WO2023112105A1 - 符号化装置、符号化方法及びプログラム - Google Patents

符号化装置、符号化方法及びプログラム Download PDF

Info

Publication number
WO2023112105A1
WO2023112105A1 PCT/JP2021/045896 JP2021045896W WO2023112105A1 WO 2023112105 A1 WO2023112105 A1 WO 2023112105A1 JP 2021045896 W JP2021045896 W JP 2021045896W WO 2023112105 A1 WO2023112105 A1 WO 2023112105A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
data
encoding
point
point cloud
Prior art date
Application number
PCT/JP2021/045896
Other languages
English (en)
French (fr)
Inventor
志織 杉本
幸浩 坂東
正樹 北原
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN202180104887.7A priority Critical patent/CN118475956A/zh
Priority to EP21968027.9A priority patent/EP4451217A1/en
Priority to PCT/JP2021/045896 priority patent/WO2023112105A1/ja
Priority to JP2023567296A priority patent/JPWO2023112105A1/ja
Publication of WO2023112105A1 publication Critical patent/WO2023112105A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding

Definitions

  • the present invention relates to an encoding device, an encoding method and a program.
  • G-PCC (Geometry based Point Cloud Compression), an international standard for compression encoding of point cloud data generated using LiDAR (Light Detection and Ranging), etc., is under consideration.
  • G-PCC has an Octree Geometry method based on an octree representation and a Predictive Geometry method based on a prediction tree representation as encoding methods for geometry data, which is coordinate information of point groups.
  • the space that encompasses the input point group is divided into octrees, and if points exist in each divided area, the octree structure is determined by further dividing.
  • a leaf node with no children corresponds to each input point cloud.
  • the division state of each node is encoded in order of depth from the root node.
  • the split state of each node can be predictively encoded from peripheral nodes and parent nodes.
  • a prediction tree structure is determined for the input point cloud.
  • Each node of the tree corresponds to each one of the input point cloud.
  • the number of children and the position of each child are encoded for each vertex in order from the root node.
  • the prediction mode and prediction residual are coded.
  • the target is a point cloud measured by a LiDAR device whose scanning pattern is an annular (rotating at ⁇ ), and the ⁇ of the root node is offset to be the predicted value of ⁇ . be able to.
  • Point clouds measured by devices such as LiDAR are often spatially sparsely distributed, and the scanning pattern is simple such as an annular shape (due to the laser rotating at a constant speed on one axis). There are many. In this case, it can be efficiently encoded by the Predictive Geometry method. However, in the case of a point cloud acquired by LiDAR having a complex intersecting scanning pattern, there is a problem that encoding efficiency deteriorates because innumerable branches occur in representation by Predictive Tree.
  • an object of the present invention is to provide a technology capable of efficiently encoding point cloud data.
  • an acquisition unit that acquires point cloud data indicating the three-dimensional position of an object in a spherical coordinate system, and scanning angle data that is time-series data of scanning angles of points included in the point cloud data.
  • an angle data encoding unit that performs frequency conversion and quantizes and encodes coefficients;
  • a distance data coding unit that predicts based on the distance from a measurement source position to a neighboring point, and codes distance data that indicates the predicted distance.
  • one aspect of the present invention is an acquisition step of acquiring point cloud data indicating a three-dimensional position of a subject in a spherical coordinate system; an angle data encoding step of frequency-converting the scanning angle data, which is time-series data of the scanning angle of each point included in the point cloud data, and quantizing and encoding the coefficient; Predicting the distance from the position to the encoding target point based on the distance from the position of the measurement source to the neighboring point in the distance map with the scanning angle as the axis, and encoding the distance data indicating the predicted distance. and a distance data encoding step of:
  • Another aspect of the present invention is a program for causing a computer to function as the encoding device.
  • the present invention enables efficient encoding of point cloud data.
  • FIG. 1 is an overall configuration diagram of a point cloud data encoding system 1 according to an embodiment of the present invention
  • FIG. 1 is a block diagram showing the functional configuration of an encoding device 10 according to an embodiment of the present invention
  • FIG. 4 is a flow chart showing the operation of the encoding device 10 according to the embodiment of the present invention
  • a point cloud data encoding system 1 in the embodiment described below scans the surface of an object, measures the three-dimensional position of each point on the scanning line, and generates point cloud data.
  • the point cloud data encoding system 1 converts the trajectory of the scanning line in the spherical coordinate system into time-series data of the angle (scanning angle) with respect to time and the distance, and the time-series data of the angle in the frequency domain. It expresses and encodes, and predictively encodes the time-series data of the distance on a two-dimensional map with the angle component as the axis.
  • the point cloud data encoding system 1 decodes the point cloud data compressed by the predictive encoding described above.
  • FIG. 1 is an overall configuration diagram of a point cloud data encoding system 1 according to an embodiment of the present invention.
  • the point cloud data encoding system 1 includes an encoding device 10, a decoding device 20, and a measuring device 30.
  • FIG. 1 is an overall configuration diagram of a point cloud data encoding system 1 according to an embodiment of the present invention.
  • the point cloud data encoding system 1 includes an encoding device 10, a decoding device 20, and a measuring device 30.
  • FIG. 1 is an overall configuration diagram of a point cloud data encoding system 1 according to an embodiment of the present invention.
  • the point cloud data encoding system 1 includes an encoding device 10, a decoding device 20, and a measuring device 30.
  • FIG. 1 is an overall configuration diagram of a point cloud data encoding system 1 according to an embodiment of the present invention.
  • the point cloud data encoding system 1 includes an encoding device 10, a decoding device 20, and a measuring device 30.
  • FIG. 1 is an overall configuration diagram of
  • the measuring device 30 scans the surface of the object, measures the three-dimensional position of each point on the scanning line, and generates point cloud data.
  • the measurement device 30 can measure the three-dimensional position of each point on the scanning line by continuously moving the laser beam by, for example, a MEMS (Micro Electro Mechanical Systems) mirror or the like to scan the surface of the object. Equipped with a measurement function of The measuring device 30 outputs the generated point cloud data to the encoding device 10 .
  • the encoding device 10 acquires the point cloud data output from the measuring device 30. For the obtained point cloud data, the encoding device 10 converts the trajectory of scanning lines in a spherical coordinate system into time-series data of angles and distances with respect to time, expresses and encodes the time-series data of angles in the frequency domain, and converts the distances into time-series data. Predictively encode time-series data on a two-dimensional map with an angle component as an axis. The encoding device 10 outputs encoded data compressed by the predictive encoding described above to the decoding device 20 .
  • the decoding device 20 acquires the encoded data output from the encoding device 10.
  • the decoding device 20 decodes the obtained encoded data.
  • FIG. 2 is a block diagram showing the functional configuration of the encoding device 10 according to the embodiment of the present invention.
  • the encoding device 10 includes a point cloud data input unit 101, a point cloud data storage unit 102, an angle data encoding unit 103, an angle residual encoding unit 104, a distance prediction unit 105 , a distance data encoding unit 106 and an encoded data output unit 107 .
  • the point cloud data input unit 101 receives input of point cloud data indicating the three-dimensional position of the surface of the subject measured by the measuring device 30 .
  • the point cloud data input unit 101 stores the input point cloud data in the point cloud data storage unit 102 .
  • the point cloud data storage unit 102 may be provided in an external device other than the encoding device 10 .
  • the point cloud data has the value of the scanning angle of the measurement laser when the point was measured as the attribute information of each point.
  • the point cloud data has information indicating the three-dimensional position of each point and the orientation of the measuring device 30 as attribute information of each point, and the point cloud data input unit 101 derives the scanning angle based on the information. It may be a configuration that allows It is assumed that the laser rotates on two axes and that the scanning angle has two values of ⁇ and ⁇ .
  • the point cloud data has a time stamp (time information) of the time when the point was measured as attribute information of each point.
  • the scanning time of each point is unknown, but the scanning speed is constant, the difference in scanning time between points is known, and the point cloud data input unit 101 determines the scanning time of any point may be set to 0 to derive the relative scanning times of other points.
  • the point cloud data input unit 101 selects a group of points with the same time stamp or similar time stamps. , assuming that when points are projected onto a curved surface of radius r in a spherical coordinate system, the points are arranged on the curve, and the order of the points is rearranged from the start point to the end point of the curve.
  • the point cloud data input unit 101 assumes that the scanning speed is constant, obtains the order of the points so that the angle change amount between the points is constant, Relative times may be assigned in that order.
  • the point cloud data input unit 101 converts the input point cloud data into the point cloud data. and stored in the point cloud data storage unit 102 as a point cloud group.
  • any method can be used to separate the point cloud data. For example, when an ID for identifying a laser is given to the point cloud data as attribute information, the point cloud data may be classified based on the ID. Alternatively, some clustering processing may be performed. For example, for each point in scanning order, and based on the distance to the already sorted point, a decision is made as to whether to add to the sorted group or to create a new group, so that each laser continuously Measured points can be grouped.
  • the point cloud data may be separated into groups.
  • the angle data encoding unit 103 encodes angle data.
  • the angle data encoding unit 103 encodes the angle data for each point cloud group.
  • the angle data encoding unit 103 arranges the angle information of the point cloud data stored in the point cloud data storage unit 102 in the order of scanning as time-series angle data.
  • the angle data encoding unit 103 When the scanning speed is not constant, the angle data encoding unit 103 generates time-series angle data in which each element is arranged at regular time intervals by interpolation from the scanning angle and time of the point cloud data. In this case, the angle data encoding unit 103 may also encode the time data corresponding to each point, perform sampling in the decoding device 20, and reconstruct the original angle data. In the case of lossy encoding, angle data encoding section 103 does not need to perform sampling.
  • the angle data encoding unit 103 frequency-transforms the time-series angle data and encodes the coefficients. Any method of frequency conversion may be used. For example, when the laser is driven by a MEMS device in the measurement device 30, the angle often changes according to a sine wave, so the angle data encoding unit 103 efficiently expresses it by DCT (Discrete Cosine Transform). be able to.
  • DCT Discrete Cosine Transform
  • the angle data encoding unit 103 may allow a certain amount of error and round down or quantize the coefficients. Also, the angle data encoding unit 103 may evaluate this error not only by the angle but also by the coordinate error in the finally decoded orthogonal coordinate system. Furthermore, the angle data encoding unit 103 may evaluate and determine the trade-off with the code amount.
  • angle data encoding section 103 uses an appropriate predetermined angle data pattern instead of explicitly encoding the frequency component, and encodes information for specifying the pattern.
  • angle data encoding section 103 may encode the frequency component for each pattern as additional information common to all groups.
  • the angle data encoding unit 103 may be expressed as a function for an arbitrary time and encode its parameters.
  • the angle data encoding unit 103 may use the same coefficients as the coefficients of other groups. For example, when the measurement device 30 includes a plurality of lasers, the value of the scanning angle ⁇ is common to all the lasers, and only the value of the scanning angle ⁇ is different, the angle data encoding unit 103 has already A group of coefficients corresponding to another encoded laser can be used. Also, if the difference in scanning angle ⁇ of two different lasers is constant, one can be represented by adding an offset to the decoding result of the other.
  • the angle residual encoding unit 104 encodes the residual for the encoded/decoded angle data. Note that angle residual coding section 104 may not perform coding when the residual is small, and may code a flag indicating whether decoding is necessary or not.
  • the distance prediction unit 105 encodes distance data for each point.
  • the distance prediction unit 105 encodes the input point cloud data in ascending order from the point with the earliest scanning time.
  • the distance prediction unit 105 predicts the distance between the position of the laser irradiation source (measurement source) and the encoding target point. Note that the distance prediction unit 105 may use, as the predicted value, the distance of the point encoded immediately before, or use the distance of points having a close scanning angle among the points encoded so far. may
  • the distance prediction unit 105 generates a two-dimensional distance r map (hereinafter referred to as "distance map") with the scanning angle ⁇ and the scanning angle ⁇ as axes.
  • the distance prediction unit 105 saves the distance data of points encoded so far in the point cloud data storage unit 102, and performs prediction by referring to the distance map.
  • the distance prediction unit 105 may generate a distance map for each group of point cloud data, or may use a common distance map for all groups. Alternatively, the distance prediction unit 105 may refer to distance maps of other groups. Alternatively, the distance prediction unit 105 may select a specific distance map from a plurality of distance maps and encode information indicating the selected distance map as additional information.
  • the distance prediction unit 105 updates the map to reflect the change in posture or movement when the distance map generated by one group is used by another group. You may do so.
  • the distance prediction unit 105 may generate a new distance map from the decoded point group information. For example, the distance prediction unit 105 converts the absolute coordinates in the orthogonal coordinate system of the decoded point group into relative spherical coordinates in the position/orientation of the measurement device 30 of the encoding target group, and based on the conversion result, the distance map may be generated.
  • the distance prediction unit 105 may determine a predicted value using an average value or other calculation method from distances to a plurality of neighboring points. For example, the distance prediction unit 105 may use the median value of the distances to neighboring points as the predicted value. For example, the distance prediction unit 105 may perform weighting when performing prediction, and determine the weight based on the distance of time. Further, if the distance prediction unit 105 has already performed prediction using the same neighboring point on the distance map, the distance prediction unit 105 calculates the reliability of the prediction from the amount of the prediction residual, and weights it based on the calculation result. may be determined.
  • the distance prediction unit 105 may select a specific prediction method from several prediction methods to generate a predicted value, and may encode information indicating the selected prediction method as additional information.
  • the distance data encoding unit 106 encodes the prediction residual value for the prediction value for the distance from the position of the laser irradiation source (measurement source) to the encoding target point. Note that the distance data encoding unit 106 may encode the prediction residual value after quantizing it. Distance data encoding section 106 outputs the encoded data to encoded data output section 107 .
  • the encoded data output unit 107 acquires the encoded data output from the distance data encoding unit 106.
  • the encoded data output unit 107 outputs the acquired encoded data to the decoding device 20 .
  • FIG. 3 is a flow chart showing the operation of the encoding device 10 according to the embodiment of the present invention. The operation of the encoding device 10 shown in the flowchart of FIG. 3 is started, for example, when point cloud data is input from the measuring device 30 to the encoding device 10 .
  • the point cloud data input unit 101 receives input of point cloud data indicating the three-dimensional position of the surface of the subject measured by the measuring device 30 (step S01).
  • the angle data encoding unit 103 encodes the angle data.
  • the angle data encoding unit 103 arranges the angle information of the input point cloud data in the order of scanning to obtain time-series angle data (step S02).
  • the angle data encoding unit 103 frequency-transforms the time-series angle data and encodes the coefficient (step S03).
  • the distance prediction unit 105 encodes distance data for each point.
  • the distance prediction unit 105 encodes the input point cloud data in ascending order from the point with the earliest scanning time.
  • the distance prediction unit 105 predicts the distance between the position of the laser irradiation source (measurement source) and the encoding target point.
  • the distance prediction unit 105 generates a two-dimensional distance map having the scanning angle ⁇ and the scanning angle ⁇ as axes (step S04).
  • the distance prediction unit 105 saves the distance data of points encoded so far in the point cloud data storage unit 102, and performs prediction by referring to the distance map (step S05).
  • the distance data encoding unit 106 encodes the prediction residual value for the prediction value for the distance between the position of the laser irradiation source (measurement source) and the encoding target point (step S06).
  • the encoded data output unit 107 outputs the encoded data to the decoding device 20 (step S07).
  • the operation of the encoding device 10 shown in the flowchart of FIG. 3 is completed.
  • the encoding device 10 frequency-converts scanning angle data in which scanning angles are time-series data, quantizes coefficients, and encodes them.
  • the encoding device 10 predicts and encodes the distance to the point to be encoded from neighboring points on the distance map using a distance map based on the decoding result and having the scanning angle as the axis for each point, and encodes the decoding result. Store the distances based on in the distance map.
  • the configuration of the decoding device 20 corresponding to the encoding device 10 described above is as follows.
  • a decoding device 20 decodes the scanning angle data.
  • the decoding device 20 predicts the distance to the decoding target point from neighboring points on the map using a distance map based on the scanning angle based on the decoding result for each point. Reconstruct coordinates.
  • the encoding device 10 may encode attribute information such as color or reflection intensity using the same method as for the distance described above. For example, when encoding attribute information and distance information one by one, the encoding device 10 may evaluate the reliability of points used for prediction reference based on the attribute information and use it for selection. For example, encoding device 10 may ignore points that have a singular intensity compared to neighboring points. Also, for example, the encoding device 10 may perform evaluation using the number of responses to the pulse wave and the response waveform.
  • the encoding device 10 sets the scanning time and angle values to be common for a plurality of points having the same angle and different distances for the same input scanning time, and sets the plurality of distance values to Encoding enables efficient compression.
  • the encoding device 10 instead of encoding in scanning order, the encoding device 10 first encodes some points on a scanning line first, and then encodes the remaining points, for example: Of the already encoded points in the same group, the points positioned forward and backward in the scanning order may be referred to for encoding. For example, in the encoding of the angular residual, if the angular residual is very small at both the front and rear points, the encoding device 10 skips the encoding of the angular residual and the flag indicating whether or not it is necessary. may Alternatively, the encoding apparatus 10 may encode the prediction residual by using the weighted sum of both angular residuals as the predicted value of the angular residual of the point to be coded. Alternatively, the encoding device 10 may use the weighted sum of the distance information of the front and rear points as the prediction value in the prediction of the distance information.
  • the encoding device 10 compresses and encodes point cloud data.
  • the encoding device 10 scans the surface of an object by continuously moving a laser beam with a MEMS mirror or the like to measure the three-dimensional position of each point on the scanning line.
  • the trajectory of the scanning line in the system is expressed and encoded in the frequency domain as the time-series data of the angle and distance with respect to time, and the time-series data of the distance is expressed and encoded on a two-dimensional distance map with the angle component as the axis.
  • Predictive encoding Predictive encoding.
  • the encoding device 10 according to the embodiment of the present invention can efficiently encode point clouds acquired by LiDAR with complex intersecting scanning patterns.
  • the encoding device 10 according to the embodiment of the present invention performs predictive encoding with high accuracy even in a scene where the distance corresponding to the same scanning angle varies depending on the time, such as a dynamic scene where the position of the subject changes depending on the time. can do.
  • the encoding device includes the acquisition section, the angle data encoding section, and the distance data encoding section.
  • the encoding device is the encoding device 10 in the embodiment
  • the acquisition unit is the point cloud data input unit 101 in the embodiment
  • the angle data encoding unit is the angle data encoding unit 103 in the embodiment
  • the distance data encoding unit is the distance data encoding unit 106 in the embodiment.
  • the acquisition unit acquires point cloud data indicating the three-dimensional position of the subject in the spherical coordinate system.
  • the angle data encoding unit frequency-converts scanning angle data, which is time-series data of scanning angles of points included in the point cloud data, quantizes coefficients, and encodes the data.
  • a distance data encoding unit predicts, for each point, the distance from the position of the measurement source to the point to be encoded based on the distance from the position of the measurement source to the neighboring points in the distance map with the scanning angle as the axis, Encode the distance data indicating the predicted distance.
  • the distance map may be a two-dimensional map whose axes are two scanning angles in a spherical coordinate system.
  • the two steering angles are the values of ⁇ and ⁇ in the embodiment.
  • the point cloud data may include time information indicating the time when the position of each point was measured.
  • time information is a time stamp in the embodiment.
  • the angle data encoding unit may generate the scanning angle data by rearranging the scanning angles of each point based on the time information.
  • the distance data encoding unit may encode the distance data in descending order of time based on the time information.
  • the acquisition unit may group the point cloud data for each scan.
  • the point cloud data is data generated by a plurality of scans
  • the angle data encoder may encode the scanning angle data for each group.
  • the distance data encoding unit calculates from the measurement source position to the encoding target You may also make it predict the distance to a point.
  • a part of the encoding device 10 in each of the above-described embodiments may be realized by a computer.
  • a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” refers to a program that dynamically retains programs for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array
  • Point cloud data encoding system 10 Point cloud data encoding system 10
  • Encoding apparatus 20 Decoding apparatus 30
  • Measuring apparatus 101 Point cloud data input part 102
  • Angle data encoding part 104 ... angle residual encoding unit, 105 ... distance prediction unit, 106 ... distance data encoding unit, 107 ... encoded data output unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

符号化装置は、球座標系における被写体の三次元位置を示す点群データを取得する取得部と、前記点群データに含まれる各点の走査角度の時系列データである走査角度データを、周波数変換し、係数を量子化して符号化する角度データ符号化部と、各前記点について、計測元の位置から符号化対象点までの距離を、前記走査角度を軸とした距離マップにおける前記計測元の位置から近傍点までの距離に基づいて予測し、予測された前記距離を示す距離データを符号化する距離データ符号化部とを備える。

Description

符号化装置、符号化方法及びプログラム
 本発明は、符号化装置、符号化方法及びプログラムに関する。
 LiDAR(Light Detection and Ranging)等を用いて生成された点群データの圧縮符号化に関する国際標準規格であるG-PCC(Geometry based Point Cloud Compression)が検討されている。G-PCCでは、点群の座標情報であるジオメトリデータの符号化方式として、8分木表現に基づくOctree Geometry方式と、予測ツリー表現に基づくPredictive Geometry方式とを備えている。
 Octree Geometry方式では、入力点群を包括する空間を8分木で分割し、各分割領域において点が存在する場合に更に分割を行うことで8分木構造を決定する。子を持たないリーフノードが入力点群の一つ一つに対応する。この方式ではルートとなるノードから深さ順に各ノードの分割状況を符号化する。各ノードの分割状況は周辺ノードや親ノードから予測符号化することができる。
 Predictive Geometry方式では、入力点群について予測ツリー構造を決定する。ツリーの各ノードは入力点群の一つ一つに対応する。この方式ではルートとなるノードから順番に各頂点について、子の数と、それぞれの子の位置を符号化する。子の位置を符号化する際は親の位置から予測し、予測モードと予測残差を符号化する。
 また、直交直線座標(x,y,z)で表されるカーテシアン座標系の他に、球座標(r,θ,φ)で表される球座標系を使用した予測符号化によって、符号化効率を向上することができる。例えば、Predictive Geometry方式では、走査パターンが(φで回転する)円環状であるLiDAR装置で計測された点群を対象として、ルート側ノードのφにオフセットをつけたものをφの予測値とすることができる。
 LiDAR等の装置で計測された点群は一般に空間的に疎に分布することが多く、また走査パターンが(レーザーが1軸の等速回転で駆動することによる)円環状等の単純な形であることが多い。この場合、Predictive Geometry方式で効率的に符号化することができる。但し、複雑に交差する走査パターンを持つLiDARで取得された点群の場合、Predictive Treeによる表現では無数に分岐が生じるため、符号化効率が悪化するという課題がある。
 上記事情に鑑み、本発明は、点群データを効率的に符号化することができる技術を提供することを目的としている。
 本発明の一態様は、球座標系における被写体の三次元位置を示す点群データを取得する取得部と、前記点群データに含まれる各点の走査角度の時系列データである走査角度データを、周波数変換し、係数を量子化して符号化する角度データ符号化部と、各前記点について、計測元の位置から符号化対象点までの距離を、前記走査角度を軸とした距離マップにおける前記計測元の位置から近傍点までの距離に基づいて予測し、予測された前記距離を示す距離データを符号化する距離データ符号化部と、を備える符号化装置である。
 また、本発明の一態様は、球座標系における被写体の三次元位置を示す点群データを取得する取得ステップと、
 前記点群データに含まれる各点の走査角度の時系列データである走査角度データを、周波数変換し、係数を量子化して符号化する角度データ符号化ステップと、各前記点について、計測元の位置から符号化対象点までの距離を、前記走査角度を軸とした距離マップにおける前記計測元の位置から近傍点までの距離に基づいて予測し、予測された前記距離を示す距離データを符号化する距離データ符号化ステップと、を有する符号化方法である。
 また、本発明の一態様は、上記の符号化装置としてコンピュータを機能させるためのプログラムである。
 本発明により、点群データを効率的に符号化することが可能になる。
本発明の実施形態における点群データ符号化システム1の全体構成図である。 本発明の実施形態における符号化装置10の機能構成を示すブロック図である。 本発明の実施形態における符号化装置10の動作を示すフローチャートである。
 以下、本発明の実施形態における点群データ符号化システムについて、図面を参照しながら説明する。
[点群データ符号化システムの構成]
 以下、本発明の実施形態における点群データ符号化システム1の構成について説明する。以下に説明する実施形態における点群データ符号化システム1は、被写体表面を走査し、走査線上の各点の三次元位置を計測して点群データを生成する。点群データ符号化システム1は、生成された点群データについて、球座標系における走査線の軌跡を時間に対する角度(走査角度)と距離の時系列データとし、角度の時系列データを周波数領域で表現・符号化し、距離の時系列データについて角度成分を軸とした二次元マップ上で予測符号化する。点群データ符号化システム1は、上記の予測符号化により圧縮された点群データを復号する。
 図1は、本発明の実施形態における点群データ符号化システム1の全体構成図である。図1に示されるように、点群データ符号化システム1は、符号化装置10と、復号装置20と、計測装置30とを含んで構成される。
 計測装置30は、被写体表面を走査し、走査線上の各点の三次元位置を計測して点群データを生成する。計測装置30は、例えばMEMS(Micro Electro Mechanical Systems)ミラー等によってレーザー光を連続的に動かして被写体の表面を走査することにより、走査線上の各点の三次元位置を計測することができるLiDAR等の計測機能を備える。計測装置30は、生成された点群データを符号化装置10へ出力する。
 符号化装置10は、計測装置30から出力された点群データを取得する。符号化装置10は、取得された点群データについて、球座標系における走査線の軌跡を時間に対する角度と距離の時系列データとし、角度の時系列データを周波数領域で表現・符号化し、距離の時系列データについて角度成分を軸とした二次元マップ上で予測符号化する。符号化装置10は、上記の予測符号化により圧縮された符号化データを復号装置20へ出力する。
 復号装置20は、符号化装置10から出力された符号化データを取得する。復号装置20は、取得された符号化データを復号する。
[符号化装置の構成]
 以下、実施形態における符号化装置10の構成についてさらに詳しく説明する。
 図2は、本発明の実施形態における符号化装置10の機能構成を示すブロック図である。図2に示されるように、符号化装置10は、点群データ入力部101と、点群データ記憶部102と、角度データ符号化部103と、角度残差符号化部104と、距離予測部105と、距離データ符号化部106と、符号化データ出力部107とを含んで構成される。
 点群データ入力部101(取得部)は、計測装置30によって計測された被写体の表面の三次元位置を示す点群データの入力を受け付ける。点群データ入力部101は、入力された点群データを点群データ記憶部102に保存する。なお、点群データ記憶部102は、符号化装置10以外の外部の装置に備えられている構成であってもよい。
 点群データは、各点の属性情報として、その点が計測された際の計測用レーザーの走査角度の値を持つ。または、点群データが、各点の属性情報として、各点の三次元位置及び計測装置30の姿勢を示す情報を持ち、点群データ入力部101が、当該情報に基づいて走査角度を導出することができる構成であってもよい。なお、レーザーは2軸で回転するものとし、走査角度は、θ及びφの2つの値を持つこととする。
 また、点群データは、各点の属性情報として、その点が計測された時刻のタイムスタンプ(時刻情報)を持つ。または、各点の走査時刻は未知であるが、走査速度が一定であり、点と点の間の走査時刻の差が既知であり、点群データ入力部101が、いずれかの点の走査時刻を0として、他の点の相対的な走査時刻を導出することができる構成であってもよい。
 タイムスタンプの精度が十分ではなく、走査時刻の近い複数の点が同一のタイムスタンプを持つ場合には、点群データ入力部101は、同一のタイムスタンプ、または近似するタイムスタンプを持つ点のグループについて、球座標系の半径rの曲面上に点を投影すると当該点が曲線上に並ぶものと仮定し、曲線の始点から終点に向けて点の順番を並び替える。
 各点の走査時刻が未知である場合、点群データ入力部101は、走査速度を一定であるものと仮定して点と点の角度変化量が一定になるような点の並び順を求め、その順番に相対時刻を割り振るようにしてもよい。
 計測装置30が複数である場合、または計測装置30が複数のレーザーを備え、同時に二つ以上の走査を行う場合、点群データ入力部101は、入力された点群データを、当該点群データに対応するレーザーごとに分別し、点群グループとして点群データ記憶部102に保存する。
 なお、点群データの分別方法はどのよう方法であってもよい。例えば、点群データに、属性情報としてレーザーを識別するIDが付与されている場合には、当該IDに基づいて点群データが分別されてもよい。または、何らかのクラスタリング処理が行われてもよい。例えば、各点について走査順に、分別済みの点との距離とに基づいて、分別済みグループに加えるか、又は新しいグループを生成するか否かについての判定を行うことで、各レーザーで連続的に計測された点をグループ化することができる。
 また、走査中に計測装置30の姿勢が変化する場合には、角度の変化が複雑になり、後述される角度データの符号化において符号化効率が悪化するため、当該変化の前後で異なる点群グループとして点群データが分別されてもよい。
 角度データ符号化部103は、角度データの符号化を行う。計測装置30が複数である場合、または計測装置30が複数のレーザーを備え、同時に二つ以上の走査を行う場合、角度データ符号化部103は、点群グループごとに角度データの符号化を行う。角度データ符号化部103は、点群データ記憶部102に記憶された点群データについて、角度情報を走査順に並べたものを時系列角度データとする。
 角度データ符号化部103は、走査速度が一定ではない場合は、点群データの走査角度と時刻とから、補間によって各要素が一定時刻おきに並ぶ時系列角度データを生成する。この場合、角度データ符号化部103は、各点に対応する時刻データも符号化し、復号装置20でサンプリングを行って、元の角度データを再構成してもよい。非可逆符号化の場合には、角度データ符号化部103はサンプリングを行わなくてもよい。
 角度データ符号化部103は、時系列角度データを周波数変換し、係数を符号化する。周波数変換の方法はどのような方法であってもよい。例えば、計測装置30においてレーザーがMEMS装置によって駆動している場合、その角度は正弦波に従って変化することが多いため、角度データ符号化部103は、DCT(Discrete Cosine Transform)変換によって効率よく表現することができる。
 また、このとき、角度データ符号化部103は、ある程度の誤差を許容して係数の切り捨てや量子化を行ってもよい。また、角度データ符号化部103は、この誤差を、角度だけではなく、最終的に復号される直交座標系における座標の誤差で評価してもよい。さらに、角度データ符号化部103は、符号量とのトレードオフを評価して決定してもよい。
 または、角度データ符号化部103は、周波数成分を明示的に符号化する代わりに、予め定められた角度データのパターンから適切なものを使用することとし、パターンを特定するための情報を符号化してもよい。この場合、角度データ符号化部103は、パターンごとの周波数成分を、全グループ共通の付加情報として符号化してもよい。または、角度データ符号化部103は、任意の時刻に対する関数で表現することとし、そのパラメータを符号化してもよい。
 なお、角度データ符号化部103は、他のグループの係数と同じ係数を使用してもよい。例えば、計測装置30が複数のレーザーを備え、走査角度φの値が全てのレーザーで共通であり、走査角度θの値のみが異なる場合、角度データ符号化部103は、角度φについては、既に符号化済みの別のレーザーに対応するグループの係数を使用することができる。また、異なる2つのレーザーの走査角度θの差が一定である場合、一方はもう一方の復号結果にオフセットを加算することによって表現することができる。
 角度残差符号化部104は、符号化・復号された角度データに対する残差を符号化する。なお、角度残差符号化部104は、残差が少ない場合には符号化を行わないこととし、復号の要不要を示すフラグを符号化するようにしてもよい。
 距離予測部105は、点ごとに距離データの符号化を行う。距離予測部105は、入力された点群データのうち、走査時刻が最も早い点から順に、昇順で符号化を行う。距離予測部105は、レーザー照射元(計測元)の位置と符号化対象点との距離を予測する。なお、距離予測部105は、予測値として、直前に符号化した点の距離を使用してもよいし、又は、それまでに符号化された点のうち走査角度が近い点の距離を使用してもよい。
 距離予測部105は、走査角度θ及び走査角度φを軸に取る二次元の距離rのマップ(以下、「距離マップ」という。)を生成する。距離予測部105は、それまでに符号化された点の距離データを点群データ記憶部102に保存し、当該距離マップを参照することで予測を行う。
 なお、距離予測部105は、点群データのグループごとに距離マップを生成してもよいし、全グループで共通の距離マップを使用してもよい。または、距離予測部105は、他のグループの距離マップを参照するようにしてもよい。または、距離予測部105は、複数の距離マップから特定の距離マップを選択し、選択された距離マップを示す情報を付加情報として符号化するようにしてもよい。
 計測装置30の姿勢変化や被写体の移動等がある場合、距離予測部105は、あるグループで生成した距離マップを他のグループで使用する際に、姿勢変化や移動を反映してマップを更新するようにしてもよい。
 または、距離予測部105は、復号した点群情報から新たに距離マップを生成するようにしてもよい。例えば、距離予測部105は、復号した点群について、直交座標系における絶対座標を符号化対照グループの計測装置30の位置・姿勢における相対的な球座標へ変換し、変換結果に基づいて距離マップを生成するようにしてもよい。
 距離予測部105は、複数の近傍点までの距離から、平均値やその他の演算方法を用いて予測値を決定するようにしてもよい。例えば、距離予測部105は、近傍点までの距離の中央値を予測値とするようにしてもよい。例えば、距離予測部105は、予測を行う際に重み付けを行い、その際、時刻の距離で重みを決定するようにしてもよい。また、距離予測部105は、それまでに距離マップ上で同一の近傍点を使用して予測を行っている場合、予測残差の量から予測の信頼度を計算し、計算結果に基づいて重みを決定するようにしてもよい。
 なお、距離予測部105は、いくつかの予測方式から特定の予測方式を選択して予測値を生成するとともに、選択された予測方式を示す情報を付加情報として符号化するようにしてもよい。
 距離データ符号化部106は、レーザー照射元(計測元)の位置から符号化対象点までの距離について、予測値に対する予測残差値を符号化する。なお、距離データ符号化部106は、予測残差値を量子化してから符号化するようにしてもよい。距離データ符号化部106は、符号化データを符号化データ出力部107へ出力する。
 符号化データ出力部107は、距離データ符号化部106から出力された符号化データを取得する。符号化データ出力部107は、取得された符号化データを復号装置20へ出力する。
[符号化装置の動作]
 以下、符号化装置10の動作の一例について説明する。図3は、本発明の実施形態における符号化装置10の動作を示すフローチャートである。図3のフローチャートが示す符号化装置10の動作は、例えば、計測装置30から符号化装置10へ点群データの入力が行われる際に開始される。
 まず、点群データ入力部101は、計測装置30によって計測された被写体の表面の三次元位置を示す点群データの入力を受け付ける(ステップS01)。
 次に、角度データ符号化部103は、角度データを符号化する。角度データ符号化部103は、入力された点群データについて、角度情報を走査順に並べて、時系列角度データとする(ステップS02)。角度データ符号化部103は、時系列角度データを周波数変換し、係数を符号化する(ステップS03)。
 次に、距離予測部105は、点ごとに距離データを符号化する。距離予測部105は、入力された点群データのうち、走査時刻が最も早い点から順に、昇順で符号化を行う。距離予測部105は、レーザー照射元(計測元)の位置と符号化対象点との距離を予測する。距離予測部105は、走査角度θ及び走査角度φを軸に取る二次元の距離マップを生成する(ステップS04)。距離予測部105は、それまでに符号化された点の距離データを点群データ記憶部102に保存し、当該距離マップを参照することで予測を行う(ステップS05)。
 次に、距離データ符号化部106は、レーザー照射元(計測元)の位置と符号化対象点との距離について、予測値に対する予測残差値を符号化する(ステップS06)。
 次に、符号化データ出力部107は、符号化データを復号装置20へ出力する(ステップS07)。以上で、図3のフローチャートが示す符号化装置10の動作が終了する。
 以上説明したように、本実施形態における符号化装置10は、走査角度を時系列データとした走査角度データを周波数変換し、係数を量子化して符号化する。符号化装置10は、各点について、復号結果に基づく走査角度を軸とした距離マップを使用して、符号化対象点までの距離を距離マップ上の近傍点から予測して符号化し、復号結果に基づく距離を距離マップに保存する。
 なお、上記の符号化装置10に対応する復号装置20の構成は以下の通りである。復号装置20は、走査角度データを復号する。復号装置20は、各点について、復号結果に基づく走査角度を軸とした距離マップを使用して、復号対象点までの距離をマップ上の近傍点から予測し、走査角度と距離とから三次元座標を再構築する。
(変形例)
 なお、符号化装置10は、色又は反射強度等の属性情報を、上記の距離と同様の方法で符号化してもよい。例えば、符号化装置10は、属性情報を距離情報とともに1点ずつ符号化する場合、予測参照に使用する点の信頼度を属性情報で評価し、選択に使用するようにしてもよい。例えば、符号化装置10は、近傍点と比較して特異な強度を持つ点を無視するようにしてもよい。また、例えば、符号化装置10は、パルス波に対する応答回数、及び応答波形を使用して評価を行うようにしてもよい。
 なお、被写体が半透明であり、レーザー光の一部が被写体を透過することで別の被写体に到達するような場合には、一度の走査で複数の点を観測可能な場合がある。この場合、符号化装置10は、入力される同一の走査時刻に対して同一の角度と異なる距離を持つ複数の点に対して、走査時刻及び角度の値を共通とし、複数の距離の値を符号化することで、効率よく圧縮を行うことができる。
 なお、符号化装置10は、点ごとの処理において、走査順に符号化する代わりに、例えば、初めに走査線上のいくつかの点を先に符号化して、残りの点を符号化する際に、同じグループの既に符号化済みである点のうち、走査順において前方と後方に位置する点を参照して符号化するようにしてもよい。例えば、角度残差の符号化において、前方と後方の点で共に角度残差がごく少ない場合、符号化装置10は、角度残差及びその必要の有無を示すフラグの符号化をスキップするようにしてもよい。または、符号化装置10は、両者の角度残差の重み付き和を符号化対象点の角度残差の予測値として、その予測残差を符号化するようにしてもよい。または、符号化装置10は、距離情報の予測において、前方と後方の点の距離情報の重み付き和を予測値とするようにしてもよい。
 以上説明したように、本発明の実施形態における符号化装置10は、点群データの圧縮符号化を行う。符号化装置10は、例えばMEMSミラー等でレーザー光を連続的に動かして被写体表面を走査して走査線上の各点の三次元位置を計測するタイプのLiDARによって取得された点群について、球座標系における走査線の軌跡を時間に対する角度と距離の時系列データとして角度の時系列データを周波数領域で表現・符号化し、距離の時系列データについて角度成分を軸とした二次元の距離マップ上で予測符号化する。
 これにより、本発明の実施形態における符号化装置10は、複雑に交差する走査パターンを持つLiDARで取得された点群を効率的に符号化することができる。また、本発明の実施形態における符号化装置10は、例えば、時刻によって被写体の位置が変化するダイナミックなシーン等の、時刻によって同じ走査角度に対応する距離が異なる場面においても、精度高く予測符号化することができる。
 上述した実施形態によれば、符号化装置は、取得部と、角度データ符号化部と、距離データ符号化部とを備える。例えば、符号化装置は、実施形態における符号化装置10であり、取得部は、実施形態における点群データ入力部101であり、角度データ符号化部は、実施形態における角度データ符号化部103であり、距離データ符号化部は、実施形態における距離データ符号化部106である。
 取得部は、球座標系における被写体の三次元位置を示す点群データを取得する。角度データ符号化部は、点群データに含まれる各点の走査角度の時系列データである走査角度データを、周波数変換し、係数を量子化して符号化する。距離データ符号化部は、各点について、計測元の位置から符号化対象点までの距離を、走査角度を軸とした距離マップにおける計測元の位置から近傍点までの距離に基づいて予測し、予測された距離を示す距離データを符号化する。
 なお、上記の符号化装置において、距離マップは、球座標系における2つの走査角度を軸とした二次元のマップであってもよい。例えば、2つの操作角度は、実施形態におけるθ及びφの値である。
 なお、上記の符号化装置において、点群データは、各点の位置が計測された時刻を示す時刻情報を含んでもよい。例えば、時刻情報は、実施形態におけるタイムスタンプである。この場合、角度データ符号化部は、時刻情報に基づいて各点の走査角度を並べ替えることにより走査角度データを生成するようにしてもよい。
 なお、上記の符号化装置において、距離データ符号化部は、時刻情報に基づく時刻がより早い点から順に距離データを符号化するようにしてもよい。
 なお、上記の符号化装置において、取得部は、点群データが複数の走査によって生成されたデータである場合、点群データを走査ごとにグループ化するようにしてもよい。例えば、点群データが複数の走査によって生成されたデータである場合とは、実施形態における、計測装置30が複数である場合、または計測装置30が複数のレーザーを備え、同時に二つ以上の走査を行う場合である。この場合、角度データ符号化部は、グループごとに走査角度データの符号化を行うようにしてもよい。
 なお、上記の符号化装置において、距離データ符号化部は、距離マップにおける計測元の位置から複数の近傍点までの各距離の平均値又は中央値に基づいて、計測元の位置から符号化対象点までの距離を予測するようにしてもよい。
 上述した各実施形態における符号化装置10の一部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1…点群データ符号化システム、10…符号化装置、20…復号装置、30…計測装置、101…点群データ入力部、102…点群データ記憶部、103…角度データ符号化部、104…角度残差符号化部、105…距離予測部、106…距離データ符号化部、107…符号化データ出力部

Claims (8)

  1.  球座標系における被写体の三次元位置を示す点群データを取得する取得部と、
     前記点群データに含まれる各点の走査角度の時系列データである走査角度データを、周波数変換し、係数を量子化して符号化する角度データ符号化部と、
     各前記点について、計測元の位置から符号化対象点までの距離を、前記走査角度を軸とした距離マップにおける前記計測元の位置から近傍点までの距離に基づいて予測し、予測された前記距離を示す距離データを符号化する距離データ符号化部と、
     を備える符号化装置。
  2.  前記距離マップは、前記球座標系における2つの走査角度を軸とした二次元のマップである
     請求項1に記載の符号化装置。
  3.  前記点群データは、各前記点の位置が計測された時刻を示す時刻情報を含み、
     前記角度データ符号化部は、前記時刻情報に基づいて各前記点の走査角度を並べ替えることにより前記走査角度データを生成する
     請求項1又は2に記載の符号化装置。
  4.  前記距離データ符号化部は、前記時刻情報に基づく前記時刻がより早い点から順に前記距離データを符号化する
     請求項3に記載の符号化装置。
  5.  前記取得部は、前記点群データが複数の走査によって生成されたデータである場合、
    前記点群データを前記走査ごとにグループ化し、
     前記角度データ符号化部は、グループごとに前記走査角度データの符号化を行う
     請求項1から4のうちいずれか一項に記載の符号化装置。
  6.  前記距離データ符号化部は、前記距離マップにおける前記計測元の位置から複数の前記近傍点までの各距離の平均値又は中央値に基づいて、前記計測元の位置から前記符号化対象点までの距離を予測する
     請求項1から5のうちいずれか一項に記載の符号化装置。
  7.  球座標系における被写体の三次元位置を示す点群データを取得する取得ステップと、
     前記点群データに含まれる各点の走査角度の時系列データである走査角度データを、周波数変換し、係数を量子化して符号化する角度データ符号化ステップと、
     各前記点について、計測元の位置から符号化対象点までの距離を、前記走査角度を軸とした距離マップにおける前記計測元の位置から近傍点までの距離に基づいて予測し、予測された前記距離を示す距離データを符号化する距離データ符号化ステップと、
     を有する符号化方法。
  8.  請求項1から6のうちいずれか一項に記載の符号化装置としてコンピュータを機能させるためのプログラム。
PCT/JP2021/045896 2021-12-13 2021-12-13 符号化装置、符号化方法及びプログラム WO2023112105A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180104887.7A CN118475956A (zh) 2021-12-13 2021-12-13 编码装置、编码方法和程序
EP21968027.9A EP4451217A1 (en) 2021-12-13 2021-12-13 Encoding device, encoding method, and program
PCT/JP2021/045896 WO2023112105A1 (ja) 2021-12-13 2021-12-13 符号化装置、符号化方法及びプログラム
JP2023567296A JPWO2023112105A1 (ja) 2021-12-13 2021-12-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045896 WO2023112105A1 (ja) 2021-12-13 2021-12-13 符号化装置、符号化方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2023112105A1 true WO2023112105A1 (ja) 2023-06-22

Family

ID=86774047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045896 WO2023112105A1 (ja) 2021-12-13 2021-12-13 符号化装置、符号化方法及びプログラム

Country Status (4)

Country Link
EP (1) EP4451217A1 (ja)
JP (1) JPWO2023112105A1 (ja)
CN (1) CN118475956A (ja)
WO (1) WO2023112105A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170347122A1 (en) * 2016-05-28 2017-11-30 Microsoft Technology Licensing, Llc Scalable point cloud compression with transform, and corresponding decompression
WO2019098728A1 (ko) * 2017-11-16 2019-05-23 삼성전자 주식회사 3차원 영상을 처리하는 방법 및 장치
WO2021132595A1 (ja) * 2019-12-26 2021-07-01 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170347122A1 (en) * 2016-05-28 2017-11-30 Microsoft Technology Licensing, Llc Scalable point cloud compression with transform, and corresponding decompression
WO2019098728A1 (ko) * 2017-11-16 2019-05-23 삼성전자 주식회사 3차원 영상을 처리하는 방법 및 장치
WO2021132595A1 (ja) * 2019-12-26 2021-07-01 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Also Published As

Publication number Publication date
EP4451217A1 (en) 2024-10-23
JPWO2023112105A1 (ja) 2023-06-22
CN118475956A (zh) 2024-08-09

Similar Documents

Publication Publication Date Title
CN111699683A (zh) 一种点云编码方法、点云解码方法及相关设备
CN111247802B (zh) 用于三维数据点集处理的方法和设备
KR20220093135A (ko) 클라우드 압축을 위한 방위각 사전 정보 및 트리 표현을 위한 방법 및 시스템
US20210335016A1 (en) Method and device for encoding or decoding three-dimensional data point set
WO2021084295A1 (en) Angular priors for improved prediction in tree-based point cloud coding
CN111602176A (zh) 点云数据的位置坐标的编解码方法、系统和存储介质
US11580672B2 (en) Angular mode simplification for geometry-based point cloud compression
US20210343047A1 (en) Three-dimensional data point encoding and decoding method and device
KR20220164702A (ko) 지오메트리 기반 포인트 클라우드 압축에서의 각도 및 방위각 모드들에 대한 레이저 각도들의 코딩
KR20220166792A (ko) 지오메트리 기반 포인트 클라우드 압축을 위한 각도 모드 단순화
JP2024501171A (ja) ジオメトリ点群圧縮のためのインター予測コーディング
AU2021358861A1 (en) GPCC planar mode and buffer simplification
Tu et al. Motion analysis and performance improved method for 3D LiDAR sensor data compression
US20220108493A1 (en) Encoding/decoding method and device for three-dimensional data points
CN112385222B (zh) 点云处理的方法与装置
WO2023112105A1 (ja) 符号化装置、符号化方法及びプログラム
KR102025113B1 (ko) LiDAR를 이용한 이미지 생성 방법 및 이를 위한 장치
CN116325733A (zh) 几何点云压缩中的角模式和树内量化
US20210409778A1 (en) Sorted laser angles for geometry-based point cloud compression (g-pcc)
CN111406408A (zh) 三维数据点的编解码方法和装置
JP7307390B2 (ja) ノイズ判定方法、ノイズ判定装置及びプログラム
WO2021248390A1 (zh) 点云的排序方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023567296

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021968027

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021968027

Country of ref document: EP

Effective date: 20240715