WO2023112075A1 - Flavor molded body for non-combustion heating type flavor inhaler, method for producing same and non-combustion heating type flavor inhaler - Google Patents

Flavor molded body for non-combustion heating type flavor inhaler, method for producing same and non-combustion heating type flavor inhaler Download PDF

Info

Publication number
WO2023112075A1
WO2023112075A1 PCT/JP2021/045742 JP2021045742W WO2023112075A1 WO 2023112075 A1 WO2023112075 A1 WO 2023112075A1 JP 2021045742 W JP2021045742 W JP 2021045742W WO 2023112075 A1 WO2023112075 A1 WO 2023112075A1
Authority
WO
WIPO (PCT)
Prior art keywords
flavor
molded
molded product
aerosol source
compression
Prior art date
Application number
PCT/JP2021/045742
Other languages
French (fr)
Japanese (ja)
Inventor
亮祐 長瀬
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/045742 priority Critical patent/WO2023112075A1/en
Priority to JP2023567273A priority patent/JPWO2023112075A1/ja
Publication of WO2023112075A1 publication Critical patent/WO2023112075A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the present invention relates to a flavor molding for a non-combustion heating flavor inhaler, a method for producing the same, and a non-combustion heating flavor inhaler.
  • a combustion-type flavor inhaler obtains flavor by burning a tobacco filling containing leaf tobacco.
  • a non-combustion heating type flavor inhaler has been proposed in which flavor is obtained by heating a flavor source including tobacco material instead of burning it.
  • the heating temperature of the non-combustion-heating flavor inhaler is lower than the combustion temperature of the combustion-type flavor inhaler, for example, about 400° C. or less.
  • an aerosol source such as glycerin is added to the flavor source in the non-combustion heating type flavor inhaler from the viewpoint of increasing the amount of smoke.
  • Patent Literature 1 discloses a flavor source for a non-combustion heating type flavor inhaler.
  • the flavor source for the non-combustion heating type flavor inhaler is in the form of powder or the like, it is necessary to fill the pot or wrapping paper with the flavor source at the time of use, resulting in poor handling. Therefore, the present inventors have investigated compression molding of a flavor source into a molded flavor body, and increasing the amount of the aerosol source contained in the molded flavor body in order to further increase the amount of smoke. However, the inventors have found that as the amount of the aerosol source in the flavor molded product increases, the aerosol source is exposed on the surface of the flavor molded product, and the stickiness of the surface of the flavor molded product increases. From the viewpoint of improving handling properties, it is desired to develop a flavor molding for a non-combustion heating type flavor inhaler that has less stickiness on the surface even when the content of the aerosol source is large.
  • An object of the present invention is to provide a flavor molded body for a non-combustion heating type flavor inhaler with less stickiness on the surface, and a non-combustion heating type flavor inhaler provided with the flavor molding.
  • the present invention includes the following embodiments.
  • a method for producing a flavor molding for a non-combustion heating type flavor inhaler comprising:
  • the sugar is selected from the group consisting of glucose, sucrose, fructose, mannose, xylose, galactose, ribose, arabinose, erythrose, erythrulose, trehalose, xylitol, rhamnose, sorbitol, agarose, amylose, starch, and chitosan;
  • aerosol source is at least one selected from the group consisting of glycerin, 1,3-propanediol, propylene glycol, and 1,3-butanediol. described method.
  • a flavor molding for a non-combustion heating type flavor inhaler comprising a tobacco powder raw material having an average particle size of 300 ⁇ m or less, an aerosol source, and a material having a melting point of 30 to 200° C.,
  • the flavor molded body has a porous structure formed of the tobacco powder raw material and the material, the aerosol source is retained within pores of the porous structure;
  • a flavor molded body for a non-combustion heating type flavor inhaler wherein the content of the aerosol source contained in the flavor molded body is 15% by mass or more.
  • the sugar is selected from the group consisting of glucose, sucrose, fructose, mannose, xylose, galactose, ribose, arabinose, erythrose, erythrulose, trehalose, xylitol, rhamnose, sorbitol, agarose, amylose, starch, and chitosan.
  • the aerosol source is at least one selected from the group consisting of glycerin, 1,3-propanediol, propylene glycol, and 1,3-butanediol.
  • a non-combustion heated flavor inhaler comprising:
  • the present invention it is possible to provide a flavor molded body for a non-combustion heating type flavor inhaler with less stickiness on the surface, and a non-combustion heating type flavor inhaler provided with the flavor molding.
  • FIG. 2 is a microphotograph of a cross section of the molded flavor product of Example 3.
  • FIG. 2 is a microphotograph of a cross section of the molded flavor product of Example 4.
  • FIG. 1 is a microphotograph of a cross section of a molded flavor product of Comparative Example 1.
  • a method for manufacturing a flavor molded body for a non-combustion heating type flavor inhaler includes the following steps.
  • a tobacco powder raw material having an average particle size of 300 ⁇ m or less, a material having a melting point of 30 to 200° C. (hereinafter also referred to as “low melting point material”), and an alcohol having 2 to 7 carbon atoms are mixed to form a mixture.
  • compression molding step compression molding the mixture to form a compression molded product
  • heating step a step of heating to a melting point or higher
  • aerosol source impregnation step a step of impregnating the compression-molded article after heating with an aerosol source
  • a flavor molding having sufficient strength can be obtained without using a general binder.
  • the resin composition derived from the tobacco powder raw material migrates to the surface of the tobacco powder raw material, and the tobacco powder raw material and the like are bonded to each other through the resin composition, so that a flavor molding having sufficient strength can be obtained. be.
  • the addition of the alcohol dehydrates some of the hydroxyl groups of the cellulose contained in the tobacco powder raw material and condenses them with the nearby cellulose, resulting in a molded flavor product having sufficient strength.
  • a low-melting-point material with a melting point of 30 to 200°C is added in the raw material mixing step.
  • the low melting point material melts during the heating process and most of it is absorbed into the tobacco powder material. Therefore, the portion of the compression-molded product where the low-melting-point material was present becomes a cavity, and a porous structure is formed in the compression-molded product.
  • the aerosol source impregnation step the aerosol source is accommodated in the pores of the compression molded product, so that the obtained flavor molded product can retain a large amount of the aerosol source and reduce the stickiness of the surface.
  • the saccharides when saccharides are used as the low-melting-point material, the saccharides can give a favorable aroma when the non-combustion heating type flavor inhaler is heated. Furthermore, once the saccharides are heated in the heating step, caramel compounds and Maillard reaction products are produced. These caramel compounds and Maillard reaction products have vapor pressure and are likely to be released when reheated in a non-combustion heated flavor inhaler. Therefore, since the reaction energy is not required compared to the case of heating with a non-combustion heating type flavor inhaler without first heating, the flavor components derived from sugars are released more quickly, and the flavor at the beginning of use can be improved.
  • the method according to the present embodiment may include steps other than the raw material mixing step, compression molding step, heating step, and aerosol source impregnation step.
  • Other steps include, for example, a step of removing at least part of the alcohol from the mixture (hereinafter also referred to as an “alcohol removing step”), a coating step, and the like.
  • the alcohol removing step may be performed during the compression molding step after the raw material mixing step, or may be performed separately after the compression molding step and before the heating step.
  • a tobacco powder raw material having an average particle size of 300 ⁇ m or less, a material having a melting point of 30 to 200° C. (low melting point material), and an alcohol having 2 to 7 carbon atoms are mixed to form a mixture.
  • materials other than the tobacco powder raw material, the low melting point material, and the alcohol may be further mixed.
  • Other materials include, for example, volatile perfume ingredients, cellulose powder, tea powder, Labiatae plant powder, Umbelliferae plant powder, and the like.
  • the volatile perfume component may be impregnated together with the aerosol source in the aerosol source impregnation step.
  • Tobacco powder raw materials include, for example, leaf tobacco, leaf veins, stems, roots, flowers, etc. of tobacco which have been chopped into powder.
  • the type of leaf tobacco is not particularly limited, and may be, for example, yellow variety, burley variety, native variety, oriental leaf, fermented leaves thereof, or the like. These tobacco powder raw materials may be used alone or in combination of two or more.
  • the average particle size of the tobacco powder raw material is 300 ⁇ m or less. When the average particle size is 300 ⁇ m or less, a flavor molding having sufficient strength can be obtained.
  • the average particle size is preferably 5 to 100 ⁇ m, more preferably 10 to 80 ⁇ m, even more preferably 20 to 50 ⁇ m.
  • the average particle size is measured using a light scattering method.
  • the low melting point material has a melting point of 30 to 200°C, preferably 50 to 180°C, more preferably 70 to 170°C.
  • the melting point is 30° C. or higher, it is possible to prevent sticking or the like of the material in the manufacturing process.
  • the melting point is 200° C. or less, the low-melting-point material can be melted by low-temperature heating, so that other components contained in the compression-molded product can be prevented from being deteriorated by heat.
  • the melting point is measured by the DSC method or the like.
  • Low-melting-point materials with a melting point of 30-200°C include, for example, sugars, fats and oils, fatty acids, and aliphatic hydrocarbons. One of these materials may be used, or two or more thereof may be used in combination.
  • saccharides are preferable as the low-melting-point material from the viewpoint of imparting a preferable aroma as described above, particularly from the viewpoint of improving the flavor at the initial stage of use.
  • the saccharides can be monosaccharides or disaccharides.
  • sugars having a melting point of 30 to 200° C. include glucose, sucrose, fructose, mannose, xylose, galactose, ribose, arabinose, erythrose, erythrulose, trehalose, xylitol, rhamnose, sorbitol, agarose, amylose, starch, chitosan, and the like. be done.
  • One kind of these saccharides may be used, or two or more kinds thereof may be used in combination.
  • glucose, sucrose, or fructose is preferable from the viewpoint of the fluidity of crystals and the flavor produced.
  • oils with a melting point of 30 to 200°C include animal oils and hydrogenated vegetable oils. These fats and oils may be used alone or in combination of two or more.
  • a fatty acid with 10-30 carbon atoms and a melting point of 30-200°C is preferable.
  • fatty acids include decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, eicosanoic acid, docosanoic acid, tetracosanoic acid, hexacosanoic acid, octacosanoic acid, triacontanoic acid, and isomers thereof. mentioned. These fatty acids may be used alone or in combination of two or more.
  • an aliphatic hydrocarbon having a melting point of 30 to 200°C an aliphatic hydrocarbon having a melting point of 30 to 200°C and having 18 to 30 carbon atoms is preferable.
  • examples of such aliphatic hydrocarbons include octadecane, nonadecane, icosane, henicosane, tetracosane, triacontane, and isomers thereof.
  • One of these aliphatic hydrocarbons may be used, or two or more thereof may be used in combination.
  • the shape of the low-melting-point material is not particularly limited, but from the viewpoint of forming a good porous structure in the compression-molded product in the heating step, it is preferably in the form of powder, granules, or chips.
  • the low-melting-point material may be solidified in a fixed form in a pure crystal state such as a needle-like crystal.
  • the amount of the low-melting-point material added is preferably 1 to 60 parts by mass, more preferably 3 to 50 parts by mass, and even more preferably 5 to 40 parts by mass, based on 100 parts by mass of the tobacco powder raw material.
  • the added amount is 1 part by mass or more, a sufficient porous structure can be formed in the compression-molded product in the heating step. Further, by setting the amount to be added to 60 parts by mass or less, it is possible to sufficiently secure the strength of the molded flavor product.
  • the alcohol used in this step has 2 to 7 carbon atoms, preferably 2 to 5 carbon atoms, more preferably 2 to 3 carbon atoms.
  • the alcohol is preferably ethanol, 2-propanol, or benzyl alcohol, and more preferably ethanol, from the viewpoint of obtaining a molded flavor having higher strength.
  • One of these alcohols may be used, or two or more thereof may be used in combination.
  • the amount of alcohol to be added is preferably 1 to 20 parts by mass, more preferably 3 to 17 parts by mass, and even more preferably 5 to 15 parts by mass, based on 100 parts by mass of the tobacco powder raw material.
  • the added amount is 1 part by mass or more, the strength of the molded flavor product can be sufficiently secured.
  • the amount added is 20 parts by mass or less, compression molding can be easily performed in the compression molding process.
  • volatile perfume ingredients include, but are not limited to, phenethyl acetate, ethyl hexanate, isoamyl acetate, benzyl acetate, ethyl octanate, ethyl oleate, phenethyl alcohol, acetoanisole, benzaldehyde, benzyl alcohol, menthol, carvone, cinnamon.
  • the amount of the volatile flavoring component added is not particularly limited, but can be, for example, 1 to 20 parts by mass based on 100 parts by mass of the tobacco powder raw material.
  • the method of mixing the tobacco powder raw material, the low-melting-point material, the alcohol, etc. to form a mixture is not particularly limited.
  • compression molding process In this step, the mixture obtained in the raw material mixing step is compression-molded to form a compression-molded product.
  • a compression molding machine used for compression molding is not particularly limited, and examples thereof include a rotary tableting machine.
  • the conditions for compression molding are not particularly limited, but molding is preferably performed at a compression pressure of 2 kN or more, for example.
  • the shape of the compression-molded product is not particularly limited, but may be, for example, a tablet shape.
  • the alcohol removal step may be performed simultaneously in this step. For example, at least part of the alcohol may be removed by natural drying or the like during compression molding.
  • Alcohol removal step This step is an optional step and removes at least part of the alcohol from the mixture.
  • the alcohol removal step may be performed on the mixture during the compression molding step, or may be performed separately on the compression molded product obtained after the compression molding step.
