WO2023109707A1 - 一种基于自主选择发射线圈的电能无线传输系统 - Google Patents

一种基于自主选择发射线圈的电能无线传输系统 Download PDF

Info

Publication number
WO2023109707A1
WO2023109707A1 PCT/CN2022/138198 CN2022138198W WO2023109707A1 WO 2023109707 A1 WO2023109707 A1 WO 2023109707A1 CN 2022138198 W CN2022138198 W CN 2022138198W WO 2023109707 A1 WO2023109707 A1 WO 2023109707A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power
coil
transmitting coil
transmitting
Prior art date
Application number
PCT/CN2022/138198
Other languages
English (en)
French (fr)
Inventor
黄峻健
叶可江
赵毓斌
须成忠
刘敦歌
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023109707A1 publication Critical patent/WO2023109707A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention belongs to the wireless transmission of electric energy, and in particular relates to a wireless electric energy transmission system based on autonomous selection of transmitting coils.
  • the magnetic resonance coupling wireless power transmission technology has the advantages of long-distance power transmission, high power and high efficiency transmission, and supporting charging of multiple devices, and has been widely studied.
  • high-power equipment it is used in the power transmission of industrial robots, electric vehicles and other equipment; in the research direction of low-power power transmission, it is mostly used in wireless charging of smart phones, computers, and small robots.
  • low-power power transmission it is mostly used in wireless charging of smart phones, computers, and small robots.
  • the actual energy transmission effect of the current magnetic resonance charging system is not ideal, and it faces problems such as low transmission efficiency and power, inability to transmit information or poor quality of transmitted information, and small transmission range.
  • the wireless charging system based on the magnetic coupling resonance method is mainly based on a single or multiple planar coils.
  • the energy transmission space is limited to the front and back local areas of the transmitting coil, and the freedom of energy transmission is limited.
  • the existing multi-coil system due to the inability to identify the orientation of the receiving device, the electric energy cannot be transmitted directionally, resulting in energy waste, and there are disadvantages of non-centralized electric energy transmission, small range, and low efficiency. Therefore, increasing the power transmission range of the system in space, identifying the orientation of the receiving end, and concentrating the power of the system to transmit power are the keys to solving the existing problems.
  • Solution 1 The common multi-coil magnetic induction wireless charging system currently on the market uses multiple planar coils to be placed horizontally and interlaced to increase the planar range of power transmission.
  • the wireless charging system based on the magnetic induction method has a short transmission distance, generally within 5 cm, and requires the receiving end to be aligned with the transmitting coil to obtain ideal charging efficiency. When the receiving and transmitting coils deviate, the power transmission efficiency drops sharply, and the power transmission range is small.
  • Solution 2 A wireless charging system based on radio waves.
  • the system realizes directional energy transmission through the magnetic field superposition of multiple antennas.
  • the energy transmission method based on radio waves has the advantages of long transmission distance, wide range, and free location movement.
  • its disadvantages lie in that microwave transmission efficiency is low, transmission power is small, and loss is large during energy transmission.
  • the present invention provides a wireless power transmission system based on autonomous selection of transmitting coils, including: a control storage module, a switch array module and a detection module connected to the control storage module, and a power amplifier connected to the switch array module and the detection module module, a signal module connected to the power amplification module, a transmitting coil module connected to the switch array module, and a DC-DC module for supplying power to each module.
  • the transmitting coil module is a cube or a cuboid.
  • the six sides of the transmitting coil module are provided with independent planar coils; the coils are independently connected to the switch array module.
  • the identification method of the dominant transmitting coil includes the following steps:
  • control storage module separately connects each coil in the transmitting coil module to the power amplification module by controlling the switch array module;
  • the detection module obtains the initial input power of each coil, and feeds it back to the control storage module;
  • step S3 the specific method for determining the dominant transmitting coil includes the following steps:
  • step S32 in order to avoid power changes caused by circuit instability, a power change threshold m is set. If ⁇ P i ⁇ m, it is considered that the input power of the coil C i has changed, and the system detection delay is canceled.
  • the present invention proposes a new multi-coil structure to increase the transmission range of the system, and proposes a new detection method and a coil selection method to detect the orientation of the receiving end and concentrate the system power to transmit electric energy to the receiving end.
  • the invention determines the dominant transmitting coil by detecting the input power changes of the coils on each surface of the cube coil module, and the system independently selects the dominant transmitting coil to concentrate the system power and transmit electric energy in a directional manner, so as to realize multi-directional high-degree-of-freedom wireless energy transmission and increase the system electric energy Wireless transmission range, and at the same time can concentrate power transmission to improve system efficiency.
  • Figure 1 is a system structure diagram.
  • Figure 2 is a flow chart of independent selection of coils.
  • the present invention provides a wireless power transmission system based on autonomous selection of transmitting coils, including: a control storage module, a switch array module and a detection module connected to the control storage module, and the switch array module and A power amplification module connected to the detection module, a signal module connected to the power amplification module, a transmitting coil module connected to the switch array module, and a DC-DC module for supplying power to each module.
  • control storage module store and process the power information of the power amplification module fed back by the detection module, and control the switch array module to connect the transmitting coil module to the power amplifier module.
  • Detection module detect the input power of the signal module to the power amplification module, and feed back the detection information to the control storage module.
  • Switch array module control the access of different coils to the power amplifier.
  • Stereo transmitter coil module as the system transmitter. The shape is a cube or a cuboid, and the six sides are independent square planar coils, and each coil is independently connected to the switch array module.
  • Power amplification module The signal module provides input signals, and outputs the amplified signals to the transmitting coil module through the switch array module.
  • Signal module Provide sinusoidal input signal for power amplifier.
  • DC-DC module output different working voltages to supply power for each module.
  • the transmitting coil module is a cube or a cuboid.
  • the six sides of the transmitting coil module are provided with independent planar coils; the coils are independently connected to the switch array module.
  • the identification method of the dominant transmitting coil includes the following steps:
  • control storage module separately connects each coil in the transmitting coil module to the power amplification module by controlling the switch array module;
  • the detection module obtains the initial input power of each coil, and feeds it back to the control storage module;
  • the transmitting coil (one or more coils with a small distance from the receiving end) in a strongly coupled state plays a leading role in the charging process. If the system supplies power to each coil, then A waste of electric energy occurs, reducing the efficiency of the system. Concentrating power to the leading coil to power the receiver can improve charging distance and system efficiency.
  • the input voltage of the power amplifier is fixed, the input power of the power amplifier changes due to the change of the coupling state between the transmitting coil and the receiving end.
  • the receiving end includes receiving coils and electrical equipment.
  • step S3 the specific method for determining the dominant transmitting coil includes the following steps:
  • the system is turned on, the system is empty, the control storage module controls the switch array to turn on the coil C i , the power amplification module provides an amplified signal for it, the detection module detects and feeds back the input power of the power amplification module, which is denoted as P i , and the control storage module records this
  • ⁇ P ⁇ P 1 , ⁇ P 2 , ⁇ P 3 , ⁇ P 4 , ⁇ P 5 , ⁇ P 6 ⁇ .
  • a power change threshold m (determined by actual conditions) is set. ⁇ P i ⁇ m, it is considered that the input power of coil C i changes, and the system detection delay is canceled.
  • i ⁇ 6, ⁇ P i E i ⁇ P i .
  • the power change threshold m is set, if ⁇ P i ⁇ m, it is considered that the input power of the coil C i changes, and the system detection delay is canceled; otherwise, It is considered that the input power of the coil C i has not changed.
  • tag b When ⁇ P i ⁇ m exists in ⁇ P i , tag b counts once, and when there is no power change, tag a counts once.
  • n is the detection period, n times of detection is one cycle
  • n times of power detection there is a high probability that there will be no power change, and the system will be identified as no receiver accessing the system, a , b is cleared, the system will continue to detect power changes, where n and Y are determined by actual needs.
  • a-b represents the difference between the number of power changes and the number of no changes in the detection period.
  • the probability of the two cases is the same.
  • the difference is greater than zero and greater than the threshold Y, it means that the system has a high probability of detecting power. Change, it can be considered that the receiving end has been connected to the system on the side of the power change coil.

Abstract

本发明公开了一种基于自主选择发射线圈的电能无线传输系统,包括:控制存储模块、与所述控制存储模块连接的开关阵列模块和检测模块、与所述开关阵列模块和检测模块连接的功率放大模块、与所述功率放大模块连接的信号模块、与所述开关阵列模块连接的发射线圈模块、以及用于给各模块供电的DC-DC模块。本发明通过检测立方体线圈模块各个面的线圈的输入功率变化判定出主导发射线圈,系统自主选择出主导发射线圈集中系统功率定向传输电能,实现多方位高自由度无线电能传输,可增大系统电能无线传输范围,同时能集中电能传输提高系统效率。

Description

一种基于自主选择发射线圈的电能无线传输系统 技术领域
本发明属于电能无线传输,具体涉及一种基于自主选择发射线圈的电能无线传输系统。
背景技术
随着电能无线传输技术的不断成熟,推动了电能无线传输的产品快速发展。其中磁谐振耦合式电能无线传输技术有着远距离电能传输,高功率高效率传输和支持多个设备充电的优点,被广泛研究。在大功率设备电能传输研究方向,被运用于工业机器人,电动汽车等设备的电能传输;在小功率电能传输研究方向,多运用在智能手机,电脑,小型机器人的无线充电。但是目前的磁谐振式充电系统实际能量传输效果并不理想,面临着传输效率和功率偏低,无法传输信息或传输信息的质量差以及传输范围小等问题。目前,基于磁耦合谐振方式的无线充电系统主要是基于平面单个或多个线圈进行研究,能量传输空间仅限于发射线圈正面和反面局部区域,能量传输自由度有限。现有多线圈系统中,因无法识别接收设备方位导致电能无法定向传输而造成能量浪费,存在电能传输不集中,范围小,效率低的缺点。因此,增加系统在空间电能传输范围,辨别接收端方位,集中系统功率传输电能是解决现有问题的关键。
目前,最相近似的方法有以下2种。
方案1:目前市场上常见的多线圈磁感应无线充电系统,利用多个平面线圈水平交错叠加放置增加电能传输的平面范围。基于磁感应方式的无线充电系统传输距离短,一般为5厘米以内,并且需要接收端对准发射线圈才能获得理想的充电效率,收发射线圈有偏差时电能传输效率急剧下降,电能传输范围较小。
方案2:基于无线电波方式的无线充电系统,系统通过多个天线的磁场叠加实现能量定向传输。基于无线电波的能量传输方式,具有传输距离远,范围广,位置自由移动等优点。但其缺点在于基于微波传输效率低、传输功率小,在能量的传输过程中,损耗大。
发明内容
为了解决上述技术问题,本发明采用的技术方案为:
本发明提供一种基于自主选择发射线圈的电能无线传输系统,包括:控制存储模块、与所述控制存储模块连接的开关阵列模块和检测模块、与所述开关阵列模块和检测模块连接的功率放大模块、与所述功率放大模块连接的信号模块、与所述开关阵列模块连接的发射线圈模块、以及用于给各模块供电的DC-DC模块。
进一步地,所述发射线圈模块为正方体或长方体。所述发射线圈模块的六面均设有独立的平面线圈;所述线圈独立接入开关阵列模块。
进一步地,主导发射线圈的认定方法包括以下步骤:
S1:控制存储模块通过控制所述开关阵列模块分别使发射线圈模块中各个线圈单独接入功率放大模块;
S2:先在空载情况下,检测模块获得各个线圈的初始输入功率,并反馈给控制存储模块;
S3:再在有载情况下,各个发射线圈输入功率与初始输入功率对比,当检测到发射线圈输入功率增加时,功率增量最大所对应的发射线圈认定为主导发射线圈,该线圈的朝向也是接收端所在的方位,控制存储模块控制该线圈单独连通功率放大模块集中电能,通过该线圈对接收端进行电能传输。
进一步地,在步骤S3中,确定主导发射线圈的具体方法包括以下步骤:
S31:系统开启,系统空载,控制存储模块控制开关阵列使线圈C i接通,功率放大模块为其提供放大信号,检测模块检测并反馈功率放大模块的输入功率记为P i,控制存储模块记录该输入功率为初始功率;
S32:控制存储模块获得线圈初始功率P i后,继续检测所有线圈分别接入功率放大模块时的输入功率E i,计算出各个线圈的功率变化ΔP i,ΔP i最大数值对应的线圈为主导发射线圈;
其中,i≤6,ΔP i=E i-P i
进一步地,在步骤S32中,为了避免电路的不稳定导致的功率变化,设定功率变化阈 值m,若ΔP i≥m,认为线圈C i输入功率发生变化,系统检测延时取消。
本发明基于磁谐振耦合电能无线传输技术提出了新的多线圈结构增加系统传输范围,提出新的检测方法和线圈选择方法检测接收端方位并集中系统功率对接收端集中传输电能。
本发明通过检测立方体线圈模块各个面的线圈的输入功率变化判定出主导发射线圈,系统自主选择出主导发射线圈集中系统功率定向传输电能,实现多方位高自由度无线电能传输,可增大系统电能无线传输范围,同时能集中电能传输提高系统效率。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为系统结构图。
图2为自主选择线圈流程图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
下面结合附图对本发明的技术方案进行详细的说明。
如图1所示,本发明提供一种基于自主选择发射线圈的电能无线传输系统,包括:控制存储模块、与所述控制存储模块连接的开关阵列模块和检测模块、与所述开关阵列模块和检测模块连接的功率放大模块、与所述功率放大模块连接的信号模块、与所述开关阵列 模块连接的发射线圈模块、以及用于给各模块供电的DC-DC模块。
其中,控制存储模块:存储和处理检测模块反馈的功率放大模块的功率信息,控制开关阵列模块使发射线圈模块连接功率放大器模块。检测模块:检测信号模块对功率放大模块的输入功率,并向控制存储模块反馈检测信息。开关阵列模块:控制不同线圈接入功率放大器。立体发射线圈模块:作为系统发射端。形状为正方体或长方体,六个面为独立的方形平面线圈,各个线圈独立接入开关阵列模块。功率放大模块:由信号模块提供输入信号,并将放大信号经开关阵列模块输出到发射线圈模块。信号模块:为功率放大器提供正弦输入信号。DC-DC模块:输出不同工作电压,为各个模块供电。
在本发明提供的实施例中,所述发射线圈模块为正方体或长方体。所述发射线圈模块的六面均设有独立的平面线圈;所述线圈独立接入开关阵列模块。
在本发明提供的实施例中,主导发射线圈的认定方法包括以下步骤:
S1:控制存储模块通过控制所述开关阵列模块分别使发射线圈模块中各个线圈单独接入功率放大模块;
S2:先在空载情况下,检测模块获得各个线圈的初始输入功率,并反馈给控制存储模块;
S3:再在有载情况下,各个发射线圈输入功率与初始输入功率对比,当检测到发射线圈输入功率增加时,功率增量最大所对应的发射线圈认定为主导发射线圈,该线圈的朝向也是接收端所在的方位,控制存储模块控制该线圈单独连通功率放大模块集中电能,通过该线圈对接收端进行电能传输。
即接收端靠近多线圈系统进行充电时,处于强耦合状态的发射线圈(与接收端间距较小的一个或多个线圈)在充电过程中起主导作用,如果系统对每个线圈都供电,则出现电能浪费的情况,降低系统的效率。集中电能到主导作用的线圈给接收端供电可以提高充电距离和系统效率。功放输入电压固定的情况下,功放输入功率因发射线圈和接收端之间的耦合状态变化而变化。强耦合时(收发线圈间距较小),功放输入功率相较于系统空载时(无接收端)增大,随着耦合程度的减弱(收发线圈间距较大),输入功率增量减小。根 据这一特性可以确定主导线圈。接收端包含接收线圈和用电设备。
在本发明提供的实施例中,在步骤S3中,如图2所示,确定主导发射线圈的具体方法包括以下步骤:
系统开启,系统空载,控制存储模块控制开关阵列使线圈C i接通,功率放大模块为其提供放大信号,检测模块检测并反馈功率放大模块的输入功率记为P i,控制存储模块记录该输入功率为初始功率,按相同的方法记录所有线圈的初始功率P={P 1,P 2,P 3,P 4,P 5,P 6}。
系统获得线圈初始P i后继续检测所有线圈分别接入功放时的输入功率记为E i,E={E 1,E 2,E 3,E 4,E 5,E 6},计算出各个线圈的功率变化记为ΔP i,ΔP i=E i-P i。ΔP={ΔP 1,ΔP 2,ΔP 3,ΔP 4,ΔP 5,ΔP 6}。
为了避免电路的不稳定导致的功率变化,设定功率变化阈值m(由实际情况确定)。ΔP i≥m,认为线圈C i输入功率发生变化,系统检测延时取消。其中,i≤6,ΔP i=E i-P i
在本发明提供的实施例中,为了避免电路的不稳定导致的功率变化,设定功率变化阈值m,若ΔP i≥m,认为线圈C i输入功率发生变化,系统检测延时取消,反之,认为线圈C i输入功率没有发生变化。
在ΔP i中存在ΔP i≥m时,标签b计数1次,无功率变化时,标签a计数1次。
a=0,b=X时,连续X(X表示连续出现功率变化的次数)次存在功率变化,找出功率变化最大对应的线圈,该线圈设置为主导发射线圈接入功放,其他线圈悬空。a,b清零,持续检测主导发射线圈的功率变化,其中,X由实际需求确定。即当连续X次出现功率变化,表明接收端就在相应线圈这一侧,无需进行完整的检测周期,快速使相应的发射线圈接入功放进行工作。
a+b=n,a-b≥Y时,n次功率检测(n为检测周期,n次检测为一个周期),大概率出现无功率变化的情况,系统将认定为无接收端接入系统,a,b清零,系统将继续检测功率变化,其中,n和Y由实际需求确定。
a+b=n,a-b≤Y时,n次功率检测,大概率出现有功率变化的情况,系统将认定为接收端接入系统,选择功率变化最大对应的线圈,该线圈设置为主导发射线圈接入功放, 其他线圈悬空。a,b清零,持续检测主导发射线圈的功率变化,其中,n和Y由实际需求确定。
即a-b表示检测周期内功率变化次数与无变化次数的差值,当差值为0时,两种情况出现的概率相同,当差值大于零并且大于阈值Y时,表示系统大概率检测到功率变化,可以认为接收端已经接入系统在功率变化线圈这一侧。
a=Z,b=0时,连续Z(Z表示连续无功率变化次数)次无功率变化,系统将认定为无接收端接入系统,a,b清零,功率检测添加延时,减小检测频率,减小系统能耗,其中,Z由实际需求确定。即当连续Z次无功率变化,表面无接收端,无需进行完整检测周期,快速断开线圈与功放连接。
尽管本发明的实施方案已公开如上,但其并不仅限于说明书和实施方式中所列运用。它完全可以被适用于各种适合本发明的领域。对于熟悉本领域的人员而言,可容易地实现另外的修改。因此本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (6)

  1. 一种基于自主选择发射线圈的电能无线传输系统,其特征在于,包括:控制存储模块、与所述控制存储模块连接的开关阵列模块和检测模块、与所述开关阵列模块和检测模块连接的功率放大模块、与所述功率放大模块连接的信号模块、与所述开关阵列模块连接的发射线圈模块、以及用于给各模块供电的DC-DC模块。
  2. 如权利要求1所述的一种基于自主选择发射线圈的电能无线传输系统,其特征在于,所述发射线圈模块为正方体或长方体。
  3. 如权利要求2所述的一种基于自主选择发射线圈的电能无线传输系统,其特征在于,所述发射线圈模块的六面均设有独立的平面线圈;
    所述线圈独立接入开关阵列模块。
  4. 如权利要求3所述的一种基于自主选择发射线圈的电能无线传输系统,其特征在于,主导发射线圈的认定方法包括以下步骤:
    S1:控制存储模块通过控制所述开关阵列模块分别使发射线圈模块中各个线圈单独接入功率放大模块;
    S2:先在空载情况下,检测模块获得各个线圈的初始输入功率,并反馈给控制存储模块;
    S3:再在有载情况下,各个发射线圈输入功率与初始输入功率对比,当检测到发射线圈输入功率增加时,功率增量最大所对应的发射线圈认定为主导发射线圈,该线圈的朝向也是接收端所在的方位,控制存储模块控制该线圈单独连通功率放大模块集中电能,通过该线圈对接收端进行电能传输。
  5. 如权利要求4所述的一种基于自主选择发射线圈的电能无线传输系统,其特征在于,在步骤S3中,确定主导发射线圈的具体方法包括以下步骤:
    S31:系统开启,系统空载,控制存储模块控制开关阵列使线圈C i接通,功率放大模块为其提供放大信号,检测模块检测并反馈功率放大模块的输入功率记为P i,控制存储模块记录该输入功率为初始功率;
    S32:控制存储模块获得线圈初始功率P i后,继续检测所有线圈分别接入功率放大模块时的输入功率E i,计算出各个线圈的功率变化ΔP i,ΔP i最大数值对应的线圈为主导发射线圈;
    其中,i≤6,ΔP i=E i-P i
  6. 如权利要求5所述的一种基于自主选择发射线圈的电能无线传输系统,其特征在于,在步骤S32中,为了避免电路的不稳定导致的功率变化,设定功率变化阈值m,若ΔP i≥m,认为线圈C i输入功率发生变化,系统检测延时取消。
PCT/CN2022/138198 2021-12-15 2022-12-09 一种基于自主选择发射线圈的电能无线传输系统 WO2023109707A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111536793.5A CN116264418A (zh) 2021-12-15 2021-12-15 一种基于自主选择发射线圈的电能无线传输系统
CN202111536793.5 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023109707A1 true WO2023109707A1 (zh) 2023-06-22

Family

ID=86722413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138198 WO2023109707A1 (zh) 2021-12-15 2022-12-09 一种基于自主选择发射线圈的电能无线传输系统

Country Status (2)

Country Link
CN (1) CN116264418A (zh)
WO (1) WO2023109707A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130181664A1 (en) * 2012-01-13 2013-07-18 Samsung Electro-Mechanics Co., Ltd. Apparatus and method for transmitting wireless power
CN103259297A (zh) * 2012-02-17 2013-08-21 联想(北京)有限公司 无线充电控制方法和无线充电装置
CN103715780A (zh) * 2012-09-28 2014-04-09 美国博通公司 具有设备发现和功率转移能力的功率发送设备
CN104917263A (zh) * 2014-03-10 2015-09-16 陈业军 一种无线充电的地面发射装置
CN111064239A (zh) * 2019-11-01 2020-04-24 东南大学 一种三维无线充电系统负载定位及功率恒定控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130181664A1 (en) * 2012-01-13 2013-07-18 Samsung Electro-Mechanics Co., Ltd. Apparatus and method for transmitting wireless power
CN103259297A (zh) * 2012-02-17 2013-08-21 联想(北京)有限公司 无线充电控制方法和无线充电装置
CN103715780A (zh) * 2012-09-28 2014-04-09 美国博通公司 具有设备发现和功率转移能力的功率发送设备
CN104917263A (zh) * 2014-03-10 2015-09-16 陈业军 一种无线充电的地面发射装置
CN111064239A (zh) * 2019-11-01 2020-04-24 东南大学 一种三维无线充电系统负载定位及功率恒定控制方法

Also Published As

Publication number Publication date
CN116264418A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
US9006934B2 (en) Power feeding apparatus, power receiving apparatus, wireless power feeding system and method for wireless transfer of power
US20220085655A1 (en) Wireless power transmitting and charging system
US10088508B2 (en) Wireless power transfer method and apparatus and method of detecting resonant frequency used in wireless power transfer
CN104283324B (zh) 电力接收装置和非接触供电系统
US9054544B2 (en) Power feeding device, power receiving device, and wireless power feed system
KR20120066281A (ko) 무선 전력 전송 장치 및 그 전송 방법
US9176551B2 (en) Wireless power transmission apparatus and method of transmitting wireless power using the same
CN106712310B (zh) 一种基于时间反演的分布式无线能量传输方法
US10122202B2 (en) Energy charging apparatus and method
Aoki et al. Maximum transfer efficiency of MIMO-WPT system
CN104600767A (zh) 电子装置
WO2023109707A1 (zh) 一种基于自主选择发射线圈的电能无线传输系统
KR20190062710A (ko) 다중 동시 충전을 위한 무선 전력 송신 장치 및 무선 전력 수신 장치
CN112448486A (zh) 基于中继线圈补偿电容的三线圈无线电能传输系统及方法
CN110120711B (zh) 基于时间反演的自主动态无线电能接收装置及方法
KR101222777B1 (ko) 무선 충전용 코일 구조체 및 이를 구비한 무선 충전 장치
US20130029617A1 (en) Voltage driving apparatus for power amplifier, power amplifying system, power supply device and communication device
CN106877527A (zh) 基于不同谐振频率辅助线圈的无线能量传输方法
CN107546867B (zh) 磁耦合高效率电能传输并联线圈设计方法
CN212012495U (zh) 一种多负载无线输电系统
EP4016390A1 (en) Dual system rfid tag
JP3221100U (ja) マルチ誘導コイルのrfidシステム
KR101967580B1 (ko) 무선 전력 전송 시스템에서 수신기 자유도 개선을 위한 입력 전류의 크기 및 위상 제어 장치 및 방법
CN111983306A (zh) 一种无线传能频率跟踪检测电路及实现方法
CN102955975A (zh) 射频与电容混合天线驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906454

Country of ref document: EP

Kind code of ref document: A1