WO2023109201A1 - 钢制安全壳空间内气溶胶蒸汽冷凝去除速度实验评估方法 - Google Patents
钢制安全壳空间内气溶胶蒸汽冷凝去除速度实验评估方法 Download PDFInfo
- Publication number
- WO2023109201A1 WO2023109201A1 PCT/CN2022/117314 CN2022117314W WO2023109201A1 WO 2023109201 A1 WO2023109201 A1 WO 2023109201A1 CN 2022117314 W CN2022117314 W CN 2022117314W WO 2023109201 A1 WO2023109201 A1 WO 2023109201A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aerosol
- removal
- experiment
- steam
- gravity
- Prior art date
Links
- 239000000443 aerosol Substances 0.000 title claims abstract description 155
- 230000005494 condensation Effects 0.000 title claims abstract description 64
- 238000009833 condensation Methods 0.000 title claims abstract description 64
- 238000011156 evaluation Methods 0.000 title claims abstract description 20
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 18
- 239000010959 steel Substances 0.000 title claims abstract description 18
- 238000002474 experimental method Methods 0.000 claims abstract description 77
- 239000002245 particle Substances 0.000 claims abstract description 72
- 230000005484 gravity Effects 0.000 claims abstract description 64
- 238000001816 cooling Methods 0.000 claims abstract description 29
- 230000007246 mechanism Effects 0.000 claims abstract description 28
- 238000004364 calculation method Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 9
- 238000004062 sedimentation Methods 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 238000002347 injection Methods 0.000 claims description 13
- 239000007924 injection Substances 0.000 claims description 13
- 238000012360 testing method Methods 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 6
- 230000000694 effects Effects 0.000 abstract description 8
- 239000000498 cooling water Substances 0.000 description 26
- 238000005192 partition Methods 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/04—Investigating sedimentation of particle suspensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C17/00—Monitoring; Testing ; Maintaining
- G21C17/001—Mechanical simulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/002—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/93—Toxic compounds not provided for in groups B01D2257/00 - B01D2257/708
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2202—Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
- G01N2001/222—Other features
- G01N2001/2223—Other features aerosol sampling devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the invention relates to a technology in the field of nuclear industry safety, in particular to an experimental evaluation method for the removal rate of aerosol vapor condensation in a steel containment space.
- Steel containment external cooling measures are passive special safety measures for AP series advanced third-generation nuclear power plants. After the accident, a large amount of high-temperature water vapor and radioactive aerosols are released into the containment. Putting in external cooling measures can not only export the heat of the containment to prevent overpressure Ineffective, and can remove radioactive aerosols to prevent leakage of radioactive substances.
- the sol suspended in the containment space under accident conditions will naturally settle under the action of gravity, but the removal effect of gravity has a strong correlation with the particle size, and the removal effect on submicron smaller particles is poor.
- aerosol particles of different sizes will be removed by steam condensation. Therefore, evaluating the steam condensation removal rate of aerosol under the external cooling condition of steel containment is of great significance for the evaluation of radioactive source items and safety design of nuclear power plants.
- the present invention proposes an experimental evaluation method for the removal rate of aerosol vapor condensation in the steel containment space, simulating the removal process of aerosol under the external cooling condition of the actual containment, and comprehensively considering gravity and steam condensation
- the removal effect of gravity sedimentation is separated from the comprehensive effect, and then the steam condensation removal rate of aerosols in the steel containment is evaluated after the external cooling measures are put in.
- the invention relates to an experimental evaluation method of aerosol steam condensation removal speed in a steel containment space.
- the aerosol gravity settling experiment under the condition of no steam and the aerosol under the condition of steam are successively carried out.
- the comprehensive removal experiment of sol the mass concentration and particle size distribution of the space aerosol in the no-steam and steam-containing experiments were respectively obtained as calculation parameters; then the relationship between gravity sedimentation velocity and aerosol particle size, and the single gravity mechanism in the comprehensive removal experiment were calculated The concentration of aerosols removed, the concentration of aerosols removed by a single vapor condensation mechanism in the comprehensive removal experiment, and the removal rate of aerosol vapor condensation in the comprehensive removal experiment.
- the aerosol vapor condensation removal rate can be directly applied to the parameters of the concentration decay calculation, which represents the removal efficiency, that is, the method of obtaining the decay curve by the vapor condensation mechanism obtained through experimental means and mathematical processing on the sedimentation rate of aerosol particles .
- the test bench includes: a medium injection system connected to the test body, an external cooling system, and a parameter measurement system.
- the aerosol gravity settling experiment under no-steam condition refers to an experiment in which the aerosol naturally settles to the bottom of the main container under the action of gravity only in a closed main container without steam, thereby removing the space aerosol.
- the particle size spectrometer is used to measure the aerosol mass concentration C m,g (t i ) and the particle size distribution of the aerosol particles in the space at time t i in real time, that is, the share dCm corresponding to the particle size d j of the gravity sedimentation experiment j /Cm.
- the comprehensive aerosol removal experiment under steam-containing conditions refers to: in a closed body container containing a certain proportion of high-temperature water vapor, the external cooling system of the container is turned on, and the aerosol is simultaneously affected by two mechanisms of gravity and high-temperature steam condensation to the bottom of the body container And cooling wall deposition, and then the experiment of removing space aerosol.
- the particle size spectrometer is used to measure the aerosol mass concentration C m,c (t i ) and the particle size distribution of aerosol particles in the space at time t i in real time, that is, the share dCm corresponding to the particle size d k of the comprehensive removal experiment k /Cm.
- the aerosol concentration removed by a single gravity mechanism in the comprehensive removal experiment refers to: the concentration change of the aerosol that is only settled by gravity in the comprehensive removal experiment is separated by calculation
- the aerosol vapor condensation removal rate in the comprehensive removal experiment refers to: the aerosol vapor condensation removal rate obtained by calculation under the external cooling condition of the steel containment where A cs is the condensation wall area.
- the present invention restores the real external cooling process of the steel containment through the comprehensive aerosol removal experiment under the condition of water vapor, and the relationship between the gravity sedimentation velocity and the aerosol particle size is single Aerosol concentration removed by gravity mechanism, aerosol concentration removed by single vapor condensation mechanism in comprehensive removal experiment, and calculation method of aerosol vapor condensation removal rate in comprehensive removal experiment.
- Fig. 1 is a flowchart of the present invention
- Fig. 2 is a schematic diagram of a space aerosol removal rate evaluation test bench of an embodiment of the present invention
- Fig. 3 is a schematic diagram of the cooling water partition flow channel at the top of the interlayer
- Figure 4 is a top view of the cooling water distributor
- Figure 5 is a front view of the cooling water distributor
- Fig. 6 is the variation of aerosol normalized mass concentration in the no-steam gravity settling experiment
- Fig. 7 is the initial particle size distribution of aerosol in the no-steam gravity settling experiment
- Fig. 8 is the relational expression curve of the gravitational settling velocity obtained by fitting to particle diameter
- Figure 9 is the change of aerosol normalized mass concentration in the comprehensive removal experiment containing steam
- Figure 10 is the initial particle size distribution of the aerosol in the steam-containing comprehensive removal experiment
- Figure 11 shows the change of aerosol normalized mass concentration corresponding to the comprehensive removal, gravity removal and steam condensation removal in the comprehensive removal experiment containing steam;
- 1 closed pressure container 2 cooling water interlayer, 3 cooling water partition flow channel on the top of the interlayer, 4 wall cooling water tank, 5 space condensate water collection tank, 6 wall condensate water collection tank, 7 waste gas tank, 8 gate valve, 9 Safety valve, 10 air injection pipeline, 11 water vapor injection pipeline, 12 aerosol injection pipeline, 13 space upper injection port, 14 space lower part injection port, 15 water vapor concentration sensor, 16 particle size spectrometer upper measuring point, 17 particle size Measurement points at the lower part of the spectrometer, 18 space pressure sensor, 19 space temperature sensor, 20 cooling water tank, 21 cooling water pump, 22 cooling water flow meter, 23 cooling water thermometer, 24 cooling water distributor, 301 entrance of the cooling water partition flow channel on the top of the interlayer , 302 fan-shaped curved surface flow channel, 303 flow channel partition, 2401 cooling water distributor inlet, 2402 cooling water distributor outlet, 2403 annular shunt channel, 2404 tapered convex surface.
- the method for evaluating the removal rate of aerosol vapor condensation under external cooling conditions in this embodiment includes the following steps:
- test bench includes: the experiment body and the medium injection system connected to it, and the external cooling system , parameter measurement system;
- the experimental body includes: a closed pressure container 1, a cooling water interlayer 2 arranged on the outer wall of the pressure container 1, and eight cooling water partition flow channels 3 on the top, wherein: the eight cooling water partition flow channels 3 are all
- the cloth is set to ensure that the cooling water evenly covers the outer wall of the main body container to achieve better uniform cooling.
- the volume of the pressure vessel 1 is 18.5m 3 .
- the medium injection system includes: an air injection pipeline 10, a water vapor injection pipeline 11 and an aerosol injection pipeline 12, which are respectively used to inject clean air, high-temperature water vapor and polydisperse aerosol into the closed pressure-bearing container 1, the injection system Cooperating with the parameter measurement system described above, the thermal parameters of the experiment can be monitored to meet the experimental requirements of simulating high temperature, high pressure and high water vapor share accident environment.
- the external cooling system includes: a cooling water tank 20, a cooling water pump 21, a valve, a flow meter, a temperature sensor, and a cooling water distributor 24 connected in sequence, wherein: the cooling water separator is connected to the cooling water partition flow channel at the top of the interlayer;
- Described parameter measuring system comprises: particle size spectrometer 16,17, space temperature sensor 19, space pressure sensor 18, water vapor concentration sensor 15, cooling water flowmeter 22, cooling water thermometer 23, wherein: particle size spectrometer is used To measure the aerosol mass concentration and particle size distribution inside the space, the water vapor concentration sensor is used to evaluate the steam condensation rate, and the temperature and pressure sensors are used to determine the thermal hydraulic state of the space, so as to meet the accident conditions of high temperature, high pressure and high water vapor share.
- S3 Carry out a comprehensive aerosol removal experiment under steam-containing conditions, and use a particle size spectrometer to measure the aerosol mass concentration C m,c (t i ) and the particle size distribution of aerosol particles in the space at time t i in real time, that is, the particle size d k corresponds to the share dCm k /Cm, and calculate the change of aerosol concentration removed by a single gravity mechanism in the comprehensive removal experiment.
- the aerosol concentration in the inner space decreases by 80% during 1-hour cooling, of which 70% is removed by the steam condensation mechanism and 10% by the gravity sedimentation mechanism. It can be seen that the steam condensation removal efficiency is much higher than that of gravity sedimentation, the removal ratio is as high as 87.5%, and the removal efficiency is about 7 times that of gravity sedimentation. This method can be used to evaluate the steam condensation removal rate of aerosols in steel containment under different accident conditions.
- the present invention truly simulates the complex thermal-hydraulic environment and steam condensation process in the containment under accident conditions by carrying out the gravity deposition experiment of the aerosol without steam and the comprehensive deposition experiment of the steam-containing condition, and finally passes The experimental parameter measurement and mathematical analysis calculate the aerosol vapor condensation removal rate under accident conditions, which is closer to the actual situation and fills the gap in related fields.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Sampling And Sample Adjustment (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
一种钢制安全壳空间内气溶胶蒸汽冷凝去除速度实验评估方法,通过搭建空间气溶胶去除速度评估实验台架,依次进行无蒸汽条件的气溶胶重力沉降实验和含蒸汽条件的气溶胶综合去除实验,分别获取无蒸汽及含蒸汽实验中空间气溶胶的质量浓度及粒径分布作为计算参量;然后计算得到重力沉降速度与气溶胶粒径的关系式、综合去除实验中单一重力机制去除的气溶胶浓度、综合去除实验中单一蒸汽冷凝机制去除的气溶胶浓度以及综合去除实验中气溶胶蒸汽冷凝去除速度。通过模拟实际安全壳外部冷却条件下气溶胶的去除过程,综合考虑重力及蒸汽冷凝的去除作用,分离重力沉降去除效果,进而评估外部冷却下由于气溶胶蒸汽冷凝对的去除速度。
Description
本发明涉及的是一种核工业安全领域的技术,具体是一种钢制安全壳空间内气溶胶蒸汽冷凝去除速度实验评估方法。
钢制安全壳外部冷却措施是AP系列先进三代核电厂的非能动专设安全措施,事故后大量高温水蒸气及放射性气溶胶释放到安全壳,投入外部冷却措施不仅能够导出安全壳热量防止超压失效,而且能够对放射性气溶胶起到去除作用,防止放射性物质外泄。事故条件下悬浮在安全壳空间内的溶胶会在重力作用下发生自然沉降,但重力去除效果与粒径有较强的相关性,对亚微米级较小颗粒的去除效果较差。而在钢制安全壳外部冷却下,不同大小的气溶胶颗粒均会受到蒸汽冷凝的去除作用。因此,评估钢制安全壳外部冷却条件下气溶胶的蒸汽冷凝去除速度,对核电厂放射性源项评估及安全设计具有重要意义。
事故条件下安全壳空间内气溶胶去除速度的评估,一直是核电厂安全分析的重要研究课题,蒸汽冷凝是事故条件下钢制安全壳内重要的物理现象,同时也是空间内气溶胶去除的重要机制之一,自19世纪80年代以来,通常使用基于大量简化假设的理论模型进行分析,然而实际外部冷却条件下安全壳内环境非常复杂,蒸汽冷凝对气溶胶的去除的综合效应较强,导致当前模型的分析结果存在较大的不准度。
发明内容
本发明针对现有技术存在的上述不足,提出一种钢制安全壳空间内气溶胶蒸汽冷凝去除速度实验评估方法,模拟实际安全壳外部冷却条件下气溶胶的去除过程,综合考虑重力及蒸汽冷凝的去除作用,从综合效应中分离重力沉降去除效果,进而评估外部冷却措施投入后钢制安全壳内气溶胶的蒸汽冷凝去除速度。
本发明是通过以下技术方案实现的:
本发明涉及一种钢制安全壳空间内气溶胶蒸汽冷凝去除速度实验评估方法,通过搭建空间气溶胶去除速度评估实验台架,依次进行无蒸汽条件的气溶胶重力沉降实验和含蒸汽条件的气溶胶综合去除实验,分别获取无蒸汽及含蒸汽实验中空间气溶胶的质量浓度及粒径分布作为计算参量;然后计算得到重力沉降速度与气溶胶粒径的关系式、综合去除实验中单一重力机制去除的气溶胶浓度、综合去除实验中单一蒸汽冷凝机制去除的气溶胶浓度以及综合去除实验中气溶胶蒸汽冷凝去除速度。
所述的气溶胶蒸汽冷凝去除速度可直接应用与浓度衰减计算的参数,其代表了去除效率,即通过实验手段及数学处理得到的蒸汽冷凝机制对气溶胶颗粒的沉降速度进而得到衰减曲线的方法。
所述的实验台架包括:包括:与实验本体相连的介质注入系统、外部冷却系统、参数测量系统。
所述的无蒸汽条件的气溶胶重力沉降实验是指:在不含蒸汽的密闭本体容器中,气溶胶在仅受重力作用下向本体容器底部自然沉降,进而使空间气溶胶得到去除的实验。重力沉降实验中使用粒径谱仪实时测量t
i时刻空间内气溶胶质量浓度C
m,g(t
i)及气溶胶颗粒的粒径分布,即重力沉降实验的粒径d
j对应的份额dCm
j/Cm。
所述的重力沉降速度与气溶胶粒径的关系式是指:通过计算得到当前粒群不同粒径气溶胶对应的重力沉降速度
其中:V为空间自由容积,A
g为重力沉积面积;进一步对
与变量d
j进行二阶多项式拟合,得到气溶胶重力沉降速度与粒径的关系式V
g(d)=a+b·d+c·d
2。
所述的含蒸汽条件气溶胶综合去除实验是指:在含有一定份额高温水蒸气的密闭本体容器中,开启容器外部冷却系统,气溶胶受到重力及高温蒸汽冷凝两种机制同时作用向本体容器底部及冷却壁面沉积,进而使空间气溶胶得到去除的实验。综合去除实验中使用粒径谱仪实时测量t
i时刻空间内气溶胶质量浓度C
m,c(t
i)及气溶胶颗粒的粒径分布,即综合去除实验的粒径d
k对应的份额dCm
k/Cm。
所述的综合去除实验中单一蒸汽冷凝机制去除的气溶胶浓度是指:通过计算得到综合去除实验中单一蒸汽冷凝机制去除的气溶胶浓度变化C
m,cs(t
i)=C
m,c(t
0)+C
m,c(t
i)-C
m,cg(t
i)。
技术效果
与现有技术手段相比,本发明通过含水蒸气条件的气溶胶综合去除实验,还原了真实的钢制安全壳外部冷却过程,重力沉降速度与气溶胶粒径的关系式,综合去除实验中单一重力机制去除的气溶胶浓度、综合去除实验中单一蒸汽冷凝机制去除的气溶胶浓度以及综合去除实验中气溶胶蒸汽冷凝去除速度计算方法。
图1为本发明流程图;
图2为本发明实施例的空间气溶胶去除速度评估实验台架示意图;
图3为夹层顶部的冷却水分区流道示意图;
图4为冷却水分流器俯视图;
图5为冷却水分流器正视图;
图6为无蒸汽重力沉降实验中气溶胶归一化质量浓度变化;
图7为无蒸汽重力沉降实验中气溶胶初始粒径分布;
图8为拟合得到的重力沉降速度对粒径的关系式曲线;
图9为含蒸汽综合去除实验中气溶胶归一化质量浓度变化;
图10为含蒸汽综合去除实验中气溶胶初始粒径分布;
图11为含蒸汽综合去除实验中综合去除、重力去除及蒸汽冷凝去除对应的气溶胶归一化质量浓度变化;
图中:1封闭承压容器、2冷却水夹层、3夹层顶部冷却水分区流道、4壁面冷却水槽、5空间冷凝水收集罐、6壁面冷凝水收集罐、7废气罐、8闸阀、9安全阀、10空气注入管线、11水蒸气注入管线、12气溶胶注入管线、13空间上部注入口、14空间下部注入口、15水蒸气浓度传感器、16粒径谱仪上部测点、17粒径谱仪下部测点、18空间压力传感器、19空间温度传感器、20冷却水箱、21冷却水泵、22冷却水流量计、23冷却水温度计、24冷却水分流器、301夹层顶部冷却水分区流道进口、302扇形曲面流道、303流道隔板、2401冷却水分流器进口、2402冷却水分流器出口、2403环形分流道、2404锥形凸面。
如图1所示,本实施例的外部冷却条件下气溶胶蒸汽冷凝去除速度评估方法,包括以下步骤:
S1:搭建空间气溶胶去除速度评估综合去除实验台架,获取实验过程中空间气溶胶的质量浓度、粒径分布,该实验台架包括:实验本体及与之相连的介质注入系统、外部冷却系统、参数测量系统;
所述的实验本体包括:封闭承压容器1、设置于承压容器1外壁的冷却水夹层2以及位于其顶部的八个冷却水分区流道3,其中:八个冷却水分区流道3均布设置以确保冷却水均匀覆盖本体容器外壁面实现较好的均匀冷却。
所述的承压容器1的容积为18.5m
3。
所述的介质注入系统包括:空气注入管线10、水蒸气注入管线11和气溶胶注入管线12,分别用于向封闭承压容器1中注入洁净空气、高温水蒸气及多分散气溶胶,该注入系统配 合所述的参数测量系统可对实验的热工参数进行监测,以满足模拟高温高压高水蒸气份额事故环境的实验需求。
所述的外部冷却系统包括:依次相连的冷却水箱20、冷却水泵21、阀门、流量计、温度传感器及冷却水分流器24,其中:冷却水分离器与夹层顶部的冷却水分区流道相连;
所述的参数测量系统包括:粒径谱仪16、17、空间温度传感器19、空间压力传感器18、水蒸气浓度传感器15、冷却水流量计22、冷却水温度计23,其中:粒径谱仪用于测量空间内部气溶胶质量浓度及粒径分布,水蒸气浓度传感器用于评估蒸汽冷凝速率,温度、压力传感器用于判定空间热工水力状态,以达到高温高压高水蒸气份额的事故条件。
S2:进行无蒸汽条件的气溶胶重力沉降实验,使用粒径谱仪实时测量t
i时刻空间内气溶胶质量浓度C
m,g(t
i)及气溶胶颗粒的粒径分布,即粒径d
j对应的份额dCm
j/Cm,并计算不同粒径气溶胶的重力沉降速度,进一步拟合数据得到重力沉降速度表达式,具体为:进行无蒸汽条件下气溶胶重力沉降实验,实验总时长为15小时,该实验中粒径谱仪实时测量t
i时刻空间内气溶胶质量浓度C
m,g(t
i)归一化后随时间的变化如图6所示,测得气溶胶的初始粒径分布如图7所示,图中质量中位径MMD为1.36μm,几何标准偏差GSD=1.65,根据实验测得的气溶胶质量浓度C
m,g(t
i)及粒径分布计算不同粒径气溶胶颗粒的重力沉降速度
并拟合得到如图8所示的重力沉降速度对粒径的函数关系式V
g(d)=a+b·d+c·d
2,其中a=1.144E-4,b=1.564E-5,c=4.339E-6。
S3:进行含蒸汽条件的气溶胶综合去除实验,使用粒径谱仪实时测量t
i时刻空间内气溶胶质量浓度C
m,c(t
i)及气溶胶颗粒的粒径分布,即粒径d
k对应的份额dCm
k/Cm,并计算综合去除实验中单一重力机制去除的气溶胶浓度变化,具体为:进行含蒸汽条件的气溶胶综合去除实验,实验总时长为1小时,该实验中粒径谱仪实时测量t
i时刻空间内气溶胶质量浓度C
m,c(t
i)归一化后随时间的变化如图9所示,测得气溶胶的初始粒径分布如图10所示,图中质量中位径MMD为0.75,几何标准偏差GSD=1.63。根据S2中得到的函数表达式V
g(d)计算含蒸汽综合去除实验中单一重力去除的气溶胶浓度变化
其归一化后随时间的变化见图11重力去除曲线。
S4:计算含蒸汽综合去除实验中单一蒸汽冷凝机制去除的气溶胶浓度,具体为:根据S3中所得到的单一重力去除的气溶胶浓度参数C
m,cg(t
i),计算含蒸汽综合去除实验中单一蒸汽冷凝机制去除的气溶胶浓度C
m,cs(t
i)=C
m,c(t
0)+C
m,c(t
i)-C
m,cg(t
i),其归一化后随时间的变化见图11冷凝去除曲线,可以看出在钢制安全壳投入外部冷却措施后,1小时的冷却时长内蒸汽冷凝对气溶胶的去除占比高达87.5%,其去除效率约是重力沉降的7倍。
经过具体实际实验,在钢制安全壳含高温水蒸气的事故条件,即水蒸气份额35%,开启外部冷却措施,其中冷却水流量2.0m
3/h,测得空间内气溶胶质量浓度C
m,c(t
i)及气溶胶粒径分布,即粒径d
k对应的份额dCm
k/Cm,能够获得冷却时长内蒸汽冷凝机制对空间气溶胶的去除量,最终获得该条件下不同时间段内蒸汽冷凝去除速度V
cs,如图11所示,根据实验及计算结果,1小时冷却时长内空间气溶胶浓度下降80%,其中蒸汽冷凝机制去除了70%,重力沉降机制去除了10%,可见蒸汽冷凝去除效率远高于重力沉降,去除占比高达87.5%,去除效率约是重力沉降的7倍,本方法可用于评估不同事故条件下钢制安全壳内气溶胶的蒸汽冷凝去除速度。
与现有技术相比,本发明通过开展气溶胶无蒸汽条件的重力沉积实验及含蒸汽条件的综合沉积实验,真实模拟事故条件下安全壳内复杂的热工水力环境及蒸汽冷凝过程,最终通过实验参数测定及数学分析计算得到事故条件下气溶胶蒸汽冷凝去除速度,与实际情况更加接近,填补了相关领域的空白。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。
Claims (8)
- 一种气溶胶蒸汽冷凝去除效率实验评估方法,其特征在于,通过搭建空间气溶胶去除速度评估实验台架,依次进行无蒸汽条件的气溶胶重力沉降实验和含蒸汽条件的气溶胶综合去除实验,分别获取无蒸汽及含蒸汽实验中空间气溶胶的质量浓度及粒径分布作为计算参量;然后计算得到重力沉降速度与气溶胶粒径的关系式、综合去除实验中单一重力机制去除的气溶胶浓度、综合去除实验中单一蒸汽冷凝机制去除的气溶胶浓度以及综合去除实验中气溶胶蒸汽冷凝去除速度。
- 根据权利要求1所述的气溶胶蒸汽冷凝去除效率实验评估方法,其特征是,所述的无蒸汽条件的气溶胶重力沉降实验是指:在不含蒸汽的密闭本体容器中,气溶胶在仅受重力作用下向本体容器底部自然沉降,进而使空间气溶胶得到去除的实验;重力沉降实验中使用粒径谱仪实时测量t i时刻空间内气溶胶质量浓度C m,g(t i)及气溶胶颗粒的粒径分布,即重力沉降实验的粒径d j对应的份额dCm j/Cm。
- 根据权利要求1所述的气溶胶蒸汽冷凝去除效率实验评估方法,其特征是,所述的含蒸汽条件气溶胶综合去除实验是指:在含有一定份额高温水蒸气的密闭本体容器中,开启容器外部冷却系统,气溶胶受到重力及高温蒸汽冷凝两种机制同时作用向本体容器底部及冷却壁面沉积,进而使空间气溶胶得到去除的实验;综合去除实验中使用粒径谱仪实时测量t i时刻空间内气溶胶质量浓度C m,c(t i)及气溶胶颗粒的粒径分布,即综合去除实验的粒径d k对应的份额dCm k/Cm。
- 根据权利要求1所述的气溶胶蒸汽冷凝去除效率实验评估方法,其特征是,所述的综合去除实验中单一蒸汽冷凝机制去除的气溶胶浓度是指:通过计算得到综合去除实验中单一蒸汽冷凝机制去除的气溶胶浓度变化C m,cs(t i)=C m,c(t 0)+C m,c(t i)-C m,cg(t i)。
- 根据权利要求1~7中任一所述所述的气溶胶蒸汽冷凝去除效率实验评估方法,其特征是,具体包括:S1:搭建空间气溶胶去除速度评估综合去除实验台架,获取实验过程中空间气溶胶的质量浓度、粒径分布,该实验台架包括:实验本体及与之相连的介质注入系统、外部冷却系统、参数测量系统;S2:进行无蒸汽条件的气溶胶重力沉降实验,使用粒径谱仪实时测量t i时刻空间内气溶胶质量浓度C m,g(t i)及气溶胶颗粒的粒径分布,即粒径d j对应的份额dCm j/Cm,并计算不同粒径气溶胶的重力沉降速度,进一步拟合数据得到重力沉降速度表达式,具体为:进行无蒸汽条件下气溶胶重力沉降实验,实验总时长为15小时,测得气溶胶的质量中位径MMD为1.36μm,几何标准偏差GSD=1.65,根据实验测得的气溶胶质量浓度C m,g(t i)及粒径分布计算不同粒径气溶胶颗粒的重力沉降速度 并拟合得到重力沉降速度对粒径的函数关系式V g(d)=a+b·d+c·d 2,其中a=1.144E-4,b=1.564E-5,c=4.339E-6;S3:进行含蒸汽条件的气溶胶综合去除实验,使用粒径谱仪实时测量t i时刻空间内气溶胶质量浓度C m,c(t i)及气溶胶颗粒的粒径分布,即粒径d k对应的份额dCm k/Cm,并计算综合去除实验中单一重力机制去除的气溶胶浓度变化,具体为:进行含蒸汽条件的气溶胶综合去除实验,实验总时长为1小时,测得气溶胶的质量中位径MMD为0.75,几何标准偏差GSD=1.63;根据S2中得到的函数表达式V g(d)计算含蒸汽综合去除实验中单一重力去除的气溶胶浓度变化S4:计算含蒸汽综合去除实验中单一蒸汽冷凝机制去除的气溶胶浓度,具体为:根据S3中所得到的单一重力去除的气溶胶浓度参数C m,cg(t i),计算含蒸汽综合去除实验中单一蒸汽冷凝机制去除的气溶胶浓度C m,cs(t i)=C m,c(t 0)+C m,c(t i)-C m,cg(t i);
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/182,264 US20230228664A1 (en) | 2021-12-15 | 2023-03-10 | Method of evaluating aerosol removal rate by steam condensation in steel containment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111536435.4A CN114220578B (zh) | 2021-12-15 | 2021-12-15 | 钢制安全壳空间内气溶胶蒸汽冷凝去除速度实验评估方法 |
CN202111536435.4 | 2021-12-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/182,264 Continuation US20230228664A1 (en) | 2021-12-15 | 2023-03-10 | Method of evaluating aerosol removal rate by steam condensation in steel containment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023109201A1 true WO2023109201A1 (zh) | 2023-06-22 |
Family
ID=80702449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/117314 WO2023109201A1 (zh) | 2021-12-15 | 2022-09-06 | 钢制安全壳空间内气溶胶蒸汽冷凝去除速度实验评估方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230228664A1 (zh) |
CN (1) | CN114220578B (zh) |
WO (1) | WO2023109201A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102127952B1 (ko) * | 2019-12-06 | 2020-06-29 | (주)제이솔루션 | 냉각수 순환시스템 일체형 부산물 포집장치 |
CN114220578B (zh) * | 2021-12-15 | 2022-09-23 | 上海交通大学 | 钢制安全壳空间内气溶胶蒸汽冷凝去除速度实验评估方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108709836A (zh) * | 2018-07-26 | 2018-10-26 | 宁夏大学 | 气溶胶检测方法及系统 |
CN109855925A (zh) * | 2019-03-04 | 2019-06-07 | 上海交通大学 | 带标定功能的高温高压高蒸汽浓度气溶胶在线测量装置 |
US20200003671A1 (en) * | 2018-06-28 | 2020-01-02 | Karlsruher Institut Fur Technologie | Method and apparatus for determining a concentration of aerosol particles in a carrier gas |
CN110797128A (zh) * | 2019-11-15 | 2020-02-14 | 中国原子能科学研究院 | 一种在试验条件下测定气溶胶浓度和行为的试验系统 |
CN110793895A (zh) * | 2019-11-15 | 2020-02-14 | 中国原子能科学研究院 | 一种在试验条件下测定气溶胶浓度和行为的测定方法 |
CN113654851A (zh) * | 2021-07-20 | 2021-11-16 | 哈尔滨工程大学 | 一种适用于严重事故条件下安全壳内气溶胶取样装置与测量方法 |
CN114220578A (zh) * | 2021-12-15 | 2022-03-22 | 上海交通大学 | 钢制安全壳空间内气溶胶蒸汽冷凝去除速度实验评估方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101523658B1 (ko) * | 2014-12-04 | 2015-05-29 | 국방과학연구소 | 형광 에어로졸을 이용한 필터류의 입자 투과 성능 평가 시험 방법 및 장치 |
-
2021
- 2021-12-15 CN CN202111536435.4A patent/CN114220578B/zh active Active
-
2022
- 2022-09-06 WO PCT/CN2022/117314 patent/WO2023109201A1/zh unknown
-
2023
- 2023-03-10 US US18/182,264 patent/US20230228664A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200003671A1 (en) * | 2018-06-28 | 2020-01-02 | Karlsruher Institut Fur Technologie | Method and apparatus for determining a concentration of aerosol particles in a carrier gas |
CN108709836A (zh) * | 2018-07-26 | 2018-10-26 | 宁夏大学 | 气溶胶检测方法及系统 |
CN109855925A (zh) * | 2019-03-04 | 2019-06-07 | 上海交通大学 | 带标定功能的高温高压高蒸汽浓度气溶胶在线测量装置 |
CN110797128A (zh) * | 2019-11-15 | 2020-02-14 | 中国原子能科学研究院 | 一种在试验条件下测定气溶胶浓度和行为的试验系统 |
CN110793895A (zh) * | 2019-11-15 | 2020-02-14 | 中国原子能科学研究院 | 一种在试验条件下测定气溶胶浓度和行为的测定方法 |
CN113654851A (zh) * | 2021-07-20 | 2021-11-16 | 哈尔滨工程大学 | 一种适用于严重事故条件下安全壳内气溶胶取样装置与测量方法 |
CN114220578A (zh) * | 2021-12-15 | 2022-03-22 | 上海交通大学 | 钢制安全壳空间内气溶胶蒸汽冷凝去除速度实验评估方法 |
Non-Patent Citations (2)
Title |
---|
XUE-TING SUN, CHEN LIN-LIN, SHI XIAO-LEI, XIAO ZENG-GUANG, WEI YAN-SONG: "Study on Effect of Steam Condensation on Aerosol Diffusiophoresis in Severe Accident Condition ", ATOMIC ENERGY SCIENCE AND TECHNOLOGY, vol. 51, no. 1, 20 January 2017 (2017-01-20), pages 73 - 78, XP093072397 * |
YARU FU, GENG JUN, SUN DA-WEI, MEI QI-LIANG, HUANG GAO-FENG: "Aerosol Natural Removal Analysis in Containment for AP1000 Nuclear Power Plant ", ATOMIC ENERGY SCIENCE AND TECHNOLOGY, vol. 51, no. 4, 20 April 2017 (2017-04-20), pages 700 - 705, XP093072398 * |
Also Published As
Publication number | Publication date |
---|---|
CN114220578B (zh) | 2022-09-23 |
CN114220578A (zh) | 2022-03-22 |
US20230228664A1 (en) | 2023-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023109201A1 (zh) | 钢制安全壳空间内气溶胶蒸汽冷凝去除速度实验评估方法 | |
CN110797128A (zh) | 一种在试验条件下测定气溶胶浓度和行为的试验系统 | |
CN110793895B (zh) | 一种在试验条件下测定气溶胶浓度和行为的测定方法 | |
CN106706375B (zh) | 一种湿烟气中液滴采样测量装置及方法 | |
CN107421787A (zh) | 废气中总颗粒物的采样装置和测定方法 | |
CN103594128B (zh) | 反应堆第4级自动降压系统喷放卸压模拟实验装置及方法 | |
CN103257059B (zh) | 一种高温高湿环境下的碘蒸气取样装置 | |
CN113654851B (zh) | 一种适用于严重事故条件下安全壳内气溶胶取样装置与测量方法 | |
Lind et al. | Aerosol retention in the flooded steam generator bundle during SGTR | |
CN108414299A (zh) | 一种固定污染源废气采样装置和采样方法 | |
Narayanam et al. | Experimental measurements and theoretical simulation of sodium combustion aerosol leakage through capillaries | |
CN211654328U (zh) | 一种在试验条件下测定气溶胶浓度和行为的试验系统 | |
CN103710681A (zh) | 一种用于反应源瓶的试验装置及试验方法 | |
Ozdemir et al. | Aerosol deposition and dispersion during nuclear reactor decommissioning | |
CN101007230A (zh) | 袋式除尘器脉冲喷吹清灰性能的数字实验方法 | |
CN114252376B (zh) | 气溶胶多种单项性迁移机制的试验系统及方法 | |
Hilliard et al. | REMOVAL OF IODINE AND PARTICLES FROM CONTAINMENT ATMOSPHERES BY SPRAYS: CONTAINMENT SYSTEMS EXPERIMENT INTERIM REPORT. | |
Subramanian et al. | Characterisation of sodium aerosol in cover gas region of SILVERINA loop | |
CN207215523U (zh) | 废气中总颗粒物的采样装置 | |
CN108303280A (zh) | 一种湿法烟气脱硫系统除雾器性能测试实验系统及实验方法 | |
CN106568854A (zh) | 一种多晶硅尾气中硅烷含量的测定方法及装置 | |
CN209117651U (zh) | 一种so3浓度在线检测装置 | |
CN208076173U (zh) | 一种湿法烟气脱硫系统除雾器性能测试实验系统 | |
Lima et al. | Optimization of Air Distribution in a Baghouse Filter Using Computational Fluid Dynamics. | |
Farhat et al. | Bubbles dynamics under pool scrubbing conditions for iodine compounds trapping applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22905956 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |