WO2023109508A1 - 一种集中供光装置 - Google Patents

一种集中供光装置 Download PDF

Info

Publication number
WO2023109508A1
WO2023109508A1 PCT/CN2022/135117 CN2022135117W WO2023109508A1 WO 2023109508 A1 WO2023109508 A1 WO 2023109508A1 CN 2022135117 W CN2022135117 W CN 2022135117W WO 2023109508 A1 WO2023109508 A1 WO 2023109508A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
cpo
controller
switch
light
Prior art date
Application number
PCT/CN2022/135117
Other languages
English (en)
French (fr)
Inventor
汤宁峰
尚迎春
陈勋
叶兵
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023109508A1 publication Critical patent/WO2023109508A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/038Arrangements for fault recovery using bypasses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • Embodiments of the present disclosure relate to the communication field, and in particular, to a centralized light supply device.
  • CPO photoelectric co-packaged optics
  • ELS external laser source
  • the main advantages are built-in light source, short optical path, small coupling loss, and relatively high laser efficiency, but the disadvantages are also very clear.
  • the technology is very difficult. At present, there are not many CPO light sources that can truly realize commercial silicon-based integration. many.
  • the built-in light source is close to the switch chip, the ambient temperature is relatively high, which will lead to increased power consumption, decreased luminous efficiency, and increased failure rate of the laser.
  • the pluggable light source of the ELS panel solves the technical difficulties of the built-in light source and the relatively high ambient temperature. However, it also has a fatal shortcoming, that is, it occupies the front panel of the device. There are also serious problems with the failure of light sources.
  • the embodiment of the present disclosure provides a centralized light supply device to at least solve the problem that the pluggable light source of the ELS panel occupies the front panel of the equipment in the related art. serious problem.
  • An embodiment of the present disclosure provides a centralized light supply device.
  • the centralized light supply device includes: a controller, at least one light source pool, and multiple CPO switches.
  • the controller communicates with the light source pool, the The CPO switch is connected, and the light source pool is connected to the CPO switch through a photoelectric hybrid connector; the controller is used to control the light source pool and the CPO switch; the light source pool is used to control the light source pool and the CPO switch; Under the control of the controller, output the light source to the CPO switch; the CPO switch is configured to modulate the received light source into an optical signal under the control of the controller, and output the optical signal.
  • the light source pool includes: a plurality of light sources and an optical cross matrix, the optical cross matrix is respectively connected to the plurality of light sources and the CPO switch through optical fibers, and the plurality of light sources are respectively connected to the controller.
  • the controller includes a control body and an external interface
  • the external interface includes a first interface connected to the CPO switch, and a second interface connected to the light source and the optical cross matrix .
  • the multiple light sources include multiple normal light sources, hot standby light sources, and cold standby light sources
  • the optical cross matrix includes multiple controllable optical switches
  • the CPO switch includes multiple CPO modules
  • a controllable optical switch is connected to a normal light source
  • the plurality of controllable optical switches are connected to the hot backup light source and the cold backup light source
  • a controllable optical switch is connected to a CPO module
  • the controllable optical switch is used for The input light source and the output light source can be switched arbitrarily, and the light source is protected.
  • the controller is further configured to turn off the optical cross-connect matrix after power-on is completed; after completing the handshake and confirmation with the target CPO module in the CPO switch, control to start the target CPO
  • the light source corresponding to the module; the target CPO module is configured to send light source connection status information to the controller after handshaking and confirming with the controller.
  • the target CPO module is further configured to write the light source connection status information into a status register; the controller is configured to obtain the target CPO module by polling the status register After determining that the target CPO module indicates to turn on the light source, control to turn on the controllable light switch corresponding to the target CPO module to start the light source.
  • the CPO module is further configured to store the information of the faulty light source in the status register if it is found that the received light source is unstable or no light source is received; the controller, by polling the The status register is used to obtain and notify the light source pool of the information of the faulty light source; the light source pool is used to switch the hot standby light source to the faulty light source after confirming the information of the faulty light source, At the same time, the cold standby light source is changed to the hot standby light source, and an early warning signal is sent to the controller; the controller is also used to maintain the light sources of the light source pool according to the early warning signal.
  • the CPO module is configured to obtain fault information of a target light source, adjust flow according to the fault information of the target light source, and write the fault information of the target light source into a status register, wherein, The fault information of the target light source is determined by the controller in advance according to the historical use data of the light source and the state data of the optical cross matrix and written into the register; the controller is also used to poll the The status register is used to obtain the fault information of the target light source, and notify the controllable optical switch corresponding to the CPO module to switch the light source.
  • the CPO module is configured to detect that it is disconnected from the photoelectric hybrid connector, and write the corresponding light source absence information into the status register; the controller is also configured to pass Poll the status register to obtain the absence information of the light source corresponding to the CPO module, and control to turn off the light source corresponding to the CPO module.
  • the plurality of light sources in the light source pool are integrated with an optical cross matrix, and an internal controller is built in the light source pool.
  • the photoelectric hybrid connector includes an optical signal coupling point, an electrical signal connection point, and a positioning pin, or, the photoelectric hybrid connector includes an optical signal coupling point, an electrical signal connection point, and a positioning hole, wherein, the optical signal coupling point is used to transmit the light source to the CPO switch; the electrical signal connection point and positioning pin are used to connect the controller; or, the electrical signal connection point and positioning hole are used to Connect the controller.
  • Fig. 1 is a block diagram of a centralized light supply device according to an embodiment of the present disclosure
  • Fig. 2 is a first schematic diagram of a centralized light supply device according to an embodiment of the present disclosure
  • Fig. 3 is a second schematic diagram of a centralized light supply device according to an embodiment of the present disclosure
  • Fig. 4 is a first schematic diagram of a light source optoelectronic hybrid connector according to an embodiment of the present disclosure
  • Fig. 5 is a second schematic diagram of a light source optoelectronic hybrid connector according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram of the centralized light supply device according to an embodiment of the present disclosure.
  • the centralized light supply device includes: a controller, at least one light source pool, multiple A CPO switch, the controller is connected to the light source pool and the CPO switch through a two-way communication channel, and the light source pool is connected to the CPO switch through a photoelectric hybrid connector; the controller controls the light source pool and the CPO switch; the controller communicates with the light source pool through a two-way communication channel , CPO switch to connect to support the action of the above light source pool.
  • the light source pool outputs the light source to the CPO switch under the control of the controller; the CPO switch modulates the received light source into an optical signal under the control of the controller, and outputs the optical signal. That is, after the CPO switch receives the light source, it modulates it into an optical signal to realize the external data connection of the switch.
  • the optical hybrid connector in the embodiments of the present disclosure may use a high-density connector, such as a 256-fiber or 3456-fiber connector.
  • the light source pool can realize three functions: output the light source to the switch; notify the CPO module in the CPO switch of the warning light source information, and then switch the light source; accept the fault information fed back by the CPO module, and switch the faulty light source.
  • the embodiments of the present disclosure can be applied to data center (Data Center, referred to as DC) switches and distributed disaggregated chassis (Distributed Disaggregated Chasis, referred to as DDC) router devices, and the application environment is generally a DC computer room or a computer room of an operator .
  • DC data center
  • DDC distributed Disaggregated Chasis
  • the application environment is generally a DC computer room or a computer room of an operator .
  • the integrated light supply method which is similar to the centralized water cooling method.
  • the centralized light supply can be regarded as an infrastructure.
  • the specific implementation of CPO switches and DDC routers is to directly connect the photoelectric hybrid connector of the light source with the CPO photoelectric hybrid connector of the equipment used.
  • the switch in this embodiment may specifically be a DC switch, a DDC router, and a general switch.
  • Fig. 2 is a schematic diagram of a centralized light supply device according to an embodiment of the present disclosure.
  • each light source pool includes: a plurality of light sources and a light cross matrix, and the light cross matrix is respectively connected to a plurality of light sources through optical fibers and a CPO switch, the multiple light sources are respectively connected to the controller through a built-in integrated circuit (Inter-Integrated Circuit, referred to as I 2 C) bus.
  • I 2 C built-in integrated circuit
  • each light source can include a light source group composed of multiple lights, or a single light source.
  • Each of the light sources includes 4 separate light sources, and each light source in this embodiment is composed of 4 single-channel light sources.
  • the light sources adopt a 16+2 configuration, of which 16 are normal working light sources, one is a hot standby light source, and one is a cold standby light source. All light sources can be connected to the optical switch matrix by plugging and unplugging.
  • a 16+2 light source backup can be used to provide an example of centralized light supply to a CPO switch with 16 CPOs.
  • the light source pool includes a light source and an optical switch matrix.
  • the light source can adopt the following specifications: single-wave and four-wave wavelengths with a wavelength of 1310nm, the center wavelength of which is 1271-1291-1311-1331nm, connected through an optical fiber and an optical switch matrix . All light sources can be connected to the controller through the I 2 C bus.
  • the optical switch matrix includes 18*16*4 controllable optical switches, which can realize the arbitrary switching of 18 input and 16 output light sources, and realize the protection of light sources.
  • the optical switch matrix outputs the light source to the CPO switch through the light source optical connector.
  • the controller includes a control body and an external interface, and the external interface includes an interface connected to a CPO switch and an interface connected to a light source and an optical switch matrix. Control relationships between realistic light pools and CPO switches.
  • the CPO switch is connected to the optical switch matrix of the light source pool through the CPO photoelectric hybrid connector. After the light source enters the CPO, it is modulated to realize the optical transmission of data.
  • Fig. 3 is a second schematic diagram of a centralized light supply device according to an embodiment of the present disclosure.
  • the plurality of light sources in the light source pool and the light cross matrix are integrated modules, and the light source pool has an internal controller built in, which can Simplifies overall light pool control.
  • the centralized light supply device shown in Figure 3 includes a controller, a light source, an optical switch matrix, and a CPO switch, and the difference from the implementation shown in Figure 2 is that the light source pool adopts a scheme in which the light source and the optical switch matrix are combined into one;
  • the light source pool supports the configuration across CPO switches. At the same time, it supports the cascading of multiple light sources. That is, one light source pool can support multiple DC switches.
  • multiple light source pools can be cascaded and expanded through one controller.
  • the light source pool adopts the scheme of combining the light source and the switch matrix into one, and a controller can be built in the light source pool, which facilitates the simplification of the control of the entire light source pool.
  • a controller can be built in the light source pool, which facilitates the simplification of the control of the entire light source pool.
  • the controller includes a control body and an external interface
  • the external interface includes a first interface connected to the CPO switch, and a second interface connected to the light source and the optical cross matrix.
  • the multiple light sources include multiple normal light sources, hot standby light sources, and cold standby light sources
  • the optical cross matrix includes multiple controllable optical switches
  • the CPO switch includes multiple CPO modules
  • one controllable The optical switch is connected to a normal light source
  • the plurality of controllable optical switches are connected to the hot standby light source and the cold standby light source
  • one controllable optical switch is connected to a CPO module
  • the controllable optical switch is used for switching the input light source and the output light source. Switch freely and protect the light source.
  • the controller is also used to turn off the optical cross-connect matrix after power-on is completed; after completing the handshake and confirmation with the target CPO module in the CPO switch, control to start the light source corresponding to the target CPO module ;
  • the target CPO module is used to send light source connection status information to the controller after handshaking and confirming with the controller.
  • the controller turns off the optical switch matrix and turns on any light source; a certain CPO module and the controller complete the handshake and confirmation, the controller starts a certain light source, and then connects the activated light source to the CPO module through the optical switch matrix to complete the start-up process of the light source of the CPO module.
  • the CPO module After the light source connection is completed, the CPO module notifies the controller of its own light source connection status information.
  • the communication process of this process is completed through the I 2 C protocol in this embodiment, and can also be completed through other protocols in a broad sense.
  • the process completed through I 2 C is as follows: the CPO module writes its own status information into the register, and the controller sees the information of the status controller of the CPO module through polling, and then writes the register whether the light source can be turned on, and the CPO module After receiving the information, the feedback can turn on the light source, and the controller polls. If it finds the confirmation information of the CPO module, it starts a certain power supply, and then opens the optical path in the optical matrix switch. For the connection process of other optical paths in the system, repeat the above process until all optical paths are opened and enter the monitoring stage.
  • the above target CPO module further includes a status register, the target CPO module is also used to write the light source connection status information into the status register; the controller is used to poll the status register, Obtain the light source connection status information of the target CPO module, and control to turn on the controllable optical switch corresponding to the target CPO module to start the light source after it is determined that the target CPO module indicates to turn on the light source.
  • the CPO finds that the input modulated light source is unstable or there is no light input, it stores this information in its own status register, and the controller learns this information through query, and then notifies it to the light source pool, and the light source pool is confirming After receiving this information, immediately switch the light source in the hot standby state to the faulty light source, and at the same time, turn the cold standby light source into a hot standby light source, and send an early warning signal to the controller to prompt maintenance of the light source pool light source.
  • the CPO module is also used to store the information of the faulty light source in the status register if it is found that the received light source is unstable or no light source is received; the controller, by polling the status register, acquires and The information of the faulty light source is notified to the light source pool; the light source pool is used to switch the hot standby light source to the faulty light source after confirming the information of the faulty light source, and at the same time change the cold standby light source to the hot standby light source, and An early warning signal is sent to the controller; the controller is also used to maintain the light sources of the light source pool according to the early warning signal.
  • the CPO module is configured to obtain fault information of a target light source, adjust flow according to the fault information of the target light source, and write the fault information of the target light source into a status register, wherein the target light source
  • the fault information is determined by the controller in advance according to the historical use data of the light source and the status data of the optical cross matrix and written into the register; the controller is also used to obtain the status of the target light source by polling the status register
  • the fault information notifies the controllable light switch corresponding to the CPO module to switch the light source.
  • the controller pre-judges the light source that may be faulty. Once confirmed, the controller writes this information into the I 2 C register of the CPO module. After the CPO module knows this situation , to adjust its own flow, when ready, write this information into the register, and after the controller polls this information, it will notify the light source pool to realize the switching of the light source.
  • the CPO module is used to detect that the photoelectric hybrid connector is disconnected, and writes the corresponding light source absence information into the status register; the controller is also used to poll the The status register is used to obtain the absence information of the light source corresponding to the CPO module, and control to turn off the light source corresponding to the CPO module.
  • the human eye safety of the light source can be realized, that is, after the light source photoelectric hybrid connector and the CPO photoelectric hybrid connector are connected, the controller and the CPO shake hands to confirm the connection, and the light source of the light source pool is turned on.
  • the CPO module finds that the corresponding light source is not in place, the controller turns off the optical switch matrix corresponding to the light source, and at the same time, turns off the CPO The light source corresponding to the module.
  • the power of the switching power supply will not be turned on.
  • Fig. 4 is a schematic diagram of a light source photoelectric hybrid connector according to an embodiment of the present disclosure.
  • the photoelectric hybrid connector includes an optical signal coupling point, an electrical signal connection point and a positioning pin;
  • the second schematic diagram of the light source photoelectric hybrid connector of the example, as shown in Figure 5, the photoelectric hybrid connector includes an optical signal coupling point, an electrical signal connection point and a positioning hole, wherein the optical signal coupling point is used to transmit to the CPO switch
  • the light source; the electrical signal connection point and positioning pin are used to connect to the controller; or the electrical signal connection point and positioning hole are used to connect to the controller.
  • the embodiment of the present disclosure is mainly aimed at the centralized light supply of the CPO, and optimizes the design.
  • the first is the switching of the light source failure, that is, once the CPO finds that the input light source is missing or lost, it will immediately notify the controller to switch the existing light source, which can realize the hot switching of the light source and greatly reduce the packet loss.
  • the controller predicts that some light sources may be abnormal, and after notifying the CPO, it automatically switches to the backup light source.
  • the m+n backup scheme is implemented for the light source pool, that is, m light sources are in the working state and n light sources are in the backup state at the same time. In the n backups, certain hot backup and cold backup are configured.
  • the embodiment of the present disclosure can realize zero failure of the light source.
  • the light source pool system of the present disclosure can realize horizontal expansion, that is, realize horizontal expansion of multiple light source pools through one controller, and realize unified management and control of multiple light source pools.
  • the controller itself can only be expanded through expansion slots.
  • a photoelectric hybrid connector similar to CPO is used to achieve the above effects of information handshaking and panel space reduction, so that a 1RU space panel can use the photoelectric hybrid connector in the embodiment of the present disclosure to access more optical fibers.
  • the electrical channel realizes the information exchange between the CPO and the light source pool, and the optical path realizes the coupling and transmission of optical signals.
  • each module or each step of the above-mentioned disclosure can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices In fact, they can be implemented in program code executable by a computing device, and thus, they can be stored in a storage device to be executed by a computing device, and in some cases, can be executed in an order different from that shown here. Or described steps, or they are fabricated into individual integrated circuit modules, or multiple modules or steps among them are fabricated into a single integrated circuit module for implementation. As such, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Endoscopes (AREA)
  • Optical Communication System (AREA)

Abstract

本公开实施例提供了一种集中供光装置,包括:控制器、至少一个光源池、多个CPO交换机,该控制器通过双向通讯通道与该光源池、该CPO交换机连接,该光源池与该CPO交换机通过光电混合连接器连接;该控制器,用于对该光源池、该CPO交换机进行控制;该光源池,用于在该控制器的控制下将光源输出到该CPO交换机中;该CPO交换机,用于在该控制器的控制下将接收到的该光源调制为光信号,并输出该光信号,光源池可以通过一个控制器进行级联扩展,可以解决相关技术中ELS面板可插拔光源占用设备的前面板且占用空间大的问题,通过光电混合连接器,可以连接更多的光源,在面板上所占空间小,大大节约了面板所占空间。

Description

一种集中供光装置
相关申请的交叉引用
本公开基于2021年12月15日提交的发明名称为“一种集中供光装置”的中国专利申请CN202111539017.0,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本公开实施例涉及通信领域,具体而言,涉及一种集中供光装置。
背景技术
目前,实现光电共封装光学(Co-Packaged Optics,简称为CPO)光源的方法主要有两种,包括内置光源和外置光源(External laser source,简称为ELS)的面板可插拔光源。
内置光源,主要优点是光源内置,光路径短,耦合损耗小,激光器的效率比较高,但是缺点也是非常明确,首先是技术难度很大,目前真正能使实现商业硅基集成的CPO光源为数不多。其次,内置光源由于靠近交换机芯片,所以,环境温度比较高,这个会导致激光器的功耗增加、发光效率下降和失效率增加。
ELS面板可插拔光源,解决了内置光源的技术难点和环境温度比较高的情况,但是,也有致命的缺点,就是占用设备的前面板,同时,由于每个可插拔光源相互独立,在保障光源的失效方面也存在严重的问题。
针对相关技术中ELS面板可插拔光源占用设备的前面板的问题,尚未提出解决方案。
发明内容
本公开实施例提供了一种集中供光装置,以至少解决相关技术中ELS面板可插拔光源占用设备的前面板,同时由于每个可插拔光源相互独立,在保障光源的失效方面也存在严重的问题。
本公开实施例提供了一种集中供光装置,所述集中供光装置包括:控制器、至少一个光源池、多个CPO交换机,所述控制器通过双向通讯通道与所述光源池、所述CPO交换机连接,所述光源池与所述CPO交换机通过光电混合连接器连接;所述控制器,用于对所述光源池、所述CPO交换机进行控制;所述光源池,用于在所述控制器的控制下将光源输出到所述CPO交换机中;所述CPO交换机,用于在所述控制器的控制下将接收到的所述光源调制为光信号,并输出所述光信号。
在一示例性实施例中,所述光源池包括:多个光源与一个光交叉矩阵,所述光交叉矩阵分别通过光纤与所述多个光源、所述CPO交换机连接,所述多个光源分别与所述控制器相连。
在一示例性实施例中,所述控制器包括控制主体和对外接口,所述对外接口包括与所述CPO交换机连接的第一接口,与所述光源、所述光交叉矩阵连接的第二接口。
在一示例性实施例中,所述多个光源包括多个正常光源、热备光源、冷备光源,所述光交叉矩阵包括多个可控光开关,所述CPO交换机包括多个CPO模块,一个可控光开关连接一 个正常光源,所述多个可控光开关均连接所述热备光源与所述冷备光源,一个可控光开关连接一个CPO模块,所述可控光开关用于进行输入光源和输出光源的任意切换,并对所述光源进行保护。
在一示例性实施例中,所述控制器,还用于上电完成后,关闭所述光交叉矩阵;与所述CPO交换机中的目标CPO模块完成握手与确认之后,控制启动所述目标CPO模块对应的光源;所述目标CPO模块,用于在与所述控制器握手与确认之后,向所述控制器发送光源连接状态信息。
在一示例性实施例中,所述目标CPO模块,还用于将所述光源连接状态信息写入状态寄存器;所述控制器,用于通过轮询所述状态寄存器,获取所述目标CPO模块的光源连接状态信息,在确定所述目标CPO模块指示开启光源之后,控制打开所述目标CPO模块对应的可控光开关启动所述光源。
在一示例性实施例中,所述CPO模块,还用于若发现接收到的光源不稳定或没有接收到光源,将故障光源的信息存储到状态寄存器中;所述控制器,通过轮询所述状态寄存器,获取并将所述故障光源的信息通知给所述光源池;所述光源池,用于在确认所述故障光源的信息后,将所述热备光源切换到所述故障光源,同时将所述冷备光源变为所述热备光源,并向所述控制器发出预警信号;所述控制器,还用于根据所述预警信号维护所述光源池的光源。
在一示例性实施例中,所述CPO模块,用于获取目标光源的故障信息,根据所述目标光源的故障信息调节流量,并将所述目标光源的故障信息写入状态寄存器中,其中,所述目标光源的故障信息是所述控制器预先根据所述光源的历史使用数据和所述光交叉矩阵的状态数据确定并写入寄存器中的;所述控制器,还用于通过轮询所述状态寄存器,获取所述目标光源的故障信息,通知所述CPO模块对应的可控光开关进行光源切换。
在一示例性实施例中,所述CPO模块,用于检测到与所述光电混合连接器断开连接,将对应的光源不在位信息写入状态寄存器中;所述控制器,还用于通过轮询所述状态寄存器,获取所述CPO模块对应的光源不在位信息,控制关闭所述CPO模块对应的光源。
在一示例性实施例中,所述光源池中的所述多个光源与光交叉矩阵为一体模块,所述光源池内置一个内部控制器。
在一示例性实施例中,所述光电混合连接器包括光信号耦合点、电信号连接点及定位销,或者,所述光电混合连接器包括光信号耦合点、电信号连接点及定位孔,其中,所述光信号耦合点用于向所述CPO交换机传输光源;所述电信号连接点及定位销,用于连接所述控制器;或者,所述电信号连接点及定位孔,用于连接所述控制器。
附图说明
图1是本公开实施例的集中供光装置的框图;
图2是根据本公开实施例的集中供光装置的示意图一;
图3是根据本公开实施例的集中供光装置的示意图二;
图4是根据本公开实施例的光源光电混合连接器的示意图一;
图5是根据本公开实施例的光源光电混合连接器的示意图二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本公开实施例提供了一种集中供光装置,图1是本公开实施例的集中供光装置的框图,如图1所示,该集中供光装置包括:控制器、至少一个光源池、多个CPO交换机,控制器通过双向通讯通道与光源池、CPO交换机连接,光源池与CPO交换机通过光电混合连接器连接;控制器对光源池、CPO交换机进行控制;控制器通过双向通讯通道和光源池、CPO交换机进行连接,为上述光源池的动作进行支撑。光源池在该控制器的控制下将光源输出到CPO交换机中;CPO交换机在该控制器的控制下将接收到的该光源调制为光信号,并输出该光信号。即CPO交换机接受到光源后,将其调制为光信号,实现交换机对外的数据连接。本公开实施例或者的光电混合连接器可以使用高密度的连接器,例如256纤或3456纤的连接器。
具体的,光源池可以实现三个功能:将光源输出到交换机;将预警光源的信息通知CPO交换机中的CPO模块,再对光源进行切换;接受CPO模块反馈的故障信息,对故障光源进行切换。
为了实现上述的功能,需要使用光电混合连接器实现光源池和CPO交换机之间的连接,使用光连接器实现光源池的对外连接,使用电连接器,实现控制和CPO交换机和光源池的连接。
本公开实施例可以应用在数据中心(Data Center,简称为DC)交换机和分布式分离机箱(Distributed Disaggregated Chasis,简称为DDC)类的路由器设备上面,应用的环境一般是DC机房或运用商的机房。在这样的环境下面,采用集成供光的方式更加方便,类似于集中水冷的方式,此时,集中供光可以视为一个基础设施。具体的CPO交换机和DDC类的路由器的实现方案,直接把光源的光电混合连接器和使用设备的CPO光电混合连接器对接上就可以了。本实施例中的交换机具体可以是DC交换机、DDC类路由器和通用交换机。
图2是根据本公开实施例的集中供光装置的示意图一,如图2所示,每个该光源池包括:多个光源与一个光交叉矩阵,该光交叉矩阵分别通过光纤与多个光源、CPO交换机连接,该多个光源分别通过内置集成电路(Inter-Integrated Circuit,简称为I 2C)总线与控制器相连。
图2中的光源池中的光源,每路光源可以包含多路光组成的光源组,也可以是单路的光源,为了说明方便,本实施例中以18路光源为例进行说明,18路光源中的每路包含了4路单独的光源,本实施例中的每路光源有4个单路的光源组成。光源采用16+2的配置,其中16个为正常工作的光源,1个为热备光源,1个为冷备光源。所有的光源们可以通过插拔的方式和光开关矩阵进行连接。
本实施例中,可以采用16+2的光源备份,对一个16个CPO的CPO交换机进行集中供光的例子。具体的,光源池包括光源和光开关矩阵,在本公开实施例中光源可以采用以下规格:波长为1310nm的单波和4波其中心波长为1271-1291-1311-1331nm,通过光纤和光开关矩阵连接。所有的光源,可以通过I 2C总线和控制器相连。
光开关矩阵的包括18*16*4的可控光开关,实现18输入和16输出光源的任意切换,实现对光源的保护。光开关矩阵,通过光源光连接器给CPO交换机输出光源。
控制器包括控制主体和对外接口,对外接口包括和CPO交换机相连接的接口以及和光源、 光开关矩阵相连接的接口。现实光源池和CPO交换机之间的控制关系。
CPO交换机通过CPO光电混合连接器和光源池的光开关矩阵相连接,光源进入CPO后,经过调制,实现数据的光传输。
图3是根据本公开实施例的集中供光装置的示意图二,如图3所示,该光源池中的该多个光源与光交叉矩阵为一体模块,该光源池内置一个内部控制器,可以简化整个光源池控制。如图3所示的集中供光装置包括控制器、光源、光开关矩阵以及CPO交换机,和图2所示的实施方案的区别在于:光源池采用了光源和光开关矩阵合二为一的方案;光源池支持跨CPO交换机之间的配置,同时,支持多光源的级联,即一个光源池可以支持多台DC交换机,同时,多个光源池,可以通过一台控制器进行级联扩展。光源池采用光源和开关矩阵合二为一的方案,可以在光源池内置一个控制器,便于整个光源池控制的简单化。多光源池的级联,在实现m+n的备份包含的时候,需要考虑在本光开关矩阵内实施保护。
在一示例性实施例中,该控制器包括控制主体和对外接口,该对外接口包括与该CPO交换机连接的第一接口,与该光源、该光交叉矩阵连接的第二接口。
在一示例性实施例中,该多个光源包括多个正常光源、热备光源、冷备光源,该光交叉矩阵包括多个可控光开关,该CPO交换机包括多个CPO模块,一个可控光开关连接一个正常光源,该多个可控光开关均连接该热备光源与该冷备光源,一个可控光开关连接一个CPO模块,该可控光开关用于进行输入光源和输出光源的任意切换,并对该光源进行保护。
在一示例性实施例中,该控制器,还用于上电完成后,关闭该光交叉矩阵;与该CPO交换机中的目标CPO模块完成握手与确认之后,控制启动该目标CPO模块对应的光源;该目标CPO模块,用于在与该控制器握手与确认之后,向该控制器发送光源连接状态信息。上电完成后,控制器关闭光开关矩阵,打开任意一路光源;某一路CPO模块和控制完成握手和确认,控制器启动某一路光源,再将该启动的光源通过光开关矩阵和CPO模块相连接,完成该路CPO模块的光源的启动过程。光源连接完成后,CPO模块将自身光源连接状态的信息通知控制器。这个过程的通讯过程,本实施例通过I 2C协议来完成,在广泛意义上也可以通过其它的协议来完成。通过I 2C来完成的过程如下:CPO模块将自身的状态信息写入寄存器,控制器通过轮询,看到了CPO模块的状态控制器的信息,再写入是否可以开启光源的寄存器,CPO模块收到信息后,反馈可以开启光源,控制器通过轮询,如果发现CPO模块的确认信息后,启动某一路电源的,再在光矩阵开关中把光通路打开。系统其它光路的连接过程,重复上面的过程,直到光路全部打开,进入监控阶段。
在一示例性实施例中,上述的目标CPO模块还包括状态寄存器,该目标CPO模块,还用于将该光源连接状态信息写入状态寄存器;该控制器,用于通过轮询该状态寄存器,获取该目标CPO模块的光源连接状态信息,在确定该目标CPO模块指示开启光源之后,控制打开该目标CPO模块对应的可控光开关启动该光源。即如果CPO发现了输入的调制光源不稳定或没有光输入,把这个信息存储到自己的状态寄存器中,控制器通过查询的方式,了解到这个信息,再把它通知光源池,光源池在确认这个信息后,立即将热备状态的光源切换到故障的光源,同时,将冷备的光源,变为热备光源,向控制器发出预警信号,提示维护光源池光源。进一步的,该CPO模块,还用于若发现接收到的光源不稳定或没有接收到光源,将故障光源的信息存储到状态寄存器中;该控制器,通过轮询该状态寄存器,获取并将该故障光源的信息通知给该光源池;该光源池,用于在确认该故障光源的信息后,将该热备光源切换到该故 障光源,同时将该冷备光源变为该热备光源,并向该控制器发出预警信号;该控制器,还用于根据该预警信号维护该光源池的光源。
在一示例性实施例中,该CPO模块,用于获取目标光源的故障信息,根据该目标光源的故障信息调节流量,并将该目标光源的故障信息写入状态寄存器中,其中,该目标光源的故障信息是该控制器预先根据该光源的历史使用数据和该光交叉矩阵的状态数据确定并写入寄存器中的;该控制器,还用于通过轮询该状态寄存器,获取该目标光源的故障信息,通知该CPO模块对应的可控光开关进行光源切换。控制器根据光源的历史使用数据和光开关矩阵的状态数据,预先判断有可能出现故障的光源,一旦确认,控制器再将这个信息,写入CPO模块的I 2C寄存器,CPO模块知道这个情况后,调节自身的流量,准备好后,把这个信息,写入寄存器,控制器轮询到这个信息后,通知光源池,实现光源的切换。
在一示例性实施例中,该CPO模块,用于检测到与该光电混合连接器断开连接,将对应的光源不在位信息写入状态寄存器中;该控制器,还用于通过轮询该状态寄存器,获取该CPO模块对应的光源不在位信息,控制关闭该CPO模块对应的光源。可以实现光源的人眼安全,即,在光源光电混合连接器和CPO光电混合连接器连接后,控制器和CPO进行握手,确认连接,光源池的光源开启。当光源被查到没有连接到CPO模块后,即CPO模块的没有连接到光电混合连接器,CPO模块发现对应的光源不在位,控制器关闭该光源对应的光开关矩阵,同时,关闭该路CPO模块对应的光源。在没有查询到该光源连接的CPO模块确认信息前,不会打开该开关电源的电源。
图4是根据本公开实施例的光源光电混合连接器的示意图一,如图4所示,该光电混合连接器包括光信号耦合点、电信号连接点及定位销;图5是根据本公开实施例的光源光电混合连接器的示意图二,如图5所示,该光电混合连接器包括光信号耦合点、电信号连接点及定位孔,其中,该光信号耦合点用于向该CPO交换机传输光源;该电信号连接点及定位销,用于连接该控制器;或者,该电信号连接点及定位孔,用于连接该控制器。
本公开实施例主要是针对CPO进行集中供光,进行优化设计。首先是光源失效的切换,即,一旦CPO发现输入光源缺少或丢失后,立即通知控制器,对现有的光源进行切换,可实现光源的热切换,极大的减少丢包情况。其次,控制器根据光源的健康状态,预测到某些光源可能有异常,通知CPO后,自动切换到备份光源。再次,对光源池实行m+n的备份方案,即m个光源在工作状态,同时n个光源在备份状态,在这n个备份中,配置一定的热备和冷备。本公开实施例可以实现光源的0故障。
本公开的光源池系统,可以实现横向的扩展,即通过一个控制器,实现多个光源池的横向扩展,实现多个光源池的统一管理和控制。控制器本事也只可以通过扩展槽位进行扩展。
本公开实施例,使用类似CPO的光电混合连接器,实现上面的信息握手和减少面板空间的效果,使得1RU空间面板,使用本公开实施例中的光电混合连接器可以接入更多的光纤。电通道,实现CPO和光源池的信息互通,光路,实现光信号的耦合传输。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者 将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (11)

  1. 一种集中供光装置,所述集中供光装置包括:控制器、至少一个光源池、多个共封装光学CPO交换机,所述控制器通过双向通讯通道与所述光源池、所述CPO交换机连接,所述光源池与所述CPO交换机通过光电混合连接器连接;
    所述控制器,用于对所述光源池、所述CPO交换机进行控制;
    所述光源池,用于在所述控制器的控制下将光源输出到所述CPO交换机中;
    所述CPO交换机,用于在所述控制器的控制下将接收到的所述光源调制为光信号,并输出所述光信号。
  2. 根据权利要求1所述的集中供光装置,其中,所述光源池包括:多个光源与一个光交叉矩阵,所述光交叉矩阵分别通过光纤与所述多个光源、所述CPO交换机连接,所述多个光源分别与所述控制器相连。
  3. 根据权利要求2所述的集中供光装置,其中,
    所述控制器包括控制主体和对外接口,所述对外接口包括与所述CPO交换机连接的第一接口,与所述光源、所述光交叉矩阵连接的第二接口。
  4. 根据权利要求2所述的集中供光装置,其中,所述多个光源包括多个正常光源、热备光源、冷备光源,所述光交叉矩阵包括多个可控光开关,所述CPO交换机包括多个CPO模块,一个可控光开关连接一个正常光源,所述多个可控光开关均连接所述热备光源与所述冷备光源,一个可控光开关连接一个CPO模块,所述可控光开关用于进行输入光源和输出光源的任意切换,并对所述光源进行保护。
  5. 根据权利要求4所述的集中供光装置,其中,
    所述控制器,还用于上电完成后,关闭所述光交叉矩阵;与所述CPO交换机中的目标CPO模块完成握手与确认之后,控制启动所述目标CPO模块对应的光源;
    所述目标CPO模块,用于在与所述控制器握手与确认之后,向所述控制器发送光源连接状态信息。
  6. 根据权利要求5所述的集中供光装置,其中,
    所述目标CPO模块,还用于将所述光源连接状态信息写入状态寄存器;
    所述控制器,用于通过轮询所述状态寄存器,获取所述目标CPO模块的光源连接状态信息,在确定所述目标CPO模块指示开启光源之后,控制打开所述目标CPO模块对应的可控光开关启动所述光源。
  7. 根据权利要求4所述的集中供光装置,其中,
    所述CPO模块,还用于若发现接收到的光源不稳定或没有接收到光源,将故障光源的信息存储到状态寄存器中;
    所述控制器,通过轮询所述状态寄存器,获取并将所述故障光源的信息通知给所述光源池;
    所述光源池,用于在确认所述故障光源的信息后,将所述热备光源切换到所述故障光源,同时将所述冷备光源变为所述热备光源,并向所述控制器发出预警信号;
    所述控制器,还用于根据所述预警信号维护所述光源池的光源。
  8. 根据权利要求4所述的集中供光装置,其中,
    所述CPO模块,用于获取目标光源的故障信息,根据所述目标光源的故障信息调节流量,并将所述目标光源的故障信息写入状态寄存器中,其中,所述目标光源的故障信息是所述控制器预先根据所述光源的历史使用数据和所述光交叉矩阵的状态数据确定并写入寄存器中的;
    所述控制器,还用于通过轮询所述状态寄存器,获取所述目标光源的故障信息,通知所述CPO模块对应的可控光开关进行光源切换。
  9. 根据权利要求4所述的集中供光装置,其中,
    所述CPO模块,用于检测到与所述光电混合连接器断开连接,将对应的光源不在位信息写入状态寄存器中;
    所述控制器,还用于通过轮询所述状态寄存器,获取所述CPO模块对应的光源不在位信息,控制关闭所述CPO模块对应的光源。
  10. 根据权利要求2至9中任一项所述的集中供光装置,其中,
    所述光源池中的所述多个光源与光交叉矩阵为一体模块,所述光源池内置一个内部控制器。
  11. 根据权利要求1至9中任一项所述的集中供光装置,其中,所述光电混合连接器包括光信号耦合点、电信号连接点及定位销,或者,所述光电混合连接器包括光信号耦合点、电信号连接点及定位孔,其中,
    所述光信号耦合点用于向所述CPO交换机传输光源;
    所述电信号连接点及定位销,用于连接所述控制器;或者,所述电信号连接点及定位孔,用于连接所述控制器。
PCT/CN2022/135117 2021-12-15 2022-11-29 一种集中供光装置 WO2023109508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111539017.0A CN116264654A (zh) 2021-12-15 2021-12-15 一种集中供光装置
CN202111539017.0 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023109508A1 true WO2023109508A1 (zh) 2023-06-22

Family

ID=86722615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135117 WO2023109508A1 (zh) 2021-12-15 2022-11-29 一种集中供光装置

Country Status (2)

Country Link
CN (1) CN116264654A (zh)
WO (1) WO2023109508A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452569A (zh) * 2016-12-13 2017-02-22 无锡市德科立光电子技术有限公司 共用光源的多备份的otdr光放大装置及控制方法
CN113141549A (zh) * 2021-04-23 2021-07-20 航天新通科技有限公司 一种光电混合共封装交换芯片架构
CN214174690U (zh) * 2021-03-09 2021-09-10 亨通洛克利科技有限公司 光电协同封装硅光引擎
US11159240B1 (en) * 2020-09-30 2021-10-26 Juniper Networks, Inc. Power efficient and scalable co-packaged optical devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452569A (zh) * 2016-12-13 2017-02-22 无锡市德科立光电子技术有限公司 共用光源的多备份的otdr光放大装置及控制方法
US11159240B1 (en) * 2020-09-30 2021-10-26 Juniper Networks, Inc. Power efficient and scalable co-packaged optical devices
CN214174690U (zh) * 2021-03-09 2021-09-10 亨通洛克利科技有限公司 光电协同封装硅光引擎
CN113141549A (zh) * 2021-04-23 2021-07-20 航天新通科技有限公司 一种光电混合共封装交换芯片架构

Also Published As

Publication number Publication date
CN116264654A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
US9756404B2 (en) Data center path switch with improved path interconnection architecture
US7346764B2 (en) Optical transceiver module initialization
US20060069822A1 (en) Optical communication module
JP7114753B2 (ja) 光学モジュール異常のリアルタイム監視機能を有するマルチモジュール光ファイバレーザ
US20110069954A1 (en) On Improved Optical Network Apparatus Having Optical Line Terminal Blade Protection with 1-to-N Redundancy and No-Service-Interruption
CN107294594B (zh) 一种无源光网络设备、切换方法及系统
US20180034542A1 (en) Network tap with battery-assisted and programmable failover
TW201322660A (zh) 光纖傳輸切換裝置及其控制方法
WO2023109508A1 (zh) 一种集中供光装置
TWI535227B (zh) 光收發裝置
JP6345390B2 (ja) 光スイッチモジュール及び光切替装置
CN107276675A (zh) 一种基于光纤远距离传输的usb3.0 hub
CN110998510B (zh) 一种存储系统及存储系统的工作模式的切换方法
JP2009206540A (ja) 回線終端装置、冗長化通信システム、冗長化通信方法及び冗長化通信プログラム
CN102820930A (zh) 光模块发射使能控制方法、控制装置及光模块
CN108600873A (zh) 一种可控的光口实现冗余链路保护功能的方法
CN107332619A (zh) 一种基于光纤远距离传输的usb3.1 hub
US20210119406A1 (en) Multi-module fiber laser capable of monitoring abnormalities of optical modules in real time
CN209930261U (zh) 支持系统启动过程、故障及死机的旁路功能电路
JPH1051479A (ja) ディジタル伝送ネットワーク
CN207251624U (zh) 一种基于光纤远距离传输的usb3.1 hub
WO2019242266A1 (zh) 一种端口连接状态监测系统和方法
CN104618009A (zh) 一种光纤串接设备热备份保护系统
CN217689799U (zh) 控制器及双机架冗余控制系统
CN207184484U (zh) 一种基于光纤远距离传输的usb3.0 hub

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906258

Country of ref document: EP

Kind code of ref document: A1