  • the removal of alcohol can be carried out at the same time as the melting of the low-melting-point material in the heating step, which will be described later.
  • a porous structure can be formed more easily in the molding.
  • the alcohol at 10-40°C it is preferable to remove at least part of the alcohol at 10-40°C.
  • the temperature at which at least part of the alcohol is removed is more preferably 20 to 40.degree. C., still more preferably 30 to 40.degree.
  • at least part of the alcohol can be removed by drying at 10-40° C. for 30-180 minutes.
  • At least part of the alcohol can be removed by, for example, electric oven, hot air drying, tunnel dryer, natural drying, and the like. Also, it is preferable to remove the alcohol in an open space, not in a closed space.
  • the compression molded product obtained in the compression molding step is heated to the melting point of the low melting point material or higher. Since the compression molding is heated above the melting point of the low melting point material, the low melting point material contained in the compression molding is melted and most of it is absorbed by the tobacco powder raw material. Therefore, the portion of the compression-molded product where the low-melting-point material was present becomes a cavity, and a porous structure is formed in the compression-molded product. Also, alcohol contained in the compression-molded product is removed by heating.
  • the heating temperature in the heating step is not particularly limited as long as it is equal to or higher than the melting point of the low-melting-point material, but it is preferably 10°C or more higher than the melting point, more preferably 20°C or more higher than the melting point. Moreover, from the viewpoint of suppressing the influence of heating on the flavor, the heating temperature is preferably 200° C. or less.
  • the heating time in the heating step depends on the heating temperature, but can be, for example, 2 to 20 minutes.
  • the heating method in the heating step is not particularly limited, but it is preferably a method in which heat is applied from the outside of the compression molded product.
  • the surface of the compression molding is exposed to a higher temperature than the inside, and some hydroxyl groups of the cellulose contained in the tobacco powder raw material located on the surface of the compression molding react with dehydration. do.
  • the aerosol source does not stay on the surface of the compression-molded product, but easily enters the inside of the compression-molded product, so that the stickiness of the surface of the obtained flavor-molded product can be further reduced.
  • the method of applying heat from the outside of the compression-molded product is not particularly limited.
  • the heating step preferably removes 90% by mass or more, more preferably 95% by mass or more, and even more preferably 99% by mass or more of the alcohol contained in the compression molded product. , it is particularly preferred that all alcohol is removed.
  • aerosol source impregnation step In this step, the compression-molded article heated in the heating step is impregnated with an aerosol source. By impregnating the compression-molded article with the aerosol source, the aerosol source penetrates into the pores of the porous structure formed in the compression-molded article, and the aerosol source is held in the pores. As a result, a molded flavor product with less stickiness on the surface can be obtained.
  • a liquid aerosol source can be used as the aerosol source, and glycerin, 1,3-propanediol, propylene glycol, and 1,3-butanediol are preferred.
  • glycerin, 1,3-propanediol, propylene glycol, and 1,3-butanediol are preferred.
  • One of these aerosol sources may be used, or two or more of them may be used in combination.
  • the temperature at which the compression-molded product is impregnated with the aerosol source is not particularly limited, but from the viewpoint of facilitating the accommodation of the aerosol source in the pores, it is preferably 30 to 60°C. Also, the time for impregnating the compression molded product with the aerosol source is not particularly limited, but it can be, for example, 1 to 72 hours.
  • the aerosol source When the compression molding is impregnated with the aerosol source, the aerosol source may be added with the above-described volatile fragrance component, and the volatile fragrance component may be impregnated together with the aerosol source in this step.
  • volatile perfume ingredients as well as the aerosol source are retained within the pores of the porous structure, which is preferred.
  • the content of the aerosol source contained in the flavor molded product obtained is preferably 15% by mass or more, more preferably 17 to 40% by mass, and even more preferably 19 to 30% by mass.
  • the content is 15% by mass or more, a sufficient amount of smoke can be obtained when the flavor molding is used in a non-combustion heating type flavor inhaler.
  • stickiness of the surface of the flavor molded article is sufficiently suppressed even when the content of the aerosol source is relatively large, such as 15% by mass or more.
  • the shape of the flavor molded product according to this embodiment is not particularly limited, but may be, for example, tablet-shaped, plate-shaped, cylindrical, rod-shaped, spherical, hollow, porous, or the like.
  • a tablet shape is preferred from the viewpoint of ease of use and maintenance of strength.
  • the flavor molding is tablet-shaped, its size can be, for example, 5 to 15 mm in diameter and 5 to 10 mm in height.
  • a flavor molding for a non-combustion-heating flavor inhaler includes a tobacco powder raw material having an average particle size of 300 ⁇ m or less, an aerosol source, and a material having a melting point of 30 to 200°C.
  • the flavor molded body has a porous structure formed of the tobacco powder raw material and the material. That is, the wall portion of the porous structure is formed of tobacco powder raw material and low melting point material.
  • the aerosol source is retained within the pores of the porous structure.
  • the content of the aerosol source contained in the flavor molded product is 15% by mass or more.
  • the flavor molded article has a porous structure formed of the tobacco powder raw material and the low melting point material, and the aerosol source is held within the pores of the porous structure. Therefore, even if the content of the aerosol source is relatively large, such as 15% by mass or more, the aerosol source is stably retained in the pores and does not come out on the surface of the molded flavor product, resulting in stickiness on the surface of the molded flavor product. is suppressed. In addition, since the content of the aerosol source is 15% by mass or more, a sufficient amount of smoke can be obtained when the flavor molding according to this embodiment is used in a non-combustion heating type flavor inhaler.
  • the flavor molded article according to this embodiment can be suitably produced by the above-described method for producing a flavor molded article according to this embodiment. Therefore, the tobacco powder raw material, the low-melting-point material, and the aerosol source contained in the flavor molded article according to this embodiment can be the same as in the method for producing the flavor molded article according to the above-described embodiment.
  • a non-combustion heating type flavor inhaler includes a flavor source housing body that houses the flavor molded body according to the present embodiment, a power supply unit that includes a power supply section, and a power supply that receives power from the power supply section. a heating unit for heating the molded flavor in the flavor source container. Since the non-combustion-heating flavor inhaler according to this embodiment includes the molded flavor body according to this embodiment, a sufficient amount of smoke can be obtained during use. In addition, since the molded flavor product is less sticky on the surface, it is easy to handle. An example of the non-combustion heating flavor inhaler according to the present embodiment is shown below, but the non-combustion heating flavor inhaler according to the present embodiment is not limited to this.
  • FIG. 1 An example of the non-combustion heating type flavor inhaler according to this embodiment is shown in FIG.
  • the non-combustion heating type flavor inhaler 1 shown in FIG. A heating section 5 for receiving and heating the molded flavor body 2 , a control section 6 for controlling the temperature of the heating section 5 , and a mouthpiece 7 are provided. Inside the flavor source container 3 , the flavor molded body 2 is fixed by a raw material position adjusting jig 8 . Since the flavor molding 2 according to the present embodiment is less sticky, solid, and easy to handle, it does not need to be filled in a pot or a wrapping paper. can be done.
  • the heating unit 5 is heated by supplying electric power from the power supply unit 4 to the heating unit 5 according to an instruction from the control unit 6 .
  • the heat from the heating unit 5 is transmitted to the flavor molded body 2 through the metal plate 9, and the flavor molded body 2 is heated.
  • An aerosol containing a flavor component is generated by heating the flavor molded body 2, and the aerosol and the flavor component are supplied to the user by inhaling the aerosol from the mouthpiece 7 by the user.
  • the heating temperature is preferably 150 to 400°C, more preferably 200 to 350°C. Note that the heating temperature indicates the temperature of the heater.
  • Example 1 20 parts by weight of glucose (manufactured by Fujifilm wako chemical, melting point 146° C., particle size of about 0.2 mm) and 10 parts by weight of ethanol are added to 100 parts by weight of tobacco powder raw material (leaf tobacco, Brazilian flue) having an average particle size of 30 ⁇ m. was added, mixed gently with a spatula, and then shaken for 30 minutes. The resulting mixture was molded into a tablet shape using a compression molding machine (trade name: TDP 0, manufactured by LFA Machines Oxford Ltd.) with a compression pressure of 3 kN. The resulting compression molded product was dried at 40° C. for 3 hours to remove ethanol contained in the compression molded product.
  • a compression molding machine trade name: TDP 0, manufactured by LFA Machines Oxford Ltd.
  • the compression-molded product was heated in an oven at 190° C. for 20 minutes, and the mass after heating (hereinafter referred to as “mass A”) was measured.
  • the compression-molded product after heating was immersed in glycerin and allowed to stand overnight at 60°C. After that, the glycerin was removed using a cell strainer, and the mass of the obtained flavor molding (hereinafter referred to as "mass B") was measured. From the difference between mass B and mass A, the amount of glycerin contained in the molded flavor was calculated. As a result, the amount of glycerin contained in the flavor molded product was 23.1% by mass. In addition, the surface of the obtained flavor molding was less sticky. Table 1 shows the results.
  • Example 2 A flavor molding was prepared in the same manner as in Example 1, except that sucrose (manufactured by Fujifilm Wako Chemical Co., melting point 186° C., particle size about 2 mm) was used instead of glucose as the low-melting-point material. Table 1 shows the results.
  • Example 3 A flavor molding was prepared in the same manner as in Example 1, except that the amount of glucose added was changed to 10 parts by mass with respect to 100 parts by mass of the tobacco powder raw material. Table 1 shows the results. Further, FIG. 2 shows a microscopic photograph of a cross section of the molded flavor product.
  • Example 4 A flavor molding was prepared in the same manner as in Example 1, except that the amount of glucose added was changed to 30 parts by mass with respect to 100 parts by mass of the tobacco powder raw material. Table 1 shows the results. Further, FIG. 3 shows a microphotograph of a cross section of the molded flavor product.
  • Example 1 A flavor molding was prepared in the same manner as in Example 1, except that glucose was not added. Table 1 shows the results. Further, FIG. 4 shows a microscopic photograph of a cross section of the molded flavor product.
  • the flavor molded bodies of Examples 1 to 4 which are the flavor molded bodies according to the present embodiment, had less stickiness on the surface.
  • the molded flavor product of Comparative Example 1 which was prepared without adding the low-melting-point material, had a very sticky surface and poor handleability.
  • a porous structure derived from a low melting point material (glucose) is formed.
  • the molded flavor product of Comparative Example 1 did not have a porous structure. It is presumed that glycerin was retained in the pores of the porous structure of the molded flavor products of Examples 1 to 4, so that the surface was less sticky even when the glycerin content was as high as 15% by mass.
  • Example 5 (Preparation of flavor molding) 10 parts by weight of glucose (manufactured by Fujifilm wako chemical, melting point 146° C., particle size of about 0.2 mm) and 10 parts by weight of ethanol are added to 100 parts by weight of tobacco powder raw material (leaf tobacco, Brazilian flue) having an average particle size of 30 ⁇ m. was added, mixed gently with a spatula, and then shaken for 30 minutes. The resulting mixture was molded into a tablet shape using a compression molding machine (trade name: TDP 0, manufactured by LFA Machines Oxford Ltd.) with a compression pressure of 3 kN. The resulting compression molded product was dried at 40° C. for 3 hours to remove ethanol contained in the compression molded product.
  • a compression molding machine trade name: TDP 0, manufactured by LFA Machines Oxford Ltd.
  • the compression-molded product was heated in an oven at 160° C. for 3 minutes, and the mass after heating (hereinafter referred to as “mass A”) was measured.
  • the compression-molded product after heating was immersed in glycerin and allowed to stand overnight at 60°C. After that, the glycerin was removed using a cell strainer, and the mass of the obtained flavor molding (hereinafter referred to as "mass B") was measured.
  • mass B the mass of the obtained flavor molding
  • the amount of glycerin contained in the flavor molded product was 8.3% by mass.
  • the surface of the resulting molded flavor product was very sticky and poor in handleability.
  • Example 5 which is the flavor molded body according to the present embodiment, the flavor component derived from glucose is released more quickly than the flavor molded bodies of Comparative Examples 2 and 3. and the flavor was good in the initial period of use.
  • non-combustion heating flavor inhaler 1 non-combustion heating flavor inhaler 2 flavor molded body 3 flavor source housing body 4 power supply unit 5 heating unit 6 control unit 7 mouthpiece 8 raw material position adjustment jig 9 metal plate

Landscapes

  • Manufacture Of Tobacco Products (AREA)

Abstract

Provided is a flavor molded body for a non-combustion heating type flavor inhaler, the flavor molded body having less surface stickiness. A method for producing the flavor molded body for a non-combustion heating type flavor inhaler comprises: a step of mixing a tobacco powder raw material having a mean particle diameter of no greater than 300 µm, a material having a melting point of 30-200°C, and an alcohol having 2 to 7 carbon atoms, to form a mixture; a step of compressively molding the mixture to form a compression molded product; a step of heating the compression molded product to at least the melting point of the material; and a step of impregnating the heated compression molded product with an aerosol source.

