WO2023112171A1 - Method for forming silicon boride film - Google Patents

Method for forming silicon boride film Download PDF

Info

Publication number
WO2023112171A1
WO2023112171A1 PCT/JP2021/046129 JP2021046129W WO2023112171A1 WO 2023112171 A1 WO2023112171 A1 WO 2023112171A1 JP 2021046129 W JP2021046129 W JP 2021046129W WO 2023112171 A1 WO2023112171 A1 WO 2023112171A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
sib
forming
silicon boride
Prior art date
Application number
PCT/JP2021/046129
Other languages
French (fr)
Japanese (ja)
Inventor
方省 赤澤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/046129 priority Critical patent/WO2023112171A1/en
Publication of WO2023112171A1 publication Critical patent/WO2023112171A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy

Definitions

  • the present disclosure relates to a method for forming a silicon boride film.
  • SiB Silicon boride
  • Si is a compound of silicon (Si) and boron (B), and is a compound material for which stable phases have been reported in various composition ratios.
  • Typical stable phases of SiB include SiB 3 and SiB 6 , which have already been put to practical use as thermoelectric conversion devices and refractory materials.
  • Non-Patent Documents 1 and 2 Existing techniques for forming SiB include, for example, a method of melting a mixture of Si and B powders as raw materials at high temperature (see, for example, Non-Patent Documents 1 and 2), and a method of pressing at high pressure (for example, Non-Patent Document 3) and the like are known.
  • a forming method usually requires a high temperature environment of 1200° C. or more, and in addition, there is a problem that only a powdery SiB crystal can be formed.
  • SiB is required to be a thin film from the viewpoint of industrial applications such as thermoelectric conversion devices.
  • B is also a typical p-type dopant for Si crystals, and Si crystals doped with a small amount of B are applied to devices such as photodiodes and CMOS transistors as p-type semiconductors.
  • a method of manufacturing a device using such a B-doped Si crystal for example, in a silicon process for LSI, a method of irradiating (ion-implanting) B ions accelerated in an electric field to a Si crystal is known.
  • the concentration of B doped into Si exceeds 6 ⁇ 10 20 cm ⁇ 3 , which is considered to have no effect on the crystal structure of Si, the presence of excess B atoms disturbs the crystal structure of Si.
  • SiB is generated in the Si crystal when the concentration of B is further increased.
  • Si is doped with such a high concentration of B in a silicon process and a B-doped Si crystal formed is investigated in detail.
  • SiB film In order to form a thin film of SiB (hereinafter referred to as a SiB film), it is desirable to apply a semiconductor process such as the silicon process described above instead of a solid-phase reaction.
  • a semiconductor process such as the silicon process described above instead of a solid-phase reaction.
  • diborane (B 2 H 6 ) gas commonly used as a source of B, is not sufficiently decomposed in the thermal excitation process. Therefore, there have been no reports of SiB films formed by a film forming technique widely used in industry, such as chemical vapor deposition (hereinafter referred to as CVD). That is, from the viewpoint of industrial use such as application to thermoelectric conversion devices, there is a problem that an effective film forming technique for forming a SiB film has not been established.
  • the present disclosure has been made in view of the above problems, and the purpose thereof is to form a SiB film using CVD, which is one of the film formation techniques widely applied in industry. It is to provide a method.
  • the present disclosure provides a method for forming a silicon boride film by chemical vapor deposition, in which a Si (100) substrate from which a natural oxide film has been removed is placed in a chamber, and the chamber is evacuated. heating the Si(100) substrate to 600° C. while introducing disilane gas and diborane gas into the chamber to form a Si buffer layer on the Si(100) substrate; Irradiation or plasma generation to form a film of silicon boride on a Si (100) substrate, and post-annealing at 900° C. a laminate in which the silicon boride film is formed on the Si (100) substrate. and crystallizing the silicon boride by subjecting it to a method of forming a silicon boride film.
  • FIG. 1 is a flow chart illustrating a method 10 of forming a SiB film according to the present disclosure
  • FIG. 4 is a diagram schematically showing the aspect of forming a SiB film by optical CVD in the first embodiment of the present disclosure; , a Si(100) substrate with a buffer layer formed thereon, a SiB film after deposition by CVD, a SiB film after post-annealing, and aB pseudo-dielectric response function spectra;
  • FIG. ) shows the real part of the pseudo-dielectric response function, and
  • FIG. 3(b) shows the imaginary part of the pseudo-dielectric response function.
  • FIG. 4 is a diagram showing trajectories of ellipsometric angles ( ⁇ , ⁇ ) of each sample shown in FIG.
  • FIG. 3 It is a diagram showing the results of fitting the pseudo-dielectric response function spectrum assuming various single-layer models to the pseudo-dielectric response function of the SiB film after CVD film formation shown in FIG. The spectrum of the real part is shown, and FIG. 5(b) shows the spectrum of the imaginary part. It is a diagram showing the substrate temperature dependence during film formation of the pseudo-dielectric response function spectrum of the a-SiB film after film formation, FIG. A spectrum at a temperature of 400° C. is shown, respectively.
  • FIG. 7 shows the results of fitting the pseudo-dielectric response function spectra of various single-layer models to the pseudo-dielectric response function of the SiB film after post-annealing shown in FIG. 7B shows the spectrum of the imaginary part, respectively.
  • FIG. 7 shows the results of fitting the pseudo-dielectric response function spectra of various single-layer models to the pseudo-dielectric response function of the SiB film after post-annealing shown in FIG. 7B shows the spectrum of the imaginary part,
  • FIG. 8 is a diagram showing the disilane gas flow rate ratio dependence of the trajectory of the ellipsometric angle ( ⁇ ) obtained using spectroscopic ellipsometry with respect to the growth surface of the SiB film during film formation by CVD, and FIG. FIG. 8B shows the trajectory when the incident light energy used for measurement is 3.4 eV, and FIG. 8B shows the trajectory when the incident light energy used for measurement is 1.5 eV.
  • FIG. 9 is a diagram showing the pseudo-dielectric response function spectrum of a SiB film deposited at a disilane flow rate of 0.2 sccm, FIG. 9A shows the spectrum of the real part, and FIG. showing.
  • FIG. 10 is a diagram schematically showing the aspect of forming a SiB film by plasma CVD in the second embodiment of the present disclosure;
  • the reason why the formation of SiB films using CVD has not been realized so far is that the reaction gas diborane gas is not sufficiently decomposed in the thermal excitation process.
  • the energy source for exciting the diborane gas is a higher energy medium (eg, light or plasma)
  • the diborane gas can be decomposed into active species (eg, radicals) capable of forming a film by CVD.
  • active species eg, radicals
  • diborane has a large excitation cross section under vacuum ultraviolet light irradiation. Focusing on these points, the present disclosure uses disilane gas and diborane gas as reactive gases, and a method of forming a SiB film by CVD (optical CVD or plasma CVD) in which light or plasma is applied to the excitation medium of these reactive gases. I will provide a.
  • CVD optical CVD or plasma CVD
  • the SiB film when the SiB film is formed by photo-CVD using vacuum ultraviolet light as excitation light, the formed SiB film is amorphous in the state after film formation.
  • the SiB film when assuming application to the above-mentioned thermoelectric conversion device and the like, the SiB film is preferably crystalline. Therefore, the method for forming a SiB film according to the present disclosure transforms amorphous SiB (hereinafter referred to as a-SiB) deposited by photo-CVD or plasma CVD into crystallized SiB (hereinafter referred to as c-SiB). including methods. Specifically, after the film formation by CVD is completed, the layered body in which the a-SiB film is formed on the substrate is taken out from the chamber and post-fired (post-annealed).
  • a-SiB amorphous SiB
  • c-SiB crystallized SiB
  • FIG. 1 is a flowchart illustrating a method 10 of forming a SiB film according to the present disclosure.
  • a method 10 for forming a SiB film according to the present disclosure includes preparing a Si(100) substrate, removing a native oxide film formed on the surface of the Si(100) substrate (step 11), and placing Si(100) in a chamber. After placing the substrate, the chamber is evacuated (step 12), and the Si(100) substrate is heated to 600° C. while introducing reaction gases such as disilane gas and diborane gas into the chamber.
  • step 13 forming a buffer layer of Si on the substrate (step 13); irradiating light or generating plasma in the chamber to form a SiB film on the Si (100) substrate (step 14); 100) removing the stack having SiB deposited on the substrate from the chamber and subjecting it to post-annealing at 900° C. to crystallize the SiB (step 15).
  • the method of removing the natural oxide film can be pickling, which removes the natural oxide film by immersing the Si (100) substrate in dilute hydrofluoric acid, for example.
  • the Si buffer layer is formed on the Si (100) substrate by utilizing thermal growth of disilane gas introduced into the chamber as a reaction gas.
  • the purpose of forming this buffer layer is to flatten the top surface of the Si (100) substrate at the atomic level.
  • the method of forming the SiB film according to the present disclosure does not require a high temperature environment of 1200° C. or higher as in the conventional technology, the process is a lower temperature process than the conventional one, and in terms of manufacturing cost and energy saving, it is lower than the conventional technology. Are better.
  • the present embodiment relates to a method of forming a SiB film by optical CVD and crystallizing SiB by post-annealing.
  • FIG. 2 is a diagram schematically showing the aspect of forming a SiB film by optical CVD in the first embodiment of the present disclosure.
  • a Si (100) substrate 23 is placed on a substrate heater 22 placed in a chamber 21 .
  • a disilane gas 24 with a purity of 100% and a diborane gas 25 diluted to 1% with helium (He) are introduced at predetermined flow rates, respectively, and excitation light 26 is irradiated.
  • the excitation light 26 is vacuum ultraviolet/soft X-ray white excitation light with photon energies in the range of 100-1000 eV.
  • disilane gas 24 and the diborane gas 25 are decomposed into chemically active radicals (SiHx, BHx). is deposited. As shown in FIG. 2, disilane gas 24 and diborane gas 25 are preferably flowed toward Si(100) substrate 23 and then Si(100) substrate 23 is irradiated with excitation light 26 .
  • a Si buffer layer is formed on the Si (100) substrate 23 .
  • the heat generated by operating the substrate heater 22 is used as an energy source to deposit a buffer layer from the disilane gas 24 onto the Si(100) substrate. Since the Si (100) substrate 23 is a single crystal, the buffer layer is epitaxially grown, and thus becomes Si (100) itself. As a result, the outermost surface of the Si(100) substrate (that is, the interface with the SiB film) becomes flat Si(100) at the atomic level.
  • the substrate temperature during film formation is 300-400° C.
  • the flow rate of disilane gas 24 is 0.1-0.2 sccm
  • the flow rate of diborane gas is 0.1 sccm.
  • the laminate in which SiB is formed on the Si (100) substrate using optical CVD is post-annealed to crystallize the formed SiB film.
  • Post-annealing is performed by holding at a predetermined temperature, for example, using an electric furnace.
  • the post-annealing temperature in this embodiment is 900.degree.
  • Such a method makes it possible to form a SiB film.
  • conventional methods for forming SiB require a high temperature environment of 1200° C. or higher, but the method according to the present disclosure can form a SiB film at a lower temperature than that.
  • Analysis using spectroscopic ellipsometry in the present embodiment is performed on a Si (100) substrate before film formation by CVD (that is, immediately after step 13 described above), and after film formation by CVD (that is, after step 14 above). ) and the SiB film after post-annealing (that is, immediately after step 15 described above).
  • the temperatures of the Si(100) substrate and the SiB film were room temperature. In-situ observation in the chamber was used for the analysis before and after the CVD film formation.
  • the evaluation of the pseudo-dielectric response function by spectroscopic ellipsometry consists of measuring the change in polarization by irradiating the sample surface with incident light and analyzing the reflected light, performing regression analysis with an assumed model, It includes comparing and evaluating the measurement results and the analysis results.
  • the energy of the incident light in the measurement was 1.5-5.0 eV.
  • c-Si crystalline silicon
  • a-Si amorphous silicon
  • aB amorphous boron
  • void vacancies
  • the void dielectric response function was assumed to match the vacuum dielectric response function (1+i0). Under these conditions, the optimum values were determined by changing the volume fraction and film thickness of each component as parameters, and performing fitting so that the difference between the measured spectrum and the spectrum obtained by analysis was minimized. .
  • FIG. 3 shows pseudodielectric response function spectra of a Si (100) substrate on which a buffer layer is formed, a SiB film after deposition by CVD, a SiB film after post-annealing, and aB.
  • 3(a) shows the real part of the pseudo-dielectric response function
  • FIG. 3(b) shows the imaginary part of the pseudo-dielectric response function.
  • the aB spectrum is the result of using a sample of a thin film separately formed by CVD using only diborane gas, and is also plotted for comparison. Note that the substrate temperature during film formation of each sample is 300° C. here. As shown in FIG.
  • the spectrum of aB is in a saturated state showing a substantially constant value in the region of 2 eV or more, so it can be regarded as showing the bulk dielectric response function of aB.
  • the SiB film formed by CVD contains Si having a larger mass number than B, so the dielectric response is enhanced in the region of 2 eV or more compared to aB.
  • the spectrum of the imaginary part of the SiB film after post-annealing changes to have a peak around 3.4 eV, as shown in FIG. 3(b). This indicates that the atoms forming the a-SiB bulk diffused to stable sites due to the thermal energy of the post-annealing, resulting in microcrystals.
  • FIG. 4 is a diagram showing the trajectory of the ellipsoid angle ( ⁇ , ⁇ ) of each sample shown in FIG.
  • the energy of incident light is 3.4 eV.
  • the origin O shown in FIG. 4 corresponds to the Si (100) substrate having the buffer layer formed on the outermost surface before film formation.
  • the change in the ellipsoidal angle on the locus O ⁇ A is due to the growth of the SiB film on the Si(100) substrate, indicating that the growth was terminated at A.
  • the locus A ⁇ B corresponds to the process in which the substrate temperature cools down to room temperature after the film formation is finished.
  • the locus B ⁇ C corresponds to the process of post-annealing the stack of the SiB film and the Si(100) substrate taken out from the chamber at 900.degree.
  • the ellipsoid angle changes with heating in this process, and the change in the ellipsoid angle becomes steady at 900°C.
  • the change in the ellipsoidal angle due to heating is thought to indicate that the SiB film, which was a-SiB immediately after film formation, was transformed into microcrystalline c-SiB.
  • the post-annealing temperature must be 900° C. in order to form c-SiB.
  • the SiB film formed at a substrate temperature of 300° C. is amorphous SiB (hereinafter referred to as a-SiB).
  • the a-SiB film is post-annealed at 900° C. to form a crystalline SiB (hereinafter referred to as c-SiB) film.
  • FIG. 5 is a diagram showing the result of fitting the pseudo-dielectric response function spectrum assuming various single-layer models to the pseudo-dielectric response function of the SiB film after CVD deposition shown in FIG. (a) shows the spectrum of the real part, and FIG. 5(b) shows the spectrum of the imaginary part.
  • Three single layer models were assumed here: (c-Si+a-Si+a-B), (c-Si+a-B+void), and (a-Si+a-B+void).
  • FIG. 5 also shows the spectrum of the pseudo-dielectric response function of the SiB film obtained by actual measurement. The reason why the single layer model is adopted is to evaluate the volume fraction including the whole while ignoring the layer structure such as the internal structure and surface roughness of the film.
  • the (a-Si+a-B+void) model reproduces the characteristics of the maximum amplitudes of 3 eV and 3.7 eV, and shows the spectrum closest to the measured value of a-SiB.
  • the volume fraction corresponding to this case was 80% a-Si, 20% aB, 0% void, and the film thickness was 212 angstroms.
  • the model can be substantially regarded as the (a-Si+a-B) model.
  • the composition obtained using the volume fraction of the film evaluated based on the dielectric response is Si 4 B.
  • the reason why the volume fraction of a-Si is four times higher than the volume fraction of a-B even though the flow rate of both disilane and diborane is set to 0.1 sccm is that Si atoms are incorporated into the film. probability is greater than that of the B atom incorporation.
  • the spectrum of the measured values of a-SiB is well reproduced by the analysis, it is considered appropriate to apply the effective medium approximation.
  • the a-SiB film formed by the method according to the present embodiment is a film having a-Si and aB as domains or an assembly of clusters.
  • the solid phase of c-SiB in which Si atoms and B atoms are combined is not formed.
  • B atoms form clusters when a high concentration of B exists in a Si crystal (see, for example, Non-Patent Document 5).
  • FIG. 6 is a diagram showing the dependence of the pseudo-dielectric response function spectrum of the a-SiB film after film formation on the substrate temperature during film formation.
  • FIG. b) shows the spectrum at a substrate temperature of 400° C., respectively.
  • the analysis spectrum assuming the (a-Si+a-B+void) model which shows the spectral shape closest to the actual measurement in FIG. 5, is also shown.
  • the spectrum of the pseudo-dielectric response function of the formed a-SiB film is the measured value. and the analytical values are in good agreement.
  • the parameters (volume fraction and film thickness) at this time were 74% a-Si, 26% aB, 0% void, and 217 ⁇ film thickness at a substrate temperature of 350°C. .
  • a substrate temperature of 400.degree. That is, it was found that the composition of a-SiB formed at a substrate temperature of 350° C. corresponds to Si 3 B, and the composition of a-SiB formed at a substrate temperature of 400° C. corresponds to Si 2 B.
  • FIG. 7 shows the results of fitting the pseudo-dielectric response function spectra of various single-layer models to the pseudo-dielectric response function of the post-annealed SiB film shown in FIG. shows the spectrum of the real part, and FIG. 7(b) shows the spectrum of the imaginary part.
  • four models of (c-Si+a-Si+void), (c-Si+a-Si+a-B), (c-Si+a-B+void), and (a-Si+a-B+void) were assumed for the analysis.
  • (c-Si + a-Si + void) shows a spectrum shape closest to the measured value, and the parameters (volume fraction and film thickness) at this time are 10% for c-Si, 62% for a-Si, The void was 28% and the film thickness was 187 angstroms. From this, it is considered that the SiB film after post-annealing is a film having slightly crystallized Si as a domain. It is considered that the fact that the void volume fraction is not zero corresponds to the surface roughness.
  • FIG. 8 is a diagram showing the disilane gas flow ratio dependence of the trajectory of the ellipsometric angle ( ⁇ ) obtained using spectroscopic ellipsometry with respect to the growth surface of the SiB film during film formation by CVD.
  • (a) shows the trajectory when the energy of the incident light used for the measurement is 3.4 eV
  • FIG. 8(b) shows the trajectory when the energy of the incident light used for the measurement is 1.5 eV.
  • the diborane gas flow rate was fixed at 0.1 sccm, and the disilane gas flow rate ratio was varied from 0.2 to 1.0 sccm.
  • the substrate temperature during the film formation is constant at 300.degree. As shown in Fig.
  • FIGS 9A and 9B are diagrams showing the pseudo-dielectric response function spectrum of the SiB film formed at a disilane flow rate of 0.2 sccm
  • FIG. 9A shows the spectrum of the real part
  • FIG. Spectra are shown, respectively.
  • Three types of models were assumed here: (a-Si+a-B+void), (c-Si+a-Si+a-B), and (c-Si+a-B+void).
  • the disilane flow rate of 0.1 sccm shown in FIG. 5 the (a-Si+a-B+void) model showed the best agreement.
  • the (c-Si+a-Si+a-B) model shows generally better agreement than the (a-Si+a-B+void) model, which showed the best agreement at a disilane flow rate of 0.1 sccm.
  • This result suggests that a region exhibiting a crystal structure appears by increasing the disilane flow ratio. It is considered that this is because the area in contact with smooth and highly crystalline Si (100) increased due to the increase in the amount of Si. From the above, it is believed that a c-SiB film can be formed by the method according to the present disclosure if the disilane flow ratio is in the range of 0.1-0.2 sccm.
  • FIG. 10 is a diagram schematically showing the aspect of forming an a-SiB film by plasma CVD in the second embodiment of the present disclosure.
  • a Si (100) substrate 23 is placed on a substrate heater 22 placed in a chamber 21 .
  • disilane gas 24 and diborane gas 25 diluted with helium (He) are introduced at predetermined flow rates, respectively, and voltage is applied to electrode 102, which serves as a cathode, using power supply 101.
  • the power source 101 is a high frequency power source.
  • a buffer layer of Si is formed on the Si (100) substrate 23 in the same manner as in the first embodiment.
  • the heat generated by operating the substrate heater 22 is used as an energy source to cause thermal growth on the Si (100) substrate by the disilane gas 24 .
  • the outermost surface of the Si (100) substrate is flattened at the atomic level.
  • the substrate temperature during film formation is 300-400° C.
  • the flow rate of the disilane gas 14 is 0.1-0.2 sccm
  • the flow rate of the diborane gas is 0.1 sccm.
  • the laminate in which a-SiB is formed on the Si (100) substrate using plasma CVD is post-annealed to crystallize the a-SiB film into a c-SiB film.
  • Post-annealing is performed by holding at a predetermined temperature, for example, using an electric furnace.
  • the post-annealing temperature in this embodiment is 900.degree.
  • a SiB film can be formed by such a method as in the first embodiment.
  • conventional methods for forming SiB require a high temperature environment of 1200° C. or higher, but the method according to the present disclosure can form a SiB film at a lower temperature than that.
  • the method of forming a SiB film according to the present disclosure realizes the formation of a SiB film, which has not been established in the past, by CVD and post-annealing, which are widely used in industry. Therefore, it contributes to the miniaturization of thermoelectric conversion elements, etc., and is expected to be put into practical use as a manufacturing method for thermoelectric conversion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present disclosure provides a method for forming a silicon boride film by using CVD, which is one of film forming techniques widely applied in industries. A method for forming a silicon boride film according to the present disclosure comprises: preparing a Si (100) substrate, and removing a native oxide film formed on the surface of the Si (100) substrate; installing the Si (100) substrate in a chamber, and evacuating the inside of the chamber; introducing disilane gas and diborane gas into the chamber, heating the Si (100) substrate to 600 °C, and forming a Si buffer layer on the Si (100) substrate; irradiating light or generating plasma in the chamber and forming a silicon boride film on the Si (100) substrate; and removing, from the chamber, a laminate in which silicon boride is formed on the Si (100) substrate, and performing post-annealing on the laminate at 900 °C to crystallize silicon boride.

Description

シリコンボライド膜の形成方法Method for forming silicon boride film

 本開示は、シリコンボライド膜の形成方法に関する。 The present disclosure relates to a method for forming a silicon boride film.

 シリコンボライド(以下、SiBという)は、珪素(Si)とホウ素(B)の化合物であり、様々な組成比において安定相が報告されている化合物材料である。代表的なSiBの安定相としては、SiB、SiBが挙げられ、これらは熱電変換デバイスや耐火材料として、既に実用化されている。 Silicon boride (hereinafter referred to as SiB) is a compound of silicon (Si) and boron (B), and is a compound material for which stable phases have been reported in various composition ratios. Typical stable phases of SiB include SiB 3 and SiB 6 , which have already been put to practical use as thermoelectric conversion devices and refractory materials.

 SiBを形成するための既存技術として、例えば、原料となるSiとBの粉末を混合したものを高温で溶融する方法(例えば、非特許文献1および2参照)、高圧でプレスする方法(例えば、非特許文献3参照)などが知られている。しかしながら、このような形成方法では、通常、1200℃以上の高温環境が必要であり、加えて、粉末状のSiB結晶しか形成することができないという問題がある。これに対し、熱電変換デバイスに代表されるような産業への応用という観点では、SiBは薄膜であることが求められる。 Existing techniques for forming SiB include, for example, a method of melting a mixture of Si and B powders as raw materials at high temperature (see, for example, Non-Patent Documents 1 and 2), and a method of pressing at high pressure (for example, Non-Patent Document 3) and the like are known. However, such a forming method usually requires a high temperature environment of 1200° C. or more, and in addition, there is a problem that only a powdery SiB crystal can be formed. On the other hand, SiB is required to be a thin film from the viewpoint of industrial applications such as thermoelectric conversion devices.

 一方、Bは、Si結晶に対する代表的なp型ドーパントでもあり、少量のBがドープされたSi結晶は、p型半導体としてフォトダイオードやCMOSトランジスタ等のデバイスに適用されている。このようなBドープSi結晶を用いたデバイスの製造方法としては、例えば、LSI用のシリコンプロセスにおいて、Si結晶に電界で加速したBイオンを照射(イオン注入)するなどの方法が知られている。しかし、SiにドープしたBの濃度が、Siの結晶構造に影響を与えないとされる6×1020cm-3を上回ると、過剰なB原子の存在によってSiの結晶構造に乱れが生じる。そして、さらにBの濃度を増加させると、上述したSiBがSi結晶内に生成すると考えられる。しかし、そのような高濃度のBをシリコンプロセスにおいてSiにドープし、形成されたBドープSi結晶に対して詳細に調査を行った報告例は、現在のところ見当たらない。 On the other hand, B is also a typical p-type dopant for Si crystals, and Si crystals doped with a small amount of B are applied to devices such as photodiodes and CMOS transistors as p-type semiconductors. As a method of manufacturing a device using such a B-doped Si crystal, for example, in a silicon process for LSI, a method of irradiating (ion-implanting) B ions accelerated in an electric field to a Si crystal is known. . However, when the concentration of B doped into Si exceeds 6×10 20 cm −3 , which is considered to have no effect on the crystal structure of Si, the presence of excess B atoms disturbs the crystal structure of Si. Further, it is considered that the above-mentioned SiB is generated in the Si crystal when the concentration of B is further increased. However, at present, no report has been found in which Si is doped with such a high concentration of B in a silicon process and a B-doped Si crystal formed is investigated in detail.

 SiBの薄膜(以下、SiB膜という)を形成させるには、固相反応ではなく、上述したシリコンプロセスのような半導体プロセスを適用するのが望ましい。しかし、上述の通り、LSI用のシリコンプロセスにおいて高濃度のBを導入することは、従来まで行われて来なかった。この理由として、Bの供給源として通常用いられるジボラン(B)ガスが、熱励起プロセスでは十分に分解されないことが挙げられる。そのため、SiB膜を化学的気相成長(Chemical Vapor Deposition:以下、CVDという)のような、産業上広く利用されている成膜技術により成膜したという例は、現在のところ報告されていない。すなわち、熱電変換デバイスへ適用といった産業上の利用という観点では、SiB膜を成膜するための有効な成膜技術が確立されていないという課題がある。 In order to form a thin film of SiB (hereinafter referred to as a SiB film), it is desirable to apply a semiconductor process such as the silicon process described above instead of a solid-phase reaction. However, as described above, the introduction of B at a high concentration in the silicon process for LSI has not been carried out until now. The reason for this is that diborane (B 2 H 6 ) gas, commonly used as a source of B, is not sufficiently decomposed in the thermal excitation process. Therefore, there have been no reports of SiB films formed by a film forming technique widely used in industry, such as chemical vapor deposition (hereinafter referred to as CVD). That is, from the viewpoint of industrial use such as application to thermoelectric conversion devices, there is a problem that an effective film forming technique for forming a SiB film has not been established.

D. Eklof, A. Fischer, A. Ektarawong, A. Jaworski, A. J. Pell, J. Grins, S. I. Simak. B. Alling, Y. Wu, M. Widom, W. Scherer and U. Haussermann, ACS Omega 4, 18741-18759, 2019D. Eklof, A. Fischer, A. Ektarawong, A. Jaworski, A. J. Pell, J. Grins, S. I. Simak. B. Alling, Y. Wu, M. Widom, W. Scherer and U. Haussermann, ACS Omega 4, 18741-18759, 2019 J. Wu, W. Ma, B. Yang, D. Liu and Y. Dai, Silicon 4, 289-295, 2012J. Wu, W. Ma, B. Yang, D. Liu and Y. Dai, Silicon 4, 289-295, 2012 X. Liang, A. Bergara, Y. Xie, L. Wang, R. Sun, Y. Gao, X.-F. Zhou, B. Xu, J. He, D. Yu, G. Gao and Y. Tian, Phys. Rev. B 101, 014112, 2020X. Liang, A. Bergara, Y. Xie, L. Wang, R. Sun, Y. Gao, X.-F. Zhou, B. Xu, J. He, D. Yu, G. Gao and Y. Tian , Phys. Rev. B 101, 014112, 2020 D. E. Aspnes and A. A. Studna, Surf. Sci., 96, 294, 1980D. E. Aspnes and A. A. Studna, Surf. Sci., 96, 294, 1980 O. Cojocaru-Miredin, D. Mangelinck and D. Blavette, J.Appl. Phys., 106, 113525, 2009O. Cojocaru-Miredin, D. Mangelinck and D. Blavette, J. Appl. Phys., 106, 113525, 2009

 本開示は、上記のような課題に対して鑑みてなされたものであり、その目的とするところは、産業上広く適用されている成膜技術の1つであるCVDを用いたSiB膜の形成方法を提供することにある。 The present disclosure has been made in view of the above problems, and the purpose thereof is to form a SiB film using CVD, which is one of the film formation techniques widely applied in industry. It is to provide a method.

 上記のような課題に対し、本開示では、化学気相成長によるシリコンボライド膜の形成方法であって、チャンバ内に自然酸化膜を除去したSi(100)基板を設置し、チャンバ内を真空にすることと、ジシランガスとジボランガスをチャンバ内に導入しながら、Si(100)基板を600℃に加熱し、Si(100)基板上にSiのバッファ層を形成させることと、チャンバ内で光を照射またはプラズマを発生させ、Si(100)基板上にシリコンボライドを成膜することと、Si(100)基板上にシリコンボライドが成膜された積層体に対して、900℃でポストアニールを施すことによってシリコンボライドを結晶化させることと、を備える、シリコンボライド膜の形成方法を提供する。 In view of the above problems, the present disclosure provides a method for forming a silicon boride film by chemical vapor deposition, in which a Si (100) substrate from which a natural oxide film has been removed is placed in a chamber, and the chamber is evacuated. heating the Si(100) substrate to 600° C. while introducing disilane gas and diborane gas into the chamber to form a Si buffer layer on the Si(100) substrate; Irradiation or plasma generation to form a film of silicon boride on a Si (100) substrate, and post-annealing at 900° C. a laminate in which the silicon boride film is formed on the Si (100) substrate. and crystallizing the silicon boride by subjecting it to a method of forming a silicon boride film.

