WO2023112136A1 - Machine tool - Google Patents

Machine tool Download PDF

Info

Publication number
WO2023112136A1
WO2023112136A1 PCT/JP2021/046004 JP2021046004W WO2023112136A1 WO 2023112136 A1 WO2023112136 A1 WO 2023112136A1 JP 2021046004 W JP2021046004 W JP 2021046004W WO 2023112136 A1 WO2023112136 A1 WO 2023112136A1
Authority
WO
WIPO (PCT)
Prior art keywords
bed
motor
state
turret
spindle
Prior art date
Application number
PCT/JP2021/046004
Other languages
French (fr)
Japanese (ja)
Inventor
哲輝 野々口
修平 野口
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2023567326A priority Critical patent/JPWO2023112136A1/ja
Priority to PCT/JP2021/046004 priority patent/WO2023112136A1/en
Publication of WO2023112136A1 publication Critical patent/WO2023112136A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B3/00General-purpose turning-machines or devices, e.g. centre lathes with feed rod and lead screw; Sets of turning-machines
    • B23B3/30Turning-machines with two or more working-spindles, e.g. in fixed arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/01Frames, beds, pillars or like members; Arrangement of ways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools

Definitions

  • the present disclosure relates to a machine tool that mounts a plurality of processing devices on a bed.
  • the machine tool of Patent Document 1 below is a so-called parallel twin-axis lathe, in which two independent beds are arranged side by side in the horizontal direction, and a processing device is placed on each of the two beds. It is Each of the two processing devices has a spindle that holds a workpiece and a tool post that holds a tool.
  • the two beds are connected to each other by vibration dampers.
  • the operations of the two processing devices may affect each other.
  • vibration generated by driving a slide device or the like of one processing device may propagate to the other processing device via the bed and affect the processing accuracy of the other processing device.
  • the vibration suppressing device suppresses the propagation of vibration.
  • the present disclosure has been made in view of the above problems, and aims to provide a machine tool capable of executing control for the motor of the drive source according to the connection state and separation state of the bed.
  • the present specification provides a first processing device and a second processing device for processing a workpiece, a first bed on which the first processing device is placed, and the second processing device.
  • a connected state in which the first bed and the second bed are connected to each other by a connecting member; and a state in which the connecting member is removed to separate the first bed and the second bed.
  • a bed that can be changed to a separated state; a motor that functions as a drive source for the first processing device; a receiving device that receives selection of the connected state or the separated state;
  • the parameters are set according to the state selected by the reception device from among the state and the separation state, and the motor is driven by the parameters set during processing by the second processing device to operate the first processing device.
  • a machine tool comprising: a control device for controlling;
  • the control device sets the parameters used for controlling the motor of the first processing device to parameters according to the state selected by the receiving device.
  • the control device controls the first processing device by driving the motor according to the set parameters during processing by the second processing device.
  • the motor functioning as the drive source of the first processing apparatus can be controlled with parameters according to the separation state in which the beds are separated or the connection state in which the beds are connected by the connecting member. Therefore, in the connected state, it is possible to reduce the influence of the vibration generated in response to the driving of the first processing device on the processing of the second processing device. Also, in the separated state, the influence of vibration propagation is smaller than in the connected state. For this reason, the acceleration of the motor can be made larger in the separated state than in the connected state, and the production efficiency of the first processing device can be improved.
  • FIG. 1 is a front view of a machine tool according to this example;
  • FIG. A block diagram of a machine tool. The perspective view of a 1st processing apparatus, a 2nd processing apparatus, and a bed. The front view of the bed in a connected state.
  • FIG. 5 is an enlarged view of a portion surrounded by a dashed line in FIG. 4;
  • FIG. 4 is a rear view of the bed in a separated state and a partially enlarged view thereof; The figure which shows the screen which accepts selection of the connection state of another Example, and a separation state.
  • FIG. 1 shows a front view of a machine tool 10 of this embodiment.
  • FIG. 2 shows a block diagram of the machine tool 10.
  • FIG. 3 shows a perspective view of the first processing device 11, the second processing device 12, and the bed 18 provided in the machine tool 10.
  • FIG. 3 schematically shows the bed 18.
  • FIG. 1 shows a front view of a machine tool 10 of this embodiment.
  • FIG. 2 shows a block diagram of the machine tool 10.
  • FIG. 3 shows a perspective view of the first processing device 11, the second processing device 12, and the bed 18 provided in the machine tool 10.
  • FIG. 3 schematically shows the bed 18.
  • FIG. A detailed configuration of the bed 18 will be described with reference to FIGS. 4 to 8.
  • FIG. In the following description, as shown in FIG.
  • the direction when the machine tool 10 is viewed from the front is used as a reference
  • the machine width direction of the machine tool 10 is the horizontal direction
  • the horizontal direction is parallel to the installation surface 71 of the machine tool 10 and perpendicular to the horizontal direction.
  • a direction perpendicular to the front-rear direction will be referred to as a front-rear direction
  • a left-right direction and a direction perpendicular to the front-rear direction will be referred to as an up-down direction.
  • the machine tool 10 includes a first processing device 11, a second processing device 12, a loader 13, an operation panel 15, a control device 17, a bed 18, and the like.
  • the first and second processing devices 11 and 12 are devices for processing a work (not shown).
  • the user By opening the front door 19A provided on the front of the device cover 19 of the machine tool 10, the user can access the machining spaces of the first and second machining devices 11 and 12, check the machining state of the workpiece, and use the tools. perform exchanges, etc. Details of the first and second processing devices 11 and 12 will be described later.
  • the loader 13 is, for example, a gantry-type work transfer device and is provided above the machine tool 10 .
  • the loader 13 includes a rail base 13A fixed to the top of a frame member (not shown) provided in the device cover 19, a lifting device 13B attached to the rail base 13A, and a head (not shown) for gripping a work. etc.
  • the loader 13 slidably moves the head in the left-right direction, the up-down direction, and the front-rear direction by means of the rail base 13A and the lifting device 13B.
  • the loader 13 changes the position of the head in the horizontal direction or the like, and transfers the work between the first and second processing devices 11 and 12 and the like.
  • the operation panel 15 is a user interface, and includes a touch panel 15A, operation switches 15B, and the like.
  • the operation panel 15 receives operation inputs from the user via the touch panel 15A and the operation switches 15B, and outputs signals corresponding to the received operation inputs to the control device 17 . Further, the operation panel 15 changes the display contents of the touch panel 15A based on the control of the control device 17 .
  • the operation panel 15 is an example of the reception device of the present disclosure. Note that the reception device of the present disclosure is not limited to the configuration described above.
  • the reception device may have a liquid crystal panel and an operation switch, and may be configured to select a connection state and the like to be described later from items displayed on the liquid crystal panel.
  • the first and second processing devices 11 and 12 are placed on a bed 18 and arranged side by side in the left-right direction.
  • the bed 18 is, for example, a structure made of cast iron and has a first bed 41 and a second bed 43 .
  • the first processing device 11 is placed on the first bed 41 .
  • the second processing device 12 is placed on the second bed 43 .
  • the first processing device 11 and the first bed 41 move the second processing device 12 and the second processing device 12 and the second processing device 41 relative to a straight line along the vertical direction that passes through the center of the bed 18 in the left-right direction.
  • the machine tool 10 includes a pair of first and second processing devices 11 and 12 which are symmetrically arranged in the left-right direction, and a pair of first and second beds 41 and 43 which are symmetrically arranged in the left-right direction. ing. Therefore, in the following description, the first bed 41 and the first processing device 11 will be mainly described, and the description of the second bed 43 and the second processing device 12 will be omitted as appropriate.
  • the first and second processing devices 11 and 12 are so-called parallel twin-axis lathes with the front-rear direction as the main axis direction (Z-axis direction).
  • the first processing device 11 includes a first spindle device 21 , a first turret device 22 , a first X-axis slide device 24 and a first Z-axis slide device 25 .
  • the second processing device 12 comprises a second spindle device 31 , a second turret device 32 , a second X-axis slide device 34 and a second Z-axis slide device 35 .
  • the first bed 41 also includes a first base 51 , a first turret mounting portion 52 and a first spindle mounting portion 53 .
  • the second bed 43 has a second base 61 , a second turret mounting portion 62 and a second spindle mounting portion 63 .
  • the bed 18 of this embodiment can be changed between a connected state in which the first bed 41 and the second bed 43 are connected and a separated state in which the first bed 41 and the second bed 43 are separated.
  • 4 to 6 show the bed 18 with the connecting member 80 attached to connect the first and second beds 41, 43.
  • FIG. 7 and 8 show the bed 18 with the first and second beds 41, 43 separated by removing the connecting member 80.
  • FIG. First the first and second processing devices 11 and 12 and the bed 18 will be described with reference to FIGS. 2 to 6. FIG. Details of the connected state and the separated state will be described later.
  • the first base 51 of the first bed 41 has, for example, a substantially rectangular parallelepiped shape that is long in the front-rear direction and has a predetermined thickness in the vertical direction.
  • Legs 45 are attached to the lower surface of the first base 51 at the front-rear and left-right corners.
  • the first base 51 is arranged via the legs 45 on an installation surface 71 on which the machine tool 10 is installed.
  • the first base 51 can adjust the horizontality of the first processing device 11 by adjusting the heights of the four legs 45 .
  • the first turret mounting part 52 is mounted on the first base 51 and fixed to the first base 51 .
  • the first turret mounting portion 52 has a substantially rectangular parallelepiped shape that is long in the front-rear direction, has a thickness that is substantially the same as that of the first base 51 in the vertical direction, and has a width that is shorter than that of the first base 51 in the horizontal direction. there is The length of the first turret mounting portion 52 in the front-rear direction is approximately the same as the length of the first base 51 in the front-rear direction.
  • the first turret device 22 , the slide mechanism of the first X-axis slide device 24 , and the slide mechanism of the first Z-axis slide device 25 are mounted on the first turret mounting section 52 .
  • the first X-axis slide device 24 is a device that moves the first turret device 22 in the left-right direction (sometimes referred to as the X-axis direction).
  • the first Z-axis slide device 25 is a device that moves the first turret device 22 forward and backward.
  • the first Z-axis slide device 25 includes, for example, a first Z-axis motor 25A (see FIG. 2), a Z-axis guide rail 25B arranged on the first turret mounting section 52, and a Z-axis guide rail 25B.
  • the Z-axis guide rail 25B is arranged in a direction parallel to the front-rear direction (sometimes referred to as the Z-axis direction), and holds the Z-axis slide 25C slidably in the Z-axis direction.
  • the first Z-axis slide device 25 transmits the rotational output of the first Z-axis motor 25A to the Z-axis slide 25C via a transmission mechanism (for example, a ball screw mechanism) to move the Z-axis slide 25C in the Z-axis direction. .
  • the control device 17 (see FIG. 2) is connected to the first Z-axis motor 25A via the drive circuit 20.
  • the drive circuit 20 includes, for example, an amplifier circuit that controls power supplied to each motor such as the first Z-axis motor 25A.
  • the first Z-axis slide device 25 also includes a Z-axis encoder (not shown) that outputs encoder information such as the rotational position of the first Z-axis motor 25A.
  • the control device 17 executes feedback control for controlling the rotational speed of the first Z-axis motor 25A via the drive circuit 20 based on encoder information (rotational position information, etc.) of the Z-axis encoder.
  • the control device 17 controls the first Z-axis motor 25A to move the Z-axis slide 25C to an arbitrary position in the Z-axis direction.
  • the first X-axis slide device 24 also includes, for example, a first X-axis motor 24A (see FIG. 2) and an X-axis guide rail 24B provided on the Z-axis slide 25C.
  • a first X-axis motor 24A see FIG. 2
  • an X-axis guide rail 24B provided on the Z-axis slide 25C.
  • the X-axis guide rail 24B is arranged in a direction parallel to the X-axis direction, and holds the first turret device 22 slidably in the X-axis direction.
  • the first X-axis slide device 24 moves the first turret device 22 in the X-axis direction according to the drive of the first X-axis motor 24A.
  • the control device 17 controls the first X-axis motor 24A through the drive circuit 20 based on the encoder information of the X-axis encoder (not shown) of the first X-axis slide device 24, and moves the first turret device 22 to the X-axis. Move to any position in the direction. Therefore, by controlling the first X-axis slide device 24 and the first Z-axis slide device 25, the control device 17 can move the first turret device 22 (tool) to any position in the front-rear direction and the left-right direction. .
  • the second processing device 12 includes a second X-axis motor 34A (see FIG. 2) of the second X-axis slide device 34 and a second Z-axis motor 35A (see FIG. 2) of the second Z-axis slide device 35. 2), the second turret device 32 is moved to any position in the front-rear direction and the left-right direction.
  • the first turret device 22 includes a first turret motor 22A (see FIG. 2) and a first turret 22B to which a plurality of tools (not shown) can be attached.
  • the first turret 22B rotates around a rotation axis parallel to the front-rear direction based on the rotation of the first turret motor 22A.
  • the first turret device 22 drives the first turret motor 22A under the control of the control device 17, and indexes an arbitrary tool out of the plurality of tools attached to the first turret 22B.
  • the first turret device 22 executes machining of the workpiece held by the first spindle device 21 with the indexed tool.
  • the second turret device 32 drives a second turret motor 32A (see FIG. 2) to index the tool of the second turret 32B.
  • the second turret device 32 executes machining of the workpiece held by the second spindle device 31 with the indexed tool.
  • Each of the first and second turret devices 22 and 32 has a rotary tool (such as an end mill) in which each of the first and second turret motors 22A and 32A is attached to the first and second turrets 22B and 32B. You may use it as a drive source for rotating.
  • the first spindle mounting portion 53 of the bed 18 is attached to the right side of the first turret mounting portion 52 .
  • the first spindle mounting portion 53 is arranged, for example, at a rearward position relative to the position of the front surface of the first turret mounting portion 52 .
  • the first spindle mounting portion 53 is arranged at a position spaced upward by a predetermined distance from the installation surface 71 while its left lower end portion is supported by the first turret mounting portion 52 and the first base 51 .
  • the second spindle mounting portion 63 of the second bed 43 is attached to the left side of the second turret mounting portion 62, and is positioned at a predetermined distance upward from the installation surface 71 (the first spindle mounting portion 53).
  • the first and second spindle mounting portions 53 and 63 are arranged close to each other with a slight gap 73 (see FIG. 5) between them in the left-right direction.
  • the first spindle device 21 is placed above the first spindle mounting portion 53 and fixed to the first spindle mounting portion 53 .
  • the first spindle device 21 includes a first spindle motor 21A (see FIG. 2), and drives the first spindle motor 21A under the control of the control device 17.
  • the first spindle device 21 grips a workpiece by a chuck mechanism (not shown) provided at the front, and rotates around the spindle along a direction parallel to the front-rear direction based on the drive of the first spindle motor 21A. Rotate the workpiece.
  • the second main shaft device 31 is driven by a second main shaft motor 31A (see FIG.
  • the workpiece is rotated around a main axis which is parallel to and at the same height as the main axis of 21 .
  • the configurations of the first and second processing devices 11 and 12 and the bed 18 described above are examples.
  • the main shaft of the first main shaft device 21 and the main shaft of the second main shaft device 31 may be arranged at different heights.
  • the control device 17 is a processing device including a CPU 17A and mainly composed of a computer, and executes numerical control and sequence control to centrally control the operation of the machine tool 10 .
  • the control device 17 is electrically connected to each device (first spindle motor 21A, etc.) of the machine tool 10, and is capable of controlling the operation of each device.
  • the control device 17 also includes a storage device 17B.
  • the storage device 17B includes, for example, RAM, ROM, flash memory, hard disk, and the like.
  • Various control data D1 are stored in the storage device 17B.
  • the control data D1 includes, for example, a program for controlling the operations of the first and second spindle devices 21 and 31 and the first and second turret devices 22 and 32, the type of work to be produced, the type of tool used for the work, the work Data such as the position of the tool with respect to the workpiece at that time are set.
  • the program referred to here is, for example, a sequence control program (ladder circuit), an NC program, or the like.
  • the control data D1 also stores time constant data D2 for setting the acceleration and deceleration of a first X-axis motor 24A, a first Z-axis motor 25A, etc., which will be described later.
  • the control device 17 executes the program of the control data D1 by the CPU 17A, and sets the time constants of the first X-axis motor 24A and the like according to the operation input of the operation panel 15 based on the time constant data D2. Details of the time constant data D2 will be described later.
  • the fact that the control device 17 executes the program of the control data D1 to control each device may be simply referred to as the device name.
  • the control device 17 controls the first X-axis motor 24A means "the control device 17 executes the program of the control data D1 by the CPU 17A and controls the first X-axis motor 24A based on the program”. means that
  • the control device 17 controls each device according to the above-described configuration to process the workpiece. For example, the control device 17 transfers the work received by the loader 13 from the device of the previous process to the first spindle device 21 of the first processing device 11 .
  • the first processing device 11 rotates the first spindle motor 21A under the control of the control device 17 to rotate the gripped workpiece.
  • the control device 17 controls the first turret motor 22A to rotate the first turret 22B and index the tool.
  • the control device 17 controls the first X-axis motor 24A to move the first turret 22B in the horizontal direction.
  • the control device 17 also controls the first Z-axis motor 25A to move the first turret 22B in the front-rear direction. As a result, the control device 17 can change the position of the indexed tool in the left-right direction and the front-rear direction, so that the workpiece can be processed into a desired shape by the tool.
  • the machine tool 10 controls various motors in machining operations, and executes acceleration to increase the rotation speed of the motor and deceleration to decrease the rotation speed.
  • the machine tool 10 has two processing devices, ie, first and second processing devices 11 and 12 on one bed 18 . Therefore, when the bed 18 is in the connected state, for example, when the first X-axis motor 24A of the first processing device 11 is accelerated or decelerated while processing is being performed by the second processing device 12, the acceleration or deceleration causes Vibration may propagate to the second processing device 12 side through the bed 18 and reduce the processing accuracy of the second processing device 12 . Therefore, the acceleration and deceleration of the first X-axis motor 24A and the like in the connected state are limited.
  • the control device 17 receives information indicating whether the bed 18 is in the connected state or the separated state at the operation panel 15, and if the bed is in the separated state based on the received information, changes the acceleration or deceleration to the connected state. make it bigger.
  • the first X-axis slide device 24 and the first Z-axis slide device 25 can be controlled with greater acceleration and deceleration in the separated state where the influence of vibration due to acceleration and deceleration is small, and the machining speed and machining efficiency can be improved.
  • FIG. 4 is a front view of the bed 18 in a connected state.
  • FIG. 5 is an enlarged view of a portion surrounded by a dashed line in FIG. 4.
  • FIG. FIG. 6 is a rear view of the bed 18 in a connected state and a partially enlarged view thereof.
  • the connecting member 80 includes a first connecting member 81 , a second connecting member 82 and a plurality of spacers 83 .
  • the first connecting member 81 has a metal plate 84 and a plurality of bolts 85.
  • the first bed 41 is arranged with the first spindle mounting portion 53 close to the left side of the second spindle mounting portion 63 of the second bed 43 when the bed 18 is installed.
  • a flat portion 53A to which a metal plate 84 is attached is provided at the right end portion of the front surface of the first spindle mounting portion 53 and substantially in the center in the vertical direction.
  • the flat portion 53A has, for example, a flat surface parallel to the left-right direction and the up-down direction, and a threaded portion (female screw portion) 55 (see FIG. 7) into which the bolt 85 is screwed.
  • Two threaded portions 55 are formed side by side in the vertical direction.
  • a flat portion 63A to which the metal plate 84 is attached is provided on the front surface of the second spindle mounting portion 63.
  • the flat portion 63A is formed with two threaded portions 56 (see FIG. 7) into which the bolts 85 are screwed.
  • the metal plate 84 is, for example, a rectangular metal plate elongated in the left-right direction when viewed from the front, and has a plurality of (for example, four) bolts 85 inserted from the front.
  • the metal plate 84 is fixed to the flat portions 53A, 63A by screwing each of the four inserted bolts 85 into the threaded portions 55, 56 formed on the flat portions 53A, 63A. be done.
  • the metal plate 84 has its left end fixed to the flat portion 53A with two bolts 85 and its right end fixed to the flat portion 63A with the remaining two bolts 85 .
  • the second connecting member 82 has a metal plate 88 and a plurality of (for example, eight) bolts 89 .
  • a flat portion 53B to which the metal plate 88 is attached is provided at the lower end portion of the back surface of the first spindle mounting portion 53 .
  • the flat portion 53B is formed with a threaded portion 57 (see FIG. 8) for screwing the flat surface and the bolt 89 together.
  • a flat portion 63B to which the metal plate 88 is attached is provided on the rear surface of the second spindle mounting portion 63.
  • a threaded portion 58 (see FIG. 8) into which a bolt 89 is screwed is formed on the flat portion 63B.
  • the metal plate 88 is, for example, a metal plate having a substantially rectangular shape elongated in the left-right direction when viewed from the back, and is screwed from the rear with eight bolts 89 so that each of the flat portions 53B and 63B is fixed. Fixed to The width of the metal plate 88 in the horizontal direction is longer than that of the metal plate 84. The left portion of the metal plate 88 is fixed to the flat portion 53B with four bolts 89, and the right portion of the metal plate 88 is fixed to the flat portion 63B with four bolts 89. Fixed.
  • the connecting member 80 has a plurality of (for example, two) spacers 83 .
  • the spacer 83 is, for example, a flat metal plate elongated in the front-rear direction, and is sandwiched between the first and second spindle mounting portions 53 and 63 with the plane facing in the left-right direction.
  • the two spacers 83 are arranged at positions separated by a predetermined distance in the vertical direction.
  • the upper spacer 83 is arranged above the position of the metal plate 84 (see FIG. 5), and the lower spacer 83 is arranged at the position of the metal plate 88 .
  • the first and second beds 41 and 43 are arranged close to each other with a gap 73 between them with two spacers 83 interposed therebetween.
  • the bed 18 is connected to the first and second beds 41 and 43 with the spacer 83 interposed therebetween, and the metal plates 84 and 88 are attached to each of the first and second beds 41 and 43 by a plurality of bolts. It is fixed by 85,89.
  • the first and second beds 41 and 43 can be firmly fixed by the metal plates 84 and 88 provided on the front and rear surfaces while ensuring the predetermined gap 73 by the spacer 83 to reduce the propagation of vibration.
  • the user arranges the first and second beds 41 and 43 close to each other and adjusts the height with the legs 45 .
  • the user adjusts the positions of the threaded portions 55 and 56 such as the flat portions 53A and 63B while holding the spacer 83 therebetween.
  • the user confirms the positions of the threaded portions 55 and 56 of the flat portions 53A and 63B and the holes of the metal plate 84 and fixes the two metal plates 84 and 88 with the bolts 85 and 89 .
  • the first and second beds 41 and 43 are fixed at their front surfaces by a first connecting member 81 and fixed at their rear surfaces by a second connecting member 82, thereby suppressing relative displacement.
  • the first and second spindle mounting portions 53, 63 are attached to the first and second turret mounting portions 52, 62, respectively.
  • the first and second spindle mounting parts 53, 63 are arranged at positions spaced upward from the installation surface 71, and the first and second spindle devices 21, 31 are mounted thereon.
  • the first and second beds 41 and 43 have the first spindle mounting portion 53 and the second spindle mounting portion 63 connected by a connecting member 80 .
  • the first and second spindle mounting portions 53 and 63 arranged above the installation surface 71 by a certain distance are connected by the connecting member 80 so as to face each other.
  • FIG. 7 and 8 As shown in FIGS. 7 and 8, when the bed 18 is in the separated state, the connecting member 80 shown in FIGS. 5 and 6 is removed and the first and second beds 41 and 43 are separated.
  • the acceleration/deceleration of the motor is changed according to the connected state or the separated state. Therefore, the user selects the connected state, for example, when giving priority to ease of installation/relocation. Also, the user selects the separation state when giving priority to machining accuracy and shortening of machining time.
  • the position adjusting jig 90 includes a front side adjusting jig 91 attached to the front surfaces of the first and second spindle mounting portions 53 and 63 and a rear side adjusting jig 91 attached to the rear surfaces of the first and second spindle mounting portions 53 and 63. It has a back side adjustment jig 92 .
  • the front adjustment jig 91 will be described. As shown in FIG.
  • the front adjustment jig 91 includes a first position adjustment jig 91A attached to the flat portion 53A of the first spindle mounting portion 53 and a flat portion 63A of the second spindle mounting portion 63. It has a second position adjusting jig 91B attached to it.
  • the first position adjusting jig 91A has a first fixing member 93 and a plurality of (two in this embodiment) first adjusting members 94 .
  • the first fixing member 93 is, for example, a substantially rectangular parallelepiped metal member that has a predetermined thickness in the front-rear direction and is long in the up-down direction in the attached state.
  • a threaded portion 65 is formed on the flat portion 53A, for example, separately from the threaded portion 55 to which the bolt 85 of the first connecting member 81 is screwed (see FIG. 5).
  • the screwed portion 65 is arranged vertically side by side with the two screwed portions 55 , and is formed above the screwed portion 55 .
  • the first fixing member 93 is fixed to the flat portion 53A by a bolt 95 inserted from the front and screwed into the screwed portion 65 .
  • the bolt 95 for fixing the first fixing member 93 may be the same member as the bolt 85 for fixing the metal plate 84, or may be a different member.
  • the threaded portion 65 to which the bolt 95 is screwed may be the same as the threaded portion 55 to which the bolt 85 is screwed. That is, the first fixing member 93 and the metal plate 84 may be attached at the same position.
  • the first adjusting member 94 is, for example, a bolt having a male thread formed on its outer peripheral surface.
  • the first adjusting member 94 may be, for example, a cylindrical metal rod (headless screw) having a male thread formed on its outer peripheral surface without a head.
  • Female threads are formed on the inner peripheral surfaces of the two holes of the first fixing member 93 .
  • the first adjusting member 94 is screwed onto the first fixing member 93 from the left side, and a nut 96 is screwed onto the right end protruding from the first fixing member 93 .
  • Each of the two first adjusting members 94 adjusts its position relative to the first fixing member 93 in the left-right direction by adjusting the screwing position of the first fixing member 93 and the nut 96. be done. Also, the length (protrusion amount) of the first adjusting member 94 that protrudes to the right from the first fixing member 93 is adjusted according to the screwed position.
  • the second position adjusting jig 91B has a second fixing member 98 and a plurality of (two in this embodiment) second adjusting members 99 .
  • the second fixing member 98 is fixed to the flat portion 63A by screwing the bolt 101 into the threaded portion 66 (see FIG. 5) of the flat portion 63A.
  • Two second adjusting members 99 (bolts or headless screws) are screwed into each of the two holes of the second fixing member 98 from the right side.
  • Each of the two second adjustment members 99 adjusts the position to be screwed to the second fixing member 98 and the nut 102, thereby adjusting the position relative to the second fixing member 98 in the left-right direction. The length protruding to the left is adjusted.
  • Each of the two second adjustment members 99 is attached at the same position as each of the two first adjustment members 94 in the vertical direction.
  • flat surfaces are formed at the distal ends of the first and second adjustment members 94 and 99 .
  • the flat surfaces of the tips of the two first adjustment members 94 are in partial contact or surface contact with the flat surfaces of the tips of the two second adjustment members 99 .
  • the second adjustment member 99 is pushed to the right by the first adjustment member 94. .
  • the gap 73 widens according to the amount of protrusion of the first and second adjustment members 94 and 99 .
  • the gap 73 between the first and second spindle mounting portions 53 and 63 is the fixed position of the first adjusting member 94 with respect to the first fixing member 93 and the second fixing member 98 of the second adjusting member 99 . is adjusted according to the fixed position relative to the
  • the back side adjustment jig 92 on the back side shown in FIG. 8 has the same configuration as the front side adjustment jig 91 . Therefore, in the following description of the rear-side adjusting jig 92, the description of the same parts as those of the front-side adjusting jig 91 will be omitted as appropriate.
  • the rear side adjustment jig 92 has a first position adjustment jig 92A attached to the flat portion 53B and a second position adjustment jig 92B attached to the flat portion 63B.
  • the first position adjusting jig 92 ⁇ /b>A has a substantially L-shaped first fixing member 103 and a first adjusting member 105 screwed onto the first fixing member 103 .
  • the first fixing member 103 is fixed to the flat portion 53B by bolts 107.
  • the first adjusting member 105 is, for example, a bolt or a headless screw, which is screwed into the first fixing member 103 from the left side (the right side in FIG. 8), and is screwed into the hole of the first fixing member 103 and the nut 109.
  • the second position adjusting jig 92B has a second fixing member 111 and a second adjusting member 113 that is screwed onto the second fixing member 111 .
  • the second fixing member 111 is fixed to the flat portion 63B by bolts 115.
  • the second adjusting member 113 is screwed into the second fixing member 111 from the right side, and adjusts the lateral position (protrusion amount) by adjusting the screwing position with respect to the second fixing member 111 and the nut 117 . be done.
  • the right end surface of the first adjustment member 105 contacts the left end surface of the second adjustment member 113 .
  • the gap 73 between the first and second spindle mounting portions 53, 63 is adjusted according to the amount of screwing of the first and second adjusting members 105, 113.
  • the first and second beds 41 and 43 are in contact with only the first adjustment member 94 and the second adjustment member 99, and the first adjustment member 105 and the second adjustment member 113 of the position adjustment jig 90. are arranged with a gap 73 provided therebetween in a state in which the other portions are separated from each other.
  • the gap 73 between the separated first and second beds 41 and 43 can be adjusted by the position adjusting jig 90 in the same manner as in the connected state.
  • the first and second processing devices 11 and 12 can be arranged at the same position regardless of whether they are connected or separated. It is no longer necessary to adjust the configuration of the machine tool 10 (destination position of the loader 13, etc.) according to the connected state or the separated state.
  • the control device 17 accepts, for example, the selection of whether the bed 18 is in the connected state or in the separated state on the operation panel 15, and changes the acceleration or deceleration according to the selected state. .
  • the controller 17, for example, makes the acceleration and deceleration time constants of the motors in the disconnected state half of the time constants in the connected state.
  • the control device 17 selects a first X-axis motor 24A, a first Z-axis motor 25A, a second X-axis motor 34A, and a second Z-axis motor 35A (hereinafter referred to as each motor in some cases) as motors whose time constants are to be changed.
  • the first and second processing devices 11 and 12 move the first and second turret devices 22 and 32 in the separated state with greater acceleration and deceleration in the longitudinal direction and the lateral direction. For example, in one acceleration or deceleration operation (slide feeding operation), 0. A time reduction of several seconds can be realized.
  • the control device 17 accepts the selection of the connected state or the separated state on the operation panel 15 .
  • the control device 17 causes the CPU 17A to execute the control data D1, and retains a value indicating the connected state or the separated state using, for example, a non-volatile relay circuit (holding relay) of a ladder circuit.
  • the control device 17 sets, for example, a value indicating 1 to the relay circuit when the connected state is selected, and sets a value indicating 0 to the relay circuit when the separated state is selected.
  • the control device 17 refers to the value of this nonvolatile relay circuit and sets the time constant according to the selected state.
  • the time constant data D2 (see FIG. 2) in the storage device 17B contains, for example, time constants to be set for each motor in each of the connected state and the separated state.
  • the control device 17 sets a time constant used for controlling each motor based on the time constant data D2.
  • the control device 17 sets a value of 120, for example, as a time constant (set value of the NC program, etc.) used for controlling each motor.
  • the control device 17 uses the same time constant for the lateral movement control for driving the first and second X-axis motors 24A and 34A.
  • the same time constant is used for the longitudinal movement control for driving the first and second Z-axis motors 25A and 35A.
  • the first and second turret devices 22 and 32 move forward and backward and left and right at the same acceleration and deceleration.
  • the control device 17 sets a value of 60, for example, as the time constant used for controlling each motor. Therefore, the controller 17 makes the time constant in the disconnected state half of the time constant in the connected state.
  • the time constant in the separated state is not limited to half of the time constant in the connected state, and may be a value reduced by another ratio such as 1/3 or 3/5.
  • the time constant used for controlling each motor is reduced (halved), for example, the time required for the rise of the current supplied to each motor is shortened, and the speed command of each motor is reduced. Increase acceleration or deceleration by shortening the response time to It is possible to shorten the movement time of the first X-axis slide device 24 and improve the machining efficiency.
  • the time constant used to control each motor is relatively large.
  • the time constant is set to a value such that even if vibration propagates from one of the first and second processing devices 11 and 12 to the other, the processing accuracy is not affected or the effect is extremely small.
  • the vibration caused by the acceleration or deceleration of the slide movement can be reduced, and the first and second processing devices 11 and 12 can reduce the influence of the vibration caused by the acceleration or deceleration of their own device on the other device.
  • the control device 17 uses time constants (set values) for changing the acceleration and deceleration of each motor as the parameters of the present disclosure.
  • the control device 17 sets the time constant based on the time constant data D2, and adjusts the acceleration and deceleration of each motor to those of the motors when the connected state is selected. Make it larger than the acceleration or deceleration.
  • the first X-axis slide device 24 moves the first turret device 22 in the left-right direction (an example of the first axis direction in the present disclosure).
  • the first Z-axis slide device 25 slides the first turret device 22 in the front-rear direction (an example of the second axis direction of the present disclosure) perpendicular to the left-right direction.
  • a first X-axis motor 24A and a first Z-axis motor 25A which are driving sources of the slide device, are employed. According to this, in the connected state, the influence of the vibration generated by the movement of the first turret device 22 on the machining accuracy of the second machining device 12 can be reduced. In addition, in the separated state, the movement time of the first turret device 22 can be shortened, and the machining time can be shortened.
  • the control device 17 also includes a time constant for setting the acceleration of the first X-axis motor 24A (an example of the first time constant of the present disclosure) and a time constant for setting the acceleration of the first Z-axis motor 25A (an example of the first time constant of the present disclosure).
  • An example of the second time constant is set.
  • the time constant is changed at the same rate in the front-rear direction and the left-right direction, so the load of the time constant setting process and the process using the time constant by the control device 17 can be reduced. Also, the acceleration and deceleration in both the longitudinal direction and the lateral direction can be similarly increased or decreased.
  • control device 17 changes both the acceleration and the deceleration in the parameter setting process described above, only one of them may be changed.
  • the control device 17 may increase only the acceleration in the disconnected state compared to the connected state.
  • the control device 17 increases the acceleration/deceleration by decreasing the value of the time constant in the disconnected state compared to the connected state, but the present invention is not limited to this.
  • the control device 17 may reduce the time constant and increase the acceleration or the like in the connected state compared to the disconnected state. For example, if the bed 18 has a structure in which the vibrations generated by two accelerations are canceled by increasing the vibration that propagates in the connected state to a certain level, the control device 17 controls the acceleration and the like in the connected state. It may be increased to reduce vibration. Also, the control device 17 changes the acceleration and the like of both the first and second processing devices 11 and 12, but the acceleration and the like of only one of the first processing device 11 and the second processing device 12 is selected. You can change it accordingly.
  • the control device 17 may change the acceleration/deceleration only in the longitudinal direction (first and second Z-axis motors 25A and 35A).
  • the motors of the slide device such as the first X-axis motor 24A, are targeted for setting. good.
  • the control device 17 may change the acceleration of the first and second spindle motors 21A, 31A and the first and second turret motors 22A, 32A.
  • the control device 17 may increase the acceleration and deceleration of the first and second spindle motors 21A and 31A in the disconnected state compared to the connected state.
  • FIG. 9 shows an example of a screen 121 displayed on the control panel 15 of another embodiment.
  • the control device 17 displays a screen 121 on the operation panel 15 to accept a change of the time constant, for example, when the system is started or when a predetermined operation input is performed on the operation panel 15 .
  • the control device 17 displays, for example, a message 123 asking, "Did you install the bed in the connected state or in the separated state?"
  • a selection button 125 to select is displayed on the screen 121 .
  • control device 17 displays on the screen 121 a display field 127 that displays the recommended time constant and a change rate display section 128 that displays the change rate of acceleration/deceleration.
  • the control device 17 displays the recommended time constant in the state of the button selected from the selection buttons 124 and 125 in the display field 127 .
  • FIG. 9 shows, as an example, a state in which the selection button 124 (connected state) is selected (hatched in the drawing).
  • the recommended time constant in the X-axis direction (horizontal direction) in the display field 127 indicates the time constant value (for example, 120) used for controlling the first and second X-axis motors 24A and 34A.
  • the recommended time constant in the Z-axis direction (front-rear direction) in the display field 127 indicates the recommended time constant value (for example, 120) of the first and second Z-axis motors 25A and 35A.
  • the control device 17 displays, for example, "60" as the recommended time constants in the X-axis direction and the Z-axis direction.
  • control device 17 sets the recommended time constant (for example, 120) in the connected state to 100%, and displays the change rate of the acceleration/deceleration when the time constant is changed on the change rate display section 128 .
  • the control device 17 accepts a change in the value of the time constant displayed in the display field 127 according to a touch operation or the like on the display field 127, and changes the rate of change of the change rate display section 128 according to the change in the value of the display field 127. do. For example, when a value less than "120" is input for the time constant, the control device 17 displays the change rate of the acceleration/deceleration that increases according to the decrease of the time constant on the change rate display section 128 .
  • the control device 17 may receive one value (120 or the like) as the time constant for one state, for example, the connected state, and use the received value for both the X-axis direction and the Z-axis direction. Also, the control device 17 may receive time constants of different values for each of the first and second X-axis motors 24A, 34A and the first and second Z-axis motors 25A, 35A.
  • the control device 17 displays an OK button 129 and a cancel button 131 on the screen 121 . Then, when the OK button 129 is selected, the control device 17 sets the time constant displayed in the display field 127 as the time constant used for controlling each motor, and uses it for machining control and the like. Also, when the cancel button 131 is selected, the control device 17 ends the display of the screen 121 . In this case, the control device 17 may display the screen 121 again at the time of the next system startup or in response to an operation input to the operation panel 15 after startup, and accept the time constant. When accepting only the selection of the state as in the above-described embodiment without accepting the change of the time constant as shown in FIG. Only 131 may be displayed on the operation panel 15 . Then, the control device 17 may accept the state selection by the selection buttons 124 and 125 and set the time constant based on the selection by the OK button 129 .
  • the control device 17 causes the operation panel 15 to display a screen 121 for selecting the connected state or the separated state, and displays the value of the time constant recommended in the selected state (display field 127). .
  • the control device 17 accepts a change in the displayed recommended time constant value, and when the time constant value is changed, displays the change rate of the acceleration and deceleration of each motor from before the change (change rate display unit 128).
  • the user can set the time constant and adjust it to a value that does not affect machining while observing changes in acceleration and the like.
  • the user can change the time constant to increase the acceleration or the like if he/she wishes to improve the machining efficiency.
  • the operation panel 15 is an example of the reception device of the present disclosure.
  • the first and second spindle devices 21 and 31 are examples of spindle devices.
  • the first and second spindle motors 21A, 31A, the first and second turret motors 22A, 32A, the first and second X-axis motors 24A, 34A, and the first and second Z-axis motors 25A, 35A are It is an example of a motor in the disclosure.
  • the first and second turret devices 22, 32 are examples of turret devices.
  • the first X-axis motor 24A is an example of a first motor.
  • the first Z-axis motor 25A is an example of a second motor.
  • the first X-axis slide device 24 and the first Z-axis slide device 25 are examples of slide devices.
  • the bolts 85, 89 are examples of fastening members.
  • the left-right direction and the X-axis direction are examples of the first axis direction.
  • the front-rear direction and the Z-axis direction are examples of the second axis direction.
  • the control device 17 sets a time constant according to the state selected by the operation panel 15 from among the connected state and the separated state, and sets the time constant during processing by the second processing device 12.
  • the first machining device 11 is controlled by driving the first X-axis motor 24A and the first Z-axis motor 25A using constants. As a result, in the connected state, it is possible to reduce the influence of the vibrations generated in response to the driving of the first X-axis motor 24A and the like on the processing of the second processing device 12 .
  • the acceleration and deceleration of the first X-axis motor 24A and the like are made larger than those in the connected state, so that the production efficiency of the first processing device 11 can be improved.
  • the user when installing the machine tool 10, the user can select whether the bed 18 is to be used in the separated specification or in the coupled specification, and only by operating the operation panel 15 after installation, the user can obtain the appropriate acceleration/deceleration. You can set the speed.
  • the present disclosure is not limited to the above embodiments, and that various improvements and modifications are possible without departing from the scope of the present disclosure.
  • a member for fixing the first and second beds 41 and 43 is used as the connecting member 80, but the connecting member 80 is not limited to this.
  • a vibration suppressing device that reduces propagating vibration such as that disclosed in Patent Document 1 (International Publication No. 2010/110030) may be used as the connecting member. Therefore, the connection member of the present disclosure is not limited to a metal plate, bolt, or the like, and may have a vibration isolating member such as rubber.
  • the connecting member 80 is configured to fix both the front surface and the rear surface of the bed 18, it may be configured to fix either one.
  • the connecting member 80 may be configured to include only one of the first connecting member 81 and the second connecting member 82 . Also, the connecting member 80 may be configured to fix the front surface at two or more locations. Also, the connecting member 80 does not have to be provided with the spacer 83 .
  • the time constant for changing the acceleration/deceleration of the motor is used as the parameter of the present disclosure, but the present invention is not limited to this.
  • the parameters may be the cycle of the current or voltage applied to the motor, the maximum current value, or the maximum voltage value.
  • a value for setting the strength of the brake during deceleration may be set as a parameter. Therefore, various setting values used for controlling the motor can be adopted as the parameters of the present disclosure.
  • the number of processing apparatuses placed on the bed 18 is not limited to two, and may be three or more. Also, the bed 18 may be configured to be divisible into three or more.
  • the first and second processing devices of the present disclosure are not limited to lathes, and may be other processing devices such as machining centers. Therefore, the machine tool 10 may be equipped with a parallel two-axis machining center. Moreover, as the first and second machining devices, various configurations such as a horizontal lathe, a vertical lathe, a milling machine, and a drilling machine can be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)

Abstract

Provided is a machine tool capable of executing control with respect to a motor of a drive source, the control being in accordance with the connected state of a bed and the separated state of a bed. This machine tool includes: a first machining device and a second machining device that execute machining of a workpiece; a first bed on which the first machining device is placed; and a second bed on which the second machining device is placed. The machine tool comprises: a bed changeable between a connected state in which the first bed and the second bed are connected to each other by a connection member, and a separated state in which the connection member is removed and the first bed and the second bed are separated; a motor that functions as a drive source of the first machining device; a receiving device that receives a selection of the connected state or the separated state; and a control device that sets a parameter corresponding to the state selected by the receiving device from between the connected state and the separated state, drives the motor in accordance with the set parameter at a time of machining of the second machining device, and controls the first machining device.

Description

工作機械Machine Tools
 本開示は、複数の加工装置をベッドの上に載置する工作機械に関するものである。 The present disclosure relates to a machine tool that mounts a plurality of processing devices on a bed.
 従来、複数の加工装置をベッドの上に載置する工作機械が種々提案されている。例えば、下記特許文献1の工作機械は、所謂、平行2軸型の旋盤であり、互いに独立した2つのベッドが左右方向に並んで配置され、2つのベッドの各々の上に加工装置が載置されている。2つの加工装置の各々は、ワークを保持する主軸と、工具を保持する刃物台をそれぞれ有している。2つのベッドは、振動抑制装置により互いに連結されている。 Conventionally, various machine tools have been proposed in which multiple processing devices are placed on a bed. For example, the machine tool of Patent Document 1 below is a so-called parallel twin-axis lathe, in which two independent beds are arranged side by side in the horizontal direction, and a processing device is placed on each of the two beds. It is Each of the two processing devices has a spindle that holds a workpiece and a tool post that holds a tool. The two beds are connected to each other by vibration dampers.
国際公開第2010/110030号WO2010/110030
 上記した工作機械のように2つのベッドの上にそれぞれ加工装置を載置する工作機械では、2つの加工装置の動作が互いに影響する場合がある。例えば、一方の加工装置のスライド装置等を駆動して発生した振動が、ベッドを介して他方の加工装置に伝搬し、他方の加工装置の加工精度に影響を与える可能性がある。上記した特許文献1の工作機械では、振動抑制装置により振動の伝搬を抑制している。 In a machine tool in which processing devices are placed on two beds, respectively, such as the machine tool described above, the operations of the two processing devices may affect each other. For example, vibration generated by driving a slide device or the like of one processing device may propagate to the other processing device via the bed and affect the processing accuracy of the other processing device. In the machine tool disclosed in Patent Document 1, the vibration suppressing device suppresses the propagation of vibration.
 ところで、上記した2つのベッドを振動抑制装置などの連結部材で連結せずに、分離した状態で設置すれば、上記した駆動による振動の伝搬を低減できる。しかしながら、2つのベッドを分離した場合は、2つのベッドの位置調整などベッドの設置作業が複雑化する、あるいはベッドを移設する場合に移設作業の工数が増加する虞がある。このため、ベッドを連結状態とするのか、分離状態とするのかはユーザの要望などによって変更される。従って、分離状態とするのか連結状態とするのかに応じて駆動源を最適な状態で制御できる工作機械が望まれている。 By the way, if the two beds described above are installed separately without being connected by a connecting member such as a vibration suppressing device, it is possible to reduce the propagation of vibration due to the driving described above. However, when the two beds are separated, there is a risk that the bed installation work such as position adjustment of the two beds will be complicated, or that the man-hours for the relocation work will increase when the beds are relocated. Therefore, whether the beds are connected or separated depends on the user's request. Therefore, there is a demand for a machine tool that can control the drive source in an optimum state depending on whether it is in the separated state or in the connected state.
 本開示は、上記の課題に鑑みてなされたものであり、ベッドの連結状態及び分離状態に応じた制御を駆動源のモータに対して実行できる工作機械を提供することを目的とする。 The present disclosure has been made in view of the above problems, and aims to provide a machine tool capable of executing control for the motor of the drive source according to the connection state and separation state of the bed.
 上記課題を解決するために、本明細書は、ワークに対する加工を実行する第1加工装置及び第2加工装置と、前記第1加工装置が載置される第1ベッドと、前記第2加工装置が載置される第2ベッドとを有し、前記第1ベッド及び前記第2ベッドを連結部材により互いに連結する連結状態と、前記連結部材を取り外し前記第1ベッド及び前記第2ベッドを分離した分離状態とに変更可能なベッドと、前記第1加工装置の駆動源として機能するモータと、前記連結状態又は前記分離状態の選択を受け付ける受付装置と、前記モータの制御に用いるパラメータを、前記連結状態及び前記分離状態のうち、前記受付装置で選択された状態に応じた前記パラメータに設定し、前記第2加工装置の加工時において設定した前記パラメータにより前記モータを駆動し前記第1加工装置を制御する制御装置と、を備える工作機械を開示する。 In order to solve the above problems, the present specification provides a first processing device and a second processing device for processing a workpiece, a first bed on which the first processing device is placed, and the second processing device. a connected state in which the first bed and the second bed are connected to each other by a connecting member; and a state in which the connecting member is removed to separate the first bed and the second bed. a bed that can be changed to a separated state; a motor that functions as a drive source for the first processing device; a receiving device that receives selection of the connected state or the separated state; The parameters are set according to the state selected by the reception device from among the state and the separation state, and the motor is driven by the parameters set during processing by the second processing device to operate the first processing device. Disclosed is a machine tool comprising: a control device for controlling;
 本開示の工作機械によれば、制御装置は、第1加工装置のモータの制御に用いるパラメータを、受付装置で選択された状態に応じたパラメータに設定する。制御装置は、第2加工装置の加工時において、設定したパラメータによりモータを駆動し第1加工装置を制御する。これによれば、第1加工装置の駆動源として機能するモータを、ベッドを分離する分離状態又は連結部材で連結する連結状態に応じたパラメータで制御できる。このため、連結状態であれば、第1加工装置の駆動に応じて発生する振動が、第2加工装置の加工に与える影響を低減できる。また、分離状態であれば、連結状態に比べて振動の伝搬の影響が小さくなる。このため、分離状態においてモータの加速度を連結状態に比べて大きくするなどし、第1加工装置の生産効率を向上できる。 According to the machine tool of the present disclosure, the control device sets the parameters used for controlling the motor of the first processing device to parameters according to the state selected by the receiving device. The control device controls the first processing device by driving the motor according to the set parameters during processing by the second processing device. According to this, the motor functioning as the drive source of the first processing apparatus can be controlled with parameters according to the separation state in which the beds are separated or the connection state in which the beds are connected by the connecting member. Therefore, in the connected state, it is possible to reduce the influence of the vibration generated in response to the driving of the first processing device on the processing of the second processing device. Also, in the separated state, the influence of vibration propagation is smaller than in the connected state. For this reason, the acceleration of the motor can be made larger in the separated state than in the connected state, and the production efficiency of the first processing device can be improved.
本実例に係わる工作機械の正面図。1 is a front view of a machine tool according to this example; FIG. 工作機械のブロック図。A block diagram of a machine tool. 第1加工装置、第2加工装置、ベッドの斜視図。The perspective view of a 1st processing apparatus, a 2nd processing apparatus, and a bed. 連結状態のベッドの正面図。The front view of the bed in a connected state. 図4の破線で囲む部分の拡大図。FIG. 5 is an enlarged view of a portion surrounded by a dashed line in FIG. 4; 連結状態のベッドの背面図、及びその一部拡大図。The back view of the bed of a connection state, and its partially enlarged view. 分離状態のベッドの正面図、及びその一部拡大図。The front view of the bed of a separated state, and the partially enlarged view. 分離状態のベッドの背面図、及びその一部拡大図。FIG. 4 is a rear view of the bed in a separated state and a partially enlarged view thereof; 別実施例の連結状態と分離状態の選択を受け付ける画面を示す図。The figure which shows the screen which accepts selection of the connection state of another Example, and a separation state.
 以下、本開示の工作機械を具体化した一実施例について図面を参照しながら説明する。図1は、本実施例の工作機械10の正面図を示している。図2は、工作機械10のブロック図を示している。図3は、工作機械10が備える第1加工装置11、第2加工装置12、ベッド18の斜視図を示している。尚、図3は、ベッド18を模式的に図示している。ベッド18の詳細な構成については、図4~図8を用いて説明する。以下の説明では、図1に示すように、工作機械10を正面から見た方向を基準とし、工作機械10の機械幅方向を左右方向、工作機械10の設置面71に平行で左右方向に垂直な方向を前後方向、左右方向及び前後方向に垂直な方向を上下方向と称して説明する。 An embodiment embodying the machine tool of the present disclosure will be described below with reference to the drawings. FIG. 1 shows a front view of a machine tool 10 of this embodiment. FIG. 2 shows a block diagram of the machine tool 10. As shown in FIG. FIG. 3 shows a perspective view of the first processing device 11, the second processing device 12, and the bed 18 provided in the machine tool 10. FIG. 3 schematically shows the bed 18. As shown in FIG. A detailed configuration of the bed 18 will be described with reference to FIGS. 4 to 8. FIG. In the following description, as shown in FIG. 1, the direction when the machine tool 10 is viewed from the front is used as a reference, the machine width direction of the machine tool 10 is the horizontal direction, and the horizontal direction is parallel to the installation surface 71 of the machine tool 10 and perpendicular to the horizontal direction. A direction perpendicular to the front-rear direction will be referred to as a front-rear direction, and a left-right direction and a direction perpendicular to the front-rear direction will be referred to as an up-down direction.
 図1~図3に示すように、工作機械10は、第1加工装置11、第2加工装置12、ローダ13、操作盤15、制御装置17、ベッド18等を備えている。第1及び第2加工装置11,12は、ワーク(図示略)に対する加工を実行する装置である。ユーザは、工作機械10の装置カバー19の正面に設けられた正面扉19Aを開けることで、第1及び第2加工装置11,12の加工スペースにアクセスでき、ワークの加工状態の確認、工具の交換などを実行する。第1及び第2加工装置11,12の詳細については後述する。 As shown in FIGS. 1 to 3, the machine tool 10 includes a first processing device 11, a second processing device 12, a loader 13, an operation panel 15, a control device 17, a bed 18, and the like. The first and second processing devices 11 and 12 are devices for processing a work (not shown). By opening the front door 19A provided on the front of the device cover 19 of the machine tool 10, the user can access the machining spaces of the first and second machining devices 11 and 12, check the machining state of the workpiece, and use the tools. perform exchanges, etc. Details of the first and second processing devices 11 and 12 will be described later.
 ローダ13は、例えば、ガントリ式のワーク搬送装置であり、工作機械10の上部に設けられている。ローダ13は、装置カバー19内に設けられたフレーム部材(図示略)の上部に固定されたレール台13Aと、レール台13Aに取り付けられた昇降装置13Bと、ワークを把持するヘッド(図示略)等を有する。ローダ13は、レール台13Aや昇降装置13Bによりヘッドを左右方向、上下方向、前後方向へスライド移動させる。ローダ13は、左右方向等におけるヘッドの位置を変更し、第1及び第2加工装置11,12などとの間でワークの受け渡しを実行する。 The loader 13 is, for example, a gantry-type work transfer device and is provided above the machine tool 10 . The loader 13 includes a rail base 13A fixed to the top of a frame member (not shown) provided in the device cover 19, a lifting device 13B attached to the rail base 13A, and a head (not shown) for gripping a work. etc. The loader 13 slidably moves the head in the left-right direction, the up-down direction, and the front-rear direction by means of the rail base 13A and the lifting device 13B. The loader 13 changes the position of the head in the horizontal direction or the like, and transfers the work between the first and second processing devices 11 and 12 and the like.
 操作盤15は、ユーザインタフェースであり、タッチパネル15Aや操作スイッチ15B等を備えている。操作盤15は、タッチパネル15Aや操作スイッチ15Bを介してユーザからの操作入力を受け付け、受け付けた操作入力に応じた信号を制御装置17に出力する。また、操作盤15は、制御装置17の制御に基づいて、タッチパネル15Aの表示内容等を変更する。操作盤15は、本開示の受付装置の一例である。尚、本開示の受付装置は、上記した構成に限らない。例えば、受付装置は、液晶パネルと操作スイッチを備え、液晶パネルに表示された項目から後述する連結状態等を選択する構成でも良い。 The operation panel 15 is a user interface, and includes a touch panel 15A, operation switches 15B, and the like. The operation panel 15 receives operation inputs from the user via the touch panel 15A and the operation switches 15B, and outputs signals corresponding to the received operation inputs to the control device 17 . Further, the operation panel 15 changes the display contents of the touch panel 15A based on the control of the control device 17 . The operation panel 15 is an example of the reception device of the present disclosure. Note that the reception device of the present disclosure is not limited to the configuration described above. For example, the reception device may have a liquid crystal panel and an operation switch, and may be configured to select a connection state and the like to be described later from items displayed on the liquid crystal panel.
(第1及び第2加工装置11,12について)
 図2及び図3に示すように、第1及び第2加工装置11,12は、ベッド18の上に載置され、左右方向に並んで配置されている。ベッド18は、例えば、鋳鉄製の構造物であり、第1ベッド41と、第2ベッド43とを有している。第1加工装置11は、第1ベッド41の上に載置されている。第2加工装置12は、第2ベッド43の上に載置されている。第1加工装置11及び第1ベッド41は、例えば、正面からベッド18を見た場合に、左右方向におけるベッド18の中央を通り上下方向に沿った直線に対して第2加工装置12及び第2ベッド43と線対称な構造をなしている。即ち、工作機械10は、対称な構造で左右方向に並ぶ一対の第1及び第2加工装置11,12と、対称な構造で左右方向に並ぶ一対の第1及び第2ベッド41,43を備えている。このため、以下の説明では、第1ベッド41及び第1加工装置11について主に説明し、第2ベッド43及び第2加工装置12についての説明を適宜省略する。
(Regarding the first and second processing devices 11 and 12)
As shown in FIGS. 2 and 3, the first and second processing devices 11 and 12 are placed on a bed 18 and arranged side by side in the left-right direction. The bed 18 is, for example, a structure made of cast iron and has a first bed 41 and a second bed 43 . The first processing device 11 is placed on the first bed 41 . The second processing device 12 is placed on the second bed 43 . For example, when the bed 18 is viewed from the front, the first processing device 11 and the first bed 41 move the second processing device 12 and the second processing device 12 and the second processing device 41 relative to a straight line along the vertical direction that passes through the center of the bed 18 in the left-right direction. It has a line-symmetrical structure with the bed 43 . That is, the machine tool 10 includes a pair of first and second processing devices 11 and 12 which are symmetrically arranged in the left-right direction, and a pair of first and second beds 41 and 43 which are symmetrically arranged in the left-right direction. ing. Therefore, in the following description, the first bed 41 and the first processing device 11 will be mainly described, and the description of the second bed 43 and the second processing device 12 will be omitted as appropriate.
 第1及び第2加工装置11,12は、前後方向を主軸方向(Z軸方向)とする所謂、平行2軸型の旋盤である。第1加工装置11は、第1主軸装置21と、第1タレット装置22、第1X軸スライド装置24、及び第1Z軸スライド装置25を備えている。同様に、第2加工装置12は、第2主軸装置31と、第2タレット装置32、第2X軸スライド装置34、及び第2Z軸スライド装置35を備えている。また、第1ベッド41は、第1ベース51、第1タレット載置部52、第1主軸載置部53を備えている。同様に、第2ベッド43は、第2ベース61、第2タレット載置部62、第2主軸載置部63を備えている。 The first and second processing devices 11 and 12 are so-called parallel twin-axis lathes with the front-rear direction as the main axis direction (Z-axis direction). The first processing device 11 includes a first spindle device 21 , a first turret device 22 , a first X-axis slide device 24 and a first Z-axis slide device 25 . Similarly, the second processing device 12 comprises a second spindle device 31 , a second turret device 32 , a second X-axis slide device 34 and a second Z-axis slide device 35 . The first bed 41 also includes a first base 51 , a first turret mounting portion 52 and a first spindle mounting portion 53 . Similarly, the second bed 43 has a second base 61 , a second turret mounting portion 62 and a second spindle mounting portion 63 .
 ここで、本実施例のベッド18は、第1ベッド41と第2ベッド43を連結する連結状態と、第1ベッド41と第2ベッド43を分離する分離状態とに変更可能となっている。図4~図6は、連結部材80を取り付けて第1及び第2ベッド41,43を連結状態にしたベッド18を示している。図7及び図8は、連結部材80を取り除いて第1及び第2ベッド41,43を分離状態にしたベッド18を示している。まず、図2~図6を用いて第1及び第2加工装置11,12及びベッド18について説明する。連結状態及び分離状態の詳細については後述する。 Here, the bed 18 of this embodiment can be changed between a connected state in which the first bed 41 and the second bed 43 are connected and a separated state in which the first bed 41 and the second bed 43 are separated. 4 to 6 show the bed 18 with the connecting member 80 attached to connect the first and second beds 41, 43. FIG. 7 and 8 show the bed 18 with the first and second beds 41, 43 separated by removing the connecting member 80. FIG. First, the first and second processing devices 11 and 12 and the bed 18 will be described with reference to FIGS. 2 to 6. FIG. Details of the connected state and the separated state will be described later.
(第1及び第2タレット装置22,32)
 図2~図6に示すように、第1ベッド41の第1ベース51は、例えば、前後方向に長く、上下方向に所定の厚みを有する略直方体形状をなしている。第1ベース51の下面には、前後方向及び左右方向の各角部に脚部45が取り付けられている。第1ベース51は、工作機械10を設置する設置面71の上に脚部45を介して配置されている。第1ベース51は、4つの脚部45の高さを調整することで、第1加工装置11の水平を調整可能となっている。第1タレット載置部52は、第1ベース51の上に載置され、第1ベース51に対して固定されている。第1タレット載置部52は、前後方向に長く、上下方向において第1ベース51と略同程度の厚みを有し、左右方向の幅が第1ベース51に比べて短い略直方体形状をなしている。第1タレット載置部52の前後方向の長さは、第1ベース51の前後方向の長さと略同一となっている。
(First and second turret devices 22, 32)
As shown in FIGS. 2 to 6, the first base 51 of the first bed 41 has, for example, a substantially rectangular parallelepiped shape that is long in the front-rear direction and has a predetermined thickness in the vertical direction. Legs 45 are attached to the lower surface of the first base 51 at the front-rear and left-right corners. The first base 51 is arranged via the legs 45 on an installation surface 71 on which the machine tool 10 is installed. The first base 51 can adjust the horizontality of the first processing device 11 by adjusting the heights of the four legs 45 . The first turret mounting part 52 is mounted on the first base 51 and fixed to the first base 51 . The first turret mounting portion 52 has a substantially rectangular parallelepiped shape that is long in the front-rear direction, has a thickness that is substantially the same as that of the first base 51 in the vertical direction, and has a width that is shorter than that of the first base 51 in the horizontal direction. there is The length of the first turret mounting portion 52 in the front-rear direction is approximately the same as the length of the first base 51 in the front-rear direction.
 第1タレット装置22、第1X軸スライド装置24のスライド機構、及び第1Z軸スライド装置25のスライド機構は、第1タレット載置部52の上に載置されている。第1X軸スライド装置24は、第1タレット装置22を左右方向(X軸方向という場合がある)へ移動させる装置である。第1Z軸スライド装置25は、第1タレット装置22を前後方向へ移動させる装置である。第1Z軸スライド装置25は、例えば、第1Z軸用モータ25A(図2参照)と、第1タレット載置部52の上に配置されたZ軸案内レール25Bと、Z軸案内レール25Bに対してスライド移動可能なZ軸スライド25Cを備えている。Z軸案内レール25Bは、前後方向(Z軸方向という場合がある)と平行な方向に配設され、Z軸スライド25CをZ軸方向へスライド移動可能に保持する。第1Z軸スライド装置25は、第1Z軸用モータ25Aの回転出力を、伝達機構(例えば、ボールネジ機構など)を介してZ軸スライド25Cに伝達し、Z軸スライド25CをZ軸方向に移動させる。 The first turret device 22 , the slide mechanism of the first X-axis slide device 24 , and the slide mechanism of the first Z-axis slide device 25 are mounted on the first turret mounting section 52 . The first X-axis slide device 24 is a device that moves the first turret device 22 in the left-right direction (sometimes referred to as the X-axis direction). The first Z-axis slide device 25 is a device that moves the first turret device 22 forward and backward. The first Z-axis slide device 25 includes, for example, a first Z-axis motor 25A (see FIG. 2), a Z-axis guide rail 25B arranged on the first turret mounting section 52, and a Z-axis guide rail 25B. It has a Z-axis slide 25C that can be slidably moved. The Z-axis guide rail 25B is arranged in a direction parallel to the front-rear direction (sometimes referred to as the Z-axis direction), and holds the Z-axis slide 25C slidably in the Z-axis direction. The first Z-axis slide device 25 transmits the rotational output of the first Z-axis motor 25A to the Z-axis slide 25C via a transmission mechanism (for example, a ball screw mechanism) to move the Z-axis slide 25C in the Z-axis direction. .
 制御装置17(図2参照)は、駆動回路20を介して第1Z軸用モータ25Aに接続されている。駆動回路20は、例えば、第1Z軸用モータ25A等の各モータへ供給する電力を制御するアンプ回路を備えている。また、第1Z軸スライド装置25は、第1Z軸用モータ25Aの回転位置等のエンコーダ情報を出力するZ軸エンコーダ(図示略)を備えている。制御装置17は、Z軸エンコーダのエンコーダ情報(回転位置情報など)に基づいて、駆動回路20を介して第1Z軸用モータ25Aの回転速度等を制御するフィードバック制御を実行する。制御装置17は、第1Z軸用モータ25Aを制御し、Z軸スライド25CをZ軸方向における任意の位置へ移動させる。 The control device 17 (see FIG. 2) is connected to the first Z-axis motor 25A via the drive circuit 20. The drive circuit 20 includes, for example, an amplifier circuit that controls power supplied to each motor such as the first Z-axis motor 25A. The first Z-axis slide device 25 also includes a Z-axis encoder (not shown) that outputs encoder information such as the rotational position of the first Z-axis motor 25A. The control device 17 executes feedback control for controlling the rotational speed of the first Z-axis motor 25A via the drive circuit 20 based on encoder information (rotational position information, etc.) of the Z-axis encoder. The control device 17 controls the first Z-axis motor 25A to move the Z-axis slide 25C to an arbitrary position in the Z-axis direction.
 また、第1X軸スライド装置24は、例えば、第1X軸用モータ24A(図2参照)、Z軸スライド25Cの上に設けられたX軸案内レール24Bを備えている。尚、以下の第1X軸スライド装置24の説明において、上記した第1Z軸スライド装置25と同様の構成についてはその説明を適宜省略する。X軸案内レール24Bは、X軸方向と平行な方向に配設され、第1タレット装置22をX軸方向へスライド移動可能に保持する。第1X軸スライド装置24は、第1X軸用モータ24Aの駆動に応じて第1タレット装置22をX軸方向へ移動させる。制御装置17は、第1X軸スライド装置24のX軸エンコーダ(図示略)のエンコーダ情報に基づいて、駆動回路20を介して第1X軸用モータ24Aを制御し、第1タレット装置22をX軸方向における任意の位置へ移動させる。従って、制御装置17は、第1X軸スライド装置24及び第1Z軸スライド装置25を制御することで、第1タレット装置22(工具)を前後方向及び左右方向の任意の位置に移動させることができる。第2加工装置12は、第1加工装置11と同様に、第2X軸スライド装置34の第2X軸用モータ34A(図2参照)及び第2Z軸スライド装置35の第2Z軸用モータ35A(図2参照)を制御することで、第2タレット装置32を前後方向及び左右方向の任意の位置に移動させる。 The first X-axis slide device 24 also includes, for example, a first X-axis motor 24A (see FIG. 2) and an X-axis guide rail 24B provided on the Z-axis slide 25C. In the following description of the first X-axis slide device 24, the description of the configuration similar to that of the above-described first Z-axis slide device 25 will be omitted as appropriate. The X-axis guide rail 24B is arranged in a direction parallel to the X-axis direction, and holds the first turret device 22 slidably in the X-axis direction. The first X-axis slide device 24 moves the first turret device 22 in the X-axis direction according to the drive of the first X-axis motor 24A. The control device 17 controls the first X-axis motor 24A through the drive circuit 20 based on the encoder information of the X-axis encoder (not shown) of the first X-axis slide device 24, and moves the first turret device 22 to the X-axis. Move to any position in the direction. Therefore, by controlling the first X-axis slide device 24 and the first Z-axis slide device 25, the control device 17 can move the first turret device 22 (tool) to any position in the front-rear direction and the left-right direction. . As with the first processing device 11, the second processing device 12 includes a second X-axis motor 34A (see FIG. 2) of the second X-axis slide device 34 and a second Z-axis motor 35A (see FIG. 2) of the second Z-axis slide device 35. 2), the second turret device 32 is moved to any position in the front-rear direction and the left-right direction.
 第1タレット装置22は、第1タレット用モータ22A(図2参照)と、複数の工具(図示略)取り付け可能な第1タレット22Bを備えている。第1タレット22Bは、第1タレット用モータ22Aの回転に基づいて、前後方向と平行な方向に沿った回転軸を中心に回転する。第1タレット装置22は、制御装置17の制御に基づいて第1タレット用モータ22Aを駆動し、第1タレット22Bに取り付けられた複数の工具の中から任意の工具を割り出す。第1タレット装置22は、割り出した工具により第1主軸装置21に保持されたワークに対する加工を実行する。第2タレット装置32は、第1タレット装置22と同様に、第2タレット用モータ32A(図2参照)を駆動し、第2タレット32Bの工具を割り出す。第2タレット装置32は、割り出した工具により第2主軸装置31に保持されたワークに対する加工を実行する。尚、第1及び第2タレット装置22,32の各々は、第1及び第2タレット用モータ22A,32Aの各々を、第1及び第2タレット22B,32Bに取り付けた回転工具(エンドミルなど)を回転させるための駆動源として用いても良い。 The first turret device 22 includes a first turret motor 22A (see FIG. 2) and a first turret 22B to which a plurality of tools (not shown) can be attached. The first turret 22B rotates around a rotation axis parallel to the front-rear direction based on the rotation of the first turret motor 22A. The first turret device 22 drives the first turret motor 22A under the control of the control device 17, and indexes an arbitrary tool out of the plurality of tools attached to the first turret 22B. The first turret device 22 executes machining of the workpiece held by the first spindle device 21 with the indexed tool. The second turret device 32, like the first turret device 22, drives a second turret motor 32A (see FIG. 2) to index the tool of the second turret 32B. The second turret device 32 executes machining of the workpiece held by the second spindle device 31 with the indexed tool. Each of the first and second turret devices 22 and 32 has a rotary tool (such as an end mill) in which each of the first and second turret motors 22A and 32A is attached to the first and second turrets 22B and 32B. You may use it as a drive source for rotating.
(第1及び第2主軸装置21,31)
 ベッド18の第1主軸載置部53は、第1タレット載置部52の右側に取り付けられている。第1主軸載置部53は、例えば、第1タレット載置部52の前面の位置に比べて後方となる位置に配置されている。第1主軸載置部53は、左側の下端部を第1タレット載置部52及び第1ベース51に支持された状態で、設置面71から所定の距離だけ上方に離間した位置に配置されている。同様に、第2ベッド43の第2主軸載置部63は、第2タレット載置部62の左側に取り付けられ、設置面71から所定の距離だけ上方に離間した位置(第1主軸載置部53と同じ高さの位置)に配置されている。第1及び第2主軸載置部53,63は、左右方向において僅かな隙間73(図5参照)を間に設けて近接して配置されている。
(First and second spindle devices 21, 31)
The first spindle mounting portion 53 of the bed 18 is attached to the right side of the first turret mounting portion 52 . The first spindle mounting portion 53 is arranged, for example, at a rearward position relative to the position of the front surface of the first turret mounting portion 52 . The first spindle mounting portion 53 is arranged at a position spaced upward by a predetermined distance from the installation surface 71 while its left lower end portion is supported by the first turret mounting portion 52 and the first base 51 . there is Similarly, the second spindle mounting portion 63 of the second bed 43 is attached to the left side of the second turret mounting portion 62, and is positioned at a predetermined distance upward from the installation surface 71 (the first spindle mounting portion 53). The first and second spindle mounting portions 53 and 63 are arranged close to each other with a slight gap 73 (see FIG. 5) between them in the left-right direction.
 第1主軸装置21は、第1主軸載置部53の上方に載置され、第1主軸載置部53に対して固定されている。第1主軸装置21は、第1主軸用モータ21A(図2参照)を備え、制御装置17の制御に基づいて第1主軸用モータ21Aを駆動する。第1主軸装置21は、前方に設けられたチャック機構(図示略照)によってワークを把持し、第1主軸用モータ21Aの駆動に基づいて、前後方向と平行な方向に沿った主軸を中心にワークを回転させる。第2主軸装置31は、第1主軸装置21と同様に、第2主軸用モータ31A(図2参照)の駆動に基づいて、前後方向と平行な方向に沿った主軸、即ち、第1主軸装置21の主軸と平行で且つ同じ高さの主軸を中心にワークを回転させる。尚、上記した第1及び第2加工装置11,12やベッド18の構成は一例である。例えば、第1主軸装置21の主軸と、第2主軸装置31の主軸とが、異なる高さに配置される構成でも良い。 The first spindle device 21 is placed above the first spindle mounting portion 53 and fixed to the first spindle mounting portion 53 . The first spindle device 21 includes a first spindle motor 21A (see FIG. 2), and drives the first spindle motor 21A under the control of the control device 17. As shown in FIG. The first spindle device 21 grips a workpiece by a chuck mechanism (not shown) provided at the front, and rotates around the spindle along a direction parallel to the front-rear direction based on the drive of the first spindle motor 21A. Rotate the workpiece. As with the first main shaft device 21, the second main shaft device 31 is driven by a second main shaft motor 31A (see FIG. 2) to drive a main shaft parallel to the front-rear direction, i.e., the first main shaft device. The workpiece is rotated around a main axis which is parallel to and at the same height as the main axis of 21 . The configurations of the first and second processing devices 11 and 12 and the bed 18 described above are examples. For example, the main shaft of the first main shaft device 21 and the main shaft of the second main shaft device 31 may be arranged at different heights.
(制御装置17)
 制御装置17は、CPU17Aを備えコンピュータを主体とする処理装置であり、数値制御やシーケンス制御を実行し工作機械10の動作を統括的に制御する。制御装置17は、工作機械10の各装置(第1主軸用モータ21A等)と電気的に接続され、各装置の動作を制御可能となっている。また、制御装置17は、記憶装置17Bを備えている。記憶装置17Bは、例えば、RAM、ROM、フラッシュメモリ、ハードディスク等を備えている。記憶装置17Bには、各種の制御データD1が記憶されている。
(control device 17)
The control device 17 is a processing device including a CPU 17A and mainly composed of a computer, and executes numerical control and sequence control to centrally control the operation of the machine tool 10 . The control device 17 is electrically connected to each device (first spindle motor 21A, etc.) of the machine tool 10, and is capable of controlling the operation of each device. The control device 17 also includes a storage device 17B. The storage device 17B includes, for example, RAM, ROM, flash memory, hard disk, and the like. Various control data D1 are stored in the storage device 17B.
 制御データD1は、例えば、第1及び第2主軸装置21,31や第1及び第2タレット装置22,32の動作を制御するプログラム、生産するワークの種類、作業に使用する工具の種類、作業時におけるワークに対する工具の位置等のデータが設定されている。ここで言うプログラムとは、例えば、シーケンス制御のプログラム(ラダー回路)やNCプログラムなどである。また、制御データD1には、後述する第1X軸用モータ24Aや第1Z軸用モータ25A等の加速度及び減速度を設定するための時定数データD2が記憶されている。制御装置17は、制御データD1のプログラムをCPU17Aで実行し、操作盤15の操作入力に応じて第1X軸用モータ24A等の時定数を時定数データD2に基づいて設定する。時定数データD2の詳細については後述する。尚、以下の説明では、制御装置17が制御データD1のプログラムを実行して各装置を制御することを、単に装置名で記載する場合がある。例えば、「制御装置17が第1X軸用モータ24Aを制御する」とは、「制御装置17が制御データD1のプログラムをCPU17Aで実行し、プログラムに基づいて第1X軸用モータ24Aを制御する」ことを意味している。 The control data D1 includes, for example, a program for controlling the operations of the first and second spindle devices 21 and 31 and the first and second turret devices 22 and 32, the type of work to be produced, the type of tool used for the work, the work Data such as the position of the tool with respect to the workpiece at that time are set. The program referred to here is, for example, a sequence control program (ladder circuit), an NC program, or the like. The control data D1 also stores time constant data D2 for setting the acceleration and deceleration of a first X-axis motor 24A, a first Z-axis motor 25A, etc., which will be described later. The control device 17 executes the program of the control data D1 by the CPU 17A, and sets the time constants of the first X-axis motor 24A and the like according to the operation input of the operation panel 15 based on the time constant data D2. Details of the time constant data D2 will be described later. In the following description, the fact that the control device 17 executes the program of the control data D1 to control each device may be simply referred to as the device name. For example, "the control device 17 controls the first X-axis motor 24A" means "the control device 17 executes the program of the control data D1 by the CPU 17A and controls the first X-axis motor 24A based on the program". means that
(第1及び第2加工装置11,12の制御)
 制御装置17は、上記した構成により各装置を制御してワークに対する加工を実行する。例えば、制御装置17は、前工程の装置からローダ13に受け取ったワークを、第1加工装置11の第1主軸装置21にワークを渡す。第1加工装置11は、制御装置17の制御に基づいて第1主軸用モータ21Aを回転させ、把持したワークを回転させる。制御装置17は、第1タレット用モータ22Aを制御して第1タレット22Bを回転させ工具を割り出す。制御装置17は、第1X軸用モータ24Aを制御して第1タレット22Bを左右方向へ移動させる。また、制御装置17は、第1Z軸用モータ25Aを制御して第1タレット22Bを前後方向へ移動させる。これにより、制御装置17は、割り出した工具の左右方向や前後方向の位置を変更し、工具によりワークを所望の形状に加工できる。
(Control of first and second processing devices 11 and 12)
The control device 17 controls each device according to the above-described configuration to process the workpiece. For example, the control device 17 transfers the work received by the loader 13 from the device of the previous process to the first spindle device 21 of the first processing device 11 . The first processing device 11 rotates the first spindle motor 21A under the control of the control device 17 to rotate the gripped workpiece. The control device 17 controls the first turret motor 22A to rotate the first turret 22B and index the tool. The control device 17 controls the first X-axis motor 24A to move the first turret 22B in the horizontal direction. The control device 17 also controls the first Z-axis motor 25A to move the first turret 22B in the front-rear direction. As a result, the control device 17 can change the position of the indexed tool in the left-right direction and the front-rear direction, so that the workpiece can be processed into a desired shape by the tool.
 上記したように、工作機械10は、加工動作において各種のモータを制御し、モータの回転速度を上げる加速や、回転速度を下げる減速を実行する。工作機械10は第1及び第2加工装置11,12の2つの加工装置を1つのベッド18の上に備えている。このため、ベッド18を連結状態とした場合、例えば、第2加工装置12で加工しながら、第1加工装置11の第1X軸用モータ24Aを加速又は減速させると、その加速又は減速によって生じた振動がベッド18を介して第2加工装置12側に伝搬し、第2加工装置12の加工精度を低下させる虞がある。このため、連結状態における第1X軸用モータ24A等の加速度や減速度は制限される。一方、ベッド18を分離状態とすれば、振動の伝搬がない、又は伝搬する振動が極めて小さくなるため、上記した加速度や減速度の制限がなくなる、又は緩和される。そこで、制御装置17は、例えば、ベッド18が連結状態か又は分離状態であるのかを示す情報を操作盤15で受け付け、受け付けた情報に基づいて分離状態であれば加速度や減速度を連結状態に比べて大きくする。これにより、加速や減速による振動の影響が少ない分離状態ではより大きな加速度や減速度で第1X軸スライド装置24や第1Z軸スライド装置25を制御し、加工速度や加工効率を向上できる。 As described above, the machine tool 10 controls various motors in machining operations, and executes acceleration to increase the rotation speed of the motor and deceleration to decrease the rotation speed. The machine tool 10 has two processing devices, ie, first and second processing devices 11 and 12 on one bed 18 . Therefore, when the bed 18 is in the connected state, for example, when the first X-axis motor 24A of the first processing device 11 is accelerated or decelerated while processing is being performed by the second processing device 12, the acceleration or deceleration causes Vibration may propagate to the second processing device 12 side through the bed 18 and reduce the processing accuracy of the second processing device 12 . Therefore, the acceleration and deceleration of the first X-axis motor 24A and the like in the connected state are limited. On the other hand, if the bed 18 is in a separated state, no vibration is propagated, or the propagated vibration is extremely small, so that the above restrictions on acceleration and deceleration are eliminated or alleviated. Therefore, for example, the control device 17 receives information indicating whether the bed 18 is in the connected state or the separated state at the operation panel 15, and if the bed is in the separated state based on the received information, changes the acceleration or deceleration to the connected state. make it bigger. As a result, the first X-axis slide device 24 and the first Z-axis slide device 25 can be controlled with greater acceleration and deceleration in the separated state where the influence of vibration due to acceleration and deceleration is small, and the machining speed and machining efficiency can be improved.
(連結状態)
 まず、以下の説明では、ベッド18の連結状態について説明する。図4は、連結状態のベッド18の正面図である。図5は、図4の破線で囲む部分の拡大図である。図6は、連結状態のベッド18の背面図と、その一部拡大図である。図4~図6に示すように、ベッド18は、連結状態において連結部材80により連結されている。連結部材80は、第1連結部材81、第2連結部材82、複数のスペーサ83を備えている。
(Consolidated state)
First, in the following description, the connection state of the bed 18 will be described. FIG. 4 is a front view of the bed 18 in a connected state. FIG. 5 is an enlarged view of a portion surrounded by a dashed line in FIG. 4. FIG. FIG. 6 is a rear view of the bed 18 in a connected state and a partially enlarged view thereof. As shown in FIGS. 4 to 6, the beds 18 are connected by connecting members 80 in the connected state. The connecting member 80 includes a first connecting member 81 , a second connecting member 82 and a plurality of spacers 83 .
 図4及び図5に示すように、第1連結部材81は、金属板84と、複数のボルト85を有する。第1ベッド41は、ベッド18を設置した状態において、第2ベッド43の第2主軸載置部63の左側に第1主軸載置部53を近接させた状態で配置される。第1主軸載置部53の前面における右側の端部であって、上下方向の略中央部には、金属板84を取り付ける平坦部53Aが設けられている。平坦部53Aには、例えば、左右方向及び上下方向に平行な平面と、ボルト85を螺合する被螺合部(雌ネジ部)55(図7参照)が形成されている。被螺合部55は、上下方向に並んで2つ形成されている。同様に、第2主軸載置部63の前面には、金属板84を取り付ける平坦部63Aが設けられている。平坦部63Aには、ボルト85を螺合する2つの被螺合部56(図7参照)が形成されている。金属板84は、例えば、正面から見た場合に左右方向に長い長方形形状をなす金属の板であり、複数(例えば4個)のボルト85を前方から挿入されている。金属板84は、挿入された4つのボルト85の各々を平坦部53A,63Aの各々に形成された被螺合部55,56に螺合されることで、平坦部53A,63Aに対して固定される。金属板84は、左側の端部を2つのボルト85により平坦部53Aに固定され、右側の端部を残りの2個のボルト85により平坦部63Aに固定される。 As shown in FIGS. 4 and 5, the first connecting member 81 has a metal plate 84 and a plurality of bolts 85. The first bed 41 is arranged with the first spindle mounting portion 53 close to the left side of the second spindle mounting portion 63 of the second bed 43 when the bed 18 is installed. A flat portion 53A to which a metal plate 84 is attached is provided at the right end portion of the front surface of the first spindle mounting portion 53 and substantially in the center in the vertical direction. The flat portion 53A has, for example, a flat surface parallel to the left-right direction and the up-down direction, and a threaded portion (female screw portion) 55 (see FIG. 7) into which the bolt 85 is screwed. Two threaded portions 55 are formed side by side in the vertical direction. Similarly, a flat portion 63A to which the metal plate 84 is attached is provided on the front surface of the second spindle mounting portion 63. As shown in FIG. The flat portion 63A is formed with two threaded portions 56 (see FIG. 7) into which the bolts 85 are screwed. The metal plate 84 is, for example, a rectangular metal plate elongated in the left-right direction when viewed from the front, and has a plurality of (for example, four) bolts 85 inserted from the front. The metal plate 84 is fixed to the flat portions 53A, 63A by screwing each of the four inserted bolts 85 into the threaded portions 55, 56 formed on the flat portions 53A, 63A. be done. The metal plate 84 has its left end fixed to the flat portion 53A with two bolts 85 and its right end fixed to the flat portion 63A with the remaining two bolts 85 .
 また、図6に示すように、第2連結部材82は、金属板88と、複数(例えば8個)のボルト89を有する。第1主軸載置部53の背面における下端部には、金属板88を取り付ける平坦部53Bが設けられている。平坦部53Bには、平坦部53Aと同様に、平面とボルト89を螺合する被螺合部57(図8参照)が形成されている。同様に、第2主軸載置部63の背面には、金属板88を取り付ける平坦部63Bが設けられている。平坦部63Bには、ボルト89を螺合する被螺合部58(図8参照)が形成されている。金属板88は、例えば、背面から見た場合に左右方向に長い略長方形形状をなす金属の板であり、8個のボルト89を後方から螺合されることで、平坦部53B,63Bの各々に固定される。金属板88は、左右方向の幅が金属板84に比べて長くなっており、左側部分を4個のボルト89により平坦部53Bに固定され、右側部分を4個のボルト89により平坦部63Bに固定される。 Also, as shown in FIG. 6, the second connecting member 82 has a metal plate 88 and a plurality of (for example, eight) bolts 89 . A flat portion 53B to which the metal plate 88 is attached is provided at the lower end portion of the back surface of the first spindle mounting portion 53 . Like the flat portion 53A, the flat portion 53B is formed with a threaded portion 57 (see FIG. 8) for screwing the flat surface and the bolt 89 together. Similarly, a flat portion 63B to which the metal plate 88 is attached is provided on the rear surface of the second spindle mounting portion 63. As shown in FIG. A threaded portion 58 (see FIG. 8) into which a bolt 89 is screwed is formed on the flat portion 63B. The metal plate 88 is, for example, a metal plate having a substantially rectangular shape elongated in the left-right direction when viewed from the back, and is screwed from the rear with eight bolts 89 so that each of the flat portions 53B and 63B is fixed. fixed to The width of the metal plate 88 in the horizontal direction is longer than that of the metal plate 84. The left portion of the metal plate 88 is fixed to the flat portion 53B with four bolts 89, and the right portion of the metal plate 88 is fixed to the flat portion 63B with four bolts 89. Fixed.
 また、連結部材80は、複数(例えば2つ)のスペーサ83を有している。スペーサ83は、例えば、前後方向に長い平板形状の金属板であり、平面を左右方向に向けた状態で第1及び第2主軸載置部53,63の間に挟まれている。2つのスペーサ83は、上下方向において所定の距離だけ離れた位置に配置されている。例えば、上側のスペーサ83は、金属板84の位置よりも上方に配置され(図5参照)、下側のスペーサ83は、金属板88の位置に配置されている。第1及び第2ベッド41,43は、2つのスペーサ83を間に挟んで互いの間に隙間73を設けて近接して配置されている。従って、ベッド18は、連結状態において第1及び第2ベッド41,43の間にスペーサ83を挟んだ状態で、金属板84,88を第1及び第2ベッド41,43の各々に複数のボルト85,89により固定される。これにより、スペーサ83によって所定の隙間73を確保して振動の伝搬の低減を図りつつ、前後の面に設けた金属板84,88によって第1及び第2ベッド41,43を強固に固定できる。 Also, the connecting member 80 has a plurality of (for example, two) spacers 83 . The spacer 83 is, for example, a flat metal plate elongated in the front-rear direction, and is sandwiched between the first and second spindle mounting portions 53 and 63 with the plane facing in the left-right direction. The two spacers 83 are arranged at positions separated by a predetermined distance in the vertical direction. For example, the upper spacer 83 is arranged above the position of the metal plate 84 (see FIG. 5), and the lower spacer 83 is arranged at the position of the metal plate 88 . The first and second beds 41 and 43 are arranged close to each other with a gap 73 between them with two spacers 83 interposed therebetween. Therefore, the bed 18 is connected to the first and second beds 41 and 43 with the spacer 83 interposed therebetween, and the metal plates 84 and 88 are attached to each of the first and second beds 41 and 43 by a plurality of bolts. It is fixed by 85,89. As a result, the first and second beds 41 and 43 can be firmly fixed by the metal plates 84 and 88 provided on the front and rear surfaces while ensuring the predetermined gap 73 by the spacer 83 to reduce the propagation of vibration.
 例えば、ユーザは、第1及び第2ベッド41,43を近接させて配置し、脚部45によって高さを調整する。ユーザは、スペーサ83を挟みながら平坦部53A,63B等の被螺合部55,56等の位置を調整する。ユーザは、平坦部53A,63B等の被螺合部55,56等と金属板84の穴の位置を確認してボルト85,89によって2つの金属板84,88を固定する。第1及び第2ベッド41,43は、前面を第1連結部材81によって固定され、背面を第2連結部材82によって固定され、相対的な位置ズレを抑制される。 For example, the user arranges the first and second beds 41 and 43 close to each other and adjusts the height with the legs 45 . The user adjusts the positions of the threaded portions 55 and 56 such as the flat portions 53A and 63B while holding the spacer 83 therebetween. The user confirms the positions of the threaded portions 55 and 56 of the flat portions 53A and 63B and the holes of the metal plate 84 and fixes the two metal plates 84 and 88 with the bolts 85 and 89 . The first and second beds 41 and 43 are fixed at their front surfaces by a first connecting member 81 and fixed at their rear surfaces by a second connecting member 82, thereby suppressing relative displacement.
 また、本実施例のベッド18は、第1及び第2タレット載置部52,62の各々に第1及び第2主軸載置部53,63が取り付けられている。第1及び第2主軸載置部53,63は、設置面71から上方に離間した位置に配置され、第1及び第2主軸装置21,31を載置する。そして、第1及び第2ベッド41,43は、連結状態において第1主軸載置部53と第2主軸載置部63を連結部材80により連結されている。このような構成では、設置面71から一定の距離だけ上方に配置した第1及び第2主軸載置部53,63を互いに突き合わせるようにして連結部材80で連結する。そして、重量のある第1及び第2主軸装置21,31を、この連結した第1及び第2主軸載置部53,63の上に載せることで、第1及び第2ベッド41,43の重量のバランスを改善しより安定的に設置できる。 Also, in the bed 18 of this embodiment, the first and second spindle mounting portions 53, 63 are attached to the first and second turret mounting portions 52, 62, respectively. The first and second spindle mounting parts 53, 63 are arranged at positions spaced upward from the installation surface 71, and the first and second spindle devices 21, 31 are mounted thereon. In the connected state, the first and second beds 41 and 43 have the first spindle mounting portion 53 and the second spindle mounting portion 63 connected by a connecting member 80 . In such a configuration, the first and second spindle mounting portions 53 and 63 arranged above the installation surface 71 by a certain distance are connected by the connecting member 80 so as to face each other. By placing the heavy first and second spindle units 21 and 31 on the connected first and second spindle mounting parts 53 and 63, the weight of the first and second beds 41 and 43 is reduced. can be installed more stably by improving the balance of
(分割状態)
 次に、分離状態について図7及び図8を用いて説明する。図7及び図8に示すように、ベッド18は、分離状態において、図5~図6に示す連結部材80を取り外され第1及び第2ベッド41,43を分離した状態となる。例えば、上記したように、本実施例の工作機械10では、連結状態又は分離状態に応じてモータの加速度・減速度を変更する。このため、ユーザは、例えば、設置・移設の容易さを優先する場合は連結状態を選択する。また、ユーザは、加工精度や加工時間の短縮を優先する場合、分離状態を選択する。
(split state)
Next, the separated state will be described with reference to FIGS. 7 and 8. FIG. As shown in FIGS. 7 and 8, when the bed 18 is in the separated state, the connecting member 80 shown in FIGS. 5 and 6 is removed and the first and second beds 41 and 43 are separated. For example, as described above, in the machine tool 10 of this embodiment, the acceleration/deceleration of the motor is changed according to the connected state or the separated state. Therefore, the user selects the connected state, for example, when giving priority to ease of installation/relocation. Also, the user selects the separation state when giving priority to machining accuracy and shortening of machining time.
 図7及び図8に示すように、ベッド18は、図5~図7に示す金属板84,88やスペーサ83を取り外した状態となる。一方、ベッド18は、分離状態において位置調整治具90が取り付けられている。位置調整治具90は、第1及び第2主軸載置部53,63の前面に取り付けられた前面側調整治具91と、第1及び第2主軸載置部53,63の背面に取り付けられた背面側調整治具92を有する。まず、前面側調整治具91について説明する。図7に示すように、前面側調整治具91は、第1主軸載置部53の平坦部53Aに取り付けられた第1位置調整治具91Aと、第2主軸載置部63の平坦部63Aに取り付けられた第2位置調整治具91Bを有する。 As shown in FIGS. 7 and 8, the bed 18 is in a state where the metal plates 84, 88 and spacers 83 shown in FIGS. 5-7 are removed. On the other hand, a position adjusting jig 90 is attached to the bed 18 in the separated state. The position adjusting jig 90 includes a front side adjusting jig 91 attached to the front surfaces of the first and second spindle mounting portions 53 and 63 and a rear side adjusting jig 91 attached to the rear surfaces of the first and second spindle mounting portions 53 and 63. It has a back side adjustment jig 92 . First, the front adjustment jig 91 will be described. As shown in FIG. 7, the front adjustment jig 91 includes a first position adjustment jig 91A attached to the flat portion 53A of the first spindle mounting portion 53 and a flat portion 63A of the second spindle mounting portion 63. It has a second position adjusting jig 91B attached to it.
 第1位置調整治具91Aは、第1固定部材93と、複数(本実施例では2個)の第1調整部材94を有する。第1固定部材93は、例えば、取り付けた状態において前後方向に所定の厚みを有し上下方向に長い略直方体形状の金属部材である。平坦部53Aには、例えば、第1連結部材81のボルト85を螺合する被螺合部55とは別に、被螺合部65が形成されている(図5参照)。被螺合部65は、例えば、2つの被螺合部55と上下方向に並んで配置され、被螺合部55の上方に形成されている。第1固定部材93は、前方から挿入され被螺合部65に螺合されたボルト95によって平坦部53Aに対して固定されている。尚、第1固定部材93を固定するボルト95は、金属板84を固定するボルト85と同一部材でも良く、異なる部材でも良い。また、ボルト95を螺合する被螺合部65は、ボルト85を螺合する被螺合部55と同一でも良い。即ち、第1固定部材93を金属板84と同一位置に取り付けても良い。 The first position adjusting jig 91A has a first fixing member 93 and a plurality of (two in this embodiment) first adjusting members 94 . The first fixing member 93 is, for example, a substantially rectangular parallelepiped metal member that has a predetermined thickness in the front-rear direction and is long in the up-down direction in the attached state. A threaded portion 65 is formed on the flat portion 53A, for example, separately from the threaded portion 55 to which the bolt 85 of the first connecting member 81 is screwed (see FIG. 5). The screwed portion 65 is arranged vertically side by side with the two screwed portions 55 , and is formed above the screwed portion 55 . The first fixing member 93 is fixed to the flat portion 53A by a bolt 95 inserted from the front and screwed into the screwed portion 65 . Incidentally, the bolt 95 for fixing the first fixing member 93 may be the same member as the bolt 85 for fixing the metal plate 84, or may be a different member. Further, the threaded portion 65 to which the bolt 95 is screwed may be the same as the threaded portion 55 to which the bolt 85 is screwed. That is, the first fixing member 93 and the metal plate 84 may be attached at the same position.
 第1固定部材93には、左右方向に貫通する2つの穴が形成されている。2つの穴の各々には、2つの第1調整部材94の各々が挿入されている。第1調整部材94は、例えば、外周面に雄ネジが形成されたボルトである。尚、第1調整部材94は、例えば、頭部を備えない外周面に雄ネジが形成された円柱形状の金属棒(頭なしねじ)でも良い。第1固定部材93の2つの穴には内周面に雌ネジが形成されている。第1調整部材94は、第1固定部材93に対して左側から螺合され、第1固定部材93から突出した右側の端部にナット96が螺合されている。2つの第1調整部材94の各々は、第1固定部材93の穴やナット96に対して螺合する位置を調整されることで、左右方向における第1固定部材93に対する相対的な位置を調整される。また、第1調整部材94は、螺合する位置に応じて第1固定部材93から右側に突出する長さ(突出量)が調整される。 Two holes are formed through the first fixing member 93 in the left-right direction. Each of the two first adjustment members 94 is inserted into each of the two holes. The first adjusting member 94 is, for example, a bolt having a male thread formed on its outer peripheral surface. The first adjusting member 94 may be, for example, a cylindrical metal rod (headless screw) having a male thread formed on its outer peripheral surface without a head. Female threads are formed on the inner peripheral surfaces of the two holes of the first fixing member 93 . The first adjusting member 94 is screwed onto the first fixing member 93 from the left side, and a nut 96 is screwed onto the right end protruding from the first fixing member 93 . Each of the two first adjusting members 94 adjusts its position relative to the first fixing member 93 in the left-right direction by adjusting the screwing position of the first fixing member 93 and the nut 96. be done. Also, the length (protrusion amount) of the first adjusting member 94 that protrudes to the right from the first fixing member 93 is adjusted according to the screwed position.
 同様に、第2位置調整治具91Bは、第2固定部材98と、複数(本実施例では2個)の第2調整部材99を有する。第2固定部材98は、ボルト101を平坦部63Aの被螺合部66(図5参照)に螺合することで、平坦部63Aに対して固定されている。2つの第2調整部材99(ボルトや頭なしネジ)は、第2固定部材98の2つの穴の各々に右側から螺合されている。2つの第2調整部材99の各々は、第2固定部材98やナット102に対して螺合する位置を調整されることで、左右方向における第2固定部材98に対する相対的な位置を調整され、左側に突出する長さが調整される。 Similarly, the second position adjusting jig 91B has a second fixing member 98 and a plurality of (two in this embodiment) second adjusting members 99 . The second fixing member 98 is fixed to the flat portion 63A by screwing the bolt 101 into the threaded portion 66 (see FIG. 5) of the flat portion 63A. Two second adjusting members 99 (bolts or headless screws) are screwed into each of the two holes of the second fixing member 98 from the right side. Each of the two second adjustment members 99 adjusts the position to be screwed to the second fixing member 98 and the nut 102, thereby adjusting the position relative to the second fixing member 98 in the left-right direction. The length protruding to the left is adjusted.
 2つの第2調整部材99の各々は、上下方向において2つの第1調整部材94の各々と同一位置に取り付けられている。また、第1及び第2調整部材94,99の先端には、例えば、平坦面が形成されている。2つの第1調整部材94の先端の平坦面は、2つの第2調整部材99の先端の平坦面と一部が接触又は面接触している。例えば、第1調整部材94のねじ込み量を多くし螺合する位置を右側にずらし第1調整部材94をより右側に突出させると、第2調整部材99が第1調整部材94によって右側に押される。このため、隙間73は、第1及び第2調整部材94,99の突出量に応じて広がる。換言すれば、第1及び第2主軸載置部53,63の間の隙間73は、第1調整部材94の第1固定部材93に対する固定位置と、第2調整部材99の第2固定部材98に対する固定位置に応じて調整される。 Each of the two second adjustment members 99 is attached at the same position as each of the two first adjustment members 94 in the vertical direction. For example, flat surfaces are formed at the distal ends of the first and second adjustment members 94 and 99 . The flat surfaces of the tips of the two first adjustment members 94 are in partial contact or surface contact with the flat surfaces of the tips of the two second adjustment members 99 . For example, if the first adjustment member 94 is pushed to the right by increasing the screwing amount of the first adjustment member 94 and shifting the screwing position to the right to make the first adjustment member 94 protrude further to the right, the second adjustment member 99 is pushed to the right by the first adjustment member 94. . Therefore, the gap 73 widens according to the amount of protrusion of the first and second adjustment members 94 and 99 . In other words, the gap 73 between the first and second spindle mounting portions 53 and 63 is the fixed position of the first adjusting member 94 with respect to the first fixing member 93 and the second fixing member 98 of the second adjusting member 99 . is adjusted according to the fixed position relative to the
 また、図8に示す背面側の背面側調整治具92は、前面側調整治具91と同様の構成となっている。このため、以下の背面側調整治具92の説明において、前面側調整治具91と同様の部分についての説明を適宜省略する。図8に示すように、背面側調整治具92は、平坦部53Bに取り付けられた第1位置調整治具92Aと、平坦部63Bに取り付けられた第2位置調整治具92Bを有する。第1位置調整治具92Aは、略L字形状の第1固定部材103と、第1固定部材103に螺合される第1調整部材105を有する。第1固定部材103は、ボルト107によって平坦部53Bに対して固定されている。第1調整部材105は、例えば、ボルトや頭なしねじであり、第1固定部材103に対して左側(図8における右側)から螺合され、第1固定部材103の穴やナット109に対して螺合する位置を調整されることで、左右方向における第1固定部材103に対する相対的な位置(突出量)を調整される。 In addition, the back side adjustment jig 92 on the back side shown in FIG. 8 has the same configuration as the front side adjustment jig 91 . Therefore, in the following description of the rear-side adjusting jig 92, the description of the same parts as those of the front-side adjusting jig 91 will be omitted as appropriate. As shown in FIG. 8, the rear side adjustment jig 92 has a first position adjustment jig 92A attached to the flat portion 53B and a second position adjustment jig 92B attached to the flat portion 63B. The first position adjusting jig 92</b>A has a substantially L-shaped first fixing member 103 and a first adjusting member 105 screwed onto the first fixing member 103 . The first fixing member 103 is fixed to the flat portion 53B by bolts 107. As shown in FIG. The first adjusting member 105 is, for example, a bolt or a headless screw, which is screwed into the first fixing member 103 from the left side (the right side in FIG. 8), and is screwed into the hole of the first fixing member 103 and the nut 109. By adjusting the screwing position, the relative position (protrusion amount) with respect to the first fixing member 103 in the left-right direction is adjusted.
 同様に、第2位置調整治具92Bは、第2固定部材111と、第2固定部材111に螺合される第2調整部材113を有する。第2固定部材111は、ボルト115によって平坦部63Bに対して固定されている。第2調整部材113は、第2固定部材111に右側から螺合され、第2固定部材111やナット117に対して螺合する位置を調整されることで左右方向の位置(突出量)を調整される。そして、第1調整部材105の右側の先端面は、第2調整部材113の左側の先端面と互いに接触している。従って、第1及び第2主軸載置部53,63の間の隙間73は、第1及び第2調整部材105,113のねじ込み量に応じて調整される。また、第1及び第2ベッド41,43は、分離状態において、位置調整治具90の第1調整部材94と第2調整部材99、及び第1調整部材105と第2調整部材113のみを接触させ、且つ他の部分を離間させた状態で隙間73を間に設けて配置される。このような構成では、分離状態とした第1及び第2ベッド41,43の間の隙間73を、位置調整治具90によって連結状態と同じように調整できる。このため、第1及び第2加工装置11,12を、連結状態及び分離状態に係わらず同じ位置に配置できる。連結状態又は分離状態に応じて工作機械10の構成(ローダ13の移動先位置など)を調整する必要がなくなる。 Similarly, the second position adjusting jig 92B has a second fixing member 111 and a second adjusting member 113 that is screwed onto the second fixing member 111 . The second fixing member 111 is fixed to the flat portion 63B by bolts 115. As shown in FIG. The second adjusting member 113 is screwed into the second fixing member 111 from the right side, and adjusts the lateral position (protrusion amount) by adjusting the screwing position with respect to the second fixing member 111 and the nut 117 . be done. The right end surface of the first adjustment member 105 contacts the left end surface of the second adjustment member 113 . Therefore, the gap 73 between the first and second spindle mounting portions 53, 63 is adjusted according to the amount of screwing of the first and second adjusting members 105, 113. As shown in FIG. In the separated state, the first and second beds 41 and 43 are in contact with only the first adjustment member 94 and the second adjustment member 99, and the first adjustment member 105 and the second adjustment member 113 of the position adjustment jig 90. are arranged with a gap 73 provided therebetween in a state in which the other portions are separated from each other. In such a configuration, the gap 73 between the separated first and second beds 41 and 43 can be adjusted by the position adjusting jig 90 in the same manner as in the connected state. Therefore, the first and second processing devices 11 and 12 can be arranged at the same position regardless of whether they are connected or separated. It is no longer necessary to adjust the configuration of the machine tool 10 (destination position of the loader 13, etc.) according to the connected state or the separated state.
(パラメータの設定)
 上記したように、制御装置17は、例えば、ベッド18が連結状態であるのか、あるいは分離状態であるのかの選択を操作盤15で受け付け、選択された状態に応じて加速度や減速度を変更する。制御装置17は、例えば、分離状態におけるモータの加速度及び減速度の時定数を、連結状態の時定数の半分にする。制御装置17は、時定数を変更する対象のモータとして、第1X軸用モータ24A、第1Z軸用モータ25A、第2X軸用モータ34A、第2Z軸用モータ35A(以下、各モータという場合がある)を対象として時定数を変更する。これにより、第1及び第2加工装置11,12は、分離状態において第1及び第2タレット装置22,32の各々を前後方向や左右方向へより大きな加速度や減速度で移動させる。例えば、1回の加速や減速の動作(スライドの送り動作)において0.数秒程度の時間短縮を実現できる。
(Parameter setting)
As described above, the control device 17 accepts, for example, the selection of whether the bed 18 is in the connected state or in the separated state on the operation panel 15, and changes the acceleration or deceleration according to the selected state. . The controller 17, for example, makes the acceleration and deceleration time constants of the motors in the disconnected state half of the time constants in the connected state. The control device 17 selects a first X-axis motor 24A, a first Z-axis motor 25A, a second X-axis motor 34A, and a second Z-axis motor 35A (hereinafter referred to as each motor in some cases) as motors whose time constants are to be changed. change the time constant for Thereby, the first and second processing devices 11 and 12 move the first and second turret devices 22 and 32 in the separated state with greater acceleration and deceleration in the longitudinal direction and the lateral direction. For example, in one acceleration or deceleration operation (slide feeding operation), 0. A time reduction of several seconds can be realized.
 制御装置17は、例えば、製造メーカから販売先に工作機械10が納品され、初めてシステムを起動する際に、連結状態又は分離状態の選択を操作盤15で受け付ける。例えば、制御装置17は、後述する別実施例の図9の画面121に示すように、連結状態又は分離状態を選択する選択ボタン124,125や、選択を決定するOKボタン129を操作盤15のタッチパネルに表示し、状態の選択を受け付けても良い。制御装置17は、制御データD1をCPU17Aで実行し、例えば、ラダー回路の不揮発性のリレー回路(保持リレー)を利用して連結状態又は分離状態を示す値を保持する。制御装置17は、連結状態が選択された場合、例えば、1を示す値をリレー回路に設定し、分離状態が選択された場合、ゼロを示す値をリレー回路に設定する。 For example, when the machine tool 10 is delivered from the manufacturer to the customer and the system is started for the first time, the control device 17 accepts the selection of the connected state or the separated state on the operation panel 15 . For example, as shown in a screen 121 of another embodiment of FIG. It may be displayed on a touch panel and the selection of the state may be accepted. The control device 17 causes the CPU 17A to execute the control data D1, and retains a value indicating the connected state or the separated state using, for example, a non-volatile relay circuit (holding relay) of a ladder circuit. The control device 17 sets, for example, a value indicating 1 to the relay circuit when the connected state is selected, and sets a value indicating 0 to the relay circuit when the separated state is selected.
 そして、制御装置17は、NCプログラムを実行し加工を開始する際に、この不揮発性のリレー回路の値を参照し、選択された状態に応じた時定数を設定する。記憶装置17Bの時定数データD2(図2参照)には、例えば、連結状態及び分離状態の各々で各モータに設定する時定数が設定されている。制御装置17は、時定数データD2に基づいて各モータの制御に用いる時定数を設定する。制御装置17は、リレー回路に「1」の値が設定されていた場合、各モータの制御に用いる時定数(NCプログラムの設定値など)として、例えば120の値を設定する。従って、制御装置17は、第1及び第2X軸用モータ24A,34Aを駆動する左右方向の移動制御に同一値の時定数を用いる。また、第1及び第2Z軸用モータ25A,35Aを駆動する前後方向の移動制御に同一値の時定数を用いる。第1及び第2タレット装置22,32は、互いに同じ加速度や減速度で前後方向及び左右方向へ移動する。 Then, when the NC program is executed and machining is started, the control device 17 refers to the value of this nonvolatile relay circuit and sets the time constant according to the selected state. The time constant data D2 (see FIG. 2) in the storage device 17B contains, for example, time constants to be set for each motor in each of the connected state and the separated state. The control device 17 sets a time constant used for controlling each motor based on the time constant data D2. When the value of "1" is set in the relay circuit, the control device 17 sets a value of 120, for example, as a time constant (set value of the NC program, etc.) used for controlling each motor. Therefore, the control device 17 uses the same time constant for the lateral movement control for driving the first and second X-axis motors 24A and 34A. In addition, the same time constant is used for the longitudinal movement control for driving the first and second Z- axis motors 25A and 35A. The first and second turret devices 22 and 32 move forward and backward and left and right at the same acceleration and deceleration.
 また、制御装置17は、リレー回路に「0」の値が設定されていた場合、各モータの制御に用いる時定数として、例えば60の値を設定する。従って、制御装置17は、分離状態の時定数を、連結状態の時定数の半分にする。尚、分離状態の時定数は、連結状態の時定数の半分に限らず、1/3や3/5などの他の割合で減らした値でも良い。これにより、分離状態の場合、各モータの制御に用いる時定数を小さく(1/2倍に)し、例えば、各モータに供給する電流の立ち上がりに必要な時間を短縮し、各モータの速度指示に対する応答時間を短くすることで加速度又は減速度を大きくする。第1X軸スライド装置24等の移動時間を短縮し、加工効率を向上できる。 In addition, when the value of "0" is set in the relay circuit, the control device 17 sets a value of 60, for example, as the time constant used for controlling each motor. Therefore, the controller 17 makes the time constant in the disconnected state half of the time constant in the connected state. The time constant in the separated state is not limited to half of the time constant in the connected state, and may be a value reduced by another ratio such as 1/3 or 3/5. As a result, in the case of the separated state, the time constant used for controlling each motor is reduced (halved), for example, the time required for the rise of the current supplied to each motor is shortened, and the speed command of each motor is reduced. Increase acceleration or deceleration by shortening the response time to It is possible to shorten the movement time of the first X-axis slide device 24 and improve the machining efficiency.
 一方、連結仕様の場合、各モータの制御に用いる時定数が相対的に大きくなる。例えば、時定数として、第1及び第2加工装置11,12の一方の装置から他方の装置へ振動が伝搬しても加工精度に影響が出ない、又は影響が極めて小さくなる値を設定する。これにより、スライド移動の加速や減速によって発生する振動を小さくでき、第1及び第2加工装置11,12は、自装置の加速又は減速動作によって生じる振動が相手の装置へ与える影響を低減できる。 On the other hand, in the case of linked specifications, the time constant used to control each motor is relatively large. For example, the time constant is set to a value such that even if vibration propagates from one of the first and second processing devices 11 and 12 to the other, the processing accuracy is not affected or the effect is extremely small. As a result, the vibration caused by the acceleration or deceleration of the slide movement can be reduced, and the first and second processing devices 11 and 12 can reduce the influence of the vibration caused by the acceleration or deceleration of their own device on the other device.
 従って、制御装置17は、本開示のパラメータとして、各モータの加速度や減速度を変更する時定数(設定値)を用いる。制御装置17は、操作盤15で分離状態が選択された場合、時定数を時定数データD2に基づいて設定し、各モータの加速度や減速度を、連結状態が選択された場合の各モータの加速度や減速度に比べて大きくする。これにより、振動の影響が少ない分離状態をユーザが選択した場合には、第1及び第2タレット装置22,32のスライド移動に必要な時間を短縮し、加工に必要な時間を短縮できる。 Therefore, the control device 17 uses time constants (set values) for changing the acceleration and deceleration of each motor as the parameters of the present disclosure. When the separated state is selected on the operation panel 15, the control device 17 sets the time constant based on the time constant data D2, and adjusts the acceleration and deceleration of each motor to those of the motors when the connected state is selected. Make it larger than the acceleration or deceleration. As a result, when the user selects the separated state in which the influence of vibration is small, the time required for sliding movement of the first and second turret devices 22 and 32 can be shortened, and the time required for machining can be shortened.
 また、第1X軸スライド装置24は、第1タレット装置22を左右方向(本開示の第1軸方向の一例)に移動させる。第1Z軸スライド装置25は、左右方向と直交する前後方向(本開示の第2軸方向の一例)に第1タレット装置22をスライド移動させる。そして、本開示のモータとして、スライド装置の駆動源である第1X軸用モータ24A、第1Z軸用モータ25Aを採用している。これによれば、連結状態であれば第1タレット装置22の移動で発生する振動が、第2加工装置12の加工精度に与える影響を低減できる。また、分離状態であれば、第1タレット装置22の移動時間を短縮し、加工時間の短縮を図れる。 Also, the first X-axis slide device 24 moves the first turret device 22 in the left-right direction (an example of the first axis direction in the present disclosure). The first Z-axis slide device 25 slides the first turret device 22 in the front-rear direction (an example of the second axis direction of the present disclosure) perpendicular to the left-right direction. As the motors of the present disclosure, a first X-axis motor 24A and a first Z-axis motor 25A, which are driving sources of the slide device, are employed. According to this, in the connected state, the influence of the vibration generated by the movement of the first turret device 22 on the machining accuracy of the second machining device 12 can be reduced. In addition, in the separated state, the movement time of the first turret device 22 can be shortened, and the machining time can be shortened.
 また、制御装置17は、第1X軸用モータ24Aの加速度を設定する時定数(本開示の第1時定数の一例)と、第1Z軸用モータ25Aの加速度を設定する時定数(本開示の第2時定数の一例)を設定する。制御装置17は、操作盤15で分離状態が選択された場合、第1X軸用モータ24Aの時定数を連結状態で使用する値(120)から所定の割合だけ低減させ(60まで低減させ)、且つ第1Z軸用モータ25Aの時定数を連結状態で使用する値(120)から第1時定数と同じ割合だけ低減させる(60まで低減させる)。これにより、前後方向及び左右方向において同じ割合で時定数を変更するため、制御装置17による時定数の設定処理や時定数を用いた処理の負荷を軽減できる。また、前後方向及び左右方向の両方向における加速度や減速度を同じように増減できる。 The control device 17 also includes a time constant for setting the acceleration of the first X-axis motor 24A (an example of the first time constant of the present disclosure) and a time constant for setting the acceleration of the first Z-axis motor 25A (an example of the first time constant of the present disclosure). An example of the second time constant) is set. When the separated state is selected on the operation panel 15, the control device 17 reduces the time constant of the first X-axis motor 24A from the value (120) used in the connected state by a predetermined ratio (down to 60), Also, the time constant of the first Z-axis motor 25A is reduced from the value (120) used in the connected state by the same rate as the first time constant (reduced to 60). As a result, the time constant is changed at the same rate in the front-rear direction and the left-right direction, so the load of the time constant setting process and the process using the time constant by the control device 17 can be reduced. Also, the acceleration and deceleration in both the longitudinal direction and the lateral direction can be similarly increased or decreased.
 尚、上記したパラメータの設定処理では、制御装置17は、加速度と減速度の両方を変更したが、どちらか一方のみを変更しても良い。例えば、制御装置17は、連結状態に比べて分離状態の加速度のみを大きくしても良い。また、制御装置17は、連結状態に比べて分離状態の時定数の値を小さくすることで、加速度・減速度を大きくしたがこれに限らない。制御装置17は、分離状態に比べて連結状態の時定数を小さくし、加速度等を大きくしても良い。例えば、連結状態において伝搬する振動を一定の大きさまで大きくすることで、2つの加速度で発生する振動が互いに相殺されるようなベッド18の構造の場合、制御装置17は、連結状態において加速度等を大きくし、振動の低減を図っても良い。また、制御装置17は、第1及び第2加工装置11,12の両方の加速度等を変更したが、第1加工装置11又は第2加工装置12の一方の加速度等だけを選択された状態に応じて変更しても良い。 Although the control device 17 changes both the acceleration and the deceleration in the parameter setting process described above, only one of them may be changed. For example, the control device 17 may increase only the acceleration in the disconnected state compared to the connected state. Also, the control device 17 increases the acceleration/deceleration by decreasing the value of the time constant in the disconnected state compared to the connected state, but the present invention is not limited to this. The control device 17 may reduce the time constant and increase the acceleration or the like in the connected state compared to the disconnected state. For example, if the bed 18 has a structure in which the vibrations generated by two accelerations are canceled by increasing the vibration that propagates in the connected state to a certain level, the control device 17 controls the acceleration and the like in the connected state. It may be increased to reduce vibration. Also, the control device 17 changes the acceleration and the like of both the first and second processing devices 11 and 12, but the acceleration and the like of only one of the first processing device 11 and the second processing device 12 is selected. You can change it accordingly.
 また、上記したパラメータの設定処理では、前後方向及び左右方向の両方の加速度及び減速度を変更したが、どちらか一方の方向の加速度等を変更しても良い。例えば、制御装置17は、前後方向(第1及び第2Z軸用モータ25A,35A)のみの加速度・減速度を変更しても良い。また、上記したパラメータの設定処理では、一例として、第1X軸用モータ24A等のスライド装置の各モータを設定対象としたが、ベッド18に載置される他の装置のモータを設定対象としても良い。例えば、制御装置17は、第1及び第2主軸用モータ21A,31Aや第1及び第2タレット用モータ22A,32Aの加速度等を変更しても良い。具体的には、制御装置17は、連結状態に比べて分離状態における第1及び第2主軸用モータ21A,31Aの加速度及び減速度を大きくしても良い。 Also, in the parameter setting process described above, the acceleration and deceleration in both the front-rear direction and the left-right direction were changed, but the acceleration in either direction may be changed. For example, the control device 17 may change the acceleration/deceleration only in the longitudinal direction (first and second Z- axis motors 25A and 35A). In the parameter setting process described above, as an example, the motors of the slide device, such as the first X-axis motor 24A, are targeted for setting. good. For example, the control device 17 may change the acceleration of the first and second spindle motors 21A, 31A and the first and second turret motors 22A, 32A. Specifically, the control device 17 may increase the acceleration and deceleration of the first and second spindle motors 21A and 31A in the disconnected state compared to the connected state.
 また、上記したパラメータの設定処理では、連結状態又は分離状態の選択のみをユーザから受け付けたが、設定する時定数の値の変更を受け付けても良い。図9は、別実施例の操作盤15に表示する画面121の一例を示している。制御装置17は、例えば、システム起動時や、操作盤15に対する所定の操作入力が行なわれた場合に、画面121を操作盤15に表示して時定数の変更を受け付ける。図9に示すように、制御装置17は、例えば、「ベッドを連結状態又は分離状態のどちらで設置しましたか?」というメッセージ123とともに、連結状態を選択する選択ボタン124と、分離状態を選択する選択ボタン125を画面121に表示する。 Also, in the parameter setting process described above, only the selection of the connected state or the separated state was accepted from the user, but it is also possible to accept a change in the value of the time constant to be set. FIG. 9 shows an example of a screen 121 displayed on the control panel 15 of another embodiment. The control device 17 displays a screen 121 on the operation panel 15 to accept a change of the time constant, for example, when the system is started or when a predetermined operation input is performed on the operation panel 15 . As shown in FIG. 9, the control device 17 displays, for example, a message 123 asking, "Did you install the bed in the connected state or in the separated state?" A selection button 125 to select is displayed on the screen 121 .
 また、制御装置17は、推奨時定数を表示する表示欄127と、加速度・減速度の変化率を表示する変化率表示部128を画面121に表示する。制御装置17は、選択ボタン124,125のうち選択されたボタンの状態において推奨される時定数を表示欄127に表示する。図9は、一例として選択ボタン124(連結状態)が選択された状態を示している(図中のハッチング)。表示欄127のX軸方向(左右方向)の推奨時定数は、第1及び第2X軸用モータ24A,34Aの制御に用いる時定数の値(例えば、120)を示している。また、表示欄127のZ軸方向(前後方向)の推奨時定数は、第1及び第2Z軸用モータ25A,35Aの推奨時定数の値(例えば、120)を示している。尚、制御装置17は、分離状態の選択ボタン125が選択された場合、X軸方向及びZ軸方向の推奨時定数として例えば「60」を表示する。 In addition, the control device 17 displays on the screen 121 a display field 127 that displays the recommended time constant and a change rate display section 128 that displays the change rate of acceleration/deceleration. The control device 17 displays the recommended time constant in the state of the button selected from the selection buttons 124 and 125 in the display field 127 . FIG. 9 shows, as an example, a state in which the selection button 124 (connected state) is selected (hatched in the drawing). The recommended time constant in the X-axis direction (horizontal direction) in the display field 127 indicates the time constant value (for example, 120) used for controlling the first and second X-axis motors 24A and 34A. Also, the recommended time constant in the Z-axis direction (front-rear direction) in the display field 127 indicates the recommended time constant value (for example, 120) of the first and second Z- axis motors 25A and 35A. Incidentally, when the separation state selection button 125 is selected, the control device 17 displays, for example, "60" as the recommended time constants in the X-axis direction and the Z-axis direction.
 また、制御装置17は、連結状態の推奨時定数(例えば、120)を100%として、時定数を変更した場合の加速度・減速度の変化率を変化率表示部128に表示する。制御装置17は、表示欄127に対するタッチ操作等に応じて表示欄127に表示した時定数の値の変更を受け付け、表示欄127の値の変更に応じて変化率表示部128の変化率を変更する。制御装置17は、例えば、時定数が「120」より少ない値を入力されると、時定数の減少に応じて増加した加速度・減速度の変化率を変化率表示部128に表示する。尚、制御装置17は、1つの状態、例えば、連結状態の時定数として1つの値(120など)を受け付け、受け付けた値をX軸方向及びZ軸方向の両方に用いても良い。また、制御装置17は、第1及び第2X軸用モータ24A,34A、第1及び第2Z軸用モータ25A,35Aの各々について、異なる値の時定数を受け付けても良い。 In addition, the control device 17 sets the recommended time constant (for example, 120) in the connected state to 100%, and displays the change rate of the acceleration/deceleration when the time constant is changed on the change rate display section 128 . The control device 17 accepts a change in the value of the time constant displayed in the display field 127 according to a touch operation or the like on the display field 127, and changes the rate of change of the change rate display section 128 according to the change in the value of the display field 127. do. For example, when a value less than "120" is input for the time constant, the control device 17 displays the change rate of the acceleration/deceleration that increases according to the decrease of the time constant on the change rate display section 128 . The control device 17 may receive one value (120 or the like) as the time constant for one state, for example, the connected state, and use the received value for both the X-axis direction and the Z-axis direction. Also, the control device 17 may receive time constants of different values for each of the first and second X-axis motors 24A, 34A and the first and second Z- axis motors 25A, 35A.
 また、制御装置17は、OKボタン129と、キャンセルボタン131を画面121に表示する。そして、制御装置17は、OKボタン129を選択されると、表示欄127に表示した時定数を各モータの制御に用いる時定数として設定し、加工制御等において用いる。また、制御装置17は、キャンセルボタン131を選択された場合、画面121の表示を終了する。この場合、制御装置17は、次のシステム起動時や、起動後の操作盤15に対する操作入力に応じて画面121を再度表示させ、時定数を受け付けも良い。尚、図9に示すような時定数の変更を受け付けずに、上記実施例のように状態の選択だけを受け付ける場合、制御装置17は、例えば、選択ボタン124,125、OKボタン129、キャンセルボタン131だけを操作盤15に表示しても良い。そして、制御装置17は、選択ボタン124,125によって状態の選択を受付け、OKボタン129の選択に基づいて時定数を設定しても良い。 Also, the control device 17 displays an OK button 129 and a cancel button 131 on the screen 121 . Then, when the OK button 129 is selected, the control device 17 sets the time constant displayed in the display field 127 as the time constant used for controlling each motor, and uses it for machining control and the like. Also, when the cancel button 131 is selected, the control device 17 ends the display of the screen 121 . In this case, the control device 17 may display the screen 121 again at the time of the next system startup or in response to an operation input to the operation panel 15 after startup, and accept the time constant. When accepting only the selection of the state as in the above-described embodiment without accepting the change of the time constant as shown in FIG. Only 131 may be displayed on the operation panel 15 . Then, the control device 17 may accept the state selection by the selection buttons 124 and 125 and set the time constant based on the selection by the OK button 129 .
 上記した別実施例では、制御装置17は、連結状態又は分離状態を選択する画面121を操作盤15に表示させ、選択された状態において推奨される時定数の値を表示させる(表示欄127)。制御装置17は、表示した推奨の時定数の値の変更を受け付け、且つ時定数の値が変更された場合に変更前に対する各モータの加速度及び減速度の変化率を表示させる(変化率表示部128)。これによれば、連結状態であれば推奨の時定数で加工精度に影響が出た場合、ユーザは、加速度等の変化を見ながら時定数を設定し加工に影響のない値に調整できる。また、分離状態であれば、ユーザは、より加工効率を向上したいと考えた場合に、時定数を変更して加速度等を増大させることができる。 In the above-described another embodiment, the control device 17 causes the operation panel 15 to display a screen 121 for selecting the connected state or the separated state, and displays the value of the time constant recommended in the selected state (display field 127). . The control device 17 accepts a change in the displayed recommended time constant value, and when the time constant value is changed, displays the change rate of the acceleration and deceleration of each motor from before the change (change rate display unit 128). According to this, when the machining accuracy is affected by the recommended time constant in the connected state, the user can set the time constant and adjust it to a value that does not affect machining while observing changes in acceleration and the like. In addition, in the separated state, the user can change the time constant to increase the acceleration or the like if he/she wishes to improve the machining efficiency.
 因みに、操作盤15は、本開示の受付装置の一例である。第1及び第2主軸装置21,31は、主軸装置の一例である。第1及び第2主軸用モータ21A,31A、第1及び第2タレット用モータ22A,32A、第1及び第2X軸用モータ24A,34A、第1及び第2Z軸用モータ25A,35Aは、本開示におけるモータの一例である。第1及び第2タレット装置22,32は、タレット装置の一例である。第1X軸用モータ24Aは、第1モータの一例である。第1Z軸用モータ25Aは、第2モータの一例である。第1X軸スライド装置24及び第1Z軸スライド装置25は、スライド装置の一例である。ボルト85,89は、締結部材の一例である。左右方向、X軸方向は、第1軸方向の一例である。前後方向、Z軸方向は、第2軸方向の一例である。 By the way, the operation panel 15 is an example of the reception device of the present disclosure. The first and second spindle devices 21 and 31 are examples of spindle devices. The first and second spindle motors 21A, 31A, the first and second turret motors 22A, 32A, the first and second X-axis motors 24A, 34A, and the first and second Z- axis motors 25A, 35A are It is an example of a motor in the disclosure. The first and second turret devices 22, 32 are examples of turret devices. The first X-axis motor 24A is an example of a first motor. The first Z-axis motor 25A is an example of a second motor. The first X-axis slide device 24 and the first Z-axis slide device 25 are examples of slide devices. The bolts 85, 89 are examples of fastening members. The left-right direction and the X-axis direction are examples of the first axis direction. The front-rear direction and the Z-axis direction are examples of the second axis direction.
 以上、上記した本実施例によれば以下の効果を奏する。
 本実施例の一態様では、制御装置17は、連結状態及び分離状態のうち、操作盤15で選択された状態に応じた時定数を設定し、第2加工装置12の加工時において設定した時定数により第1X軸用モータ24A、第1Z軸用モータ25Aを駆動し第1加工装置11を制御する。これにより、連結状態において、第1X軸用モータ24A等の駆動に応じて発生する振動が、第2加工装置12の加工に与える影響を低減できる。また、分離状態では、第1X軸用モータ24A等の加速度や減速度を連結状態に比べて大きくして、第1加工装置11の生産効率を向上できる。これにより、ユーザは、工作機械10を設置する際に、ベッド18を分離仕様で用いるか連結仕様で用いるかを選択でき、且つ、設置後に操作盤15を操作するだけで、適切な加速度・減速度を設定できる。
As described above, the present embodiment described above has the following effects.
In one aspect of the present embodiment, the control device 17 sets a time constant according to the state selected by the operation panel 15 from among the connected state and the separated state, and sets the time constant during processing by the second processing device 12. The first machining device 11 is controlled by driving the first X-axis motor 24A and the first Z-axis motor 25A using constants. As a result, in the connected state, it is possible to reduce the influence of the vibrations generated in response to the driving of the first X-axis motor 24A and the like on the processing of the second processing device 12 . Further, in the separated state, the acceleration and deceleration of the first X-axis motor 24A and the like are made larger than those in the connected state, so that the production efficiency of the first processing device 11 can be improved. As a result, when installing the machine tool 10, the user can select whether the bed 18 is to be used in the separated specification or in the coupled specification, and only by operating the operation panel 15 after installation, the user can obtain the appropriate acceleration/deceleration. You can set the speed.
 尚、本開示は上記の実施例に限定されるものではなく、本開示の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
 例えば、上記実施形態では、連結部材80として、第1及び第2ベッド41,43を固定する部材を用いたが、これに限らない。例えば、上記特許文献1(国際公開第2010/110030号)のような伝搬する振動を低減する振動抑制装置を連結部材として用いても良い。従って、本開示の連結部材は、金属板やボルト等に限らず、ゴム等の防振部材を有しても良い。
 また、連結部材80は、ベッド18の前面と後面の両方を固定する構成であったが、どちらか一方を固定する構成でも良い。即ち、連結部材80は、第1連結部材81と、第2連結部材82のどちらか一方のみを備える構成でも良い。また、連結部材80は、前面を2箇所以上固定する構成でも良い。また、連結部材80は、スペーサ83を備えなくとも良い。
It goes without saying that the present disclosure is not limited to the above embodiments, and that various improvements and modifications are possible without departing from the scope of the present disclosure.
For example, in the above embodiment, a member for fixing the first and second beds 41 and 43 is used as the connecting member 80, but the connecting member 80 is not limited to this. For example, a vibration suppressing device that reduces propagating vibration such as that disclosed in Patent Document 1 (International Publication No. 2010/110030) may be used as the connecting member. Therefore, the connection member of the present disclosure is not limited to a metal plate, bolt, or the like, and may have a vibration isolating member such as rubber.
Moreover, although the connecting member 80 is configured to fix both the front surface and the rear surface of the bed 18, it may be configured to fix either one. That is, the connecting member 80 may be configured to include only one of the first connecting member 81 and the second connecting member 82 . Also, the connecting member 80 may be configured to fix the front surface at two or more locations. Also, the connecting member 80 does not have to be provided with the spacer 83 .
 また、上記実施例では、本開示のパラメータとして、モータの加速度・減速度を変更する時定数を採用したが、これに限らない。例えば、パラメータとしては、モータに印加する電流や電圧の周期、最大電流値や最大電圧値でも良い。あるいは、モータにブレーキ装置を設けた場合には、減速時におけるブレーキの強さを設定する値をパラメータとして設定しても良い。従って、本開示のパラメータとしては、モータの制御に用いる様々な設定値を採用できる。
 また、ベッド18に載置する加工装置の数は、2台に限らず、3台以上でも良い。また、ベッド18は、3つ以上に分割可能な構成でも良い。
 また、本開示の第1及び第2加工装置は、旋盤に限らず、他の加工装置、例えば、マシニングセンタでも良い。従って、工作機械10は、平行2軸型のマシニングセンタを備えても良い。また、第1及び第2加工装置としては、例えば、横型旋盤、立型旋盤、フライス盤、ボール盤など、様々な構成を採用できる。
Further, in the above embodiment, the time constant for changing the acceleration/deceleration of the motor is used as the parameter of the present disclosure, but the present invention is not limited to this. For example, the parameters may be the cycle of the current or voltage applied to the motor, the maximum current value, or the maximum voltage value. Alternatively, if the motor is provided with a brake device, a value for setting the strength of the brake during deceleration may be set as a parameter. Therefore, various setting values used for controlling the motor can be adopted as the parameters of the present disclosure.
Moreover, the number of processing apparatuses placed on the bed 18 is not limited to two, and may be three or more. Also, the bed 18 may be configured to be divisible into three or more.
Also, the first and second processing devices of the present disclosure are not limited to lathes, and may be other processing devices such as machining centers. Therefore, the machine tool 10 may be equipped with a parallel two-axis machining center. Moreover, as the first and second machining devices, various configurations such as a horizontal lathe, a vertical lathe, a milling machine, and a drilling machine can be adopted.
 10 工作機械、11 第1加工装置、12 第2加工装置、15 操作盤(受付装置)、17 制御装置、18 ベッド、21 第1主軸装置(主軸装置)、21A 第1主軸用モータ(モータ)、22 第1タレット装置(タレット装置)、22A 第1タレット用モータ(モータ)、24 第1X軸スライド装置(スライド装置)、24A 第1X軸用モータ(モータ、第1モータ)、25 第1Z軸スライド装置(スライド装置)、25A 第1Z軸用モータ(モータ、第2モータ)、31 第2主軸装置(主軸装置)、31A 第2主軸用モータ(モータ)、32 第2タレット装置(タレット装置)、32A 第2タレット用モータ(モータ)、34A 第2X軸用モータ(モータ)、35A 第2Z軸用モータ(モータ)、41 第1ベッド、43 第2ベッド、51 第1ベース、52 第1タレット載置部、53 第1主軸載置部、61 第2ベース、62 第2タレット載置部、63 第2主軸載置部、73 隙間、80 連結部材、84,88 金属板、83 スペーサ、85,89 ボルト(締結部材)、91A,92A 第1位置調整治具、91B,92B 第2位置調整治具、93,103 第1固定部材、94,105 第1調整部材、98,111 第2固定部材、99,113 第2調整部材、121 画面。 10 machine tool, 11 first processing device, 12 second processing device, 15 operation panel (reception device), 17 control device, 18 bed, 21 first spindle device (spindle device), 21A first spindle motor (motor) , 22 first turret device (turret device), 22A first turret motor (motor), 24 first X-axis slide device (slide device), 24A first X-axis motor (motor, first motor), 25 first Z-axis Slide device (slide device), 25A 1st Z-axis motor (motor, 2nd motor), 31 2nd spindle device (spindle device), 31A 2nd spindle motor (motor), 32 2nd turret device (turret device) , 32A 2nd turret motor (motor), 34A 2nd X-axis motor (motor), 35A 2nd Z-axis motor (motor), 41 1st bed, 43 2nd bed, 51 1st base, 52 1st turret Mounting portion 53 First spindle mounting portion 61 Second base 62 Second turret mounting portion 63 Second spindle mounting portion 73 Gap 80 Connecting member 84, 88 Metal plate 83 Spacer 85 , 89 bolts (fastening members), 91A, 92A first position adjusting jig, 91B, 92B second position adjusting jig, 93, 103 first fixing member, 94, 105 first adjusting member, 98, 111 second fixing Member, 99, 113 Second adjustment member, 121 screen.

Claims (8)

  1.  ワークに対する加工を実行する第1加工装置及び第2加工装置と、
     前記第1加工装置が載置される第1ベッドと、前記第2加工装置が載置される第2ベッドとを有し、前記第1ベッド及び前記第2ベッドを連結部材により互いに連結する連結状態と、前記連結部材を取り外し前記第1ベッド及び前記第2ベッドを分離した分離状態とに変更可能なベッドと、
     前記第1加工装置の駆動源として機能するモータと、
     前記連結状態又は前記分離状態の選択を受け付ける受付装置と、
     前記モータの制御に用いるパラメータを、前記連結状態及び前記分離状態のうち、前記受付装置で選択された状態に応じた前記パラメータに設定し、前記第2加工装置の加工時において設定した前記パラメータにより前記モータを駆動し前記第1加工装置を制御する制御装置と、
     を備える工作機械。
    a first processing device and a second processing device that perform processing on a workpiece;
    A connection that includes a first bed on which the first processing device is placed and a second bed on which the second processing device is placed, and that connects the first bed and the second bed with a connection member. a bed that can be changed between a state and a separated state in which the connecting member is removed to separate the first bed and the second bed;
    a motor that functions as a drive source for the first processing device;
    a receiving device that receives a selection of the connected state or the separated state;
    The parameter used for controlling the motor is set to the parameter corresponding to the state selected by the receiving device from the connected state and the separated state, and the parameter set during processing by the second processing device a control device that drives the motor and controls the first processing device;
    Machine tools with
  2.  前記パラメータは、
     前記モータの加速度を変更する設定値であり、
     前記制御装置は、
     前記受付装置で前記分離状態が選択された場合、前記パラメータを設定し前記モータの加速度を、前記連結状態が選択された場合の前記モータの加速度に比べて大きくする、請求項1に記載の工作機械。
    Said parameters are:
    A set value for changing the acceleration of the motor,
    The control device is
    2. The machine tool according to claim 1, wherein when said disconnected state is selected at said accepting device, said parameter is set to increase the acceleration of said motor as compared to the acceleration of said motor when said connected state is selected. machine.
  3.  前記第1加工装置は、
     前記ワークを保持し前記ワークを回転させる主軸装置と、
     複数の工具を取り付け可能であり、前記主軸装置に保持された前記ワークに対する加工を前記工具により実行するタレット装置と、
     前記タレット装置を第1軸方向と、前記第1軸方向と直交する第2軸方向とにスライド移動させるスライド装置と、
     を有し、
     前記モータは、
     前記スライド装置の駆動源である、請求項1又は請求項2に記載の工作機械。
    The first processing device is
    a spindle device that holds the work and rotates the work;
    a turret device to which a plurality of tools can be attached and which uses the tools to machine the workpiece held by the spindle device;
    a slide device for slidingly moving the turret device in a first axial direction and in a second axial direction orthogonal to the first axial direction;
    has
    The motor is
    3. The machine tool according to claim 1, which is a drive source for said slide device.
  4.  前記スライド装置は、
     前記タレット装置を前記第1軸方向に移動させる第1モータと、
     前記タレット装置を前記第2軸方向に移動させる第2モータと、
     を有し、
     前記パラメータは、
     前記第1モータの加速度を設定する第1時定数と、
     前記第2モータの加速度を設定する第2時定数と、
     を有し、
     前記制御装置は、
     前記受付装置で前記分離状態が選択された場合、前記第1時定数を前記連結状態で使用する値から所定の割合だけ低減させ、且つ前記第2時定数を前記連結状態で使用する値から前記所定の割合だけ低減させる、請求項3に記載の工作機械。
    The slide device
    a first motor for moving the turret device in the first axial direction;
    a second motor for moving the turret device in the second axial direction;
    has
    Said parameters are:
    a first time constant for setting the acceleration of the first motor;
    a second time constant for setting the acceleration of the second motor;
    has
    The control device is
    When the disconnected state is selected by the accepting device, the first time constant is reduced by a predetermined percentage from the value used in the connected state, and the second time constant is reduced from the value used in the connected state. 4. The machine tool of claim 3, wherein the reduction is by a predetermined percentage.
  5.  前記連結部材は、
     板状の金属板と、
     前記金属板を固定する複数の締結部材と、
     前記第1ベッドと前記第2ベッドに挟まれるスペーサと、
     を有し、
     前記ベッドは、
     前記連結状態において前記第1ベッドと前記第2ベッドの間に前記スペーサを挟んだ状態で、前記金属板を前記第1ベッド及び前記第2ベッドの各々に複数の前記締結部材により固定される、請求項1から請求項4の何れか1項に記載の工作機械。
    The connecting member is
    a plate-like metal plate;
    a plurality of fastening members for fixing the metal plate;
    a spacer sandwiched between the first bed and the second bed;
    has
    The bed is
    The metal plate is fixed to each of the first bed and the second bed by a plurality of fastening members, with the spacer interposed between the first bed and the second bed in the connected state. A machine tool according to any one of claims 1 to 4.
  6.  前記ベッドは、
     前記分離状態において、前記第1ベッドに第1位置調整治具を取り付けられ、前記第2ベッドに第2位置調整治具を取り付けられ、
     前記第1位置調整治具は、
     前記第1ベッドに固定される第1固定部材と、
     前記第1固定部材に対して相対的な位置を調整可能な第1調整部材と、
     を有し、
     前記第2位置調整治具は、
     前記第2ベッドに固定される第2固定部材と、
     前記第2固定部材に対して相対的な位置を調整可能な第2調整部材と、
     を有し、
     前記第1位置調整治具及び前記第2位置調整治具の各々は、
     前記分離状態において、前記第1調整部材と前記第2調整部材を互いに接触させた状態で前記第1ベッド及び前記第2ベッドの各々に取り付けられ、
     前記第1ベッド及び前記第2ベッドは、
     互いの間に隙間を設けて配置され、且つ前記第1調整部材の前記第1固定部材に対する固定位置と前記第2調整部材の前記第2固定部材に対する固定位置に応じて前記隙間を調整される、請求項1から請求項5の何れか1項に記載の工作機械。
    The bed is
    In the separated state, a first position adjustment jig is attached to the first bed, a second position adjustment jig is attached to the second bed,
    The first position adjustment jig is
    a first fixing member fixed to the first bed;
    a first adjusting member whose relative position can be adjusted with respect to the first fixing member;
    has
    The second position adjustment jig is
    a second fixing member fixed to the second bed;
    a second adjusting member whose relative position can be adjusted with respect to the second fixing member;
    has
    Each of the first position adjustment jig and the second position adjustment jig,
    In the separated state, the first adjustment member and the second adjustment member are attached to each of the first bed and the second bed in a state of being in contact with each other,
    The first bed and the second bed are
    are arranged with a gap therebetween, and the gap is adjusted according to a fixed position of the first adjusting member with respect to the first fixing member and a fixed position of the second adjusting member with respect to the second fixing member A machine tool according to any one of claims 1 to 5.
  7.  前記第1加工装置は、
     前記ワークを保持し主軸を中心に前記ワークを回転させる第1主軸装置と、
     複数の工具を取り付け可能であり、前記工具により前記第1主軸装置に保持された前記ワークに対する加工を実行する第1タレット装置と、
     を有し、
     前記第1ベッドは、
     前記工作機械の設置面の上に載置される第1ベースと、
     前記第1ベースの上に載置され、前記第1タレット装置を載置する第1タレット載置部と、
     前記第1タレット載置部に取り付けられ、前記設置面から上方に離間した位置に配置され、前記第1主軸装置を載置する第1主軸載置部と、
     を有し、
     前記第2加工装置は、
     前記ワークを保持し前記主軸と平行な方向を中心に前記ワークを回転させる第2主軸装置と、
     複数の工具を取り付け可能であり、前記工具により前記第2主軸装置に保持された前記ワークに対する加工を実行する第2タレット装置と、
     を有し、
     前記第2ベッドは、
     前記設置面の上に載置される第2ベースと、
     前記第2ベースの上に載置され、前記第2タレット装置を載置する第2タレット載置部と、
     前記第2タレット載置部に取り付けられ、前記設置面から上方に離間した位置に配置され、前記第2主軸装置を載置する第2主軸載置部と、
     を有し、
     前記第1ベッド及び前記第2ベッドは、
     前記連結状態において、前記第1主軸載置部と前記第2主軸載置部を前記連結部材により連結される、請求項1から請求項6の何れか1項に記載の工作機械。
    The first processing device is
    a first spindle device that holds the workpiece and rotates the workpiece around a spindle;
    a first turret device to which a plurality of tools can be attached and which performs machining of the workpiece held by the first spindle device with the tools;
    has
    The first bed is
    a first base placed on the installation surface of the machine tool;
    a first turret mounting portion mounted on the first base for mounting the first turret device;
    a first spindle mounting portion attached to the first turret mounting portion, arranged at a position spaced upward from the installation surface, and on which the first spindle device is mounted;
    has
    The second processing device is
    a second spindle device that holds the workpiece and rotates the workpiece around a direction parallel to the spindle;
    a second turret device to which a plurality of tools can be attached and which performs machining of the workpiece held by the second spindle device with the tools;
    has
    the second bed,
    a second base placed on the installation surface;
    a second turret mounting portion mounted on the second base for mounting the second turret device;
    a second spindle mounting portion attached to the second turret mounting portion, arranged at a position spaced upward from the installation surface, and on which the second spindle device is mounted;
    has
    The first bed and the second bed are
    The machine tool according to any one of claims 1 to 6, wherein in the connected state, the first spindle mounting portion and the second spindle mounting portion are connected by the connecting member.
  8.  前記制御装置は、
     前記連結状態又は前記分離状態を選択する画面を前記受付装置に表示させ、選択された状態において推奨される前記パラメータの値を表示させ、表示した推奨の前記パラメータの値の変更を受け付け、且つ前記パラメータの値が変更された場合に変更前に対する前記モータの加速度及び減速度の変化率を表示させる、請求項1から請求項7の何れか1項に記載の工作機械。
    The control device is
    causing the receiving device to display a screen for selecting the connected state or the separated state, displaying the recommended parameter values in the selected state, receiving changes to the displayed recommended parameter values, and 8. The machine tool according to any one of claims 1 to 7, wherein when the parameter value is changed, the rate of change of the acceleration and deceleration of the motor from before the change is displayed.
PCT/JP2021/046004 2021-12-14 2021-12-14 Machine tool WO2023112136A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023567326A JPWO2023112136A1 (en) 2021-12-14 2021-12-14
PCT/JP2021/046004 WO2023112136A1 (en) 2021-12-14 2021-12-14 Machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046004 WO2023112136A1 (en) 2021-12-14 2021-12-14 Machine tool

Publications (1)

Publication Number Publication Date
WO2023112136A1 true WO2023112136A1 (en) 2023-06-22

Family

ID=86773758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046004 WO2023112136A1 (en) 2021-12-14 2021-12-14 Machine tool

Country Status (2)

Country Link
JP (1) JPWO2023112136A1 (en)
WO (1) WO2023112136A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419036A (en) * 1990-05-09 1992-01-23 Yamazaki Mazak Corp Complex processing machine tool and control method therefor
JPH05177474A (en) * 1991-12-28 1993-07-20 Murata Mach Ltd Cutting machine
JPH11114774A (en) * 1997-10-17 1999-04-27 Nakamura Tome Precision Ind Co Ltd Nc machine tool provided with vibration damping device
WO2010110030A1 (en) * 2009-03-27 2010-09-30 村田機械株式会社 Two-axis machine tool
JP2015213985A (en) * 2014-05-09 2015-12-03 高松機械工業株式会社 Machine tool
WO2019215762A1 (en) * 2018-05-11 2019-11-14 SARUP Siddhant Anti-vibration twin spindle cnc machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419036A (en) * 1990-05-09 1992-01-23 Yamazaki Mazak Corp Complex processing machine tool and control method therefor
JPH05177474A (en) * 1991-12-28 1993-07-20 Murata Mach Ltd Cutting machine
JPH11114774A (en) * 1997-10-17 1999-04-27 Nakamura Tome Precision Ind Co Ltd Nc machine tool provided with vibration damping device
WO2010110030A1 (en) * 2009-03-27 2010-09-30 村田機械株式会社 Two-axis machine tool
JP2015213985A (en) * 2014-05-09 2015-12-03 高松機械工業株式会社 Machine tool
WO2019215762A1 (en) * 2018-05-11 2019-11-14 SARUP Siddhant Anti-vibration twin spindle cnc machine

Also Published As

Publication number Publication date
JPWO2023112136A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP4643725B2 (en) Machine tool controller
JP4787771B2 (en) Printed circuit board processing machine and its drilling method
JP6107306B2 (en) Numerical control apparatus and drive control method
JP5605502B2 (en) Machine tool system
EP3205448B1 (en) Control device for machine tool
US20060017415A1 (en) Numerical controller
JP2009106034A (en) Control device for motor with learning control function
CN108241341B (en) Numerical controller and control method
JP2010089256A6 (en) Machine tool and vibration damping method for machine elements
WO2022050209A1 (en) Machine tool and information processing device
WO2023112136A1 (en) Machine tool
US6698982B2 (en) Machine tool
JP7062917B2 (en) Numerical control device and speed control method
JP5136853B2 (en) Numerically controlled machine tool and control program for numerically controlled machine tool
TW201921200A (en) machine tool
JP4661494B2 (en) Numerical controller
JP6428160B2 (en) Linear motion table device
CN109396664A (en) A kind of ultraviolet laser drilling motion beam positioning systems
KR20150121877A (en) Gantry loader of machine tool having two spindle
JP7349824B2 (en) Machine tool operation panel support structure
WO2021172530A1 (en) Machine tool
JP2010238045A (en) Numerical control apparatus for machine tool
JP4722598B2 (en) Die-sinker EDM
JP7167811B2 (en) Machine tool, information processing method and computer program
WO2024004759A1 (en) Column and machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968053

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567326

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE