なくとも一部が適用された前記参照信号の送信及び受信の少なくとも一方を制御してもよい(第1の実施形態)。
送受信部120は、1つ以上の参照信号設定を(Radio Resource Control(RRC))シグナリングを用いて送信し、参照信号に関する情報を下りリンク制御情報(DCI)及びMedium Access Control(MAC)制御要素(Control Element(CE))の少なくとも一方を用いて送信してもよい。制御部110は、前記参照信号設定及び前記参照信号に関する情報を用いて、前記参照信号のマッピングを判断してもよい(第2、第3の実施形態)。
送受信部120は、1つ以上の参照信号設定と、参照信号に関する情報を送信してもよい。制御部110は、前記参照信号に関する情報の適用期間を決定し、前記参照信号設定及び前記参照信号に関する情報を用いて、前記参照信号のマッピングを判断してもよい(第4の実施形態)。
送受信部120は、下りリンク制御情報(DCI)及びMedium Access Control(MAC)制御要素(Control Element(CE))の少なくとも一方を用いて、参照信号に関する情報を送信してもよい。制御部110は、前記参照信号に関する情報に基づく前記参照信号のリソースと、前記参照信号とは異なる他の参照信号のリソースと、が重複して設定される場合、前記参照信号及び前記他の参照信号の送信を制御してもよい(第5の実施形態)。
(ユーザ端末)
図17は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
図17は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
送受信部220は、1つ以上の参照信号設定を受信してもよい。制御部210は、参照信号に関する情報及び特定の条件の少なくとも一方に基づいて、前記参照信号設定のうちの少なくとも1つの参照信号設定の適用を制御してもよい(第1の実施形態)。
前記参照信号設定は、復調用参照信号の設定及び位相トラッキング参照信号の設定の少なくとも1つを含んでもよい(第1の実施形態)。
制御部210は、前記参照信号に関する情報及び前記特定の条件に基づいて、複数設定される前記参照信号設定から、1つの参照信号設定を選択/決定してもよい(第1の実施形態)。
前記特定の条件は、参照信号のバンドリングの適用、複数のスロットをまたぐチャネルの送信が行われるか否か、前記参照信号とは異なる他の参照信号との重複、変調オーダ、レイヤ数、前記参照信号のポート数、物理下りリンク共有チャネル又は物理上りリンク共有チャネルをスケジュールする下りリンク制御情報のフォーマット、前記参照信号が特定のチャネルに用いられるか否か、前記下りリンク制御情報の巡回冗長検査のスクランブルに用いられる無線ネットワーク一時識別子、コンフィギュアドグラントの設定、前記下りリンク制御情報に前記参照信号に関する情報が含まれるか否か、学習状態に対応する前記端末の状態、及び、前記端末の速度、の少なくとも1つに基づく条件であってもよい(第1の実施形態)。
送受信部220は、1つ以上の参照信号設定を(Radio Resource Control(RRC))シグナリングを用いて受信し、参照信号に関する情報を下りリンク制御情報(DCI)及びMedium Access Control(MAC)制御要素(Control Element(CE))の少なくとも一方を用いて受信してもよい。制御部210は、前記参照信号設定及び前記参照信号に関する情報に基づいて、前記参照信号のマッピングを制御してもよい(第2、第3の実施形態)。
制御部210は、前記参照信号に関する情報に基づいて、前記参照信号をマッピングしないスロット及びシンボルの少なくとも一方を判断してもよい(第2の実施形態)。
制御部210は、前記参照信号に関する情報に基づいて、前記参照信号をマッピングしないサブキャリアを判断してもよい(第2の実施形態)。
制御部210は、前記参照信号に関する情報に基づいて、前記参照信号に適用される直交カバーコード系列を判断してもよい(第2の実施形態)。
送受信部220は、1つ以上の参照信号設定と、参照信号に関する情報を受信してもよい。制御部210は、前記参照信号に関する情報の適用期間を判断し、前記参照信号設定及び前記参照信号に関する情報に基づいて、前記参照信号のマッピングを判断してもよい(第4の実施形態)。
前記参照信号が、複数のスロットにわたってスケジュール又はアクティベートされるチャネルに対する参照信号である場合、制御部210は、前記参照信号に関する情報を、前記チャネルの全てに適用してもよい(第4の実施形態)。
前記参照信号が、複数のスロットにわたってスケジュール又はアクティベートされるチャネルに対する参照信号である場合、制御部210は、前記参照信号に関する情報を、前記チャネルのうち最初の送信機会において適用してもよい(第4の実施形態)。
制御部210は、前記参照信号に関する情報の受信後の第1の期間経過後、及び、前記参照信号に関する情報を含む下りリンク制御情報に対するHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)の受信後の第2の期間経過後、の少なくとも一方において、前記参照信号に関する情報の適用の開始及び終了の少なくとも一方を判断してもよい(第4の実施形態)。
送受信部220は、下りリンク制御情報(DCI)及びMedium Access Control(MAC)制御要素(Control Element(CE))の少なくとも一方を用いて、参照信号に関する情報を受信してもよい。制御部210は、前記参照信号に関する情報に基づく前記参照信号のリソースと、前記参照信号とは異なる他の参照信号のリソースと、が重複して設定される場合、前記参照信号及び前記他の参照信号の受信を制御してもよい(第5の実施形態)。
制御部210は、前記DCIに含まれる追加の参照信号に関する情報に基づいて、物理下りリンク共有チャネルの復号時間を判断してもよい(第6の実施形態)。
複数の参照信号設定が設定される場合であって、前記複数の参照信号設定のそれぞれに対する前記参照信号に関する情報に必要なビット幅が異なる場合であっても、制御部210は、前記参照信号に関する情報のビット幅が固定値であると判断してもよいし、前記ビット幅が前記固定値になるようパディングされると想定してもよい(第7の実施形態)。
制御部210は、前記参照信号に関する情報に追加の参照信号のシンボル数の制限を超える指示が含まれるか否かを判断してもよい(第8の実施形態)。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図18は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
図19は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
Claims (6)
- 1つ以上の参照信号設定を受信する受信部と、
参照信号に関する情報及び特定の条件の少なくとも一方に基づいて、前記参照信号設定のうちの少なくとも1つの参照信号設定の適用を制御する制御部と、を有する端末。 - 前記参照信号設定は、復調用参照信号の設定及び位相トラッキング参照信号の設定の少なくとも1つを含む、請求項1に記載の端末。
- 前記制御部は、前記参照信号に関する情報及び前記特定の条件に基づいて、複数設定される前記参照信号設定から、1つの参照信号設定を選択する請求項1に記載の端末。
- 前記特定の条件は、参照信号のバンドリングの適用、複数のスロットをまたぐチャネルの送信が行われるか否か、前記参照信号とは異なる他の参照信号との重複、変調オーダ、レイヤ数、前記参照信号のポート数、物理下りリンク共有チャネル又は物理上りリンク共有チャネルをスケジュールする下りリンク制御情報のフォーマット、前記参照信号が特定のチャネルに用いられるか否か、前記下りリンク制御情報の巡回冗長検査のスクランブルに用いられる無線ネットワーク一時識別子、コンフィギュアドグラントの設定、前記下りリンク制御情報に前記参照信号に関する情報が含まれるか否か、学習状態に対応する前記端末の状態、及び、前記端末の速度、の少なくとも1つに基づく条件である、請求項1に記載の端末。
- 1つ以上の参照信号設定を受信するステップと、
参照信号に関する情報及び特定の条件の少なくとも一方に基づいて、前記参照信号設定のうちの少なくとも1つの参照信号設定の適用を制御するステップと、を有する端末の無線通信方法。 - 1つ以上の参照信号設定を送信する送信部と、
参照信号に関する情報及び特定の条件の少なくとも一方に基づいて、前記参照信号設定のうちの少なくとも1つの参照信号設定の少なくとも一部が適用された前記参照信号の送信及び受信の少なくとも一方を制御する制御部と、を有する基地局。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/046615 WO2023112280A1 (ja) | 2021-12-16 | 2021-12-16 | 端末、無線通信方法及び基地局 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/046615 WO2023112280A1 (ja) | 2021-12-16 | 2021-12-16 | 端末、無線通信方法及び基地局 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023112280A1 true WO2023112280A1 (ja) | 2023-06-22 |
Family
ID=86773915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/046615 WO2023112280A1 (ja) | 2021-12-16 | 2021-12-16 | 端末、無線通信方法及び基地局 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023112280A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016518758A (ja) * | 2013-04-01 | 2016-06-23 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 送信装置および制御信号配置方法 |
WO2018124028A1 (ja) * | 2016-12-27 | 2018-07-05 | 株式会社Nttドコモ | ユーザ端末及び無線通信方法 |
JP2020526058A (ja) * | 2018-02-13 | 2020-08-27 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | 通信プロセスにおけるリソース要素の数量を取得するための方法、および関連する装置 |
-
2021
- 2021-12-16 WO PCT/JP2021/046615 patent/WO2023112280A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016518758A (ja) * | 2013-04-01 | 2016-06-23 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 送信装置および制御信号配置方法 |
WO2018124028A1 (ja) * | 2016-12-27 | 2018-07-05 | 株式会社Nttドコモ | ユーザ端末及び無線通信方法 |
JP2020526058A (ja) * | 2018-02-13 | 2020-08-27 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | 通信プロセスにおけるリソース要素の数量を取得するための方法、および関連する装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023037527A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023112280A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023112278A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023112277A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023112279A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023157461A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023063234A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023152816A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023135801A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023079704A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023152791A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023135802A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023152792A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023135800A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023167214A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023152982A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023166717A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023157254A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023157253A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023157252A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023166716A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023073908A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023073917A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023073915A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023073916A1 (ja) | 端末、無線通信方法及び基地局 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21968195 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |