WO2023108761A1 - 监控业务带宽分配方法、装置、电子设备及存储介质 - Google Patents

监控业务带宽分配方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023108761A1
WO2023108761A1 PCT/CN2021/140519 CN2021140519W WO2023108761A1 WO 2023108761 A1 WO2023108761 A1 WO 2023108761A1 CN 2021140519 W CN2021140519 W CN 2021140519W WO 2023108761 A1 WO2023108761 A1 WO 2023108761A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user
bandwidth allocation
game
strategy
Prior art date
Application number
PCT/CN2021/140519
Other languages
English (en)
French (fr)
Inventor
曾捷
王再见
谷慧敏
宋雨欣
张秀军
赵明
周世东
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2023108761A1 publication Critical patent/WO2023108761A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • H04L41/0836Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability to enhance reliability, e.g. reduce downtime
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements

Definitions

  • the present application relates to the technical field of wireless communication networks, and in particular to a monitoring service bandwidth allocation method, device, electronic equipment and storage medium.
  • Ultra-high-definition video is a new round of major technological innovation after video digitization and high-definition.
  • 5G's low-latency and high-bandwidth characteristics enable it to provide ultra-high-definition monitoring data to the cloud at a faster speed
  • the current ultra-high-definition There are still many obstacles to playback to the terminal, especially the problem of transmission bandwidth.
  • the huge amount of data generated by ultra-high-definition surveillance services makes bandwidth a serious bottleneck, which directly affects the quality of experience of mobile users.
  • the huge amount of data also brings high service prices, which will also affect the base station Income is affected. Therefore, the base station needs to flexibly formulate a reasonable billing scheme according to the characteristics of different user requirements.
  • This application provides a monitoring service bandwidth allocation method, device, electronic equipment, and storage medium, which ensures the quality of user experience and base station income, realizes the effectiveness of bandwidth allocation, and solves the problem of inability to differentiate bandwidth allocation according to different user needs in related technologies technical issues.
  • the embodiment of the first aspect of the present application provides a monitoring service bandwidth allocation method, including the following steps: based on the total path loss between each user and each base station in the network, constructing a channel model for obtaining the linear gain between the user and the base station , determine the bandwidth allocation strategy; generate base station service requests according to the needs of each user, and determine the pricing strategy in combination with channel information and network congestion; use the bandwidth allocation strategy and the pricing strategy as constraints to construct a two-stage Stackelberg game , to determine the bandwidth allocation result.
  • constructing a two-stage Stackelberg game to determine the bandwidth allocation result includes: For the nature of profit, formulate two optimization problems that maximize the utility of users and base stations; use the two optimization problems to generate a two-stage Stackelberg game, and use the given price of the base station to solve the optimal response of the user sub-game; according to the The optimal response of the user sub-game is to solve the optimal response of the base station sub-game, so that the interests of the user and the base station are relatively maximized.
  • formulating two optimization problems for maximizing the utility of users and base stations based on the nature of each user's and base station's benefits includes: obtaining the The target of the base station, and generating a corresponding utility function from the targets of the users and the base stations; formulating the two optimization problems according to the utility function and maximizing the utility of the users and the base station.
  • the generating a two-stage Stackelberg game by using the two optimization problems, and using the given price of the base station to solve the optimal response of the user sub-game includes: taking the base station as the leader or given a unit bandwidth price, and respectively make the utility function of the user calculate the first-order reciprocal and second-order derivative of the requested bandwidth resource of the service request of the base station, and obtain the user's optimal demand solution; the user's optimal demand solution Substitute into the utility function of the base station, and obtain the optimal response of the base station according to the optimal demand solution of the user.
  • the determining the pricing strategy includes: obtaining the corresponding dynamic pricing strategy according to the total bandwidth requests of the users to the base station.
  • the embodiment of the second aspect of the present application provides a monitoring service bandwidth allocation device, including: a construction module, configured to obtain the linear gain between the user and the base station based on the total path loss between each user and each base station in the network
  • the channel model of the channel model determines the bandwidth allocation strategy;
  • the determination module is used to generate base station service requests according to the needs of each user, and determines the pricing strategy in combination with channel information and network congestion;
  • the allocation module is used to combine the bandwidth allocation strategy and the Pricing strategies are used as constraints to construct a two-stage Stackelberg game to determine the result of bandwidth allocation.
  • the allocation module is further configured to formulate two optimization problems that maximize the utility of the user and the base station based on the nature of each benefit of the user and the base station, and use the two optimization problems Generate a two-stage Stackelberg game, use the given price of the base station to solve the optimal response of the user sub-game, and solve the optimal response of the base station sub-game according to the optimal response of the user sub-game, so that the interests of the user and the base station relative maximization.
  • formulating two optimization problems for maximizing the utility of users and base stations based on the nature of each user's and base station's benefits includes: obtaining the The target of the base station, and generating a corresponding utility function from the targets of the users and the base stations; formulating the two optimization problems according to the utility function and maximizing the utility of the users and the base station.
  • the embodiment of the third aspect of the present application provides an electronic device, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, and the processor executes the program to realize The monitoring service bandwidth allocation method described in the foregoing embodiments.
  • the embodiment of the fourth aspect of the present application provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and the computer instructions are used to make the computer execute the monitoring service bandwidth allocation method as described in the above-mentioned embodiments .
  • Service reliability Based on the scenario of multi-base station and multi-user interaction, the impact of path loss between each user and each base station is considered, and a dynamic bandwidth allocation strategy is used as a constraint to ensure the reliability of the base station. The quality of user experience is guaranteed.
  • FIG. 1 is a schematic diagram of a scene provided according to an embodiment of the present application.
  • FIG. 2 is a flow chart of a monitoring service bandwidth allocation method provided according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a user requesting bandwidth resources from a base station according to an embodiment of the present application
  • FIG. 4 is an example diagram of a monitoring service bandwidth allocation device according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • Game-theoretic models have been proposed in the past for non-cooperative wireless communication, and it is a powerful framework for analyzing interactions among multiple players acting in their own interests.
  • the main idea of the game is that after the leader makes a decision first, the follower makes a decision according to the leader's decision, and then the leader adjusts his own decision according to the follower's decision, and so on until the Nash equilibrium is reached. At this time, both the leader and the follower will choose their own optimal strategies to maximize profits.
  • Game theory is recognized as the best mathematical tool for studying the mutual influence and behavior interaction of different subjects.
  • the base station hopes to sell more bandwidth resources at a higher price, and at the same time, users hope to buy as much bandwidth resources as possible at a lower price.
  • the base station plays the pricing game as the leader, and the user plays the demand game as the follower.
  • this application provides a monitoring service bandwidth allocation method.
  • a two-stage Stackelberg game is constructed with dynamic bandwidth allocation strategy and pricing strategy as constraints.
  • the reliability of the base station is ensured through a bandwidth allocation strategy, and then a cost-effective dynamic pricing strategy is constructed on this basis, and an optimization problem is formulated to maximize the utility of users and base stations.
  • This method effectively guarantees the quality of experience of the user and the income of the base station, and realizes the effectiveness of bandwidth allocation.
  • FIG. 2 is a flow chart of a monitoring service bandwidth allocation method provided according to an embodiment of the present application.
  • the monitoring service bandwidth allocation method includes the following steps:
  • step S101 based on the total path loss between each user and each base station in the network, a channel model for obtaining linear gains between users and base stations is constructed to determine a bandwidth allocation strategy.
  • a channel model is constructed first, considering the total path loss between each user and each base station in the 5G network to obtain the linear gain ⁇ (n,m) between them.
  • step S102 a base station service request is generated according to the needs of each user, and a pricing strategy is determined in combination with channel information and network congestion.
  • determining the pricing strategy includes: obtaining a corresponding dynamic pricing strategy according to the total bandwidth requests of each user to the base station.
  • the user requests a service from the base station as needed, as shown in FIG. 3 , specifically including:
  • User m starts with The price requests bandwidth resources from base station n within the billing time zone ⁇ t k and Respectively represent the minimum bandwidth resource and the maximum bandwidth resource that base station n can provide in a billing time zone ⁇ t k . If the bandwidth resource requested by the user is lower than Users can only follow the Purchase, if the requested bandwidth resource is higher than It means that the service demand of the user is not satisfied, and the user will withdraw from the request to the current base station and request services from other base stations instead.
  • the base station will set the benchmark unit bandwidth price to Reasonable increase to negotiated price Make some users according to their willingness to pay Quit the current resource competition until This allocation strategy ensures the reliability of the base station.
  • the service cost of the base station will also increase from C 1,n (Y) to C 2,n (Y), which includes the cost caused by the time delay and discarding of the user.
  • step S103 a two-stage Stackelberg game is constructed using the bandwidth allocation strategy and the pricing strategy as constraints to determine the bandwidth allocation result.
  • the bandwidth allocation strategy and the pricing strategy are used as constraints to construct a two-stage Stackelberg game to determine the result of bandwidth allocation, including: based on the nature of each user's and base station's benefit, formulate the maximum user and Two optimization problems of base station utility; use two optimization problems to generate a two-stage Stackelberg game, use the given price of the base station to solve the optimal response of the user sub-game; solve the optimal response of the base station sub-game based on the best response of the user sub-game Response, so that the interests of users and base stations are relatively maximized.
  • two optimization problems for maximizing the utility of users and base stations are formulated, including: obtaining the goals of each user and each base station respectively, and determining the goals of each user and each base station.
  • the target generation of the base station corresponds to the utility function; according to the utility function, two optimization problems are formulated to maximize the utility of the user and the base station.
  • two optimization problems are used to generate a two-stage Stackelberg game, and the optimal response of the user sub-game is solved by using the given price of the base station, including: using the base station as the leader to set a unit bandwidth price, and Let the user's utility function calculate the first-order reciprocal and the second-order derivative of the requested bandwidth resource of the base station service request respectively, and obtain the user's optimal demand solution; substitute the user's optimal demand solution into the base station's utility function, and obtain Base station responds best.
  • base station n wishes to sell more bandwidth resources at a higher price
  • user m wishes to purchase as much bandwidth resources as possible at a lower price.
  • optimization problem 1 user subgame—demand game
  • problem 2 base station subgame—pricing game
  • Question 1 and question 2 together constitute a two-stage Stackelberg game.
  • the goal of this game is to find the Stackelberg equilibrium that maximizes the relative interests of both the user and the base station.
  • the Stackelberg equilibrium is obtained by solving the Nash equilibrium of the subgame.
  • the base station sets the unit bandwidth price
  • the user utility function U m finds the first derivative and the second derivative
  • the user utility function U m is a strictly concave function, through Solve the user's optimal demand solution Will Substitute into the base station utility function U n to solve problem 1, and further obtain the optimal response of the base station
  • the base station and the user reach the Nash equilibrium, which proves that the game has a Stackelberg equilibrium that maximizes the relative interests of the user and the base station.
  • a two-stage Stackelberg game is constructed with dynamic bandwidth allocation strategy and pricing strategy as constraints.
  • First formulate the optimization problem by maximizing the utility of the user and the base station, then solve the optimal response of the user sub-game according to the given price of the base station, and then solve the optimal response of the base station sub-game according to the best response of the user, thus proving that the game exists Stackelberg equilibrium maximizes the interests of users and base stations.
  • Fig. 4 is an example diagram of an apparatus for allocating monitoring service bandwidth according to an embodiment of the present application.
  • the monitoring service bandwidth allocation device 10 includes: a construction module 100 , a determination module 200 and an allocation module 300 .
  • the construction module 100 is configured to construct a channel model for obtaining linear gains between users and base stations based on the total path loss between each user and each base station in the network, and determine a bandwidth allocation strategy.
  • the determination module 200 is configured to generate a base station service request according to the needs of each user, and determine a pricing strategy in combination with channel information and network congestion.
  • the allocation module 300 is configured to use the bandwidth allocation policy and the pricing policy as constraints, construct a two-stage Stackelberg game, and determine the bandwidth allocation result.
  • the allocation module 300 is further used to formulate two optimization problems that maximize the utility of users and base stations based on the nature of each user's and base station's benefits, and use the two optimization problems to generate a two-stage Stackelberg game , use the given price of the base station to solve the optimal response of the user sub-game, and solve the optimal response of the base station sub-game according to the optimal response of the user sub-game, so that the interests of the user and the base station are relatively maximized.
  • two optimization problems for maximizing the utility of users and base stations are formulated, including: obtaining the goals of each user and each base station respectively, and determining the goals of each user and each base station.
  • the target generation of the base station corresponds to the utility function; according to the utility function, two optimization problems are formulated to maximize the utility of the user and the base station.
  • two optimization problems are used to generate a two-stage Stackelberg game, and the optimal response of the user sub-game is solved by using the given price of the base station, including: using the base station as the leader to set a unit bandwidth price, and Let the user's utility function calculate the first-order reciprocal and the second-order derivative of the requested bandwidth resource of the base station service request respectively, and obtain the user's optimal demand solution; substitute the user's optimal demand solution into the base station's utility function, and obtain Base station responds best.
  • determining the pricing strategy includes: obtaining a corresponding dynamic pricing strategy according to the total bandwidth requests of each user to the base station.
  • a two-stage Stackelberg game is constructed with dynamic bandwidth allocation strategy and pricing strategy as constraints.
  • First formulate the optimization problem by maximizing the utility of the user and the base station, then solve the optimal response of the user sub-game according to the given price of the base station, and then solve the optimal response of the base station sub-game according to the best response of the user, thus proving that the game exists Stackelberg equilibrium maximizes the interests of users and base stations.
  • This solution effectively guarantees user experience quality and base station revenue, and realizes the effectiveness of bandwidth allocation.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • This electronic equipment can include:
  • a memory 501 a memory 501 , a processor 502 , and computer programs stored in the memory 501 and executable on the processor 502 .
  • the processor 502 implements the monitoring service bandwidth allocation method provided in the foregoing embodiments when executing the program.
  • the electronic equipment also includes:
  • the communication interface 503 is used for communication between the memory 501 and the processor 502 .
  • the memory 501 is used to store computer programs that can run on the processor 502 .
  • the memory 501 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 5 , but it does not mean that there is only one bus or one type of bus.
  • the memory 501, processor 502, and communication interface 503 are integrated on one chip, then the memory 501, processor 502, and communication interface 503 can communicate with each other through the internal interface.
  • Processor 502 may be a central processing unit (Central Processing Unit, referred to as CPU), or a specific integrated circuit (Application Specific Integrated Circuit, referred to as ASIC), or is configured to implement one or more of the embodiments of the present application integrated circuit.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • This embodiment also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the above monitoring service bandwidth allocation method is realized.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” or “second” may explicitly or implicitly include at least one of such features.
  • N means at least two, such as two, three, etc., unless otherwise specifically defined.
  • Any process or method description in a flowchart or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing a custom logical function or step of a process , and the scope of preferred embodiments of the present application includes additional implementations in which functions may be performed out of the order shown or discussed, including in substantially simultaneous fashion or in reverse order depending on the functions involved, which shall It should be understood by those skilled in the art to which the embodiments of the present application belong.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate or transmit a program for use in or in conjunction with an instruction execution system, device or device.
  • Non-exhaustive list of computer readable media include the following: electrical connection with one or N wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, as it may be possible, for example, by optically scanning the paper or other medium, followed by editing, interpreting, or other suitable processing if necessary.
  • the program is processed electronically and stored in computer memory.
  • each part of the present application may be realized by hardware, software, firmware or a combination thereof.
  • the N steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: a discrete Logic circuits, ASICs with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信网络技术领域,特别涉及一种监控业务带宽分配方法、装置、电子设备及存储介质,方法包括:基于网络中各用户和各基站之间总的路径损耗,构建用于获取用户和基站之间线性增益的信道模型,确定带宽分配策略;根据各用户的需求生成基站服务请求,结合信道信息和网络拥塞情况,确定定价策略;将带宽分配策略和定价策略作为约束条件,构建一个两阶段的Stackelberg博弈,确定带宽分配结果。本申请基于多基站和多用户交互场景,考虑各用户和各基站间的路径损耗影响,构建了以动态的带宽分配策略和定价策略为约束条件的两阶段Stackelberg博弈,有效保障了用户的体验质量和基站的收入,实现了带宽分配的有效性。

Description

监控业务带宽分配方法、装置、电子设备及存储介质
相关申请的交叉引用
本申请要求清华大学于2021年12月14日提交的、发明名称为“监控业务带宽分配方法、装置、电子设备及存储介质”的、中国专利申请号“202111525074.3”的优先权。
技术领域
本申请涉及无线通信网络技术领域,特别涉及一种监控业务带宽分配方法、装置、电子设备及存储介质。
背景技术
随着技术的发展,人们对安防监控视频清晰度的需求也越来越高。超高清视频是继视频数字化、高清化之后的新一轮重大技术革新,尽管5G低延迟、高带宽的特性使其以更快的速度为云端提供超高清监控数据,但是当前超高清视频从摄制到终端播放依然存在很多障碍,尤其是传输带宽问题。超高清监控业务产生的巨大的数据量,使带宽成为了严重的瓶颈,这直接影响到了移动用户的体验质量,同时,巨大的数据量也带来了高昂的服务价格,这同样会对基站的收入造成影响。因此,基站需要根据不同用户需求差异化等特点,灵活制定合理的计费方案。
发明内容
本申请提供一种监控业务带宽分配方法、装置、电子设备及存储介质,保证了用户体验质量和基站收入,实现了带宽分配的有效性,解决了相关技术中无法根据不同用户需求差异化分配带宽的技术问题。
本申请第一方面实施例提供一种监控业务带宽分配方法,包括以下步骤:基于网络中各用户和各基站之间总的路径损耗,构建用于获取用户和基站之间的线性增益的信道模型,确定带宽分配策略;根据各用户的需求生成基站服务请求,结合信道信息和网络拥塞情况,确定定价策略;将所述带宽分配策略和所述定价策略作为约束条件,构建一个两阶段的Stackelberg博弈,确定带宽分配结果。
可选地,在本申请的一个实施例中,所述将所述带宽分配策略和所述定价策略作为约束条件,构建一个两阶段的Stackelberg博弈,确定带宽分配结果,包括:基于用户和基站各自为利的性质,制定最大化用户和基站效用的两个优化问题;利用所述两个优化问题生 成一个两阶段的Stackelberg博弈,利用基站给定价格求解用户子博弈的最佳响应;根据所述用户子博弈的最佳响应求解基站子博弈的最佳响应,使得所述用户和所述基站利益相对最大化。
可选地,在本申请的一个实施例中,所述基于用户和基站各自为利的性质,制定最大化用户和基站效用的两个优化问题,包括:分别获取所述各用户和所述各基站的目标,并由所述各用户和所述各基站的目标生成对应效用函数;根据所述效用函数并以最大化用户和基站效用制定所述两个优化问题。
可选地,在本申请的一个实施例中,所述利用所述两个优化问题生成一个两阶段的Stackelberg博弈,利用基站给定价格求解用户子博弈的最佳响应,包括:以基站作为领导者给定单位带宽价格,并分别令所述用户的效用函数对所述基站服务请求的请求带宽资源计算一阶倒数和二阶导数,得到用户最优需求解;将所述用户最优需求解代入所述基站的效用函数,并根据所述用户最优需求解得到基站最佳响应。
可选地,在本申请的一个实施例中,所述确定定价策略,包括:根据所述各用户对所述基站的总带宽请求量获取对应动态的所述定价策略。
本申请第二方面实施例提供一种监控业务带宽分配装置,包括:构建模块,用于基于网络中各用户和各基站之间总的路径损耗,构建用于获取用户和基站之间的线性增益的信道模型,确定带宽分配策略;确定模块,用于根据各用户的需求生成基站服务请求,结合信道信息和网络拥塞情况,确定定价策略;分配模块,用于将所述带宽分配策略和所述定价策略作为约束条件,构建一个两阶段的Stackelberg博弈,确定带宽分配结果。
可选地,在本申请的一个实施例中,所述分配模块进一步用于基于用户和基站各自为利的性质,制定最大化用户和基站效用的两个优化问题,利用所述两个优化问题生成一个两阶段的Stackelberg博弈,利用基站给定价格求解用户子博弈的最佳响应,根据所述用户子博弈的最佳响应求解基站子博弈的最佳响应,使得所述用户和所述基站利益相对最大化。
可选地,在本申请的一个实施例中,所述基于用户和基站各自为利的性质,制定最大化用户和基站效用的两个优化问题,包括:分别获取所述各用户和所述各基站的目标,并由所述各用户和所述各基站的目标生成对应效用函数;根据所述效用函数并以最大化用户和基站效用制定所述两个优化问题。
本申请第三方面实施例提供一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以实现如上述实施例所述的监控业务带宽分配方法。
本申请第四方面实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行如上述实施例所述的监控业务带宽分 配方法。
本申请实施例的监控业务带宽分配方法及装置,具有以下有益效果:
1)服务可靠性:基于多基站和多用户交互的场景,考虑了各用户和各基站之间的路径损耗的影响,采用了动态的带宽分配策略作为约束条件,以确保基站的可靠性,从而保证了用户的体验质量。
2)带宽分配有效性:在确保基站是可靠的基础上,基于带宽资源利用率,构建了动态的定价策略,使得价格变化跟上需求变化。当价格变化越能跟上需求变化时,对带宽资源的配置就越有效率。
3)用户接入数最大:所提的一种超高清监控业务带宽分配方法,在确保基站是可靠的前提下,使得用户接入数最大。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本申请实施例提供的一种场景示意图;
图2为根据本申请实施例提供的一种监控业务带宽分配方法的流程图;
图3为根据本申请实施例提供的一种用户向基站请求带宽资源的示意图;
图4为根据本申请实施例的监控业务带宽分配装置的示例图;
图5为本申请实施例的电子设备示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
为了有效地提升用户满意度和基站收入,本申请引入博弈论(game theory)模型。博弈论模型在过去已经被提出用于非合作无线通信,它是一个强大的框架结构,用来分析为自己利益行事的多个参与者之间的相互作用。博弈的主要思想是,在领导者先做出决策之后,跟随者根据领导者的决策进行决策,然后领导者再根据跟随者的决策对自己的决策进行调整,如此往复,直到达到纳什均衡。这时,领导者和跟随者都会选择自己的最优策略来实现利润最大化。博弈论被公认为研究不同主体决策互相影响,行为交互的最佳数学工具。
假设基站和用户都是自私且理性的,显而易见,双方都明确希望获得更高的利润。基站希望以一个较高的价格出售更多带宽资源,与此同时,用户希望以一个较低的价格购买尽可能多的带宽资源。在此博弈中,基站作为领导者进行定价博弈,用户作为跟随者进行需求博弈。
下面参考附图描述本申请实施例的监控业务带宽分配方法、装置、电子设备及存储介质。针对上述背景技术中心提到的无法根据不同用户需求差异化分配带宽的问题,本申请提供了一种监控业务带宽分配方法,在该方法中,基于多基站和多用户交互的场景,考虑了各用户和各基站之间的路径损耗的影响,构建了以动态的带宽分配策略和定价策略为约束条件的两阶段Stackelberg博弈。首先通过带宽分配策略确保基站的可靠性,然后在此基础上构建具有成本效益的动态定价策略,并以最大化用户和基站的效用制定优化问题。该方法有效的保障了用户的体验质量和基站的收入,实现了带宽分配的有效性。由此,解决了无法根据不同用户需求差异化分配带宽等问题。
在本申请的实施例中,如图1所示,假定运营商部署的所有边缘基站集合为N={1,2,...,n,...N},同时,一组移动用户表示为M={1,2,...,m,...,M}。由基站n∈N制定的单位带宽价格为时变函数
Figure PCTCN2021140519-appb-000001
其中,ΔT={Δt 1,...,Δt k,...,Δt K-1}称为计费时区,在一个计费时区内单位带宽资源的价格不变。
具体而言,图2为根据本申请实施例提供的一种监控业务带宽分配方法的流程图。
如图1所示,该监控业务带宽分配方法包括以下步骤:
在步骤S101中,基于网络中各用户和各基站之间总的路径损耗,构建用于获取用户和基站之间的线性增益的信道模型,确定带宽分配策略。
具体地,首先构建信道模型,考虑5G网络中各用户和各基站之间总的路径损耗,以获得它们之间的线性增益φ (n,m)
在步骤S102中,根据各用户的需求生成基站服务请求,结合信道信息和网络拥塞情况,确定定价策略。
在本申请的一个实施例中,确定定价策略,包括:根据各用户对基站的总带宽请求量获取对应动态的定价策略。
可以理解的是,根据信道信息,用户按需向基站请求服务,如图3所示,具体包括:
1)用户m以
Figure PCTCN2021140519-appb-000002
的价格在计费时区Δt k内向基站n处请求带宽资源
Figure PCTCN2021140519-appb-000003
Figure PCTCN2021140519-appb-000004
分别表示基站n在一个计费时区Δt k内能够提供的最小带宽资源和最大带宽资源。若用户请求的带宽资源低于
Figure PCTCN2021140519-appb-000005
用户只能按照
Figure PCTCN2021140519-appb-000006
购买,若请求的带 宽资源高于
Figure PCTCN2021140519-appb-000007
则表示用户的服务需求得不到满足,用户就会退出对当前基站的请求,转而向其他基站请求服务。
2)根据各用户对基站n的总带宽请求量,制定动态的定价策略:
Figure PCTCN2021140519-appb-000008
Figure PCTCN2021140519-appb-000009
其中,
Figure PCTCN2021140519-appb-000010
根据
Figure PCTCN2021140519-appb-000011
判断网络阻塞程度,若Y>1,则表示用户对基站n的带宽请求总量大于基站所能提供的带宽总量B n,在这种情况下,基站不能满足所有用户的服务请求。为了解决这种情况,基站将根据带宽资源的使用情况Y,将基准单位带宽价格
Figure PCTCN2021140519-appb-000012
合理的提高到协商价格
Figure PCTCN2021140519-appb-000013
使得部分用户根据支付意愿
Figure PCTCN2021140519-appb-000014
退出当前的资源竞争中,直至
Figure PCTCN2021140519-appb-000015
该分配策略保证了基站的可靠性。当基站的资源还有剩余时,新的用户还可以继续向它请求服务,这样可以确保用户接入数最大。另外,在这种情况下,基站的服务成本也会由C 1,n(Y)提高至C 2,n(Y),它包含了对用户的时延和丢弃所造成的成本。
在步骤S103中,将带宽分配策略和定价策略作为约束条件,构建一个两阶段的Stackelberg博弈,确定带宽分配结果。
在本申请的一个实施例中,将带宽分配策略和定价策略作为约束条件,构建一个两阶段的Stackelberg博弈,确定带宽分配结果,包括:基于用户和基站各自为利的性质,制定最大化用户和基站效用的两个优化问题;利用两个优化问题生成一个两阶段的Stackelberg博弈,利用基站给定价格求解用户子博弈的最佳响应;根据用户子博弈的最佳响应求解基站子博弈的最佳响应,使得用户和基站利益相对最大化。
在本申请的一个实施例中,基于用户和基站各自为利的性质,制定最大化用户和基站效用的两个优化问题,包括:分别获取各用户和各基站的目标,并由各用户和各基站的目标生成对应效用函数;根据效用函数并以最大化用户和基站效用制定两个优化问题。
在本申请的一个实施例中,利用两个优化问题生成一个两阶段的Stackelberg博弈,利用基站给定价格求解用户子博弈的最佳响应,包括:以基站作为领导者给定单位带宽价格,并分别令用户的效用函数对基站服务请求的请求带宽资源计算一阶倒数和二阶导数,得到用户最优需求解;将用户最优需求解代入基站的效用函数,并根据用户最优需求解得到基站最佳响应。
具体地,基站n希望以一个较高的价格出售更多带宽资源,用户m希望以一个较低的价格购买尽可能多的带宽资源。根据双方目标,制定双方的效用函数U m和U n,并以最大化用户m和基站n的效用制定优化问题1(用户子博弈——需求博弈)和问题2(基站子博弈——定价博弈)。
问题1和问题2共同构成了两阶段的Stackelberg博弈,该博弈的目标是寻找到使得用户和基站双方利益相对最大化的Stackelberg均衡。通常,通过求解子博弈的纳什均衡获得Stackelberg均衡。
利用基站给定价格p m[Δt k]求解问题2以获得用户最佳响应
Figure PCTCN2021140519-appb-000016
然后用它求解问题1得到基站最佳响应
Figure PCTCN2021140519-appb-000017
根据最佳响应的非负性、单调性和可扩展性,得出基站和用户达到纳什均衡,从而证明了该博弈存在Stackelberg均衡使得用户和基站利益相对最大化。
具体而言,首先基站作为领导者给定单位带宽价格
Figure PCTCN2021140519-appb-000018
然后分别令用户效用函数U m
Figure PCTCN2021140519-appb-000019
求一阶导数
Figure PCTCN2021140519-appb-000020
和二阶导数
Figure PCTCN2021140519-appb-000021
由二阶导数小于零可知,用户效用函数U m是一个严格凹函数,通过
Figure PCTCN2021140519-appb-000022
求解出用户最优需求解
Figure PCTCN2021140519-appb-000023
Figure PCTCN2021140519-appb-000024
代入基站效用函数U n中求解问题1,进一步得到基站最佳响应
Figure PCTCN2021140519-appb-000025
根据最佳响应的非负性、单调性和可扩展性,得出基站和用户达到纳什均衡,从而证明该博弈存在Stackelberg均衡使得用户和基站利益相对最大化。
根据本申请实施例提出的监控业务带宽分配方法,构建了以动态的带宽分配策略和定价策略为约束条件的两阶段斯塔克尔伯格(Stackelberg)博弈。首先以最大化用户和基站的效用来制定优化问题,然后根据基站给定价格求解用户子博弈的最佳响应,再根据用户最佳响应求解基站子博弈的最佳响应,从而证明了该博弈存在Stackelberg均衡,使得用户和基站的利益相对最大化。
其次参照附图描述根据本申请实施例提出的监控业务带宽分配装置。
图4为根据本申请实施例的监控业务带宽分配装置的示例图。
如图4所示,该监控业务带宽分配装置10包括:构建模块100、确定模块200和分配模块300。
其中,构建模块100,用于基于网络中各用户和各基站之间总的路径损耗,构建用于获取用户和基站之间的线性增益的信道模型,确定带宽分配策略。确定模块200,用于根据各用户的需求生成基站服务请求,结合信道信息和网络拥塞情况,确定定价策略。分配模块300,用于将带宽分配策略和定价策略作为约束条件,构建一个两阶段的Stackelberg博弈,确定带宽分配结果。
在本申请的一个实施例中,分配模块300进一步用于基于用户和基站各自为利的性质,制定最大化用户和基站效用的两个优化问题,利用两个优化问题生成一个两阶段的Stackelberg博弈,利用基站给定价格求解用户子博弈的最佳响应,根据用户子博弈的最佳响应求解基站子博弈的最佳响应,使得用户和基站利益相对最大化。
在本申请的一个实施例中,基于用户和基站各自为利的性质,制定最大化用户和基站效用的两个优化问题,包括:分别获取各用户和各基站的目标,并由各用户和各基站的目标生成对应效用函数;根据效用函数并以最大化用户和基站效用制定两个优化问题。
在本申请的一个实施例中,利用两个优化问题生成一个两阶段的Stackelberg博弈,利用基站给定价格求解用户子博弈的最佳响应,包括:以基站作为领导者给定单位带宽价格,并分别令用户的效用函数对基站服务请求的请求带宽资源计算一阶倒数和二阶导数,得到用户最优需求解;将用户最优需求解代入基站的效用函数,并根据用户最优需求解得到基站最佳响应。
在本申请的一个实施例中,确定定价策略,包括:根据各用户对基站的总带宽请求量获取对应动态的定价策略。
需要说明的是,前述对监控业务带宽分配方法实施例的解释说明也适用于该实施例的监控业务带宽分配装置,此处不再赘述。
根据本申请实施例提出的监控业务带宽分配装置,构建了以动态的带宽分配策略和定价策略为约束条件的两阶段斯塔克尔伯格(Stackelberg)博弈。首先以最大化用户和基站的效用来制定优化问题,然后根据基站给定价格求解用户子博弈的最佳响应,再根据用户最佳响应求解基站子博弈的最佳响应,从而证明了该博弈存在Stackelberg均衡,使得用户和基站的利益相对最大化。此方案有效的保证了用户体验质量和基站收入,实现了带宽分配的有效性。
图5为本申请实施例提供的电子设备的结构示意图。该电子设备可以包括:
存储器501、处理器502及存储在存储器501上并可在处理器502上运行的计算机程序。
处理器502执行程序时实现上述实施例中提供的监控业务带宽分配方法。
进一步地,电子设备还包括:
通信接口503,用于存储器501和处理器502之间的通信。
存储器501,用于存放可在处理器502上运行的计算机程序。
存储器501可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
如果存储器501、处理器502和通信接口503独立实现,则通信接口503、存储器501和处理器502可以通过总线相互连接并完成相互间的通信。总线可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连(Peripheral Component,简称为PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,简称为EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可选地,在具体实现上,如果存储器501、处理器502及通信接口503,集成在一块芯片上实现,则存储器501、处理器502及通信接口503可以通过内部接口完成相互间的通信。
处理器502可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。
本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上的监控业务带宽分配方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或N个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐 含地包括至少一个该特征。在本申请的描述中,“N个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更N个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或N个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,N个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以 软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种监控业务带宽分配方法,其特征在于,包括以下步骤:
    基于网络中各用户和各基站之间总的路径损耗,构建用于获取用户和基站之间的线性增益的信道模型,确定带宽分配策略;
    根据各用户的需求生成基站服务请求,结合信道信息和网络拥塞情况,确定定价策略;
    将所述带宽分配策略和所述定价策略作为约束条件,构建一个两阶段的Stackelberg博弈,确定带宽分配结果。
  2. 根据权利要求1所述的方法,其特征在于,所述将所述带宽分配策略和所述定价策略作为约束条件,构建一个两阶段的Stackelberg博弈,确定带宽分配结果,包括:
    基于用户和基站各自为利的性质,制定最大化用户和基站效用的两个优化问题;
    利用所述两个优化问题生成一个两阶段的Stackelberg博弈,利用基站给定价格求解用户子博弈的最佳响应;
    根据所述用户子博弈的最佳响应求解基站子博弈的最佳响应,使得所述用户和所述基站利益相对最大化。
  3. 根据权利要求2所述的方法,其特征在于,所述基于用户和基站各自为利的性质,制定最大化用户和基站效用的两个优化问题,包括:
    分别获取所述各用户和所述各基站的目标,并由所述各用户和所述各基站的目标生成对应效用函数;
    根据所述效用函数并以最大化用户和基站效用制定所述两个优化问题。
  4. 根据权利要求3所述的方法,其特征在于,所述利用所述两个优化问题生成一个两阶段的Stackelberg博弈,利用基站给定价格求解用户子博弈的最佳响应,包括:
    以基站作为领导者给定单位带宽价格,并分别令所述用户的效用函数对所述基站服务请求的请求带宽资源计算一阶倒数和二阶导数,得到用户最优需求解;
    将所述用户最优需求解代入所述基站的效用函数,并根据所述用户最优需求解得到基站最佳响应。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述确定定价策略,包括:
    根据所述各用户对所述基站的总带宽请求量获取对应动态的所述定价策略。
  6. 一种监控业务带宽分配装置,其特征在于,包括:
    构建模块,用于基于网络中各用户和各基站之间总的路径损耗,构建用于获取用户和基站之间的线性增益的信道模型,确定带宽分配策略;
    确定模块,用于根据各用户的需求生成基站服务请求,结合信道信息和网络拥塞情况, 确定定价策略;
    分配模块,用于将所述带宽分配策略和所述定价策略作为约束条件,构建一个两阶段的Stackelberg博弈,确定带宽分配结果。
  7. 根据权利要求6所述的装置,其特征在于,所述分配模块进一步用于基于用户和基站各自为利的性质,制定最大化用户和基站效用的两个优化问题,利用所述两个优化问题生成一个两阶段的Stackelberg博弈,利用基站给定价格求解用户子博弈的最佳响应,根据所述用户子博弈的最佳响应求解基站子博弈的最佳响应,使得所述用户和所述基站利益相对最大化。
  8. 根据权利要求7所述的装置,其特征在于,所述基于用户和基站各自为利的性质,制定最大化用户和基站效用的两个优化问题,包括:
    分别获取所述各用户和所述各基站的目标,并由所述各用户和所述各基站的目标生成对应效用函数;
    根据所述效用函数并以最大化用户和基站效用制定所述两个优化问题。
  9. 一种电子设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以实现如权利要求1-5任一项所述的监控业务带宽分配方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行,以用于实现如权利要求1-5任一项所述的监控业务带宽分配方法。
PCT/CN2021/140519 2021-12-14 2021-12-22 监控业务带宽分配方法、装置、电子设备及存储介质 WO2023108761A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111525074.3 2021-12-14
CN202111525074.3A CN113938394B (zh) 2021-12-14 2021-12-14 监控业务带宽分配方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023108761A1 true WO2023108761A1 (zh) 2023-06-22

Family

ID=79288848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140519 WO2023108761A1 (zh) 2021-12-14 2021-12-22 监控业务带宽分配方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN113938394B (zh)
WO (1) WO2023108761A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117176311A (zh) * 2023-10-31 2023-12-05 南通飞海电子科技有限公司 基于频分多路复用的收银数据传输方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114548409B (zh) * 2022-01-30 2023-01-10 清华大学 基于态势场的无人车任务分配博弈方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150146521A1 (en) * 2013-11-26 2015-05-28 Futurewei Technologies, Inc. Dynamic resource pooling and trading mechanism in network virtualization
CN105657750A (zh) * 2015-12-29 2016-06-08 北京邮电大学 一种网络动态资源的计算方法及装置
CN107864512A (zh) * 2017-11-01 2018-03-30 南京邮电大学 一种基于博弈论的蜂窝异构网络资源分配方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014809B2 (en) * 2006-12-11 2011-09-06 New Jersey Institute Of Technology Method and system for decentralized power control of a multi-antenna access point using game theory
US20110029347A1 (en) * 2009-07-31 2011-02-03 Kozat Ulas C Method for wireless network virtualization through sequential auctions and conjectural pricing
CN105848274B (zh) * 2016-03-25 2019-05-07 山东大学 一种两层异构网络中基于斯坦伯格博弈论的非统一定价的功率控制方法
CN108600014B (zh) * 2018-04-27 2021-05-28 哈尔滨工业大学深圳研究生院 一种基于Stackelberg博弈的存储资源分配方法
CN112543498B (zh) * 2020-11-24 2022-03-18 山东科技大学 一种基于分层博弈模型的功率自适应分配方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150146521A1 (en) * 2013-11-26 2015-05-28 Futurewei Technologies, Inc. Dynamic resource pooling and trading mechanism in network virtualization
CN105657750A (zh) * 2015-12-29 2016-06-08 北京邮电大学 一种网络动态资源的计算方法及装置
CN107864512A (zh) * 2017-11-01 2018-03-30 南京邮电大学 一种基于博弈论的蜂窝异构网络资源分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 1 March 2016, YUNNAN UNIVERSITY, CN, article XIE, JUN: "Research on the Distributed Algorithm for Bandwidth Allocation in Heterogeneous Wireless Networks", pages: 1 - 48, XP009546184 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117176311A (zh) * 2023-10-31 2023-12-05 南通飞海电子科技有限公司 基于频分多路复用的收银数据传输方法及系统
CN117176311B (zh) * 2023-10-31 2024-01-26 南通飞海电子科技有限公司 基于频分多路复用的收银数据传输方法及系统

Also Published As

Publication number Publication date
CN113938394A (zh) 2022-01-14
CN113938394B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
Ndikumana et al. Collaborative cache allocation and computation offloading in mobile edge computing
WO2023108761A1 (zh) 监控业务带宽分配方法、装置、电子设备及存储介质
US9350624B2 (en) Dynamic assignment of connection priorities for applications operating on a client device
US11857872B2 (en) Content adaptive data center routing and forwarding in cloud computing environments
Wei et al. QoS-aware resource allocation for video transcoding in clouds
Zhang et al. Sponsored data plan: A two-class service model in wireless data networks
US11395195B2 (en) Systems and methods for managing MEC application hosting
CN103222306A (zh) 服务质量调整以改善网络利用
JP2017526049A (ja) プライベート計算リソースの外部サービスに対する日和見的な接続
US20150339748A1 (en) Radio channel control method, traffic package trading and recommending methods, and related device
CN109831796B (zh) 无线网络虚拟化中的资源分配方法
Guan et al. The value of cooperation: Minimizing user costs in multi-broker mobile cloud computing networks
Wang et al. Multi-leader multi-follower Stackelberg game based dynamic resource allocation for mobile cloud computing environment
Tang et al. MOMD: A multi-object multi-dimensional auction for crowdsourced mobile video streaming
CN112491964A (zh) 移动辅助边缘计算方法、装置、介质和设备
US11961101B2 (en) System and method for offering network slice as a service
CN111800486B (zh) 一种云边协同的资源调度方法及系统
Hassan et al. Reputation and user requirement based price modeling for dynamic spectrum access
Li et al. Resource management framework based on the Stackelberg game in vehicular edge computing
Shen et al. Deadline-aware rate allocation for IoT services in data center network
Aazam et al. Framework of resource management for intercloud computing
Chen et al. SpeedGate: A smart data pricing testbed based on speed tiers
AT&T
Sun et al. Competitive Pricing for Resource Trading in Sliced Mobile Networks: A Multi-Agent Reinforcement Learning Approach
Wang et al. Comparative study of two congestion pricing schemes: auction and tâtonnement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967892

Country of ref document: EP

Kind code of ref document: A1