本開示によるSiB膜の形成方法10を示すフローチャートである。1 is a flow chart illustrating a method 10 of forming a SiB film according to the present disclosure; 本開示の第1の実施形態における、光CVDによりSiB膜を成膜する様相を模式的に示した図である。FIG. 4 is a diagram schematically showing the aspect of forming a SiB film by optical CVD in the first embodiment of the present disclosure; 、バッファ層が形成されたSi(100)基板、CVDで成膜した後のSiB膜、ポストアニール後のSiB膜、およびa-Bの擬誘電応答関数スペクトルを示す図であり、図3(a)は、擬誘電応答関数の実部を、図3(b)は、擬誘電応答関数の虚部を、それぞれ示している。, a Si(100) substrate with a buffer layer formed thereon, a SiB film after deposition by CVD, a SiB film after post-annealing, and aB pseudo-dielectric response function spectra; FIG. ) shows the real part of the pseudo-dielectric response function, and FIG. 3(b) shows the imaginary part of the pseudo-dielectric response function. 図3に示した各試料のエリプソ角(Ψ、Δ)の軌跡を示した図である。FIG. 4 is a diagram showing trajectories of ellipsometric angles (Ψ, Δ) of each sample shown in FIG. 3; 様々な単層モデルを仮定した擬誘電応答関数スペクトルを、図3に示されるCVD成膜後のSiB膜の擬誘電応答関数に対してフィッティングした結果を示す図であり、図5(a)は実部のスペクトルを、図5(b)は虚部のスペクトルをそれぞれ示している。It is a diagram showing the results of fitting the pseudo-dielectric response function spectrum assuming various single-layer models to the pseudo-dielectric response function of the SiB film after CVD film formation shown in FIG. The spectrum of the real part is shown, and FIG. 5(b) shows the spectrum of the imaginary part. 成膜後のa-SiB膜の擬誘電応答関数スペクトルの成膜時の基板温度依存性を示す図であり、図6(a)は基板温度350℃のスペクトルを、図6(b)は基板温度400℃のスペクトルを、それぞれ示している。It is a diagram showing the substrate temperature dependence during film formation of the pseudo-dielectric response function spectrum of the a-SiB film after film formation, FIG. A spectrum at a temperature of 400° C. is shown, respectively. 様々な単層モデルの擬誘電応答関数スペクトルを、図3に示されるポストアニール後のSiB膜の擬誘電応答関数に対してフィッティングした結果を示す図であり、図7(a)は実部のスペクトルを、図7(b)は虚部のスペクトルをそれぞれ示している。FIG. 7 shows the results of fitting the pseudo-dielectric response function spectra of various single-layer models to the pseudo-dielectric response function of the SiB film after post-annealing shown in FIG. 7B shows the spectrum of the imaginary part, respectively. CVDによる成膜時において、SiB膜の成長表面に対して分光エリプソメトリーを用いて取得したエリプソ角(Ψ-Δ)の軌跡のジシランガス流量比依存性を示す図であり、図8(a)は測定に用いた入射光のエネルギーが3.4eVの軌跡を、図8(b)は測定に用いた入射光のエネルギーが1.5eVの軌跡を、それぞれ示している。FIG. 8 is a diagram showing the disilane gas flow rate ratio dependence of the trajectory of the ellipsometric angle (Ψ−Δ) obtained using spectroscopic ellipsometry with respect to the growth surface of the SiB film during film formation by CVD, and FIG. FIG. 8B shows the trajectory when the incident light energy used for measurement is 3.4 eV, and FIG. 8B shows the trajectory when the incident light energy used for measurement is 1.5 eV. ジシラン流量0.2sccmで成膜したSiB膜の擬誘電応答関数スペクトルを示す図であり、図9(a)は、実部のスペクトルを、図9(b)は、虚部のスペクトルを、それぞれ示している。FIG. 9 is a diagram showing the pseudo-dielectric response function spectrum of a SiB film deposited at a disilane flow rate of 0.2 sccm, FIG. 9A shows the spectrum of the real part, and FIG. showing. 本開示の第2の実施形態における、プラズマCVDによりSiB膜を成膜する様相を模式的に示した図である。FIG. 10 is a diagram schematically showing the aspect of forming a SiB film by plasma CVD in the second embodiment of the present disclosure;

 以下に、図面を参照しながら本開示の種々の実施形態について詳細に説明する。同一または類似の参照符号は、同一または類似の要素を示し重複する説明を省略する場合がある。以下の説明は、一例であって本開示の実施形態の要旨を逸脱しない限り、一部の構成を省略若しくは変形し、または追加の構成とともに実施することができる。 Various embodiments of the present disclosure will be described in detail below with reference to the drawings. Identical or similar reference numerals indicate identical or similar elements and redundant description may be omitted. The following description is an example, and part of the configuration may be omitted or modified, or implemented with additional configuration, as long as it does not deviate from the gist of the embodiments of the present disclosure.

 上述の通り、従来までにCVDを用いたSiB膜の形成が実現されてこなかったのは、反応ガスであるジボランガスが熱励起プロセスでは十分に分解されないことに起因する。しかし、ジボランガスを励起するエネルギー源を、より高エネルギーな媒体(例えば、光やプラズマ)とすれば、ジボランガスをCVDで成膜できるような活性種(例えば、ラジカル)に分解できると考えられる。とりわけ、反応ガスを励起する媒体が光である光CDVの場合、励起光を真空紫外光(波長が200nmより短い紫外光)とすれば、効率的にジボランガスをラジカルに分解できる。これは、ジボランの真空紫外光照射下における励起断面積が大きいことによる。本開示は、これらの点に着目し、反応ガスにジシランガスおよびジボランガスを用い、これら反応ガスの励起媒体に光、またはプラズマを適用したCVD(光CVD、またはプラズマCVD)によってSiB膜を形成する方法を提供する。 As mentioned above, the reason why the formation of SiB films using CVD has not been realized so far is that the reaction gas diborane gas is not sufficiently decomposed in the thermal excitation process. However, if the energy source for exciting the diborane gas is a higher energy medium (eg, light or plasma), it is believed that the diborane gas can be decomposed into active species (eg, radicals) capable of forming a film by CVD. In particular, in the case of optical CDV in which the medium for exciting the reaction gas is light, if the excitation light is vacuum ultraviolet light (ultraviolet light with a wavelength shorter than 200 nm), diborane gas can be efficiently decomposed into radicals. This is because diborane has a large excitation cross section under vacuum ultraviolet light irradiation. Focusing on these points, the present disclosure uses disilane gas and diborane gas as reactive gases, and a method of forming a SiB film by CVD (optical CVD or plasma CVD) in which light or plasma is applied to the excitation medium of these reactive gases. I will provide a.

 但し、後述の通り、真空紫外光を励起光とした光CVDによりSiB膜を成膜した場合、成膜後の状態では、成膜されたSiB膜は非晶質となる。一方、上述の熱電変換デバイス等への応用を想定した場合、SiB膜は結晶であることが望ましい。したがって、本開示によるSiB膜の形成方法は、光CVDまたはプラズマCVDにより成膜された非晶質SiB(以下、a-SiBという)を結晶化したSiB(以下、c-SiBという)に転移させる方法を含む。具体的には、CVDによる成膜が終了した後、基板上にa-SiBが成膜された積層体をチャンバから取り出し、後焼成(ポストアニール)することを含む。 However, as will be described later, when the SiB film is formed by photo-CVD using vacuum ultraviolet light as excitation light, the formed SiB film is amorphous in the state after film formation. On the other hand, when assuming application to the above-mentioned thermoelectric conversion device and the like, the SiB film is preferably crystalline. Therefore, the method for forming a SiB film according to the present disclosure transforms amorphous SiB (hereinafter referred to as a-SiB) deposited by photo-CVD or plasma CVD into crystallized SiB (hereinafter referred to as c-SiB). including methods. Specifically, after the film formation by CVD is completed, the layered body in which the a-SiB film is formed on the substrate is taken out from the chamber and post-fired (post-annealed).

 図1は、本開示によるSiB膜の形成方法10を示すフローチャートである。本開示によるSiB膜の形成方法10は、Si(100)基板を準備し、Si(100)基板の表面に生成する自然酸化膜を除去すること(工程11)と、チャンバ内にSi(100)基板を設置した後、チャンバ内を真空にすること(工程12)と、反応ガスであるジシランガスとジボランガスをチャンバ内に導入しながら、Si(100)基板を600℃に加熱し、Si(100)基板上にSiのバッファ層を形成させること(工程13)と、チャンバ内で光を照射またはプラズマを発生させ、Si(100)基板上にSiBを成膜すること(工程14)と、Si(100)基板上にSiBが成膜された積層体をチャンバから取り出し、900℃でポストアニールを施すことによってSiBを結晶化させること(工程15)と、を含む。 FIG. 1 is a flowchart illustrating a method 10 of forming a SiB film according to the present disclosure. A method 10 for forming a SiB film according to the present disclosure includes preparing a Si(100) substrate, removing a native oxide film formed on the surface of the Si(100) substrate (step 11), and placing Si(100) in a chamber. After placing the substrate, the chamber is evacuated (step 12), and the Si(100) substrate is heated to 600° C. while introducing reaction gases such as disilane gas and diborane gas into the chamber. forming a buffer layer of Si on the substrate (step 13); irradiating light or generating plasma in the chamber to form a SiB film on the Si (100) substrate (step 14); 100) removing the stack having SiB deposited on the substrate from the chamber and subjecting it to post-annealing at 900° C. to crystallize the SiB (step 15).

 工程11において、自然酸化膜を除去する方法は、例えば、Si(100)基板を希フッ酸中に浸漬することで自然酸化膜を除去する、酸洗であり得る。 In step 11, the method of removing the natural oxide film can be pickling, which removes the natural oxide film by immersing the Si (100) substrate in dilute hydrofluoric acid, for example.

 工程13において、Si(100)基板上にSiのバッファ層が形成されるのは、反応ガスとしてチャンバ内に導入しているジシランガスの熱成長を利用している。後述するが、このバッファ層の形成は、Si(100)基板の最表面を原子レベルで平坦とすることを目的としている。 In step 13, the Si buffer layer is formed on the Si (100) substrate by utilizing thermal growth of disilane gas introduced into the chamber as a reaction gas. As will be described later, the purpose of forming this buffer layer is to flatten the top surface of the Si (100) substrate at the atomic level.

 このような方法を用いることにより、Si(100)上にc-SiB膜を形成することが可能となる。このような、本開示によるSiB膜の形成方法は、従来技術の様に1200℃以上の高温環境を必要としないため、従来よりも低温なプロセスであり、製造コストや省エネの観点でも従来技術より優れている。 By using such a method, it becomes possible to form a c-SiB film on Si (100). Since the method of forming the SiB film according to the present disclosure does not require a high temperature environment of 1200° C. or higher as in the conventional technology, the process is a lower temperature process than the conventional one, and in terms of manufacturing cost and energy saving, it is lower than the conventional technology. Are better.

(第1の実施形態)
 以下に、本開示の第1の実施形態について、図面を参照して詳細に説明する。本実施形態は、光CVDによりSiB膜を成膜し、ポストアニールによってSiBを結晶化させる方法に関する。
(First embodiment)
A first embodiment of the present disclosure will be described in detail below with reference to the drawings. The present embodiment relates to a method of forming a SiB film by optical CVD and crystallizing SiB by post-annealing.

 図2は、本開示の第1の実施形態における、光CVDによりSiB膜を成膜する様相を模式的に示した図である。図2に示される通り、本実施形態におけるSiB膜の成膜では、チャンバ21内に設置される基板ヒータ22上にSi(100)基板23が設置される。そして、高真空環境下において、純度100%のジシランガス24、およびヘリウム(He)で1%に希釈したジボランガス25を所定の流量でそれぞれ導入し、励起光26を照射する。ここでは、励起光26は100-1000eVの範囲の光子エネルギーを有する真空紫外/軟X線の白色励起光である。この励起光26が照射されることにより、ジシランガス24およびジボランガス25が化学的に活性なラジカル(SiHx、BHx)に分解され、これらのラジカルがSi(100)基板23に入射することで、SiB膜が成膜される。図2に示される通り、ジシランガス24およびジボランガス25はSi(100)基板23に向けて流入し、その上で、Si(100)基板23に励起光26を照射することが望ましい。 FIG. 2 is a diagram schematically showing the aspect of forming a SiB film by optical CVD in the first embodiment of the present disclosure. As shown in FIG. 2, in forming the SiB film in this embodiment, a Si (100) substrate 23 is placed on a substrate heater 22 placed in a chamber 21 . Then, in a high vacuum environment, a disilane gas 24 with a purity of 100% and a diborane gas 25 diluted to 1% with helium (He) are introduced at predetermined flow rates, respectively, and excitation light 26 is irradiated. Here, the excitation light 26 is vacuum ultraviolet/soft X-ray white excitation light with photon energies in the range of 100-1000 eV. By being irradiated with this excitation light 26, the disilane gas 24 and the diborane gas 25 are decomposed into chemically active radicals (SiHx, BHx). is deposited. As shown in FIG. 2, disilane gas 24 and diborane gas 25 are preferably flowed toward Si(100) substrate 23 and then Si(100) substrate 23 is irradiated with excitation light 26 .

 上述の通り、Si(100)基板23上には、Siのバッファ層が形成される。本実施形態では、基板ヒータ22を作動させることによって発生する熱をエネルギー源として、ジシランガス24からバッファ層をSi(100)基板上に堆積させる。バッファ層は、Si(100)基板23が単結晶であることによりエピタキシャル成長するため、自身もSi(100)となる。これにより、Si(100)基板の最表面(すなわち、SiB膜との界面)は原子レベルで平坦なSi(100)となる。 As described above, a Si buffer layer is formed on the Si (100) substrate 23 . In this embodiment, the heat generated by operating the substrate heater 22 is used as an energy source to deposit a buffer layer from the disilane gas 24 onto the Si(100) substrate. Since the Si (100) substrate 23 is a single crystal, the buffer layer is epitaxially grown, and thus becomes Si (100) itself. As a result, the outermost surface of the Si(100) substrate (that is, the interface with the SiB film) becomes flat Si(100) at the atomic level.

 なお、成膜時の基板温度は300-400℃、ジシランガス24の流量は0.1-0.2sccm、ジボランガスの流量は0.1sccmである。 The substrate temperature during film formation is 300-400° C., the flow rate of disilane gas 24 is 0.1-0.2 sccm, and the flow rate of diborane gas is 0.1 sccm.

 このように、光CVDを用いてSi(100)基板上にSiBが成膜された積層体を、ポストアニールし、成膜されたSiB膜を結晶化させる。ポストアニールは、例えば、電気炉などを用い、所定の温度で保持することにより行われる。本実施形態におけるポストアニールの温度は900℃である。 In this way, the laminate in which SiB is formed on the Si (100) substrate using optical CVD is post-annealed to crystallize the formed SiB film. Post-annealing is performed by holding at a predetermined temperature, for example, using an electric furnace. The post-annealing temperature in this embodiment is 900.degree.

 このような方法により、SiB膜の形成が可能となる。上述の通り、従来までのSiBの形成方法では、1200℃以上の高温環境を必要としたが、本開示による方法は、それよりも低温でSiB膜を形成することができる。 Such a method makes it possible to form a SiB film. As described above, conventional methods for forming SiB require a high temperature environment of 1200° C. or higher, but the method according to the present disclosure can form a SiB film at a lower temperature than that.

 以下に、上述の方法により、SiB膜が形成されるメカニズムを説明する。このメカニズムは、成膜前、成膜後、およびポストアニール後におけるSiB膜およびSi(100)基板について、分光エリプソメトリーによる擬誘電応答関数(ε=ε+iε)を評価した結果に基づいている。 The mechanism by which the SiB film is formed by the method described above will be described below. This mechanism is based on the results of evaluating the pseudo-dielectric response function (ε=ε 1 +iε 2 ) by spectroscopic ellipsometry for SiB films and Si(100) substrates before film formation, after film formation, and after post-annealing. there is

 本実施形態における分光エリプソメトリーを用いた分析は、CVDで成膜する前(すなわち、前述の工程13の直後)におけるSi(100)基板、CVDで成膜した後(すなわち、前述の工程14の直後)におけるSiB膜、およびポストアニール後(すなわち、前述の工程15の直後)におけるSiB膜を対象に実施した。分析にあたっては、Si(100)基板およびSiB膜の温度は、室温とした。また、CVDで成膜する前、およびCVDで成膜した後における分析は、チャンバ内におけるその場観察とした。 Analysis using spectroscopic ellipsometry in the present embodiment is performed on a Si (100) substrate before film formation by CVD (that is, immediately after step 13 described above), and after film formation by CVD (that is, after step 14 above). ) and the SiB film after post-annealing (that is, immediately after step 15 described above). In the analysis, the temperatures of the Si(100) substrate and the SiB film were room temperature. In-situ observation in the chamber was used for the analysis before and after the CVD film formation.

 通常、分光エリプソメトリーによる擬誘電応答関数の評価は、試料表面に入射光を照射し反射光を検光することで偏光の変化を測定することと、仮定したモデルで回帰解析をすることと、測定結果と解析結果を比較評価することとを含む。本実施形態では、測定における入射光のエネルギーは1.5-5.0eVとした。一方、解析にあたっては、結晶シリコン(以下、c-Siという)、非晶質シリコン(以下、a-Siという)、非晶質ボロン(以下、a-Bという)、空孔(以下、voidという)などを成分とする単層膜モデルを仮定し、Bruggemanの有効媒質近似を適用した。なお、c-Siとa-Siの誘電応答関数には、既存の報告例を基に、Aspnesの値を用いた(例えば、非特許文献4参照)。a-Bの誘電応答関数には、別途ボランガスだけでSi(100)基板上に成膜したa-Bの厚膜の値を用いた。また、voidの誘電応答関数は、真空の誘電応答関数(1+i0)に一致するものとした。このような条件で、各成分の体積分率と膜厚をパラメータとして変化させ、測定されたスペクトルと解析により得られたスペクトルの差が最小になるようフィッティングを行うことで最適な値を決定した。 Usually, the evaluation of the pseudo-dielectric response function by spectroscopic ellipsometry consists of measuring the change in polarization by irradiating the sample surface with incident light and analyzing the reflected light, performing regression analysis with an assumed model, It includes comparing and evaluating the measurement results and the analysis results. In this embodiment, the energy of the incident light in the measurement was 1.5-5.0 eV. On the other hand, in the analysis, crystalline silicon (hereinafter referred to as c-Si), amorphous silicon (hereinafter referred to as a-Si), amorphous boron (hereinafter referred to as aB), vacancies (hereinafter referred to as void ) was assumed as a component, and Bruggeman's effective medium approximation was applied. For the dielectric response functions of c-Si and a-Si, Aspnes values were used based on existing reports (see, for example, Non-Patent Document 4). For the dielectric response function of aB, the value of a thick film of aB separately formed on a Si (100) substrate with only borane gas was used. Also, the void dielectric response function was assumed to match the vacuum dielectric response function (1+i0). Under these conditions, the optimum values were determined by changing the volume fraction and film thickness of each component as parameters, and performing fitting so that the difference between the measured spectrum and the spectrum obtained by analysis was minimized. .

 図3は、バッファ層が形成されたSi(100)基板、CVDで成膜した後のSiB膜、ポストアニール後のSiB膜、およびa-Bの擬誘電応答関数スペクトルを示す図であり、図3(a)は、擬誘電応答関数の実部を、図3(b)は、擬誘電応答関数の虚部を、それぞれ示している。a-Bのスペクトルは、別途ジボランガスのみでCVDにより成膜した薄膜を試料とした結果であり、比較のために合わせてプロットしている。なお、各試料の成膜時における基板温度は、ここでは300℃である。図3に示される通り、a-Bのスペクトルは2eV以上の領域で概ね一定の値を示す飽和状態にあることから、a-Bのバルクの誘電応答関数を示しているとみなせる。一方、CVDで成膜した後のSiB膜では、Bより質量数が大きいSiが含有されるため、a-Bに比べ、2eV以上の領域における誘電応答が増強されている。さらに、ポストアニールを施した後のSiB膜の虚部のスペクトルは、図3(b)に示される通り、3.4eV付近にピークを持つ形状に変化していることが分かる。これは、ポストアニールの熱エネルギーによって、a-SiBを構成する原子が安定なサイトにバルク拡散したことにより、微結晶となったことを示している。 FIG. 3 shows pseudodielectric response function spectra of a Si (100) substrate on which a buffer layer is formed, a SiB film after deposition by CVD, a SiB film after post-annealing, and aB. 3(a) shows the real part of the pseudo-dielectric response function, and FIG. 3(b) shows the imaginary part of the pseudo-dielectric response function. The aB spectrum is the result of using a sample of a thin film separately formed by CVD using only diborane gas, and is also plotted for comparison. Note that the substrate temperature during film formation of each sample is 300° C. here. As shown in FIG. 3, the spectrum of aB is in a saturated state showing a substantially constant value in the region of 2 eV or more, so it can be regarded as showing the bulk dielectric response function of aB. On the other hand, the SiB film formed by CVD contains Si having a larger mass number than B, so the dielectric response is enhanced in the region of 2 eV or more compared to aB. Furthermore, it can be seen that the spectrum of the imaginary part of the SiB film after post-annealing changes to have a peak around 3.4 eV, as shown in FIG. 3(b). This indicates that the atoms forming the a-SiB bulk diffused to stable sites due to the thermal energy of the post-annealing, resulting in microcrystals.

 図4は、図3に示した各試料のエリプソ角(Ψ、Δ)の軌跡を示した図である。ここで、入射光のエネルギーは3.4eVである。図4に示される原点Oは、成膜前のバッファ層が最表面に形成されたSi(100)基板に対応している。軌跡O→Aのエリプソ角の変化は、Si(100)基板上にSiB膜が成長したことによるものであり、Aで成長が終了したことを示している。軌跡A→Bは、成膜終了後に基板温度が室温へ冷却する過程に対応している。この過程においても、僅かながらエリプソ角が変化しているが、これは光学定数が温度依存性を有することに起因しており、成膜されたSiBの状態が変化していることを示唆するものではない。軌跡B→Cは、チャンバから取り出したSiB膜とSi(100)基板の積層体を900℃でポストアニールした過程に対応している。図4に示される通り、この過程では加熱に伴ってエリプソ角が変化し、900℃でエリプソ角の変化は定常になっている。加熱に伴うエリプソ角の変化は、成膜直後はa-SiBであったSiB膜が微結晶なc-SiBへ転移していることを示していると考えられる。換言すれば、900℃でエリプソ角の変化は定常になったことから、c-SiBを形成するためには、ポストアニールの温度は900℃であることが必要とわかる。 FIG. 4 is a diagram showing the trajectory of the ellipsoid angle (Ψ, Δ) of each sample shown in FIG. Here, the energy of incident light is 3.4 eV. The origin O shown in FIG. 4 corresponds to the Si (100) substrate having the buffer layer formed on the outermost surface before film formation. The change in the ellipsoidal angle on the locus O→A is due to the growth of the SiB film on the Si(100) substrate, indicating that the growth was terminated at A. The locus A→B corresponds to the process in which the substrate temperature cools down to room temperature after the film formation is finished. Even in this process, the ellipsoid angle changes slightly, but this is due to the temperature dependence of the optical constant, suggesting that the state of the deposited SiB is changing. isn't it. The locus B→C corresponds to the process of post-annealing the stack of the SiB film and the Si(100) substrate taken out from the chamber at 900.degree. As shown in FIG. 4, the ellipsoid angle changes with heating in this process, and the change in the ellipsoid angle becomes steady at 900°C. The change in the ellipsoidal angle due to heating is thought to indicate that the SiB film, which was a-SiB immediately after film formation, was transformed into microcrystalline c-SiB. In other words, since the change in the ellipsoidal angle became steady at 900° C., it is understood that the post-annealing temperature must be 900° C. in order to form c-SiB.

 以上のことから、真空紫外光/軟X線を励起光とした光CVDを用いた場合、基板温度300℃で成膜したSiB膜は非晶質のSiB(以下、a-SiBという)であり、そのa-SiB膜を900℃でポストアニールすることで、結晶のSiB(以下、c-SiB)膜が形成されるものと考えられる。この解釈は、以下に述べる、様々な単層モデルを仮定した擬誘電応答関数スペクトルの評価結果によって裏付けられる。 From the above, when photo-CVD using vacuum ultraviolet light/soft X-ray as excitation light is used, the SiB film formed at a substrate temperature of 300° C. is amorphous SiB (hereinafter referred to as a-SiB). , the a-SiB film is post-annealed at 900° C. to form a crystalline SiB (hereinafter referred to as c-SiB) film. This interpretation is supported by the evaluation results of the pseudo-dielectric response function spectra assuming various monolayer models, as described below.

 図5は、様々な単層モデルを仮定した擬誘電応答関数スペクトルを、図3に示されるCVD成膜後のSiB膜の擬誘電応答関数に対してフィッティングした結果を示す図であり、図5(a)は実部のスペクトルを、図5(b)は虚部のスペクトルをそれぞれ示している。ここでは、(c-Si+a-Si+a-B)、(c-Si+a-B+void)、および(a-Si+a-B+void)の3種類の単層モデルを仮定した。また、図5では、実測によって得られたSiB膜の擬誘電応答関数のスペクトルもあわせて示している。なお、単層モデルを採用したのは、膜の内部構造や表面粗さなどの層構造を無視して、全体を包括した体積分率を評価するためである。(c-Si+a-B+void)、および(a-Si+a-B+void)モデルを仮定した場合は、最初のパラメータをどのように選んでもvoid成分の体積分率はゼロに収束した。膜内に空孔が存在するとは考えにくいので、void成分は実効的に表面粗さに対応している。すなわち、SiB膜表面が原子レベルで平坦であることを示唆している。(c-Si+a-B+void)モデルの場合は、虚部の誘電応答関数スペクトルにおける、Si結晶のEおよびEバンド間遷移に対応する3.4eV、4.3eVの特異点構造が強調されている。これはa-Bとvoidの誘電応答関数の振幅が小さいために、虚部の誘電応答関数スペクトルの振幅20-25eVを再現しようとすると、c-Si成分の体積分率が大きくならざるを得ないことに起因している。一方、(a-Si+a-B+void)モデルの方が、3eVと3.7eVの振幅最大の特徴を再現しており、a-SiBの実測値に最も近いスペクトルを示している。なお、この場合に対応する体積分率はa-Siが80%、a-Bが20%、voidが0%、膜厚は212オングストロームであった。void成分の体積分率がゼロと考えれば、実質的に当該モデルは、(a-Si+a-B)モデルとみなすことができる。以上より、誘電応答を基に評価した膜の体積分率を使って得られる組成はSiBとなる。ジシランとジボランの流量をともに0.1sccmとして成膜したにも関わらず、a-Siの体積分率がa-Bの体積分率より4倍も高いのは、膜中へのSi原子の取り込み確率がB原子の取り込み確率よりも大きいことを示している。また、a-SiBの実測値のスペクトルが、解析により良好に再現されていることから、有効媒質近似を適用することが妥当であると考えられる。すなわち、本実施形態による方法によって成膜されたa-SiB膜は、a-Siとa-Bをドメインとする、またはクラスターの集合体である膜であることが示唆された。換言すれば、Si原子とB原子が化合したc-SiBという固相になっているわけではないと考えられる。実際に、既存の報告によれば、高濃度のBがSi結晶中に存在するとき、B原子はクラスターを形成することが知られている(例えば、非特許文献5参照)。 FIG. 5 is a diagram showing the result of fitting the pseudo-dielectric response function spectrum assuming various single-layer models to the pseudo-dielectric response function of the SiB film after CVD deposition shown in FIG. (a) shows the spectrum of the real part, and FIG. 5(b) shows the spectrum of the imaginary part. Three single layer models were assumed here: (c-Si+a-Si+a-B), (c-Si+a-B+void), and (a-Si+a-B+void). FIG. 5 also shows the spectrum of the pseudo-dielectric response function of the SiB film obtained by actual measurement. The reason why the single layer model is adopted is to evaluate the volume fraction including the whole while ignoring the layer structure such as the internal structure and surface roughness of the film. When the (c-Si+a-B+void) and (a-Si+a-B+void) models were assumed, the volume fraction of the void component converged to zero no matter what initial parameters were chosen. The void component effectively corresponds to the surface roughness, since it is unlikely that there are pores in the film. That is, it suggests that the SiB film surface is flat at the atomic level. For the (c-Si+a-B+void) model, the singularity structure at 3.4 eV, 4.3 eV corresponding to the E1 and E2 interband transitions of the Si crystal is emphasized in the imaginary dielectric response function spectrum. there is This is because the amplitudes of the dielectric response functions of aB and void are small, so when trying to reproduce the amplitude of the dielectric response function spectrum of the imaginary part of 20-25 eV, the volume fraction of the c-Si component is inevitably large. This is due to the fact that there is no On the other hand, the (a-Si+a-B+void) model reproduces the characteristics of the maximum amplitudes of 3 eV and 3.7 eV, and shows the spectrum closest to the measured value of a-SiB. The volume fraction corresponding to this case was 80% a-Si, 20% aB, 0% void, and the film thickness was 212 angstroms. Assuming that the volume fraction of the void component is zero, the model can be substantially regarded as the (a-Si+a-B) model. From the above, the composition obtained using the volume fraction of the film evaluated based on the dielectric response is Si 4 B. The reason why the volume fraction of a-Si is four times higher than the volume fraction of a-B even though the flow rate of both disilane and diborane is set to 0.1 sccm is that Si atoms are incorporated into the film. probability is greater than that of the B atom incorporation. Also, since the spectrum of the measured values of a-SiB is well reproduced by the analysis, it is considered appropriate to apply the effective medium approximation. In other words, it was suggested that the a-SiB film formed by the method according to the present embodiment is a film having a-Si and aB as domains or an assembly of clusters. In other words, it is considered that the solid phase of c-SiB in which Si atoms and B atoms are combined is not formed. In fact, according to existing reports, it is known that B atoms form clusters when a high concentration of B exists in a Si crystal (see, for example, Non-Patent Document 5).

 図6は、成膜後のa-SiB膜の擬誘電応答関数スペクトルの成膜時の基板温度依存性を示す図であり、図6(a)は基板温度350℃のスペクトルを、図6(b)は基板温度400℃のスペクトルを、それぞれ示している。ここでは、図5において最も実測値に近いスペクトル形状を示した、(a-Si+a-B+void)モデルを仮定した解析スペクトルもあわせて示している。図6(a)、(b)に示される通り、成膜時の基板温度が350℃、400℃となっても、成膜されたa-SiB膜の擬誘電応答関数のスペクトルは、実測値と解析値でよい一致をしていることがわかる。なお、この時のパラメータ(体積分率、および膜厚)は、基板温度350℃では、a-Siが74%、a-Bが26%、voidが0%、膜厚は217オングストロームであった。一方、基板温度400℃では、a-Si66%、a-B34%、void0%、膜厚は299オングストロームであった。すなわち、基板温度350℃で成膜されたa-SiBの組成はSiB、基板温度400℃で成膜されたa-SiBの組成はSiBに相当することがわかった。 FIG. 6 is a diagram showing the dependence of the pseudo-dielectric response function spectrum of the a-SiB film after film formation on the substrate temperature during film formation. FIG. b) shows the spectrum at a substrate temperature of 400° C., respectively. Here, the analysis spectrum assuming the (a-Si+a-B+void) model, which shows the spectral shape closest to the actual measurement in FIG. 5, is also shown. As shown in FIGS. 6A and 6B, even when the substrate temperature during film formation is 350° C. and 400° C., the spectrum of the pseudo-dielectric response function of the formed a-SiB film is the measured value. and the analytical values are in good agreement. The parameters (volume fraction and film thickness) at this time were 74% a-Si, 26% aB, 0% void, and 217 Å film thickness at a substrate temperature of 350°C. . On the other hand, at a substrate temperature of 400.degree. That is, it was found that the composition of a-SiB formed at a substrate temperature of 350° C. corresponds to Si 3 B, and the composition of a-SiB formed at a substrate temperature of 400° C. corresponds to Si 2 B.

 図7は、様々な単層モデルの擬誘電応答関数スペクトルを、図3に示されるポストアニール後のSiB膜の擬誘電応答関数に対してフィッティングした結果を示す図であり、図7(a)は実部のスペクトルを、図7(b)は虚部のスペクトルをそれぞれ示している。ここでは、解析には(c-Si+a-Si+void)、(c-Si+a-Si+a-B)、(c-Si+a-B+void)、(a-Si+a-B+void)の4種類のモデルを仮定した。結果としては、(c-Si+a-Si+void)が最も実測値と近いスペクトル形状を示し、このときのパラメータ(体積分率および膜厚)は、c-Siが10%、a-Siが62%、voidが28%、膜厚は187オングストロームであった。このことから、ポストアニール後のSiB膜は、わずかながら結晶化したSiをドメインとする膜であると考えられる。なお、voidの体積分率がゼロでないことは、表面粗さに対応していると考えられる。 FIG. 7 shows the results of fitting the pseudo-dielectric response function spectra of various single-layer models to the pseudo-dielectric response function of the post-annealed SiB film shown in FIG. shows the spectrum of the real part, and FIG. 7(b) shows the spectrum of the imaginary part. Here, four models of (c-Si+a-Si+void), (c-Si+a-Si+a-B), (c-Si+a-B+void), and (a-Si+a-B+void) were assumed for the analysis. As a result, (c-Si + a-Si + void) shows a spectrum shape closest to the measured value, and the parameters (volume fraction and film thickness) at this time are 10% for c-Si, 62% for a-Si, The void was 28% and the film thickness was 187 angstroms. From this, it is considered that the SiB film after post-annealing is a film having slightly crystallized Si as a domain. It is considered that the fact that the void volume fraction is not zero corresponds to the surface roughness.

 以上のことから、本開示による方法において、CVDによりa-SiB膜をSi(100)基板上に成膜する場合、基板温度を300-400℃とすれば、Siリッチな非晶質の膜が形成されることがわかった。さらにこの非晶質のa-SiB膜を900℃でポストアニールすれば、微結晶なc-SiB膜に転移することが認められた。 From the above, in the method according to the present disclosure, when forming an a-SiB film on a Si (100) substrate by CVD, if the substrate temperature is 300 to 400 ° C., a Si-rich amorphous film is formed. found to be formed. Furthermore, it was confirmed that post-annealing this amorphous a-SiB film at 900° C. transformed it into a microcrystalline c-SiB film.

 図8は、CVDによる成膜時において、SiB膜の成長表面に対して分光エリプソメトリーを用いて取得したエリプソ角(Ψ-Δ)の軌跡のジシランガス流量比依存性を示す図であり、図8(a)は測定に用いた入射光のエネルギーが3.4eVの軌跡を、図8(b)は測定に用いた入射光のエネルギーが1.5eVの軌跡を、それぞれ示している。ここでは、ジボランのガス流量は0.1sccmに固定し、ジシランガスの流量比を0.2-1.0sccmへ変化させた。なお、成膜時の基板温度は300℃で一定である。図8(a)に示される通り、Siによる吸収が大きい3.4eVの入射光でモニタすると、0.7、1sccmに対応する軌跡の初期段階は概ね重なっていて、収束点も相互に近いことが分かる。一回転のスパイラル軌跡を描いて収束する場合は、誘電応答が既に飽和に達しており、膜厚が増えてもそれ以上変化しない状態を示している。一方、図8(b)に示される通り、Siによる吸収の少ない1.5eVでは、ジシラン流量に応じてΨ-Δ軌跡が向う先は様々であることがわかる。これは、ジシランとジボランの流量比によってSiB膜の光学定数が異なり、組成が連続的に変化していることを示している。 FIG. 8 is a diagram showing the disilane gas flow ratio dependence of the trajectory of the ellipsometric angle (Ψ−Δ) obtained using spectroscopic ellipsometry with respect to the growth surface of the SiB film during film formation by CVD. (a) shows the trajectory when the energy of the incident light used for the measurement is 3.4 eV, and FIG. 8(b) shows the trajectory when the energy of the incident light used for the measurement is 1.5 eV. Here, the diborane gas flow rate was fixed at 0.1 sccm, and the disilane gas flow rate ratio was varied from 0.2 to 1.0 sccm. The substrate temperature during the film formation is constant at 300.degree. As shown in Fig. 8(a), when monitored with incident light of 3.4 eV, which is strongly absorbed by Si, the initial stages of the trajectories corresponding to 0.7 and 1 sccm are generally overlapped, and the convergence points are also close to each other. I understand. When the spiral trajectory of one rotation is drawn and converged, it indicates that the dielectric response has already reached saturation and does not change any more even if the film thickness increases. On the other hand, as shown in FIG. 8(b), at 1.5 eV where absorption by Si is small, it can be seen that the destination of the Ψ-Δ trajectory varies depending on the disilane flow rate. This indicates that the optical constant of the SiB film differs depending on the flow rate ratio of disilane and diborane, and the composition changes continuously.

 図9は、ジシラン流量0.2sccmで成膜したSiB膜の擬誘電応答関数スペクトルを示す図であり、図9(a)は、実部のスペクトルを、図9(b)は、虚部のスペクトルを、それぞれ示している。ここでは、(a-Si+a-B+void)、(c-Si+a-Si+a-B)、および(c-Si+a-B+void)の3種類のモデルを仮定した。図5に示されたジシラン流量0.1sccmの場合は(a-Si+a-B+void)モデルが最も良い一致をしめしたが、ジシラン流量0.2sccmになると、実測値と解析値の差は大きくなる。一方、(c-Si+a-Si+a-B)モデルは、ジシラン流量0.1sccmで最も良い一致を示した(a-Si+a-B+void)モデルよりも全般的に良い一致を示している。この結果から、ジシラン流量比を増加させることにより、結晶構造を呈する領域が出現していることを示唆している。これは、Si量が増加したことにより、平滑で結晶性の高いSi(100)と接する領域が増加したことに起因するものと考えられる。以上のことから、ジシラン流量比は0.1-0.2sccmの範囲であれば、本開示による方法でc-SiB膜を形成できるものと考えられる。 9A and 9B are diagrams showing the pseudo-dielectric response function spectrum of the SiB film formed at a disilane flow rate of 0.2 sccm, FIG. 9A shows the spectrum of the real part, and FIG. Spectra are shown, respectively. Three types of models were assumed here: (a-Si+a-B+void), (c-Si+a-Si+a-B), and (c-Si+a-B+void). In the case of the disilane flow rate of 0.1 sccm shown in FIG. 5, the (a-Si+a-B+void) model showed the best agreement. On the other hand, the (c-Si+a-Si+a-B) model shows generally better agreement than the (a-Si+a-B+void) model, which showed the best agreement at a disilane flow rate of 0.1 sccm. This result suggests that a region exhibiting a crystal structure appears by increasing the disilane flow ratio. It is considered that this is because the area in contact with smooth and highly crystalline Si (100) increased due to the increase in the amount of Si. From the above, it is believed that a c-SiB film can be formed by the method according to the present disclosure if the disilane flow ratio is in the range of 0.1-0.2 sccm.

(第2の実施形態)
 以下に、本開示の第2の実施形態について、図面を参照して詳細に説明する。本実施形態は、プラズマCVDによりa-SiB膜を成膜し、ポストアニールによってc-SiBを形成する方法に関する。
(Second embodiment)
A second embodiment of the present disclosure will be described in detail below with reference to the drawings. This embodiment relates to a method of forming an a-SiB film by plasma CVD and forming c-SiB by post-annealing.

 図10は、本開示の第2の実施形態における、プラズマCVDによりa-SiB膜を成膜する様相を模式的に示した図である。図10に示される通り、第2の実施形態におけるa-SiB膜の成膜では、チャンバ21内に設置される基板ヒータ22上にSi(100)基板23が設置される。そして、高真空環境下において、ジシランガス24およびヘリウム(He)で希釈したジボランガス25を所定の流量でそれぞれ導入し、電源101を用いてカソードとなる電極102に電圧を印加する。ここでは、電源101は高周波電源としている。すると、チャンバ内に存在する自然放射線等によって生成した電子が電極102周辺の電場により加速され、チャンバ内の反応ガス(ジシランガス、およびジボランガス)と非弾性衝突することによりプラズマが発生する。この過程が定常化することで、ジシランガスおよびジボランガスの一部が化学的に活性なラジカル(SiHx、BHx)に分解され、これらのラジカルがSi(100)基板23に入射することで、a-SiBが成膜される。 FIG. 10 is a diagram schematically showing the aspect of forming an a-SiB film by plasma CVD in the second embodiment of the present disclosure. As shown in FIG. 10, in forming the a-SiB film in the second embodiment, a Si (100) substrate 23 is placed on a substrate heater 22 placed in a chamber 21 . Then, in a high vacuum environment, disilane gas 24 and diborane gas 25 diluted with helium (He) are introduced at predetermined flow rates, respectively, and voltage is applied to electrode 102, which serves as a cathode, using power supply 101. FIG. Here, the power source 101 is a high frequency power source. Then, electrons generated by natural radiation or the like existing in the chamber are accelerated by the electric field around the electrode 102, and inelastic collisions with the reaction gas (disilane gas and diborane gas) in the chamber generate plasma. As this process becomes steady, part of the disilane gas and diborane gas is decomposed into chemically active radicals (SiHx, BHx), and these radicals impinge on the Si (100) substrate 23, resulting in a-SiB is deposited.

 第1の実施形態と同様に、Si(100)基板23上には、Siのバッファ層が形成される。本実施形態では、基板ヒータ22を作動させることによって発生する熱をエネルギー源として、ジシランガス24による熱成長をSi(100)基板上で生じさせる。これにより、Si(100)基板の最表面(a-SiBとの界面)は原子レベルで平坦となる。 A buffer layer of Si is formed on the Si (100) substrate 23 in the same manner as in the first embodiment. In this embodiment, the heat generated by operating the substrate heater 22 is used as an energy source to cause thermal growth on the Si (100) substrate by the disilane gas 24 . As a result, the outermost surface of the Si (100) substrate (interface with a-SiB) is flattened at the atomic level.

 なお、成膜時の基板温度は300-400℃、ジシランガス14の流量は0.1-0.2sccm、ジボランガスの流量は0.1sccmである。 The substrate temperature during film formation is 300-400° C., the flow rate of the disilane gas 14 is 0.1-0.2 sccm, and the flow rate of the diborane gas is 0.1 sccm.

 このように、プラズマCVDを用いてSi(100)基板上にa-SiBが成膜された積層体を、ポストアニールし、a-SiB膜をc-SiB膜に結晶化させる。ポストアニールは、例えば、電気炉などを用い、所定の温度で保持することにより行われる。本実施形態におけるポストアニールの温度は900℃である。 In this way, the laminate in which a-SiB is formed on the Si (100) substrate using plasma CVD is post-annealed to crystallize the a-SiB film into a c-SiB film. Post-annealing is performed by holding at a predetermined temperature, for example, using an electric furnace. The post-annealing temperature in this embodiment is 900.degree.

 このような方法により、第1の実施形態と同様に、SiB膜の形成が可能となる。上述の通り、従来までのSiBの形成方法では、1200℃以上の高温環境を必要としたが、本開示による方法は、それよりも低温でSiB膜を形成することができる。 A SiB film can be formed by such a method as in the first embodiment. As described above, conventional methods for forming SiB require a high temperature environment of 1200° C. or higher, but the method according to the present disclosure can form a SiB film at a lower temperature than that.

 本開示によるSiB膜の形成方法は、従来までに確立されていなかったSiB膜の形成を、産業上広く利用されているCVDとポストアニールによって実現するものである。したがって、熱電変換素子などの小型化などに寄与し、熱電変換の製造方法としての実用化が見込まれる。 The method of forming a SiB film according to the present disclosure realizes the formation of a SiB film, which has not been established in the past, by CVD and post-annealing, which are widely used in industry. Therefore, it contributes to the miniaturization of thermoelectric conversion elements, etc., and is expected to be put into practical use as a manufacturing method for thermoelectric conversion.

Claims (4)

 化学気相成長によるシリコンボライド膜の形成方法であって、
 チャンバ内に自然酸化膜を除去したSi(100)基板を設置し、前記チャンバ内を真空にすることと、
 ジシランガスとジボランガスを前記チャンバ内に導入しながら、前記Si(100)基板を600℃に加熱し、前記Si(100)基板上にSiのバッファ層を形成させることと、
 前記チャンバ内で光を照射またはプラズマを発生させ、前記Si(100)基板上にシリコンボライドを成膜することと、
 前記Si(100)基板上に前記シリコンボライドが成膜された積層体に対して、900℃でポストアニールを施すことによって前記シリコンボライドを結晶化させることと、
を備える、シリコンボライド膜の形成方法。
A method for forming a silicon boride film by chemical vapor deposition, comprising:
placing a Si (100) substrate from which a natural oxide film has been removed in a chamber and evacuating the chamber;
heating the Si(100) substrate to 600° C. while introducing disilane gas and diborane gas into the chamber to form a buffer layer of Si on the Si(100) substrate;
irradiating light or generating plasma in the chamber to form a film of silicon boride on the Si (100) substrate;
crystallizing the silicon boride by performing post-annealing at 900° C. on the laminate in which the silicon boride is formed on the Si (100) substrate;
A method for forming a silicon boride film, comprising:
 前記ジシランガスの流量が0.1sccm以上0.2sccm以下であり、
 前記ジボランガスの流量が0.1sccmである、請求項1に記載のシリコンボライド膜の形成方法。
the disilane gas has a flow rate of 0.1 sccm or more and 0.2 sccm or less;
2. The method of forming a silicon boride film according to claim 1, wherein the diborane gas has a flow rate of 0.1 sccm.
 前記シリコンボライドを前記成膜することにおいて、前記Si(100)基板の温度が300℃以上400℃以下である、請求項1または2に記載のシリコンボライド膜の形成方法。 3. The method of forming a silicon boride film according to claim 1, wherein the temperature of the Si(100) substrate is 300[deg.] C. or more and 400[deg.] C. or less in the film formation of the silicon boride.  前記光が、100eV以上1000eV以下の光子エネルギーを有する、真空紫外光と軟X線を混合した励起光である、請求項1から3のいずれか一項に記載のシリコンボライド膜の形成方法。 The method for forming a silicon boride film according to any one of claims 1 to 3, wherein the light is excitation light that has a photon energy of 100 eV or more and 1000 eV or less and is a mixture of vacuum ultraviolet light and soft X-rays.
PCT/JP2021/046129 2021-12-14 2021-12-14 Method for forming silicon boride film WO2023112171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046129 WO2023112171A1 (en) 2021-12-14 2021-12-14 Method for forming silicon boride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046129 WO2023112171A1 (en) 2021-12-14 2021-12-14 Method for forming silicon boride film

Publications (1)

Publication Number Publication Date
WO2023112171A1 true WO2023112171A1 (en) 2023-06-22

Family

ID=86773767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046129 WO2023112171A1 (en) 2021-12-14 2021-12-14 Method for forming silicon boride film

Country Status (1)

Country Link
WO (1) WO2023112171A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117712A (en) * 1983-11-30 1985-06-25 Toshiba Corp Forming method of thin film
JP2007053373A (en) * 2005-08-12 2007-03-01 Samsung Electronics Co Ltd Single crystal nitride semiconductor substrate and high quality nitride light emitting device manufacturing method using the same
JP2012174962A (en) * 2011-02-23 2012-09-10 Nippon Telegr & Teleph Corp <Ntt> Method of forming delta-doped structure
US20130319329A1 (en) * 2010-09-23 2013-12-05 Novellus Systems, Inc. Plasma-activated deposition of conformal films
US20160020091A1 (en) * 2014-07-19 2016-01-21 Applied Materials, Inc. Carbon and/or Nitrogen Incorporation in Silicon Based Films Using Silicon Precursors With Organic Co-Reactants by PE-ALD

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117712A (en) * 1983-11-30 1985-06-25 Toshiba Corp Forming method of thin film
JP2007053373A (en) * 2005-08-12 2007-03-01 Samsung Electronics Co Ltd Single crystal nitride semiconductor substrate and high quality nitride light emitting device manufacturing method using the same
US20130319329A1 (en) * 2010-09-23 2013-12-05 Novellus Systems, Inc. Plasma-activated deposition of conformal films
JP2012174962A (en) * 2011-02-23 2012-09-10 Nippon Telegr & Teleph Corp <Ntt> Method of forming delta-doped structure
US20160020091A1 (en) * 2014-07-19 2016-01-21 Applied Materials, Inc. Carbon and/or Nitrogen Incorporation in Silicon Based Films Using Silicon Precursors With Organic Co-Reactants by PE-ALD

Similar Documents

Publication Publication Date Title
US9371582B2 (en) Method for manufacturing silicon carbide thin film
JP2009152265A (en) Photoelectric conversion element manufacturing apparatus and method, and photoelectric conversion element
CN1238555C (en) Chemical gas phase deposit method for non-crystalline silicon and forming film
Zhou et al. Crystalline silicon surface passivation by intrinsic silicon thin films deposited by low-frequency inductively coupled plasma
Jadhavar et al. Growth of hydrogenated nano-crystalline silicon (nc-Si: H) films by plasma enhanced chemical vapor deposition (PE-CVD)
CN110228806A (en) The method for preparing graphene film using plasma reinforced chemical vapour deposition method
Torres et al. Amorphous, Polymorphous, and Microcrystalline Silicon Thin Films Deposited by Plasma at Low Temperatures
Peck et al. High deposition rate nanocrystalline and amorphous silicon thin film production via surface wave plasma source
WO2023112171A1 (en) Method for forming silicon boride film
CN112017945A (en) Method for preparing lead selenide film by microwave plasma chemical vapor deposition method
JP7176977B2 (en) Method for producing gallium oxide
JP3351679B2 (en) Method for manufacturing polycrystalline silicon thin film laminate and silicon thin film solar cell
Flewitt et al. Low-temperature deposition of hydrogenated amorphous silicon in an electron cyclotron resonance reactor for flexible displays
Mochalov et al. Gallium oxide films prepared by oxidation of gallium in oxygen-hydrogen plasma
Baranov et al. Electron-beam crystallization of thin films of amorphous silicon suboxide
Menéndez et al. Deposition of thin films: PECVD process
CN109518278B (en) A method for enhancing p-type conductive doping of boron nitride films in a nitrogen-rich atmosphere
JPH07221026A (en) Method for forming high quality semiconductor thin film
Weiss et al. Formation of silicon nanocrystals in silicon carbide using flash lamp annealing
Ji et al. Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD
JP2001291882A (en) Thin film manufacturing method
Peng et al. Microstructure and blue photoluminescence of hydrogenated silicon carbonitride thin films
JPH04342121A (en) Manufacture of hydrogenated amorphous silicon thin film
JP3131773B2 (en) Preparation method of SiC thin film
Das et al. Influence of excitation frequency and electrode separation on the growth of microcrystalline silicon films and their application in single junction microcrystalline solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21968088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP