WO2023110922A1 - Multispectral "snapshot" (instantaneous) acquisition camera - Google Patents

Multispectral "snapshot" (instantaneous) acquisition camera Download PDF

Info

Publication number
WO2023110922A1
WO2023110922A1 PCT/EP2022/085693 EP2022085693W WO2023110922A1 WO 2023110922 A1 WO2023110922 A1 WO 2023110922A1 EP 2022085693 W EP2022085693 W EP 2022085693W WO 2023110922 A1 WO2023110922 A1 WO 2023110922A1
Authority
WO
WIPO (PCT)
Prior art keywords
elementary
macropixel
spectral band
super
pixel
Prior art date
Application number
PCT/EP2022/085693
Other languages
French (fr)
Inventor
Philippe Foubert
Thierry TOUATI
Clotilde PEYROT
Nicolas Roux
Original Assignee
Safran Electronics & Defense
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electronics & Defense filed Critical Safran Electronics & Defense
Publication of WO2023110922A1 publication Critical patent/WO2023110922A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/2806Array and filter array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/131Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing infrared wavelengths

Definitions

  • the invention relates to the field of multispectral cameras, and, in particular, multispectral cameras used to carry out decamouflage operations.
  • Multispectral imaging consists of discretely acquiring the energy reflected or emitted by a surface in a plurality of spectral bands, whether contiguous or not (classically between 3 and 20 spectral bands).
  • the acquisition is carried out by a multispectral acquisition device comprising a multispectral sensor capable of measuring spectra (of reflectance or luminance in particular) in ranges of wavelengths corresponding to spectral bands located for example in the visible range. and/or in the infrared range.
  • a multispectral acquisition device comprising a multispectral sensor capable of measuring spectra (of reflectance or luminance in particular) in ranges of wavelengths corresponding to spectral bands located for example in the visible range. and/or in the infrared range.
  • a VJC acquisition device provides images very close to what a human being sees. These images are particularly relevant for knowing the “context” of the decamouflage, that is to say for restoring the characteristics of the scene (of the vegetation in particular) in which the target is located. It has therefore been envisaged, in order to achieve the decamouflage, to use an acquisition system comprising a multispectral acquisition device, a VJC acquisition device, and a processing unit.
  • the multispectral acquisition device produces multispectral images
  • the VJC acquisition device produces VJC images
  • the processing unit combines the multispectral images and the VJC images to achieve decamouflage.
  • Multispectral acquisition and VJC acquisition indeed present very different radiometric behaviors.
  • VJC acquisition technique on small pixels generates calibration difficulties.
  • VJC images are very sensitive to noise due to the size of the pixels.
  • the subject of the invention is an acquisition device making it possible to acquire multispectral images and VJC type images in a combined manner, and which does not have the drawbacks which have just been mentioned.
  • an acquisition device comprising:
  • each super-macropixel comprising a plurality of macropixels each comprising a plurality of elementary pixels, each super-macropixel being such that: o each macropixel of said super-macropixel forms a band-pass filter global allowing a global spectral band to pass, the global spectral bands being distinct and successive; o each elementary pixel of each macropixel of said super-macropixel forms an elementary band-pass filter allowing an elementary spectral band to pass, the elementary spectral bands being distinct and successive; o for any pair of two macropixels belonging to said super-macropixel and having a common side or a common side portion, the global spectral bands associated with the two macropixels are not adjacent;
  • a processing unit arranged to produce a multispectral image from output signals from the sensors, the multispectral image comprising hyperpixels each associated with an elementary pixel, each hyperpixel comprising spectral components each corresponding to a distinct elementary spectral band.
  • the acquisition device according to the invention is therefore capable, by using relevant global spectral bands, of producing on a single channel both multispectral images and color and infrared images.
  • each super-macropixel and the relative positions of the macropixels, make it possible to significantly reduce crosstalk and noise problems, which improves the accuracy and reliability of decamouflage.
  • each super-macropixel has the shape of a square and comprises four macropixels each also having the shape of a square, the macropixels comprising a first macropixel allowing a first global spectral band Bg1 , a second macropixel letting through a second global spectral band Bg2 , a third macropixel letting through a third global spectral band Bg3 and a fourth macropixel letting through a fourth global spectral band Bg4 , the macropixels being such that: Bg1 ⁇ Bg2 ⁇ Bg3 ⁇ Bg4 .
  • each super-macropixel is arranged so that the first macropixel is located at the top at left, the second macropixel is located at the bottom right, the third macropixel is located at the bottom left, and the fourth macropixel at the top right of said super-macropixel.
  • the first global spectral band is included in a blue spectral band
  • the second global spectral band is included in a green spectral band
  • the third global spectral band is included in a red spectral band
  • the fourth global spectral band is included in a near infrared spectral band.
  • each macropixel comprises a first elementary pixel allowing a first elementary spectral band Bel to pass, a second elementary pixel allowing a second elementary spectral band Be2 to pass, a third elementary pixel letting pass a third elementary spectral band Be3 , and a fourth elementary pixel allowing a fourth elementary spectral band Be4 to pass, the elementary pixels being such that:
  • each macropixel is arranged so that the first elementary pixel is located at the top left, the second elementary pixel is located at the top right, the third elementary pixel is located at the bottom left, and the fourth elementary pixel is located at the bottom right of said macropixel.
  • the processing unit is arranged to confer, on each spectral component of the hyperpixel associated with a particular elementary pixel of a particular super-macropixel, a value equal to the output signal of the sensor associated with the elementary pixel belonging to said particular super-macropixel and passing the elementary spectral band corresponding to said spectral component.
  • the processing unit is arranged to confer, on each spectral component of the hyperpixel associated with a particular elementary pixel of a particular super-macropixel, a value obtained by interpolation of the output signals from the sensors associated with elementary pixels neighboring the particular elementary pixel and allowing the elementary spectral band corresponding to said spectral component to pass.
  • the processing unit is arranged to confer, on each spectral component of the hyperpixel associated with a particular elementary pixel of a particular super-macropixel, a value equal to the output signal of the sensor associated with an elementary pixel, allowing the elementary spectral band corresponding to said spectral component to pass, said elementary pixel belonging to a sliding window having the size of a super-macropixel and to which the elementary pixel belongs particular .
  • An acquisition device as described above is also proposed, the processing unit being further arranged to produce a color and infrared image from the output signals of the sensors.
  • the processing unit is arranged, to produce the image in color and infrared, to implement an operation of spatial grouping of elementary pixels, then an algorithm color reproduction, the pixel grouping operation elements consisting in associating a single intermediate value with each macropixel of each super-macropixel, said intermediate value being obtained by weighting the output signals of the sensors associated with the elementary pixels of said macropixel.
  • an acquisition device as described above, further comprising a notch filter, positioned at the level of a pupil of a camera in which the acquisition device is integrated, the notch filter being designed to cut a boundary spectral band located between the third global spectral band and the fourth global spectral band.
  • frontier spectral band belongs at least partially to the red spectral band, and in which the third global spectral band is shifted so as not to present any overlap with the red spectral band. frontier spectral band.
  • a camera is also proposed comprising an acquisition device as previously described.
  • FIG. 1 represents an acquisition device according to the invention
  • FIG. 2 represents a mosaic of filters and a super-macropixel
  • FIG. 3 represents a super-macropixel
  • FIG. 4 illustrates a sub-sampling method that can be implemented to obtain hyperpixels associated with elementary pixels
  • FIG. 5 illustrates an interpolation method that can be implemented to obtain hyperpixels associated with elementary pixels
  • FIG. 6 illustrates a sliding window method that can be implemented to obtain hyperpixels associated with elementary pixels
  • FIG. 7 represents spectral bands of the resins and of the elementary pixels
  • FIG. 8 represents the frontier spectral band cut by a Notch filter.
  • the acquisition device according to the invention 1 comprises a mosaic of filters 2 , a photodetector 3 and an internal processing unit 4 .
  • the acquisition device 1 is integrated in a camera 6 .
  • An external processing unit 5 is connected to the internal processing unit 4 .
  • the external processing unit 5 is located at a distance from the camera 6, but it could perfectly be integrated into the camera 6 (and for example share electronic or software resources with the internal processing unit 4).
  • the mosaic of filters 2 contains n*m elementary pixels.
  • the photodetector 3 integrates a matrix of sensors also comprising n*m sensors, each sensor forming a physical pixel and being associated with a distinct elementary pixel.
  • the sensors are for example CCD sensors (for Charged Coupled Device) or CMOS (for Complementary Metal Oxide Semiconductor).
  • the internal processing unit 4 is an electronic and software unit.
  • the internal processing unit 4 acquires the output signals produced by the sensors and analyzes them to produce multispectral images and color and infrared images.
  • the external processing unit 5 is also an electronic and software unit.
  • the external processing unit 5 acquires the multispectral images and the color and infrared images and performs the decamouflage operation.
  • the internal processing unit 4 comprises at least one processing component 8 suitable for executing program instructions.
  • the processing component 8 is for example a microcontroller, a conventional processor, a GPU (for Graphics Processing Unit, which can be translated as “graphics processor"), a DSP (for Digi tal Signal Processor, which can be translated as “digital signal processor”), or else a programmable logic circuit such as an FPGA (for Field Programmable Gate Arrays) or an ASIC (for Application Specific Integrated Circuit).
  • a microcontroller for example a microcontroller, a conventional processor, a GPU (for Graphics Processing Unit, which can be translated as "graphics processor"), a DSP (for Digi tal Signal Processor, which can be translated as “digital signal processor"), or else a programmable logic circuit such as an FPGA (for Field Programmable Gate Arrays) or an ASIC (for Application Specific Integrated Circuit).
  • a programmable logic circuit such as an FPGA (for Field Programmable Gate Arrays) or an ASIC (for Application Specific Integrated Circuit).
  • the internal processing unit 4 also comprises at least one memory 9 making it possible in particular to store the instructions of the programs which have just been mentioned.
  • the external processing unit 5 comprises at least one processing component 10 and at least one memory 11 .
  • the mosaic of filters 2 includes SM super-macropixels which are all identical.
  • Each super-macropixel SM comprises a plurality of macropixels M each comprising a plurality of elementary pixels Pe.
  • each super-macropixel SM comprises four macropixels M each comprising four elementary pixels Pe.
  • Each super-macropixel SM and each macropixel M each have the shape of a square.
  • each macropixel M of said super-macropixel SM forms a global band-pass filter allowing a global spectral band to pass, the global spectral bands being distinct and successive.
  • the macropixels M therefore here comprise a first macropixel M1 letting through a first global spectral band Bg1, a second macropixel M2 letting through a second global spectral band Bg2, a third macropixel M3 letting through a third global spectral band Bg3 and a fourth macropixel M4 letting through pass a fourth global spectral band Bg4, the macropixels M being such that: Bg1 ⁇ Bg2 ⁇ Bg3 ⁇ Bg4.
  • the global spectral bands are equidistributed by subdomains Blue, Green, Red, Near Infrared.
  • the first global spectral band Bg1 is included in a blue spectral band
  • the second global spectral band Bg2 is included in a green spectral band
  • the third global spectral band Bg3 is included in a red spectral band
  • the fourth global spectral band Bg4 is included in a near infrared (NIR) spectral band.
  • NIR near infrared
  • the first macropixel M1 is made with a blue resin (ReB).
  • the second macropixel M2 is made with a green resin (ReV).
  • the third M3 macropixel is made with a red resin (ReR).
  • the fourth macropixel M4 is made with a PIR (ReP) resin.
  • each super-macropixel SM is arranged so that the first macropixel M1 is located in top left, the second macropixel M2 is located bottom right, the third macropixel M3 is located bottom left, and the fourth macropixel M4 is located top right of said super-macropixel SM.
  • each super-macropixel SM for any pair of two macropixels M belonging to said super-macropixel and having a common side or a common side portion, the global spectral bands associated with said two macropixels M are not adjacent.
  • adjacent global spectral bands we mean two bands which follow one another in the list mentioned earlier.
  • each elementary pixel Pe of said macropixel M forms a elementary band-pass filter allowing an elementary spectral band to pass, the elementary spectral bands being distinct and successive.
  • Be_B1 is the elementary spectral band of elementary pixel B1
  • Be_B2 is the elementary spectral band of elementary pixel B2
  • Be_B3 is the elementary spectral band of elementary pixel B3
  • Be_B4 is the elementary spectral band of elementary pixel B4.
  • Be_R1 is the elementary spectral band of the elementary pixel R1
  • Be_R2 is the elementary spectral band of the elementary pixel R2
  • Be_R3 is the elementary spectral band of the elementary pixel R3
  • Be_R4 is the elementary spectral band of the elementary pixel R4.
  • Be_PIR1 is the elementary spectral band of the pixel elementary PIR1
  • Be_PIR2 is the elementary spectral band of elementary pixel PIR2
  • Be_PIR3 is the elementary spectral band of elementary pixel PIR3
  • Be_PIR4 is the elementary spectral band of elementary pixel PIR4 .
  • each macropixel M comprises a first elementary pixel allowing a first elementary spectral band Bel to pass, a second elementary pixel allowing a second elementary spectral band Be2 to pass, a third elementary pixel allowing a third elementary spectral band Be3 to pass, and a fourth elementary pixel allowing a fourth elementary spectral band Be4 to pass, the elementary pixels being such that: Be1 ⁇ Be2 ⁇ Be3 ⁇ Be4.
  • the Bel, Be2, Be3, Be4 depend on the micropixel concerned.
  • each macropixel M is arranged so that the first elementary pixel of said macropixel M is located at the top left, the second elementary pixel is located at the top right , the third elementary pixel is located at the bottom left, and the fourth elementary pixel is located at the bottom right of said macropixel M .
  • the elementary band-pass filter of each elementary pixel Pe typically has an FWHM (Full Width at Half Maximum, or “width at half-height”) equal to about 20 nm.
  • the global band-pass filter of each macropixel M typically has an FWHM equal to about 80 nm.
  • the relative arrangement of the macropixels M is important for limiting the geometric contiguity of adjacent spectral bands, and therefore for limiting crosstalk.
  • the multispectral image comprises, for each elementary pixel Pe, a hyperpixel comprising a plurality of spectral components, ie one spectral component per elementary spectral band.
  • Each hyperpixel therefore comprises here 16 spectral components each associated with a distinct elementary spectral band.
  • the use of the mosaic of filters has the consequence that the filtered pixels are not spatially coherent.
  • the internal processing unit 4 uses an algorithm to calculate the spectral values corresponding to each hyperpixel.
  • the optics and the multispectral image formation algorithm are dimensioned to maximize the performance of the acquisition device 1, and in particular, to optimize the detection range (or the apparent size of the smallest detectable target). This dimensioning must be based on a prediction model of this detection range, or, at the very least, on an analytical model making it possible to position in relative terms the ranges given by different architectures of sensor, optics and shaping. spectral data.
  • the range is intimately linked to the angular extent of the zone which contributes to the formation of a hyperpixel, to the spatial sampling step of the hyperpixels, but also to the angular difference separating two points to avoid a "mixing spectral” in the evaluation of their respective spectrum.
  • Contributors are both the optics (resolving power) and the hypercube formation algorithm.
  • FIG. 4 illustrates a first reconstitution mode. We see four SM super-macropixels in Figure 4.
  • the first reconstitution mode consists, for the internal processing unit 4, in conferring, on each spectral component 14 of the hyperpixel HP associated with a particular elementary pixel Pe of a particular super-macropixel SM, a value equal to the signal sensor output associated with the elementary pixel Pe belonging to said particular super-macropixel SM and allowing the elementary spectral band corresponding to said spectral component 14 to pass.
  • the four hyperpixels HP of FIG. 4 are therefore distinct, each hyperpixel HP being associated with all the elementary pixels Pe of the same super-macropixel SM.
  • the apparent size of the target that one seeks to disambiguate is greater than or equal to 2 ⁇ 2 macropixels M to always encompass at least one complete super-macropixel SM .
  • the first reconstruction mode introduces a relatively strong under-sampling.
  • this reconstitution mode has the advantage of not impacting the radiometry, since no interpolation or smoothing type processing is carried out.
  • the volume of data used to produce the multispectral image corresponds to the initial volume.
  • a second reconstitution mode consists, for the internal processing unit 4, in giving, to each spectral component of the hyperpixel HP associated with a particular elementary pixel Pe of a particular super-macropixel, a value obtained by interpolation of the output signals from the sensors associated with elementary pixels neighboring the particular elementary pixel and allowing the elementary spectral band corresponding to said spectral component to pass.
  • the internal processing unit 4 therefore restores, for each elementary pixel, a hyperpixel by calculating the value of the various spectral bands by interpolation from the values measured on the neighboring physical pixels corresponding to this band, as would do, for a color image, a “Bayer” type treatment.
  • This solution in principle, therefore makes it possible to calculate as many hyperpixels as elementary pixels, and therefore to restore a “high resolution” hypercube.
  • the target In order not to mix the spectral bands (condition of non-mixing), the target should however have a width and a height which cover the elementary pixels entering into the interpolation algorithm.
  • FIG. 5 illustrates a case where the interpolation involves the elementary pixels of the same spectral band surrounding the hyperpixel to be calculated.
  • the choice of the second reconstitution mode, and therefore of the interpolation algorithm, can decrease the impact of the furthest physical pixel, and the non-mixing zone can tend to approach the size of the super-macropixel.
  • a third reconstitution mode consists, for the internal processing unit 4, in giving, to each spectral component of the hyperpixel associated with a particular elementary pixel of a particular super-macropixel, a value equal to output signal of the sensor associated with an elementary pixel, allowing the elementary spectral band corresponding to said spectral component to pass, said elementary pixel belonging to a sliding window 15 having the size of a super-macropixel and to which the particular elementary pixel belongs.
  • the hyperpixel HP1 is associated with the elementary pixel Pel while the hyperpixel HP2 is associated with the elementary pixel Pe2.
  • This mode therefore restores a hyperpixel for each physical pixel by assigning, for each elementary spectral band, the value of the closest physical pixel corresponding to this band. This therefore amounts to moving on the sensor, from pixel to pixel, the window 15 , and assigning to the corresponding hyperpixel the reordered values taken from this window 15 .
  • This solution makes it possible to calculate as many hyperpixels as physical pixels, and therefore to restore a “high resolution” spectral image.
  • This “nearest neighbour” logic is the one that limits the interpolation medium the most: whatever the position of the window 15, all the wavelengths are represented in a close neighborhood.
  • the target In order not to mix the spectral bands (condition of non-mixing), the target should however have a width and a height close to those of a super-macropixel SM.
  • VJC and PIRL near wide band infrared
  • the internal processing unit 4 produces a color and infrared image from the output signals of the sensors.
  • color and infrared image is meant an image forming a colored composition and produced from blue, red, green, and infrared (here near infrared) spectral bands.
  • the internal processing unit 4 first implements an operation of spatial binning of elementary pixels Pe (that is to say an operation of spatial grouping of elementary pixels Pe) . Spatial binning makes it possible to obtain an intermediate image.
  • Spatial binning consists of associating a single intermediate value with each macropixel M of each super-macropixel SM, said intermediate value being obtained by weighting the output signals from the sensors associated with the elementary pixels of said macropixel.
  • B Super-macropixel (i 0 , j 0 ) is the intermediate value of an elementary pixel Pe belonging to a first macropixel M1 (blue), ⁇ B is a first weighting coefficient, and the Pixels(i,j) are the output signals from the sensors associated with the elementary pixels Pe belonging to said first macropixel M1;
  • V Super-macropixel (i 0 , j 0 ) is the intermediate value of an elementary pixel Pe belonging to a second macropixel M2 (green), ⁇ V is a second weighting coefficient, and the Pixels(i,j) are the output signals from the sensors associated with the elementary pixels Pe belonging to said second macropixel M2;
  • R Super-macropixel (i 0 , j 0 ) is the intermediate value of an elementary pixel Pe belonging to a third macropixel M3 (red), ⁇ R is a third weighting coefficient, and the Pixels(i,j) are the output signals from the sensors associated with the elementary pixels Pe belonging to said third macropixel
  • a 2x2 spatial binning (by macropixel) is therefore implemented according to the groups.
  • a gain in sensitivity is thus obtained (because the colorimetric calibration is sensitive to noise in images with small pixels and in images with low flux).
  • the image is obtained by a single reading for 4 elementary pixels.
  • a spreading of the PSF (for Point Spread. Function, or point spreading function) is obtained by adjusting the optics along 2 ⁇ 2 elementary pixels (elementary pixel greater than or equal to 4 ⁇ m ⁇ 4 ⁇ m), and a stress relief on optics in terms of optical cut-off frequency. The optical resolution is reduced and the optical spot is spread.
  • the spatial grouping is carried out in hardware, that is to say by electronic components (and not software). This allows an improvement of the sensor signal-to-noise ratio.
  • the accumulated charges of each physical pixel are for example accumulated by using summation gates to obtain the intermediate values of the intermediate image.
  • the color and infrared image is then reconstituted from the intermediate image, and therefore from the synthesized bands of the macropixels of each super-macropixel.
  • the resins may have imperfections producing rebounds in the near infrared range. It may be relevant to improve the spectral zone of transition between the visible domain (B, G, R) and the near infrared domain, to prevent the transmission profiles of the resins from being disturbed.
  • a Notch filter (band-stop filter) positioned at the level of the pupil of the camera 6 is therefore used.
  • the Notch filter makes it possible to cut a border spectral band Bf located between the third global spectral band Bg3 (red) and the fourth global spectral band Bg4 (near infrared) .
  • the response of the Notch filter has a downward slope from a wavelength greater than 680nm, and an upward slope from a wavelength less than 730nm.
  • the frontier spectral band Bf to be situated in the red spectral band Br, as can be seen in FIG. 8.
  • the third global spectral band Bg3 is then shifted so that the third global spectral band Bg3 and the spectral band Bf border do not show any overlap.
  • the red components are thus much better separated from the near infrared components.
  • a quartz blade forming a low-pass filter is also used.
  • the low-pass filter is positioned just before the matrix of sensors and makes it possible to reduce the interference produced by the mosaic of filters.
  • the internal processing unit 4 produces a combined image from the multispectral image and the color and infrared image, and directly transmits the combined image to the external processing unit 5.
  • the external processing unit 5 acquires the multispectral image and the color and infrared image.
  • the external processing unit 5 then implements the supra decamouflage to attempt to detect the presence of the target.
  • the acquisition device 1 is configured to carry out a defocusing and a spreading of the PSF over the 4 ⁇ 4 elementary pixels Pe of each super-macropixel SM.
  • the hyperspectral image is formatted in absolute luminance with a calibration process.
  • the contrast enhancement method possibly uses transparency and/or afterglow effects (see for example document FR 3 011 663 B1).
  • a metric, representative of a contrast in the scene, is then used to perform the decamouflage.
  • the metric is calculated from the 16 elementary spectral bands.
  • the color and infrared image is reconstructed to constitute the support channel (no binning for the application). Calibration is done with binning. Bands B, V, R and PIRL are digitally synthesized.
  • the acquisition device 1 is configured to carry out a defocusing and a spreading of the PSF on the 2 ⁇ 2 macropixels M of the super-macropixel SM.
  • a gain in sensitivity is obtained because the analysis is made on the basis of the macropixel (2 ⁇ 2 elementary pixels).
  • the hyperspectral image is formatted with a VJC + PIRL calibration process.
  • a contrast enhancement method is then implemented.
  • the contrast enhancement process possibly uses transparency and/or afterglow effects.
  • a metric, representative of a contrast in the scene, is then used to perform the decamouflage.
  • the metric is calculated on 4 spectral bands only (due to binning).
  • the color and infrared image is reconstructed to constitute the support channel (binning is used for the application). Calibration is done with binning. Bands B, V, R and PIRL are digitally synthesized.
  • the overall spectral bands may well be different from those described here. Any band in the visible, near infrared PIR or NIR (Near InfraRed) domains, or short infrared SWIR (Short Wavelength Infrared), could for example be used.
  • NIR Near InfraRed
  • SWIR Short Wavelength Infrared
  • Super-macropixels and macropixels may be different from those presented here: different number of elementary pixels or macropixels, different shape of macropixels or super-macropixel, etc.

Abstract

The invention relates to an acquisition device (1) including a mosaic of filters (2) comprising super-macropixels (SM), each including a plurality of macropixels (M) which each comprise a plurality of elementary pixels (Pe), each super-macropixel being such that: o each macropixel of said super-macropixel forms a general band-pass filter allowing a general spectral band to pass therethrough, the general spectral bands being separate from and consecutive to one another; o each elementary pixel of each macropixel forms an elementary band-pass filter allowing an elementary spectral band (Bel, Be2, Be3, Be4) to pass therethrough, the elementary spectral bands being separate from and consecutive to one another; o for any pair of two macropixels having a side that is shared or a side portion that is shared, the general spectral bands associated with the two macropixels are not adjacent to one another.

Description

CAMERA MULTISPECTRALE A ACQUISITION « SNAPSHOT » “SNAPSHOT” MULTISPECTRAL ACQUISITION CAMERA
(INSTANTANEE) (INSTANT)
L' invention concerne le domaine des caméras multispectrales , et , en particulier, des caméras multispectrales utilisées pour réaliser des opérations de décamouflage . ARRIERE PLAN DE L' INVENTION The invention relates to the field of multispectral cameras, and, in particular, multispectral cameras used to carry out decamouflage operations. BACKGROUND OF THE INVENTION
Il est connu, pour réaliser une opération de décamouflage d' une cible (un véhicule blindé par exemple ) , d' utiliser la technique de l ' imagerie multispectrale . It is known, to carry out an operation of decamouflage of a target (an armored vehicle for example), to use the technique of multispectral imaging.
L' imagerie multispectrale consiste à acquérir de façon discrète l ' énergie réfléchie ou émise par une surface dans une pluralité de bandes spectrales contigües ou non (classiquement entre 3 et 20 bandes spectrales ) . Multispectral imaging consists of discretely acquiring the energy reflected or emitted by a surface in a plurality of spectral bands, whether contiguous or not (classically between 3 and 20 spectral bands).
L' acquisition est réalisée par un dispositif d' acquisition multispectrale comprenant un capteur multispectral capable de mesurer des spectres (de réflectance ou de luminance notamment) dans des gammes de longueurs d' onde correspondant à des bandes spectrales situées par exemple dans le domaine du visible et/ou dans le domaine de l ' infrarouge . The acquisition is carried out by a multispectral acquisition device comprising a multispectral sensor capable of measuring spectra (of reflectance or luminance in particular) in ranges of wavelengths corresponding to spectral bands located for example in the visible range. and/or in the infrared range.
Pour améliorer les performances du décamouflage , il est intéressant d' utiliser aussi des images issues d' un dispositifs d' acquisition d' images de type VJC (pour Voie Jour Couleurs ) . Un dispositif d' acquisition VJC fournit des images très proches de ce que voit un être humain . Ces images sont notamment pertinentes pour connaître le « contexte » du décamouflage , c' est-à-dire pour restituer les caractéristiques de la scène (de la végétation en particulier) dans laquelle est située la cible . On a donc envisagé, pour réaliser le décamouflage, d'utiliser un système d'acquisition comprenant un dispositif d'acquisition multispectrale, un dispositif d'acquisition VJC, et une unité de traitement. Le dispositif d'acquisition multispectrale produit des images multispectrales , le dispositif d'acquisition VJC produit des images VJC, et l'unité de traitement combine les images multispectrales et les images VJC pour réaliser le décamouflage. To improve the performances of the decamouflage, it is advantageous to also use images from an image acquisition device of the VJC type (for Voie Jour Couleurs). A VJC acquisition device provides images very close to what a human being sees. These images are particularly relevant for knowing the “context” of the decamouflage, that is to say for restoring the characteristics of the scene (of the vegetation in particular) in which the target is located. It has therefore been envisaged, in order to achieve the decamouflage, to use an acquisition system comprising a multispectral acquisition device, a VJC acquisition device, and a processing unit. The multispectral acquisition device produces multispectral images, the VJC acquisition device produces VJC images, and the processing unit combines the multispectral images and the VJC images to achieve decamouflage.
Cependant, l'utilisation en opération d'un système comprenant deux caméras distinctes n'est pas aisée. Le système est à la fois volumineux et présente une consommation élevée . However, the operational use of a system comprising two separate cameras is not easy. The system is both bulky and has high power consumption.
Par ailleurs, la combinaison de ces images est complexe à réaliser. Moreover, the combination of these images is complex to achieve.
L'acquisition multispectrale et l'acquisition VJC présentent en effet des comportements radiométriques très différents . Multispectral acquisition and VJC acquisition indeed present very different radiometric behaviors.
Comme les deux dispositifs d'acquisition ne sont pas intégrés dans une même caméra, il n'y a pas de voie support pour le décamouflage, ce qui engendre des difficultés pour harmoniser et corriger les voies VJC et multispectrale, ainsi que des difficultés de calage spatio / temporel. As the two acquisition devices are not integrated in the same camera, there is no support channel for decamouflage, which leads to difficulties in harmonizing and correcting the VJC and multispectral channels, as well as timing difficulties spatio / temporal.
Par ailleurs, la technique d'acquisition VJC sur petits pixels engendre des difficultés de calibration. Les images VJC sont très sensibles au bruit du fait de la taille des pixels . Moreover, the VJC acquisition technique on small pixels generates calibration difficulties. VJC images are very sensitive to noise due to the size of the pixels.
OBJET DE L' INVENTION OBJECT OF THE INVENTION
L'invention a pour objet un dispositif d'acquisition permettant d'acquérir de manière combinée des images multispectrales et des images de type VJC, et qui ne présente pas les inconvénients qui viennent d'être cités. The subject of the invention is an acquisition device making it possible to acquire multispectral images and VJC type images in a combined manner, and which does not have the drawbacks which have just been mentioned.
RESUME DE L'INVENTION En vue de la réalisation de ce but , on propose un dispositif d' acquisition comportant : SUMMARY OF THE INVENTION With a view to achieving this aim, an acquisition device is proposed comprising:
- une mosaïque de filtres comprenant des super- macropixels identiques , chaque super-macropixel comportant une pluralité de macropixels comprenant chacun une pluralité de pixels élémentaires , chaque super-macropixel étant tel que : o chaque macropixel dudit super-macropixel forme un filtre passe-bande global laissant passer une bande spectrale globale, les bandes spectrales globales étant distinctes et successives ; o chaque pixel élémentaire de chaque macropixel dudit super-macropixel forme un filtre passe-bande élémentaire laissant passer une bande spectrale élémentaire, les bandes spectrales élémentaires étant distinctes et successives ; o pour tout couple de deux macropixels appartenant audit super-macropixel et ayant un côté commun ou une portion de côté commune , les bandes spectrales globales associées aux deux macropixels ne sont pas adj acentes ; - a mosaic of filters comprising identical super-macropixels, each super-macropixel comprising a plurality of macropixels each comprising a plurality of elementary pixels, each super-macropixel being such that: o each macropixel of said super-macropixel forms a band-pass filter global allowing a global spectral band to pass, the global spectral bands being distinct and successive; o each elementary pixel of each macropixel of said super-macropixel forms an elementary band-pass filter allowing an elementary spectral band to pass, the elementary spectral bands being distinct and successive; o for any pair of two macropixels belonging to said super-macropixel and having a common side or a common side portion, the global spectral bands associated with the two macropixels are not adjacent;
- une matrice de capteurs associés chacun à un pixel élémentaire ; une unité de traitement agencée pour produire une image multispectrales à partir de signaux de sortie des capteurs , l ' image multispectrale comprenant des hyperpixels associés chacun à un pixel élémentaire, chaque hyperpixel comprenant des composantes spectrales correspondant chacune à une bande spectrale élémentaire distincte . - a matrix of sensors each associated with an elementary pixel; a processing unit arranged to produce a multispectral image from output signals from the sensors, the multispectral image comprising hyperpixels each associated with an elementary pixel, each hyperpixel comprising spectral components each corresponding to a distinct elementary spectral band.
Le dispositif d' acquisition selon l ' invention est donc capable, en utilisant des bandes spectrales globales pertinentes , de produire sur une seule voie à la fois des images multispectrales et des images en couleur et infrarouge . On peut donc mettre en œuvre une opération de décamouf lage efficace en utilisant une seule caméra dans laquelle est intégré le dispositif d' acquisition ; on obtient donc une réduction de coût, de volume et de consommation . The acquisition device according to the invention is therefore capable, by using relevant global spectral bands, of producing on a single channel both multispectral images and color and infrared images. We can therefore implement an operation of effective decamouflage by using a single camera in which the acquisition device is integrated; a reduction in cost, volume and consumption is therefore obtained.
La configuration particulière de chaque super- macropixel , et les positions relatives des macropixels , permettent de réduire très nettement la diaphonie et les problèmes de bruit, ce qui améliore la précision et la fiabilité du décamouflage . The particular configuration of each super-macropixel, and the relative positions of the macropixels, make it possible to significantly reduce crosstalk and noise problems, which improves the accuracy and reliability of decamouflage.
On propose de plus un dispositif d' acquisition tel que précédemment décrit, dans lequel chaque super-macropixel a la forme d' un carré et comporte quatre macropixels ayant aussi chacun la forme d' un carré, les macropixels comprenant un premier macropixel laissant passer une première bande spectrale globale Bg1 , un deuxième macropixel laissant passer une deuxième bande spectrale globale Bg2 , un troisième macropixel laissant passer une troisième bande spectrale globale Bg3 et un quatrième macropixel laissant passer une quatrième bande spectrale globale Bg4 , les macropixels étant tels que : Bg1 < Bg2 < Bg3 < Bg4 . There is also proposed an acquisition device as previously described, in which each super-macropixel has the shape of a square and comprises four macropixels each also having the shape of a square, the macropixels comprising a first macropixel allowing a first global spectral band Bg1 , a second macropixel letting through a second global spectral band Bg2 , a third macropixel letting through a third global spectral band Bg3 and a fourth macropixel letting through a fourth global spectral band Bg4 , the macropixels being such that: Bg1 < Bg2 < Bg3 < Bg4 .
On propose de plus un dispositif d' acquisition tel que précédemment décrit, dans lequel , lorsque la mosaïque de filtres est vue de face et orientée selon une orientation prédéfinie, chaque super-macropixel est agencé de sorte que le premier macropixel est situé en haut à gauche, le deuxième macropixel est situé en bas à droite , le troisième macropixel est situé en bas à gauche , et le quatrième macropixel en haut à droite dudit super-macropixel . We also propose an acquisition device as previously described, in which, when the mosaic of filters is seen from the front and oriented according to a predefined orientation, each super-macropixel is arranged so that the first macropixel is located at the top at left, the second macropixel is located at the bottom right, the third macropixel is located at the bottom left, and the fourth macropixel at the top right of said super-macropixel.
On propose de plus un dispositif d' acquisition tel que précédemment décrit, dans lequel la première bande spectrale globale est incluse dans une bande spectrale bleue , la deuxième bande spectrale globale est incluse dans une bande spectrale verte, la troisième bande spectrale globale est incluse dans une bande spectrale rouge, et la quatrième bande spectrale globale est incluse dans une bande spectrale du proche infrarouge . We also propose an acquisition device as previously described, in which the first global spectral band is included in a blue spectral band, the second global spectral band is included in a green spectral band, the third global spectral band is included in a red spectral band, and the fourth global spectral band is included in a near infrared spectral band.
On propose de plus un dispositif d' acquisition tel que précédemment décrit, dans lequel chaque macropixel comporte un premier pixel élémentaire laissant passer une première bande spectrale élémentaire Bel , un deuxième pixel élémentaire laissant passer une deuxième bande spectrale élémentaire Be2 , un troisième pixel élémentaire laissant passer une troisième bande spectrale élémentaire Be3 , et un quatrième pixel élémentaire laissant passer une quatrième bande spectrale élémentaire Be4 , les pixels élémentaires étant tels que : An acquisition device as previously described is also proposed, in which each macropixel comprises a first elementary pixel allowing a first elementary spectral band Bel to pass, a second elementary pixel allowing a second elementary spectral band Be2 to pass, a third elementary pixel letting pass a third elementary spectral band Be3 , and a fourth elementary pixel allowing a fourth elementary spectral band Be4 to pass, the elementary pixels being such that:
Be1 < Be2 < Be3 < Be4 . Be1 < Be2 < Be3 < Be4 .
On propose de plus un dispositif d' acquisition tel que précédemment décrit, dans lequel , lorsque la mosaïque de filtres est vue de face et orientée selon l ' orientation prédéfinie, chaque macropixel est agencé de sorte que le premier pixel élémentaire est situé en haut à gauche , le deuxième pixel élémentaire est situé en haut à droite, le troisième pixel élémentaire est situé en bas à gauche , et le quatrième pixel élémentaire est situé en bas à droite dudit macropixel . We also propose an acquisition device as previously described, in which, when the mosaic of filters is seen from the front and oriented according to the predefined orientation, each macropixel is arranged so that the first elementary pixel is located at the top left, the second elementary pixel is located at the top right, the third elementary pixel is located at the bottom left, and the fourth elementary pixel is located at the bottom right of said macropixel.
On propose de plus un dispositif d' acquisition tel que précédemment décrit, dans lequel l ' unité de traitement est agencée pour conférer, à chaque composante spectrale de l ' hyperpixel associé à un pixel élémentaire particulier d' un super-macropixel particulier, une valeur égale au signal de sortie du capteur associé au pixel élémentaire appartenant audit super-macropixel particulier et laissant passer la bande spectrale élémentaire correspondant à ladite composante spectrale . There is also proposed an acquisition device as previously described, in which the processing unit is arranged to confer, on each spectral component of the hyperpixel associated with a particular elementary pixel of a particular super-macropixel, a value equal to the output signal of the sensor associated with the elementary pixel belonging to said particular super-macropixel and passing the elementary spectral band corresponding to said spectral component.
On propose de plus un dispositif d' acquisition tel que précédemment décrit , dans lequel l ' unité de traitement est agencée pour conférer, à chaque composante spectrale de l' hyperpixel associé à un pixel élémentaire particulier d' un super-macropixel particulier, une valeur obtenue par interpolation des signaux de sortie des capteurs associés à des pixels élémentaires voisins du pixel élémentaire particulier et laissant passer la bande spectrale élémentaire correspondant à ladite composante spectrale . There is also proposed an acquisition device as previously described, in which the processing unit is arranged to confer, on each spectral component of the hyperpixel associated with a particular elementary pixel of a particular super-macropixel, a value obtained by interpolation of the output signals from the sensors associated with elementary pixels neighboring the particular elementary pixel and allowing the elementary spectral band corresponding to said spectral component to pass.
On propose de plus un dispositif d' acquisition tel que précédemment décrit, dans lequel l ' unité de traitement est agencée pour conférer, à chaque composante spectrale de l ' hyperpixel associé à un pixel élémentaire particulier d' un super-macropixel particulier, une valeur égale au signal de sortie du capteur associé à un pixel élémentaire , laissant passer la bande de spectrale élémentaire correspondant à ladite composante spectrale , ledit pixel élémentaire appartenant à une fenêtre glissante ayant la taille d' un super-macropixel et à laquelle appartient le pixel élémentaire particulier . There is also proposed an acquisition device as previously described, in which the processing unit is arranged to confer, on each spectral component of the hyperpixel associated with a particular elementary pixel of a particular super-macropixel, a value equal to the output signal of the sensor associated with an elementary pixel, allowing the elementary spectral band corresponding to said spectral component to pass, said elementary pixel belonging to a sliding window having the size of a super-macropixel and to which the elementary pixel belongs particular .
On propose de plus un dispositif d' acquisition tel que précédemment décrit, l ' unité de traitement étant en outre agencée pour produire une image en couleur et infrarouge à partir des signaux de sortie des capteurs . An acquisition device as described above is also proposed, the processing unit being further arranged to produce a color and infrared image from the output signals of the sensors.
On propose de plus un dispositif d' acquisition tel que précédemment décrit, dans lequel l ' unité de traitement est agencée, pour produire l ' image en couleur et infrarouge, pour mettre en œuvre une opération de regroupement spatial de pixels élémentaires , puis un algorithme de reproduction de couleur, l ' opération de regroupement de pixels élémentaires consistant à associer une unique valeur intermédiaire à chaque macropixel de chaque super- macropixel , ladite valeur intermédiaire étant obtenue par pondération des signaux de sortie des capteurs associés aux pixels élémentaires dudit macropixel . We also propose an acquisition device as previously described, in which the processing unit is arranged, to produce the image in color and infrared, to implement an operation of spatial grouping of elementary pixels, then an algorithm color reproduction, the pixel grouping operation elements consisting in associating a single intermediate value with each macropixel of each super-macropixel, said intermediate value being obtained by weighting the output signals of the sensors associated with the elementary pixels of said macropixel.
On propose de plus un dispositif d' acquisition tel que précédemment décrit, comprenant en outre un filtre coupe- bande, positionné au niveau d' une pupille d' une caméra dans laquelle est intégré le dispositif d' acquisition, le filtre coupe-bande étant conçu pour couper une bande spectrale frontière située entre la troisième bande spectrale globale et la quatrième bande spectrale globale . There is also proposed an acquisition device as described above, further comprising a notch filter, positioned at the level of a pupil of a camera in which the acquisition device is integrated, the notch filter being designed to cut a boundary spectral band located between the third global spectral band and the fourth global spectral band.
On propose de plus un dispositif d' acquisition tel que précédemment décrit, dans lequel la bande spectrale frontière appartient au moins partiellement à la bande spectrale rouge , et dans lequel la troisième bande spectrale globale est décalée de manière à ne pas présenter de recouvrement avec la bande spectrale frontière . We also propose an acquisition device as previously described, in which the frontier spectral band belongs at least partially to the red spectral band, and in which the third global spectral band is shifted so as not to present any overlap with the red spectral band. frontier spectral band.
On propose de plus une caméra comprenant un dispositif d' acquisition tel que précédemment décrit . A camera is also proposed comprising an acquisition device as previously described.
L' invention sera mieux comprise à la lumière de la description qui suit d' un mode de mise en œuvre particulier non limitatif de l ' invention . The invention will be better understood in the light of the following description of a particular non-limiting mode of implementation of the invention.
BREVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF THE DRAWINGS
Il sera fait référence aux dessins annexés parmi lesquels : Reference will be made to the appended drawings, including:
La figure 1 représente un dispositif d' acquisition selon l ' invention ; FIG. 1 represents an acquisition device according to the invention;
La figure 2 représente une mosaïque de filtres et un super- macropixel ; FIG. 2 represents a mosaic of filters and a super-macropixel;
La figure 3 représente un super-macropixel ; La figure 4 illustre une méthode de sous-échantillonnage pouvant être mise en œuvre pour obtenir des hyperpixels associés aux pixels élémentaires ; FIG. 3 represents a super-macropixel; FIG. 4 illustrates a sub-sampling method that can be implemented to obtain hyperpixels associated with elementary pixels;
La figure 5 illustre une méthode d' interpolation pouvant être mise en œuvre pour obtenir des hyperpixels associés aux pixels élémentaires ; FIG. 5 illustrates an interpolation method that can be implemented to obtain hyperpixels associated with elementary pixels;
La figure 6 illustre une méthode de fenêtre glissante pouvant être mise en œuvre pour obtenir des hyperpixels associés aux pixels élémentaires ; FIG. 6 illustrates a sliding window method that can be implemented to obtain hyperpixels associated with elementary pixels;
La figure 7 représente des bandes spectrales des résines et des pixels élémentaires ; FIG. 7 represents spectral bands of the resins and of the elementary pixels;
La figure 8 représente la bande spectrale frontière coupée par un filtre Notch . FIG. 8 represents the frontier spectral band cut by a Notch filter.
DESCRIPTION DETAILLEE DE L' INVENTIONDETAILED DESCRIPTION OF THE INVENTION
En référence à la figure 1 , le dispositif d' acquisition selon l ' invention 1 comprend une mosaïque de filtres 2 , un photodétecteur 3 et une unité de traitement interne 4 . Referring to FIG. 1, the acquisition device according to the invention 1 comprises a mosaic of filters 2 , a photodetector 3 and an internal processing unit 4 .
Le dispositif d' acquisition 1 est intégré dans une caméra 6 . The acquisition device 1 is integrated in a camera 6 .
Une unité de traitement externe 5 est reliée à l ' unité de traitement interne 4 . Ici , l ' unité de traitement externe 5 est située à distance de la caméra 6 , mais elle pourrait parfaitement être intégrée dans la caméra 6 (et par exemple partager des ressources électroniques ou logicielles avec l ' unité de traitement interne 4 ) . An external processing unit 5 is connected to the internal processing unit 4 . Here, the external processing unit 5 is located at a distance from the camera 6, but it could perfectly be integrated into the camera 6 (and for example share electronic or software resources with the internal processing unit 4).
La mosaïque de filtres 2 contient n*m pixels élémentaires . The mosaic of filters 2 contains n*m elementary pixels.
Le photodétecteur 3 intègre une matrice de capteurs comprenant aussi n*m capteurs , chaque capteur formant un pixel physique et étant associé à un pixel élémentaire distinct . The photodetector 3 integrates a matrix of sensors also comprising n*m sensors, each sensor forming a physical pixel and being associated with a distinct elementary pixel.
Les capteurs sont par exemple des capteurs CCD (pour Charged Coupled Device) ou CMOS (pour Complementary Metal Oxide Semiconductor) . The sensors are for example CCD sensors (for Charged Coupled Device) or CMOS (for Complementary Metal Oxide Semiconductor).
L' unité de traitement interne 4 est une unité électronique et logicielle . L' unité de traitement interne 4 acquiert les signaux de sortie produits par les capteurs et les analyse pour produire des images multispectrales et des images en couleur et infrarouge . The internal processing unit 4 is an electronic and software unit. The internal processing unit 4 acquires the output signals produced by the sensors and analyzes them to produce multispectral images and color and infrared images.
L' unité de traitement externe 5 est aussi une unité électronique et logicielle . The external processing unit 5 is also an electronic and software unit.
L' unité de traitement externe 5 acquiert les images multispectrales et les images en couleur et infrarouge et réalise l ' opération de décamouflage . The external processing unit 5 acquires the multispectral images and the color and infrared images and performs the decamouflage operation.
L' unité de traitement interne 4 comprend au moins un composant de traitement 8 adapté à exécuter des instructions de programmes . The internal processing unit 4 comprises at least one processing component 8 suitable for executing program instructions.
Le composant de traitement 8 est par exemple un microcontrôleur, un processeur classique , un GPU (pour Graphics Processing Uni t, que l ' on peut traduire par « processeur graphique ») , un DSP (pour Digi tal Signal Processor, que l ' on peut traduire par « processeur de signal numérique ») , ou bien un circuit logique programmable tel qu' un FPGA (pour Field Programmable Gate Arrays) ou un ASIC (pour Application Specific Integrated Circui t) . The processing component 8 is for example a microcontroller, a conventional processor, a GPU (for Graphics Processing Unit, which can be translated as "graphics processor"), a DSP (for Digi tal Signal Processor, which can can be translated as "digital signal processor"), or else a programmable logic circuit such as an FPGA (for Field Programmable Gate Arrays) or an ASIC (for Application Specific Integrated Circuit).
L' unité de traitement interne 4 comprend aussi au moins une mémoire 9 permettant notamment de stocker les instructions des programmes qui viennent d' être évoqués . The internal processing unit 4 also comprises at least one memory 9 making it possible in particular to store the instructions of the programs which have just been mentioned.
De même , l ' unité de traitement externe 5 comprend au moins un composant de traitement 10 et au moins une mémoire 11 . Likewise, the external processing unit 5 comprises at least one processing component 10 and at least one memory 11 .
On s ' intéresse maintenant plus particulièrement à la mosaïque de filtres 2 . We are now more particularly interested in the mosaic of filters 2 .
En référence aux figures 2 et 3 , la mosaïque de filtres 2 comprend des super-macropixels SM qui sont tous identiques .With reference to Figures 2 and 3, the mosaic of filters 2 includes SM super-macropixels which are all identical.
Chaque super-macropixel SM comporte une pluralité de macropixels M comprenant chacun une pluralité de pixels élémentaires Pe . Each super-macropixel SM comprises a plurality of macropixels M each comprising a plurality of elementary pixels Pe.
Ici , chaque super-macropixel SM comporte quatre macropixels M comprenant chacun quatre pixels élémentaires Pe . Here, each super-macropixel SM comprises four macropixels M each comprising four elementary pixels Pe.
Chaque super-macropixel SM et chaque macropixel M ont chacun la forme d' un carré . Each super-macropixel SM and each macropixel M each have the shape of a square.
Dans chaque super-macropixel SM, chaque macropixel M dudit super-macropixel SM forme un filtre passe-bande global laissant passer une bande spectrale globale , les bandes spectrales globales étant distinctes et successives . In each super-macropixel SM, each macropixel M of said super-macropixel SM forms a global band-pass filter allowing a global spectral band to pass, the global spectral bands being distinct and successive.
Par « distinctes et sucessives », on entend qu' il est possible d' ordonner les N bandes spectrales globales d' un super-macropixel Bg1 , Bg2 , ...Bgi , ..., BgN selon une liste telle que : Bg1 < Bg2 < ... < Bgi <... < BgN . By "distinct and successive", we mean that it is possible to order the N global spectral bands of a super-macropixel Bg1 , Bg2 , ...Bgi , ..., BgN according to a list such as: Bg1 < Bg2 < ... < Bgi < ... < BgN .
Cela signifie que la longueur d' onde maximale de Bg1 est inférieure à la longueur d' onde minimale de Bg2 , que la longueur d' onde maximale de Bg2 est inférieure à la longueur d' onde minimale de Bg3 , etc . This means that the maximum wavelength of Bg1 is lower than the minimum wavelength of Bg2, that the maximum wavelength of Bg2 is lower than the minimum wavelength of Bg3, and so on.
Les macropixels M comprennent donc ici un premier macropixel M1 laissant passer une première bande spectrale globale Bg1 , un deuxième macropixel M2 laissant passer une deuxième bande spectrale globale Bg2 , un troisième macropixel M3 laissant passer une troisième bande spectrale globale Bg3 et un quatrième macropixel M4 laissant passer une quatrième bande spectrale globale Bg4 , les macropixels M étant tels que : Bg1 < Bg2 < Bg3 < Bg4 . The macropixels M therefore here comprise a first macropixel M1 letting through a first global spectral band Bg1, a second macropixel M2 letting through a second global spectral band Bg2, a third macropixel M3 letting through a third global spectral band Bg3 and a fourth macropixel M4 letting through pass a fourth global spectral band Bg4, the macropixels M being such that: Bg1<Bg2<Bg3<Bg4.
Les bandes spectrales globales sont équiréparties par sous domaines Bleu, Vert, Rouge , Proche Infrarouge . The global spectral bands are equidistributed by subdomains Blue, Green, Red, Near Infrared.
La première bande spectrale globale Bg1 est incluse dans une bande spectrale bleue, la deuxième bande spectrale globale Bg2 est incluse dans une bande spectrale verte, la troisième bande spectrale globale Bg3 est incluse dans une bande spectrale rouge , et la quatrième bande spectrale globale Bg4 est incluse dans une bande spectrale du proche infrarouge ( PIR) . The first global spectral band Bg1 is included in a blue spectral band, the second global spectral band Bg2 is included in a green spectral band, the third global spectral band Bg3 is included in a red spectral band, and the fourth global spectral band Bg4 is included in a near infrared (NIR) spectral band.
Le premier macropixel M1 est fabriqué avec une résine bleue (ReB) . Le deuxième macropixel M2 est fabriqué avec une résine verte (ReV) . Le troisième macropixel M3 est fabriqué avec une résine rouge (ReR) . Le quatrième macropixel M4 est fabriqué avec une résine PIR (ReP) . The first macropixel M1 is made with a blue resin (ReB). The second macropixel M2 is made with a green resin (ReV). The third M3 macropixel is made with a red resin (ReR). The fourth macropixel M4 is made with a PIR (ReP) resin.
Lorsque la mosaïque de filtres 2 est vue de face et orientée selon une orientation prédéfinie , qui correspond en l ' occurrence à l ' orientation visible sur la figure 2 , chaque super-macropixel SM est agencé de sorte que le premier macropixel M1 est situé en haut à gauche, le deuxième macropixel M2 est situé en bas à droite, le troisième macropixel M3 est situé en bas à gauche, et le quatrième macropixel M4 est situé en haut à droite dudit super- macropixel SM . When the mosaic of filters 2 is seen from the front and oriented according to a predefined orientation, which corresponds in this case to the orientation visible in FIG. 2, each super-macropixel SM is arranged so that the first macropixel M1 is located in top left, the second macropixel M2 is located bottom right, the third macropixel M3 is located bottom left, and the fourth macropixel M4 is located top right of said super-macropixel SM.
On constate que, dans chaque super-macropixel SM, pour tout couple de deux macropixels M appartenant audit super- macropixel et ayant un côté commun ou une portion de côté commune, les bandes spectrales globales associées auxdits deux macropixels M ne sont pas adj acentes . It is noted that, in each super-macropixel SM, for any pair of two macropixels M belonging to said super-macropixel and having a common side or a common side portion, the global spectral bands associated with said two macropixels M are not adjacent.
Par « bandes spectrales globales adj acentes », on entend deux bandes qui se suivent dans la liste évoquée plus tôt . By “adjacent global spectral bands”, we mean two bands which follow one another in the list mentioned earlier.
De même , pour chaque macropixel M d' un super-macropixel SM, chaque pixel élémentaire Pe dudit macropixel M forme un filtre passe-bande élémentaire laissant passer une bande spectrale élémentaire, les bandes spectrales élémentaires étant distinctes et successives. Similarly, for each macropixel M of a super-macropixel SM, each elementary pixel Pe of said macropixel M forms a elementary band-pass filter allowing an elementary spectral band to pass, the elementary spectral bands being distinct and successive.
Ainsi, pour le premier macropixel M1 (bleu) , comprenant le groupe de pixels élémentaires {B1, B2, B3, B4}, on a : Thus, for the first macropixel M1 (blue), comprising the group of elementary pixels {B1, B2, B3, B4}, we have:
Be_B1 < Be_B2 < Be_B3 < Be_B4, où Be_B1 est la bande spectrale élémentaire du pixel élémentaire B1, Be_B2 est la bande spectrale élémentaire du pixel élémentaire B2, Be_B3 est la bande spectrale élémentaire du pixel élémentaire B3, et Be_B4 est la bande spectrale élémentaire du pixel élémentaire B4. Be_B1 < Be_B2 < Be_B3 < Be_B4, where Be_B1 is the elementary spectral band of elementary pixel B1, Be_B2 is the elementary spectral band of elementary pixel B2, Be_B3 is the elementary spectral band of elementary pixel B3, and Be_B4 is the elementary spectral band of elementary pixel B4.
Pour le deuxième macropixel M2 (vert) , comprenant le groupe de pixels élémentaires {V1, V2, V3, V4}, on a : For the second macropixel M2 (green), comprising the group of elementary pixels {V1, V2, V3, V4}, we have:
Be_V1 < Be_V2 < Be_V3 < Be_V4, où Be_V1 est la bande spectrale élémentaire du pixel élémentaire V1, Be_V2 est la bande spectrale élémentaire du pixel élémentaire V2, Be_V3 est la bande spectrale élémentaire du pixel élémentaire V3, et Be_V4 est la bande spectrale élémentaire du pixel élémentaire V4. Be_V1 < Be_V2 < Be_V3 < Be_V4, where Be_V1 is the elementary spectral band of the elementary pixel V1, Be_V2 is the elementary spectral band of the elementary pixel V2, Be_V3 is the elementary spectral band of the elementary pixel V3, and Be_V4 is the elementary spectral band of the elementary pixel V4.
Pour le troisième macropixel M3 (rouge) , comprenant le groupe de pixels élémentaires {R1, R2, R3, R4 } , on a : For the third macropixel M3 (red), comprising the group of elementary pixels {R1, R2, R3, R4}, we have:
Be_R1 < Be_R2 < Be_R3 < Be_R4, où Be_R1 est la bande spectrale élémentaire du pixel élémentaire R1, Be_R2 est la bande spectrale élémentaire du pixel élémentaire R2, Be_R3 est la bande spectrale élémentaire du pixel élémentaire R3, et Be_R4 est la bande spectrale élémentaire du pixel élémentaire R4. Be_R1 < Be_R2 < Be_R3 < Be_R4, where Be_R1 is the elementary spectral band of the elementary pixel R1, Be_R2 is the elementary spectral band of the elementary pixel R2, Be_R3 is the elementary spectral band of the elementary pixel R3, and Be_R4 is the elementary spectral band of the elementary pixel R4.
Pour le quatrième macropixel M4 (proche infrarouge) , comprenant le groupe de pixels élémentaires {PIR1, PIR2, PIR3, PIR4 } , on a : For the fourth macropixel M4 (near infrared), comprising the group of elementary pixels {PIR1, PIR2, PIR3, PIR4}, we have:
Be_PIR1 < Be_PIR2 < Be_PIR3 < Be_PIR4, où Be_PIR1 est la bande spectrale élémentaire du pixel élémentaire PIR1 , Be_PIR2 est la bande spectrale élémentaire du pixel élémentaire PIR2 , Be_PIR3 est la bande spectrale élémentaire du pixel élémentaire PIR3, et Be_PIR4 est la bande spectrale élémentaire du pixel élémentaire PIR4 . Be_PIR1 < Be_PIR2 < Be_PIR3 < Be_PIR4, where Be_PIR1 is the elementary spectral band of the pixel elementary PIR1 , Be_PIR2 is the elementary spectral band of elementary pixel PIR2 , Be_PIR3 is the elementary spectral band of elementary pixel PIR3 , and Be_PIR4 is the elementary spectral band of elementary pixel PIR4 .
Ainsi , chaque macropixel M comporte un premier pixel élémentaire laissant passer une première bande spectrale élémentaire Bel , un deuxième pixel élémentaire laissant passer une deuxième bande spectrale élémentaire Be2 , un troisième pixel élémentaire laissant passer une troisième bande spectrale élémentaire Be3 , et un quatrième pixel élémentaire laissant passer une quatrième bande spectrale élémentaire Be4 , les pixels élémentaires étant tels que : Be1 < Be2 < Be3 < Be4 . Thus, each macropixel M comprises a first elementary pixel allowing a first elementary spectral band Bel to pass, a second elementary pixel allowing a second elementary spectral band Be2 to pass, a third elementary pixel allowing a third elementary spectral band Be3 to pass, and a fourth elementary pixel allowing a fourth elementary spectral band Be4 to pass, the elementary pixels being such that: Be1<Be2<Be3<Be4.
Les Bel , Be2 , Be3 , Be4 dependent du micropixel concerné .The Bel, Be2, Be3, Be4 depend on the micropixel concerned.
Lorsque la mosaïque de filtres 2 est vue de face et orientée selon l' orientation prédéfinie , chaque macropixel M est agencé de sorte que le premier pixel élémentaire dudit macropixel M est situé en haut à gauche, le deuxième pixel élémentaire est situé en haut à droite, le troisième pixel élémentaire est situé en bas à gauche , et le quatrième pixel élémentaire est situé en bas à droite dudit macropixel M . When the mosaic of filters 2 is seen from the front and oriented according to the predefined orientation, each macropixel M is arranged so that the first elementary pixel of said macropixel M is located at the top left, the second elementary pixel is located at the top right , the third elementary pixel is located at the bottom left, and the fourth elementary pixel is located at the bottom right of said macropixel M .
Le filtre passe-bande élémentaire de chaque pixel élémentaire Pe a typiquement une FWHM ( Full Width at Half Maximum, ou « largeur à mi-hauteur ») égale à environ 20nm . The elementary band-pass filter of each elementary pixel Pe typically has an FWHM (Full Width at Half Maximum, or “width at half-height”) equal to about 20 nm.
Le filtre passe-bande global de chaque macropixel M a typiquement une FWHM égale à environ 80nm . The global band-pass filter of each macropixel M typically has an FWHM equal to about 80 nm.
La disposition relative des macropixels M est importante pour limiter la contiguïté géométrique des bandes spectrales adj acentes , et donc pour limiter la diaphonie . The relative arrangement of the macropixels M is important for limiting the geometric contiguity of adjacent spectral bands, and therefore for limiting crosstalk.
On décrit maintenant les traitements réalisés par l ' unité de traitement interne 4 pour produire une image multispectrale ( aussi appelée hypercube) à partir des signaux de sortie des capteurs. We now describe the processing carried out by the internal processing unit 4 to produce a multispectral image (also called a hypercube) from the sensor output signals.
L'image multispectrale comporte, pour chaque pixel élémentaire Pe, un hyperpixel comprenant une pluralité de composantes spectrales, c'est à dire une composante spectrale par bande spectrale élémentaire. Chaque hyperpixel comprend donc ici 16 composantes spectrales associées chacune à une bande spectrale élémentaire distincte. The multispectral image comprises, for each elementary pixel Pe, a hyperpixel comprising a plurality of spectral components, ie one spectral component per elementary spectral band. Each hyperpixel therefore comprises here 16 spectral components each associated with a distinct elementary spectral band.
Contrairement à d'autres architectures optiques, pour lesquelles la formation de l'image multispectrale consiste par exemple à « empiler » les imagettes, l'utilisation de la mosaïque de filtres a pour conséquence que les pixels filtrés ne sont pas cohérents spatialement. Contrary to other optical architectures, for which the formation of the multispectral image consists for example of “stacking” the imagettes, the use of the mosaic of filters has the consequence that the filtered pixels are not spatially coherent.
Par conséquent, comme pour un capteur couleur à matrice dite « de Bayer », l'unité de traitement interne 4 utilise un algorithme pour calculer les valeurs spectrales correspondant à chaque hyperpixel . Consequently, as for a so-called “Bayer” matrix color sensor, the internal processing unit 4 uses an algorithm to calculate the spectral values corresponding to each hyperpixel.
L'optique et l'algorithme de formation de l'image multispectrale sont dimensionnés pour maximiser la performance du dispositif d'acquisition 1, et en particulier, pour optimiser la portée de détection (ou la taille apparente de la plus petite cible détectable) . Ce dimensionnement doit s'appuyer sur un modèle de prédiction de cette portée de détection, ou, à tout le moins, sur un modèle analytique permettant de positionner en relatif les portées données par différentes architectures de capteur, d'optique et de mise en forme des données spectrales. The optics and the multispectral image formation algorithm are dimensioned to maximize the performance of the acquisition device 1, and in particular, to optimize the detection range (or the apparent size of the smallest detectable target). This dimensioning must be based on a prediction model of this detection range, or, at the very least, on an analytical model making it possible to position in relative terms the ranges given by different architectures of sensor, optics and shaping. spectral data.
En effet, la portée est intimement liée à l'étendue angulaire de la zone qui contribue à la formation d'un hyperpixel, au pas d'échantillonnage spatial des hyperpixels, mais aussi à l'écart angulaire séparant deux points pour éviter un « mélange spectral » dans l'évaluation de leur spectre respectif. Les contributeurs sont à la fois l'optique (pouvoir séparateur) et l'algorithme de formation de l' hypercube. Indeed, the range is intimately linked to the angular extent of the zone which contributes to the formation of a hyperpixel, to the spatial sampling step of the hyperpixels, but also to the angular difference separating two points to avoid a "mixing spectral” in the evaluation of their respective spectrum. Contributors are both the optics (resolving power) and the hypercube formation algorithm.
On présente ici trois modes de reconstitution de l'image multispectrale . Three modes of reconstruction of the multispectral image are presented here.
La figure 4 illustre un premier mode de reconstitution. On voit quatre super-macropixels SM sur la figure 4. FIG. 4 illustrates a first reconstitution mode. We see four SM super-macropixels in Figure 4.
Le premier mode de reconstitution consiste, pour l'unité de traitement interne 4, à conférer, à chaque composante spectrale 14 de l'hyperpixel HP associé à un pixel élémentaire particulier Pe d'un super-macropixel particulier SM, une valeur égale au signal de sortie du capteur associé au pixel élémentaire Pe appartenant audit super-macropixel particulier SM et laissant passer la bande spectrale élémentaire correspondant à ladite composante spectrale 14. The first reconstitution mode consists, for the internal processing unit 4, in conferring, on each spectral component 14 of the hyperpixel HP associated with a particular elementary pixel Pe of a particular super-macropixel SM, a value equal to the signal sensor output associated with the elementary pixel Pe belonging to said particular super-macropixel SM and allowing the elementary spectral band corresponding to said spectral component 14 to pass.
Les quatre hyperpixels HP de la figure 4 sont donc distincts, chaque hyperpixel HP étant associé à tous les pixels élémentaires Pe d'un même super-macropixel SM. The four hyperpixels HP of FIG. 4 are therefore distinct, each hyperpixel HP being associated with all the elementary pixels Pe of the same super-macropixel SM.
Pour ne pas mélanger les bandes spectrales (condition de non mélange) , il convient cependant que la taille apparente de la cible que l'on cherche à décamoufler soit supérieure ou égale à 2x2 macropixels M pour toujours englober au moins un super-macropixel SM complet. In order not to mix the spectral bands (condition of non-mixing), it is however necessary that the apparent size of the target that one seeks to disambiguate is greater than or equal to 2×2 macropixels M to always encompass at least one complete super-macropixel SM .
Le premier mode de reconstitution introduit un sous- échantillonnage relativement fort. Cependant, ce mode de reconstitution a pour avantage de ne pas impacter la radiométrie, car aucun traitement de type interpolation ou lissage n'est réalisé. Le volume de données utilisé pour produire l'image multispectrale correspond au volume initial . The first reconstruction mode introduces a relatively strong under-sampling. However, this reconstitution mode has the advantage of not impacting the radiometry, since no interpolation or smoothing type processing is carried out. The volume of data used to produce the multispectral image corresponds to the initial volume.
En référence à la figure 5, un deuxième mode de reconstitution consiste, pour l'unité de traitement interne 4, à conférer, à chaque composante spectrale de l'hyperpixel HP associé à un pixel élémentaire particulier Pe d' un super- macropixel particulier, une valeur obtenue par interpolation des signaux de sortie des capteurs associés à des pixels élémentaires voisins du pixel élémentaire particulier et laissant passer la bande spectrale élémentaire correspondant à ladite composante spectrale . With reference to FIG. 5, a second reconstitution mode consists, for the internal processing unit 4, in giving, to each spectral component of the hyperpixel HP associated with a particular elementary pixel Pe of a particular super-macropixel, a value obtained by interpolation of the output signals from the sensors associated with elementary pixels neighboring the particular elementary pixel and allowing the elementary spectral band corresponding to said spectral component to pass.
Dans ce deuxième mode de reconstitution, l ' unité de traitement interne 4 restitue donc, pour chaque pixel élémentaire , un hyperpixel en calculant la valeur des différentes bandes spectrales par interpolation à partir des valeurs mesurées sur les pixels physiques voisins correspondant à cette bande , comme le ferait , pour une image couleur, un traitement de type « de Bayer » . In this second reconstitution mode, the internal processing unit 4 therefore restores, for each elementary pixel, a hyperpixel by calculating the value of the various spectral bands by interpolation from the values measured on the neighboring physical pixels corresponding to this band, as would do, for a color image, a “Bayer” type treatment.
Cette solution, sur le principe, permet donc de calculer autant d' hyperpixels que de pixels élémentaire , et donc de restituer un hypercube « haute résolution » . This solution, in principle, therefore makes it possible to calculate as many hyperpixels as elementary pixels, and therefore to restore a “high resolution” hypercube.
Pour ne pas mélanger les bandes spectrales ( condition de non mélange ) , il convient cependant que la cible ait une largeur et une hauteur qui couvrent les pixels élémentaires entrant dans l ' algorithme d' interpolation . In order not to mix the spectral bands (condition of non-mixing), the target should however have a width and a height which cover the elementary pixels entering into the interpolation algorithm.
Le dessin de gauche de la figure 5 illustre un cas où l ' interpolation met en j eu les pixels élémentaires de même bande spectrale encadrant 1 ' hyperpixel à calculer . The drawing on the left of FIG. 5 illustrates a case where the interpolation involves the elementary pixels of the same spectral band surrounding the hyperpixel to be calculated.
Le choix du deuxième mode de reconstitution, et donc de l ' algorithme d' interpolation, peut faire décroître l ' impact du pixel physique le plus éloigné, et la zone de non mélange peut tendre à se rapprocher de la taille du super-macropixel . The choice of the second reconstitution mode, and therefore of the interpolation algorithm, can decrease the impact of the furthest physical pixel, and the non-mixing zone can tend to approach the size of the super-macropixel.
En référence à la figure 6 , un troisième mode de reconstitution consiste, pour l ' unité de traitement interne 4 , à conférer, à chaque composante spectrale de 1 ' hyperpixel associé à un pixel élémentaire particulier d' un super- macropixel particulier, une valeur égale au signal de sortie du capteur associé à un pixel élémentaire , laissant passer la bande de spectrale élémentaire correspondant à ladite composante spectrale, ledit pixel élémentaire appartenant à une fenêtre glissante 15 ayant la taille d' un super- macropixel et à laquelle appartient le pixel élémentaire particulier . With reference to FIG. 6, a third reconstitution mode consists, for the internal processing unit 4, in giving, to each spectral component of the hyperpixel associated with a particular elementary pixel of a particular super-macropixel, a value equal to output signal of the sensor associated with an elementary pixel, allowing the elementary spectral band corresponding to said spectral component to pass, said elementary pixel belonging to a sliding window 15 having the size of a super-macropixel and to which the particular elementary pixel belongs.
Ainsi , sur la figure 6 , l' hyperpixel HP1 est associé au pixel élémentaire Pel alors que l ' hyperpixel HP2 est associé au pixel élémentaire Pe2 . Thus, in FIG. 6, the hyperpixel HP1 is associated with the elementary pixel Pel while the hyperpixel HP2 is associated with the elementary pixel Pe2.
Ce mode restitue donc un hyperpixel pour chaque pixel physique en affectant, pour chaque bande spectrale élémentaire , la valeur du pixel physique le plus proche correspondant à cette bande . Cela équivaut donc à déplacer sur le capteur, de pixel en pixel , la fenêtre 15 , et d' affecter à l ' hyperpixel correspondant les valeurs ré- ordonnées prélevées dans cette fenêtre 15 . This mode therefore restores a hyperpixel for each physical pixel by assigning, for each elementary spectral band, the value of the closest physical pixel corresponding to this band. This therefore amounts to moving on the sensor, from pixel to pixel, the window 15 , and assigning to the corresponding hyperpixel the reordered values taken from this window 15 .
Cette solution permet de calculer autant d' hyperpixels que de pixels physiques , et donc de restituer une image spectrale « haute résolution » . Cette logique du « plus proche voisin » est celle qui limite le plus le support d' interpolation : quelle que soit la position de la fenêtre 15 , l ' ensemble des longueurs d' onde est représenté dans un voisinage proche . This solution makes it possible to calculate as many hyperpixels as physical pixels, and therefore to restore a “high resolution” spectral image. This “nearest neighbour” logic is the one that limits the interpolation medium the most: whatever the position of the window 15, all the wavelengths are represented in a close neighborhood.
Pour ne pas mélanger les bandes spectrales ( condition de non mélange ) , il convient cependant que la cible ait une largeur et une hauteur proches de celles d' un super- macropixel SM . In order not to mix the spectral bands (condition of non-mixing), the target should however have a width and a height close to those of a super-macropixel SM.
On s ' intéresse maintenant à la synthèse des voies j our couleurs VJC et PIRL (proche infrarouge large bande ) . We are now interested in the synthesis of the VJC and PIRL (near wide band infrared) color pathways.
L' unité de traitement interne 4 produit une image en couleur et infrarouge à partir des signaux de sortie des capteurs . Par « image en couleur et infrarouge », on entend une image formant une composition colorée et produite à partir de bandes spectrales bleu, rouge, verte , et infrarouge ( ici proche infrarouge ) . The internal processing unit 4 produces a color and infrared image from the output signals of the sensors. By "color and infrared image" is meant an image forming a colored composition and produced from blue, red, green, and infrared (here near infrared) spectral bands.
Pour produire l ' image couleur et infrarouge, l ' unité de traitement interne 4 met tout d' abord en œuvre une opération de binning spatial de pixels élémentaires Pe ( c' est-à-dire une opération de regroupement spatial de pixels élémentaires Pe) . Le binning spatial permet d' obtenir une image intermédiaire . To produce the color and infrared image, the internal processing unit 4 first implements an operation of spatial binning of elementary pixels Pe (that is to say an operation of spatial grouping of elementary pixels Pe) . Spatial binning makes it possible to obtain an intermediate image.
Le binning spatial consiste à associer une unique valeur intermédiaire à chaque macropixel M de chaque super- macropixel SM, ladite valeur intermédiaire étant obtenue par pondération des signaux de sortie des capteurs associés aux pixels élémentaires dudit macropixel . Spatial binning consists of associating a single intermediate value with each macropixel M of each super-macropixel SM, said intermediate value being obtained by weighting the output signals from the sensors associated with the elementary pixels of said macropixel.
On a donc :
Figure imgf000020_0001
où B Super-macropixel (i0, j0) est la valeur intermédiaire d' un pixel élémentaire Pe appartenant à un premier macropixel M1 (bleu) , θB est un premier coefficient de pondération, et les Pixel(i,j) sont les signaux de sortie des capteurs associés aux pixels élémentaires Pe appartenant audit premier macropixel M1 ;
Figure imgf000020_0002
où V Super-macropixel (i0, j0) est la valeur intermédiaire d' un pixel élémentaire Pe appartenant à un deuxième macropixel M2 (vert) , θV est un deuxième coefficient de pondération, et les Pixel(i,j) sont les signaux de sortie des capteurs associés aux pixels élémentaires Pe appartenant audit deuxième macropixel M2 ;
Figure imgf000021_0001
où R Super-macropixel (i0, j0) est la valeur intermédiaire d' un pixel élémentaire Pe appartenant à un troisième macropixel M3 (rouge) , θR est un troisième coefficient de pondération, et les Pixel(i,j) sont les signaux de sortie des capteurs associés aux pixels élémentaires Pe appartenant audit troisième macropixel M3 ;
Figure imgf000021_0002
où PIR Super-macropixel (i0, j0) est la valeur intermédiaire d' un pixel élémentaire Pe appartenant à un quatrième macropixel M4 ( PIR) , θPIR est un quatrième coefficient de pondération, et les Pixel(i,j) sont les signaux de sortie des capteurs associés aux pixels élémentaires Pe appartenant audit quatrième macropixel M4 .
So we have :
Figure imgf000020_0001
where B Super-macropixel (i 0 , j 0 ) is the intermediate value of an elementary pixel Pe belonging to a first macropixel M1 (blue), θ B is a first weighting coefficient, and the Pixels(i,j) are the output signals from the sensors associated with the elementary pixels Pe belonging to said first macropixel M1;
Figure imgf000020_0002
where V Super-macropixel (i 0 , j 0 ) is the intermediate value of an elementary pixel Pe belonging to a second macropixel M2 (green), θ V is a second weighting coefficient, and the Pixels(i,j) are the output signals from the sensors associated with the elementary pixels Pe belonging to said second macropixel M2;
Figure imgf000021_0001
where R Super-macropixel (i 0 , j 0 ) is the intermediate value of an elementary pixel Pe belonging to a third macropixel M3 (red), θ R is a third weighting coefficient, and the Pixels(i,j) are the output signals from the sensors associated with the elementary pixels Pe belonging to said third macropixel M3;
Figure imgf000021_0002
where PIR Super-macropixel (i 0 , j 0 ) is the intermediate value of an elementary pixel Pe belonging to a fourth macropixel M4 (PIR), θ PIR is a fourth weighting coefficient, and the Pixels(i,j) are the output signals from the sensors associated with the elementary pixels Pe belonging to said fourth macropixel M4.
On met donc en œuvre un binning spatial 2x2 (par macropixel ) suivant les groupes . A 2x2 spatial binning (by macropixel) is therefore implemented according to the groups.
Pour des pixels élémentaires de taille 4μm x 4μm à 6μm x 6μm, on obtient donc des pixels équivalents ayant pour taille 8μm x 8μm à 12μm x 12μm . For elementary pixels of size 4 μm×4 μm to 6 μm×6 μm, equivalent pixels are therefore obtained having a size of 8 μm×8 μm to 12 μm×12 μm.
On obtient ainsi un gain en sensibilité ( car la calibration colorimétrique est sensible au bruit dans les images à petits pixels et dans les images à faible flux) . L' image est obtenue par une seule lecture pour 4 pixels élémentaires . A gain in sensitivity is thus obtained (because the colorimetric calibration is sensitive to noise in images with small pixels and in images with low flux). The image is obtained by a single reading for 4 elementary pixels.
On obtient de plus un étalement de la PSF (pour Point Spread. Function, ou fonction d' étalement du point) par réglage de l ' optique suivant 2x2 pixels élémentaires (pixel élémentaire supérieur ou égal à 4μm x 4μm) , et une décontrainte sur l ' optique en terme de fréquence de coupure optique . La résolution optique est réduite et la tâche optique est étalée . In addition, a spreading of the PSF (for Point Spread. Function, or point spreading function) is obtained by adjusting the optics along 2×2 elementary pixels (elementary pixel greater than or equal to 4 μm×4 μm), and a stress relief on optics in terms of optical cut-off frequency. The optical resolution is reduced and the optical spot is spread.
Avantageusement, le regroupement spatial est réalisé en hardware , c' est-à-dire par des composants électroniques (et non logiciels ) . Cela permet une amélioration du rapport signal à bruit capteur . Les charges accumulées de chaque pixel physique sont par exemple cumulées en utilisant des portes de sommation pour obtenir les valeurs intermédiaires de l ' image intermédiaire . Advantageously, the spatial grouping is carried out in hardware, that is to say by electronic components (and not software). This allows an improvement of the sensor signal-to-noise ratio. The accumulated charges of each physical pixel are for example accumulated by using summation gates to obtain the intermediate values of the intermediate image.
L' image en couleur et infrarouge est ensuite reconstituée à partir de l ' image intermédiaire , et donc à partir des bandes synthétisées des macropixels de chaque super-macropixel . The color and infrared image is then reconstituted from the intermediate image, and therefore from the synthesized bands of the macropixels of each super-macropixel.
On voit sur la figure 7 la première bande spectrale globale Bg1 (transmission optique ) de la première résine (bleue) , la deuxième bande spectrale globale Bg2 de la deuxième résine (verte) , la troisième bande spectrale globale Bg3 de la troisième résine (rouge ) et la quatrième bande spectrale Bg4 de la quatrième résine ( PIR) . We see in Figure 7 the first global spectral band Bg1 (optical transmission) of the first resin (blue), the second global spectral band Bg2 of the second resin (green), the third global spectral band Bg3 of the third resin (red ) and the fourth spectral band Bg4 of the fourth resin (PIR).
On voit aussi , pour chaque bande spectrale globale, les bandes spectrales élémentaires associées Be1 , Be2 , Be3 , Be4 . We also see, for each global spectral band, the associated elementary spectral bands Be1 , Be2 , Be3 , Be4 .
Les résines peuvent présenter des imperfections produisant des rebonds dans le domaine du proche infrarouge . Il peut être pertinent d' améliorer la zone spectrale de transition entre le domaine visible (B, V, R) et le domaine du proche infrarouge , pour éviter que les profils de transmission des résines ne soient perturbés . The resins may have imperfections producing rebounds in the near infrared range. It may be relevant to improve the spectral zone of transition between the visible domain (B, G, R) and the near infrared domain, to prevent the transmission profiles of the resins from being disturbed.
On utilise donc un filtre Notch ( filtre coupe-bande ) positionné au niveau de la pupille de la caméra 6 . A Notch filter (band-stop filter) positioned at the level of the pupil of the camera 6 is therefore used.
En référence à la figure 8 , le filtre Notch permet de couper une bande spectrale frontière Bf située entre la troisième bande spectrale globale Bg3 (rouge) et la quatrième bande spectrale globale Bg4 (proche infrarouge) . With reference to figure 8, the Notch filter makes it possible to cut a border spectral band Bf located between the third global spectral band Bg3 (red) and the fourth global spectral band Bg4 (near infrared) .
La réponse du filtre Notch présente une pente descendante à partir d'une longueur d'onde supérieure à 680nm, et une pente montante à partir d'une longueur d'onde inférieure à 730nm. The response of the Notch filter has a downward slope from a wavelength greater than 680nm, and an upward slope from a wavelength less than 730nm.
Avantageusement, on prévoit que la bande spectrale frontière Bf soit située dans la bande spectrale rouge Br, comme cela est visible sur la figure 8. On décale alors la troisième bande spectrale globale Bg3 de sorte que la troisième bande spectrale globale Bg3 et la bande spectrale frontière Bf ne présentent pas de recouvrement. Advantageously, provision is made for the frontier spectral band Bf to be situated in the red spectral band Br, as can be seen in FIG. 8. The third global spectral band Bg3 is then shifted so that the third global spectral band Bg3 and the spectral band Bf border do not show any overlap.
On voit sur la figure 8 que la longueur d'onde centrale de la troisième bande spectrale globale Bg3 est légèrement réduite, ce qui décale vers la gauche la troisième bande spectrale globale. It can be seen in FIG. 8 that the central wavelength of the third global spectral band Bg3 is slightly reduced, which shifts the third global spectral band to the left.
On sépare ainsi beaucoup mieux les composantes rouges des composantes proche infrarouge. The red components are thus much better separated from the near infrared components.
Avantageusement, on utilise aussi une lame de quartz formant un filtre passe-bas. Le filtre passe-bas est positionné juste avant la matrice de capteurs et permet de réduire les interférences produites par la mosaïque de filtres . Advantageously, a quartz blade forming a low-pass filter is also used. The low-pass filter is positioned just before the matrix of sensors and makes it possible to reduce the interference produced by the mosaic of filters.
Suite à ces traitements, l'unité de traitement interne 4 produit une image combinée à partir de l'image multispectrale et de l'image en couleur et infrarouge, et transmet directement l'image combinée à l'unité de traitement externe 5. Alternativement, l'unité de traitement externe 5 acquiert l'image multispectrale et l'image en couleur et infrarouge. Following these processing operations, the internal processing unit 4 produces a combined image from the multispectral image and the color and infrared image, and directly transmits the combined image to the external processing unit 5. Alternatively , the external processing unit 5 acquires the multispectral image and the color and infrared image.
L'unité de traitement externe 5 met alors en œuvre le décamouflage supra pour tenter de détecter la présence de la cible . Dans le cas d'une ambiance lumineuse normale, le dispositif d'acquisition 1 est configuré pour réaliser une défocalisation et un étalement de la PSF sur les 4x4 pixels élémentaires Pe de chaque super-macropixel SM. The external processing unit 5 then implements the supra decamouflage to attempt to detect the presence of the target. In the case of a normal light environment, the acquisition device 1 is configured to carry out a defocusing and a spreading of the PSF over the 4×4 elementary pixels Pe of each super-macropixel SM.
L'image hyperspectrale est formatée en luminance absolue avec un procédé de calibration. The hyperspectral image is formatted in absolute luminance with a calibration process.
Un procédé d'accentuation de contraste est alors mis en œuvre. Le procédé d'accentuation de contraste utilise possiblement des effets de transparence et/ou de rémanence (voir par exemple le document FR 3 011 663 B1) . A contrast enhancement method is then implemented. The contrast enhancement method possibly uses transparency and/or afterglow effects (see for example document FR 3 011 663 B1).
On utilise ensuite une métrique, représentative d'un contraste dans la scène, pour réaliser le décamouflage. La métrique est calculée à partir des 16 bandes spectrales élémentaires . A metric, representative of a contrast in the scene, is then used to perform the decamouflage. The metric is calculated from the 16 elementary spectral bands.
L'image en couleur et infrarouge est reconstruite pour constituer la voie support (aucun binning pour l'application) . La calibration est faite avec binning. Les bandes B, V, R et PIRL sont synthétisés numériquement. The color and infrared image is reconstructed to constitute the support channel (no binning for the application). Calibration is done with binning. Bands B, V, R and PIRL are digitally synthesized.
On n'utilise pas de binning pour l'application VJC, mais une pondération « custom » (personnalisée, adaptée à l'application) des bandes pour constituer la VJC, moins sensible au métamérisme de couleurs. Les coefficients de pondération sont stockés dans une table de correspondance (LUT) spécifique à couleurs saturées. We do not use binning for the VJC application, but a "custom" weighting (personalised, adapted to the application) of the bands to constitute the VJC, which is less sensitive to color metamerism. The weighting coefficients are stored in a specific saturated color look-up table (LUT).
Dans le cas d'une ambiance lumineuse à faible éclairement solaire, le dispositif d'acquisition 1 est configuré pour réaliser une défocalisation et un étalement de la PSF sur les 2x2 macropixels M du super-macropixel SM. On obtient un gain de sensibilité car l'analyse est faite sur la base du macropixel (2x2 pixels élémentaires) . In the case of a light environment with low solar illumination, the acquisition device 1 is configured to carry out a defocusing and a spreading of the PSF on the 2×2 macropixels M of the super-macropixel SM. A gain in sensitivity is obtained because the analysis is made on the basis of the macropixel (2×2 elementary pixels).
L'image hyperspectrale est formatée avec un procédé de calibration VJC + PIRL. Un procédé d'accentuation de contraste est alors mis en œuvre. Le procédé d'accentuation de contraste utilise possiblement des effets de transparence et/ou de rémanence. The hyperspectral image is formatted with a VJC + PIRL calibration process. A contrast enhancement method is then implemented. The contrast enhancement process possibly uses transparency and/or afterglow effects.
On utilise ensuite une métrique, représentative d'un contraste dans la scène, pour réaliser le décamouflage. La métrique est calculée sur 4 bandes spectrales seulement (du fait du binning) . A metric, representative of a contrast in the scene, is then used to perform the decamouflage. The metric is calculated on 4 spectral bands only (due to binning).
L'image en couleur et infrarouge est reconstruite pour constituer la voie support (on utilise le binning pour l'application) . La calibration est faite avec binning. Les bandes B, V, R et PIRL sont synthétisés numériquement. The color and infrared image is reconstructed to constitute the support channel (binning is used for the application). Calibration is done with binning. Bands B, V, R and PIRL are digitally synthesized.
Bien entendu, l'invention n'est pas limitée au mode de réalisation décrit mais englobe toute variante entrant dans le champ de l'invention telle que définie par les revendications . Of course, the invention is not limited to the embodiment described but encompasses any variant falling within the scope of the invention as defined by the claims.
Les bandes spectrales globales peuvent parfaitement être différentes de celles décrites ici. Toute bande des domaines du visible, du proche infrarouge PIR ou NIR (Near InfraRed) , ou de l'infrarouge court SWIR (Short Wavelength Infrared) , pourrait par exemple être utilisée. The overall spectral bands may well be different from those described here. Any band in the visible, near infrared PIR or NIR (Near InfraRed) domains, or short infrared SWIR (Short Wavelength Infrared), could for example be used.
Les super-macropixels et les macropixels peuvent être différents de ceux présentés ici : nombre différent de pixels élémentaires ou de macropixels, forme différente des macropixels ou du super-macropixel, etc. Super-macropixels and macropixels may be different from those presented here: different number of elementary pixels or macropixels, different shape of macropixels or super-macropixel, etc.

Claims

REVENDICATIONS
1 . Dispositif d' acquisition ( 1 ) comportant : 1 . Acquisition device ( 1 ) comprising:
- une mosaïque de filtres ( 2 ) comprenant des super- macropixels ( SM) identiques , chaque super-macropixel comportant une pluralité de macropixels (M) comprenant chacun une pluralité de pixels élémentaires ( Pe ) , chaque super-macropixel étant tel que : o chaque macropixel dudit super-macropixel forme un filtre passe-bande global laissant passer une bande spectrale globale (Bg1 , Bg2 , Bg3 , Bg4 ) , les bandes spectrales globales étant distinctes et successives ; o ledit super-macropixel ( SM) comporte quatre macropixels , les macropixels comprenant un premier macropixel (M1 ) laissant passer une première bande spectrale globale Bg1 , un deuxième macropixel (M2 ) laissant passer une deuxième bande spectrale globale Bg2 , un troisième macropixel (M3 ) laissant passer une troisième bande spectrale globale Bg3 et un quatrième macropixel (M4 ) laissant passer une quatrième bande spectrale globale Bg4 , les macropixels étant tels que : Bg1 < Bg2 < Bg3 < Bg4 ; o lorsque la mosaïque de filtres (2 ) est vue de face et orientée selon une orientation prédéfinie , ledit super- macropixel est agencé de sorte que le premier macropixel est situé en haut à gauche, le deuxième macropixel est situé en bas à droite , le troisième macropixel est situé en bas à gauche, et le quatrième macropixel en haut à droite dudit super-macropixel ; o chaque pixel élémentaire de chaque macropixel dudit super-macropixel forme un filtre passe-bande élémentaire laissant passer une bande spectrale élémentaire (Bel, Be2, Be3, Be4) incluse dans la bande spectrale globale dudit macropixel, les bandes spectrales élémentaires étant distinctes et successives ; - a mosaic of filters (2) comprising identical super-macropixels (SM), each super-macropixel comprising a plurality of macropixels (M) each comprising a plurality of elementary pixels (Pe), each super-macropixel being such that: o each macropixel of said super-macropixel forms a global band-pass filter allowing a global spectral band (Bg1, Bg2, Bg3, Bg4) to pass, the global spectral bands being distinct and successive; o said super-macropixel (SM) comprises four macropixels, the macropixels comprising a first macropixel (M1) letting through a first global spectral band Bg1, a second macropixel (M2) letting through a second global spectral band Bg2, a third macropixel (M3 ) allowing a third global spectral band Bg3 to pass and a fourth macropixel (M4) allowing a fourth global spectral band Bg4 to pass, the macropixels being such that: Bg1 <Bg2 <Bg3 <Bg4; o when the mosaic of filters (2) is seen from the front and oriented according to a predefined orientation, said super-macropixel is arranged so that the first macropixel is located at the top left, the second macropixel is located at the bottom right, the third macropixel is located at the bottom left, and the fourth macropixel at the top right of said super-macropixel; o each elementary pixel of each macropixel of said super-macropixel forms an elementary band-pass filter allowing an elementary spectral band (Bel, Be2, Be3, Be4) included in the overall spectral band of said macropixel to pass, the elementary spectral bands being distinct and successive;
- une matrice de capteurs (3) associés chacun à un pixel élémentaire ; - a matrix of sensors (3) each associated with an elementary pixel;
- une unité de traitement (4) agencée pour produire une image multispectrales à partir de signaux de sortie des capteurs, l'image multispectrale comprenant des hyperpixels (HP) associés chacun à un pixel élémentaire, chaque hyperpixel comprenant des composantes spectrales (14) correspondant chacune à une bande spectrale élémentaire distincte . - a processing unit (4) arranged to produce a multispectral image from output signals from the sensors, the multispectral image comprising hyperpixels (HP) each associated with an elementary pixel, each hyperpixel comprising spectral components (14) corresponding each has a distinct elementary spectral band.
2. Dispositif d'acquisition selon la revendication 1, dans lequel chaque super-macropixel (SM) et chaque macropixel ont la forme d'un carré. 2. Acquisition device according to claim 1, in which each super-macropixel (SM) and each macropixel have the shape of a square.
3 Dispositif d'acquisition selon la revendication 1, dans lequel la première bande spectrale globale est incluse dans une bande spectrale bleue, la deuxième bande spectrale globale est incluse dans une bande spectrale verte, la troisième bande spectrale globale est incluse dans une bande spectrale rouge, et la quatrième bande spectrale globale est incluse dans une bande spectrale du proche infrarouge. 3 Acquisition device according to claim 1, in which the first global spectral band is included in a blue spectral band, the second global spectral band is included in a green spectral band, the third global spectral band is included in a red spectral band , and the fourth global spectral band is included in a near infrared spectral band.
4. Dispositif d'acquisition selon l'une des revendications précédentes, dans lequel chaque macropixel comporte un premier pixel élémentaire laissant passer une première bande spectrale élémentaire Bel, un deuxième pixel élémentaire laissant passer une deuxième bande spectrale élémentaire Be2, un troisième pixel élémentaire laissant passer une troisième bande spectrale élémentaire Be3, et un quatrième pixel élémentaire laissant passer une quatrième bande spectrale élémentaire Be4, les pixels élémentaires étant tels que : Be1 < Be2 < Be3 < Be4. 4. Acquisition device according to one of the preceding claims, in which each macropixel comprises a first elementary pixel allowing a first elementary spectral band Bel to pass, a second elementary pixel allowing a second elementary spectral band Be2 to pass, a third elementary pixel allowing a second elementary spectral band to pass pass a third elementary spectral band Be3, and a fourth elementary pixel allowing a fourth elementary spectral band Be4 to pass, the elementary pixels being such that: Be1<Be2<Be3<Be4.
5. Dispositif d'acquisition selon la revendication 4, dans lequel, lorsque la mosaïque de filtres (2) est vue de face et orientée selon l'orientation prédéfinie, chaque macropixel est agencé de sorte que le premier pixel élémentaire est situé en haut à gauche, le deuxième pixel élémentaire est situé en haut à droite, le troisième pixel élémentaire est situé en bas à gauche, et le quatrième pixel élémentaire est situé en bas à droite dudit macropixel. 5. Acquisition device according to claim 4, in which, when the mosaic of filters (2) is seen from the front and oriented according to the predefined orientation, each macropixel is arranged so that the first elementary pixel is located at the top left, the second elementary pixel is located at the top right, the third elementary pixel is located at the bottom left, and the fourth elementary pixel is located at the bottom right of said macropixel.
6. Dispositif d'acquisition selon l'une des revendications précédentes, dans lequel l'unité de traitement (4) est agencée pour conférer, à chaque composante spectrale (14) de l'hyperpixel (15) associé à un pixel élémentaire particulier d'un super-macropixel particulier, une valeur égale au signal de sortie du capteur associé au pixel élémentaire appartenant audit super-macropixel particulier et laissant passer la bande spectrale élémentaire correspondant à ladite composante spectrale. 6. Acquisition device according to one of the preceding claims, in which the processing unit (4) is arranged to give each spectral component (14) of the hyperpixel (15) associated with a particular elementary pixel d a particular super-macropixel, a value equal to the output signal of the sensor associated with the elementary pixel belonging to said particular super-macropixel and allowing the elementary spectral band corresponding to said spectral component to pass.
7. Dispositif d'acquisition selon l'une des revendications 1 à 5, dans lequel l'unité de traitement (4) est agencée pour conférer, à chaque composante spectrale de l'hyperpixel associé à un pixel élémentaire particulier d'un super- macropixel particulier, une valeur obtenue par interpolation des signaux de sortie des capteurs associés à des pixels élémentaires voisins du pixel élémentaire particulier et laissant passer la bande spectrale élémentaire correspondant à ladite composante spectrale. 7. Acquisition device according to one of claims 1 to 5, in which the processing unit (4) is arranged to confer, on each spectral component of the hyperpixel associated with a particular elementary pixel of a super- particular macropixel, a value obtained by interpolation of the output signals of the sensors associated with elementary pixels neighboring the particular elementary pixel and allowing the elementary spectral band corresponding to said spectral component to pass.
8. Dispositif d'acquisition selon l'une des revendications 1 à 5, dans lequel l'unité de traitement (4) est agencée pour conférer, à chaque composante spectrale de l'hyperpixel associé à un pixel élémentaire particulier d'un super- macropixel particulier, une valeur égale au signal de sortie du capteur associé à un pixel élémentaire, laissant passer la bande de spectrale élémentaire correspondant à ladite composante spectrale, ledit pixel élémentaire appartenant à une fenêtre glissante ayant la taille d'un super-macropixel et à laquelle appartient le pixel élémentaire particulier. 8. Acquisition device according to one of claims 1 to 5, in which the processing unit (4) is arranged to confer, on each spectral component of the hyperpixel associated with a particular elementary pixel of a super- particular macropixel, a value equal to the output signal of the sensor associated with an elementary pixel, allowing the elementary spectral band corresponding to said spectral component to pass, said elementary pixel belonging to a sliding window having the size of a super-macropixel and to which the particular elementary pixel belongs to.
9. Dispositif d'acquisition selon l'une des revendications précédentes, l'unité de traitement (4) étant en outre agencée pour produire une image en couleur et infrarouge à partir des signaux de sortie des capteurs. 9. Acquisition device according to one of the preceding claims, the processing unit (4) being further arranged to produce a color and infrared image from the output signals of the sensors.
10. Dispositif d'acquisition selon la revendication 9, dans lequel l'unité de traitement (4) est agencée, pour produire l'image en couleur et infrarouge, pour mettre en œuvre une opération de regroupement spatial de pixels élémentaires, puis un algorithme de reproduction de couleur, l'opération de regroupement de pixels élémentaires consistant à associer une unique valeur intermédiaire à chaque macropixel de chaque super-macropixel, ladite valeur intermédiaire étant obtenue par pondération des signaux de sortie des capteurs associés aux pixels élémentaires dudit macropixel. 10. Acquisition device according to claim 9, in which the processing unit (4) is arranged, to produce the color and infrared image, to implement an operation of spatial regrouping of elementary pixels, then an algorithm color reproduction, the elementary pixel grouping operation consisting in associating a single intermediate value with each macropixel of each super-macropixel, said intermediate value being obtained by weighting the output signals of the sensors associated with the elementary pixels of said macropixel.
11. Dispositif d'acquisition selon la revendication 10 et la revendication 3, comprenant en outre un filtre coupe-bande, positionné au niveau d'une pupille d'une caméra (6) dans laquelle est intégré le dispositif d'acquisition, le filtre coupe-bande étant conçu pour couper une bande spectrale frontière (Bf) située entre la troisième bande spectrale globale et la quatrième bande spectrale globale. 11. Acquisition device according to claim 10 and claim 3, further comprising a notch filter, positioned at the level of a pupil of a camera (6) in which the acquisition device is integrated, the notch filter being designed to cut off a frontier spectral band (Bf) located between the third global spectral band and the fourth global spectral band.
12. Dispositif d'acquisition selon la revendication 11, dans lequel la bande spectrale frontière (Bf) appartient au moins partiellement à la bande spectrale rouge, et dans lequel la troisième bande spectrale globale est décalée de manière à ne pas présenter de recouvrement avec la bande spectrale frontière . 12. Acquisition device according to claim 11, in which the frontier spectral band (Bf) belongs at least partially to the red spectral band, and in which the third overall spectral band is shifted so as not to overlap with the frontier spectral band.
13. Caméra (6) comprenant un dispositif d'acquisition (1) selon l'une des revendications précédentes. 13. Camera (6) comprising an acquisition device (1) according to one of the preceding claims.
PCT/EP2022/085693 2021-12-14 2022-12-13 Multispectral "snapshot" (instantaneous) acquisition camera WO2023110922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2113448 2021-12-14
FR2113448A FR3130369A1 (en) 2021-12-14 2021-12-14 Multispectral camera with instant acquisition

Publications (1)

Publication Number Publication Date
WO2023110922A1 true WO2023110922A1 (en) 2023-06-22

Family

ID=80735997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/085693 WO2023110922A1 (en) 2021-12-14 2022-12-13 Multispectral "snapshot" (instantaneous) acquisition camera

Country Status (2)

Country Link
FR (1) FR3130369A1 (en)
WO (1) WO2023110922A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011663B1 (en) 2013-10-07 2015-11-13 Sagem Defense Securite METHOD FOR VISUALIZING A MULTISPECTRAL IMAGE
EP3113491A1 (en) * 2015-06-29 2017-01-04 Omnivision Technologies, Inc. Color filter array patterns for reduction of color aliasing
US20170031318A1 (en) * 2013-12-02 2017-02-02 Imec Vzw Apparatus and Method for Performing In-Line Lens-Free Digital Holography of an Object
WO2020250773A1 (en) * 2019-06-11 2020-12-17 富士フイルム株式会社 Imaging device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114449137A (en) * 2020-11-02 2022-05-06 北京小米移动软件有限公司 Optical filter structure, shooting method, device, terminal and storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011663B1 (en) 2013-10-07 2015-11-13 Sagem Defense Securite METHOD FOR VISUALIZING A MULTISPECTRAL IMAGE
US20170031318A1 (en) * 2013-12-02 2017-02-02 Imec Vzw Apparatus and Method for Performing In-Line Lens-Free Digital Holography of an Object
EP3113491A1 (en) * 2015-06-29 2017-01-04 Omnivision Technologies, Inc. Color filter array patterns for reduction of color aliasing
WO2020250773A1 (en) * 2019-06-11 2020-12-17 富士フイルム株式会社 Imaging device
US20220078359A1 (en) * 2019-06-11 2022-03-10 Fujifilm Corporation Imaging apparatus

Also Published As

Publication number Publication date
FR3130369A1 (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US9615030B2 (en) Luminance source selection in a multi-lens camera
EP2987321B1 (en) Device for acquiring bimodal images
US9420241B2 (en) Multi-spectral imaging
EP3387824B1 (en) System and method for acquiring visible and near infrared images by means of a single matrix sensor
EP2457379B1 (en) Method for estimating a defect in an image capture system and associated systems
FR3038431A1 (en) HIGH RESOLUTION CAMERA BLOCK FOR DRONE, WITH CORRECTION OF ONDULATING OSCILLATION TYPE INSTABILITIES
JP2011239260A (en) Imaging apparatus
WO2011138541A1 (en) Polychromatic imaging method
WO2010128014A1 (en) Method for identifying a scene from multiple wavelength polarised images
WO2023110922A1 (en) Multispectral &#34;snapshot&#34; (instantaneous) acquisition camera
EP2185903A1 (en) Method for increasing the resolution of multi-spectral images
EP3384459A1 (en) Method for processing signals from a matrix for taking colour images, and corresponding sensor
EP2887655A1 (en) Adaptive colour filter for digital sensor
EP3777129B1 (en) Airborne image sensor taking matrix pictures by temporal shifting and multi-spectral summation
DiBella et al. Improved sensitivity high-definition interline CCD using the KODAK TRUESENSE Color Filter Pattern
CA3200228A1 (en) Multispectral imager with enlarged spectral domain
CA3231635A1 (en) Method for acquiring multispectral images and panchromatic thumbnail images
FR2860119A1 (en) Object scenes representation producing device for monitoring surroundings of e.g. aircraft, has filtering unit arranged in intermediate image plane and having two color frames with two different filtering characteristics
FR3131163A1 (en) Observation system and associated observation method
CA2647307A1 (en) Spectrum-forming device on an optical sensor with spatial rejection
FR3081585A1 (en) SYSTEM FOR PRODUCING IMAGE OF A DRIVER OF A VEHICLE AND ASSOCIATED INBOARD SYSTEM
FR3005226A1 (en) IMAGE ENTRY WITH ADDITION OF ACCUMULATION SIGNALS FOR ADJACENT PHOTODETECTORS
CH709013A2 (en) Colour filter for digital sensor and method for adjusting a photo-finish camera with such a filter.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22834649

Country of ref document: EP

Kind code of ref document: A1