WO2023111960A1 - Method and portable device for monitoring and identifying cardiac events - Google Patents

Method and portable device for monitoring and identifying cardiac events Download PDF

Info

Publication number
WO2023111960A1
WO2023111960A1 PCT/IB2022/062331 IB2022062331W WO2023111960A1 WO 2023111960 A1 WO2023111960 A1 WO 2023111960A1 IB 2022062331 W IB2022062331 W IB 2022062331W WO 2023111960 A1 WO2023111960 A1 WO 2023111960A1
Authority
WO
WIPO (PCT)
Prior art keywords
server
biopotential
data
heart disease
dasb
Prior art date
Application number
PCT/IB2022/062331
Other languages
Spanish (es)
French (fr)
Inventor
Miguel Eduardo ROMERO RUIZ
Hugo Domingo GARCÍA MANILLA
Daniel Alejandro GORDILLO HERNÁNDEZ
Rodolfo FERRO PÉREZ
Manuel Iván LEÓN MADRID
Original Assignee
Smart Health Solutions S.A.P.I. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart Health Solutions S.A.P.I. De C.V. filed Critical Smart Health Solutions S.A.P.I. De C.V.
Publication of WO2023111960A1 publication Critical patent/WO2023111960A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention falls into the field of medical devices, presenting a biopotential signal collection and processing system for cardiac monitoring, prognosis and alerts, as well as methods or procedures for acquiring data by means of a biometric data acquisition device for later sending.
  • biometric data presenting an electrocardiogram or ECG
  • ECG electrocardiogram
  • the neural network is initially trained under an electrocardiogram data set, this set can be a public database, user data over time, heart disease database obtained from different sources, having as objective the training of the neural network to recognize patterns in an ECG in order to detect or predict heart disease;
  • the neural network used by the present invention has been trained under the theory of inverse propagation, that is: the values of the input layer of the neural network are assigned weights with values established at random, said data from the The input layer is a series of data describing an ECG that has a clinical picture as its attribute (ie, it is known in advance if the ECG comprises a heart disease, the type of heart disease, or if it is a "normal" ECG); at the end, the output value of the neural network is compared with the real output (the known clinical picture) by means of an error function, and based on this, the weights are changed; this is iterated all the time, being the way in which the neural network itself “learns” or in other words adapts
  • the last layer of the neural network of the present invention is made up of a single neuron, which gives a value which, when compared with values obtained in laboratory tests, can determine if the ECG examined reflects some heart disease or if the state of the user's heart is “normal”; In the first case, an alarm system is activated, otherwise it maintains the "normal" label on the user's portable device.
  • WO20211866 to Louise Rydén which uses a plurality of sensors arranged in a garment that collect data to generate an ECG, the sensors communicate wirelessly with a first master controller, which collects the information from the sensors, saves, processes and sends it to a computer control, which is configured to detect abnormalities in the ECG, if an abnormality is detected, the control computer issues an alarm by means of an indicator.
  • Document US20200214618 by Rik Vullings describes and illustrates a device that obtains ECG signals from a fetus, the device has a plurality of sensors that are arranged on the mother's abdomen, the devices send the information to a master control which collects and stores the information coming from the sensors, it also processes it by first generating an ECG vector, said ECG vector of the unborn is processed by some already trained machine learning process that allows the baby's ECG to be classified, the data is also used as input for the machine learning process.
  • a computer acquires biophysical signals in one or several channels; said biophysical signals are pre-processed to generate data sets, each data set contains a complete cardiac cycle; the data sets are processed, yielding as a result a value that indicates the presence of some heart disease, the data sets are processed using deep neural networks, which are trained with data from biophysical signals acquired from patients with specific heart diseases and labeled with the presence or absence of heart disease; the result can be thrown in the form of a report or displayed on the computer screen.
  • the biopotential signal collection and processing system for cardiac monitoring, prognosis and alerts described below consists of a biopotential data acquisition device, equipped with a wireless module in electronic connection with a battery and at least one sensor. of biopotential; the aforementioned sensor collects cardiac biopotential signals (ECG), which it delivers to the wireless module, which adapts, encodes and sends them to a mobile device, which in turn sends them to a first computer server (server) where the cardiac biopotential signals are decoded, an ECG is reconstructed, labeled and stored, then said biopotential signals are sent to a second compute server and a third compute server at the same time; the second computer server hosts a medical platform that allows data consultation as well as the recording of alarms; the third computing server processes the biopotential signals by means of neural networks, a first neural network determines if the user's state is "normal" or if he has some heart disease; In case of detecting heart disease, a second neural network compares the biopotential signal against pre-established
  • the probability of their happening or not is determined; if the user's cardiac status is not in order, an alert is sent to the user and/or authorized interested party; if the user's cardiac status is in order, it notifies the user and/or authorized interested party. In both cases, the labeled ECG is saved to be used in the learning module of the neural network.
  • the ] shows an electrical block diagram of the biopotential signal acquisition device.
  • the ] shows an operation flow chart of the biopotential signal collection and processing system for cardiac monitoring, prognosis and alerts
  • the ] shows a block diagram illustrating cardiac biopotential signal processing.
  • [The ] shows a diagram illustrating the three layers of a neural network.
  • the ] shows a diagram of the biopotential signal acquisition device.
  • FIG. 1 illustrates a diagram with a user wearing a biopotential signal acquisition device.
  • the ] illustrates a diagram with a user carrying a plurality of biopotential signal acquisition devices.
  • FIGs. 17a, 17b, 17c illustrate different screens of the mobile application being implemented on the mobile device or computer.
  • [The ] shows a diagram of an input neural layer with weights and activation function.
  • [The ] shows a diagram of the middle layer of a neural network.
  • [The ] shows a diagram of the intermediate and output layer of the first neural network.
  • [The ] shows a diagram of the intermediate and output layer of the second neural network.
  • mechanical link or component When referring to any structural feature, mechanical link or component, the terms: mechanically fastened, mechanically secured, mechanically grasped, mechanically fastened, mechanically fixed or mechanically fixed or mechanically attached or mechanically fastened, shall be understood that any means known in the art can be used to join mechanically for example: screws and nuts with and without washers, rivets, screws in threaded holes, welding of any type (arc, tig, mig, etc.), friction welding, ultrasonic welding, glues, binders, overmolding, inserts, pressing, drawing, interference joining, snaps, tabs and straps, wedges, pins, grub screws, slots and safety washers, the above being able to be used separately or together, among other acquaintances in the middle.
  • Mechanically coupled refers to the transmission of mechanical energy from one element to another by means of gears, friction pulleys, belt pulleys, magnetic means, mechanical transmissions, shafts, mechanical couplings, dynamic couplings, universal joints, Hook joints, homokinetic joints, cardans, wet media, among others.
  • Electronically coupled, in electronic connection – Refers to the wired or wireless connection between electronic elements vgr.: sensor, "driver”, actuator, microcontroller, microprocessor, antenna, peripheral circuit, etc. with the desire to receive / send a signal, either analog or digital.
  • electrically coupled – Refers to the connection or supply of power or electrical energy from a power source to electrical or electronic elements that need to be energized in order to operate.
  • Plurality Two or more elements of the same species; crowd, large number of some things, or the greatest number of them.
  • Data module to be processed- database where the ECG signals to be processed by the neural networks are supported, where said signals have been duly packaged, digitized, conditioned, reconstructed and labeled.
  • Reference Data Module - database containing digitized, conditioned, reconstructed, and labeled packaged ECG signals known to be related to a known heart disease, and "normal" ECG data from the user in both resting state and ordinary cardiac activity, a state of average cardiac activity, a state of high cardiac activity or a state of extraordinary cardiac activity.
  • Machine learning module for the calibration of the classification module - database where digitized, conditioned, reconstructed and labeled ECG data are supported that have an affinity with some heart disease, whether they come from an external database or from the heart diseases detected by the second neural network, they also contain the ECG data of the user's state "Normal” or “Extraordinary” both in a resting state or ordinary cardiac activity, a state of medium cardiac activity, a state of high cardiac activity or a state of extraordinary cardiac activity; which are used to customarily recalibrate the "W" weights of each neural network for continuous updating and improvement.
  • Model adjusted by the user's reference- refers to updating the databases of the neural network modules with data acquired from the user over time, which allows adjusting the "W" weights of each neural network of customary way.
  • Medical platform- Application or software that allows the backup, visualization and consultation of ECG signals digitized, conditioned, reconstructed and labeled from the DASB 10; It is also responsible for issuing alarm indications both on the medical platform screen itself and for sending the alarm indication through the server 11 to the mobile device or computer 20.
  • the biopotential signal acquisition device or DASB 10 is made up of the wireless module 11, which comprises a microcontroller and an ultra-low consumption 2.4 GHz antenna, likewise, the DASB 10 It comprises a first 2.4 V voltage regulator 12, as well as a 3 V battery 13 that feeds the microcontroller, antenna, and a second regulator 15;
  • the wireless module 11 receives the signal from a digital block AFE (14) -Analog Front End-, which in a preferred mode, is provided with an analog-digital converter (or ADC for its acronym in English) as well as at least one biopotential sensor which acquires the biopotential signals through at least one electrode 25 in electrical connection with a low-pass filter 28; in such a way that the ADC adapts the signal coming from at least one biopotential sensor so that it can be subsequently processed by the wireless module11;
  • the battery 13 is electrically coupled to the first 2.4 V voltage regulator 12, which supplies the wireless module 11, the button 16, and the digital block of the AFE 14.
  • a second 1.8 V voltage regulator 15 feeds a first shunt capacitor module, the digital module AFE30 and an oscillator 17 in electrical connection with the digital module AFE. 14;
  • the 1.8 V voltage regulator 15 is controlled by a digital signal emitted by the wireless module 11.
  • the first 2.4 V voltage regulator 12 feeds a first shunt capacitor bank 29, the wireless module 11 and to button 16; as is evident in an alternative embodiment, the wireless module 11 may be electrically coupled to the first 2.4 V voltage regulator 12 or to the battery 13 omitting the use of the first voltage regulator 12; in any case of the alternate mode, the wireless module 11 is electronically coupled to the AFE 14, the second 1.8 V voltage regulator 15, the button 16 and the light emitting diode 18 (or LED), and where appropriate to an ADC; In an alternate embodiment, a DASB 10 may have a plurality of AFEs 14; In an alternative modality, the signal from at least one AFE 14 is received directly by the wireless module 11, which is an analog signal, so the wireless module 11 itself must have an internal ADC with which to convert or " translate” the analog signal to digital; In an alternative modality, the signal from the AFE 14 reaches an ADC which converts or "translates” the analog signal obtained from the user, to a digital signal which is received and subsequently processed by the wireless
  • a low consumption antenna is embedded in the wireless module 11 which is used to send and receive information.
  • the antenna is compatible with Bluetooth.
  • any other protocol or technology available on the market can be used. which are cited by way of example but not limitation: Zigbee, Thread, WIFI, XBee, ZWave, Symphony Link, Sigfox, radio frequency, LoRa, among others.
  • the wireless module 11 By means of an antenna inside the wireless module (11) communication is established with the mobile device or computer 20; the antenna allows the sending and receiving of data from the wireless module (11) to and from the mobile device or computer 20, as well as the reception of indications, programming or service and diagnostic connections from the DASB 10 itself;
  • the wireless module 11 sends and receives information for certain periods of time, for example when it is activated to send information to the mobile device or computer 20 every 5 minutes or when said period is over, it can go into low power consumption for a period of 3 minutes.
  • a first alternative mode occurs when the wireless module 11 "wakes up" each time it needs to send or receive information.
  • a second alternative modality occurs when the wireless module 11 comprises an antenna of the low power consumption type, which allows the wireless module 11 to be "on" all the time, receive or send information as required by the wireless module. eleven.
  • a third alternative modality in a third alternative modality called preferred, it consists of having a plurality of DASBs 10 arranged in various parts of the user's body, to collect a plurality of cardiac biopotential signals, which can be processed in different channels, that is, one channel per channel. each DASB 10.
  • DASB 10 there is a DASB 10 that will act as "master” which will coordinate the rest of the DASB 10 that will act as “slaves” collecting the information packet from each of these, following some communication protocol to avoid signal collapse, such as assigning a number to each DASB 10 in the network and calling them in order every certain time, for example, when the DASB 10 “master” calls the DASB 10 “slave 1” which will transmit for a certain period of time such as 10s, then it will terminate the communication and continue with the DASB 10 "slave 2" which will also transmit to the DASB 10 "master” for a determined period of time; thus until the DASB 10 "slave n", later the DASB 10 involved enter a state of low consumption during a determined period of time; At the end of the time period, all the DASB 10 take a new sample, resuming the cycle again.
  • some communication protocol to avoid signal collapse such as assigning a number to each DASB 10 in the network and calling them in order every
  • the digital signal is encoded by the wireless module 11, this helps to avoid interference with other equipment, add security to the sending of data to the mobile device or computer 18, it also helps to package the data and reduce transmission times , which contributes to lengthening the life of the battery 13;
  • the coding means that can be used are widely known in the field, of which the following can be pointed out: Numeric, alphabetic and alphanumeric coding, which can be used interchangeably in the present invention.
  • the first block represents the electrical supply such as a battery or battery13, which allows the initialization of peripherals; If the DASB 10 was powered up for the first time, it enters a low power state, to initialize or “wake up” the wireless module 11, the user must keep the button 16 activated for a specific time (for example, 3 seconds), which will allow the DASB 10 to return to peripheral initialization, where instead, if the DASB 10 was not first powered up, it will initialize the Bluetooth Low Energy (BLE) module with the that the antenna is equipped in this preferred mode and will then permanently implement the BLE pending tasks.
  • BLE Bluetooth Low Energy
  • the wireless module 11 activates the antenna which in turn puts the BLE in advertising mode (this means that the mobile device or computer 20 can establish a connection with the DASB 10) for a period of time (eg 1min). If a connection was not made, the DASB 10 enters a low consumption state for a period of time (eg 10ms to 5 min), whereas, on the contrary, if the connection was established correctly, the timer will stop to maintain the state.
  • a period of time eg 10ms to 5 min
  • the state of the visual peripherals changes in this case the LED 18, therefore the mobile device or computer 20 sends an indication for the previous configuration of peripherals, later a timer configuration is carried out for the start of the new cycle, then the second voltage regulator 15 of 1.8 VDC is enabled in order to carry out a configuration of the sampling parameters of the AFE device 14.
  • the interruption of the AFE device 14 indicates that the sampling or acquisition of biopotential signals has started, that is, that the biopotential sensors send the acquired signals to the ADC or directly to the wireless module 11 (depending on the modality) where In any case, the wireless module 11 acquires a specific amount of samples or signals (called data), once this happens, the AFE device 14 is reset, then it is sent to the second 1.8 VDC voltage regulator at low consumption state, done this, the wireless module 11 sends an indication to the mobile device or computer 20, to start sending data, where the mobile device or computer 20 "responds" to the wireless module 11 that is ready for the reception of data, starting the timer for sending data.
  • the wireless module 11 When it is required to send data, the wireless module 11 performs a timer interrupt to perform data encoding and packaging before sending data to the mobile device or computer 20, or to a "master" DASB 10, in any case, during the interruption of the timer (and before the data is sent by the wireless module 11) an encoding of the sampled data is carried out by the DASB 10, immediately afterwards, the DASB 10 packages the sampled data, to later carry out a sending of the data packet by means of the wireless module 11 which in turn terminates the timer interruption allowing it to continue with its account, which is carried out until the specific amount of encrypted and packaged data to be sent is reached , once the mobile device or computer 20 has received the specific amount of encrypted and packaged data (i.e. it has the complete data), it sends a signal to the wireless module 11 so that it proceeds to stop the timer for sending data; finally, the wireless module 11 sends a data transmission termination indication to the mobile device or computer 20.
  • a timer interrupt to perform data encoding and packaging before
  • the interruption of the timer for the start of a new cycle returns specifically in the section on the configuration of the timer for the start of the new cycle, which was previously described.
  • the shutdown interruption by button 16 can happen at any instant, which when activated, starts the timer to calculate button 16 activation times, if button 16 was kept activated for the specific time (eg 5 sec.) it enters a a low power state, on the other hand, if the button 16 was not kept activated for the specified time, a reset of the AFE device (14) and data transmission is performed.
  • the DASB 10 can carry out a mesh connection, firstly, a DASB 10 is configured as "master” or as “slave” to continue synchronizing with the DASB network. 10 and thus an interaction with the DASB 10 network is achieved.
  • the mobile device or computer 20 transmits it to a computer server or first server 21 via WiFi or by any other means that gives you access to the internet (illustrated as “cloud” in figure 12); already in possession of the server 21, it decodes and reconstructs the conditioned digital signal, proceeds to its due labeling for its identification and traceability and its subsequent storage;
  • the aforementioned label comprises at least one number, batch or consecutive of the biopotential signal sample package, user identification number, which can be associated with a database in which personal data such as name, address, telephone number reside mobile, emergency telephone number, doctor's telephone number, doctor's name, among other data; however, the package of digitized, conditioned, labeled, and reconstructed signals is sent to a second server 22 that supports a medical platform with software or apps dedicated to authorized users and followers, where said package of digitized, conditioned, and reconstructed signals is stored and can be consulted on the aforementioned platform; Simultaneously, the packet of
  • the search for heart disease is based on the use of a pair of neural networks in tandem (i.e. a first neural network is used and in case of detecting a heart disease the second neural network is used to identify the possible heart disease as well as its percentage of affinity with the ECG under study); where said neural networks each have a data module to be processed, a reference data module, and a machine learning module for calibrating the classification model, resulting in a model adjusted by the user;
  • the aforementioned package of digitized, conditioned, labeled and reconstructed signals is processed and classified using the model adjusted by the user's reference, in one of these states: in a state of rest or ordinary cardiac activity and in a state of activity medium, high or extraordinary heart rate;
  • the package of digitized, conditioned, labeled and reconstructed signals is stored in the machine learning module for the calibration of the classification model with which the user-adjusted neural network model is recalibrated, this is done by recalculating the "W" weights of both neural networks based on the data obtained from digitized, conditioned, labeled and reconstructed signals that are fed or saved automatically.
  • the aforementioned machine learning module for the calibration of the classification model; which derives in a classification of "ordinary” or “extraordinary” state of the user by the first neural network, the result of the second neural network being the frame with a picture of some heart disease that appears in the database of the module reference data (tachycardia, bradycardia, arrhythmia, etc.); of finding an extraordinary state and when framing any heart disease, the authorized followers are notified by means of an alert issued by the second server 22 and received by the mobile device 20 via the first server 21, projecting their cardiac state that was extracted from the package of Digitized, conditioned and reconstructed labeled signals, in addition the data is saved in the machine learning module for the calibration of the classification model.
  • the module reference data tachycardia, bradycardia, arrhythmia, etc.
  • the first stage of heart disease search based on sinus rhythm
  • the second stage based on the use of two neural networks in tandem
  • the first stage which is based on sinus rhythm
  • a probability of a cardiac event is estimated by analyzing the package of digitized, conditioned, and reconstructed signals looking for heart disease. that can be analyzed or are evident with the simple determination of sinus rhythm (tachycardia, bradycardia, arrhythmia).
  • the server 23 proceeds to a new comparison, where the package of digitized signals, conditioned, labeled and reconstructed are now compared with the heart disease models stored in the database of the third server 23, with which a percentage of affinity to some heart disease model is determined.
  • an alert is issued to the server 22 which sends the alert to the mobile device 20 via the server 21 showing the ECG reconstructed that was extracted from the package of digitized, conditioned and reconstructed signals labeled with the percentage of affinity as well as the type of cardiopathy in question, in addition to sending a notification to the user's mobile device or computer;
  • a new label is added to the package of digitized, conditioned and reconstructed signals indicating that it has gone through this second step of heart disease comparison, again supporting the package of digitized, conditioned and reconstructed signals in the data module of the neural network to be processed.
  • the search for heart disease based on a pair of tandem neural networks is carried out when the package of digitized, conditioned, reconstructed and labeled signals that have passed the first stage of heart disease search which are based on in sinus rhythm, server 23 is supported by the data module to be processed, with which they are now in a position to be processed in the first neural network, which allows us to know if there is an "ordinary” or “extraordinary” user event or state ”, in the second case, the second neural network is used, which allows us to know the cardiopathy with a greater affinity as well as its percentage of affinity.
  • the search for heart disease based on a pair of neural networks in tandem is carried out when the digitized signals, conditioned and reconstructed in a thesis, are deposited in the data module to be processed, from where they are taken to pass them through the first neural network, which is properly trained and calibrated i.e.
  • the first neural network in its preferred modality the neural input layer houses data from the package of digitized, reconstructed and labeled signals that have been subjected to the two aforementioned heart disease comparison processes, it being evident that the number of neurons in the input layer It depends on the number of data that said packet of signals includes, typically between 100 and 10 thousand data, which depends somewhat on the memory capacity, type of battery, antenna transmission speed, data transmission protocol, distance to the data receiver, among other technical characteristics of the DASB 10, in a preferred modality the first neural network comprises a pair of intermediate neuronal layers, where the number of neurons of the first intermediate neural layer has between 30% and 50% the number of neurons than the input layer, for its part, the second intermediate neuronal layer has between 3% and 20% the number of neurons than the first intermediate neuronal layer, with which the number of neurons per layer decreases; In an alternative embodiment, the first
  • the package of digitized, reconstructed and labeled signals that have been subjected to the two aforementioned heart disease comparison processes have a low or no correlation with any heart disease, that is, it is in an "ordinary" state of the user, to which the server 23 in a preferred mode sends a couple of signals simultaneously of "all normal” or “nothing to report” to the second server 22 so that it can register on the medical platform as well as on the mobile device or computer via the server 21;
  • the server 23 sends a signal of "everything normal” or "nothing to report” to the server 22 so that it can register it in the medical platform;
  • the package of digitized signals that were supplied to the first neural network are saved in the machine learning module for the calibration of the classification model, which will help to have more data to later calibrate the "W" weights of the first neural network.
  • the second neural network comprises a database of weights "W" somewhat different from the first neural network studied above, in addition to comprising a plurality of output neurons, however, it uses a similar scheme for the input neural layer.
  • the input neural layer houses data from the packet of the aforementioned digitized, reconstructed and labeled signals that are now backed up in the data module to be processed of the second neural network, remembering that Said digitized signals have been processed by the first neural network, as in the first neural network, the digitized signals found in the data module to be processed are processed, it should also be noted that the number of neurons in the input layer of the second neural network depends on the number of data included in said packet of signals that, as previously noted, typically comprise between 100 and 10 thousand data, which depends somewhat on memory capacity, battery type, speed of antenna transmission, data transmission protocol, distance to the data receiver, among other technical characteristics of the DASB 10;
  • the second dissertation neural network in a preferred modality comprises a
  • the second intermediate neuronal layer has between 3% and 20% the number of neurons than the first intermediate neuronal layer, with which the number of neurons per layer is reduced;
  • the second neural network may comprise of only one intermediate layer of neurons wherein the number of neurons in the single intermediate neural layer is between 10% to 50% the number of neurons in the input layer;
  • the second neural network can have three or more intermediate layers of neurons, which will improve its performance and reliability, but a more powerful computer will be required, together with the response times that will be lengthened due to the large amount of data.
  • the output neural layer comprises a plurality of neurons, where each one of the neurons of the output layer is similar to a heart disease, (see figure 21), making it clear that the The number of neurons in the output layer of the aforementioned second neural network is equal to the number of heart diseases that have been studied and their affinities are defined; in such a way that the output of a given neuron from the output layer of the second neural network will indicate the probability that the user has a certain heart disease (Vgr.
  • Arrhythmia Arrhythmia and its connections with data that are indicators of said heart disease will have weights " W” much larger; this being the case for all diseases borne;
  • W weights " W” much larger; this being the case for all diseases borne;
  • This information is processed by statistical means and generates a possible scenario that indicates the most related heart disease or diseases, as well as their percentage of affinity. With this information, the heart disease with the highest affinity among those possible is identified by statistical means, once it has been identified.
  • said cardiopathy if it has a high affinity percentage (for example, from 60% onwards), the user and authorized followers are warned or alerted to the type of scenario to which it has an affinity (the type of cardiopathy and its affinity percentage), this is achieved by sending said information to the second server 22, said information is also sent to the first server 21 for storage in the machine learning module for calibrating the classification model of both neural networks;
  • server 22 processes the information and issues an alert, which is displayed on the medical platform, notifying authorized persons for emergencies, as well as being sent to the first server 21, which in turn sends the alert to the mobile device or computer 20, the latter will display an alert signal on the screen as well as a button that allows to know that the user has seen the alert (see figure 17c), in an alternative modality a button can also be displayed that indicates if the user is okay .
  • FIG. 16 An alternative modality is shown in figure 16 where a first "master" DASB 10 is placed on the left chest, another on the right DASB 10 “slave 1" chest, one on the left side of the DASB 10 "slave 2" waist. ” and a last one in V6, at the intersection of the 5th left intercostal space and anterior axillary line DASB 10 “slave 3”; where the biopotential difference of each point where the DASB 10 have been placed is collected.
  • the device's built-in button 16 must be held down for a minimum of 3 seconds, to make the DASB 10 visible to nearby bluetooth-enabled mobile devices 20 (see figures 17a, 17b, 17c), the mobile device 20 will first require user registration, generation of a password, and user data, such as name, age, sex, weight, height, among others (see figure 17a).
  • the connection with the DASB 10 must be established and indicate the mode in which it will be operating (see figure 17b);
  • the “slave” devices are progressively “registered”, starting with the DASB 10 “slave 1”, DASB 10 “slave 2”, DASB 10 “slave 3” and last the DASB 10 “master”; once the activation procedure is finished, the mobile device 20 displays a legend indicating that the DASB 10 or DASBs 10 are "online” and "connected”;
  • the connection of two or more DASB 10 is not necessary, since they can work independently, the quantity and location of DASB 10 to be implemented will depend on the user's requirements.
  • the configuration of the work mode of the DASB 10(s) will only be carried out once, later, when the devices are already configured, the synchronization between the DASB 10 involved will automatically be carried out for taking the samples at time intervals.
  • the samples of each DASB 10 are sent to the mobile device 20 which will later send them to the first server 21.
  • the mobile device 20 by means of an application sends an indication to the DASB 10 or to the "master" DASB 10 (depending on the modality) to start taking samples;
  • the indication takes a sample of 5,000 data (one piece of data approximately every 2 milliseconds, for a period of approximately 10 seconds), encodes it and sends an indication to the mobile device 20 who will prepare to the reception of data, for its part, the DASB 10 starts sending the data once the mobile device 20 sends a signal to the DASB 10 so that it starts with the data transmission;
  • the "master" DASB 10 begins with the collection of the slave DASB 10s, sending a signal to the "slave” DASB 10s in the order in which they were given " high” so that they start sending data to the "master” DASB 10, once the number of data (usually 5000 data) or data "pack
  • Table 1 shows a small sample of the data collected by the DASB 10 sent to the mobile device 20 and retransmitted to the first server 21.
  • the data packet received by the first server 21 is decoded, whereby the data in table 1 is transformed into the data in table 2.
  • Table 2 contains a sample of the data packet (remembering that in a preferred mode 5000 data packets are used), the 5000 data packet is sent to two different locations in parallel, the first location is the second server 22 that allows backing up the data package in addition to being able to be consulted on the medical platform, the other location is the third server 23 which is in charge of processing the data packages from the mobile device or computer 20, this server hosts the neural networks in charge of processing the data packets already decoded (such as the sample data illustrated in figure 2), said data packet is introduced to the first neural network as "Data" data in the input layer, and each data is multiplied by a weight “W” (see figure 18), which have already been determined based on “training” iterations (which will be discussed later) with both “normal” ECG data and those that represent a heart disease; now, for each piece of data, a neuron (which in the case of the input layer houses a "Data” from table 2) will have an associated weight "W”, which can be seen as the affinity that that particular neuron
  • the activation function "f” can be used other than the Sigmoid expressed lines above, such as the hyperbolic tangent function (tanh), ReLU, or any nonlinear preference curve suitable to be used as an activation function in networks.
  • the training of both the first and second neural networks can be understood as obtaining a database or matrix of weights "W" for each neural network that allows having the correct weights for each parameter, that is, the correct affinities of each neuron before each data, for this it is necessary to make each neural network go through a training process where ECG data is introduced whose state is known in advance (that is, if it is a healthy signal, its state should be a 1 or close to 1, for the second neural network special attention is paid to the ECGs of the different heart diseases that medical science is aware of, in this particular each heart disease is catalogued, but for practical purposes of detection for the first neural network it should be considered that a cardiopathy yields a value of zero or close to zero); then, the decoded training data is introduced to the first and second neural networks, in order to compare the output obtained against the expected output using an error function, such as binary cross entropy, least squares, among others. Vgr., a training data of a healthy person is introduced to the neural network and this gives us
  • Figure 21 shows three neurons in the output layer of the second neural network, making it clear that the number of neurons in the layer
  • the output of the aforementioned second neural network is equal to the number of heart diseases that have been studied and their affinities are defined; reverting our attention to the present example and to figure 21 from which it follows that the output of the NA neuron will indicate the probability that the user has arrhythmia, and its connections with data that are indicators of arrhythmia will have much larger “W” weights; the same for NT that indicates the probability of tachycardia, and successively for all the diseases suffered; this information is processed by statistical means and generates a possible scenario that indicates the most related heart disease or diseases as well as their affinity percentage, also identifying the heart disease with the highest affinity percentage, sending this information to the second server 22; this information is also sent to the first server 21 for storage in the machine learning module for calibrating the classification model; For its part, server 22 processes the information and issues an alert, which is displayed on the medical platform, notifying authorized persons for emergencies,

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The invention relates to a system for compiling biopotential signals and processing them to monitor and identify cardiac alerts, said system comprising a device for acquiring biopotential signals (DASB) (10) with at least one biopotential sensor that collects biopotential cardiac signals (ECG), which delivers them to a wireless module (11) that adapts them, encodes them and sends them to a mobile device (20), which sends them to a first computing server (21) where they are processed. Next, said signals are sent at the same time to a second (22) and third (23) computing server; the second server houses a medical platform for consulting data and recording alarms; the third server processes the biopotential signals by means of neural networks, where a first network determines the state of the user, and in the case of detecting a cardiopathy, a second network compares the biopotential signal to preestablished cardiopathic signals, delivering a series of possible scenarios.

Description

MÉTODO Y DISPOSITIVO PORTÁTIL PARA EL MONITOREO Y PREDICCIÓN DE EVENTOS CARDÍACOS METHOD AND PORTABLE DEVICE FOR THE MONITORING AND PREDICTION OF CARDIAC EVENTS Campo técnicotechnical field
La presente invención recae en el campo de dispositivos médicos, presentando un sistema de recopilación de señales de biopotencial y procesamiento para monitoreo, pronóstico y alertas cardíacas así como métodos o procedimientos para adquirir datos por medio de un dispositivo de adquisición de datos biométricos para luego enviarlos a servidor remoto o “nube” los datos biométricos (que representan un electrocardiograma o ECG) también se presentan métodos para detección de cardiopatías; así la presente invención presenta una alternativa para personas con algún problema cardíaco y/o cualquier persona que quiera monitorear su corazón, de los cuales se recopilan los datos necesarios para la generación de un electrocardiograma (ECG) por medio de uno o varios dispositivos de adquisición de datos cardíacos con una conexión electrónica a un dispositivo portátil como un teléfono celular, “Tablet” u ordenador, en donde los datos recopilados se agrupan, se envían a la nube y se analizan por medio de un algoritmo de redes neuronales, con el afán de monitorear el corazón del usuario, antelarse a algún episodio cardíaco, emitir una alerta, si el análisis del ECG arroja alguna anomalía, entre otras funciones o acciones que le pudiesen salvar la vida al usuario.The present invention falls into the field of medical devices, presenting a biopotential signal collection and processing system for cardiac monitoring, prognosis and alerts, as well as methods or procedures for acquiring data by means of a biometric data acquisition device for later sending. to remote server or "cloud" biometric data (representing an electrocardiogram or ECG) methods for detection of heart disease are also presented; Thus, the present invention presents an alternative for people with a heart problem and/or anyone who wants to monitor their heart, from whom the necessary data for the generation of an electrocardiogram (ECG) is collected by means of one or more acquisition devices. of cardiac data with an electronic connection to a portable device such as a cell phone, "Tablet" or computer, where the collected data is grouped, sent to the cloud and analyzed by means of a neural network algorithm, with the aim of to monitor the user's heart, anticipate a cardiac event, issue an alert, if the ECG analysis shows any anomaly, among other functions or actions that could save the user's life.
Las redes neuronales se componen de dos o más neuronas (X1, X2, … Xn), que tratan de imitar el funcionamiento del cerebro humano; una neurona en el contexto de la presente invención, es un objeto abstracto que recibe varios datos de entrada (numéricos), a los cuales se les asigna un peso (W1, W2, … Wn) realiza una suma ponderada Ui=∑j(WijYj), esta suma se normaliza a través de una función matemática no lineal como ReLu, sigmoide, entre otras; el resultado después de la normalización se toma como salida; las redes neuronales normalmente están compuestas por una o más capas (Y1, Y2, … Yj); en este contexto, una capa se refiere a un número agrupado de neuronas donde todas reciben las mismas entradas (en una red totalmente conectada), pero donde cada neurona tiene diferentes pesos; así la primer cama se le denomina capa de entrada, a las capas intermedias se les denomina capas ocultas y a la última capa se le denomina capa de salida; estas capas de neuronas pueden ser secuenciales, esto es, las salidas de una capa de neuronas sean recibidas como entradas en la siguiente capa, en donde cada capa puede tener un diferente número de neuronas; las redes neuronales normalmente comprenden tres tipos de bases de datos, el primer tipo de base de datos es de entrenamiento, este tiene el objetivo de ajustar los pesos (W) de cada neurona; el segundo tipo de base de datos es la base de datos de validación, siendo ésta usada para validar los pesos (W) así como para eliminar el problema de sobre ajuste (over fitting); la tercera base de datos es la de prueba, ésta es bien importante ya que nos permite medir el error y así saber que tan bien entrenada está la red neuronal. Neural networks are made up of two or more neurons (X1, X2, … Xn), which try to imitate the functioning of the human brain; a neuron in the context of the present invention, is an abstract object that receives various input data (numeric), to which a weight is assigned (W1, W2, … Wn) performs a weighted sum Ui=∑j(WijYj ), this sum is normalized through a non-linear mathematical function such as ReLu, sigmoid, among others; the result after normalization is taken as the output; neural networks are normally composed of one or more layers (Y1, Y2, … Yj); in this context, a layer refers to a grouped number of neurons where they all receive the same inputs (in a fully connected network), but where each neuron has different weights; thus the first layer is called the input layer, the intermediate layers are called hidden layers and the last layer is called the output layer; these layers of neurons can be sequential, that is, the outputs of one layer of neurons are received as inputs in the next layer, where each layer can have a different number of neurons; neural networks normally comprise three types of databases, the first type of database is training, this has the objective of adjusting the weights (W) of each neuron; The second type of database is the validation database, which is used to validate the weights (W) as well as to eliminate the overfitting problem. The third database is the test database, this is very important since it allows us to measure the error and thus know how well trained the neural network is.
En caso particular de la presente invención la red neuronal está entrenada inicialmente bajo un set de datos de electrocardiogramas, este set puede ser una base de datos pública, datos del propio usuario a través del tiempo, base de datos de cardiopatías obtenidas de distintas fuentes, teniendo como objetivo el entrenamiento de la red neuronal para reconocer patrones en un ECG para así poder detectar o predecir cardiopatías; para esto la red neuronal utilizada por la presente invención se ha entrenado bajo la teoría de la propagación inversa, esto es: a los valores de la capa de entrada de la red neuronal se le asignan pesos con valores establecidos al azar, dichos datos de la capa de entrada son una serie de datos que describen un ECG que tiene como atributo un cuadro clínico (es decir, de antemano se sabe si el ECG comprende una cardiopatía, el tipo de cardiopatía, o si es un ECG “normal”); al final se compara el valor de salida de la red neuronal con la salida real (el cuadro clínico conocido) mediante una función de error, y en base a ello se cambian los pesos; esto se itera todo el tiempo, siendo la forma en que la propia red neuronal “aprende” o en otras palabras se adapta a los datos del usuario a través del tiempo, dejando también la puerta abierta a admitir en la base de datos nuevos datos sobre cardiopatías; la última capa de la red neuronal de la presente invención está compuesta por una sola neurona, la cual otorga un valor el cual al compararse con valores obtenidos en pruebas de laboratorio, se puede determinar si el ECG examinado refleja alguna cardiopatía o si el estado del corazón del usuario está “normal”; en el primer caso se activa un sistema de alarmas, caso contrario mantiene la etiqueta de “normal” en el dispositivo portátil del usuario.In the particular case of the present invention, the neural network is initially trained under an electrocardiogram data set, this set can be a public database, user data over time, heart disease database obtained from different sources, having as objective the training of the neural network to recognize patterns in an ECG in order to detect or predict heart disease; For this, the neural network used by the present invention has been trained under the theory of inverse propagation, that is: the values of the input layer of the neural network are assigned weights with values established at random, said data from the The input layer is a series of data describing an ECG that has a clinical picture as its attribute (ie, it is known in advance if the ECG comprises a heart disease, the type of heart disease, or if it is a "normal" ECG); at the end, the output value of the neural network is compared with the real output (the known clinical picture) by means of an error function, and based on this, the weights are changed; this is iterated all the time, being the way in which the neural network itself “learns” or in other words adapts to the user data over time, also leaving the door open to admit new data about it into the database. heart disease; The last layer of the neural network of the present invention is made up of a single neuron, which gives a value which, when compared with values obtained in laboratory tests, can determine if the ECG examined reflects some heart disease or if the state of the user's heart is “normal”; In the first case, an alarm system is activated, otherwise it maintains the "normal" label on the user's portable device.
ANTECEDENTESBACKGROUND
Solíamos leer en libros de ciencia ficción diversos artilugios que podían adquirir señales biométricas con las cuales salvar la vida de los personajes; o inclusive en las películas o la televisión añorábamos con viajes al espacio con trajes espaciales que monitoreaban a distancia nuestro ritmo cardíaco, respiración, funciones orgánicas y demás, parecía en aquel entonces un futuro lejano; ahora nos maravillamos con relojes de pulso asequibles que pueden medir nuestro ritmo cardíaco, contar los pasos que damos al día, calcular las calorías al hacer ejercicio, entre otras funciones. Los datos inclusive pueden ser exportados a un ordenador para un análisis futuro con algún programa de cómputo o “app” o “aplicación” especializada; en el ámbito de la invención en discurso, podemos mencionar algunos ejemplos de dispositivos médicos que adquieren datos para ser analizados con miras de alertar o asistir al personal médico en el tratamiento de cardiopatías; de estos podemos mencionar los siguientes:We used to read in science fiction books various gadgets that could acquire biometric signals with which to save the lives of the characters; or even in the movies or television we longed for trips into space with space suits that remotely monitored our heart rate, breathing, organic functions and others, it seemed at that time in the distant future; now we marvel at affordable wristwatches that can measure our heart rate, count the steps we take per day, calculate calories when exercising, among other functions. The data can even be exported to a computer for future analysis with a specialized computer program or "app" or "application"; in the scope of the invention in discourse, we can mention some examples of medical devices that acquire data to be analyzed with the aim of alerting or assisting medical personnel in the treatment of heart diseases; Of these we can mention the following:
El documento WO20211866 de Louise Rydén; el cual utiliza una pluralidad de sensores dispuestos en una vestimenta que recolectan datos para generar un ECG, los sensores se comunican vía inalámbrica con un primer controlador maestro, el cual recopila la información de los sensores, la guarda, procesa y envía a un ordenador de control, el cual está configurado para detectar anomalías en el ECG, de detectar una anomalía el ordenador de control emite una alarma por medio de un indicador.WO20211866 to Louise Rydén; which uses a plurality of sensors arranged in a garment that collect data to generate an ECG, the sensors communicate wirelessly with a first master controller, which collects the information from the sensors, saves, processes and sends it to a computer control, which is configured to detect abnormalities in the ECG, if an abnormality is detected, the control computer issues an alarm by means of an indicator.
El documento US20200214618 de Rik Vullings describe e ilustra un dispositivo que obtiene señales de ECG de un feto, el dispositivo cuenta con una pluralidad de sensores que se disponen sobre el abdomen de la madre, los dispositivos mandan la información a un control maestro el cual recopila y almacena la información proveniente de los sensores, también la procesa generando en primer término un vector de ECG, dicho vector de ECG del nonato se procesa mediante algún proceso de aprendizaje de máquina (machine learning) ya entrenado que permite clasificar el ECG del bebé, los datos también se utilizan como entrada para el proceso de aprendizaje de máquina.Document US20200214618 by Rik Vullings describes and illustrates a device that obtains ECG signals from a fetus, the device has a plurality of sensors that are arranged on the mother's abdomen, the devices send the information to a master control which collects and stores the information coming from the sensors, it also processes it by first generating an ECG vector, said ECG vector of the unborn is processed by some already trained machine learning process that allows the baby's ECG to be classified, the data is also used as input for the machine learning process.
El documento US20200205745 de Ali Khosousi et al. el cual ilustra y describe un método para detectar anomalías en señales biofísicas; para esto, en un ordenador se adquieren señales biofísicas en uno o varios canales; dichas señales biofísicas se pre-procesan para generar sets de datos, cada set de datos contiene un ciclo cardíaco completo; los sets de datos se procesan arrojando como resultado un valor que indica la presencia de alguna cardiopatía, los sets de datos son procesados utilizando redes neuronales profundas, las cuales son entrenadas con datos de señales biofísicas adquiridas de pacientes con cardiopatías específicas y etiquetadas con la presencia o ausencia de una cardiopatía; el resultado se puede arrojar en manera de reporte o desplegándolo en la pantalla del ordenador. US20200205745 by Ali Khosousi et al. which illustrates and describes a method for detecting abnormalities in biophysical signals; For this, a computer acquires biophysical signals in one or several channels; said biophysical signals are pre-processed to generate data sets, each data set contains a complete cardiac cycle; the data sets are processed, yielding as a result a value that indicates the presence of some heart disease, the data sets are processed using deep neural networks, which are trained with data from biophysical signals acquired from patients with specific heart diseases and labeled with the presence or absence of heart disease; the result can be thrown in the form of a report or displayed on the computer screen.
El documento US7194298 de Louis Massicotte et al. en donde se describe un método para determinar una tendencia en una señal de ECG, en donde el método va aprendiendo en base a la información que poco a poco va adquiriendo del usuario; el método consiste en extraer los puntos base de dicha señal ECG, cada punto base se compara con umbrales predeterminados por medio de un sistema de aprendizaje adaptativo lento que utiliza los datos del propio usuario, dichos umbrales tienen límites tanto verticales como horizontales en la gráfica del ECG, y dichos límites se van modificando con el tiempo; si los puntos base caen dentro del umbral, entonces se corre un análisis para buscar en puntos improbables, si los puntos son determinables entonces se puede determinar una tendencia en el monitoreo de la señal ECG en base a dichos nuevos puntos determinables.US7194298 to Louis Massicotte et al. where a method to determine a trend in an ECG signal is described, where the method is learning based on the information that it is gradually acquiring from the user; the method consists of extracting the base points of said ECG signal, each base point is compared with predetermined thresholds by means of a slow adaptive learning system that uses the user's own data, said thresholds have both vertical and horizontal limits on the graph of the ECG, and these limits are modified over time; if the base points fall within the threshold, then an analysis is run to look at unlikely points, if the points are determinable then a trend can be determined in monitoring the ECG signal based on those new determinable points.
Del estudio de los documentos anteriores se desprende la necesidad de un sistema de monitoreo cardíaco, que no sea intrusivo con el paciente, de un tamaño conveniente, de fácil manufactura, de bajo costo, con pocos requerimientos de mantenimiento, batería de duración prolongada, confiable, que de ser necesario se puedan utilizar varios dispositivos dispuestos sobre el usuario, para obtener diferentes canales o derivaciones en la obtención de un ECG y con base en éste, se pueda determinar si el usuario está en condiciones óptimas o si puede o está sufriendo un evento cardíaco, que permita alertar tanto al usuario como al equipo médico; objetos que la presente invención pretende cubrir ampliamente. From the study of the previous documents, the need for a cardiac monitoring system that is not intrusive with the patient, of a convenient size, easy to manufacture, low cost, with few maintenance requirements, long-lasting battery, reliable, emerges. , that if necessary, several devices arranged on the user can be used to obtain different channels or leads to obtain an ECG and based on this, it can be determined if the user is in optimal conditions or if he can or is suffering from an ECG. cardiac event, which allows both the user and the medical team to be alerted; objects that the present invention intends to cover broadly.
Breve descripción de la invenciónBrief description of the invention
El sistema de recopilación de señales de biopotencial y procesamiento para monitoreo, pronóstico y alertas cardíacas que a continuación se describe, consiste de un dispositivo de adquisición de datos de biopotencial, dotado de un módulo inalámbrico en conexión electrónica con una batería y al menos un sensor de biopotencial; el referido sensor recoge señales de biopotencial cardíacas (ECG), las cuales entrega al módulo inalámbrico, éste las adecúa, codifica y envía a un dispositivo móvil, el cual a su vez las envía a un primer servidor de cómputo (server) en donde las señales de biopotencial cardíacas se decodifican, se reconstruyen un ECG, se etiqueta y se almacenan, acto seguido dichas señales de biopotencial se envían al mismo tiempo a un segundo servidor de cómputo y tercer servidor de cómputo; el segundo servidor de cómputo aloja una plataforma médica que permite la consulta de datos así como el registro de alarmas; el tercer servidor de cómputo procesa la señales de biopotencial por medio de redes neuronales, una primer red neuronal determina si el estado del usuario es “normal” o si presenta alguna cardiopatía; en caso de detectar una cardiopatía, una segunda red neuronal compara la señal de biopotencial contra señales de cardiopatías preestablecidas que pueden ser detectadas por las derivaciones cardíacas entregando una serie de posibles escenarios. Una vez analizada la moda estadística de estos escenarios se determina la probabilidad de que sucedan o no; si no está en orden el estado cardíaco del usuario, se envía una alerta al usuario y/o interesado autorizado; si el estado cardíaco del usuario está en orden, notifica al usuario y/o interesado autorizado. En ambos casos se guarda el ECG etiquetado para ser usado en el módulo de aprendizaje de la red neuronal. The biopotential signal collection and processing system for cardiac monitoring, prognosis and alerts described below consists of a biopotential data acquisition device, equipped with a wireless module in electronic connection with a battery and at least one sensor. of biopotential; the aforementioned sensor collects cardiac biopotential signals (ECG), which it delivers to the wireless module, which adapts, encodes and sends them to a mobile device, which in turn sends them to a first computer server (server) where the cardiac biopotential signals are decoded, an ECG is reconstructed, labeled and stored, then said biopotential signals are sent to a second compute server and a third compute server at the same time; the second computer server hosts a medical platform that allows data consultation as well as the recording of alarms; the third computing server processes the biopotential signals by means of neural networks, a first neural network determines if the user's state is "normal" or if he has some heart disease; In case of detecting heart disease, a second neural network compares the biopotential signal against pre-established heart disease signals that can be detected by cardiac leads, providing a series of possible scenarios. Once the statistical mode of these scenarios has been analyzed, the probability of their happening or not is determined; if the user's cardiac status is not in order, an alert is sent to the user and/or authorized interested party; if the user's cardiac status is in order, it notifies the user and/or authorized interested party. In both cases, the labeled ECG is saved to be used in the learning module of the neural network.
[La ] muestra un diagrama de bloques eléctrico del dispositivo de adquisición de señales de biopotencial.[The ] shows an electrical block diagram of the biopotential signal acquisition device.
[Las , 3, 4, 5, 6, 7, 8, 9, 10] muestran un diagrama de bloques de la operación, funcionamiento y señales del dispositivo de adquisición de señales de biopotencial; el cual por facilidad de lectura se ilustra en nueve hojas.[The , 3, 4, 5, 6, 7, 8, 9, 10] show a block diagram of the operation, function and signals of the biopotential signal acquisition device; which for ease of reading is illustrated on nine pages.
[La ] muestra un diagrama de flujo de operación del sistema de recopilación de señales de biopotencial y procesamiento para monitoreo, pronóstico y alertas cardíacas[The ] shows an operation flow chart of the biopotential signal collection and processing system for cardiac monitoring, prognosis and alerts
[La ] muestra un diagrama de bloques donde se ilustra el procesamiento de la señal de biopotencial cardíaco.[The ] shows a block diagram illustrating cardiac biopotential signal processing.
[La ] muestra un diagrama que ilustra las tres capas de una red neuronal.[The ] shows a diagram illustrating the three layers of a neural network.
[La ] muestra un diagrama del dispositivo de adquisición de señales de biopotencial.[The ] shows a diagram of the biopotential signal acquisition device.
[La ] ilustra un diagrama con un usuario portando un dispositivo de adquisición de señales de biopotencial.[The ] illustrates a diagram with a user wearing a biopotential signal acquisition device.
[La ] ilustra un diagrama con un usuario portando una pluralidad de dispositivos de adquisición de señales de biopotencial.[The ] illustrates a diagram with a user carrying a plurality of biopotential signal acquisition devices.
[Las Fig. 17a, 17b, 17c] ilustran diferentes pantallas de la aplicación móvil implementándose en el dispositivo móvil u ordenador.[Figs. 17a, 17b, 17c] illustrate different screens of the mobile application being implemented on the mobile device or computer.
[La ] muestra un diagrama de una capa neuronal de entrada con pesos y función de activación.[The ] shows a diagram of an input neural layer with weights and activation function.
[La ] muestra un diagrama de la capa intermedia de una red neuronal.[The ] shows a diagram of the middle layer of a neural network.
[La ] muestra un diagrama de la capa intermedia y de salida de la primer red neuronal.[The ] shows a diagram of the intermediate and output layer of the first neural network.
[La ] muestra un diagrama de la capa intermedia y de salida de la segunda red neuronal.[The ] shows a diagram of the intermediate and output layer of the second neural network.
Descripción detallada de la invenciónDetailed description of the invention
Alteraciones de la estructura descrita en la presente, podrán ser previstas por aquellos con conocimientos en la materia. Sin embargo, debe ser entendido que la presente descripción se relaciona con las modalidades preferidas de la invención, la cual solamente es para propósitos ilustrativos, y no debe ser entendida como una limitación de la invención.Alterations to the structure described herein may be foreseen by those knowledgeable in the matter. However, it is to be understood that the present description relates to preferred embodiments of the invention, which is for illustrative purposes only, and is not to be construed as a limitation of the invention.
Cuando se haga referencia a cualquier característica estructural, eslabón mecánico o componente, los términos: se sujeta por un medio mecánico, asegurado mecánicamente, asido mecánicamente, sujetado mecánicamente, se fija mecánicamente o fijado mecánicamente o se une mecánicamente o se sujeta mecánicamente, debe entenderse que se puede utilizar cualquier medio conocido en la técnica para unir mecánicamente por ejemplo: tornillos y tuercas con y sin arandelas, remaches, tornillos en agujeros roscados, soldadura de cualquier tipo (arco, tig, mig, etc.), soldadura por fricción, soldadura por ultrasonido, pegamentos, aglutinantes, sobremoldeo, insertos, prensado, embutido, unión por interferencia, snaps, pestañas y cinchos, cuñas, pasadores, tornillos prisioneros, ranuras y arandelas de seguridad, los anteriores pudiendo ser utilizados de manera separada o conjunta, entre otros conocidos en el medio.When referring to any structural feature, mechanical link or component, the terms: mechanically fastened, mechanically secured, mechanically grasped, mechanically fastened, mechanically fixed or mechanically fixed or mechanically attached or mechanically fastened, shall be understood that any means known in the art can be used to join mechanically for example: screws and nuts with and without washers, rivets, screws in threaded holes, welding of any type (arc, tig, mig, etc.), friction welding, ultrasonic welding, glues, binders, overmolding, inserts, pressing, drawing, interference joining, snaps, tabs and straps, wedges, pins, grub screws, slots and safety washers, the above being able to be used separately or together, among other acquaintances in the middle.
Otros aspectos, modalidades y ventajas de esos aspectos y modalidades ejemplares se discuten con detalle más adelante. La descripción proporciona ejemplos ilustrativos de varios aspectos y modalidades de la presente invención, y se pretende proporcionar un panorama general o marco para comprender la naturaleza y carácter de los aspectos y modalidades reclamadas. Las figuras acompañantes se incluyen para proporcionar ilustración y comprensión adicional de los diferentes aspectos y modalidades, y se incorporan en y constituyen una parte de esta especificación. Las figuras, junto con la descripción sirven para explicar los aspectos y modalidades descritas y reclamadas.Other aspects, modalities, and advantages of those exemplary aspects and modalities are discussed in detail below. The description provides illustrative examples of various aspects and embodiments of the present invention, and is intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. The accompanying figures are included to provide additional illustration and understanding of the different aspects and modalities, and are incorporated into and constitute a part of this specification. The figures, together with the description, serve to explain the aspects and modalities described and claimed.
Las siguientes definiciones se proveen con el propósito de permitir una mejor comprensión de la invención:The following definitions are provided for the purpose of allowing a better understanding of the invention:
Acoplado mecánicamente – Se refiere a la transmisión de energía mecánica de un elemento a otro por medio de engranes, poleas de fricción, poleas con bandas, medios magnéticos, transmisiones mecánicas, flechas, coples mecánicos, coples dinámicos, juntas universales, juntas de Hook, juntas homocinéticas, cardanes, medios húmedos, entre otros.Mechanically coupled – Refers to the transmission of mechanical energy from one element to another by means of gears, friction pulleys, belt pulleys, magnetic means, mechanical transmissions, shafts, mechanical couplings, dynamic couplings, universal joints, Hook joints, homokinetic joints, cardans, wet media, among others.
Acoplado electrónicamente, en conexión electrónica – Se refiera a la conexión alámbrica o inalámbrica entre elementos electrónicos vgr.: sensor, “driver”, actuador, microcontrolador, microprocesador, antena, circuito periférico, etc. con el afán de recibir / enviar una señal, ya sea analógica o digital. Electronically coupled, in electronic connection – Refers to the wired or wireless connection between electronic elements vgr.: sensor, "driver", actuator, microcontroller, microprocessor, antenna, peripheral circuit, etc. with the desire to receive / send a signal, either analog or digital.
En conexión eléctrica, eléctricamente acopladas – Se refiere a la conexión o alimentación de potencia o energía eléctrica desde una fuente de poder hacia elementos eléctricos o electrónicos que requieren ser energizados para poder operar. In electrical connection, electrically coupled – Refers to the connection or supply of power or electrical energy from a power source to electrical or electronic elements that need to be energized in order to operate.
Aproximadamente - El uso de este término proporciona un determinado rango adicional con respecto al valor numérico al cual se está aplicando. Dicho rango adicional es de ± 10%. De manera ejemplar, pero no limitativa, si se dice “aproximadamente 40 cm”, el rango exacto que se describe y/o reclama está comprendido entre 36 cm a 44 cm.Approximately - The use of this term provides some additional range with respect to the numerical value to which it is being applied. Said additional range is ± 10%. By way of example, but not limitation, if it says "approximately 40 cm", the exact range that is described and/or claimed is between 36 cm to 44 cm.
Pluralidad - Dos o más elementos de una misma especie; multitud, número grande de algunas cosas, o el mayor número de ellas.Plurality - Two or more elements of the same species; crowd, large number of some things, or the greatest number of them.
ECG – Electrocardiograma.ECG – Electrocardiogram.
Server – Es un término corto utilizado en la jerga de la informática que hace referencia o se entiende como un servidor de cómputo.Server – It is a short term used in computer science jargon that refers to or is understood as a computer server.
Módulo de datos a procesar- base de datos donde se respaldan las señales de ECG a procesar por las redes neuronales, en donde dichas señales han sido debidamente empaquetadas digitalizadas, acondicionadas, reconstruidas y etiquetadas.Data module to be processed- database where the ECG signals to be processed by the neural networks are supported, where said signals have been duly packaged, digitized, conditioned, reconstructed and labeled.
Módulo de datos de referencia- base de datos que contiene señales ECG empaquetadas digitalizadas, acondicionadas, reconstruidas y etiquetadas que se sabe son afines a alguna cardiopatía conocida, y datos de ECG “normales” del usuario tanto en estado reposo o actividad cardiaca ordinaria, un estado de actividad cardiaca media, un estado de actividad cardiaca alta o un estado de actividad cardiaca extraordinaria.Reference Data Module - database containing digitized, conditioned, reconstructed, and labeled packaged ECG signals known to be related to a known heart disease, and "normal" ECG data from the user in both resting state and ordinary cardiac activity, a state of average cardiac activity, a state of high cardiac activity or a state of extraordinary cardiac activity.
Módulo de aprendizaje de máquina para la calibración del módulo de clasificación- base de datos donde se respaldan datos de ECG’s digitalizadas, acondicionadas, reconstruidas y etiquetadas que tienen una afinidad con alguna cardiopatía, ya sea que provengan de una base de datos exterior o de las cardiopatías detectadas por la segunda red neuronal, también contienen los datos de ECG’s del estado del usuario “Normales” o “Extraordinarios” tanto en estado reposo o actividad cardiaca ordinaria, un estado de actividad cardiaca media, un estado de actividad cardiaca alta o un estado de actividad cardiaca extraordinaria; los cuales se utilizan para recalibrar consuetudinariamente los pesos “W” de cada red neuronal para su actualización y mejora continua. Machine learning module for the calibration of the classification module - database where digitized, conditioned, reconstructed and labeled ECG data are supported that have an affinity with some heart disease, whether they come from an external database or from the heart diseases detected by the second neural network, they also contain the ECG data of the user's state "Normal" or "Extraordinary" both in a resting state or ordinary cardiac activity, a state of medium cardiac activity, a state of high cardiac activity or a state of extraordinary cardiac activity; which are used to customarily recalibrate the "W" weights of each neural network for continuous updating and improvement.
Estado “Normal” del usuario- Significa que su ECG está dentro de los parámetros considerados “normales”.User's “Normal” Status- It means that your ECG is within the parameters considered “normal”.
Estado “Extraordinario” del usuario- Significa que su ECG está fuera de parámetros y que puede presentar alguna cardiopatía."Extraordinary" state of the user- It means that his ECG is out of parameters and that he may have some heart disease.
Modelo ajustado por la referencia del usuario- Se refiere a la actualización de las bases de datos de los módulos de las redes neuronales con datos adquiridos del usuario a través del tiempo, lo que permite ir ajustando los pesos “W” de cada red neuronal de forma consuetudinaria.Model adjusted by the user's reference- Refers to updating the databases of the neural network modules with data acquired from the user over time, which allows adjusting the "W" weights of each neural network of customary way.
Plataforma médica- Aplicación “app” o software que permite el respaldo, visualización y consulta de señales de ECG digitalizadas, acondicionadas, reconstruidas y etiquetadas provenientes del DASB 10; también se encarga de la emisión de indicaciones de alarma tanto en la propia pantalla de la plataforma médica como el envío de la indicación de alarma a través del server 11 al dispositivo móvil u ordenador 20.Medical platform- Application "app" or software that allows the backup, visualization and consultation of ECG signals digitized, conditioned, reconstructed and labeled from the DASB 10; It is also responsible for issuing alarm indications both on the medical platform screen itself and for sending the alarm indication through the server 11 to the mobile device or computer 20.
Las figuras del 1 a 22 se utilizan de forma indistinta en la siguiente descripción:Figures 1 through 22 are used interchangeably in the following description:
Como se ilustra en la figura 1, el dispositivo de adquisición de señales de biopotencial o DASB 10, está integrado por el módulo inalámbrico 11 el cual comprende de un microcontrolador y una antena a 2.4 GHz de ultra bajo consumo, así mismo, el DASB 10 comprende de un primer regulador de voltaje 12 de 2.4 V, además de una batería 13 de 3 V que alimenta al microcontrolador, antena, y un segundo regulador 15; el módulo inalámbrico 11, recibe la señal proveniente de un bloque digital AFE (14) -Analog Front End-, el cual en una modalidad preferente, está provisto de un convertidor analógico-digital (o ADC por sus siglas en inglés) así como de al menos un sensor de biopotencial el cual adquiere la señales de biopotencial a través de al menos un electrodo 25 en conexión eléctrica con un filtro pasa bajas 28; de tal suerte que el ADC adecúa la señal proveniente de al menos un sensor de biopotencial para que pueda ser procesada posteriormente por el módulo inalámbrico11; en una modalidad preferente, la batería 13 está eléctricamente acoplada al primer regulador de voltaje 12 de 2.4 V, el cual alimenta al módulo inalámbrico 11, al botón 16 y al bloque digital del AFE 14.De forma paralela al proceso antes descrito, un segundo regulador de voltaje 15 de 1.8 V alimenta a un primer módulo de capacitores de derivación, al módulo digital AFE30y a un oscilador 17 en conexión eléctrica con el módulo digital AFE. 14; El regulador de voltaje 15 de 1.8 V es controlado por una señal digital que emite el módulo inalámbrico 11, en esta modalidad preferente, el primer regulador de voltaje 12 a 2.4 V alimenta a un primer banco de capacitores de derivación 29, al módulo inalámbrico 11 y al botón 16; como es evidente en una modalidad alternativa, el módulo inalámbrico11 puede estar acoplado eléctricamente al primer regulador de voltaje 12 de 2.4 V o a la batería13omitiendo el uso del primer regulador de voltaje 12; en cualquier caso de la modalidad alterna, el módulo inalámbrico 11 está acoplado electrónicamente al AFE 14, al segundo regulador de voltaje 15 de 1.8 V, al botón 16 y al diodo emisor de luz 18 (o por sus siglas en inglés LED) , y en su caso a un ADC; en una modalidad alternativa, un DASB 10 puede tener una pluralidad de AFE 14; en una modalidad alternativa , la señal de al menos un AFE 14, es recibida directamente por el módulo inalámbrico 11, la cual es una señal analógica, por lo que el propio módulo inalámbrico 11 debe tener un ADC interno con el cual poder convertir o “traducir” la señal analógica a digital; en una modalidad alternativa, la señal del AFE 14 llega a un ADC el cual convierte o “traduce” la señal analógica obtenida del usuario, a una señal digital la cual es recibida y posteriormente procesada por el módulo inalámbrico 11.As illustrated in Figure 1, the biopotential signal acquisition device or DASB 10, is made up of the wireless module 11, which comprises a microcontroller and an ultra-low consumption 2.4 GHz antenna, likewise, the DASB 10 It comprises a first 2.4 V voltage regulator 12, as well as a 3 V battery 13 that feeds the microcontroller, antenna, and a second regulator 15; The wireless module 11 receives the signal from a digital block AFE (14) -Analog Front End-, which in a preferred mode, is provided with an analog-digital converter (or ADC for its acronym in English) as well as at least one biopotential sensor which acquires the biopotential signals through at least one electrode 25 in electrical connection with a low-pass filter 28; in such a way that the ADC adapts the signal coming from at least one biopotential sensor so that it can be subsequently processed by the wireless module11; In a preferred embodiment, the battery 13 is electrically coupled to the first 2.4 V voltage regulator 12, which supplies the wireless module 11, the button 16, and the digital block of the AFE 14. Parallel to the process described above, a second 1.8 V voltage regulator 15 feeds a first shunt capacitor module, the digital module AFE30 and an oscillator 17 in electrical connection with the digital module AFE. 14; The 1.8 V voltage regulator 15 is controlled by a digital signal emitted by the wireless module 11. In this preferred mode, the first 2.4 V voltage regulator 12 feeds a first shunt capacitor bank 29, the wireless module 11 and to button 16; as is evident in an alternative embodiment, the wireless module 11 may be electrically coupled to the first 2.4 V voltage regulator 12 or to the battery 13 omitting the use of the first voltage regulator 12; in any case of the alternate mode, the wireless module 11 is electronically coupled to the AFE 14, the second 1.8 V voltage regulator 15, the button 16 and the light emitting diode 18 (or LED), and where appropriate to an ADC; In an alternate embodiment, a DASB 10 may have a plurality of AFEs 14; In an alternative modality, the signal from at least one AFE 14 is received directly by the wireless module 11, which is an analog signal, so the wireless module 11 itself must have an internal ADC with which to convert or " translate” the analog signal to digital; In an alternative modality, the signal from the AFE 14 reaches an ADC which converts or "translates" the analog signal obtained from the user, to a digital signal which is received and subsequently processed by the wireless module 11.
Una antena de bajo consumo está embebida en el módulo inalámbrico 11 la cual sirve para enviar y recibir información, en una modalidad preferente, la antena es compatible con bluetooth, en una modalidad alternativa, puede utilizarse cualesquiera otro protocolo o tecnología disponible en el mercado los cuales se citan de manera enunciativa pero no limitativa: Zigbee, Thread, WIFI, XBee, ZWave, Symphony Link, Sigfox, radiofrecuencia, LoRa, entre otros. Por medio de una antena dentro del módulo inalámbrico (11) se establece la comunicación con el dispositivo móvil u ordenador 20; la antena permite el envío y recepción de datos del módulo inalámbrico (11) desde y hacia el dispositivo móvil u ordenador 20, así como la recepción de indicaciones, programación o conexiones de servicio y diagnóstico del propio DASB 10; en una modalidad preferente, el módulo inalámbrico 11 envía y recibe información por ciertos periodos de tiempo, por ejemplo cuando se activa para enviar información al dispositivo móvil u ordenador 20 cada 5 minutos o cuando terminado dicho plazo, puede entrar en bajo consumo de energía por un periodo de 3 minutos . Una primera modalidad alternativa se presenta cuando el módulo inalámbrico 11 “despierta” cada que requiere enviar o recibir información. Una segunda modalidad alternativa se presenta cuando el módulo inalámbrico 11 comprende de una antena del tipo de bajo consumo de energía, lo que permite que el módulo inalámbrico 11 pueda estar “encendido” todo el tiempo, recibir o enviar información según lo requiera el módulo inalámbrico 11.A low consumption antenna is embedded in the wireless module 11 which is used to send and receive information. In a preferred mode, the antenna is compatible with Bluetooth. In an alternative mode, any other protocol or technology available on the market can be used. which are cited by way of example but not limitation: Zigbee, Thread, WIFI, XBee, ZWave, Symphony Link, Sigfox, radio frequency, LoRa, among others. By means of an antenna inside the wireless module (11) communication is established with the mobile device or computer 20; the antenna allows the sending and receiving of data from the wireless module (11) to and from the mobile device or computer 20, as well as the reception of indications, programming or service and diagnostic connections from the DASB 10 itself; In a preferred mode, the wireless module 11 sends and receives information for certain periods of time, for example when it is activated to send information to the mobile device or computer 20 every 5 minutes or when said period is over, it can go into low power consumption for a period of 3 minutes. A first alternative mode occurs when the wireless module 11 "wakes up" each time it needs to send or receive information. A second alternative modality occurs when the wireless module 11 comprises an antenna of the low power consumption type, which allows the wireless module 11 to be "on" all the time, receive or send information as required by the wireless module. eleven.
En una tercera modalidad alternativa denominada preferente, consiste en tener una pluralidad de DASB 10 dispuestos en diversas partes del cuerpo del usuario, para recopilar una pluralidad de señales de biopotencial cardíaco, las cuales se pueden tratar en canales diferentes, es decir, un canal por cada DASB 10. En este caso, se tiene un DASB 10 que fungirá como “maestro” el cual coordinará al resto de los DASB 10 que fungirán como “esclavos” recolectando el paquete de información de cada uno de éstos, siguiendo algún protocolo de comunicación que evite el colapso de señales, como por ejemplo, asignar un número a cada DASB 10 de la red y llamarlos por orden cada determinado tiempo, por ejemplo, cuando el DASB 10 “maestro” llama al DASB 10 “esclavo 1” el cual transmitirá por un período de tiempo determinado como puede ser 10s, después dará por terminada la comunicación y seguirá con el DASB 10 “esclavo 2” que igual transmitirá hacia el DASB 10 “maestro” por un periodo determinado de tiempo; así hasta el DASB 10 “esclavo n”, posteriormente los DASB 10 involucrados entran en un estado de bajo consumo durante un determinado periodo de tiempo; al terminar el periodo de tiempo todos los DASB 10 toman una nueva muestra, retomando el ciclo de nueva cuenta.In a third alternative modality called preferred, it consists of having a plurality of DASBs 10 arranged in various parts of the user's body, to collect a plurality of cardiac biopotential signals, which can be processed in different channels, that is, one channel per channel. each DASB 10. In this case, there is a DASB 10 that will act as "master" which will coordinate the rest of the DASB 10 that will act as "slaves" collecting the information packet from each of these, following some communication protocol to avoid signal collapse, such as assigning a number to each DASB 10 in the network and calling them in order every certain time, for example, when the DASB 10 “master” calls the DASB 10 “slave 1” which will transmit for a certain period of time such as 10s, then it will terminate the communication and continue with the DASB 10 "slave 2" which will also transmit to the DASB 10 "master" for a determined period of time; thus until the DASB 10 "slave n", later the DASB 10 involved enter a state of low consumption during a determined period of time; At the end of the time period, all the DASB 10 take a new sample, resuming the cycle again.
En cualquier modalidad, la señal digital es codificada por el módulo inalámbrico 11, esto ayuda a evitar interferencias con otros equipos, agregar seguridad al envío de datos hacia el dispositivo móvil u ordenador 18, también ayuda a empaquetar los datos y reducir los tiempos de transmisión, lo que contribuye a alargar el tiempo de vida de la batería 13; los medios de codificación que se pueden emplear, son conocidos ampliamente en el medio, de los cuales se pueden señalar: Codificación numérica, alfabética y alfanumérica, los cuales se pueden usar de forma indistinta en la presente invención.In any mode, the digital signal is encoded by the wireless module 11, this helps to avoid interference with other equipment, add security to the sending of data to the mobile device or computer 18, it also helps to package the data and reduce transmission times , which contributes to lengthening the life of the battery 13; The coding means that can be used are widely known in the field, of which the following can be pointed out: Numeric, alphabetic and alphanumeric coding, which can be used interchangeably in the present invention.
En las figuras 2 a 10 podemos ver los métodos o procesos de señal que lleva a cabo un DASB 10 en particular dichos métodos se debe tener aquí presentes como si a la letra se insertasen; en una modalidad preferente el primer bloque representa el suministro eléctrico como lo es una pila o batería13, la cual permite la inicialización de periféricos; si se energizó por primera vez el DASB 10 ingresa a un estado de bajo consumo, para inicializar o “despertar” al módulo inalámbrico 11, el usuario deberá de mantener activado el botón 16 durante un tiempo específico (por ejemplo 3 segundos), lo cual permitirá que el DASB 10 regrese a la inicialización de periféricos, donde, por el contrario, si no se energizó por primera vez el DASB 10, iniciará el módulo bluetooth de baja energía o BLE por sus siglas en inglés (Bluetooth Low Energy) con el que está equipado la antena en esta modalidad preferente y a continuación implementará de forma permanente las tareas pendientes del BLE. Posteriormente, el módulo inalámbrico 11 activa la antena que a su vez pone en modo de publicidad al BLE (esto significa que el dispositivo móvil u ordenador 20 puede establecer una conexión con el DASB 10) durante un periodo de tiempo (vgr. 1min). Si no se realizó una conexión el DASB 10 entra en un estado de bajo consumo durante un periodo de tiempo (vgr. 10ms a 5 min), donde, por el contrario, si se estableció la conexión correctamente se detendrá el temporizador para mantener el estado de conexión, a continuación , cambia el estado de los periféricos visuales en este caso el LED 18, por consiguiente el dispositivo móvil u ordenador 20 envía una indicación para la configuración previa de periféricos, posteriormente se lleva a cabo una configuración del temporizador para el inicio del nuevo ciclo, a continuación se habilita el segundo regulador de voltaje 15 de 1.8 VDC con la finalidad de llevar a cabo una configuración de parámetros de muestreo del dispositivo AFE 14.In figures 2 to 10 we can see the signal methods or processes carried out by a DASB 10 in particular, these methods must be kept in mind here as if they were inserted to the letter; In a preferred modality, the first block represents the electrical supply such as a battery or battery13, which allows the initialization of peripherals; If the DASB 10 was powered up for the first time, it enters a low power state, to initialize or “wake up” the wireless module 11, the user must keep the button 16 activated for a specific time (for example, 3 seconds), which will allow the DASB 10 to return to peripheral initialization, where instead, if the DASB 10 was not first powered up, it will initialize the Bluetooth Low Energy (BLE) module with the that the antenna is equipped in this preferred mode and will then permanently implement the BLE pending tasks. Subsequently, the wireless module 11 activates the antenna which in turn puts the BLE in advertising mode (this means that the mobile device or computer 20 can establish a connection with the DASB 10) for a period of time (eg 1min). If a connection was not made, the DASB 10 enters a low consumption state for a period of time (eg 10ms to 5 min), whereas, on the contrary, if the connection was established correctly, the timer will stop to maintain the state. connection, then the state of the visual peripherals changes in this case the LED 18, therefore the mobile device or computer 20 sends an indication for the previous configuration of peripherals, later a timer configuration is carried out for the start of the new cycle, then the second voltage regulator 15 of 1.8 VDC is enabled in order to carry out a configuration of the sampling parameters of the AFE device 14.
La interrupción del dispositivo AFE 14 nos indica que ha iniciado la toma de muestras o adquisición de señales de biopotencial, esto es, que los sensores de biopotencial envían las señales adquiridas al ADC o directamente al módulo inalámbrico 11 (dependiendo de la modalidad) en donde, en cualquier caso el módulo inalámbrico 11, adquiere una cantidad especifica de muestras o señales (denominadas datos), una vez que esto sucede se procede al reseteo del dispositivo AFE 14, a continuación, se envía al segundo regulador de voltaje de 1.8 VDC a estado de bajo consumo, hecho esto, el módulo inalámbrico 11 envía una indicación al dispositivo móvil u ordenador 20, para dar comienzo al envío de datos, en donde el dispositivo móvil u ordenador 20 “responde” al módulo inalámbrico 11 que está preparado para la recepción de datos, iniciándose el temporizador para el envío de datos.The interruption of the AFE device 14 indicates that the sampling or acquisition of biopotential signals has started, that is, that the biopotential sensors send the acquired signals to the ADC or directly to the wireless module 11 (depending on the modality) where In any case, the wireless module 11 acquires a specific amount of samples or signals (called data), once this happens, the AFE device 14 is reset, then it is sent to the second 1.8 VDC voltage regulator at low consumption state, done this, the wireless module 11 sends an indication to the mobile device or computer 20, to start sending data, where the mobile device or computer 20 "responds" to the wireless module 11 that is ready for the reception of data, starting the timer for sending data.
Cuando se requiere enviar datos, el módulo inalámbrico 11 realiza una interrupción del temporizador para realizar la codificación y empaquetado de datos antes del envío de datos hacia el dispositivo móvil u ordenador 20, o hacia un DASB 10 “maestro”, en cualquier caso, durante la interrupción del temporizador (y antes del envío de datos por parte del módulo inalámbrico 11) se lleva a cabo una codificación de los datos muestreados por parte del DASB 10, acto seguido, el DASB 10 empaqueta los datos muestreados, para posteriormente llevar a cabo un envío del paquete de datos por medio del módulo inalámbrico 11 quien a su vez termina la interrupción del temporizador permitiéndole a este continuar con su cuenta, lo cual se lleva a cabo hasta en tanto se alcance la cantidad específica de datos codificados y empaquetados a enviar, una vez que el dispositivo móvil u ordenador 20 ha recibido la cantidad específica de datos codificados y empaquetados (i.e. tiene los datos completos) envía una señal al módulo inalámbrico 11 para que este proceda a detener el temporizador para el envío de datos; finalmente, el módulo inalámbrico 11 envía una indicación de terminación de transmisión de datos al dispositivo móvil u ordenador 20.When it is required to send data, the wireless module 11 performs a timer interrupt to perform data encoding and packaging before sending data to the mobile device or computer 20, or to a "master" DASB 10, in any case, during the interruption of the timer (and before the data is sent by the wireless module 11) an encoding of the sampled data is carried out by the DASB 10, immediately afterwards, the DASB 10 packages the sampled data, to later carry out a sending of the data packet by means of the wireless module 11 which in turn terminates the timer interruption allowing it to continue with its account, which is carried out until the specific amount of encrypted and packaged data to be sent is reached , once the mobile device or computer 20 has received the specific amount of encrypted and packaged data (i.e. it has the complete data), it sends a signal to the wireless module 11 so that it proceeds to stop the timer for sending data; finally, the wireless module 11 sends a data transmission termination indication to the mobile device or computer 20.
La interrupción del temporizador de inicio de nuevo ciclo, retorna específicamente en el apartado de la configuración del temporizador para el inicio del nuevo ciclo que ya fue descrito con anterioridad.The interruption of the timer for the start of a new cycle returns specifically in the section on the configuration of the timer for the start of the new cycle, which was previously described.
Si se presenta una pérdida de la conexión hacia el dispositivo móvil u ordenador 20 se presenta una desactivación de los temporizadores, un reseteo del AFE 14 y una deshabilitación del segundo regulador de voltaje de 1.8 VDC, esto provoca el retorno al proceso de publicidad BLE en donde se repite todo su ciclo que ya fue descrito con anterioridad.If there is a loss of connection to the mobile device or computer 20, there is a deactivation of the timers, a reset of the AFE 14 and a disabling of the second 1.8 VDC voltage regulator, this causes a return to the BLE advertising process in where its entire cycle that was previously described is repeated.
La interrupción de apagado por botón 16 puede suceder en cualquier instante, que al activarse, da inicio al temporizador para calcular tiempos de activación del botón 16, si el botón 16 se mantuvo activado durante el tiempo específico (vgr. 5 seg.) ingresa a un estado de bajo consumo, por otro lado, si el botón 16 no se mantuvo activado durante el tiempo específico se lleva a cabo un reinicio del dispositivo AFE (14) y de la transmisión de datos.The shutdown interruption by button 16 can happen at any instant, which when activated, starts the timer to calculate button 16 activation times, if button 16 was kept activated for the specific time (eg 5 sec.) it enters a a low power state, on the other hand, if the button 16 was not kept activated for the specified time, a reset of the AFE device (14) and data transmission is performed.
En el supuesto de una modalidad alternativa, el DASB 10 puede llevar a cabo una conexión en malla, en primer lugar, se realiza la configuración de un DASB 10 como “maestro” o como “esclavo” para continuar con una sincronización con la red DASB 10 y de esta forma se logra una interacción con la red DASB 10.In the event of an alternative mode, the DASB 10 can carry out a mesh connection, firstly, a DASB 10 is configured as "master" or as "slave" to continue synchronizing with the DASB network. 10 and thus an interaction with the DASB 10 network is achieved.
Como se ilustra en la figura 11, una vez que los datos codificados y empaquetados han sido recibidos por el dispositivo móvil u ordenador 20, éste a su vez los transmite a un servidor de cómputo o primer server 21 vía WiFi o por cualquier otro medio que le de acceso a internet (ilustrado como “nube” en la figura 12); ya en posesión del server 21, este decodifica y reconstruye la señal digital acondicionada, procede a su debido etiquetado para su identificación y trazabilidad y su posterior almacenamiento; la referida etiqueta al menos comprende un número, lote o consecutivo del paquete de muestras de señal de biopotencial, número de identificación del usuario, el cual se pude asociar a una base de datos en la cual residan datos personales como nombre, domicilio, número telefónico móvil, número telefónico de emergencias, número de teléfono del médico, nombre del médico, entre otros datos; ahora bien, el paquete de señales digitalizadas, acondicionadas, etiquetadas y reconstruidas se envía a un segundo server 22 que soporta una plataforma médica con software o apps dedicados a usuarios y seguidores autorizados, en donde dicho paquete de señales digitalizadas, acondicionadas y reconstruidas se almacena y puede ser consultada en la referida plataforma; de forma simultánea el paquete de señales digitalizadas, acondicionadas, etiquetadas y reconstruidas, se envía a un tercer server 23 de procesamiento , el cual procesa y clasifica el paquete de señales digitalizadas, acondicionadas, etiquetadas y reconstruidas en busca de cardiopatías, en una modalidad preferente (ilustrada en la figura 11) la búsqueda de cardiopatías se basa en el uso de un par de redes neuronales en tándem (i.e. se utiliza una primer red neuronal y en caso de detectar una cardiopatía se utiliza la segunda red neuronal para identificar la posible cardiopatía así como su porcentaje de afinidad con el ECG en estudio); en donde dichas redes neuronales cada una cuenta con un módulo de datos a procesar, módulo de datos de referencia, y un módulo de aprendizaje de máquina para la calibración del modelo de clasificación, derivando en un modelo ajustado por el usuario; ahora bien el referido paquete de señales digitalizadas, acondicionadas, etiquetadas y reconstruidas, se procesa y se clasifica utilizando el modelo ajustado por la referencia del usuario, en alguno de estos estados: en estado de reposo o actividad cardiaca ordinaria y en un estado de actividad cardiaca media, alta o extraordinaria; con lo anterior, se pretende determinar el estado de actividad cardiaca del usuario en función al paquete de señales digitalizadas, acondicionadas, etiquetadas y reconstruidas adquirido, una vez que se ha determinado el estado de actividad cardiaca al que pertenece el paquete de señales digitalizadas, acondicionadas y reconstruidas, en diserto se añade a la etiqueta de afinidad del estado de actividad cardiaca del usuario, con estos datos se almacena el paquete de señales digitalizadas, acondicionadas, etiquetadas y reconstruidas en el módulo de aprendizaje de máquina para la calibración del modelo de clasificación con el cual se recalibra el modelo de red neuronal ajustada al usuario, esto se hace al recalcular los pesos “W” de ambas redes neuronales en base a los datos obtenidos de señales digitalizadas, acondicionadas, etiquetadas y reconstruidas que se alimentan o guardan de forma consuetudinaria en el referido módulo de aprendizaje de máquina para la calibración del modelo de clasificación ; lo que deriva en una clasificación de estado “ordinario” o “extraordinario” del usuario por parte de la primer red neuronal, siendo el resultado de la segunda red neuronal el encuadre con un cuadro de alguna cardiopatía que conste en la base de datos del módulo de datos de referencia (taquicardia, bradicardia, arritmia, etc.); de encontrar un estado extraordinario y al encuadrar alguna cardiopatía se notifica a los seguidores autorizados por medio de una alerta que emite el segundo server 22 y la recibe el dispositivo móvil 20 vía el primer server 21, proyectando su estado cardíaco que se extrajo del paquete de señales digitalizadas, acondicionadas y reconstruidas etiquetada, además se guardan los datos en el módulo de aprendizaje de máquina para la calibración del modelo de clasificación . As illustrated in figure 11, once the encrypted and packaged data has been received by the mobile device or computer 20, it in turn transmits it to a computer server or first server 21 via WiFi or by any other means that gives you access to the internet (illustrated as “cloud” in figure 12); already in possession of the server 21, it decodes and reconstructs the conditioned digital signal, proceeds to its due labeling for its identification and traceability and its subsequent storage; the aforementioned label comprises at least one number, batch or consecutive of the biopotential signal sample package, user identification number, which can be associated with a database in which personal data such as name, address, telephone number reside mobile, emergency telephone number, doctor's telephone number, doctor's name, among other data; however, the package of digitized, conditioned, labeled, and reconstructed signals is sent to a second server 22 that supports a medical platform with software or apps dedicated to authorized users and followers, where said package of digitized, conditioned, and reconstructed signals is stored and can be consulted on the aforementioned platform; Simultaneously, the packet of digitized, conditioned, labeled, and reconstructed signals is sent to a third processing server 23, which processes and classifies the packet of digitized, conditioned, labeled, and reconstructed signals in search of heart disease, in a preferential modality. (illustrated in figure 11) the search for heart disease is based on the use of a pair of neural networks in tandem (i.e. a first neural network is used and in case of detecting a heart disease the second neural network is used to identify the possible heart disease as well as its percentage of affinity with the ECG under study); where said neural networks each have a data module to be processed, a reference data module, and a machine learning module for calibrating the classification model, resulting in a model adjusted by the user; Now, the aforementioned package of digitized, conditioned, labeled and reconstructed signals is processed and classified using the model adjusted by the user's reference, in one of these states: in a state of rest or ordinary cardiac activity and in a state of activity medium, high or extraordinary heart rate; With the above, it is intended to determine the state of cardiac activity of the user based on the package of digitized, conditioned, labeled, and reconstructed signals acquired, once the state of cardiac activity to which the package of digitized, conditioned signals belongs has been determined. and reconstructed, in diserto it is added to the affinity label of the state of cardiac activity of the user, with these data the package of digitized, conditioned, labeled and reconstructed signals is stored in the machine learning module for the calibration of the classification model with which the user-adjusted neural network model is recalibrated, this is done by recalculating the "W" weights of both neural networks based on the data obtained from digitized, conditioned, labeled and reconstructed signals that are fed or saved automatically. customary in the aforementioned machine learning module for the calibration of the classification model; which derives in a classification of "ordinary" or "extraordinary" state of the user by the first neural network, the result of the second neural network being the frame with a picture of some heart disease that appears in the database of the module reference data (tachycardia, bradycardia, arrhythmia, etc.); of finding an extraordinary state and when framing any heart disease, the authorized followers are notified by means of an alert issued by the second server 22 and received by the mobile device 20 via the first server 21, projecting their cardiac state that was extracted from the package of Digitized, conditioned and reconstructed labeled signals, in addition the data is saved in the machine learning module for the calibration of the classification model.
En una modalidad alternativa (no ilustrada) se tienen dos etapas de búsqueda de cardiopatías, en la primer etapa de búsqueda de cardiopatías en base al ritmo sinusal, y la segunda etapa basado en el uso de dos redes neuronales en tándem; así la primer etapa la cual está basada en el ritmo sinusal se lleva a cabo cuando , al paquete de señales digitalizadas, acondicionadas y reconstruidas ya catalogadas, se estima una probabilidad de evento cardíaco al analizar el paquete de señales digitalizadas, acondicionadas y reconstruidas buscando cardiopatías que se puedan analizar o sean evidentes con la simple determinación del ritmo sinusal (taquicardia, bradicardia, arritmia). In an alternative modality (not illustrated) there are two stages of heart disease search, in the first stage of heart disease search based on sinus rhythm, and the second stage based on the use of two neural networks in tandem; Thus, the first stage, which is based on sinus rhythm, is carried out when, from the package of digitized, conditioned, and reconstructed signals already catalogued, a probability of a cardiac event is estimated by analyzing the package of digitized, conditioned, and reconstructed signals looking for heart disease. that can be analyzed or are evident with the simple determination of sinus rhythm (tachycardia, bradycardia, arrhythmia).
Si del paso anterior se determina que el ritmo sinusal que porta el paquete de señales digitalizadas, acondicionadas y reconstruidas tiene una afinidad alta con alguna cardiopatía asociada al ritmo sinusal, el server 23 procede a una nueva comparación, en donde el paquete de señales digitalizadas, acondicionadas, etiquetadas y reconstruidas se comparan ahora con los modelos de cardiopatías almacenadas en la base de datos del tercer server 23, con lo cual se determina un porcentaje de afinidad a algún modelo de cardiopatía. En caso que se determine una alta afinidad (un porcentaje de afinidad mayor al 60%) con alguno de los modelos de cardiopatía almacenada, se emite una alerta al server 22 el cual envía la alerta al dispositivo móvil 20 vía el server 21 mostrando el ECG reconstruido que se extrajo del paquete de señales digitalizadas, acondicionadas y reconstruidas etiquetado con el porcentaje de afinidad así como el tipo de cardiopatía de que se trate, además de enviar una notificación al dispositivo móvil u ordenador 20 del usuario; en caso que se determine que no existe una alta afinidad con alguno de los modelos de cardiopatía almacenada el paquete de señales digitalizadas, acondicionadas y reconstruidas se adiciona una nueva etiqueta que indique que ha pasado por este segundo paso de comparación de cardiopatías, respaldando de nuevo el paquete de señales digitalizadas, acondicionadas y reconstruidas en el módulo de datos a procesar de la red neuronal.If from the previous step it is determined that the sinus rhythm carried by the package of digitized, conditioned and reconstructed signals has a high affinity with some heart disease associated with sinus rhythm, the server 23 proceeds to a new comparison, where the package of digitized signals, conditioned, labeled and reconstructed are now compared with the heart disease models stored in the database of the third server 23, with which a percentage of affinity to some heart disease model is determined. In the event that a high affinity is determined (an affinity percentage greater than 60%) with any of the stored heart disease models, an alert is issued to the server 22 which sends the alert to the mobile device 20 via the server 21 showing the ECG reconstructed that was extracted from the package of digitized, conditioned and reconstructed signals labeled with the percentage of affinity as well as the type of cardiopathy in question, in addition to sending a notification to the user's mobile device or computer; In the event that it is determined that there is no high affinity with any of the stored heart disease models, a new label is added to the package of digitized, conditioned and reconstructed signals indicating that it has gone through this second step of heart disease comparison, again supporting the package of digitized, conditioned and reconstructed signals in the data module of the neural network to be processed.
Continuando con modalidad alternativa (no ilustrada), la búsqueda de cardiopatías basada en un par de redes neuronales en tándem se efectúa cuando al paquete de señales digitalizadas, acondicionadas, reconstruidas y etiquetadas que han pasado la primer etapa de búsqueda de cardiopatías las cuales están basadas en el ritmo sinusal el server 23 se respaldan en el módulo de datos a procesar con lo cual están en posición de ser procesadas ahora en la primer red neuronal la cual nos permite saber si existe un evento o estado de usuario “ordinario” o “extraordinario”, en el segundo caso, se utiliza la segunda red neuronal la cual nos permite conocer la cardiopatía con una mayor afinidad así como su porcentaje de afinidad.Continuing with the alternative modality (not illustrated), the search for heart disease based on a pair of tandem neural networks is carried out when the package of digitized, conditioned, reconstructed and labeled signals that have passed the first stage of heart disease search which are based on in sinus rhythm, server 23 is supported by the data module to be processed, with which they are now in a position to be processed in the first neural network, which allows us to know if there is an "ordinary" or "extraordinary" user event or state ”, in the second case, the second neural network is used, which allows us to know the cardiopathy with a greater affinity as well as its percentage of affinity.
Ahora bien en cualquier modalidad la búsqueda de cardiopatías basada en un par de redes neuronales en tándem se lleva cabo cuando las señales digitalizadas, acondicionadas y reconstruidas en diserto se depositan en el módulo de datos a procesar, de donde se toman para hacerlas pasar por la primer red neuronal, la cual está debidamente entrenada y calibrada i.e. se han obtenido los pesos “W” para cada una de las neuronas que conforman la capa de entrada así como las de las capas intermedias (lo cual se detalla en el ejemplo), como se ilustra en la figuras 18, 19, 20 la primer red neuronal en su modalidad preferente la capa neuronal de entrada aloja un dato del paquete de señales digitalizadas, reconstruidas y etiquetadas que han sido sometidas a los dos procesos de comparación de cardiopatías arriba mencionados, siendo evidente que el número de neuronas de la capa de entrada depende del número de datos que comprende dicho paquete de señales siendo estas típicamente entre 100 a 10 mil datos lo cual depende un tanto de la capacidad de memoria, tipo de pila, velocidad de transmisión de la antena, protocolo de transmisión de datos, distancia al receptor de datos, entre otras características técnicas del DASB 10, en una modalidad preferente la primer red neuronal comprende de un par de capas neuronales intermedias, en donde el número de neuronas de la primer capa neuronal intermedia tiene entre el 30% al 50% el número de neuronas que la capa de entrada, por su parte la segunda capa neuronal intermedia tiene entre el 3% al 20% el número de neuronas que la primer capa neuronal intermedia, con lo que el número de neuronas por capa se va en decremento; en una modalidad alternativa, la primer red neuronal puede comprender de solo una capa intermedia de neuronas en donde el número de neuronas de la única capa neuronal intermedia tiene entre el 10% al 50% el número de neuronas que la capa de entrada; en otras modalidades la primer red neuronal puede tener tres o más capas intermedias de neuronas, lo que permitirá mejorar su desempeño y confiabilidad, pero se requerirá un equipo de cómputo más potente aunado a que los tiempos de respuesta se alargaran debido a la gran cantidad de datos y operaciones que tendría que efectuar el ordenador de cómputo; retomando, en cualquier modalidad de la primer red neuronal la capa neuronal de salida comprende de una sola neurona, la cual evalúa la posibilidad de tener una cardiopatía, así si el número que arroja la salida de la neurona de la capa de salida de la primer neurona es cercano a cero (Vgr. valores de cero a 0.69), significa que el paquete de señales digitalizadas, reconstruidas y etiquetadas que han sido sometidas a los dos procesos de comparación de cardiopatías arriba mencionados tiene una baja o nula correlación con alguna cardiopatía, esto es se encuentra en un estado “ordinario” del usuario, a lo que el server 23 en una modalidad preferente envía un par de señales de forma simultáneas de “todo normal” o “nada que reportar” al segundo server 22 para que este la registre en la plataforma médica así como al dispositivo móvil u ordenador vía el server 21; en una modalidad alternativa el server 23 envía una señal de “todo normal” o “nada que reportar” al server 22 para que este la registre en la plataforma médica; en cualquier modalidad el paquete de señales digitalizadas que fueron suministradas a la primer red neuronal se guardan módulo de aprendizaje de máquina para la calibración del modelo de clasificación lo que ayudará a tener más datos para calibrar posteriormente los pesos “W” de la primer red neuronal, lo que le ayudará a tener mejor precisión con el uso del sistema objeto de la presente invención; ahora bien, en el caso contrario, esto es, si el número que arroja la salida de la neurona de la capa de salida de la primer red neuronal es cercano a 1 (Vgr. valores entre 0.7 a 1) significa que el paquete de señales digitalizadas, reconstruidas y etiquetadas que han sido sometidas tiene una alta correlación con alguna cardiopatía esto es se encuentra un estado “extraordinario” del usuario por lo que es necesario utilizar la segunda red neuronal para encontrar la cardiopatía que tenga la mejor correlación con dicho paquete de señales digitalizadas suministrada a la primer neuronal; así dicho paquete de señales digitalizadas ahora se transfiere al módulo de datos a procesar de la segunda red neuronal. However, in any modality, the search for heart disease based on a pair of neural networks in tandem is carried out when the digitized signals, conditioned and reconstructed in a dissertation, are deposited in the data module to be processed, from where they are taken to pass them through the first neural network, which is properly trained and calibrated i.e. The "W" weights have been obtained for each of the neurons that make up the input layer as well as those of the intermediate layers (which is detailed in the example), as illustrated in figures 18, 19, 20 the first neural network in its preferred modality the neural input layer houses data from the package of digitized, reconstructed and labeled signals that have been subjected to the two aforementioned heart disease comparison processes, it being evident that the number of neurons in the input layer It depends on the number of data that said packet of signals includes, typically between 100 and 10 thousand data, which depends somewhat on the memory capacity, type of battery, antenna transmission speed, data transmission protocol, distance to the data receiver, among other technical characteristics of the DASB 10, in a preferred modality the first neural network comprises a pair of intermediate neuronal layers, where the number of neurons of the first intermediate neural layer has between 30% and 50% the number of neurons than the input layer, for its part, the second intermediate neuronal layer has between 3% and 20% the number of neurons than the first intermediate neuronal layer, with which the number of neurons per layer decreases; In an alternative embodiment, the first neural network may comprise of only one intermediate layer of neurons wherein the number of neurons of the single intermediate neural layer is between 10% to 50% the number of neurons of the input layer; In other modalities, the first neural network can have three or more intermediate layers of neurons, which will improve its performance and reliability, but a more powerful computer will be required, together with the response times that will be lengthened due to the large number of data and operations that the computing computer would have to carry out; Going back, in any modality of the first neural network, the output neural layer comprises a single neuron, which evaluates the possibility of having a heart disease, so if the number that throws the output of the neuron of the output layer of the first neuron is close to zero (Vgr. values from zero to 0.69), it means that the package of digitized, reconstructed and labeled signals that have been subjected to the two aforementioned heart disease comparison processes have a low or no correlation with any heart disease, that is, it is in an "ordinary" state of the user, to which the server 23 in a preferred mode sends a couple of signals simultaneously of "all normal" or "nothing to report" to the second server 22 so that it can register on the medical platform as well as on the mobile device or computer via the server 21; In an alternative modality, the server 23 sends a signal of "everything normal" or "nothing to report" to the server 22 so that it can register it in the medical platform; In any modality, the package of digitized signals that were supplied to the first neural network are saved in the machine learning module for the calibration of the classification model, which will help to have more data to later calibrate the "W" weights of the first neural network. , which will help you to have better precision with the use of the system object of the present invention; now, in the opposite case, that is, if the number produced by the output of the neuron in the output layer of the first neural network is close to 1 (Vgr. values between 0.7 and 1), it means that the signal packet digitized, reconstructed and labeled that have been submitted has a high correlation with some heart disease, that is, an "extraordinary" state of the user is found, so it is necessary to use the second neural network to find the heart disease that has the best correlation with said package of data. digitized signals supplied to the first neural; thus said packet of digitized signals is now transferred to the data module to be processed of the second neural network.
La segunda red neuronal comprende una base de datos de pesos “W” un tanto diverso a la primer red neuronal estudiada líneas arriba, a más de comprender una pluralidad de neuronas de salida, sin embargo, utiliza un esquema similar para la capa neuronal de entrada así como para las capas intermedias, en su modalidad preferente la capa neuronal de entrada aloja un dato del paquete de la referidas señales digitalizadas, reconstruidas y etiquetadas que se encuentran respaldadas ahora en el módulo de datos a procesar de la segunda red neuronal, recordando que dichas señales digitalizadas han sido procesadas por la primer red neuronal, al igual que en la primer red neuronal, se procesan las señales digitalizadas que se encuentran en el módulo de datos a procesar, cabe notar también que el número de neuronas de la capa de entrada de la segunda red neuronal depende del número de datos que comprende dicho paquete de señales que como ya se había anotado anteriormente éstas típicamente comprenden de entre 100 a 10 mil datos lo cual depende un tanto de la capacidad de memoria, tipo de pila, velocidad de transmisión de la antena, protocolo de transmisión de datos, distancia al receptor de datos, entre otras características técnicas del DASB 10; de forma similar a la primer red neuronal, la segunda red neuronal en diserto en una modalidad preferente comprende de un par de capas neuronales intermedias, en donde el número de neuronas de la primer capa neuronal intermedia tiene entre el 30% al 50% el número de neuronas que la capa de entrada, por su parte la segunda capa neuronal intermedia tiene entre el 3% al 20% el número de neuronas que la primer capa neuronal intermedia, con lo que el número de neuronas por capa se va reduciendo; en una modalidad alternativa, la segunda red neuronal puede comprender de solo una capa intermedia de neuronas en donde el número de neuronas de la única capa neuronal intermedia tiene entre el 10% al 50% el número de neuronas que la capa de entrada; en otras modalidades la segunda red neuronal puede tener tres o más capas intermedias de neuronas, lo que permitirá mejorar su desempeño y confiabilidad, pero se requerirá un equipo de cómputo más potente aunado a que los tiempos de respuesta se alargaran debido a la gran cantidad de datos y operaciones que tendría que efectuar el ordenador de cómputo; retomando, en cualquier modalidad de la segunda red neuronal la capa neuronal de salida comprende de una pluralidad de neuronas, en donde cada una de las neuronas de la capa de salida es afín a una cardiopatía, (ver figura 21), quedando claros que el número de neuronas de la capa de salida de la referida segunda red neuronal es igual al número de cardiopatías que se haya estudiado y se tengan sus afinidades definidas; de tal suerte que la salida de una neurona dada de la capa de salida de la segunda red neuronal indicará la probabilidad de que el usuario tenga una determinada cardiopatía (Vgr. Arritmia) y sus conexiones con datos que sean indicadores de dicha cardiopatía tendrán pesos “W” mucho más grandes; siendo este el caso para todas las enfermedades soportadas; esta información se procesa por medios estadísticos y genera un posible escenario que indica la o las cardiopatías más afines así como su porcentaje de afinidad con esta información se identifica la cardiopatía con la afinidad más alta entre las posibles por medios estadísticos, una vez que se identificó dicha cardiopatía, si esta tiene un porcentaje de afinidad alta (Vgr. Del 60% en adelante), se advierte o alerta al usuario y seguidores autorizados el tipo de escenario al que se tiene afinidad (el tipo de cardiopatía y su porcentaje afinidad), esto se logra enviando dicha información al segundo server 22, también dicha información se envía al primer server 21 para su almacenamiento en el módulo de aprendizaje de máquina para la calibración del modelo de clasificación de ambas redes neuronales; por su parte, el server 22 procesa la información y emite una alerta, esta se despliega en la plataforma médica, notificando a las personas autorizadas para emergencias, además de enviarse hacia el primer server 21 quien a su vez remite la alerta al dispositivo móvil u ordenador 20, este último desplegará en pantalla una señal de alerta así como un botón que permita saber que el usuario ha visto la alerta (ver figura 17c), en una modalidad alternativa también se podrá desplegar un botón que indique si el usuario se encuentra bien. The second neural network comprises a database of weights "W" somewhat different from the first neural network studied above, in addition to comprising a plurality of output neurons, however, it uses a similar scheme for the input neural layer. As well as for the intermediate layers, in its preferred modality, the input neural layer houses data from the packet of the aforementioned digitized, reconstructed and labeled signals that are now backed up in the data module to be processed of the second neural network, remembering that Said digitized signals have been processed by the first neural network, as in the first neural network, the digitized signals found in the data module to be processed are processed, it should also be noted that the number of neurons in the input layer of the second neural network depends on the number of data included in said packet of signals that, as previously noted, typically comprise between 100 and 10 thousand data, which depends somewhat on memory capacity, battery type, speed of antenna transmission, data transmission protocol, distance to the data receiver, among other technical characteristics of the DASB 10; Similarly to the first neural network, the second dissertation neural network in a preferred modality comprises a pair of intermediate neural layers, where the number of neurons in the first intermediate neural layer is between 30% and 50% of the number. of neurons than the input layer, for its part, the second intermediate neuronal layer has between 3% and 20% the number of neurons than the first intermediate neuronal layer, with which the number of neurons per layer is reduced; In an alternate embodiment, the second neural network may comprise of only one intermediate layer of neurons wherein the number of neurons in the single intermediate neural layer is between 10% to 50% the number of neurons in the input layer; In other modalities, the second neural network can have three or more intermediate layers of neurons, which will improve its performance and reliability, but a more powerful computer will be required, together with the response times that will be lengthened due to the large amount of data. data and operations that the computing computer would have to carry out; Taking up again, in any modality of the second neural network, the output neural layer comprises a plurality of neurons, where each one of the neurons of the output layer is similar to a heart disease, (see figure 21), making it clear that the The number of neurons in the output layer of the aforementioned second neural network is equal to the number of heart diseases that have been studied and their affinities are defined; in such a way that the output of a given neuron from the output layer of the second neural network will indicate the probability that the user has a certain heart disease (Vgr. Arrhythmia) and its connections with data that are indicators of said heart disease will have weights " W” much larger; this being the case for all diseases borne; This information is processed by statistical means and generates a possible scenario that indicates the most related heart disease or diseases, as well as their percentage of affinity. With this information, the heart disease with the highest affinity among those possible is identified by statistical means, once it has been identified. said cardiopathy, if it has a high affinity percentage (for example, from 60% onwards), the user and authorized followers are warned or alerted to the type of scenario to which it has an affinity (the type of cardiopathy and its affinity percentage), this is achieved by sending said information to the second server 22, said information is also sent to the first server 21 for storage in the machine learning module for calibrating the classification model of both neural networks; For its part, server 22 processes the information and issues an alert, which is displayed on the medical platform, notifying authorized persons for emergencies, as well as being sent to the first server 21, which in turn sends the alert to the mobile device or computer 20, the latter will display an alert signal on the screen as well as a button that allows to know that the user has seen the alert (see figure 17c), in an alternative modality a button can also be displayed that indicates if the user is okay .
Utilizaremos un ejemplo que nos ayudará a describir de una forma didáctica el método así como el sistema de recopilación de señales de biopotencial y procesamiento para monitoreo, pronóstico y alertas cardíacas, que como ya apuntamos líneas arriba utiliza un par de redes neuronales en tándem (se utiliza primero una red neuronal para verificar si existe una cardiopatía, de ser así se utiliza una segunda red neuronal para detectar el tipo de cardiopatía), así también el ejemplo es de gran utilidad para poder reforzar el entendimiento del método par la adquisición de y envío de datos de biopotencial (ECG) por medio de un DASB 10 o una pluralidad de estos; el ejemplo en diserto también nos ayuda a describir el método de detección de cardiopatías basado en un par de redes neuronales objeto de la presente invención; así tenemos que como se ilustra en la figura 16 se tiene a un usuario, al cual se le viste con un DASB 10 dispuesto en el pecho izquierdo, a una distancia “d” de la parte central donde se unen los pechos (ver figura 15) la distancia “d” se mide utilizando los tres dedos medios ( i.e. índice, medio y anular); una modalidad alternativa se muestra en la figura 16 en donde se coloca un primer DASB 10 “maestro” en el pecho izquierdo, otro en el pecho derecho DASB 10 “esclavo 1”, uno en la parte izquierda de la cintura DASB 10 “esclavo 2” y un último en V6, en la intersección del 5to espacio intercostal izquierdo y línea axilar anterior DASB 10 “esclavo 3”; en donde se recopila la diferencia de biopotencial de cada punto donde se han colocado los DASB 10.We will use an example that will help us to describe in a didactic way the method as well as the system for collecting biopotential signals and processing for cardiac monitoring, prognosis and alerts, which, as we have already pointed out above, uses a pair of tandem neural networks (it is first uses a neural network to verify if there is a heart disease, if so, a second neural network is used to detect the type of heart disease), so the example is also very useful to reinforce the understanding of the method for acquiring and sending of biopotential data (ECG) by means of a DASB 10 or a plurality thereof; the example in dissertation also helps us to describe the heart disease detection method based on a pair of neural networks object of the present invention; Thus we have that, as illustrated in figure 16, there is a user, who is dressed with a DASB 10 arranged on the left chest, at a distance "d" from the central part where the breasts meet (see figure 15 ) the distance “d” is measured using the three middle fingers ( i.e. index, middle and ring fingers); An alternative modality is shown in figure 16 where a first "master" DASB 10 is placed on the left chest, another on the right DASB 10 "slave 1" chest, one on the left side of the DASB 10 "slave 2" waist. ” and a last one in V6, at the intersection of the 5th left intercostal space and anterior axillary line DASB 10 “slave 3”; where the biopotential difference of each point where the DASB 10 have been placed is collected.
Una vez que se ha colocado DASB 10 maestro sobre el usuario, se debe de mantener presionado el botón 16 incorporado en el dispositivo durante un mínimo de 3 segundos, para que el DASB 10 sea visible a los dispositivos móviles 20 provistos con bluetooth cercanos (ver figuras 17a, 17b, 17c), el dispositivo móvil 20 requerirá en primera instancia el registro del usuario, generación de una contraseña, y datos del usuario, tales como nombre, edad, sexo, peso, altura, entre otros (ver figura 17a), posteriormente, desde el dispositivo móvil 20 se deberá establecer la conexión con el DASB 10 e indicarle el modo en que se encontrará funcionando (ver figura 17b); en la modalidad en que se utilizan múltiples DASB 10 los dispositivos “esclavos” se dan de “alta” de manera progresiva, comenzando con el DASB 10 “esclavo 1”, DASB 10 “esclavo 2”, DASB 10 “esclavo 3” y por último el DASB 10 “maestro”; una vez terminado el procedimiento de activación el dispositivo móvil 20 despliega una leyenda que indica que el o los DASB 10 están “en línea” y “conectados”; ahora bien, cabe hacer mención de que en una modalidad alternativa no es necesaria la conexión de dos o más DASB 10, ya que pueden trabajar de manera independiente, la cantidad y ubicación de DASB 10 a implementarse dependerá de los requerimientos del usuario.Once the master DASB 10 has been placed on the user, the device's built-in button 16 must be held down for a minimum of 3 seconds, to make the DASB 10 visible to nearby bluetooth-enabled mobile devices 20 (see figures 17a, 17b, 17c), the mobile device 20 will first require user registration, generation of a password, and user data, such as name, age, sex, weight, height, among others (see figure 17a). , subsequently, from the mobile device 20 the connection with the DASB 10 must be established and indicate the mode in which it will be operating (see figure 17b); In the mode in which multiple DASB 10 are used, the “slave” devices are progressively “registered”, starting with the DASB 10 “slave 1”, DASB 10 “slave 2”, DASB 10 “slave 3” and last the DASB 10 “master”; once the activation procedure is finished, the mobile device 20 displays a legend indicating that the DASB 10 or DASBs 10 are "online" and "connected"; However, it is worth mentioning that in an alternative modality the connection of two or more DASB 10 is not necessary, since they can work independently, the quantity and location of DASB 10 to be implemented will depend on the user's requirements.
La configuración del modo de trabajo del o los DASB 10, sólo se realizará una vez, posteriormente, cuando los dispositivos ya se encuentran configurados, automáticamente se realizará la sincronización entre los DASB 10 involucrados para las tomas de las muestras en intervalos de tiempo. Las muestras de cada DASB 10, son enviadas al dispositivo móvil 20 el cual posteriormente las enviará al primer server 21. The configuration of the work mode of the DASB 10(s) will only be carried out once, later, when the devices are already configured, the synchronization between the DASB 10 involved will automatically be carried out for taking the samples at time intervals. The samples of each DASB 10 are sent to the mobile device 20 which will later send them to the first server 21.
Una vez establecida la conexión, el dispositivo móvil 20 por medio de una aplicación envía una indicación al DASB 10 o al DASB 10 “maestro” (dependiendo de la modalidad) para comenzar con la toma de muestras; en la modalidad de un DASB 10 solitario al recibir este la indicación toma una muestra de 5,000 datos (un dato aproximadamente cada 2 milisegundos, por un periodo de aproximadamente 10 segundos), la codifica y envía una indicación al dispositivo móvil 20 quien se preparará para la recepción de datos, por su parte el DASB 10 inicia el envío de los datos una vez que el dispositivo móvil 20 envíe una señal al DASB 10 para que este inicie con la transmisión de datos; en la modalidad en la que el usuario emplee una pluralidad de DASB 10, el DASB 10 “maestro” comienza con la recopilación de los DASB 10 esclavos, enviando una señal a los DASB 10 “esclavos” en el orden en que se dieron de “alta” para que comiencen con el envío de datos hacia el DASB 10 “maestro”, una vez que el número de datos (por lo regular son 5000 datos) o “paquete” de datos (que contienen por lo regular 1250paquetes) se ha completado, el DASB 10 “maestro” indica a el DASB 10 esclavo en turno que esté transmitiendo, interrumpa la transmisión; acto seguido envía una indicación de inicio de transmisión de datos al siguiente DASB 10 “esclavo”, esto se repite hasta en tanto se hayan recopilado los paquetes de datos de cada uno de los DASB 10 “esclavos” dados de alta; posteriormente, ya que el DASB 10 “maestro” contiene los paquetes de datos, estos se transmiten hacia el dispositivo móvil 20, el cual a su vez los retransmite al primer server 20. En una modalidad alternativa, los DASB 10 “esclavos” transmitirán los datos muestreados directamente al dispositivo móvil u ordenador, o en su caso serán retransmitidos por los nodos de la malla.Once the connection is established, the mobile device 20 by means of an application sends an indication to the DASB 10 or to the "master" DASB 10 (depending on the modality) to start taking samples; In the modality of a solitary DASB 10, upon receiving this, the indication takes a sample of 5,000 data (one piece of data approximately every 2 milliseconds, for a period of approximately 10 seconds), encodes it and sends an indication to the mobile device 20 who will prepare to the reception of data, for its part, the DASB 10 starts sending the data once the mobile device 20 sends a signal to the DASB 10 so that it starts with the data transmission; in the mode in which the user employs a plurality of DASB 10s, the "master" DASB 10 begins with the collection of the slave DASB 10s, sending a signal to the "slave" DASB 10s in the order in which they were given " high" so that they start sending data to the "master" DASB 10, once the number of data (usually 5000 data) or data "packet" (which usually contains 1250 packets) has been completed , the DASB 10 “master” indicates to the DASB 10 slave in turn that it is transmitting, interrupt the transmission; immediately afterwards, it sends an indication to start data transmission to the next DASB 10 "slave", this is repeated until the data packets of each of the DASB 10 "slaves" registered have been collected; subsequently, since the "master" DASB 10 contains the data packets, these are transmitted to the mobile device 20, which in turn retransmits them to the first server 20. In an alternative modality, the "slave" DASB 10 will transmit the data sampled directly to the mobile device or computer, or where appropriate will be retransmitted by the mesh nodes.
En la tabla 1 se presenta una pequeña muestra de los datos recopilados por el DASB 10 enviados al dispositivo móvil 20 y retransmitidos al primer server 21.Table 1 shows a small sample of the data collected by the DASB 10 sent to the mobile device 20 and retransmitted to the first server 21.
Tabla 1
Figure pctxmlib-appb-I000001
Table 1
Figure pctxmlib-appb-I000001
El paquete de datos recibido por el primer server 21 se decodifica, con lo que los datos de la tabla 1 se transforman en los datos de la tabla 2.The data packet received by the first server 21 is decoded, whereby the data in table 1 is transformed into the data in table 2.
Tabla 2
Figure pctxmlib-appb-I000002
Table 2
Figure pctxmlib-appb-I000002
Teniendo en mente que la Tabla 2 contiene una muestra del paquete de datos(recordando que en una modalidad preferente se utilizan paquetes de 5000 datos), el paquete de 5000 datos se envía a dos locaciones diferentes en forma paralela, la primer locación es al segundo server 22 que permite respaldar el paquete de datos además de poder ser consultado en la plataforma médica, la otra locación es el tercer server 23 el cual es el encargado de procesar los paquetes de datos provenientes del dispositivo móvil u ordenador 20, este servidor hospeda las redes neuronales encargadas del procesamiento de los paquetes de datos ya decodificados (como los datos de la muestra ilustrada en la figura 2) dicho paquete de datos se introducen a la primer red neuronal como datos “Dato” en la capa de entrada, y cada dato es multiplicado por un peso “W” (ver figura 18), los cuales ya se han determinado en base a las iteraciones de “entrenamiento” (las cuales se discutirán más adelante) con datos de ECG tanto “normales” como de aquellos que representan una cardiopatía; ahora bien, para cada dato, una neurona (que para el caso de la capa de entrada aloja un “Dato” de la tabla 2) tendrá un peso asociado “W”, que se puede ver como la afinidad que esa neurona en particular tiene ante este dato; vgr. Suponiendo que el “Dato 2500” (Dato en la posición 2500 en la tabla 2) es un dato indicador de arritmia, entonces el peso “W2500” asociado al “Dato 2500” tendrá un valor muy elevado; como se ilustra en la figura 18 cada neurona de la capa de entrada se multiplica por un valor ya determinado anteriormente de peso W de acorde a la siguiente ecuación:Bearing in mind that Table 2 contains a sample of the data packet (remembering that in a preferred mode 5000 data packets are used), the 5000 data packet is sent to two different locations in parallel, the first location is the second server 22 that allows backing up the data package in addition to being able to be consulted on the medical platform, the other location is the third server 23 which is in charge of processing the data packages from the mobile device or computer 20, this server hosts the neural networks in charge of processing the data packets already decoded (such as the sample data illustrated in figure 2), said data packet is introduced to the first neural network as "Data" data in the input layer, and each data is multiplied by a weight “W” (see figure 18), which have already been determined based on “training” iterations (which will be discussed later) with both “normal” ECG data and those that represent a heart disease; now, for each piece of data, a neuron (which in the case of the input layer houses a "Data" from table 2) will have an associated weight "W", which can be seen as the affinity that that particular neuron has before this data; vgr. Assuming that "Data 2500" (Data in position 2500 in Table 2) is a data indicator of arrhythmia, then the weight "W2500" associated with "Data 2500" will have a very high value; As illustrated in figure 18, each neuron in the input layer is multiplied by a previously determined value of weight W according to the following equation:
Yi=f*(∑WijDatoi)Yi=f*(∑W ij Data i )
Donde “Yi” es la salida de cada neurona, f es la función de activación de la, “Wij” es el peso de la conexión del dato “i” con la neurona “j”, y “Datoi” es el dato i que se recibe; la función de activación “f” se toma la Sigmoide que se expresa en la siguiente ecuación: Where “Y i ” is the output of each neuron, f is the activation function of la, “W ij ” is the weight of the connection of data “i” with neuron “j”, and “Data i ” is the data i that is received; the activation function "f" is taken as the Sigmoid that is expressed in the following equation:
F(Dato)= 1/(1+e-Dato)F(Data)= 1/(1+e -Data )
Cabe mencionar que la función de activación “f” se pueden emplear otras distintas a la Sigmoide expresa líneas arriba, como la función tangente hiperbólica (tanh), ReLU, o cualquier curva de preferencia no lineal apta para ser empleada como función de activación en redes neuronales; ahora bien, a la salida de cada neurona “Yi” de la capa de entrada será un valor entre 0-1, que nos dirá qué tanto se activó dicha neurona; entonces, todas las salidas de las neuronas de la capa de entrada se pasaran a todas las neuronas de una primer capa intermedia (que conforma a las capas intermedias de la red neuronal) para efectos del presente ejemplo se utilizan 2048 neuronas en la primera capa intermedia y 100 en la segunda capa intermedia, las capas intermedias se ilustran en la figuras 19, 20; el número de capas intermedias así como el número de neuronas se determina de acuerdo a la precisión y rapidez de respuesta que requiere el sistema, entre más capas y neuronas la red neuronal podrá aprender más y ajustarse más, sin embargo requerirá más recursos de procesamiento incluyendo un tiempo largo de respuesta, por lo que para nuestra red neuronal que ejemplificamos aquí se utilizan solo dos capas intermedias y una capa de salida con una neurona (ver figura 20).It is worth mentioning that the activation function "f" can be used other than the Sigmoid expressed lines above, such as the hyperbolic tangent function (tanh), ReLU, or any nonlinear preference curve suitable to be used as an activation function in networks. neural; now, at the output of each "Yi" neuron of the input layer there will be a value between 0-1, which will tell us how much said neuron was activated; then, all the outputs of the neurons of the input layer will be passed to all the neurons of a first intermediate layer (which makes up the intermediate layers of the neural network) for the purposes of this example, 2048 neurons are used in the first intermediate layer and 100 in the second intermediate layer, the intermediate layers are illustrated in Figures 19, 20; the number of intermediate layers as well as the number of neurons is determined according to the precision and speed of response required by the system, the more layers and neurons the neural network will be able to learn more and adjust more, however it will require more processing resources including a long response time, so for our neural network that we exemplify here, only two intermediate layers and an output layer with one neuron are used (see figure 20).
El entrenamiento tanto de la primer y segunda redes neuronales se puede entender como la obtención de una base de datos o matriz de pesos “W” para cada red neuronal que permita tener los pesos correctos de cada parámetro, es decir, las afinidades correctas de cada neurona ante cada dato, para esto es necesario hacer pasar a cada red neuronal por un proceso de entrenamiento en donde se le introduzcan datos de ECG’s cuyo estado se conoce de antemano (es decir, si es una señal saludable, su estado debería ser un 1 o cercano a 1, para la segunda red neuronal se presta especial atención en los ECG de las diferentes cardiopatías que la ciencia médica tenga conocimiento, en este particular cada cardiopatía se cataloga, pero para efectos prácticos de detección para la primer red neuronal se deberá considerar que una cardiopatía arroja un valor cero o cercano a cero); entonces, se introducen los datos de entrenamiento decodificados a las primer y segunda redes neuronales, con el fin de comparar la salida obtenida contra la salida esperada mediante una función de error, como puede ser entropía cruzada binaria, mínimos cuadrados, entre otras. Vgr., se introduce un dato de entrenamiento de una persona saludable a la red neuronal y esta nos arroja un valor de 0.3 cuando el valor de salida esperado debería ser 1, así se observa una gran discrepancia, la cual se analiza con la siguiente función de error absoluto: The training of both the first and second neural networks can be understood as obtaining a database or matrix of weights "W" for each neural network that allows having the correct weights for each parameter, that is, the correct affinities of each neuron before each data, for this it is necessary to make each neural network go through a training process where ECG data is introduced whose state is known in advance (that is, if it is a healthy signal, its state should be a 1 or close to 1, for the second neural network special attention is paid to the ECGs of the different heart diseases that medical science is aware of, in this particular each heart disease is catalogued, but for practical purposes of detection for the first neural network it should be considered that a cardiopathy yields a value of zero or close to zero); then, the decoded training data is introduced to the first and second neural networks, in order to compare the output obtained against the expected output using an error function, such as binary cross entropy, least squares, among others. Vgr., a training data of a healthy person is introduced to the neural network and this gives us a value of 0.3 when the expected output value should be 1, thus a large discrepancy is observed, which is analyzed with the following function absolute error:
f(Dato) = |0.3-1|/1 = 0.7f(Data) = |0.3-1|/1 = 0.7
Dependiendo de qué tan grande sea el error, será qué tan grande se realizará el ajuste a los pesos “W”; este ajuste se realiza mediante un método que se llama descenso de gradiente estocástico, donde se realiza un cambio de los pesos “W” al azar volviendo a evaluar la red neuronal de forma iterativa; si el nuevo resultado es mejor, se guardan los pesos “W” nuevos como los base, volviendo a iterar hasta llegar a minimizar la función de error.Depending on how big the error is, it will be how big the adjustment to the weights “W” will be made; This adjustment is done using a method called stochastic gradient descent, where a change of the “W” weights is done at random, re-evaluating the neural network iteratively; if the new result is better, the new “W” weights are saved as the base ones, iterating again until the error function is minimized.
Una vez obtenidas las bases de datos o matrices de pesos “W” para cada red neuronal y para cada capa de estas, se está en posición de procesar el paquete de datos completo que se ilustra parcialmente en la tabla 2, (i.e. los 5000 datos) en la primer red neuronal, en donde los datos de salida de la capa de entrada se pasan a la primer capa intermedia que para nuestro ejemplo comprende de 2048 neuronas, cada una de estas neuronas procesa los datos que entrega la capa de entrada y los procesa utilizando la sumatoria de datos de entrada con una matriz de pesos “W” de acorde la ecuación para “Yi”, esto se repite con los datos de salida de la primer capa intermedia los cuales sirven como datos de entrada para la segunda capa intermedia, en una modalidad alternativa se pueden tener más capas intermedias, a lo cual se deberá calcular su número de neuronas de cada capa además de obtener las matrices de los pesos “W” ya entrenados para cada una de estas capas subsecuentes; para efectos del ejemplo en discurso a la salida de la primer red neuronal se tiene una neurona evaluando entonces el valor de salida de dicha neurona a saber que si dicho valor de salida de la neurona de la capa de salida es mayor a 0.7 significa que el ECG que se procesó está “normal”, i.e que el estado de usuario es “ordinario” y que no hay eventualidad cardiaca o cardiopatía alguna que reportar, enviando una notificación al segundo server 22; sin embargo, si el valor es menor a 0.7 esto significa que el estado del usuario es “extraordinario” por lo que puede existir alguna cardiopatía; en este caso el paquete de datos decodificado (que se ilustra parcialmente en la tabla 2) se somete a la segunda red neuronal, con la peculiaridad de que esta segunda red neuronal comprende de una base de datos de pesos “W” un tanto diverso a la primer red neuronal estudiada líneas arriba, a más de comprender de una pluralidad de neuronas de salida, sin embargo para efectos del presente ejemplo también utiliza 2048 neuronas en su primer capa intermedia y 100 neuronas en su segunda capa intermedia; cada una de las neuronas de la capa de salida es afín a una cardiopatía, para efectos de este ejemplo en la figura 21 se ilustran tres neuronas en la capa de salida de la segunda red neuronal, quedando claros que el número de neuronas de la capa de salida de la referida segunda red neuronal es igual al número de cardiopatías que se haya estudiado y se tengan sus afinidades definidas; revirtiendo nuestra atención al presente ejemplo y a la figura 21 de donde se desprende que la salida de la neurona NA indicará la probabilidad de que el usuario tenga arritmia, y sus conexiones con datos que sean indicadores de arritmia tendrán pesos “W” mucho más grandes; lo mismo para NT que indica la probabilidad de taquicardia, y sucesivamente para todas las enfermedades soportadas; esta información se procesa por medios estadísticos y genera un posible escenario que indica la o las cardiopatías más afines así como su porcentaje de afinidad, identificando también a la cardiopatía con el porcentaje de afinidad más alto, enviando esta información al segundo server 22; también esta información se envía al primer server 21 para su almacenamiento en el módulo de aprendizaje de máquina para la calibración del modelo de clasificación ; por su parte, el server 22 procesa la información y emite una alerta, esta se despliega en la plataforma médica, notificando a las personas autorizadas para emergencias, además de enviarse hacia el primer server 21 quien a su vez remite la alerta al dispositivo móvil u ordenador 20, este último desplegará en pantalla una señal de alerta así como un botón que permita saber que el usuario ha visto la alerta (ver figura 17c), en una modalidad alternativa también se podrá desplegar un botón que indique si el usuario se encuentra bien. Once the databases or weight matrices "W" have been obtained for each neural network and for each layer of these, one is in a position to process the complete data package that is partially illustrated in Table 2, (ie the 5000 data ) in the first neural network, where the output data from the input layer is passed to the first intermediate layer that for our example comprises 2048 neurons, each of these neurons processes the data delivered by the input layer and the processed using the summation of input data with a matrix of weights "W" according to the equation for "Y i ", this is repeated with the output data of the first intermediate layer which serve as input data for the second layer intermediate, in an alternative modality you can have more intermediate layers, for which the number of neurons of each layer must be calculated in addition to obtaining the matrices of the weights "W" already trained for each of these subsequent layers; For the purposes of the example in speech at the output of the first neural network, there is a neuron evaluating the output value of said neuron, namely that if said output value of the neuron in the output layer is greater than 0.7, it means that the ECG that was processed is "normal", ie that the user status is "ordinary" and that there is no cardiac event or heart disease to report, sending a notification to the second server 22; however, if the value is less than 0.7, this means that the user's condition is "extraordinary" so there may be some heart disease; In this case, the decoded data packet (partially illustrated in Table 2) is submitted to the second neural network, with the peculiarity that this second neural network comprises a database of weights "W" somewhat different from the first neural network studied above, in addition to comprising a plurality of output neurons, however for the purposes of this example it also uses 2048 neurons in its first intermediate layer and 100 neurons in its second intermediate layer; each of the neurons in the output layer is similar to a heart disease. For the purposes of this example, Figure 21 shows three neurons in the output layer of the second neural network, making it clear that the number of neurons in the layer The output of the aforementioned second neural network is equal to the number of heart diseases that have been studied and their affinities are defined; reverting our attention to the present example and to figure 21 from which it follows that the output of the NA neuron will indicate the probability that the user has arrhythmia, and its connections with data that are indicators of arrhythmia will have much larger “W” weights; the same for NT that indicates the probability of tachycardia, and successively for all the diseases suffered; this information is processed by statistical means and generates a possible scenario that indicates the most related heart disease or diseases as well as their affinity percentage, also identifying the heart disease with the highest affinity percentage, sending this information to the second server 22; this information is also sent to the first server 21 for storage in the machine learning module for calibrating the classification model; For its part, server 22 processes the information and issues an alert, which is displayed on the medical platform, notifying authorized persons for emergencies, as well as being sent to the first server 21, which in turn sends the alert to the mobile device or computer 20, the latter will display an alert signal on the screen as well as a button that allows to know that the user has seen the alert (see figure 17c), in an alternative modality a button can also be displayed that indicates if the user is okay .
Es importante destacar, que para el Modelo ajustado por la referencia del usuario mientras una mayor cantidad de personas usen el DASB 10 y éstas a la vez lo usen de una forma prolongada a través del tiempo, se alimentará a la base de datos y al mismo tiempo el módulo de aprendizaje de máquina para la calibración del modelo de clasificación de las redes neuronales se mantendrá en constante “aprendizaje”, volviéndose cada vez más eficiente en la identificación de anomalías cardíacas además de personalizar sus funciones de acuerdo a cada usuario de forma individualizada.It is important to highlight that for the Model adjusted by the user's reference, as long as a greater number of people use the DASB 10 and these, at the same time, use it in a prolonged way over time, it will be fed into the database and at the same time Over time, the machine learning module for the calibration of the neural network classification model will remain in constant "learning", becoming increasingly efficient in identifying cardiac anomalies in addition to customizing its functions according to each user individually. .
Habiendo descrito la presente invención con suficiente detalle para habilitar a un técnico con conocimiento en la materia para su reproducción se le encuentra con alto grado de aplicación industrial, así como de actividad inventiva, cabe hacer notar que el referido técnico con conocimiento en la materia podrá vislumbrar modalidades alternativas de la presente invención las cuales se deberán considerar dentro del alcance y espíritu de las siguientes REIVINDICACIONES.Having described the present invention in sufficient detail to enable a technician with knowledge in the matter to reproduce it, it is found to have a high degree of industrial application, as well as inventive activity, it should be noted that the aforementioned technician with knowledge in the matter may envision alternative modalities of the present invention which should be considered within the scope and spirit of the following CLAIMS.

Claims (24)

  1. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo constituido por al menos un dispositivo de adquisición de señales de biopotencial (DASB), un ordenador o dispositivo móvil; una pluralidad de servidores, en donde:
    el al menos un dispositivo de adquisición de señales de biopotencial está constituido por: un módulo inalámbrico el cual consta de un microcontrolador con una antena, así mismo, es alimentado por un primer regulador de voltaje, quien adapta el voltaje de una batería, dicho módulo inalámbrico, recibe la señal proveniente de un bloque digital AFE quien está provisto de un convertidor analógico-digital (o ADC por sus siglas en inglés) así como de al menos un sensor de biopotencial el cual adquiere las señales de biopotencial (ECG) a través de al menos un electrodo, el ADC adecúa la señal proveniente de al menos un sensor de biopotencial para que pueda ser procesada, codificada, empaquetada y transmitida vía inalámbrica posteriormente por el módulo inalámbrico hacia el dispositivo móvil u ordenador;
    un primer server, quien recibe una señal codificada y empaquetada proveniente del dispositivo móvil u ordenador, dicho primer server decodifica y reconstruye la señal digital acondicionada, procede a su debido etiquetado para su identificación y trazabilidad, así como para su posterior almacenamiento y envío de forma simultánea a un segundo server y tercer server;
    el segundo server soporta una plataforma médica dedicada en donde dicho paquete de señales digitalizadas, acondicionadas y reconstruidas se almacenan;
    el tercer server procesa el paquete de señales digitalizadas, acondicionadas y reconstruidas en busca de cardiopatías, basado en una primer red neuronal y segunda red neuronal que operan en tándem en donde la primer red neuronal clasifica el estado del usuario en “ordinario” o “extraordinario”, en este último estado del usuario se utiliza la segunda red neural la cual identifica un cuadro de alguna cardiopatía, así como su porcentaje de afinidad.
    Biopotential signal collection and processing system for monitoring consisting of at least one biopotential signal acquisition device (DASB), a computer or mobile device; a plurality of servers, where:
    The at least one biopotential signal acquisition device is made up of: a wireless module which consists of a microcontroller with an antenna, likewise, it is powered by a first voltage regulator, which adapts the voltage of a battery, said module wireless, receives the signal from an AFE digital block that is provided with an analog-digital converter (or ADC for its acronym in English) as well as at least one biopotential sensor which acquires biopotential signals (ECG) through of at least one electrode, the ADC adapts the signal coming from at least one biopotential sensor so that it can be processed, encoded, packaged and subsequently transmitted via wireless by the wireless module to the mobile device or computer;
    a first server, which receives a coded and packaged signal from the mobile device or computer, said first server decodes and reconstructs the conditioned digital signal, proceeds to its proper labeling for its identification and traceability, as well as for its subsequent storage and sending simultaneous to a second server and third server;
    the second server supports a dedicated medical platform where said packet of digitized, conditioned and reconstructed signals are stored;
    the third server processes the package of digitized, conditioned and reconstructed signals in search of heart disease, based on a first neural network and a second neural network operating in tandem where the first neural network classifies the user's status as "ordinary" or "extraordinary" ”, in this last state of the user, the second neural network is used, which identifies a picture of some heart disease, as well as its percentage of affinity.
  2. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo de acorde a la reivindicación 1, en donde ambas redes neuronales cada una respectivamente cuentan con un módulo de datos a procesar, módulo de datos de referencia, un módulo de aprendizaje de máquina para la calibración del modelo de clasificación.Biopotential signal collection and processing system for monitoring according to claim 1, wherein both neural networks each respectively have a data module to be processed, a reference data module, a machine learning module for calibration of the classification model.
  3. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo de acorde a la reivindicación 1, en donde la primer red neuronal consta de una sola neurona en su capa de salida, la cual está calibrada y entrenada para clasificar el estado del usuario en “ordinario” o “extraordinario”Biopotential signal collection and processing system for monitoring according to claim 1, wherein the first neural network consists of a single neuron in its output layer, which is calibrated and trained to classify the user's state as "ordinary". ” or “extraordinary”
  4. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo de acorde a la reivindicación 3, en donde la neurona de la capa de salida clasifica el estado del usuario en “ordinario”, el tercer servidor envía una señal al segundo servidor, así como al primer servidor para que reporten tanto en la plataforma medica como en el dispositivo móvil u ordenador el estado del usuario.Biopotential signal collection and processing system for monitoring according to claim 3, wherein the output layer neuron classifies the user's state as "ordinary", the third server sends a signal to the second server, as well as to the third server. first server to report the status of the user both on the medical platform and on the mobile device or computer.
  5. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo de acorde a la reivindicación 3, en donde la neurona de la capa de salida clasifica el estado del usuario en “extraordinario” el tercer server procesa la señal de biopotencial en la segunda red neuronal.Biopotential signal collection and processing system for monitoring according to claim 3, wherein the output layer neuron classifies the user's state as "extraordinary" the third server processes the biopotential signal in the second neural network.
  6. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo de acorde a la reivindicación 1, en donde la segunda red neuronal consta de una pluralidad de neuronas en su capa de salida, siendo cada neurona en dicha capa de salida afín a una cardiopatía.Biopotential signal collection and processing system for monitoring according to claim 1, wherein the second neural network consists of a plurality of neurons in its output layer, each neuron in said output layer being related to a heart disease.
  7. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo de acorde a la reivindicación 6, en donde las neuronas de la capa de salida de la segunda red neuronal indicará la probabilidad de que el usuario tenga una determinada cardiopatía, la afinidad de cada cardiopatía en las neuronas de salida se analizan por medios estadísticos en donde se genera un posible escenario que indica la o las cardiopatías más afines así como su porcentaje de afinidad, con esta información se identifica la cardiopatía que tenga el porcentaje de afinidad más alto, si esta tiene un porcentaje de afinidad alta, se advierte o alerta al usuario y seguidores autorizados el tipo de escenario al que se tiene afinidad. System for collecting biopotential signals and processing for monitoring according to claim 6, wherein the neurons of the output layer of the second neural network will indicate the probability that the user has a certain heart disease, the affinity of each heart disease in The output neurons are analyzed by statistical means where a possible scenario is generated that indicates the most related heart disease or diseases as well as their percentage of affinity. With this information, the heart disease that has the highest percentage of affinity is identified, if it has a high affinity percentage, the user and authorized followers are warned or alerted to the type of scenario to which they have affinity.
  8. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo de acorde a la reivindicación 7, en donde la alerta al usuario y seguidores autorizados comprende que el tercer server envíe dicha información al segundo server, así como al primer server para su almacenamiento en el módulo de aprendizaje de máquina para la calibración del modelo de clasificación de ambas redes neuronales; por su parte, el segundo server procesa la información y emite una alerta, esta se despliega en la plataforma médica, notificando a las personas autorizadas para emergencias, además de enviarse hacia el primer server quien a su vez remite la alerta al dispositivo móvil u ordenador 20 para alertar al usuario.Biopotential signal collection and processing system for monitoring according to claim 7, wherein the alert to the user and authorized followers comprises that the third server send said information to the second server, as well as to the first server for storage in the module machine learning for the calibration of the classification model of both neural networks; For its part, the second server processes the information and issues an alert, which is displayed on the medical platform, notifying authorized persons for emergencies, as well as being sent to the first server, which in turn sends the alert to the mobile device or computer. 20 to alert the user.
  9. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo de acorde a la reivindicación 1, en donde la batería del dispositivo de adquisición de señales de biopotencial (DASB) está eléctricamente acoplada a un primer regulador de voltaje así como a un segundo regulador de voltaje, en donde el primer regulador de voltaje está en conexión eléctrica con el módulo inalámbrico, un botón y el bloque digital del AFE; el segundo regulador de voltaje está en conexión eléctrica con un primer módulo de capacitores de derivación, con el módulo digital AFE, con un oscilador que a su vez está en conexión eléctrica con el módulo digital AFE.Biopotential signal collection and processing system for monitoring according to claim 1, wherein the battery of the biopotential signal acquisition device (DASB) is electrically coupled to a first voltage regulator as well as a second voltage regulator , where the first voltage regulator is in electrical connection with the wireless module, a button and the digital block of the AFE; the second voltage regulator is in electrical connection with a first shunt capacitor module, with the AFE digital module, with an oscillator which in turn is in electrical connection with the AFE digital module.
  10. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo de acorde a la reivindicación 9, en donde el segundo regulador de voltaje es controlado por una señal digital que emite el módulo inalámbrico.Biopotential signal collection and processing system for monitoring according to claim 9, wherein the second voltage regulator is controlled by a digital signal emitted by the wireless module.
  11. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo de acorde a la reivindicación 1, en donde el módulo inalámbrico del dispositivo de adquisición de señales de biopotencial (DASB) está acoplado eléctricamente al segundo regulador de voltaje o a la batería, omitiendo el uso del primer regulador de voltaje.Biopotential signal collection and processing system for monitoring according to claim 1, wherein the wireless module of the biopotential signal acquisition device (DASB) is electrically coupled to the second voltage regulator or to the battery, omitting the use of the first voltage regulator.
  12. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo de acorde a la reivindicación 1, en donde el dispositivo de adquisición de señales de biopotencial (DASB) comprende una pluralidad de AFE.Biopotential signal collection and processing system for monitoring according to claim 1, wherein the biopotential signal acquisition device (DASB) comprises a plurality of AFEs.
  13. Sistema de recopilación de señales de biopotencial y procesamiento para monitoreo de acorde a la reivindicación 9, en donde el módulo inalámbrico consta con un ADC interno, permitiéndole recibir directamente al menos una señal analógica de biopotencial.Biopotential signal collection and processing system for monitoring according to claim 9, wherein the wireless module has an internal ADC, allowing it to directly receive at least one biopotential analog signal.
  14. Un método para la adquisición de datos de biopotencial (ECG) por medio de un dispositivo de adquisición de señales de biopotencial (DASB) compuesto por un módulo inalámbrico el cual comprende un microcontrolador con una antena, así mismo, es alimentado por un primer regulador de voltaje, que adapta el voltaje de una batería, dicho módulo inalámbrico, recibe la señal proveniente de un bloque digital AFE, el cual está provisto de un convertidor analógico-digital (o ADC por sus siglas en inglés), así como de al menos un sensor de biopotencial el cual adquiere las señales de biopotencial (ECG) a través de al menos un electrodo, el ADC adecúa la señal proveniente de al menos un sensor de biopotencial para que pueda ser procesada, codificada, empaquetada y transmitida vía inalámbrica posteriormente por el módulo inalámbrico hacia el dispositivo móvil u ordenador, el método comprende:
    Iniciar al módulo inalámbrico, con lo que se activa el módulo de Bluetooth y la antena, permitiendo la conexión inalámbrica con un dispositivo móvil;
    enviar una indicación al módulo inalámbrico para la configuración de periféricos mediante el dispositivo móvil;
    habilitar el segundo regulador de voltaje del DASB para configurar los parámetros de muestreo del módulo digital AFE;
    comenzar la adquisición de señales de biopotencial del módulo digital AFE detectadas por los sensores de biopotencial;
    recibir o colectar una cantidad específica de señales de biopotencial del módulo digital AFE (los cuales se denominarán “datos”) mediante el módulo inalámbrico, al culminar esta tarea el módulo inalámbrico resetea el módulo digital AFE;
    deshabilitar el segundo regulador de voltaje DASB al enviarlo a modo de bajo consumo; acto seguido mandar mediante el módulo inalámbrico una señal al dispositivo móvil para dar comienzo al envío de datos;
    enviar mediante el dispositivo móvil una señal de regreso al módulo inalámbrico indicando que está listo para recibir los datos; acto seguido se inicializar un temporizador para el envío de datos;
    interrumpir mediante el módulo inalámbrico al temporizador mientras codifica y empaqueta los datos, reestableciendo al temporizador en cuanto los datos están codificados y empaquetados;
    iniciar mediante el módulo inalámbrico la transmisión de datos codificados y empaquetados hacia el dispositivo móvil, esto sucede hasta que el dispositivo móvil reporta tener la totalidad de los datos codificados y empaquetados enviados por el módulo inalámbrico, este último detiene al temporizador además de enviar una indicación al dispositivo móvil que indica la terminación de la transmisión de datos.
    A method for the acquisition of biopotential data (ECG) by means of a biopotential signal acquisition device (DASB) composed of a wireless module which comprises a microcontroller with an antenna, likewise, it is fed by a first regulator of voltage, which adapts the voltage of a battery, said wireless module receives the signal from an AFE digital block, which is provided with an analog-digital converter (or ADC for its acronym in English), as well as at least one biopotential sensor which acquires biopotential signals (ECG) through at least one electrode, the ADC adapts the signal coming from at least one biopotential sensor so that it can be processed, encoded, packaged and transmitted via wireless later by the wireless module to the mobile device or computer, the method comprises:
    Launch to wireless module, which activates the Bluetooth module and antenna, allowing wireless connection with a mobile device;
    send an indication to the wireless module for peripheral configuration using the mobile device;
    enable the second voltage regulator of the DASB to configure the sampling parameters of the AFE digital module;
    beginning the acquisition of biopotential signals from the AFE digital module detected by the biopotential sensors;
    receive or collect a specific amount of biopotential signals from the AFE digital module (which will be called "data") through the wireless module, upon completion of this task the wireless module resets the AFE digital module;
    disable the second DASB voltage regulator by sending it to low power mode; then send a signal to the mobile device through the wireless module to start sending data;
    send by the mobile device a signal back to the wireless module indicating that it is ready to receive the data; immediately afterwards, a timer for sending data is initialized;
    interrupting via the wireless module the timer while it is encoding and packaging the data, resetting the timer as soon as the data is encoding and packaging;
    initiate the transmission of encrypted and packaged data to the mobile device through the wireless module, this happens until the mobile device reports having all the encrypted and packaged data sent by the wireless module, the latter stops the timer in addition to sending an indication to the mobile device indicating the termination of data transmission.
  15. Un método para la adquisición y envío de datos de biopotencial (ECG) entre dispositivos de adquisición de señales de bipotencial (DASB) compuesto por un módulo inalámbrico, el cual comprende un microcontrolador con una antena, así mismo, es alimentado por un primer regulador de voltaje, el cual adapta el voltaje de una batería, dicho módulo inalámbrico recibe la señal proveniente de un bloque digital AFE, el cual está provisto de un convertidor analógico-digital (o ADC por sus siglas en inglés), así como de al menos un sensor de biopotencial, el cual adquiere las señales de biopotencial (ECG) a través de al menos un electrodo, el ADC adecúa la señal proveniente de al menos un sensor de biopotencial para que pueda ser procesada, codificada, empaquetada y transmitida vía inalámbrica posteriormente por el módulo inalámbrico hacia el dispositivo móvil u ordenador, el método comprende:
    Iniciar al módulo inalámbrico del DASB “esclavo”, con lo que se activa el módulo de Bluetooth y la antena, permitiendo la conexión inalámbrica con un módulo inalámbrico del DASB “maestro”;
    Enviar mediante el módulo inalámbrico del DASB “esclavo” una indicación al módulo inalámbrico DASB “maestro” para la configuración de periféricos;
    Habilitar el segundo regulador de voltaje del DASB “esclavo” para configurar los parámetros de muestreo del módulo digital AFE del DASB “esclavo”;
    Comenzar la adquisición de señales de biopotencial del módulo digital AFE del DASB “esclavo” detectadas por los sensores de biopotencial del DASB “esclavo”;
    Recibir o colectar mediante el módulo inalámbrico del DASB “esclavo” una cantidad específica de señales de biopotencial del módulo digital AFE (los cuales se denominarán “datos”), al culminar esta tarea el módulo inalámbrico del DASB “esclavo” resetea dicho módulo digital AFE del DASB “esclavo”;
    deshabilitar el segundo regulador de voltaje DASB “esclavo” al enviarlo a modo de bajo consumo; acto seguido mandar mediante el módulo inalámbrico del DASB “esclavo” una señal al módulo inalámbrico del DASB “maestro” para dar comienzo al envío de datos;
    enviar mediante el módulo inalámbrico del DASB “maestro” una señal de regreso al módulo inalámbrico del DASB “esclavo” indicando que está listo para recibir los datos; acto seguido iniciar un temporizador en el DASB “esclavo” para el envío de datos;
    interrumpir mediante el módulo inalámbrico del DASB “esclavo” al temporizador mientras codifica y empaqueta los datos, reestableciendo al temporizador en cuanto los datos están codificados y empaquetados;
    iniciar mediante el módulo inalámbrico del DASB “esclavo” la transmisión de datos codificados y empaquetados hacia el DASB “maestro” esto sucede hasta que el DASB “maestro” reporta tener la totalidad de los datos codificados y empaquetados enviados por el módulo inalámbrico del DASB “esclavo”, este último detiene al temporizador además de enviar una indicación al DASB “maestro” que indica la terminación de la transmisión de datos.
    A method for the acquisition and sending of biopotential data (ECG) between bipotential signal acquisition devices (DASB) composed of a wireless module, which comprises a microcontroller with an antenna, likewise, it is fed by a first regulator of voltage, which adapts the voltage of a battery, said wireless module receives the signal from an AFE digital block, which is provided with an analog-digital converter (or ADC for its acronym in English), as well as at least one biopotential sensor, which acquires biopotential signals (ECG) through at least one electrode, the ADC adapts the signal coming from at least one biopotential sensor so that it can be processed, encoded, packaged and transmitted via wireless later by the wireless module to the mobile device or computer, the method comprises:
    Initialize the “slave” DASB wireless module, thereby activating the Bluetooth module and antenna, allowing wireless connection to a “master” DASB wireless module;
    Send through the wireless module of the DASB "slave" an indication to the wireless module DASB "master" for the configuration of peripherals;
    Enable the second voltage regulator of the “slave” DASB to configure the sampling parameters of the AFE digital module of the “slave” DASB;
    Begin the acquisition of biopotential signals from the AFE digital module of the "slave" DASB detected by the biopotential sensors of the "slave"DASB;
    Receive or collect through the "slave" DASB wireless module a specific amount of biopotential signals from the AFE digital module (which will be called "data"). Upon completion of this task, the "slave" DASB wireless module resets said AFE digital module from DASB “slave”;
    disable the second “slave” DASB voltage regulator by sending it to low power mode; Immediately afterwards, through the wireless module of the DASB "slave" send a signal to the wireless module of the DASB "master" to start sending data;
    send through the wireless module of the "master" DASB a return signal to the wireless module of the "slave" DASB indicating that it is ready to receive the data; then start a timer in the "slave" DASB to send data;
    interrupting via the wireless module of the DASB "slave" the timer while it encodes and packages the data, resetting the timer as soon as the data is encoded and packages;
    Initiate through the wireless module of the DASB "slave" the transmission of encrypted and packetized data to the DASB "master" this happens until the DASB "master" reports having all the encrypted and packetized data sent by the wireless module of the DASB " slave”, the latter stops the timer in addition to sending an indication to the DASB “master” indicating the completion of data transmission.
  16. Un método procesamiento de datos de biopotencial (ECG) codificados y empaquetados (también conocidos como datos codificados y empaquetados) para la detección de cardiopatías que comprende:
    Enviar los datos codificados y empaquetados desde el dispositivo móvil hacia un primer servidor de cómputo;
    Decodificar y reconstruir mediante el primer servidor de cómputo la señal digital acondicionada, acto seguido la etiqueta e identifica para su trazabilidad y posterior almacenamiento;
    Enviar simultáneamente las señales digitales acondicionadas decodificadas, etiquetadas y reconstruidas a un segundo servidor de cómputo, así como a un tercer servidor de cómputo;
    Almacenar mediante el segundo servidor de cómputo las señales digitales acondicionadas decodificadas, etiquetadas y reconstruidas;
    Procesar mediante el tercer servidor de cómputo las señales digitales acondicionadas, decodificadas, etiquetadas y reconstruidas por medio de dos redes neuronales en tandem en busca de cardiopatías;
    Determinar mediante el tercer servidor de cómputo el estado de actividad cardíaca del usuario (i.e. reposo, actividad cardíaca ordinaria, actividad cardíaca media, actividad cardíaca alta, actividad cardíaca extraordinaria) al analizar la frecuencia cardíaca de las señales digitales acondicionadas decodificadas, etiquetadas y reconstruidas, añadiendo una etiqueta a estas del estado de actividad cardiaca del usuario, y acto seguido almacenar y enviar las señales digitales acondicionadas decodificadas, etiquetadas y reconstruidas al segundo servidor de cómputo;
    En caso de que se determine mediante el segundo servidor de cómputo una alta afinidad con algún cuadro conocido de taquicardia, bradicardia o arritmia, el segundo servidor emite una alerta, la cual se envía al dispositivo móvil a través del primer servidor de cómputo;
    En caso de que se determine mediante el segundo servidor de cómputo una baja o nula afinidad con algún cuadro conocido de taquicardia, bradicardia o arritmia, el segundo servidor envía una señal al tercer servidor de cómputo para que éste compare
    En caso de que se determine mediante el segundo servidor de cómputo una alta afinidad con algún cuadro conocido de taquicardia, bradicardia o arritmia, el segundo servidor envía una señal al terecer servidor de cómputo para que éste proceda a comparar las señales digitales acondicionadas decodificadas, etiquetadas y reconstruidas con cardiopatías almacenadas en su base datos; de encontrar una alta afinidad con alguna cardiopatía almacenada en la base de datos, el tercer servidor de cómputo envía una señal al segundo servidor de cómputo para que éste emita una alerta y la envíe al dispositivo móvil a través del primer servidor de cómputo; de no encontrar una afinidad con alguna cardiopatía almacenada en la base de datos del tercer servidor de cómputo, esto anexa una etiqueta a las señales digitales acondicionadas, decodificadas, etiquetadas y reconstruidas, indicando que se han efectuado las dos comparaciones de cardiopatías;
    Analizar mediante el tercer servidor de cómputo las señales digitales acondicionadas, decodificadas, etiquetadas y reconstruidas por medio de una primer red neuronal debidamente calibrada y entrenada, la cual arroja una predicción sobre una posible cardiopatía;
    Analizar mediante el tercer servidor de cómputo las señales digitales acondicionadas, decodificadas, etiquetadas y reconstruidas por medio de una segunda red neuronal debidamente calibrada y entrenada, la cual arroja una predicción sobre una pluralidad de escenarios que corresponden a diferentes posibles cardiopatías que el usuario pudiese experimentar o desarrollar en un futuro próximo; en donde los posibles escenarios de cardiopatías tienen asociados una probabilidad de ocurrencia así como un porcentaje de afinidad con la cardiopatía de que se trate, acto seguido se calcula la moda estadística, se revisa la probabilidad de ocurrencia así como el porcentaje de afinidad a la cardiopatía de que se trate, de los posibles escenarios de cardiopatías arrojadas por la segunda red neuronal, si éstos son altos se emite una alerta al segundo servidor de cómputo quien a su vez emitirá una alerta al dispositivo móvil a través de primer servidor de cómputo.
    A method of processing packaged coded biopotential (ECG) data (also known as packaged coded data) for the detection of heart disease comprising:
    Sending the encrypted and packaged data from the mobile device to a first computing server;
    Decode and reconstruct the conditioned digital signal through the first computer server, immediately label and identify it for traceability and subsequent storage;
    Simultaneously sending the decoded, labeled and reconstructed conditioned digital signals to a second computing server, as well as to a third computing server;
    Storing through the second computing server the decoded, labeled and reconstructed conditioned digital signals;
    Process through the third computer server the conditioned, decoded, labeled and reconstructed digital signals by means of two neural networks in tandem in search of heart disease;
    Determining by the third computer server the user's cardiac activity status (ie rest, ordinary cardiac activity, average cardiac activity, high cardiac activity, extraordinary cardiac activity) by analyzing the heart rate of the decoded, labeled and reconstructed conditioned digital signals, adding a label to these of the user's cardiac activity status, and thereafter storing and sending the decoded, labeled and reconstructed conditioned digital signals to the second computing server;
    In the event that a high affinity with a known picture of tachycardia, bradycardia or arrhythmia is determined by the second computing server, the second server issues an alert, which is sent to the mobile device through the first computing server;
    In the event that the second computing server determines a low or null affinity with a known tachycardia, bradycardia or arrhythmia picture, the second server sends a signal to the third computing server so that it can compare
    In the event that the second computing server determines a high affinity with a known picture of tachycardia, bradycardia or arrhythmia, the second server sends a signal to the third computing server so that it proceeds to compare the decoded, labeled conditioned digital signals and reconstructed with heart diseases stored in its database; Upon finding a high affinity with any heart disease stored in the database, the third computing server sends a signal to the second computing server so that it issues an alert and sends it to the mobile device through the first computing server; if it does not find an affinity with any heart disease stored in the database of the third computer server, this appends a label to the conditioned, decoded, labeled and reconstructed digital signals, indicating that the two heart disease comparisons have been made;
    Analyze through the third computer server the digital signals conditioned, decoded, labeled and reconstructed by means of a first duly calibrated and trained neural network, which yields a prediction about a possible heart disease;
    Analyze through the third computer server the digital signals conditioned, decoded, labeled and reconstructed by means of a second duly calibrated and trained neural network, which yields a prediction on a plurality of scenarios that correspond to different possible heart diseases that the user could experience. or develop in the near future; where the possible scenarios of heart disease are associated with a probability of occurrence as well as a percentage of affinity with the heart disease in question, then the statistical mode is calculated, the probability of occurrence is reviewed as well as the percentage of affinity to the heart disease in question, of the possible scenarios of heart disease thrown by the second neural network, if these are high, an alert is issued to the second computing server, which in turn will issue an alert to the mobile device through the first computing server.
  17. Un método de procesamiento de datos de biopotencial (ECG) codificados y empaquetados (también conocidos como datos codificados y empaquetados) para la detección de cardiopatías que comprende:
    Enviar los datos codificados y empaquetados desde el dispositivo móvil hacia un primer servidor de cómputo;
    Decodificar y reconstruir mediate el primer servidor de cómputo la señal digital acondicionada, acto seguido la etiqueta e identifica para su trazabilidad y posterior almacenamiento;
    Enviar simultáneamente las señales digitales acondicionadas decodificadas, etiquetadas y reconstruidas a un segundo servidor de cómputo así como a un tercer servidor de cómputo;
    Almacenar mediante el segundo servidor de cómputo las señales digitales acondicionadas decodificadas, etiquetadas y reconstruidas;
    Procesar mediante el tercer servidor de cómputo en una primer etapa las señales digitales acondicionadas, decodificadas, etiquetadas y reconstruidas en busca de cardiopatías basadas en el ritmo sinusal;
    Si del paso anterior se determina que el ritmo sinusal que porta el paquete de señales digitalizadas, acondicionadas y reconstruidas tiene una afinidad alta con alguna cardiopatía asociada al ritmo sinusal, el tercer servidor compara ahora el paquete de señales digitalizadas, acondicionadas, etiquetadas y reconstruidas con los modelos de cardiopatías almacenadas en la base de datos del tercer servidor, con lo cual se determina un porcentaje de afinidad a algún modelo de cardiopatía;
    Si del paso anterior se determina una alta afinidad con alguno de los modelos de cardiopatía almacenada, el tercer servidor emite una alerta al segundo servidor el cual envía la alerta al dispositivo móvil vía el primer servidor;
    De no encontrar una cardiopatía que pueda ser diagnosticada por vía del ritmo sinusal, anexar mediante el tercer servidor una etiqueta a las señales digitales acondicionadas decodificadas, etiquetadas y reconstruidas, indicando que se han efectuado la primer etapa de búsqueda de cardiopatías; enviar entonces el paquete de señales digitalizadas, acondicionadas, etiquetadas y reconstruidas el tercer servidor para ser analizadas por medio de dos redes neuronales en tándem en busca de cardiopatías (segunda etapa de búsqueda de cardiopatías);
    Analizar mediante el tercer servidor de cómputo durante la segunda etapa de búsqueda de cardiopatías las señales digitales acondicionadas, decodificadas, etiquetadas y reconstruidas por medio de una primer red neuronal debidamente calibrada y entrenada, en donde la primer red neuronal tiene una sola neurona en la capa de salida la cual clasifica el estado del usuario en “ordinario” o “extraordinario”, en este último estado del usuario se utiliza la segunda red neural la cual identifica un cuadro de alguna cardiopatía, así como su porcentaje de afinidad;
    En caso de haberse detectado un estado del usuario “extraordinario” en al paso anterior, analizar mediante el tercer servidor de cómputo las señales digitales acondicionadas, decodificadas, etiquetadas y reconstruidas por medio de una segunda red neuronal debidamente calibrada y entrenada, la capa de salida de dicha segunda red neuronal comprende una pluralidad de neuronas, de manera que se tiene una neurona de salida por cada cardiopatía, en donde la salida de la neurona dada de la capa de salida de la segunda red neuronal indicará la probabilidad de que el usuario tenga la cardiopatía de que trate dicha neurona dada;
    Determinar mediante el tercer servidor y por medios estadísticos con base en los datos de las neuronas de salida de la segunda red neuronal, la cardiopatía con el porcentaje de afinidad más alta, si dicho porcentaje de afinidad es alta (mayor al 60%) emite una alerta al segundo servidor de cómputo quien a su vez emitirá una alerta al dispositivo móvil a través de primer servidor de cómputo.
    A method of processing packaged coded biopotential (ECG) data (also known as packaged coded data) for the detection of heart disease comprising:
    Sending the encrypted and packaged data from the mobile device to a first computing server;
    Decoding and reconstructing the conditioned digital signal through the first computer server, immediately afterwards the label and identifies it for traceability and subsequent storage;
    Simultaneously sending the decoded, labeled and reconstructed conditioned digital signals to a second computing server as well as to a third computing server;
    Storing through the second computing server the decoded, labeled and reconstructed conditioned digital signals;
    Process through the third computer server in a first stage the conditioned, decoded, labeled and reconstructed digital signals in search of heart disease based on sinus rhythm;
    If it is determined from the previous step that the sinus rhythm carried by the package of digitized, conditioned, and reconstructed signals has a high affinity with some heart disease associated with sinus rhythm, the third server now compares the package of digitized, conditioned, labeled, and reconstructed signals with the heart disease models stored in the database of the third server, with which a percentage of affinity to some heart disease model is determined;
    If a high affinity with any of the stored heart disease models is determined from the previous step, the third server issues an alert to the second server which sends the alert to the mobile device via the first server;
    If a heart disease that can be diagnosed via sinus rhythm is not found, attach a label to the decoded, labeled and reconstructed conditioned digital signals through the third server, indicating that the first stage of heart disease search has been carried out; then sending the packet of digitized, conditioned, labeled and reconstructed signals to the third server to be analyzed by means of two tandem neural networks for heart disease (second stage of heart disease search);
    Analyze through the third computer server during the second stage of heart disease search the digital signals conditioned, decoded, labeled and reconstructed by means of a first duly calibrated and trained neural network, where the first neural network has a single neuron in the layer output which classifies the state of the user as "ordinary" or "extraordinary", in this last state of the user the second neural network is used which identifies a picture of some cardiopathy, as well as its percentage of affinity;
    If an "extraordinary" user state has been detected in the previous step, analyze through the third computing server the conditioned, decoded, labeled and reconstructed digital signals by means of a second duly calibrated and trained neural network, the output layer of said second neural network comprises a plurality of neurons, so that there is an output neuron for each heart disease, where the output of the given neuron of the output layer of the second neural network will indicate the probability that the user has the heart disease that said given neuron treats;
    Determine through the third server and by statistical means based on the data of the output neurons of the second neural network, the heart disease with the highest affinity percentage, if said affinity percentage is high (greater than 60%) emits a alerts the second computing server who in turn will issue an alert to the mobile device through the first computing server.
  18. Un método procesamiento de datos de biopotencial (ECG) codificados y empaquetados (también conocidos como datos codificados y empaquetados) para la detección de cardiopatías que comprende:
    Enviar los datos codificados y empaquetados desde el dispositivo móvil hacia un primer servidor de cómputo;
    Decodificar y reconstruir mediante el primer servidor de cómputo la señal digital acondicionada, acto seguido etiquetarla e identificarla para su trazabilidad y posterior almacenamiento;
    Enviar simultáneamente las señales digitales acondicionadas decodificadas, etiquetadas y reconstruidas a un segundo servidor de cómputo así como a un tercer servidor de cómputo;
    Almacenar mediante el segundo servidor de cómputo las señales digitales acondicionadas decodificadas, etiquetadas y reconstruidas;
    Determinar mediante el tercer servidor de cómputo el estado de actividad cardíaca del usuario (i.e. reposo, actividad cardíaca ordinaria, actividad cardíaca media, actividad cardíaca alta, actividad cardíaca extraordinaria) al analizar la frecuencia cardiaca de las señales digitales acondicionadas, decodificadas, etiquetadas y reconstruidas, añadiendo una etiqueta a éstas del estado de actividad cardíaca del usuario, y acto seguido dichas señales digitales acondicionadas decodificadas, etiquetadas y reconstruidas se almacenan y envían al segundo servidor de cómputo;
    Procesar mediante el tercer servidor de cómputo las señales digitales acondicionadas, decodificadas, etiquetadas y reconstruidas por medio de dos redes neuronales en tandem en busca de cardiopatías;
    Analizar mediante el tercer servidor de cómputo las señales digitales acondicionadas, decodificadas, etiquetadas y reconstruidas por medio de una primer red neuronal debidamente calibrada y entrenada, en donde la primer red neuronal tiene una sola neurona en la capa de salida la cual clasifica el estado del usuario en “ordinario” o “extraordinario”, en este último estado del usuario se utiliza la segunda red neural la cual identifica un cuadro de alguna cardiopatía, así como su porcentaje de afinidad;
    De detectarse un estado del usuario “extraordinario” en al paso anterior, analizar mediante el tercer servidor de cómputo las señales digitales acondicionadas, decodificadas, etiquetadas y reconstruidas por medio de una segunda red neuronal debidamente calibrada y entrenada, la capa de salida de dicha segunda red neuronal consta de una pluralidad de neuronas, de tal suerte que se cuenta con una neurona de salida por cada cardiopatía, en donde la salida de la neurona dada de la capa de salida de la segunda red neuronal indicará la probabilidad de que el usuario tenga la cardiopatía de que trate dicha neurona dada;
    Determinar mediante el tercer servidor y por medios estadísticos con base en los datos de las neuronas de salida de la segunda red neuronal la cardiopatía con el porcentaje de afinidad más alta, si dicho porcentaje de afinidad es alta (mayor al 60%) emite una alerta al segundo servidor de cómputo quien a su vez emitirá una alerta al dispositivo móvil a través de primer servidor de cómputo.
    A method of processing packaged coded biopotential (ECG) data (also known as packaged coded data) for the detection of heart disease comprising:
    Sending the encrypted and packaged data from the mobile device to a first computing server;
    Decoding and reconstructing the conditioned digital signal through the first computer server, immediately labeling and identifying it for traceability and subsequent storage;
    Simultaneously sending the decoded, labeled and reconstructed conditioned digital signals to a second computing server as well as to a third computing server;
    Storing through the second computing server the decoded, labeled and reconstructed conditioned digital signals;
    Determining by the third computer server the user's cardiac activity status (ie rest, ordinary cardiac activity, average cardiac activity, high cardiac activity, extraordinary cardiac activity) by analyzing the heart rate of the conditioned, decoded, labeled, and reconstructed digital signals , adding a label to these of the user's cardiac activity status, and thereafter said decoded, labeled and reconstructed conditioned digital signals are stored and sent to the second computing server;
    Process through the third computer server the conditioned, decoded, labeled and reconstructed digital signals by means of two neural networks in tandem in search of heart disease;
    Analyze through the third computer server the digital signals conditioned, decoded, labeled and reconstructed by means of a first duly calibrated and trained neural network, where the first neural network has a single neuron in the output layer which classifies the state of the user in "ordinary" or "extraordinary", in this last state of the user the second neural network is used, which identifies a picture of some heart disease, as well as its percentage of affinity;
    If an "extraordinary" user state is detected in the previous step, analyze through the third computing server the conditioned, decoded, labeled and reconstructed digital signals by means of a second duly calibrated and trained neural network, the output layer of said second neural network consists of a plurality of neurons, in such a way that there is an output neuron for each heart disease, where the output of the given neuron of the output layer of the second neural network will indicate the probability that the user has the heart disease that said given neuron treats;
    Determine through the third server and by statistical means based on the data of the output neurons of the second neural network the heart disease with the highest affinity percentage, if said affinity percentage is high (greater than 60%) it issues an alert to the second computing server who in turn will issue an alert to the mobile device through the first computing server.
  19. El método procesamiento de datos de biopotencial de acorde a las reivindicaciones 17 o 18, en donde la neurona de salida de la capa de salida de la primer red neuronal tiene un valor entre cero a 0.69 y significa que tiene una baja correlación con alguna cardiopatía lo que equivale a un estado “ordinario” del usuario.The biopotential data processing method according to claims 17 or 18, wherein the output neuron of the output layer of the first neural network has a value between zero and 0.69 and means that it has a low correlation with any heart disease. which is equivalent to an "ordinary" state of the user.
  20. El método procesamiento de datos de biopotencial de acorde a las reivindicaciones 17 o 18, en donde la neurona de salida de la capa de salida de la primer red neuronal tiene un valor entre 0.7 a 1 y significa que tiene una alta correlación con alguna cardiopatía lo que equivale a un estado “extraordinario” del usuario.The biopotential data processing method according to claims 17 or 18, wherein the output neuron of the output layer of the first neural network has a value between 0.7 to 1 and means that it has a high correlation with some heart disease. which is equivalent to an “extraordinary” state of the user.
  21. El método procesamiento de datos de biopotencial de acorde a las reivindicaciones 17 o 18, en donde la primer red neuronal tiene una sola capa neuronal intermedia, en donde el número de neuronas de la única capa neuronal intermedia tiene entre 10% a 50% el número de neuronas que la capa de entrada.The biopotential data processing method according to claims 17 or 18, wherein the first neural network has a single intermediate neural layer, wherein the number of neurons of the single intermediate neural layer is between 10% to 50% the number of neurons than the input layer.
  22. El método procesamiento de datos de biopotencial de acorde a las reivindicaciones 17 o 18, en donde la primer red neuronal tiene dos capas neuronales intermedias, en donde el número de neuronas de la primer capa neuronal intermedia tiene entre 30% a 50% el número de neuronas que la capa de entrada, por su parte la segunda capa neuronal intermedia tiene entre el 3% al 20% el número de neuronas que la primer capa neuronal intermedia, con lo que el número de neuronas por capa se va en decremento.The biopotential data processing method according to claims 17 or 18, wherein the first neural network has two intermediate neuronal layers, where the number of neurons in the first intermediate neural layer is between 30% to 50% the number of neurons than the input layer, for its part, the second intermediate neuronal layer has between 3% and 20% the number of neurons than the first intermediate neuronal layer, with which the number of neurons per layer decreases.
  23. El método procesamiento de datos de biopotencial de acorde a las reivindicaciones 17 o 18, en donde la alerta que emite el tercer servidor al segundo servidor de cómputo quien a su vez emitirá una alerta al dispositivo móvil a través de primer servidor de cómputo se logra enviando la información de la cardiopatía así como su porcentaje de afinidad tanto al segundo servidor como al primer servidor;
    el segundo servidor procesa la información y emite una alerta al primer servidor para que éste la envíe al dispositivo móvil;
    The biopotential data processing method according to claims 17 or 18, wherein the alert issued by the third server to the second computing server who in turn will issue an alert to the mobile device through the first computing server is achieved by sending the information of the cardiopathy as well as its percentage of affinity both to the second server and to the first server;
    the second server processes the information and issues an alert to the first server so that it can send it to the mobile device;
  24. el primer servidor respalda la información de la cardiopatía y su porcentaje de afinidad en el módulo de aprendizaje de máquina para la calibración del modelo de clasificación de ambas redes neuronales.The first server backs up the heart disease information and its percentage of affinity in the machine learning module for the calibration of the classification model of both neural networks.
PCT/IB2022/062331 2021-12-17 2022-12-15 Method and portable device for monitoring and identifying cardiac events WO2023111960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2021016015A MX2021016015A (en) 2021-12-17 2021-12-17 Method and portable device for the monitoring and prediction of cardiac events.
MXMX/A/2021/016015 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023111960A1 true WO2023111960A1 (en) 2023-06-22

Family

ID=86773908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/062331 WO2023111960A1 (en) 2021-12-17 2022-12-15 Method and portable device for monitoring and identifying cardiac events

Country Status (2)

Country Link
MX (1) MX2021016015A (en)
WO (1) WO2023111960A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200229713A1 (en) * 2013-12-12 2020-07-23 Alivecor, Inc. Methods and systems for arrhythmia tracking and scoring
US20210052218A1 (en) * 2019-08-20 2021-02-25 Patchd, Inc. Systems and methods for sepsis detection and monitoring
WO2021119361A1 (en) * 2019-12-10 2021-06-17 Alivecor, Inc. Twelve-lead electrocardiogram using a three-electrode device
WO2021150122A1 (en) * 2020-01-24 2021-07-29 Appsens As Method, device and system for wireless biopotential measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200229713A1 (en) * 2013-12-12 2020-07-23 Alivecor, Inc. Methods and systems for arrhythmia tracking and scoring
US20210052218A1 (en) * 2019-08-20 2021-02-25 Patchd, Inc. Systems and methods for sepsis detection and monitoring
WO2021119361A1 (en) * 2019-12-10 2021-06-17 Alivecor, Inc. Twelve-lead electrocardiogram using a three-electrode device
WO2021150122A1 (en) * 2020-01-24 2021-07-29 Appsens As Method, device and system for wireless biopotential measurement

Also Published As

Publication number Publication date
MX2021016015A (en) 2023-06-19

Similar Documents

Publication Publication Date Title
US20210000347A1 (en) Enhanced physiological monitoring devices and computer-implemented systems and methods of remote physiological monitoring of subjects
US10980444B2 (en) Systems and methods of determining location using a medical device
US20210290060A1 (en) Remote patient management and monitoring systems and methods
US20240130617A1 (en) Personal Monitoring Apparatus
US20210052221A1 (en) System, method, and smartwatch for protecting a user
US20210052177A1 (en) Wearable cardiac electrophysiology measurement devices, software, systems and methods
US10969583B2 (en) Augmented reality information system for use with a medical device
Mukhopadhyay Wearable sensors for human activity monitoring: A review
US20200367816A1 (en) Smartwatch and Hydration Monitor
US20210321953A1 (en) System, method, and smartwatch for fall detection, prediction, and risk assessment
US20150068069A1 (en) Personally powered appliance
CN205667545U (en) A kind of wearable physiological signal monitoring underwear
JP2015510780A (en) System and method for configuring a wearable medical monitoring and / or treatment device
Bansal et al. Smart heart rate monitoring system
WO2023111960A1 (en) Method and portable device for monitoring and identifying cardiac events
Huang et al. Implementation of a wireless sensor network for heart rate monitoring in a senior center
Meng et al. Wearable systems and applications for healthcare
CN109068980A (en) Control the measurement of one or more vital signs of living body main body
US20220386899A1 (en) Wearable device to identify medical emergencies and notify
Murdan et al. LoRa-based smart patient monitoring system
Rani Nanosensors and their potential role in internet of medical things
Chowdary et al. Implantable electronics: Integration of bio-interfaces, devices and sensors
US11172861B2 (en) Detection devices and monitoring systems including detection devices
Ariani et al. The development of cyber-physical system in health care industry
Amala et al. An Intelligent Wearable E-Belt for Continuous Monitoring of Sinus Rhythm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906827

Country of ref document: EP

Kind code of ref document: A1