Description

非燃焼加熱型香味吸引器用の香味成型体及びその製造方法、並びに非燃焼加熱型香味吸引器Flavor molding for non-combustion heating flavor inhaler, method for producing the same, and non-combustion heating flavor inhaler
 本発明は、非燃焼加熱型香味吸引器用の香味成型体及びその製造方法、並びに非燃焼加熱型香味吸引器に関する。 The present invention relates to a flavor molding for a non-combustion heating flavor inhaler, a method for producing the same, and a non-combustion heating flavor inhaler.
 燃焼型香味吸引器(シガレット)では、葉たばこを含むたばこ充填物を燃焼して香味を得る。該燃焼型香味吸引器の代替として、たばこ材料を含む香味源を燃焼する代わりに加熱して香味を得る非燃焼加熱型香味吸引器が提案されている。非燃焼加熱型香味吸引器の加熱温度は、燃焼型香味吸引器の燃焼温度より低く、例えば約400℃以下である。このように、非燃焼加熱型香味吸引器の加熱温度は低いため、煙量を増加させる観点から、非燃焼加熱型香味吸引器では香味源にグリセリン等のエアロゾル源が添加される。エアロゾル源は加熱により気化し、エアロゾルを発生する。該エアロゾルはたばこ成分等の香味成分を伴い使用者に供給されるため、使用者は十分な香味を得ることができる。例えば特許文献1には非燃焼加熱型香味吸引器用の香味源が開示されている。 A combustion-type flavor inhaler (cigarette) obtains flavor by burning a tobacco filling containing leaf tobacco. As an alternative to the combustion type flavor inhaler, a non-combustion heating type flavor inhaler has been proposed in which flavor is obtained by heating a flavor source including tobacco material instead of burning it. The heating temperature of the non-combustion-heating flavor inhaler is lower than the combustion temperature of the combustion-type flavor inhaler, for example, about 400° C. or less. Thus, since the heating temperature of the non-combustion heating type flavor inhaler is low, an aerosol source such as glycerin is added to the flavor source in the non-combustion heating type flavor inhaler from the viewpoint of increasing the amount of smoke. The aerosol source is vaporized by heating to generate an aerosol. Since the aerosol is supplied to the user together with flavor components such as tobacco components, the user can obtain sufficient flavor. For example, Patent Literature 1 discloses a flavor source for a non-combustion heating type flavor inhaler.
特開昭63-148975号公報JP-A-63-148975
 しかし、非燃焼加熱型香味吸引器用の香味源が粉末状等である場合、使用時に該香味源をポットや巻紙に充填する必要があるため、取り扱い性が低い。そこで、本発明者等は香味源を圧縮成型して香味成型体とし、さらに、より煙量を増加させるために香味成型体中に含まれるエアロゾル源の量を増加させることを検討した。しかし、香味成型体中のエアロゾル源の量を増加させるにつれて、香味成型体の表面にエアロゾル源が露出し、香味成型体表面のべとつきが増大することを見出した。取り扱い性向上の観点から、エアロゾル源の含有量が多い場合にも、表面のべとつきが少ない非燃焼加熱型香味吸引器用の香味成型体の開発が望まれる。 However, if the flavor source for the non-combustion heating type flavor inhaler is in the form of powder or the like, it is necessary to fill the pot or wrapping paper with the flavor source at the time of use, resulting in poor handling. Therefore, the present inventors have investigated compression molding of a flavor source into a molded flavor body, and increasing the amount of the aerosol source contained in the molded flavor body in order to further increase the amount of smoke. However, the inventors have found that as the amount of the aerosol source in the flavor molded product increases, the aerosol source is exposed on the surface of the flavor molded product, and the stickiness of the surface of the flavor molded product increases. From the viewpoint of improving handling properties, it is desired to develop a flavor molding for a non-combustion heating type flavor inhaler that has less stickiness on the surface even when the content of the aerosol source is large.
 本発明は、表面のべとつきが少ない非燃焼加熱型香味吸引器用の香味成型体、及び該香味成型体を備える非燃焼加熱型香味吸引器を提供することを目的とする。 An object of the present invention is to provide a flavor molded body for a non-combustion heating type flavor inhaler with less stickiness on the surface, and a non-combustion heating type flavor inhaler provided with the flavor molding.
 本発明は以下の実施態様を含む。 The present invention includes the following embodiments.
[1]平均粒子径が300μm以下のたばこ粉末原料と、融点が30~200℃の材料と、炭素数2~7のアルコールと、を混合して混合物を形成する工程と、
 前記混合物を圧縮成型して圧縮成型物を形成する工程と、
 前記圧縮成型物を前記材料の融点以上に加熱する工程と、
 加熱後の前記圧縮成型物にエアロゾル源を含浸させる工程と、
を含む、非燃焼加熱型香味吸引器用の香味成型体の製造方法。
[1] A step of mixing a tobacco powder raw material having an average particle size of 300 μm or less, a material having a melting point of 30 to 200° C., and an alcohol having 2 to 7 carbon atoms to form a mixture;
compression molding the mixture to form a compression molding;
a step of heating the compression-molded product to a melting point or higher of the material;
a step of impregnating the compression-molded article after heating with an aerosol source;
A method for producing a flavor molding for a non-combustion heating type flavor inhaler, comprising:
[2]前記材料が、糖類、油脂、脂肪酸、及び脂肪族炭化水素からなる群から選択される少なくとも一つの材料である、[1]に記載の方法。 [2] The method according to [1], wherein the material is at least one material selected from the group consisting of sugars, oils, fatty acids, and aliphatic hydrocarbons.
[3]前記材料が糖類である、[1]又は[2]に記載の方法。 [3] The method according to [1] or [2], wherein the material is sugar.
[4]前記糖類が、グルコース、スクロース、フルクトース、マンノース、キシロース、ガラクトース、リボース、アラビノース、エリトロース、エリトルロース、トレハロース、キシリトール、ラムノース、ソルビトール、アガロース、アミロース、スターチ、及びキトサンからなる群から選択される少なくとも一つの糖類である、[2]又は[3]に記載の方法。 [4] the sugar is selected from the group consisting of glucose, sucrose, fructose, mannose, xylose, galactose, ribose, arabinose, erythrose, erythrulose, trehalose, xylitol, rhamnose, sorbitol, agarose, amylose, starch, and chitosan; The method of [2] or [3], which is at least one saccharide.
[5]前記材料の形状が、粉末状、顆粒状、又はチップ状である、[1]~[4]のいずれかに記載の方法。 [5] The method according to any one of [1] to [4], wherein the material is in the form of powder, granules, or chips.
[6]前記エアロゾル源が、グリセリン、1,3-プロパンジオール、プロピレングリコール、及び1,3-ブタンジオールからなる群から選択される少なくとも一種である、[1]~[5]のいずれかに記載の方法。 [6] Any one of [1] to [5], wherein the aerosol source is at least one selected from the group consisting of glycerin, 1,3-propanediol, propylene glycol, and 1,3-butanediol. described method.
[7]前記炭素数2~7のアルコールがエタノールである、[1]~[6]のいずれかに記載の方法。 [7] The method according to any one of [1] to [6], wherein the alcohol having 2 to 7 carbon atoms is ethanol.
[8]前記香味成型体に含まれる前記エアロゾル源の含有量が15質量%以上である、[1]~[7]のいずれかに記載の方法。 [8] The method according to any one of [1] to [7], wherein the content of the aerosol source contained in the flavor molded product is 15% by mass or more.
[9]前記香味成型体がタブレット形状を有する、[1]~[8]のいずれかに記載の方法。 [9] The method according to any one of [1] to [8], wherein the molded flavor has a tablet shape.
[10]平均粒子径が300μm以下のたばこ粉末原料と、エアロゾル源と、融点が30~200℃の材料と、を含む非燃焼加熱型香味吸引器用の香味成型体であって、
 前記香味成型体が、前記たばこ粉末原料及び前記材料で形成される多孔質構造を有し、
 前記エアロゾル源は前記多孔質構造の細孔内に保持されており、
 前記香味成型体に含まれる前記エアロゾル源の含有量が15質量%以上である、非燃焼加熱型香味吸引器用の香味成型体。
[10] A flavor molding for a non-combustion heating type flavor inhaler, comprising a tobacco powder raw material having an average particle size of 300 μm or less, an aerosol source, and a material having a melting point of 30 to 200° C.,
The flavor molded body has a porous structure formed of the tobacco powder raw material and the material,
the aerosol source is retained within pores of the porous structure;
A flavor molded body for a non-combustion heating type flavor inhaler, wherein the content of the aerosol source contained in the flavor molded body is 15% by mass or more.
[11]前記材料が、糖類、油脂、脂肪酸、及び脂肪族炭化水素からなる群から選択される少なくとも一つの材料である、[10]に記載の香味成型体。 [11] The molded flavor product according to [10], wherein the material is at least one material selected from the group consisting of saccharides, fats and oils, fatty acids, and aliphatic hydrocarbons.
[12]前記材料が糖類である、[10]又は[11]に記載の香味成型体。 [12] The flavor molded product according to [10] or [11], wherein the material is sugar.
[13]前記糖類が、グルコース、スクロース、フルクトース、マンノース、キシロース、ガラクトース、リボース、アラビノース、エリトロース、エリトルロース、トレハロース、キシリトール、ラムノース、ソルビトール、アガロース、アミロース、スターチ、及びキトサンからなる群から選択される少なくとも一つの糖類である、[11]又は[12]に記載の香味成型体。 [13] The sugar is selected from the group consisting of glucose, sucrose, fructose, mannose, xylose, galactose, ribose, arabinose, erythrose, erythrulose, trehalose, xylitol, rhamnose, sorbitol, agarose, amylose, starch, and chitosan. The flavor molded product according to [11] or [12], which is at least one saccharide.
[14]前記エアロゾル源が、グリセリン、1,3-プロパンジオール、プロピレングリコール、及び1,3-ブタンジオールからなる群から選択される少なくとも一種である、[10]~[13]のいずれかに記載の香味成型体。 [14] Any one of [10] to [13], wherein the aerosol source is at least one selected from the group consisting of glycerin, 1,3-propanediol, propylene glycol, and 1,3-butanediol. The flavor molded body described.
[15]タブレット形状を有する、[10]~[14]のいずれかに記載の香味成型体。 [15] The flavor molded product according to any one of [10] to [14], which has a tablet shape.
[16][10]~[15]のいずれかに記載の香味成型体を収容する香味源収容体と、
 電源部を備える電源ユニットと、
 前記電源部から電力の供給を受けて前記香味源収容体内の前記香味成型体を加熱する加熱部と、
を備える非燃焼加熱型香味吸引器。
[16] A flavor source container containing the flavor molded product according to any one of [10] to [15];
a power supply unit comprising a power supply;
a heating unit that receives electric power from the power supply unit and heats the molded flavor material in the flavor source container;
A non-combustion heated flavor inhaler comprising:
 本発明によれば、表面のべとつきが少ない非燃焼加熱型香味吸引器用の香味成型体、及び該香味成型体を備える非燃焼加熱型香味吸引器を提供することができる。 According to the present invention, it is possible to provide a flavor molded body for a non-combustion heating type flavor inhaler with less stickiness on the surface, and a non-combustion heating type flavor inhaler provided with the flavor molding.
本実施形態に係る非燃焼加熱型香味吸引器の一例を示す模式図である。It is a schematic diagram showing an example of a non-combustion heating type flavor inhaler according to the present embodiment. 実施例3の香味成型体の断面を撮影した顕微鏡写真である。2 is a microphotograph of a cross section of the molded flavor product of Example 3. FIG. 実施例4の香味成型体の断面を撮影した顕微鏡写真である。2 is a microphotograph of a cross section of the molded flavor product of Example 4. FIG. 比較例1の香味成型体の断面を撮影した顕微鏡写真である。1 is a microphotograph of a cross section of a molded flavor product of Comparative Example 1. FIG.
 [非燃焼加熱型香味吸引器用の香味成型体の製造方法]
 本実施形態に係る非燃焼加熱型香味吸引器用の香味成型体(以下、「香味成型体」ともいう。)の製造方法は、以下の工程を含む。平均粒子径が300μm以下のたばこ粉末原料と、融点が30~200℃の材料(以下、「低融点材料」ともいう。)と、炭素数2~7のアルコールと、を混合して混合物を形成する工程(以下、「原料混合工程」ともいう。);前記混合物を圧縮成型して圧縮成型物を形成する工程(以下、「圧縮成型工程」ともいう。);前記圧縮成型物を前記材料の融点以上に加熱する工程(以下、「加熱工程」ともいう。);加熱後の前記圧縮成型物にエアロゾル源を含浸させる工程(以下、「エアロゾル源含浸工程」ともいう。)。
[Method for producing flavor molding for non-combustion heating type flavor inhaler]
A method for manufacturing a flavor molded body for a non-combustion heating type flavor inhaler (hereinafter also referred to as a "flavor molded body") according to the present embodiment includes the following steps. A tobacco powder raw material having an average particle size of 300 μm or less, a material having a melting point of 30 to 200° C. (hereinafter also referred to as “low melting point material”), and an alcohol having 2 to 7 carbon atoms are mixed to form a mixture. (hereinafter also referred to as “raw material mixing step”); compression molding the mixture to form a compression molded product (hereinafter also referred to as “compression molding step”); a step of heating to a melting point or higher (hereinafter also referred to as a "heating step"); a step of impregnating the compression-molded article after heating with an aerosol source (hereinafter also referred to as an "aerosol source impregnation step").
 本実施形態に係る方法では、原料混合工程において炭素数2~7のアルコールを添加することにより、一般的なバインダーを使用せずとも十分な強度を有する香味成型体が得られる。たばこ粉末原料由来の樹脂組成物がたばこ粉末原料の表面に移行し、該樹脂組成物を介してたばこ粉末原料等が互いに結合されるため、十分な強度を有する香味成型体が得られると推測される。また、前記アルコールの添加によりたばこ粉末原料に含まれるセルロースの一部の水酸基が脱水し、近傍のセルロースと縮合するため、十分な強度を有する香味成型体が得られると推測される。このように、本実施形態に係る方法では、成型時に一般的なバインダーを用いる必要がなく、また使用されるエタノールはそのほとんどが加熱工程により除去されるため、香味に影響を与えず、かつ十分な強度を有する香味成型体を得ることができる。 In the method according to the present embodiment, by adding an alcohol having 2 to 7 carbon atoms in the raw material mixing step, a flavor molding having sufficient strength can be obtained without using a general binder. It is presumed that the resin composition derived from the tobacco powder raw material migrates to the surface of the tobacco powder raw material, and the tobacco powder raw material and the like are bonded to each other through the resin composition, so that a flavor molding having sufficient strength can be obtained. be. In addition, it is presumed that the addition of the alcohol dehydrates some of the hydroxyl groups of the cellulose contained in the tobacco powder raw material and condenses them with the nearby cellulose, resulting in a molded flavor product having sufficient strength. Thus, in the method according to the present embodiment, it is not necessary to use a general binder at the time of molding, and most of the ethanol used is removed by the heating process, so it does not affect the flavor and is sufficiently It is possible to obtain a molded flavor product having an excellent strength.
 さらに、本実施形態に係る方法では、原料混合工程において融点が30~200℃の低融点材料を添加する。該低融点材料は加熱工程において融解し、その大部分はたばこ粉末原料に吸収される。そのため、圧縮成型物において該低融点材料が存在していた部分は空洞となり、圧縮成型物中に多孔質構造が形成される。その後、エアロゾル源含浸工程においてエアロゾル源は圧縮成型物の細孔内に収容されるため、得られる香味成型体はエアロゾル源を多量に保持でき、かつ、表面のべとつきを低減することができる。 Furthermore, in the method according to the present embodiment, a low-melting-point material with a melting point of 30 to 200°C is added in the raw material mixing step. The low melting point material melts during the heating process and most of it is absorbed into the tobacco powder material. Therefore, the portion of the compression-molded product where the low-melting-point material was present becomes a cavity, and a porous structure is formed in the compression-molded product. After that, in the aerosol source impregnation step, the aerosol source is accommodated in the pores of the compression molded product, so that the obtained flavor molded product can retain a large amount of the aerosol source and reduce the stickiness of the surface.
 特に、低融点材料として糖類を使用した場合、糖類は非燃焼加熱型香味吸引器の加熱時に好ましい香気を付与することができる。さらに、糖類が加熱工程において一度加熱されることで、カラメル化合物やメイラード反応生成物が生成する。これらのカラメル化合物やメイラード反応生成物は蒸気圧を有し、非燃焼加熱型香味吸引器で再度加熱した際に放出されやすい。したがって、一度目の加熱を経ずに非燃焼加熱型香味吸引器で加熱する場合よりも反応エネルギーを必要としない分、糖類由来の香味成分がより早く放出されるようになり、使用初期における香味を良好にすることができる。 In particular, when saccharides are used as the low-melting-point material, the saccharides can give a favorable aroma when the non-combustion heating type flavor inhaler is heated. Furthermore, once the saccharides are heated in the heating step, caramel compounds and Maillard reaction products are produced. These caramel compounds and Maillard reaction products have vapor pressure and are likely to be released when reheated in a non-combustion heated flavor inhaler. Therefore, since the reaction energy is not required compared to the case of heating with a non-combustion heating type flavor inhaler without first heating, the flavor components derived from sugars are released more quickly, and the flavor at the beginning of use can be improved.
 以下、本実施形態に係る方法における各工程について説明するが、本実施形態に係る方法は、原料混合工程、圧縮成型工程、加熱工程、エアロゾル源含浸工程以外の他の工程を含んでもよい。他の工程としては、例えば、前記混合物から前記アルコールの少なくとも一部を除去する工程(以下、「アルコール除去工程」ともいう。)、被膜工程等が挙げられる。なお、アルコール除去工程は、原料混合工程後であれば、圧縮成型工程中に行われてもよく、圧縮成型工程後かつ加熱工程前に別途行われてもよい。 Each step in the method according to the present embodiment will be described below, but the method according to the present embodiment may include steps other than the raw material mixing step, compression molding step, heating step, and aerosol source impregnation step. Other steps include, for example, a step of removing at least part of the alcohol from the mixture (hereinafter also referred to as an “alcohol removing step”), a coating step, and the like. The alcohol removing step may be performed during the compression molding step after the raw material mixing step, or may be performed separately after the compression molding step and before the heating step.
 (原料混合工程)
 本工程では、平均粒子径が300μm以下のたばこ粉末原料と、融点が30~200℃の材料(低融点材料)と、炭素数2~7のアルコールと、を混合して混合物を形成する。本工程では、該たばこ粉末原料、該低融点材料、該アルコール以外の他の材料をさらに混合してもよい。他の材料としては、例えば揮発性香料成分、セルロース粉末、チャ粉末、シソ科植物粉末、セリ科植物粉末等が挙げられる。なお、後述するように揮発性香料成分はエアロゾル源含浸工程においてエアロゾル源と共に含浸させてもよい。
(Raw material mixing process)
In this step, a tobacco powder raw material having an average particle size of 300 μm or less, a material having a melting point of 30 to 200° C. (low melting point material), and an alcohol having 2 to 7 carbon atoms are mixed to form a mixture. In this step, materials other than the tobacco powder raw material, the low melting point material, and the alcohol may be further mixed. Other materials include, for example, volatile perfume ingredients, cellulose powder, tea powder, Labiatae plant powder, Umbelliferae plant powder, and the like. As will be described later, the volatile perfume component may be impregnated together with the aerosol source in the aerosol source impregnation step.
 <たばこ粉末原料>
 たばこ粉末原料としては、例えば葉たばこ、たばこの葉脈部、幹部、根、花等が裁刻等され、粉末状になったものが挙げられる。前記葉たばこの種類は特に限定されず、例えば黄色種、バーレー種、在来種、オリエント葉等や、それらの発酵葉等であることができる。これらのたばこ粉末原料は一種を用いてもよく、二種以上を併用してもよい。
<Tobacco powder raw material>
Tobacco powder raw materials include, for example, leaf tobacco, leaf veins, stems, roots, flowers, etc. of tobacco which have been chopped into powder. The type of leaf tobacco is not particularly limited, and may be, for example, yellow variety, burley variety, native variety, oriental leaf, fermented leaves thereof, or the like. These tobacco powder raw materials may be used alone or in combination of two or more.
 前記たばこ粉末原料の平均粒子径は300μm以下である。前記平均粒子径が300μm以下であることにより、十分な強度を有する香味成型体が得られる。前記平均粒子径は5~100μmが好ましく、10~80μmがより好ましく、20~50μmがさらに好ましい。なお、前記平均粒子径は光散乱法を用いて測定される。 The average particle size of the tobacco powder raw material is 300 μm or less. When the average particle size is 300 μm or less, a flavor molding having sufficient strength can be obtained. The average particle size is preferably 5 to 100 μm, more preferably 10 to 80 μm, even more preferably 20 to 50 μm. The average particle size is measured using a light scattering method.
 <低融点材料>
 低融点材料の融点は30~200℃であり、50~180℃が好ましく、70~170℃がより好ましい。該融点が30℃以上であることにより、製造工程における材料の固着等を予防することができる。また、該融点が200℃以下であることにより、低温加熱により低融点材料を溶融できるため、圧縮成型物に含まれる他の成分の熱による劣化を防ぐことができる。なお、本実施形態において融点はDSC法などにより測定される。
<Low melting point material>
The low melting point material has a melting point of 30 to 200°C, preferably 50 to 180°C, more preferably 70 to 170°C. When the melting point is 30° C. or higher, it is possible to prevent sticking or the like of the material in the manufacturing process. In addition, since the melting point is 200° C. or less, the low-melting-point material can be melted by low-temperature heating, so that other components contained in the compression-molded product can be prevented from being deteriorated by heat. In addition, in this embodiment, the melting point is measured by the DSC method or the like.
 融点が30~200℃の低融点材料としては、例えば糖類、油脂、脂肪酸、脂肪族炭化水素等が挙げられる。これらの材料は一種を用いてもよく、二種以上を併用してもよい。これらの中でも低融点材料としては、前述したように好ましい香気を付与でき、特に使用初期における香味を良好できる観点から糖類が好ましい。糖類としては単糖類又は二糖類であることができる。 Low-melting-point materials with a melting point of 30-200°C include, for example, sugars, fats and oils, fatty acids, and aliphatic hydrocarbons. One of these materials may be used, or two or more thereof may be used in combination. Among these, saccharides are preferable as the low-melting-point material from the viewpoint of imparting a preferable aroma as described above, particularly from the viewpoint of improving the flavor at the initial stage of use. The saccharides can be monosaccharides or disaccharides.
 融点が30~200℃の糖類としては、例えばグルコース、スクロース、フルクトース、マンノース、キシロース、ガラクトース、リボース、アラビノース、エリトロース、エリトルロース、トレハロース、キシリトール、ラムノース、ソルビトール、アガロース、アミロース、スターチ、キトサン等が挙げられる。これらの糖類は一種を用いてもよく、二種以上を併用してもよい。これらの中でも糖類としては、結晶の流動性と生成される香味の観点から、グルコース、スクロース、又はフルクトースが好ましい。 Examples of sugars having a melting point of 30 to 200° C. include glucose, sucrose, fructose, mannose, xylose, galactose, ribose, arabinose, erythrose, erythrulose, trehalose, xylitol, rhamnose, sorbitol, agarose, amylose, starch, chitosan, and the like. be done. One kind of these saccharides may be used, or two or more kinds thereof may be used in combination. Among these sugars, glucose, sucrose, or fructose is preferable from the viewpoint of the fluidity of crystals and the flavor produced.
 融点が30~200℃の油脂としては、例えば動物性油脂や水素化した植物油脂等が挙げられる。これらの油脂は一種を用いてもよく、二種以上を併用してもよい。 Examples of oils with a melting point of 30 to 200°C include animal oils and hydrogenated vegetable oils. These fats and oils may be used alone or in combination of two or more.
 融点が30~200℃の脂肪酸としては、融点が30~200℃の炭素数10~30の脂肪酸が好ましい。このような脂肪酸としては、例えばデカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、オクタデカン酸、エイコサン酸、ドコサン酸、テトラコサン酸、へキサコサン酸、オクタコサン酸、トリアコンタン酸、およびそれらの異性体等が挙げられる。これらの脂肪酸は一種を用いてもよく、二種以上を併用してもよい。 As the fatty acid with a melting point of 30-200°C, a fatty acid with 10-30 carbon atoms and a melting point of 30-200°C is preferable. Examples of such fatty acids include decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, eicosanoic acid, docosanoic acid, tetracosanoic acid, hexacosanoic acid, octacosanoic acid, triacontanoic acid, and isomers thereof. mentioned. These fatty acids may be used alone or in combination of two or more.
 融点が30~200℃の脂肪族炭化水素としては、融点が30~200℃の炭素数18~30の脂肪族炭化水素が好ましい。このような脂肪族炭化水素としては、例えばオクタデカン、ノナデカン、イコサン、ヘンイコサン、テトラコサン、トリアコンタン、およびそれらの異性体等が挙げられる。これらの脂肪族炭化水素は一種を用いてもよく、二種以上を併用してもよい。 As the aliphatic hydrocarbon having a melting point of 30 to 200°C, an aliphatic hydrocarbon having a melting point of 30 to 200°C and having 18 to 30 carbon atoms is preferable. Examples of such aliphatic hydrocarbons include octadecane, nonadecane, icosane, henicosane, tetracosane, triacontane, and isomers thereof. One of these aliphatic hydrocarbons may be used, or two or more thereof may be used in combination.
 低融点材料の形状は特に限定されないが、加熱工程において圧縮成型物中に良好な多孔質構造を形成できる観点から、粉末状、顆粒状、又はチップ状であることが好ましい。なお、低融点材料は、針状結晶等の純結晶状態で定まった形で固体化している状態であってもよい。 The shape of the low-melting-point material is not particularly limited, but from the viewpoint of forming a good porous structure in the compression-molded product in the heating step, it is preferably in the form of powder, granules, or chips. The low-melting-point material may be solidified in a fixed form in a pure crystal state such as a needle-like crystal.
 低融点材料の添加量は、たばこ粉末原料100質量部に対して1~60質量部が好ましく、3~50質量部がより好ましく、5~40質量部がさらに好ましい。該添加量が1質量部以上であることにより、加熱工程において圧縮成型物中に多孔質構造を十分に形成することができる。また、該添加量が60質量部以下であることにより、香味成型体の強度を十分に確保することができる。 The amount of the low-melting-point material added is preferably 1 to 60 parts by mass, more preferably 3 to 50 parts by mass, and even more preferably 5 to 40 parts by mass, based on 100 parts by mass of the tobacco powder raw material. When the added amount is 1 part by mass or more, a sufficient porous structure can be formed in the compression-molded product in the heating step. Further, by setting the amount to be added to 60 parts by mass or less, it is possible to sufficiently secure the strength of the molded flavor product.
 <アルコール>
 本工程で使用するアルコールの炭素数は2~7であり、2~5が好ましく、2~3がより好ましい。前記アルコールとしては、より高い強度を有する香味成型体が得られる観点から、エタノール、2-プロパノール、ベンジルアルコールが好ましく、エタノールがより好ましい。これらのアルコールは一種を用いてもよく、二種以上を併用してもよい。
<Alcohol>
The alcohol used in this step has 2 to 7 carbon atoms, preferably 2 to 5 carbon atoms, more preferably 2 to 3 carbon atoms. The alcohol is preferably ethanol, 2-propanol, or benzyl alcohol, and more preferably ethanol, from the viewpoint of obtaining a molded flavor having higher strength. One of these alcohols may be used, or two or more thereof may be used in combination.
 アルコールの添加量は、たばこ粉末原料100質量部に対して1~20質量部が好ましく、3~17質量部がより好ましく、5~15質量部がさらに好ましい。該添加量が1質量部以上であることにより、香味成型体の強度を十分に確保することができる。また、該添加量が20質量部以下であることにより、圧縮成型工程において容易に圧縮成型を行うことができる。 The amount of alcohol to be added is preferably 1 to 20 parts by mass, more preferably 3 to 17 parts by mass, and even more preferably 5 to 15 parts by mass, based on 100 parts by mass of the tobacco powder raw material. When the added amount is 1 part by mass or more, the strength of the molded flavor product can be sufficiently secured. Moreover, since the amount added is 20 parts by mass or less, compression molding can be easily performed in the compression molding process.
 <揮発性香料成分>
 揮発性香料成分としては、特に限定されないが、例えばフェネチルアセテート、エチルヘキサネート、イソアミルアセテート、ベンジルアセテート、エチルオクタネート、オレイン酸エチル、フェネチルアルコール、アセトアニソール、ベンズアルデヒド、ベンジルアルコール、メントール、カルボン、ケイヒ酸、シンナムアルデヒド、シナミルアルコール、バニリン、エチルバニリン、シトロネロール、2,5-ジメチルピラジン、リモネン、フラネオール、シクロテン、デカン酸、イソ吉草酸エチル、吉草酸、パルミチン酸、サリチル酸エチル、ゲラニオール、グアイアコール、βイオノン、リナロール、酢酸リナリル、ネロリドール、ピペロナール、ソトロン、α-ターピネオール、メガスティグマトリエノン、ダマセノン、ネオフタジエン等が挙げられる。これらの揮発性香料成分は一種を用いてもよく、二種以上を併用してもよい。
<Volatile perfume ingredient>
Examples of volatile perfume ingredients include, but are not limited to, phenethyl acetate, ethyl hexanate, isoamyl acetate, benzyl acetate, ethyl octanate, ethyl oleate, phenethyl alcohol, acetoanisole, benzaldehyde, benzyl alcohol, menthol, carvone, cinnamon. acid, cinnamaldehyde, cinnamyl alcohol, vanillin, ethyl vanillin, citronellol, 2,5-dimethylpyrazine, limonene, furaneol, cyclotene, decanoic acid, ethyl isovalerate, valeric acid, palmitic acid, ethyl salicylate, geraniol, guaiacol, β ionone, linalool, linalyl acetate, nerolidol, piperonal, sotolone, α-terpineol, megastigmatrienone, damascenone, neophthaldiene and the like. One of these volatile perfume components may be used, or two or more thereof may be used in combination.
 揮発性香料成分を添加する場合、揮発性香料成分の添加量は特に限定されないが、例えばたばこ粉末原料100質量部に対して1~20質量部であることができる。 When adding a volatile flavoring component, the amount of the volatile flavoring component added is not particularly limited, but can be, for example, 1 to 20 parts by mass based on 100 parts by mass of the tobacco powder raw material.
 前記たばこ粉末原料、前記低融点材料、前記アルコール等を混合して混合物を形成する方法は特に限定されないが、例えばV型混合機等の一般的な混合機を用いて混合することができる。 The method of mixing the tobacco powder raw material, the low-melting-point material, the alcohol, etc. to form a mixture is not particularly limited.
 (圧縮成型工程)
 本工程では、前記原料混合工程で得られた混合物を圧縮成型して、圧縮成型物を形成する。圧縮成型に用いられる圧縮成型機は特に限定されないが、例えば回転式打錠機等が挙げられる。圧縮成型の条件は特に限定されないが、例えば2kN以上の圧縮圧力で成形することが好ましい。圧縮成型物の形状は特に限定されないが、例えばタブレット形状等であることができる。なお、前述したように、本工程内においてアルコール除去工程を同時に行ってもよい。例えば圧縮成型中に前記アルコールの少なくとも一部が自然乾燥等により除去されてもよい。
(Compression molding process)
In this step, the mixture obtained in the raw material mixing step is compression-molded to form a compression-molded product. A compression molding machine used for compression molding is not particularly limited, and examples thereof include a rotary tableting machine. The conditions for compression molding are not particularly limited, but molding is preferably performed at a compression pressure of 2 kN or more, for example. The shape of the compression-molded product is not particularly limited, but may be, for example, a tablet shape. In addition, as described above, the alcohol removal step may be performed simultaneously in this step. For example, at least part of the alcohol may be removed by natural drying or the like during compression molding.
 (アルコール除去工程)
 本工程は任意の工程であり、前記混合物から前記アルコールの少なくとも一部を除去する。前述したように、アルコール除去工程は、前記圧縮成型工程中に前記混合物に対して行われてもよく、前記圧縮成型工程後に得られた圧縮成型物に対して別途行われてもよい。アルコールの除去は後述する加熱工程において、低融点材料の溶融と同時に実施することができるが、加熱工程前に事前にアルコール除去工程を実施することで、アルコールの除去を促進し、加熱工程において圧縮成型物中に多孔質構造をより容易に形成することができる。
(Alcohol removal step)
This step is an optional step and removes at least part of the alcohol from the mixture. As described above, the alcohol removal step may be performed on the mixture during the compression molding step, or may be performed separately on the compression molded product obtained after the compression molding step. The removal of alcohol can be carried out at the same time as the melting of the low-melting-point material in the heating step, which will be described later. A porous structure can be formed more easily in the molding.
 本工程では、10~40℃でアルコールの少なくとも一部を除去することが好ましい。10℃以上でアルコールの少なくとも一部を除去することにより、アルコールの除去を十分に行うことができる。また、40℃以下でアルコールの少なくとも一部を除去することにより、加熱による香味への影響を抑制することができる。アルコールの少なくとも一部を除去する際の温度は、20~40℃がより好ましく、30~40℃がさらに好ましい。10~40℃でアルコールの少なくとも一部を除去する場合、例えば10~40℃で30~180分間乾燥することで、アルコールの少なくとも一部を除去することができる。アルコールの少なくとも一部の除去は、例えば電気オーブン、熱風乾燥、トンネルドライヤー、自然乾燥等により実施することができる。また、アルコールの除去は密閉空間内ではなく、開放状態で行うことが好ましい。 In this step, it is preferable to remove at least part of the alcohol at 10-40°C. By removing at least part of the alcohol at 10° C. or higher, the alcohol can be sufficiently removed. Also, by removing at least part of the alcohol at 40° C. or less, the influence of heating on the flavor can be suppressed. The temperature at which at least part of the alcohol is removed is more preferably 20 to 40.degree. C., still more preferably 30 to 40.degree. When at least part of the alcohol is removed at 10-40° C., for example, at least part of the alcohol can be removed by drying at 10-40° C. for 30-180 minutes. At least part of the alcohol can be removed by, for example, electric oven, hot air drying, tunnel dryer, natural drying, and the like. Also, it is preferable to remove the alcohol in an open space, not in a closed space.
 (加熱工程)
 本工程では、前記圧縮成型工程で得られた圧縮成型物を低融点材料の融点以上に加熱する。圧縮成型物を低融点材料の融点以上に加熱するため、圧縮成型物中に含まれる低融点材料は融解し、その大部分はたばこ粉末原料に吸収される。そのため、圧縮成型物において該低融点材料が存在していた部分は空洞となり、圧縮成型物中に多孔質構造が形成される。また、加熱により圧縮成型物中に含まれるアルコールが除去される。
(Heating process)
In this step, the compression molded product obtained in the compression molding step is heated to the melting point of the low melting point material or higher. Since the compression molding is heated above the melting point of the low melting point material, the low melting point material contained in the compression molding is melted and most of it is absorbed by the tobacco powder raw material. Therefore, the portion of the compression-molded product where the low-melting-point material was present becomes a cavity, and a porous structure is formed in the compression-molded product. Also, alcohol contained in the compression-molded product is removed by heating.
 加熱工程における加熱温度は、低融点材料の融点以上であれば特に限定されないが、融点よりも10℃以上高いことが好ましく、融点よりも20℃以上高いことがより好ましい。また、加熱による香味への影響を抑制する観点から、加熱温度は200℃以下であることが好ましい。加熱工程における加熱時間は加熱温度にもよるが、例えば2~20分であることができる。 The heating temperature in the heating step is not particularly limited as long as it is equal to or higher than the melting point of the low-melting-point material, but it is preferably 10°C or more higher than the melting point, more preferably 20°C or more higher than the melting point. Moreover, from the viewpoint of suppressing the influence of heating on the flavor, the heating temperature is preferably 200° C. or less. The heating time in the heating step depends on the heating temperature, but can be, for example, 2 to 20 minutes.
 加熱工程における加熱方法は特に限定されないが、熱を圧縮成型物の外側から加えることにより行われる方法であることが好ましい。熱を圧縮成型物の外側から加えることにより、圧縮成型物の表面の方が内側より高温にさらされ、圧縮成型物の表面に位置するたばこ粉末原料に含まれるセルロースの一部の水酸基が脱水反応する。これにより、圧縮成型物の表面の方が内側より疎水性となるため、グリセリン等の親水性のエアロゾル源は、圧縮成型物の表面よりも内側と親和性が高くなる。したがって、エアロゾル源が圧縮成型物の表面にとどまらず、圧縮成型物の内部に入りやすくなるため、得られる香味成型体表面のべとつきをより低減できる。熱を圧縮成型物の外側から加える方法は特に限定されないが、例えば熱風オーブン、遠赤外線オーブン、過熱水蒸気オーブン等により加熱する方法が挙げられる。 The heating method in the heating step is not particularly limited, but it is preferably a method in which heat is applied from the outside of the compression molded product. By applying heat from the outside of the compression molding, the surface of the compression molding is exposed to a higher temperature than the inside, and some hydroxyl groups of the cellulose contained in the tobacco powder raw material located on the surface of the compression molding react with dehydration. do. This makes the surface of the compression molding more hydrophobic than the inside, so that a hydrophilic aerosol source such as glycerin has a higher affinity with the inside than the surface of the compression molding. Therefore, the aerosol source does not stay on the surface of the compression-molded product, but easily enters the inside of the compression-molded product, so that the stickiness of the surface of the obtained flavor-molded product can be further reduced. The method of applying heat from the outside of the compression-molded product is not particularly limited.
 加熱工程により、前記圧縮成型物に含まれるアルコールの90質量%以上が除去されることが好ましく、95質量%以上が除去されることがより好ましく、99質量%以上が除去されることがさらに好ましく、全てのアルコールが除去されることが特に好ましい。 The heating step preferably removes 90% by mass or more, more preferably 95% by mass or more, and even more preferably 99% by mass or more of the alcohol contained in the compression molded product. , it is particularly preferred that all alcohol is removed.
 (エアロゾル源含浸工程)
 本工程は、前記加熱工程により加熱された加熱後の前記圧縮成型物にエアロゾル源を含浸させる。圧縮成型物にエアロゾル源を含浸させることで、圧縮成型物に形成された多孔質構造の細孔内にエアロゾル源が侵入し、該細孔内にエアロゾル源が保持される。これにより、表面のべとつきの少ない香味成型体が得られる。
(Aerosol source impregnation step)
In this step, the compression-molded article heated in the heating step is impregnated with an aerosol source. By impregnating the compression-molded article with the aerosol source, the aerosol source penetrates into the pores of the porous structure formed in the compression-molded article, and the aerosol source is held in the pores. As a result, a molded flavor product with less stickiness on the surface can be obtained.
 エアロゾル源としては液状のエアロゾル源を用いることができ、グリセリン、1,3-プロパンジオール、プロピレングリコール、1,3-ブタンジオールが好ましい。これらのエアロゾル源は一種を用いてもよく、二種以上を併用してもよい。 A liquid aerosol source can be used as the aerosol source, and glycerin, 1,3-propanediol, propylene glycol, and 1,3-butanediol are preferred. One of these aerosol sources may be used, or two or more of them may be used in combination.
 圧縮成型物にエアロゾル源を含浸させる際の温度は特に限定されないが、エアロゾル源を細孔内により容易に収容させる観点から、30~60℃であることが好ましい。また、圧縮成型物にエアロゾル源を含浸させる時間は特に限定されないが、例えば1~72時間であることができる。 The temperature at which the compression-molded product is impregnated with the aerosol source is not particularly limited, but from the viewpoint of facilitating the accommodation of the aerosol source in the pores, it is preferably 30 to 60°C. Also, the time for impregnating the compression molded product with the aerosol source is not particularly limited, but it can be, for example, 1 to 72 hours.
 圧縮成型物にエアロゾル源を含浸させる際に、エアロゾル源に前述した揮発性香料成分を添加し、本工程においてエアロゾル源と共に揮発性香料成分も含浸させてもよい。この場合、エアロゾル源に加えて揮発性香料成分も多孔質構造の細孔内に保持されるため、好ましい。 When the compression molding is impregnated with the aerosol source, the aerosol source may be added with the above-described volatile fragrance component, and the volatile fragrance component may be impregnated together with the aerosol source in this step. In this case, volatile perfume ingredients as well as the aerosol source are retained within the pores of the porous structure, which is preferred.
 得られる香味成型体に含まれる前記エアロゾル源の含有量は、15質量%以上であることが好ましく、17~40質量%であることがより好ましく、19~30質量%であることがさらに好ましい。該含有量が15質量%以上であることにより、香味成型体を非燃焼加熱型香味吸引器で使用した際に十分な煙量が得られる。なお、本実施形態に係る香味成型体では、エアロゾル源の含有量が15質量%以上と比較的多量であっても香味成型体表面のべとつきが十分に抑制される。 The content of the aerosol source contained in the flavor molded product obtained is preferably 15% by mass or more, more preferably 17 to 40% by mass, and even more preferably 19 to 30% by mass. When the content is 15% by mass or more, a sufficient amount of smoke can be obtained when the flavor molding is used in a non-combustion heating type flavor inhaler. In addition, in the flavor molded article according to the present embodiment, stickiness of the surface of the flavor molded article is sufficiently suppressed even when the content of the aerosol source is relatively large, such as 15% by mass or more.
 本実施形態に係る香味成型体の形状は特に限定されないが、例えばタブレット形状、板状、円筒形状、棒状、球状、中空形状、多孔形状等であることができる。使用時の容易性及び強度維持の観点から、タブレット形状であることが好ましい。香味成型体がタブレット形状である場合、その大きさは、例えば直径:5~15mm、高さ:5~10mmであることができる。 The shape of the flavor molded product according to this embodiment is not particularly limited, but may be, for example, tablet-shaped, plate-shaped, cylindrical, rod-shaped, spherical, hollow, porous, or the like. A tablet shape is preferred from the viewpoint of ease of use and maintenance of strength. When the flavor molding is tablet-shaped, its size can be, for example, 5 to 15 mm in diameter and 5 to 10 mm in height.
 [非燃焼加熱型香味吸引器用の香味成型体]
 本実施形態に係る非燃焼加熱型香味吸引器用の香味成型体は、平均粒子径が300μm以下のたばこ粉末原料と、エアロゾル源と、融点が30~200℃の材料と、を含む。ここで、前記香味成型体は、前記たばこ粉末原料及び前記材料で形成される多孔質構造を有する。すなわち、該多孔質構造の壁部分は、たばこ粉末原料及び低融点材料で形成される。また、前記エアロゾル源は、前記多孔質構造の細孔内に保持されている。また、前記香味成型体に含まれる前記エアロゾル源の含有量は15質量%以上である。
[Flavor Molded Body for Non-Combustion Heating Flavor Inhaler]
A flavor molding for a non-combustion-heating flavor inhaler according to the present embodiment includes a tobacco powder raw material having an average particle size of 300 μm or less, an aerosol source, and a material having a melting point of 30 to 200°C. Here, the flavor molded body has a porous structure formed of the tobacco powder raw material and the material. That is, the wall portion of the porous structure is formed of tobacco powder raw material and low melting point material. Also, the aerosol source is retained within the pores of the porous structure. Moreover, the content of the aerosol source contained in the flavor molded product is 15% by mass or more.
 本実施形態に係る香味成型体では、香味成型体がたばこ粉末原料及び低融点材料で形成される多孔質構造を有し、エアロゾル源は該多孔質構造の細孔内に保持されている。したがって、エアロゾル源の含有量が15質量%以上と比較的多量であっても、エアロゾル源が細孔内に安定的に保持され、香味成型体表面に出てこないため、香味成型体表面のべとつきが抑制されている。また、エアロゾル源の含有量が15質量%以上であるため、本実施形態に係る香味成型体を非燃焼加熱型香味吸引器で使用した場合、十分な煙量が得られる。本実施形態に係る香味成型体は、前述した本実施形態に係る香味成型体の製造方法により好適に製造することができる。したがって、本実施形態に係る香味成型体に含まれるたばこ粉末原料、低融点材料及びエアロゾル源は、前述した本実施形態に係る香味成型体の製造方法と同様であることができる。 In the flavor molded article according to the present embodiment, the flavor molded article has a porous structure formed of the tobacco powder raw material and the low melting point material, and the aerosol source is held within the pores of the porous structure. Therefore, even if the content of the aerosol source is relatively large, such as 15% by mass or more, the aerosol source is stably retained in the pores and does not come out on the surface of the molded flavor product, resulting in stickiness on the surface of the molded flavor product. is suppressed. In addition, since the content of the aerosol source is 15% by mass or more, a sufficient amount of smoke can be obtained when the flavor molding according to this embodiment is used in a non-combustion heating type flavor inhaler. The flavor molded article according to this embodiment can be suitably produced by the above-described method for producing a flavor molded article according to this embodiment. Therefore, the tobacco powder raw material, the low-melting-point material, and the aerosol source contained in the flavor molded article according to this embodiment can be the same as in the method for producing the flavor molded article according to the above-described embodiment.
 [非燃焼加熱型香味吸引器]
 本実施形態に係る非燃焼加熱型香味吸引器は、本実施形態に係る香味成型体を収容する香味源収容体と、電源部を備える電源ユニットと、前記電源部から電力の供給を受けて前記香味源収容体内の前記香味成型体を加熱する加熱部と、を備える。本実施形態に係る非燃焼加熱型香味吸引器は、本実施形態に係る香味成型体を備えるため、使用時に十分な煙量が得られる。また、該香味成型体は表面のべとつきが少ないため、取り扱い性に優れる。以下、本実施形態に係る非燃焼加熱型香味吸引器の一例を示すが、本実施形態に係る非燃焼加熱型香味吸引器はこれに限定されない。
[Non-combustion heating flavor inhaler]
A non-combustion heating type flavor inhaler according to the present embodiment includes a flavor source housing body that houses the flavor molded body according to the present embodiment, a power supply unit that includes a power supply section, and a power supply that receives power from the power supply section. a heating unit for heating the molded flavor in the flavor source container. Since the non-combustion-heating flavor inhaler according to this embodiment includes the molded flavor body according to this embodiment, a sufficient amount of smoke can be obtained during use. In addition, since the molded flavor product is less sticky on the surface, it is easy to handle. An example of the non-combustion heating flavor inhaler according to the present embodiment is shown below, but the non-combustion heating flavor inhaler according to the present embodiment is not limited to this.
 本実施形態に係る非燃焼加熱型香味吸引器の一例を図1に示す。図1に示される非燃焼加熱型香味吸引器1は、本実施形態に係る香味成型体2をその内部に配置可能な香味源収容体3と、電源部4と、電源部4から電力の供給を受けて香味成型体2を加熱する加熱部5と、加熱部5の温度制御を行う制御部6と、マウスピース7とを備える。香味源収容体3内において、香味成型体2は原料位置調整治具8により固定されている。本実施形態に係る香味成型体2はべとつきが少なく固形状であり扱いやすいため、ポットや巻紙等に充填する必要がなく、例えばこのように香味源収容体3内にそのまま固定して配置することができる。制御部6からの指示により電源部4より加熱部5へ電力が供給されることで加熱部5が加熱される。加熱部5からの熱は金属板9を介して香味成型体2へ伝わり、香味成型体2が加熱される。香味成型体2の加熱により香味成分を伴うエアロゾルが発生し、使用者がマウスピース7より吸引することで、使用者にエアロゾル及び香味成分が供給される。加熱温度は、150~400℃であることが好ましく、200~350℃であることがより好ましい。なお、加熱温度とはヒーターの温度を示す。 An example of the non-combustion heating type flavor inhaler according to this embodiment is shown in FIG. The non-combustion heating type flavor inhaler 1 shown in FIG. A heating section 5 for receiving and heating the molded flavor body 2 , a control section 6 for controlling the temperature of the heating section 5 , and a mouthpiece 7 are provided. Inside the flavor source container 3 , the flavor molded body 2 is fixed by a raw material position adjusting jig 8 . Since the flavor molding 2 according to the present embodiment is less sticky, solid, and easy to handle, it does not need to be filled in a pot or a wrapping paper. can be done. The heating unit 5 is heated by supplying electric power from the power supply unit 4 to the heating unit 5 according to an instruction from the control unit 6 . The heat from the heating unit 5 is transmitted to the flavor molded body 2 through the metal plate 9, and the flavor molded body 2 is heated. An aerosol containing a flavor component is generated by heating the flavor molded body 2, and the aerosol and the flavor component are supplied to the user by inhaling the aerosol from the mouthpiece 7 by the user. The heating temperature is preferably 150 to 400°C, more preferably 200 to 350°C. Note that the heating temperature indicates the temperature of the heater.
 以下、本実施形態の具体例について説明するが、本発明はこれらに限定されない。 Specific examples of the present embodiment will be described below, but the present invention is not limited to these.
 [実施例1]
 平均粒子径が30μmのたばこ粉末原料(葉たばこ、ブラジル産黄色種)100質量部に対して、グルコース(Fujifilm wako chemical社製、融点146℃、粒度約0.2mm)20質量部、エタノール10質量部を添加し、スパチュラで軽く混ぜた後、30分間振盪した。得られた混合物を、圧縮成型機(商品名:TDP 0、LFA Machines oxford Ltd製)を用いて3kNの圧縮圧力でタブレット形状に成型した。得られた圧縮成型物を40℃で3時間乾燥し、圧縮成型物に含まれるエタノールを除去した。その後、圧縮成型物を190℃のオーブンで20分間加熱し、加熱後の質量(以下、「質量A」とする。)を測定した。加熱後の圧縮成型物をグリセリン中に浸漬させ、60℃の環境下で一晩放置した。その後、セルストレーナーを用いてグリセリンを除去し、得られた香味成型体の質量(以下、「質量B」とする。)を測定した。質量Bと質量Aの差から、香味成型体に含まれるグリセリンの量を算出した。その結果、香味成型体に含まれるグリセリンの量は23.1質量%であった。また、得られた香味成型体の表面はべとつきが少なかった。結果を表1に示す。
[Example 1]
20 parts by weight of glucose (manufactured by Fujifilm wako chemical, melting point 146° C., particle size of about 0.2 mm) and 10 parts by weight of ethanol are added to 100 parts by weight of tobacco powder raw material (leaf tobacco, Brazilian flue) having an average particle size of 30 μm. was added, mixed gently with a spatula, and then shaken for 30 minutes. The resulting mixture was molded into a tablet shape using a compression molding machine (trade name: TDP 0, manufactured by LFA Machines Oxford Ltd.) with a compression pressure of 3 kN. The resulting compression molded product was dried at 40° C. for 3 hours to remove ethanol contained in the compression molded product. After that, the compression-molded product was heated in an oven at 190° C. for 20 minutes, and the mass after heating (hereinafter referred to as “mass A”) was measured. The compression-molded product after heating was immersed in glycerin and allowed to stand overnight at 60°C. After that, the glycerin was removed using a cell strainer, and the mass of the obtained flavor molding (hereinafter referred to as "mass B") was measured. From the difference between mass B and mass A, the amount of glycerin contained in the molded flavor was calculated. As a result, the amount of glycerin contained in the flavor molded product was 23.1% by mass. In addition, the surface of the obtained flavor molding was less sticky. Table 1 shows the results.
 [実施例2]
 低融点材料として、グルコースの代わりにスクロース(Fujifilm wako chemical社製、融点186℃、粒度約2mm)を使用した以外は、実施例1と同様に香味成型体を調製した。結果を表1に示す。
[Example 2]
A flavor molding was prepared in the same manner as in Example 1, except that sucrose (manufactured by Fujifilm Wako Chemical Co., melting point 186° C., particle size about 2 mm) was used instead of glucose as the low-melting-point material. Table 1 shows the results.
 [実施例3]
 グルコースの添加量を、たばこ粉末原料100質量部に対して10質量部に変更した以外は、実施例1と同様に香味成型体を調製した。結果を表1に示す。また、該香味成型体の断面を撮影した顕微鏡写真を図2に示す。
[Example 3]
A flavor molding was prepared in the same manner as in Example 1, except that the amount of glucose added was changed to 10 parts by mass with respect to 100 parts by mass of the tobacco powder raw material. Table 1 shows the results. Further, FIG. 2 shows a microscopic photograph of a cross section of the molded flavor product.
 [実施例4]
 グルコースの添加量を、たばこ粉末原料100質量部に対して30質量部に変更した以外は、実施例1と同様に香味成型体を調製した。結果を表1に示す。また、該香味成型体の断面を撮影した顕微鏡写真を図3に示す。
[Example 4]
A flavor molding was prepared in the same manner as in Example 1, except that the amount of glucose added was changed to 30 parts by mass with respect to 100 parts by mass of the tobacco powder raw material. Table 1 shows the results. Further, FIG. 3 shows a microphotograph of a cross section of the molded flavor product.
 [比較例1]
 グルコースを添加しなかったこと以外は、実施例1と同様に香味成型体を調製した。結果を表1に示す。また、該香味成型体の断面を撮影した顕微鏡写真を図4に示す。
[Comparative Example 1]
A flavor molding was prepared in the same manner as in Example 1, except that glucose was not added. Table 1 shows the results. Further, FIG. 4 shows a microscopic photograph of a cross section of the molded flavor product.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、本実施形態に係る香味成型体である実施例1~4の香味成型体は、表面のべとつきが少なかった。一方、低融点材料を添加せずに調製した比較例1の香味成型体では、表面に大きなべとつきがあり、取り扱い性が低かった。また、図2~4に示されるように、本実施形態に係る香味成型体である実施例3及び4の香味成型体では、低融点材料(グルコース)に由来する多孔質構造が形成されているのに対し、比較例1の香味成型体では多孔質構造が形成されていないことが確認された。実施例1~4の香味成型体では多孔質構造の細孔内にグリセリンが保持されたため、グリセリン含有量が15質量%と比較的多い場合にも表面のべとつきが少なかったと推測される。 As shown in Table 1, the flavor molded bodies of Examples 1 to 4, which are the flavor molded bodies according to the present embodiment, had less stickiness on the surface. On the other hand, the molded flavor product of Comparative Example 1, which was prepared without adding the low-melting-point material, had a very sticky surface and poor handleability. Further, as shown in FIGS. 2 to 4, in the flavor molded bodies of Examples 3 and 4, which are the flavor molded bodies according to the present embodiment, a porous structure derived from a low melting point material (glucose) is formed. On the other hand, it was confirmed that the molded flavor product of Comparative Example 1 did not have a porous structure. It is presumed that glycerin was retained in the pores of the porous structure of the molded flavor products of Examples 1 to 4, so that the surface was less sticky even when the glycerin content was as high as 15% by mass.
 [実施例5]
 (香味成型体の調製)
 平均粒子径が30μmのたばこ粉末原料(葉たばこ、ブラジル産黄色種)100質量部に対して、グルコース(Fujifilm wako chemical社製、融点146℃、粒度約0.2mm)10質量部、エタノール10質量部を添加し、スパチュラで軽く混ぜた後、30分間振盪した。得られた混合物を、圧縮成型機(商品名:TDP 0、LFA Machines oxford Ltd製)を用いて3kNの圧縮圧力でタブレット形状に成型した。得られた圧縮成型物を40℃で3時間乾燥し、圧縮成型物に含まれるエタノールを除去した。その後、圧縮成型物を160℃のオーブンで3分間加熱し、加熱後の質量(以下、「質量A」とする。)を測定した。加熱後の圧縮成型物をグリセリン中に浸漬させ、60℃の環境下で一晩放置した。その後、セルストレーナーを用いてグリセリンを除去し、得られた香味成型体の質量(以下、「質量B」とする。)を測定した。質量Bと質量Aの差から、香味成型体に含まれるグリセリンを算出した結果、香味成型体に含まれるグリセリンの量は23質量%であった。また、得られた香味成型体の表面はべとつきが少なかった。
[Example 5]
(Preparation of flavor molding)
10 parts by weight of glucose (manufactured by Fujifilm wako chemical, melting point 146° C., particle size of about 0.2 mm) and 10 parts by weight of ethanol are added to 100 parts by weight of tobacco powder raw material (leaf tobacco, Brazilian flue) having an average particle size of 30 μm. was added, mixed gently with a spatula, and then shaken for 30 minutes. The resulting mixture was molded into a tablet shape using a compression molding machine (trade name: TDP 0, manufactured by LFA Machines Oxford Ltd.) with a compression pressure of 3 kN. The resulting compression molded product was dried at 40° C. for 3 hours to remove ethanol contained in the compression molded product. After that, the compression-molded product was heated in an oven at 160° C. for 3 minutes, and the mass after heating (hereinafter referred to as “mass A”) was measured. The compression-molded product after heating was immersed in glycerin and allowed to stand overnight at 60°C. After that, the glycerin was removed using a cell strainer, and the mass of the obtained flavor molding (hereinafter referred to as "mass B") was measured. As a result of calculating the amount of glycerin contained in the flavor molded product from the difference between mass B and mass A, the amount of glycerin contained in the flavor molded product was 23% by mass. In addition, the surface of the obtained flavor molding was less sticky.
 (非燃焼加熱型香味吸引器での使用初期における官能評価)
 調製した香味成型体150mgを、外部加熱型香味吸引器であるPAX(商品名、PAX Labs製)の原料室に充填し、PAXの電源を入れることで香味成型体を外部から伝熱により加熱した。加熱により発生したエアロゾルを専門評価パネル4人が吸引し、1~3パフ、4~6パフ、7~10パフ、及びパフ全体における官能評価をフリーでコメントを行うことで実施した。結果を表2に示す。なお、前記4名の専門評価パネルは非燃焼加熱型香味吸引器の官能評価について訓練が十分に行われており、評価の閾値が等しく、専門評価パネル間で統一化されていることが確認されている。
(Sensory evaluation at the initial stage of use of the non-combustion heating type flavor inhaler)
150 mg of the prepared flavor molding was filled into the raw material chamber of PAX (trade name, manufactured by PAX Labs), which is an externally heated flavor inhaler, and the power of PAX was turned on to heat the flavor molding from the outside by heat transfer. . The aerosol generated by heating was inhaled by 4 expert evaluation panels, and the sensory evaluation was carried out by freely commenting on 1 to 3 puffs, 4 to 6 puffs, 7 to 10 puffs, and the entire puff. Table 2 shows the results. In addition, it was confirmed that the four expert evaluation panels had been sufficiently trained in sensory evaluation of the non-combustion heating type flavor inhaler, and that the evaluation thresholds were equal and unified among the expert evaluation panels. ing.
 [比較例2]
 (香味成型体の調製)
 平均粒子径が30μmのたばこ粉末原料(葉たばこ、ブラジル産黄色種)100質量部に対して、グリセリン10質量部、エタノール10質量部を添加し、スパチュラで軽く混ぜた後、30分間振盪した。得られた混合物を、圧縮成型機(商品名:TDP 0、LFA Machines oxford Ltd製)を用いて3kNの圧縮圧力でタブレット形状に成型した。得られた圧縮成型物を40℃で3時間乾燥し、圧縮成型物に含まれるエタノールを除去することで、香味成型体を調製した。香味成型体に含まれるグリセリンの量は9.1質量%であった。得られた香味成型体の表面は大きなべとつきがあり、取り扱い性が低かった。
[Comparative Example 2]
(Preparation of flavor molding)
10 parts by mass of glycerin and 10 parts by mass of ethanol were added to 100 parts by mass of tobacco powder raw material (leaf tobacco, Brazilian flue) having an average particle size of 30 μm, and the mixture was lightly mixed with a spatula and then shaken for 30 minutes. The resulting mixture was molded into a tablet shape using a compression molding machine (trade name: TDP 0, manufactured by LFA Machines Oxford Ltd.) with a compression pressure of 3 kN. The obtained compression-molded product was dried at 40° C. for 3 hours to remove ethanol contained in the compression-molded product, thereby preparing a flavor molded product. The amount of glycerin contained in the flavor molded product was 9.1% by mass. The surface of the resulting molded flavor product was very sticky and poor in handleability.
 (非燃焼加熱型香味吸引器での使用初期における官能評価)
 調製した香味成型体を、実施例5と同様に非燃焼加熱型香味吸引器で使用し、官能評価した。結果を表2に示す。
(Sensory evaluation at the initial stage of use of the non-combustion heating type flavor inhaler)
The prepared flavor molding was used in a non-combustion heating type flavor inhaler in the same manner as in Example 5, and sensory evaluation was performed. Table 2 shows the results.
 [比較例3]
 (香味成型体の調製)
 平均粒子径が30μmのたばこ粉末原料(葉たばこ、ブラジル産黄色種)100質量部に対して、グルコース(Fujifilm wako chemical社製、融点146℃、粒度約0.2mm)10質量部、グリセリン10質量部、エタノール10質量部を添加し、スパチュラで軽く混ぜた後、30分間振盪した。得られた混合物を、圧縮成型機(商品名:TDP 0、LFA Machines oxford Ltd製)を用いて3kNの圧縮圧力でタブレット形状に成型した。得られた圧縮成型物を40℃で3時間乾燥し、圧縮成型物に含まれるエタノールを除去することで、香味成型体を調製した。香味成型体に含まれるグリセリンの量は8.3質量%であった。得られた香味成型体の表面は大きなべとつきがあり、取り扱い性が低かった。
[Comparative Example 3]
(Preparation of flavor molding)
10 parts by weight of glucose (manufactured by Fujifilm wako chemical, melting point 146° C., particle size of about 0.2 mm) and 10 parts by weight of glycerin per 100 parts by weight of tobacco powder raw material (leaf tobacco, Brazilian flue) with an average particle size of 30 μm. , and 10 parts by mass of ethanol were added, mixed lightly with a spatula, and then shaken for 30 minutes. The resulting mixture was molded into a tablet shape using a compression molding machine (trade name: TDP 0, manufactured by LFA Machines Oxford Ltd.) with a compression pressure of 3 kN. The obtained compression-molded product was dried at 40° C. for 3 hours to remove ethanol contained in the compression-molded product, thereby preparing a flavor molded product. The amount of glycerin contained in the flavor molded product was 8.3% by mass. The surface of the resulting molded flavor product was very sticky and poor in handleability.
 (非燃焼加熱型香味吸引器での使用初期における官能評価)
 調製した香味成型体を、実施例5と同様に非燃焼加熱型香味吸引器で使用し、官能評価した。結果を表2に示す。
(Sensory evaluation at the initial stage of use of the non-combustion heating type flavor inhaler)
The prepared flavor molding was used in a non-combustion heating type flavor inhaler in the same manner as in Example 5, and sensory evaluation was performed. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、本実施形態に係る香味成型体である実施例5の香味成型体では、比較例2及び3の香味成型体と比較して、グルコース由来の香味成分がより早く放出され、使用初期における香味が良好であった。 As shown in Table 2, in the flavor molded body of Example 5, which is the flavor molded body according to the present embodiment, the flavor component derived from glucose is released more quickly than the flavor molded bodies of Comparative Examples 2 and 3. and the flavor was good in the initial period of use.
1 非燃焼加熱型香味吸引器
2 香味成型体
3 香味源収容体
4 電源部
5 加熱部
6 制御部
7 マウスピース
8 原料位置調整治具
9 金属板
1 non-combustion heating flavor inhaler 2 flavor molded body 3 flavor source housing body 4 power supply unit 5 heating unit 6 control unit 7 mouthpiece 8 raw material position adjustment jig 9 metal plate

Claims (16)

  1.  平均粒子径が300μm以下のたばこ粉末原料と、融点が30~200℃の材料と、炭素数2~7のアルコールと、を混合して混合物を形成する工程と、
     前記混合物を圧縮成型して圧縮成型物を形成する工程と、
     前記圧縮成型物を前記材料の融点以上に加熱する工程と、
     加熱後の前記圧縮成型物にエアロゾル源を含浸させる工程と、
    を含む、非燃焼加熱型香味吸引器用の香味成型体の製造方法。
    a step of mixing a tobacco powder raw material having an average particle size of 300 μm or less, a material having a melting point of 30 to 200° C., and an alcohol having 2 to 7 carbon atoms to form a mixture;
    compression molding the mixture to form a compression molding;
    a step of heating the compression-molded product to a melting point or higher of the material;
    a step of impregnating the compression-molded article after heating with an aerosol source;
    A method for producing a flavor molding for a non-combustion heating type flavor inhaler, comprising:
  2.  前記材料が、糖類、油脂、脂肪酸、及び脂肪族炭化水素からなる群から選択される少なくとも一つの材料である、請求項1に記載の方法。 The method according to claim 1, wherein the material is at least one material selected from the group consisting of saccharides, fats and oils, fatty acids, and aliphatic hydrocarbons.
  3.  前記材料が糖類である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the material is sugar.
  4.  前記糖類が、グルコース、スクロース、フルクトース、マンノース、キシロース、ガラクトース、リボース、アラビノース、エリトロース、エリトルロース、トレハロース、キシリトール、ラムノース、ソルビトール、アガロース、アミロース、スターチ、及びキトサンからなる群から選択される少なくとも一つの糖類である、請求項2又は3に記載の方法。 At least one of the sugars selected from the group consisting of glucose, sucrose, fructose, mannose, xylose, galactose, ribose, arabinose, erythrose, erythrulose, trehalose, xylitol, rhamnose, sorbitol, agarose, amylose, starch, and chitosan 4. The method according to claim 2 or 3, which is a saccharide.
  5.  前記材料の形状が、粉末状、顆粒状、又はチップ状である、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the shape of the material is powdery, granular, or chip-like.
  6.  前記エアロゾル源が、グリセリン、1,3-プロパンジオール、プロピレングリコール、及び1,3-ブタンジオールからなる群から選択される少なくとも一種である、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the aerosol source is at least one selected from the group consisting of glycerin, 1,3-propanediol, propylene glycol, and 1,3-butanediol. .
  7.  前記炭素数2~7のアルコールがエタノールである、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the alcohol having 2 to 7 carbon atoms is ethanol.
  8.  前記香味成型体に含まれる前記エアロゾル源の含有量が15質量%以上である、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the content of the aerosol source contained in the flavor molded product is 15% by mass or more.
  9.  前記香味成型体がタブレット形状を有する、請求項1~8のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8, wherein the flavor molded body has a tablet shape.
  10.  平均粒子径が300μm以下のたばこ粉末原料と、エアロゾル源と、融点が30~200℃の材料と、を含む非燃焼加熱型香味吸引器用の香味成型体であって、
     前記香味成型体が、前記たばこ粉末原料及び前記材料で形成される多孔質構造を有し、
     前記エアロゾル源は前記多孔質構造の細孔内に保持されており、
     前記香味成型体に含まれる前記エアロゾル源の含有量が15質量%以上である、非燃焼加熱型香味吸引器用の香味成型体。
    A flavor molding for a non-combustion heating type flavor inhaler, comprising a tobacco powder raw material having an average particle size of 300 μm or less, an aerosol source, and a material having a melting point of 30 to 200° C.,
    The flavor molded body has a porous structure formed of the tobacco powder raw material and the material,
    the aerosol source is retained within pores of the porous structure;
    A flavor molded body for a non-combustion heating type flavor inhaler, wherein the content of the aerosol source contained in the flavor molded body is 15% by mass or more.
  11.  前記材料が、糖類、油脂、脂肪酸、及び脂肪族炭化水素からなる群から選択される少なくとも一つの材料である、請求項10に記載の香味成型体。 The flavor molded product according to claim 10, wherein the material is at least one material selected from the group consisting of saccharides, oils, fatty acids, and aliphatic hydrocarbons.
  12.  前記材料が糖類である、請求項10又は11に記載の香味成型体。 The flavor molded product according to claim 10 or 11, wherein the material is sugar.
  13.  前記糖類が、グルコース、スクロース、フルクトース、マンノース、キシロース、ガラクトース、リボース、アラビノース、エリトロース、エリトルロース、トレハロース、キシリトール、ラムノース、ソルビトール、アガロース、アミロース、スターチ、及びキトサンからなる群から選択される少なくとも一つの糖類である、請求項11又は12に記載の香味成型体。 At least one of the sugars selected from the group consisting of glucose, sucrose, fructose, mannose, xylose, galactose, ribose, arabinose, erythrose, erythrulose, trehalose, xylitol, rhamnose, sorbitol, agarose, amylose, starch, and chitosan 13. The flavor molded product according to claim 11 or 12, which is a saccharide.
  14.  前記エアロゾル源が、グリセリン、1,3-プロパンジオール、プロピレングリコール、及び1,3-ブタンジオールからなる群から選択される少なくとも一種である、請求項10~13のいずれか一項に記載の香味成型体。 The flavor according to any one of claims 10 to 13, wherein the aerosol source is at least one selected from the group consisting of glycerin, 1,3-propanediol, propylene glycol, and 1,3-butanediol. molded body.
  15.  タブレット形状を有する、請求項10~14のいずれか一項に記載の香味成型体。 The flavor molded product according to any one of claims 10 to 14, which has a tablet shape.
  16.  請求項10~15のいずれか一項に記載の香味成型体を収容する香味源収容体と、
     電源部を備える電源ユニットと、
     前記電源部から電力の供給を受けて前記香味源収容体内の前記香味成型体を加熱する加熱部と、
    を備える非燃焼加熱型香味吸引器。
    A flavor source container containing the flavor molded product according to any one of claims 10 to 15;
    a power supply unit comprising a power supply;
    a heating unit that receives electric power from the power supply unit and heats the molded flavor material in the flavor source container;
    A non-combustion heated flavor inhaler comprising:
PCT/JP2021/045742 2021-12-13 2021-12-13 Flavor molded body for non-combustion heating type flavor inhaler, method for producing same and non-combustion heating type flavor inhaler WO2023112075A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/045742 WO2023112075A1 (en) 2021-12-13 2021-12-13 Flavor molded body for non-combustion heating type flavor inhaler, method for producing same and non-combustion heating type flavor inhaler
JP2023567273A JPWO2023112075A1 (en) 2021-12-13 2021-12-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045742 WO2023112075A1 (en) 2021-12-13 2021-12-13 Flavor molded body for non-combustion heating type flavor inhaler, method for producing same and non-combustion heating type flavor inhaler

Publications (1)

Publication Number Publication Date
WO2023112075A1 true WO2023112075A1 (en) 2023-06-22

Family

ID=86773987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045742 WO2023112075A1 (en) 2021-12-13 2021-12-13 Flavor molded body for non-combustion heating type flavor inhaler, method for producing same and non-combustion heating type flavor inhaler

Country Status (2)

Country Link
JP (1) JPWO2023112075A1 (en)
WO (1) WO2023112075A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148975A (en) 1986-12-08 1988-06-21 アール・ジエイ・レノルズ・タバコ・カンパニー Smoking product having improved aerosol forming substrate
WO2017141406A1 (en) * 2016-02-18 2017-08-24 日本たばこ産業株式会社 Non-combustion-type inhalation article
JP2021000113A (en) * 2015-12-08 2021-01-07 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Tobacco composition
JP6915142B1 (en) * 2020-11-20 2021-08-04 日本たばこ産業株式会社 Power supply unit of aerosol generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148975A (en) 1986-12-08 1988-06-21 アール・ジエイ・レノルズ・タバコ・カンパニー Smoking product having improved aerosol forming substrate
JP2021000113A (en) * 2015-12-08 2021-01-07 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Tobacco composition
WO2017141406A1 (en) * 2016-02-18 2017-08-24 日本たばこ産業株式会社 Non-combustion-type inhalation article
JP6915142B1 (en) * 2020-11-20 2021-08-04 日本たばこ産業株式会社 Power supply unit of aerosol generator

Also Published As

Publication number Publication date
JPWO2023112075A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
TWI778999B (en) Foam, forming method, supplying method, use, kit and packaging thereof and method and system of generating aerosol
JP6695359B2 (en) Aerosol generating material and device containing the same
JP6365895B2 (en) Adjustment of puff distribution
US20220386681A1 (en) Hot Pressed Tobacco Substrate
CN110022698B (en) Fragrance-containing sheet for smoking article and smoking article comprising same
BG62428B1 (en) Smoking product
KR20210024528A (en) Method of making tobacco mousse
JP5941988B2 (en) Method for producing flavor component carrying member and method for producing tobacco product
EP3949772A1 (en) Cooling segment, non-combustion heating type flavor inhalation article, method for using non-combustion heating type flavor inhalation article, and non-combustion heating type flavor inhalation system
KR20220098731A (en) Crumb Tobacco Base
JP2023523911A (en) aerosol-generating material
WO2021177023A1 (en) Fragrance-carrying constituent member of tobacco product, tobacco product, and method for producing same
EP4051021B1 (en) Aerosol-generating tobacco-containing composition comprising medium-chain triglyceride
WO2023112075A1 (en) Flavor molded body for non-combustion heating type flavor inhaler, method for producing same and non-combustion heating type flavor inhaler
EP3881688B1 (en) Cooling segment and method for producing same, noncombustible heating-smoking article and noncombustible heating-smoking system
CN118234392A (en) Fragrance molded body for non-combustion heating type fragrance aspirator, method for producing same, and non-combustion heating type fragrance aspirator
WO2024127445A1 (en) Flavor molded body for non-combustion heating type flavor inhaler, method for producing same, and non-combustion heating type flavor inhaler
WO2022264356A1 (en) Flavor molded body for non-combustion heating type flavor inhalers, method for producing same and non-combustion heating type flavor inhaler
CN113679101B (en) Dual cooling granule
CN118020991A (en) Tobacco matrix, preparation method thereof and cigarette

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567273

Country of ref document: JP