WO2023108557A1 - Client device adapted uplink repetitions - Google Patents

Client device adapted uplink repetitions Download PDF

Info

Publication number
WO2023108557A1
WO2023108557A1 PCT/CN2021/138877 CN2021138877W WO2023108557A1 WO 2023108557 A1 WO2023108557 A1 WO 2023108557A1 CN 2021138877 W CN2021138877 W CN 2021138877W WO 2023108557 A1 WO2023108557 A1 WO 2023108557A1
Authority
WO
WIPO (PCT)
Prior art keywords
repetitions
message
uplink transmission
ultx
client device
Prior art date
Application number
PCT/CN2021/138877
Other languages
French (fr)
Inventor
Salah Eddine HAJRI
Shulan Feng
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to PCT/CN2021/138877 priority Critical patent/WO2023108557A1/en
Publication of WO2023108557A1 publication Critical patent/WO2023108557A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • Examples of invention relates to a client device and a network access node for client device adapted uplink repetitions of an uplink transmission. Furthermore, the invention also relates to corresponding methods and a computer program.
  • Coverage is one of the key aspects of cellular network as it impacts, among other things, service quality, operating expenditure (OPEX) and capital expenditure (CAPEX) . It is hence critical for a commercial communication network to have high coverage capabilities. This may especially be challenging in the high frequency ranges, e.g., in the frequency range 2 (FR2) in 3GPP new radio (NR) , due to high path-loss and absorption.
  • FR2 frequency range 2
  • NR 3GPP new radio
  • DMRS Demodulation reference signal
  • So called transmission repetition is one of the main mechanisms to improve coverage and reliability in a wireless communication system.
  • uplink which is the main bottleneck in most wireless networks
  • uplink repetitions enable to combat low channel and interference conditions.
  • 5G NR specifications i.e., up to Rel-16
  • two types of repetition are supported for uplink transmissions, namely Type A and Type B. These two repetition types differ in how the valid resource for uplink transmission are derived and whether cross slot repetition is supported or not.
  • Rel-17 it is expected that the maximum number of repetitions in UL transmissions will be increased.
  • An objective of examples of the invention is to provide a solution which mitigates or solves the drawbacks and problems of conventional solutions.
  • Another objective of examples of the invention is to provide a solution for improved resource utilization in a wireless communication system.
  • a client device for a communication system the client device being configured to
  • the network access node transmits a recommendation message to the network access node, the recommendation message indicating the second number of repetitions N 2 for the uplink transmission.
  • the client device may use a policy, model, algorithm, rules or corresponding for determining the second number of repetitions N 2 for the uplink transmission.
  • That the client device is configured to transmit the second number of repetitions N 2 may be understood as that the client device is configured to perform N 2 number of repetition transmission of the uplink transmission.
  • Mentioned uplink transmission may in 3GPP NR be PUSCH and PUCCH.
  • the client device after having determined the integer value of the second number of repetitions N 2 either performs N 2 number of repetitions or transmits a recommendation message indicating the second number of repetitions N 2 .
  • the present solution may be considered as a client device adapted uplink repetition mechanism.
  • An advantage of such a mechanism is that it enables flexible uplink repetitions of an uplink transmission with a more active role of the client device in setting a proper number of actual uplink repetitions of the uplink transmission.
  • the present solution allows a more reactive uplink repetition mechanism adapted to changing radio conditions, etc., e.g., in NR in case the radio channel has changed between the scheduling DCI for PUSCH and the actual transmission of PUSCH, whether positively or negatively.
  • the present solution enables to strike a better trade-off between uplink interference and resource utilization, on one hand, and reliability and coverage of UL transmission, on the other hand. All the above reasons means that the uplink capacity of the communication system may be increased due to lower uplink interference and reallocation by the network access node of freed uplink resources.
  • the first number of repetitions N 1 is larger than the second number of repetitions N 2 for the uplink transmission.
  • the first number of repetitions N 1 has a larger integer value than the second number of repetitions N 2 in this implementation form.
  • An advantage with this implementation form is that it enables the client device to reduce the number of uplink repetitions, e.g., when channel and traffic conditions allows it, consequently reducing power consumption and complexity in the client device, while still controlling uplink interference in the communication system. Further, the uplink resources saved due to reduced number of repetitions can be allocated to other uplink transmissions in the communication system thereby increasing the number of served client device and/or increasing the uplink capacity.
  • the client device is further configured to
  • the network access node receives a downlink control message from the network access node, the downlink control message indicating one or more in the group comprising: time and frequency resource allocation, a transmit precoding matrix index, and a transmit power control command for the uplink transmission;
  • An advantage with this implementation form is that the first number of repetitions N 1 and/or the second number of repetitions N 2 may be determined more accurately in respect of the trade-off between communication robustness, interference control and channel utilization since more relevant information and parameters are considered.
  • the downlink control message further indicates a first performance coefficient associated with the determination of the second number of repetitions N 2 for the uplink transmission.
  • the client device may also consider the first performance coefficient when determining the second number of repetitions N 2 which implies more accurate determination as aforementioned.
  • the client device is further configured to
  • the second number of repetitions N 2 for the uplink transmission further based on one or more in the group comprising: a cross link interference measurement, a downlink reference signal measurement, a sidelink reference signal measurement, a traffic type key performance or priority indicator, an application-specific quality-of-service indicator, a power control parameter, an uplink precoding matrix indicator, an uplink or a joint uplink and downlink transmission configuration indicator, an uplink waveform type, an uplink modulation and coding scheme, and a position and/or an orientation information of the client device.
  • a cross link interference measurement a downlink reference signal measurement, a sidelink reference signal measurement, a traffic type key performance or priority indicator, an application-specific quality-of-service indicator, a power control parameter, an uplink precoding matrix indicator, an uplink or a joint uplink and downlink transmission configuration indicator, an uplink waveform type, an uplink modulation and coding scheme, and a position and/or an orientation information of the client device.
  • the client device may adapt the second number of repetitions to relevant information mentioned above that is available at the client device side for more accurate determination as aforementioned.
  • measurements at the client device side may be leveraged without need to convey them to the network access node, e.g., CLI measurements, etc.
  • the client device is further configured to
  • the recommendation reply message indicating a validation of the second number of repetitions N 2 indicated in the recommendation message or a third number of repetitions N 3 for the uplink transmission;
  • the third number of repetitions N 3 may have the same value or have a different value as the first number of repetitions N 1 .
  • An advantage with this implementation form is that a network controlled mechanism for uplink repetitions is provided which still considers the information provided by the client device.
  • the client device is further configured to
  • An advantage with this implementation form is that the network access node and the network may also consider a performance measure provided by the client device for determining the number of repetitions for an uplink transmission.
  • the client device is further configured to
  • the activation/deactivation message indicating an activation/deactivation of the determination of the second number of repetitions N 2 or the transmission of the recommendation message by the client device.
  • An advantage with this implementation form is that the determination of the second number of repetitions N 2 or the transmission of the recommendation message by the client device can be controlled by the network access node. This implies that the client device adapted uplink repetitions can be set in ON or OFF mode depending on traffic characteristics, channel conditions, client device mobility, etc.
  • a network access node being configured to
  • the second number of repetitions N 2 is different to the first number of repetitions N 1 for the uplink transmission.
  • An advantage of the network access node according to the second aspect is that it enables flexible uplink repetitions of an uplink transmission with a more active role of the client device in setting a proper number of actual uplink repetitions of the uplink transmission. Further, the present solution allows a more reactive uplink repetition mechanism adapted to changing radio conditions, etc., e.g., in NR in case the radio channel has changed between the scheduling DCI for PUSCH and the actual transmission of PUSCH, whether positively or negatively. By enabling the client device to be more active in setting the number of UL transmission repetition, the present solution enables to strike a better trade-off between uplink interference and resource utilization, on one hand, and reliability and coverage of UL transmission, on the other hand. All the above reasons means that the uplink capacity of the communication system may be increased due to lower uplink interference and reallocation by the network access node of freed uplink resources.
  • the first number of repetitions N 1 is larger than the second number of repetitions N 2 for the uplink transmission.
  • An advantage with this implementation form is that it enables the client device to reduce the number of uplink repetitions, e.g., when channel and traffic conditions allows it, consequently reducing power consumption and complexity in the client device, while still controlling uplink interference in the communication system. Further, the uplink resources saved due to reduced number of repetitions can be allocated by the network to other uplink transmissions in the communication system thereby increasing the number of served client device and/or increasing the uplink capacity.
  • the network access node is further configured to
  • the client device transmits a downlink control message to the client device, the downlink control message indicating one or more in the group comprising: time and frequency resource allocation, a transmit precoding matrix index, and a transmit power control command for the uplink transmission.
  • An advantage with this implementation form is that the first number of repetitions N 1 and/or the second number of repetitions N 2 may be determined more accurately in respect of the trade-off between communication robustness, interference control and channel utilization since more relevant information and parameters are considered.
  • the network access node is further configured to
  • the client device may also consider the first performance coefficient determined by the network access node when determining the second number of repetitions N 2 which implies more accurate determination.
  • the network access node is further configured to
  • the recommendation reply message indicating a validation of the second number of repetitions N 2 indicated in the recommendation message or a third number of repetitions N 3 for the uplink transmission;
  • An advantage with this implementation form is that a network controlled mechanism for uplink repetitions is provided which still considers the information provided by the client device.
  • the network access node is further configured to
  • the client device receives a performance message from the client device, the performance message indicating a second performance coefficient associated with the determination of the second number of repetitions N 2 for the uplink transmission.
  • An advantage with this implementation form is that the network access node and the network may also consider a performance measure provided by the client device for determining the number of repetitions for an uplink transmission.
  • the network access node is further configured to
  • the client device transmits an activation/deactivation message to the client device, the activation/deactivation message indicating activation/deactivation of the determination of the second number of repetitions N 2 or the transmission of the recommendation message by the client device.
  • An advantage with this implementation form is that the determination of the second number of repetitions N 2 or the transmission of the recommendation message by the client device can be controlled by the network access node. This implies that the client device adapted uplink repetitions can be set in ON or OFF mode depending on traffic characteristics, channel conditions, client device mobility, etc.
  • the above mentioned and other objectives are achieved with a method for a client device, the method comprises
  • the configuration message indicating a first number of repetitions N 1 for an uplink transmission
  • the recommendation message indicating the second number of repetitions N 2 for the uplink transmission.
  • an implementation form of the method comprises the feature (s) of the corresponding implementation form of the client device.
  • the above mentioned and other objectives are achieved with a method for a network access node, the method comprises
  • the recommendation message indicating the second number of repetitions N 2 for the uplink transmission
  • the second number of repetitions N 2 is different to the first number of repetitions N 1 for the uplink transmission.
  • an implementation form of the method comprises the feature (s) of the corresponding implementation form of the network access node.
  • Examples of the invention also relates to a computer program, characterized in program code, which when run by at least one processor causes the at least one processor to execute any method according to examples of the invention.
  • examples of the invention also relate to a computer program product comprising a computer readable medium and the mentioned computer program, wherein the computer program is included in the computer readable medium, and may comprises one or more from the group of: read-only memory (ROM) , programmable ROM (PROM) , erasable PROM (EPROM) , flash memory, electrically erasable PROM (EEPROM) , hard disk drive, etc.
  • ROM read-only memory
  • PROM programmable ROM
  • EPROM erasable PROM
  • flash memory electrically erasable PROM
  • EEPROM electrically erasable PROM
  • - Fig. 1 shows a client device according to an example of the invention
  • FIG. 2 shows a flow chart of a method for a client device according to an example of the invention
  • FIG. 3 shows a network access node according to an example of the invention
  • Fig. 4 shows a flow chart of a method for a network access node according to an example of the invention
  • FIG. 5 shows a communication system according to an example of the invention
  • FIG. 6 shows a signaling diagram according to an example of the invention
  • FIG. 7 shows a signaling diagram according to yet another example of the invention.
  • Fig. 8 shows information flows and relevant functions for UE UL repetition adaptation
  • FIG. 9 illustrates a UE side model according to an example of the invention.
  • - Fig. 10 illustrates a gNB side model according to an example of the invention.
  • Each coverage enhancement technique entails dealing with different trade-offs.
  • the trade-off is between reliability and coverage, on one hand, and power consumption, UL resource consumption and interference, on the other hand.
  • configuring, or configuring and dynamically indicating a number of UL repetitions for a given UL transmission is a decision that needs to account for multiple variables or parameters. Under or over dimensioning of the number of UL repetitions that needs to be performed may e.g., lead to performance degradation and power waste at the UE side.
  • UL repetition is in some cases unavoidable.
  • MCS modulation and coding scheme
  • MCS modulation and coding scheme
  • DMRS demodulation reference signal
  • the current UL repetition framework is based on total network control there is no means for the UE to impact the network decisions in this regard, albite, if commanded so, reporting channel state information (CSI) and cross-link interference (CLI) measurements or transmitting UL reference signals (RSs) .
  • CSI channel state information
  • CLI cross-link interference
  • RSs UL reference signals
  • the UE is often better placed to detect cross-link interference, which can be highly volatile if not handled properly.
  • the UE can track path-loss conditions based on minimal measurements of downlink (DL) RSs. Consequently, endowing the UE with more impact in the process of selecting the number of UL repetitions may be necessary to guarantee timely adaptation.
  • DL downlink
  • a proper UL repetition framework needs to be devised, and in order to guarantee timeliness of the decision to select a given number of UL repetitions, more UE involvement is needed, as the UE has a better view of cross-link interference and can therefore adapt its UL transmissions based on its own mobility more efficiently due to readily available path-loss measurements. Additionally, the UE has information which it can obtain from its own internal hardware, e.g., accelerometers and gyroscopes, which is not available to the gNB.
  • a joint framework or mechanism for UE adapted or initiated determination of the number of UL repetitions for UL transmissions may be based on joint learning between the network and the UE providing a feedback mechanism for adaptation of UL repetitions.
  • the herein disclosed solution may be leveraged in different examples and with different UE and network side implementations in order to adapt UL transmissions opportunistically, e.g., based on learned policies, radio resources measurements, etc.
  • the adaptation of the number of UL repetitions may be performed autonomously by the UE or by a validation or an instruction command provided by the network via a gNB.
  • Fig. 1 shows a client device 100 according to an example of the invention.
  • the client device 100 comprises a processor 102, a transceiver 104 and a memory 106.
  • the processor 102 is coupled to the transceiver 104 and the memory 106 by communication means 108 known in the art.
  • the client device 100 further comprises an antenna or antenna array 110 coupled to the transceiver 104, which means that the client device 100 is configured for wireless communications in a communication system.
  • the processor 102 may be referred to as one or more general-purpose CPU, one or more digital signal processor (DSP) , one or more application-specific integrated circuit (ASIC) , one or more field programmable gate array (FPGA) , one or more programmable logic device, one or more discrete gate, one or more transistor logic device, one or more discrete hardware component, or one or more chipsets.
  • the memory 106 may be a read-only memory, a random access memory (RAM) , or a non-volatile RAM (NVRAM) .
  • the transceiver 104 may be a transceiver circuit, a power controller, or an interface providing capability to communicate with other communication modules or communication devices.
  • the transceiver 104, memory 106 and/or processor 102 may be implemented in separate chipsets or may be implemented in a common chipset. That the client device 100 is configured to perform certain actions can in this disclosure be understood to mean that the client device 100 comprises suitable means, such as e.g., the processor 102 and the transceiver 104, configured to perform the actions.
  • the client device 100 is configured to receive a configuration message 510 from a network access node 300.
  • the configuration message 510 indicates a first number of repetitions N 1 for an uplink transmission (ULTX) .
  • the client device 100 is further configured to determine the first number of repetitions N 1 for the uplink transmission ULTX based on the configuration message 510; and to determine a second number of repetitions N 2 for the uplink transmission ULTX based on the configuration message 510.
  • the second number of repetitions N 2 is different to the first number of repetitions N 1 for the uplink transmission ULTX, hence has a different value.
  • the client device 100 is further configured to transmit the second number of repetitions N 2 of the uplink transmission ULTX to the network access node 300, or to transmit a recommendation message 520 to the network access node 300, the recommendation message 520 indicating the second number of repetitions N 2 for the uplink transmission ULTX.
  • Fig. 2 shows a flow chart of a corresponding method 200 which may be executed in a client device 100, such as the one shown in Fig. 1.
  • the method 200 comprises receiving 202 a configuration message 510 from a network access node 300.
  • the configuration message 510 indicates a first number of repetitions N 1 for an uplink transmission ULTX.
  • the method 200 further comprises determining 204 the first number of repetitions N 1 for the uplink transmission ULTX based on the configuration message 510; and determining 206 a second number of repetitions N 2 for the uplink transmission ULTX based on the configuration message 510.
  • the second number of repetitions N 2 is different to the first number of repetitions N 1 for the uplink transmission ULTX.
  • the method 200 further comprises transmitting 208 the second number of repetitions N 2 of the uplink transmission ULTX to the network access node 300, or the method 200 comprises transmitting 210 a recommendation message 520 to the network access node 300, the recommendation message 520 indicating the second number of repetitions N 2 for the uplink transmission ULTX.
  • the first number of repetitions N 1 may in examples of the invention be determined in two main ways.
  • the first number of repetitions N 1 is in a one case explicitly indicated in the configuration message 510.
  • the client device 100 can directly derive the first number of repetitions N 1 from the configuration message 510.
  • the first number of repetitions N 1 is in another case determined based on the content of the configuration message 510 and further information indicated in a downlink control message. Therefore, the client device 100 may, depending on the type of uplink repetition scheme, derive the first number of repetitions in mentioned two main ways.
  • the first number of repetitions N 1 may be derived directly from the configuration message 510 if the value of the first number of repetitions is given explicitly in the configuration message 510. On the other hand, the first number of repetitions N 1 may be determined from the configuration message 510 and an indication in downlink control signaling, e.g., downlink control information.
  • the first number of repetitions N 1 is larger than the second number of repetitions N 2 in examples of the invention which implies that the first number of repetitions N 1 has an integer value that is larger than the integer value of the second number of repetitions N 2 .
  • N 2 may also in some cases be equal to zero which means that no repetition transmission is performed at all by the client device 100 in such examples.
  • the first number of repetitions N 1 may have a value that is smaller than the value of the second number of repetitions N 1 in other examples of the invention. For example, when the network access node 300 consider the quality of the radio channel to be worse than what is considered by the client device 100.
  • Fig. 3 shows a network access node 300 according to an example of the invention.
  • the network access node 300 comprises a processor 302, a transceiver 304 and a memory 306.
  • the processor 302 is coupled to the transceiver 304 and the memory 306 by communication means 308 known in the art.
  • the network access node 300 may be configured for wireless and/or wired communications in a communication system.
  • the wireless communication capability may be provided with an antenna or antenna array 310 coupled to the transceiver 304, while the wired communication capability may be provided with a wired communication interface 312 e.g., coupled to the transceiver 304.
  • the processor 302 may be referred to as one or more general-purpose CPU, one or more digital signal processor (DSP) , one or more application-specific integrated circuit (ASIC) , one or more field programmable gate array (FPGA) , one or more programmable logic device, one or more discrete gate, one or more transistor logic device, one or more discrete hardware component, one or more chipset.
  • the memory 306 may be a read-only memory, a random access memory (RAM) , or a non-volatile RAM (NVRAM) .
  • the transceiver 304 may be a transceiver circuit, a power controller, or an interface providing capability to communicate with other communication modules or communication devices, such as network nodes and network servers.
  • the transceiver 304, the memory 306 and/or the processor 302 may be implemented in separate chipsets or may be implemented in a common chipset. That the network access node 300 is configured to perform certain actions can in this disclosure be understood to mean that the network access node 300 comprises suitable means, such as e.g., the processor 302 and the transceiver 304, configured to perform the actions.
  • the network access node 300 is configured to transmit a configuration message 510 to a client device 100.
  • the configuration message 510 indicates a first number of repetitions N 1 for an uplink transmission ULTX.
  • the network access node 300 is further configured to receive a second number of repetitions N 2 of the uplink transmission ULTX from the client device 100, or to receive a recommendation message 520 from the client device 100.
  • the recommendation message 520 indicates the second number of repetitions N 2 for the uplink transmission ULTX.
  • the second number of repetitions N 2 is as previously mentioned different to the first number of repetitions N 1 for the uplink transmission ULTX.
  • Fig. 4 shows a flow chart of a corresponding method 400 which may be executed in a network access node 300, such as the one shown in Fig. 3.
  • the method 400 comprises transmitting 402 a configuration message 510 to a client device 100.
  • the configuration message 510 indicates a first number of repetitions N 1 for an uplink transmission ULTX.
  • the method 400 further comprises receiving 404 a second number of repetitions N 2 of the uplink transmission ULTX from the client device 100, or the method comprises 400 receiving 406 a recommendation message 520 from the client device 100.
  • the recommendation message 520 indicates the second number of repetitions N 2 for the uplink transmission ULTX.
  • the second number of repetitions N 2 is different to the first number of repetitions N 1 for the uplink transmission ULTX.
  • Fig. 5 shows a communication system 500 according to an example of the invention.
  • the communication system 500 in the disclosed example comprises a client device 100 and a network access node 300 configured to communicate and operate in the communication system 500.
  • the shown communication system 500 only comprises one client device 100 and one network access node 300.
  • the communication system 500 may comprise any number of client devices 100 and any number of network access nodes 300 without deviating from the scope of the invention.
  • the client device 100 and the network access node 300 may communicate with each other in the UL and in the DL depending on the direction of the transmission.
  • the network access node 300 may be part of a RAN and be configured to communicate with other network nodes of the network NW of the communication system 500 via a communication interface.
  • the network access node 300 transmits a configuration message 510 to the client device 100 in the DL so as to configure the latter device.
  • the client device 100 on the other hand transmits N 2 number of UL repetitions to the network access node 300 or transmits a recommendation message 520 in the UL according to examples of the invention.
  • the client device 100 has previously made an uplink transmission ULTX to the network access node 300.
  • a client device 100 is herein denoted a UE and a network access node is denoted a gNB.
  • a gNB network access node
  • Fig. 6 illustrates an example of the invention when the UE 100 autonomously decides on the number of repetitions for an UL transmission to a gNB 300 and thereafter performs such UL repetitions to the gNB 300 without consultation or validation of the network.
  • the gNB 300 transmits a configuration message 510 to the UE 100 so as to configure the UE 100.
  • the network via the gNB 300 therefore configures the UE 100 with an UL repetition adaptation configuration which may be provided in radio resource control (RRC) signaling. This may be performed upon initial RRC configuration of the UE 100 when connecting to the network or in a following reconfiguration procedure of the UE 100 based on a reconfiguration message.
  • RRC radio resource control
  • the UE 100 may in examples of the invention be required to report its capability for UL repetition adaptation in a capability message 580 to the gNB 300.
  • Mentioned capability message 580 indicates or contains the necessary information elements (IEs) about the UE capabilities needed to support UL transmission repetition adaptation, such as learning capabilities, parallel running models capability, different RRM capabilities relevant to the features used as input to the UE policy for UL transmission repetition adaptation, etc.
  • Transmission of the capability message 580 by the UE 100 may be triggered by the reception of a capability request message 570 signaled by the gNB 300 to the UE 100 as also exemplified in Fig. 6.
  • the herein disclosed UE adapted uplink repetition mechanism can be configured as a persistent, a triggered or a semi-persistent behavior by the UE 100.
  • the gNB 300 may configure the UE 100 with any of the mentioned behavior by indications in the configuration message 510.
  • the UE 100 adapts the number of UL repetitions for one or multiple configured grants (CG) or dynamic grants (DC) , and verifies one or multiple of the following conditions:
  • ⁇ Explicit indication of the targeted DG or CG in a triggering message also denoted an activation message 560 from the gNB 300.
  • the activation message 560 may therefore indicate targeted grants whether configured grants or dynamic grants in this respect;
  • an L1/L2 activation message 560 needs to be transmitted to the UE 100 in order to activate the UE adapted uplink repetition mechanism.
  • the L1 signaling may be DCI and the L2 signaling may be MAC CE. If activated, the UE 100 maintains this behavior for all or a subset of UL transmissions until receiving a deactivation message 560 from the network.
  • the UE 100 adapts the number of UL repetitions, when applicable, for all or a subset of its UL transmissions until reconfigured otherwise by the network e.g., by receiving a reconfiguration message which may be a RRC message dedicated for this purpose or part of a more general RRC message type.
  • a reconfiguration message which may be a RRC message dedicated for this purpose or part of a more general RRC message type.
  • the UE adapted uplink repetition mechanism can be configured or configured and activated for all DGs and CGs or only for a subset of DGs and CGs, whether in the persistent, semi-persistent or triggered behavior.
  • the UE 100 determines the first number of repetitions N 1 based on the configuration message 510 received from the gNB 300.
  • the configuration message 510 indicates the first number of repetitions N 1 explicitly or implicitly.
  • the value of N 1 can be derived directly by the UE 100 when decoding the configuration message 510.
  • the first number of repetitions N 1 is indicated implicitly in the configuration message 510 further information is need by the UE 100 to obtain N 1 .
  • the gNB 300 may also transmit a downlink control message 530 such as downlink control information (DCI) to the UE 100.
  • DCI downlink control information
  • the downlink control message 530 indicates one or more in the group comprising:
  • the UE 100 can determine/derive the first number of repetitions N 1 in this latter example.
  • the UE 100 further determines a second number of repetitions N 2 which may be considered as the UE adapted or recommend number of repetitions for the uplink transmission ULTX.
  • the determination of the second number of repetitions N 2 may be performed by the use of a policy, a model, an algorithm, rules, etc., which in the following disclosure will be denoted: UL repetition policy.
  • the UE 100 may learn the UL repetition policy and/or be configured with the UL repetition policy depending on the situation and scenario.
  • the second number of repetitions N 2 is determined based on the indication of the configuration message 510 as an input to the UL repetition policy.
  • the second number of repetitions N 2 is determined based on the indication of the configuration message 510 and information in the downlink control message 530. It was noted that the downlink control message 530 may indicate one or more of time and frequency resource allocation, transmit precoding matrix index, and transmit power control command which parameters are used for determining the second number of repetitions N 2 .
  • the downlink control message 530 further indicates a first performance coefficient associated with the determination of the second number of repetitions N 2 for the uplink transmission ULTX.
  • the first performance coefficient may be considered as steering coefficients from the network.
  • the first performance coefficient is considered by the UE 100 for determining the value of N 2 .
  • the second number of repetitions N 2 may be determined by using the UL repetition policy and further based on information that is directly available to the UE 100.
  • the UE 100 may in such examples be configured to determine the second number of repetitions N 2 for the uplink transmission ULTX further based on one or more in the group comprising:
  • Traffic type key performance or priority indicator e.g., target bit error rate, latency, error probability, and decoding margin
  • Application-specific quality-of-service indicator such as target UE perceived throughput, quality of experience relevant to application generating the traffic
  • target reference signals such as DL or UL DMRS
  • source reference signals such as CSI-RS, SSB and SRS
  • Uplink waveform type e.g., OFDM or DFT-S-OFDM an uplink modulation and coding scheme including modulation order and coding rate;
  • Position and/or an orientation information of the UE 100 including information obtained from positioning reference signal measurements or internal UE sensors, e.g., orientation, acceleration, etc.
  • step IV in Fig. 6 the UE 100 performs N 2 number of repetitions of the uplink transmission ULTX to the gNB 300 in a UL channel such as PUSCH and PUCCH. Hence, the UE 100 autonomously determines and decides about how many repetitions of an UL transmission to perform according to the example of the invention disclosed in Fig. 6.
  • step V in Fig. 6 the gNB 300 receives N 2 number of repetitions from the UE 100 and starts to blind decode the received N 2 number of UL repetitions.
  • the gNB 300 computes a decoding margin and/or a repetition offset based on the blind decoding in the previous step.
  • the decoding margin can be obtained as an estimation from the gNB for the modulation and decoding scheme offset/SINR offset that can be applied while maintaining a successful decoding outcome of the UL transmission.
  • the repetition offset may be derived as the difference in the number of UL repetitions that the UE should apply in order to guarantee the successful decoding of UL data at the gNB side.
  • the gNB 300 may derive one or more of the mentioned first performance coefficients, also denoted steering coefficients, which were provided in a downlink control message 530 to the UE 100.
  • the first performance coefficients are derived based on the UL decoding margin and/or a repetition offset with respect to the number of repetitions used by the UE 100, which is equal to N 2 .
  • the first performance coefficient conveys a measure of performance of the UE currently used UL repetition policy for setting the number of repetitions for the UL transmission.
  • the first performance coefficient may be an explicit indication or a quantity derived from one or multiple of UL decoding margin and UL repetition offset.
  • the network may via the gNB 300 indicate the first performance coefficients following each UL transmission adapted by the UE 100, or in a batch or bundled format, i.e., grouping two or more first performance coefficients of multiple previous UL transmissions into a batch or bundled report in the downlink control message 530.
  • Mentioned batch/bundled report may be compressed in the time domain.
  • the compression in the time domain may be performed using e.g., differential quantization, codebook-based compression, and/or dimensionality reduction/regression-based compression.
  • the indications of the first performance coefficients may be performed according to a periodic, an aperiodic, or a semi-persistent procedure.
  • suitable signaling schemes are employed.
  • the UE 100 knows the periodicity of first performance coefficients indication and adapt its model updates accordingly.
  • the UE 100 knows that first performance coefficients indications will be periodic, once activated, until being deactivated by the gNB 300. In this case the gNB 300 may transmit an activation/deactivation message to the UE 100 for first performance coefficients indication. In case of aperiodic procedure, the gNB 300 indicates first performance coefficients, sporadically when it estimates that it is needed to update UE policy and when enough resources are available to do so.
  • the gNB 300 transmits a further downlink control message 530′ indicating the first performance coefficient associated with the second number of repetitions N 2 .
  • the gNB 300 may indicate the first performance coefficients in L1, L2, or higher layer signaling.
  • step VIII in Fig. 6 the UE 100 receives the downlink control message 530′ and derives the first performance coefficient by decoding the downlink control message 530′.
  • step IX in Fig. 6 the UE 100 based on the first performance coefficient adapt and/or updates the UL repetition policy for determining the second number of repetitions N 2 , i.e., the number of repetitions that is decided by the UE 100 for an UL transmission.
  • the UE 100 may in examples of the invention update the UL repetition policy according to a machine learning/artificial intelligence procedure which is described in the following disclosure.
  • the UE 100 instead of directly performing the second number of repetitions, communicates its determined number of repetitions, i.e., N 2 , for the UL transmission to the gNB 300 in the form of a recommendation message 520.
  • the final decision about the number of repetitions for the UL transmission is therefore in these examples taken by the network which is illustrated in Fig. 7.
  • the UE 100 may use the number of repetitions that is derived according to its own UL repetition policy only if the network validates or gives its approval. Otherwise, the gNB 300 indicates a third number of repetitions N 3 different to the second number of repetitions N 2 and informs the UE 100 about the third number of repetitions N 3 . Thereby, even though the UE 100 does not decide on its own the UE 100 may still influence the actual number of repetitions by the transmission of the recommendation message 520 to the gNB 300.
  • Steps I–III in Fig. 7 are the same as steps I -III in Fig. 6.
  • step IV in Fig. 7 the UE 100 however transmits a recommendation message 520 to the gNB 300 instead of performing the second number of UL repetitions N 2 to the gNB 300.
  • the UE 100 hence informs the gNB 300 about its recommended number of repetitions, i.e., the value of N 2 , since the second number of repetitions is indicated in the recommendation message 520.
  • This type of signaling may be performed in any UL dynamic signaling.
  • recommendation message 520 may be comprised in uplink control information (UCI) or UL MAC CE.
  • the UE 100 may also indicate to the gNB 300 a UL repetition policy outcome coefficient, also denoted a second performance coefficient, which in contrast to the first performance coefficient is determined and provided by the UE 100.
  • the second performance coefficient indicates a performance metric of the current UL repetition policy employed by the UE 100, and may e.g., in a machine learning context represent accuracy, precision, recall of the used model at the UE side for adapted UL transmission repetition, or indicate the explicit UE predicted number of repetitions.
  • Accuracy, precision and recall are known quantities quantifying machine learning model performance, when addressing classification or regression problems, where
  • the second performance coefficient may be signaled to the gNB 300 in a separate message, i.e., in a performance message 550, as shown in Fig. 7.
  • the second performance coefficient may in examples also be signaled in the recommendation message 520 together with the other IEs of the recommendation message 520.
  • the gNB 300 decodes and processes the recommendation message 520 in step VI in Fig. 7. This among other things involves that the gNB 300 has to decide if the second number of repetitions N 2 is to be validated or if another number of UL repetitions should be executed by the UE 100, i.e., a third number of repetitions N 3 , which has a value that is different to the value of the second number of repetitions N 2 this different value being larger or smaller. In this regard the gNB 300 has to access the suitability of performing the recommended number of repetitions.
  • the gNB 300 will validate the UE recommendation. However, if the recommended number of repetitions is found too low, the gNB 300 will set the value N 3 to larger than N 2 , and in the opposite case if the recommended number of repetitions is found too high, the gNB 300 will set the value N 3 to smaller than N 2 .
  • the gNB 300 transmits a recommendation reply message 540 to the UE 100.
  • the recommendation reply message 540 either indicates a validation of the second number of repetitions N 2 that was indicated in the recommendation message 520 or instead indicates the third number of repetitions N 3 for the uplink transmission ULTX.
  • the UE 100 in step IX in Fig. 7 Upon reception of the recommendation reply message 540 in step VIII in Fig. 7, the UE 100 in step IX in Fig. 7 derives information about the content of the recommendation reply message 540 by decoding the recommendation reply message 540.
  • step X in Fig. 7 the UE 100 performs N 2 or N 3 number of UL repetitions according to the rule or policy:
  • step XI in Fig. 7 the gNB 300 receives N 2 or N 3 number of repetitions and blind decodes the received repetitions as aforementioned.
  • 5G NR is expected to be the first generation of RAN that will incorporate extensive use of machine learning (ML) at different levels of the system and as part of the specifications.
  • a RAN3 study item SI
  • ML/AI machine learning/artificial intelligence
  • NG-RAN a RAN3 study item
  • ML/AI machine learning/artificial intelligence
  • NG-RAN a RAN3 study item
  • the focus is on higher layer use cases, including e.g., load balancing, network energy saving and mobility optimization.
  • This work on ML/AI in NR-RAN is expected to continue and to address a wider scope in Rel-18.
  • CSI enhancements compression, estimation, prediction, RS overhead
  • beam management (BM) enhancements RS overhead, measurements, prediction, blockage detection, and sensing
  • link adaptation enhancements positioning
  • L1/L2-mobility support enhancement The different considered enhancements have some common requirements from the system design point of view, namely flexible carrier (s) -the transmission of RS in the UL or DL would require more flexibility in defining the RS mapping both in time and frequency domains; augmented functionalities of UL/DL dynamic signaling; flexible radio resource measurement (RRM) parameterization; and interworking with other NR features and lower capability devices.
  • RRM radio resource measurement
  • ML can be deployed independently at the UE 100, the gNB 300 or jointly at both sides.
  • the training of RRM models e.g., channel state information (CSI) , BM, CLI, etc., may be performed over the air interface or offline, each having their own pros and cons. Regardless, constant data collection will be needed either for inference or for training and inference.
  • the main challenges of standardizing ML-based operations in a RAN framework include the often-conflicting requirements between ML-based methods and communication key performance indicators (KPIs) , which give rise to multiple trade-offs, the high complexity and inter-dependence of RAN features, and the necessity to maintain large degrees of freedom in terms of implementation.
  • KPIs communication key performance indicators
  • a reinforcement learning framework is deployed based on the proposed invention, in which the information flow and main functions involved in deriving and maintaining UE policy for initiating UL repetition adaptation, are presented, where I –III represents the UE side while IV –VI represents the gNB side or network side.
  • the UE 100 may perform the following steps:
  • Measure reference signals such as DL RSs, sidelink (SL) RSs and CLI RSs;
  • Collect interference input to the UL repetition policy model including one or more of: number of actual repetitions, CLI measurements, RS measurements, QCL assumption for UL transmission, and SL interference and channel measurements;
  • the UE 100 transmits PUSCH/PUCCH including CSI reports, RS and/or CLI measurements over a DL air interface in a radio environment.
  • UE derived UL repetitions or UL repetition policy performance metric In examples, UE derived UL repetitions or UL repetition policy performance metric.
  • the UE 100 receives UL channel, such as PDSCH and PDCCH, from the gNB 300 in the radio environment.
  • UL channel such as PDSCH and PDCCH
  • the UE 100 is in these cases the host of UL repetition termination policy model which it uses to select the appropriate number of UL repetitions for each scheduled UL transmission.
  • the exact implementation of the UE side model can differ based on e.g., UE capabilities, environment requirements, traffic requirements, etc.
  • the UE side model output format or performance metric may be configured, in case should be communicated explicitly to the network.
  • the main task of the UE model is to choose a number of repetitions for an UL transmission based on a set of input variable, part of which may be enforced by specification or network configuration.
  • the collection of input for the UE side model represents the state of the UL transmission environment as observed by the UE. For a given state the UE infer an action in the form of a number of repetitions or a set of probabilities over different numbers of repetitions.
  • the observed state may include one or multiple of the following features:
  • Time domain resource allocation (TDRA) indication in DCI and RRC message
  • ⁇ Quality of PDSCH reception e.g., measured BLER, decoding margin, etc.
  • the UE model may be implemented as a neural network.
  • An example implementation of an actor model based on fully connected layers is depicted in Fig. 9.
  • the input box represents an input layer that may include different scaling and preprocessing steps for the input data.
  • the dense boxes represent fully connected neural network layers.
  • the output box represents the output layer of a neural network which provides the predicted target quantity, in this case the second number of repetitions N 2 .
  • the output box may provide the UE with a probability distribution over a set of possible numbers of repetition.
  • the output box provides, explicitly, the second number of repetitions N 2 .
  • the gNB 300 may perform the following steps:
  • ⁇ Decode UL channels such as PUSCH and PUCCH, received from the UE 100;
  • Derive first performance coefficients which may indicate a quantity related to regret; reward, or advantages. Mentioned policy steering coefficients may be dependent on and a function of the decoding margin, soft HARQ, error probability and repetition offset;
  • Step V in Fig. 8 the gNB 300 transmits PDSCH/PDCCH over an UL air interface in a radio environment.
  • the PDSCH/PDCCH may include policy steering coefficients, DL RS, DCI, etc.
  • the gNB 300 may also schedule other UEs in the cell which is not shown in Fig. 8.
  • Step VI in Fig. 8 the gNB 300 receives PUSCH/PUCCH from the UE 100.
  • the gNB 300 is the host of the UL repetition policy steering model which it is used in order to evaluate the actions taken by the UL repetition policy employed by the UE 100 and provides the UE 100 with needed feedback information e.g., reward, regret, and advantages, to steer the UL repetition policy.
  • the gNB side model may output a real value that can be understood as a rating of the action taken in previous state.
  • the outputs of the gNB model may be indicated after each UL transmission or in a batch or bundled format to the UE 100.
  • the inputs for the gNB model may include but is not limited to:
  • the gNB side model may be implemented as a neural network.
  • An example of such neural network is visualized in Fig. 10 which presents a simple implementation based on fully connected neural network layers.
  • the input of the model for training and inference may include any of the features listed above.
  • the output of the gNB side model may have various forms, most common of which being a regret, a reward or an advantage coefficient.
  • the input box represents different layers of the neural network, and the arrows represent the direction of information flow in the neural network.
  • the dense boxes represent fully connected layers.
  • the output box represents the output layer which may have different activation functions depending on the used quantity as the second performance quantity.
  • the client device herein may be denoted as a user device, a user equipment (UE) , a mobile station, an internet of things (IoT) device, a sensor device, a wireless terminal and/or a mobile terminal, and is enabled to communicate wirelessly in a wireless communication system, sometimes also referred to as a cellular radio system.
  • the UEs may further be referred to as mobile telephones, cellular telephones, computer tablets or laptops with wireless capability.
  • the UEs in this context may be, for example, portable, pocket-storable, hand-held, computer-comprised, or vehicle-mounted mobile devices, enabled to communicate voice and/or data, via a radio access network (RAN) , with another communication entity, such as another receiver or a server.
  • RAN radio access network
  • the UE may further be a station (STA) , which is any device that contains an IEEE 802.11-conformant media access control (MAC) and physical layer (PHY) interface to the wireless medium (WM) .
  • STA station
  • the UE may be configured for communication in 3GPP related long term evolution (LTE) , LTE-advanced, fifth generation (5G) wireless systems, such as new radio (NR) , and their evolutions, as well as in IEEE related Wi-Fi, worldwide interoperability for microwave access (WiMAX) and their evolutions.
  • LTE long term evolution
  • LTE-advanced LTE-advanced
  • 5G wireless systems such as new radio (NR)
  • NR new radio
  • WiMAX worldwide interoperability for microwave access
  • the network access node herein may also be denoted as a radio network access node, an access network access node, an access point (AP) , or a base station (BS) , e.g., a radio base station (RBS) , which in some networks may be referred to as transmitter, “gNB” , “gNodeB” , “eNB” , “eNodeB” , “NodeB” or “B node” , depending on the standard, technology and terminology used.
  • the radio network access nodes may be of different classes or types such as e.g., macro eNodeB, home eNodeB or pico base station, based on transmission power and thereby the cell size.
  • the radio network access node may further be a station (STA) , which is any device that contains an IEEE 802.11-conformant media access control (MAC) and physical layer (PHY) interface to the wireless medium (WM) .
  • STA station
  • the radio network access node may be configured for communication in 3GPP related long term evolution (LTE) , LTE-advanced, fifth generation (5G) wireless systems, such as new radio (NR) and their evolutions, as well as in IEEE related Wi-Fi, worldwide interoperability for microwave access (WiMAX) and their evolutions.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • Wi-Fi worldwide interoperability for microwave access
  • any method according to examples of the invention may be implemented in a computer program, having code means, which when run by processing means causes the processing means to execute the steps of the method.
  • the computer program is included in a computer readable medium of a computer program product.
  • the computer readable medium may comprise essentially any memory, such as previously mentioned a read-only memory (ROM) , a programmable read-only memory (PROM) , an erasable PROM (EPROM) , a flash memory, an electrically erasable PROM (EEPROM) , or a hard disk drive.
  • the client device and the network access node comprise the necessary communication capabilities in the form of e.g., functions, means, units, elements, etc., for performing or implementing examples of the invention.
  • Examples of other such means, units, elements and functions are: processors, memory, buffers, control logic, encoders, decoders, rate matchers, de-rate matchers, mapping units, multipliers, decision units, selecting units, switches, interleavers, de-interleavers, modulators, demodulators, inputs, outputs, antennas, amplifiers, receiver units, transmitter units, DSPs, MSDs, TCM encoder, TCM decoder, power supply units, power feeders, communication interfaces, communication protocols, etc. which are suitably arranged together for performing the solution.
  • the processor (s) of the client device and the network access node may comprise, e.g., one or more instances of a central processing unit (CPU) , a processing unit, a processing circuit, a processor, an application specific integrated circuit (ASIC) , a microprocessor, or other processing logic that may interpret and execute instructions.
  • the expression “processor” may thus represent a processing circuitry comprising a plurality of processing circuits, such as e.g., any, some or all of the ones mentioned above.
  • the processing circuitry may further perform data processing functions for inputting, outputting, and processing of data comprising data buffering and device control functions, such as call processing control, user interface control, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Examples of the invention relates to client device adapted uplink repetitions. A client device (100) may influence the actual number of repetitions of an uplink transmission (ULTX) either directly by transmitting a number of repetitions determined by the client device (100) itself or indirectly by transmitting a recommendation message (520) to a network access node (300) of a network indicating a recommended number of repetitions for the uplink transmission. In the latter case, the network access node (300) responds with a recommendation reply message (540) either validating the recommended number of repetitions or instructing the client device (100) to perform another number of repetitions determined by the network. Thereby, improved radio resource utilization, reduced interference and reduced power consumption is possible. Furthermore, examples of the invention also relate to corresponding methods and a computer program.

Description

CLIENT DEVICE ADAPTED UPLINK REPETITIONS Technical Field
Examples of invention relates to a client device and a network access node for client device adapted uplink repetitions of an uplink transmission. Furthermore, the invention also relates to corresponding methods and a computer program.
Background
Coverage is one of the key aspects of cellular network as it impacts, among other things, service quality, operating expenditure (OPEX) and capital expenditure (CAPEX) . It is hence critical for a commercial communication network to have high coverage capabilities. This may especially be challenging in the high frequency ranges, e.g., in the frequency range 2 (FR2) in 3GPP new radio (NR) , due to high path-loss and absorption.
Several aspects may limit achievable network coverage including but not limited to:
● Inaccurate channel estimation under poor coverage scenarios;
● Inaccurate scheduling and physical resource block (PRB) allocation;
● Large overhead of reference signals (RSs) in uplink (UL) transmissions;
● Limited portion of uplink transmission resources in time division duplex (TDD) configuration;
● Limited maximum uplink transmission power due to user equipment (UE) capability and regulatory limitations;
● Frequency range, inter-cell interference, and limited UE antennas; and
● Inaccurate link adaptation and precoding.
This motivated a 3GPP RAN study item in Rel-17 on coverage enhancements, targeting coverage enhancements for at least physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) , in both the FR1 and FR2 frequency ranges. Several methods for coverage enhancement were proposed including but not limited to:
● Increased uplink channel repetitions;
● Power boosting;
● Dynamic waveform adaptation;
● Frequency hopping; and
● Demodulation reference signal (DMRS) bundling.
So called transmission repetition is one of the main mechanisms to improve coverage and reliability in a wireless communication system. In the uplink, which is the main bottleneck in  most wireless networks, uplink repetitions enable to combat low channel and interference conditions. In the current 5G NR specifications, i.e., up to Rel-16, two types of repetition are supported for uplink transmissions, namely Type A and Type B. These two repetition types differ in how the valid resource for uplink transmission are derived and whether cross slot repetition is supported or not. In Rel-17, it is expected that the maximum number of repetitions in UL transmissions will be increased.
Summary
An objective of examples of the invention is to provide a solution which mitigates or solves the drawbacks and problems of conventional solutions.
Another objective of examples of the invention is to provide a solution for improved resource utilization in a wireless communication system.
The above and further objectives are solved by the subject matter of the independent claims. Further examples of the invention can be found in the dependent claims.
According to a first aspect of the invention, the above mentioned and other objectives are achieved with a client device for a communication system, the client device being configured to
receive a configuration message from a network access node, the configuration message indicating a first number of repetitions N 1 for an uplink transmission;
determine the first number of repetitions N 1 for the uplink transmission based on the configuration message;
determine a second number of repetitions N 2 for the uplink transmission based on the configuration message, the second number of repetitions N 2 being different to the first number of repetitions N 1 for the uplink transmission; and
transmit the second number of repetitions N 2 of the uplink transmission to the network access node, or
transmit a recommendation message to the network access node, the recommendation message indicating the second number of repetitions N 2 for the uplink transmission.
The client device may use a policy, model, algorithm, rules or corresponding for determining the second number of repetitions N 2 for the uplink transmission.
That the client device is configured to transmit the second number of repetitions N 2 may be understood as that the client device is configured to perform N 2 number of repetition  transmission of the uplink transmission. Mentioned uplink transmission may in 3GPP NR be PUSCH and PUCCH.
It is further understood that the client device after having determined the integer value of the second number of repetitions N 2 either performs N 2 number of repetitions or transmits a recommendation message indicating the second number of repetitions N 2.
The present solution may be considered as a client device adapted uplink repetition mechanism. An advantage of such a mechanism is that it enables flexible uplink repetitions of an uplink transmission with a more active role of the client device in setting a proper number of actual uplink repetitions of the uplink transmission. Further, the present solution allows a more reactive uplink repetition mechanism adapted to changing radio conditions, etc., e.g., in NR in case the radio channel has changed between the scheduling DCI for PUSCH and the actual transmission of PUSCH, whether positively or negatively. By enabling the client device to be more active in setting the number of UL transmission repetition, the present solution enables to strike a better trade-off between uplink interference and resource utilization, on one hand, and reliability and coverage of UL transmission, on the other hand. All the above reasons means that the uplink capacity of the communication system may be increased due to lower uplink interference and reallocation by the network access node of freed uplink resources.
In an implementation form of a client device according to the first aspect, the first number of repetitions N 1 is larger than the second number of repetitions N 2 for the uplink transmission.
Hence, the first number of repetitions N 1 has a larger integer value than the second number of repetitions N 2 in this implementation form.
An advantage with this implementation form is that it enables the client device to reduce the number of uplink repetitions, e.g., when channel and traffic conditions allows it, consequently reducing power consumption and complexity in the client device, while still controlling uplink interference in the communication system. Further, the uplink resources saved due to reduced number of repetitions can be allocated to other uplink transmissions in the communication system thereby increasing the number of served client device and/or increasing the uplink capacity.
In an implementation form of a client device according to the first aspect, the client device is further configured to
receive a downlink control message from the network access node, the downlink control message indicating one or more in the group comprising: time and frequency resource allocation, a transmit precoding matrix index, and a transmit power control command for the uplink transmission; and
determine the first number of repetitions N 1 and/or the second number of repetitions N 2 for the uplink transmission based on the configuration message and the downlink control message.
An advantage with this implementation form is that the first number of repetitions N 1 and/or the second number of repetitions N 2 may be determined more accurately in respect of the trade-off between communication robustness, interference control and channel utilization since more relevant information and parameters are considered.
In an implementation form of a client device according to the first aspect, the downlink control message further indicates a first performance coefficient associated with the determination of the second number of repetitions N 2 for the uplink transmission.
Hence, the client device may also consider the first performance coefficient when determining the second number of repetitions N 2 which implies more accurate determination as aforementioned.
In an implementation form of a client device according to the first aspect, the client device is further configured to
determine the second number of repetitions N 2 for the uplink transmission further based on one or more in the group comprising: a cross link interference measurement, a downlink reference signal measurement, a sidelink reference signal measurement, a traffic type key performance or priority indicator, an application-specific quality-of-service indicator, a power control parameter, an uplink precoding matrix indicator, an uplink or a joint uplink and downlink transmission configuration indicator, an uplink waveform type, an uplink modulation and coding scheme, and a position and/or an orientation information of the client device.
An advantage with this implementation form is that the client device may adapt the second number of repetitions to relevant information mentioned above that is available at the client device side for more accurate determination as aforementioned. Hence, measurements at the client device side may be leveraged without need to convey them to the network access node, e.g., CLI measurements, etc.
In an implementation form of a client device according to the first aspect, the client device is further configured to
receive a recommendation reply message from the network access node, the recommendation reply message indicating a validation of the second number of repetitions N 2 indicated in the recommendation message or a third number of repetitions N 3 for the uplink transmission; and
transmit the second number of repetitions N 2 of the uplink transmission to the network access node when the recommendation reply message indicates the validation of the second number of repetitions N 2, or
transmit the third number of repetitions N 3 of the uplink transmission to the network access node when the recommendation reply message indicates the third number of repetitions N 3.
The third number of repetitions N 3 may have the same value or have a different value as the first number of repetitions N 1.
An advantage with this implementation form is that a network controlled mechanism for uplink repetitions is provided which still considers the information provided by the client device.
In an implementation form of a client device according to the first aspect, the client device is further configured to
determine a second performance coefficient based on the determination of the second number of repetitions N 2 for the uplink transmission; and
transmit a performance message to the network access node, the performance message indicating the second performance coefficient.
An advantage with this implementation form is that the network access node and the network may also consider a performance measure provided by the client device for determining the number of repetitions for an uplink transmission.
In an implementation form of a client device according to the first aspect, the client device is further configured to
receive an activation/deactivation message from the network access node, the activation/deactivation message indicating an activation/deactivation of the determination of  the second number of repetitions N 2 or the transmission of the recommendation message by the client device.
An advantage with this implementation form is that the determination of the second number of repetitions N 2 or the transmission of the recommendation message by the client device can be controlled by the network access node. This implies that the client device adapted uplink repetitions can be set in ON or OFF mode depending on traffic characteristics, channel conditions, client device mobility, etc.
According to a second aspect of the invention, the above mentioned and other objectives are achieved with a network access node being configured to
transmit a configuration message to a client device, the configuration message indicating a first number of repetitions N 1 for an uplink transmission; and
receive a second number of repetitions N 2 of the uplink transmission from the client device, or
receive a recommendation message from the client device, the recommendation message indicating the second number of repetitions N 2 for the uplink transmission, wherein
the second number of repetitions N 2 is different to the first number of repetitions N 1 for the uplink transmission.
An advantage of the network access node according to the second aspect is that it enables flexible uplink repetitions of an uplink transmission with a more active role of the client device in setting a proper number of actual uplink repetitions of the uplink transmission. Further, the present solution allows a more reactive uplink repetition mechanism adapted to changing radio conditions, etc., e.g., in NR in case the radio channel has changed between the scheduling DCI for PUSCH and the actual transmission of PUSCH, whether positively or negatively. By enabling the client device to be more active in setting the number of UL transmission repetition, the present solution enables to strike a better trade-off between uplink interference and resource utilization, on one hand, and reliability and coverage of UL transmission, on the other hand. All the above reasons means that the uplink capacity of the communication system may be increased due to lower uplink interference and reallocation by the network access node of freed uplink resources.
In an implementation form of a network access node according to the second aspect, the first number of repetitions N 1 is larger than the second number of repetitions N 2 for the uplink transmission.
An advantage with this implementation form is that it enables the client device to reduce the number of uplink repetitions, e.g., when channel and traffic conditions allows it, consequently reducing power consumption and complexity in the client device, while still controlling uplink interference in the communication system. Further, the uplink resources saved due to reduced number of repetitions can be allocated by the network to other uplink transmissions in the communication system thereby increasing the number of served client device and/or increasing the uplink capacity.
In an implementation form of a network access node according to the second aspect, the network access node is further configured to
transmit a downlink control message to the client device, the downlink control message indicating one or more in the group comprising: time and frequency resource allocation, a transmit precoding matrix index, and a transmit power control command for the uplink transmission.
An advantage with this implementation form is that the first number of repetitions N 1 and/or the second number of repetitions N 2 may be determined more accurately in respect of the trade-off between communication robustness, interference control and channel utilization since more relevant information and parameters are considered.
In an implementation form of a network access node according to the second aspect, the network access node is further configured to
decode the second number of repetitions N 2 of the uplink transmission to obtain a decoding margin for the second number of repetitions N 2;
determine a first performance coefficient based on the decoding margin; and
indicate the first performance coefficient in the downlink control message.
Hence, the client device may also consider the first performance coefficient determined by the network access node when determining the second number of repetitions N 2 which implies more accurate determination.
In an implementation form of a network access node according to the second aspect, the network access node is further configured to
transmit a recommendation reply message to the client device, the recommendation reply message indicating a validation of the second number of repetitions N 2 indicated in the recommendation message or a third number of repetitions N 3 for the uplink transmission; and
receive the second number of repetitions N 2 of the uplink transmission from the client device when the recommendation reply message indicates the validation of the second number of repetitions N 2, or
receive the third number of repetitions N 3 of the uplink transmission from the client device when the recommendation reply message indicates the third number of repetitions N 3.
An advantage with this implementation form is that a network controlled mechanism for uplink repetitions is provided which still considers the information provided by the client device.
In an implementation form of a network access node according to the second aspect, the network access node is further configured to
receive a performance message from the client device, the performance message indicating a second performance coefficient associated with the determination of the second number of repetitions N 2 for the uplink transmission.
An advantage with this implementation form is that the network access node and the network may also consider a performance measure provided by the client device for determining the number of repetitions for an uplink transmission.
In an implementation form of a network access node according to the second aspect, the network access node is further configured to
transmit an activation/deactivation message to the client device, the activation/deactivation message indicating activation/deactivation of the determination of the second number of repetitions N 2 or the transmission of the recommendation message by the client device.
An advantage with this implementation form is that the determination of the second number of repetitions N 2 or the transmission of the recommendation message by the client device can be controlled by the network access node. This implies that the client device adapted uplink repetitions can be set in ON or OFF mode depending on traffic characteristics, channel conditions, client device mobility, etc.
According to a third aspect of the invention, the above mentioned and other objectives are achieved with a method for a client device, the method comprises
receiving a configuration message from a network access node, the configuration message indicating a first number of repetitions N 1 for an uplink transmission;
determining the first number of repetitions N 1 for the uplink transmission based on the configuration message;
determining a second number of repetitions N 2 for the uplink transmission based on the configuration message, the second number of repetitions N 2 being different to the first number of repetitions N 1 for the uplink transmission; and
transmitting the second number of repetitions N 2 of the uplink transmission to the network access node, or
transmitting a recommendation message to the network access node, the recommendation message indicating the second number of repetitions N 2 for the uplink transmission.
The method according to the third aspect can be extended into implementation forms corresponding to the implementation forms of the client device according to the first aspect. Hence, an implementation form of the method comprises the feature (s) of the corresponding implementation form of the client device.
The advantages of the methods according to the third aspect are the same as those for the corresponding implementation forms of the client device according to the first aspect.
According to a fourth aspect of the invention, the above mentioned and other objectives are achieved with a method for a network access node, the method comprises
transmitting a configuration message to a client device, the configuration message indicating a first number of repetitions N 1 for an uplink transmission; and
receiving a second number of repetitions N 2 of the uplink transmission from the client device, or
receiving a recommendation message from the client device, the recommendation message indicating the second number of repetitions N 2 for the uplink transmission, wherein
the second number of repetitions N 2 is different to the first number of repetitions N 1 for the uplink transmission.
The method according to the fourth aspect can be extended into implementation forms corresponding to the implementation forms of the network access node according to the second aspect. Hence, an implementation form of the method comprises the feature (s) of the corresponding implementation form of the network access node.
The advantages of the methods according to the fourth aspect are the same as those for the corresponding implementation forms of the network access node according to the second aspect.
Examples of the invention also relates to a computer program, characterized in program code, which when run by at least one processor causes the at least one processor to execute any method according to examples of the invention. Further, examples of the invention also relate to a computer program product comprising a computer readable medium and the mentioned computer program, wherein the computer program is included in the computer readable medium, and may comprises one or more from the group of: read-only memory (ROM) , programmable ROM (PROM) , erasable PROM (EPROM) , flash memory, electrically erasable PROM (EEPROM) , hard disk drive, etc.
Further applications and advantages of examples of the invention will be apparent from the following detailed description.
Brief Description of the Drawings
The appended drawings are intended to clarify and explain different examples of the invention, in which:
- Fig. 1 shows a client device according to an example of the invention;
- Fig. 2 shows a flow chart of a method for a client device according to an example of the invention;
- Fig. 3 shows a network access node according to an example of the invention;
- Fig. 4 shows a flow chart of a method for a network access node according to an example of the invention;
- Fig. 5 shows a communication system according to an example of the invention;
- Fig. 6 shows a signaling diagram according to an example of the invention;
- Fig. 7 shows a signaling diagram according to yet another example of the invention;
- Fig. 8 shows information flows and relevant functions for UE UL repetition adaptation
- Fig. 9 illustrates a UE side model according to an example of the invention; and
- Fig. 10 illustrates a gNB side model according to an example of the invention.
Detailed Description
Each coverage enhancement technique entails dealing with different trade-offs. In case of uplink (UL) channel repetition, the trade-off is between reliability and coverage, on one hand, and power consumption, UL resource consumption and interference, on the other hand. Indeed, configuring, or configuring and dynamically indicating a number of UL repetitions for  a given UL transmission is a decision that needs to account for multiple variables or parameters. Under or over dimensioning of the number of UL repetitions that needs to be performed may e.g., lead to performance degradation and power waste at the UE side.
However, in order to guarantee coverage and reliability, UL repetition is in some cases unavoidable. The extent to which the UE needs to repeat a given UL channel, such as PUSCH and PUCCH, depends on multiple variables including but not limited to: UL channel conditions, co-scheduled traffic, cross-link interference, employed modulation and coding scheme (MCS) , beamforming accuracy, channel estimation accuracy, number of used demodulation reference signal (DMRS) symbols, etc. Part of the cited variables are either available at the UE only, the gNB only, or at the gNB following UE reporting. As the current UL repetition framework is fully controlled by the network via the gNB some information may be overlooked or not updated fast enough resulting in under or over provisioning of UL repetitions. Either case is detrimental to the network performance. Indeed, on one hand, if the network under-dimensions the number of UL repetitions, then UL decoding performance may fall short for reaching the traffic type requirements due to low coverage. On the other hand, if the network over-dimensions the number of repetitions, higher UL interference levels and UE power consumption are incurred. It is then critical for overall UL performance to reach an optimal trade-off between coverage and reliability on one hand, and UE power consumption and UL interference levels on the other hand.
Since the current UL repetition framework according to conventional solutions is based on total network control there is no means for the UE to impact the network decisions in this regard, albite, if commanded so, reporting channel state information (CSI) and cross-link interference (CLI) measurements or transmitting UL reference signals (RSs) . However, the UE is often better placed to detect cross-link interference, which can be highly volatile if not handled properly. Additionally, the UE can track path-loss conditions based on minimal measurements of downlink (DL) RSs. Consequently, endowing the UE with more impact in the process of selecting the number of UL repetitions may be necessary to guarantee timely adaptation. With the advent of standard-supported machine learning methods at the physical layer, coordination between the network and the UE in selecting the number of UL repetitions for an UL transmission can be leveraged so as to improve the overall system performance.
Hence, it is realized that a proper UL repetition framework needs to be devised, and in order to guarantee timeliness of the decision to select a given number of UL repetitions, more UE involvement is needed, as the UE has a better view of cross-link interference and can therefore adapt its UL transmissions based on its own mobility more efficiently due to readily  available path-loss measurements. Additionally, the UE has information which it can obtain from its own internal hardware, e.g., accelerometers and gyroscopes, which is not available to the gNB.
While enabling the UE to take a more active role in setting the number of UL repetitions can be quite advantageous, it may however be necessary to maintain some control at the network side. So, a joint framework seems in some cases to be the reasonable choice to handle this issue. Therefore, it is herein disclosed a comprehensive framework or mechanism for UE adapted or initiated determination of the number of UL repetitions for UL transmissions. The proposed framework may be based on joint learning between the network and the UE providing a feedback mechanism for adaptation of UL repetitions. The herein disclosed solution may be leveraged in different examples and with different UE and network side implementations in order to adapt UL transmissions opportunistically, e.g., based on learned policies, radio resources measurements, etc. The adaptation of the number of UL repetitions may be performed autonomously by the UE or by a validation or an instruction command provided by the network via a gNB.
Fig. 1 shows a client device 100 according to an example of the invention. In the example shown in Fig. 1, the client device 100 comprises a processor 102, a transceiver 104 and a memory 106. The processor 102 is coupled to the transceiver 104 and the memory 106 by communication means 108 known in the art. The client device 100 further comprises an antenna or antenna array 110 coupled to the transceiver 104, which means that the client device 100 is configured for wireless communications in a communication system.
The processor 102 may be referred to as one or more general-purpose CPU, one or more digital signal processor (DSP) , one or more application-specific integrated circuit (ASIC) , one or more field programmable gate array (FPGA) , one or more programmable logic device, one or more discrete gate, one or more transistor logic device, one or more discrete hardware component, or one or more chipsets. The memory 106 may be a read-only memory, a random access memory (RAM) , or a non-volatile RAM (NVRAM) . The transceiver 104 may be a transceiver circuit, a power controller, or an interface providing capability to communicate with other communication modules or communication devices. The transceiver 104, memory 106 and/or processor 102 may be implemented in separate chipsets or may be implemented in a common chipset. That the client device 100 is configured to perform certain actions can in this disclosure be understood to mean that the client device 100 comprises suitable means, such as e.g., the processor 102 and the transceiver 104, configured to perform the actions.
With reference to Fig. 1 and 5, the client device 100 is configured to receive a configuration message 510 from a network access node 300. The configuration message 510 indicates a first number of repetitions N 1 for an uplink transmission (ULTX) . The client device 100 is further configured to determine the first number of repetitions N 1 for the uplink transmission ULTX based on the configuration message 510; and to determine a second number of repetitions N 2 for the uplink transmission ULTX based on the configuration message 510. The second number of repetitions N 2 is different to the first number of repetitions N 1 for the uplink transmission ULTX, hence has a different value. The client device 100 is further configured to transmit the second number of repetitions N 2 of the uplink transmission ULTX to the network access node 300, or to transmit a recommendation message 520 to the network access node 300, the recommendation message 520 indicating the second number of repetitions N 2 for the uplink transmission ULTX.
Fig. 2 shows a flow chart of a corresponding method 200 which may be executed in a client device 100, such as the one shown in Fig. 1. The method 200 comprises receiving 202 a configuration message 510 from a network access node 300. The configuration message 510 indicates a first number of repetitions N 1 for an uplink transmission ULTX. The method 200 further comprises determining 204 the first number of repetitions N 1 for the uplink transmission ULTX based on the configuration message 510; and determining 206 a second number of repetitions N 2 for the uplink transmission ULTX based on the configuration message 510. The second number of repetitions N 2 is different to the first number of repetitions N 1 for the uplink transmission ULTX. The method 200 further comprises transmitting 208 the second number of repetitions N 2 of the uplink transmission ULTX to the network access node 300, or the method 200 comprises transmitting 210 a recommendation message 520 to the network access node 300, the recommendation message 520 indicating the second number of repetitions N 2 for the uplink transmission ULTX.
The first number of repetitions N 1, or in other words the value first number of repetitions N 1, may in examples of the invention be determined in two main ways. The first number of repetitions N 1 is in a one case explicitly indicated in the configuration message 510. Hence, the client device 100 can directly derive the first number of repetitions N 1 from the configuration message 510. However, the first number of repetitions N 1 is in another case determined based on the content of the configuration message 510 and further information indicated in a downlink control message. Therefore, the client device 100 may, depending on the type of uplink repetition scheme, derive the first number of repetitions in mentioned two main ways. The first number of repetitions N 1 may be derived directly from the configuration  message 510 if the value of the first number of repetitions is given explicitly in the configuration message 510. On the other hand, the first number of repetitions N 1 may be determined from the configuration message 510 and an indication in downlink control signaling, e.g., downlink control information.
Furthermore, the first number of repetitions N 1 is larger than the second number of repetitions N 2 in examples of the invention which implies that the first number of repetitions N 1 has an integer value that is larger than the integer value of the second number of repetitions N 2. This may happen when the network access node 300 consider the quality of the radio channel to be worse than what is considered by the client device 100. For example, the network via the network access node 300 may configure the client device 100 with four repetitions of a PUSCH transmission, i.e., N 1=4, but the client device 100 decides that only three or less UL repetitions for the PUSCH transmission is needed, i.e., N 2=3, 2, 1, 0. It is noted that the value of N 2 may also in some cases be equal to zero which means that no repetition transmission is performed at all by the client device 100 in such examples. It is further noted that the first number of repetitions N 1 may have a value that is smaller than the value of the second number of repetitions N 1 in other examples of the invention. For example, when the network access node 300 consider the quality of the radio channel to be worse than what is considered by the client device 100.
Fig. 3 shows a network access node 300 according to an example of the invention. In the example shown in Fig. 3, the network access node 300 comprises a processor 302, a transceiver 304 and a memory 306. The processor 302 is coupled to the transceiver 304 and the memory 306 by communication means 308 known in the art. The network access node 300 may be configured for wireless and/or wired communications in a communication system. The wireless communication capability may be provided with an antenna or antenna array 310 coupled to the transceiver 304, while the wired communication capability may be provided with a wired communication interface 312 e.g., coupled to the transceiver 304.
The processor 302 may be referred to as one or more general-purpose CPU, one or more digital signal processor (DSP) , one or more application-specific integrated circuit (ASIC) , one or more field programmable gate array (FPGA) , one or more programmable logic device, one or more discrete gate, one or more transistor logic device, one or more discrete hardware component, one or more chipset. The memory 306 may be a read-only memory, a random access memory (RAM) , or a non-volatile RAM (NVRAM) . The transceiver 304 may be a transceiver circuit, a power controller, or an interface providing capability to communicate with other communication modules or communication devices, such as network nodes and  network servers. The transceiver 304, the memory 306 and/or the processor 302 may be implemented in separate chipsets or may be implemented in a common chipset. That the network access node 300 is configured to perform certain actions can in this disclosure be understood to mean that the network access node 300 comprises suitable means, such as e.g., the processor 302 and the transceiver 304, configured to perform the actions.
With reference to Fig. 3 and 5, the network access node 300 is configured to transmit a configuration message 510 to a client device 100. The configuration message 510 indicates a first number of repetitions N 1 for an uplink transmission ULTX. The network access node 300 is further configured to receive a second number of repetitions N 2 of the uplink transmission ULTX from the client device 100, or to receive a recommendation message 520 from the client device 100. The recommendation message 520 indicates the second number of repetitions N 2 for the uplink transmission ULTX. The second number of repetitions N 2 is as previously mentioned different to the first number of repetitions N 1 for the uplink transmission ULTX.
Fig. 4 shows a flow chart of a corresponding method 400 which may be executed in a network access node 300, such as the one shown in Fig. 3. The method 400 comprises transmitting 402 a configuration message 510 to a client device 100. The configuration message 510 indicates a first number of repetitions N 1 for an uplink transmission ULTX. The method 400 further comprises receiving 404 a second number of repetitions N 2 of the uplink transmission ULTX from the client device 100, or the method comprises 400 receiving 406 a recommendation message 520 from the client device 100. The recommendation message 520 indicates the second number of repetitions N 2 for the uplink transmission ULTX. The second number of repetitions N 2 is different to the first number of repetitions N 1 for the uplink transmission ULTX.
Fig. 5 shows a communication system 500 according to an example of the invention. The communication system 500 in the disclosed example comprises a client device 100 and a network access node 300 configured to communicate and operate in the communication system 500. For simplicity, the shown communication system 500 only comprises one client device 100 and one network access node 300. However, the communication system 500 may comprise any number of client devices 100 and any number of network access nodes 300 without deviating from the scope of the invention. The client device 100 and the network access node 300 may communicate with each other in the UL and in the DL depending on the direction of the transmission. The network access node 300 may be part of a RAN and  be configured to communicate with other network nodes of the network NW of the communication system 500 via a communication interface.
It is further shown in Fig. 5 that the network access node 300 transmits a configuration message 510 to the client device 100 in the DL so as to configure the latter device. The client device 100 on the other hand transmits N 2 number of UL repetitions to the network access node 300 or transmits a recommendation message 520 in the UL according to examples of the invention. The client device 100 has previously made an uplink transmission ULTX to the network access node 300.
In the following disclosure further non-limiting examples of the invention will now be described with reference to the appended Figs. Such non-limiting examples are set in a 3GPP system context for providing deeper understanding of the present solution and to highlight some implementation cases. This means that the terminology, architecture, protocols, etc. according to 3GPP standards are used. Therefore, a client device 100 is herein denoted a UE and a network access node is denoted a gNB. However, examples of the invention are not limited thereto.
Fig. 6 illustrates an example of the invention when the UE 100 autonomously decides on the number of repetitions for an UL transmission to a gNB 300 and thereafter performs such UL repetitions to the gNB 300 without consultation or validation of the network.
In step I in Fig. 6, the gNB 300 transmits a configuration message 510 to the UE 100 so as to configure the UE 100. The network via the gNB 300 therefore configures the UE 100 with an UL repetition adaptation configuration which may be provided in radio resource control (RRC) signaling. This may be performed upon initial RRC configuration of the UE 100 when connecting to the network or in a following reconfiguration procedure of the UE 100 based on a reconfiguration message.
Optionally, previous to the configuration, the UE 100 may in examples of the invention be required to report its capability for UL repetition adaptation in a capability message 580 to the gNB 300. Mentioned capability message 580 indicates or contains the necessary information elements (IEs) about the UE capabilities needed to support UL transmission repetition adaptation, such as learning capabilities, parallel running models capability, different RRM capabilities relevant to the features used as input to the UE policy for UL transmission repetition adaptation, etc. Transmission of the capability message 580 by the UE 100 may be triggered by the reception of a capability request message 570 signaled by the gNB 300 to  the UE 100 as also exemplified in Fig. 6.
Generally, the herein disclosed UE adapted uplink repetition mechanism can be configured as a persistent, a triggered or a semi-persistent behavior by the UE 100. The gNB 300 may configure the UE 100 with any of the mentioned behavior by indications in the configuration message 510.
If the UE adapted uplink repetition mechanism is configured as a triggered behavior, the UE 100 adapts the number of UL repetitions for one or multiple configured grants (CG) or dynamic grants (DC) , and verifies one or multiple of the following conditions:
● Explicit indication of the targeted DG or CG in a triggering message also denoted an activation message 560 from the gNB 300. The activation message 560 may therefore indicate targeted grants whether configured grants or dynamic grants in this respect; and
● DG or CG within a given time/symbol/slot offset from the transmission/reception of the activation message 560.
If the UE adapted uplink repetition mechanism is configured as a semi-persistent behavior, an L1/L2 activation message 560 needs to be transmitted to the UE 100 in order to activate the UE adapted uplink repetition mechanism. The L1 signaling may be DCI and the L2 signaling may be MAC CE. If activated, the UE 100 maintains this behavior for all or a subset of UL transmissions until receiving a deactivation message 560 from the network.
If the UE adapted uplink repetition mechanism is configured as a persistent behavior, the UE 100 adapts the number of UL repetitions, when applicable, for all or a subset of its UL transmissions until reconfigured otherwise by the network e.g., by receiving a reconfiguration message which may be a RRC message dedicated for this purpose or part of a more general RRC message type.
It should be noted that the UE adapted uplink repetition mechanism can be configured or configured and activated for all DGs and CGs or only for a subset of DGs and CGs, whether in the persistent, semi-persistent or triggered behavior.
In step II in Fig. 6, the UE 100 determines the first number of repetitions N 1 based on the configuration message 510 received from the gNB 300. As aforementioned, the configuration message 510 indicates the first number of repetitions N 1 explicitly or implicitly. In case of explicit indication in the configuration message 510, the value of N 1 can be derived directly  by the UE 100 when decoding the configuration message 510. However, if the first number of repetitions N 1 is indicated implicitly in the configuration message 510 further information is need by the UE 100 to obtain N 1.
Therefore, the gNB 300 may also transmit a downlink control message 530 such as downlink control information (DCI) to the UE 100. In examples of the invention, the downlink control message 530 indicates one or more in the group comprising:
● Time and frequency resource allocation indicating UL channel resource allocation,
● Transmit precoding matrix index indicating a precoder for the UL transmission, and
● Transmit power control command for the UL transmission.
Based on the content of the configuration message 510 and the downlink control message 530, the UE 100 can determine/derive the first number of repetitions N 1 in this latter example.
In step III in Fig. 6, the UE 100 further determines a second number of repetitions N 2 which may be considered as the UE adapted or recommend number of repetitions for the uplink transmission ULTX. The determination of the second number of repetitions N 2 may be performed by the use of a policy, a model, an algorithm, rules, etc., which in the following disclosure will be denoted: UL repetition policy. The UE 100 may learn the UL repetition policy and/or be configured with the UL repetition policy depending on the situation and scenario.
In an example of the invention, the second number of repetitions N 2 is determined based on the indication of the configuration message 510 as an input to the UL repetition policy.
In another example of the invention, the second number of repetitions N 2 is determined based on the indication of the configuration message 510 and information in the downlink control message 530. It was noted that the downlink control message 530 may indicate one or more of time and frequency resource allocation, transmit precoding matrix index, and transmit power control command which parameters are used for determining the second number of repetitions N 2.
In another example of the invention, the downlink control message 530 further indicates a first performance coefficient associated with the determination of the second number of repetitions N 2 for the uplink transmission ULTX. The first performance coefficient may be considered as steering coefficients from the network. Hence, in this example, also the first performance coefficient is considered by the UE 100 for determining the value of N 2.
In yet another example of the invention, the second number of repetitions N 2 may be determined by using the UL repetition policy and further based on information that is directly available to the UE 100. Hence, the UE 100 may in such examples be configured to determine the second number of repetitions N 2 for the uplink transmission ULTX further based on one or more in the group comprising:
● Cross link interference measurement obtained from measurements of UL reference signals transmitted by other UEs;
● Downlink reference signal measurement based on CSI-RS, SSB or DMRS from serving or neighboring cells;
● Sidelink reference signal measurement;
● Traffic type key performance or priority indicator, e.g., target bit error rate, latency, error probability, and decoding margin;
● Application-specific quality-of-service indicator, such as target UE perceived throughput, quality of experience relevant to application generating the traffic;
● Power control parameter, an uplink precoding matrix indicator;
● Uplink or a joint uplink and downlink transmission configuration indicator indicating QCL relations between target reference signals such as DL or UL DMRS and source reference signals such as CSI-RS, SSB and SRS, used to indicate TX/RX beams for UL and/or DL;
● Uplink waveform type, e.g., OFDM or DFT-S-OFDM an uplink modulation and coding scheme including modulation order and coding rate; and
● Position and/or an orientation information of the UE 100 including information obtained from positioning reference signal measurements or internal UE sensors, e.g., orientation, acceleration, etc.
In step IV in Fig. 6, the UE 100 performs N 2 number of repetitions of the uplink transmission ULTX to the gNB 300 in a UL channel such as PUSCH and PUCCH. Hence, the UE 100 autonomously determines and decides about how many repetitions of an UL transmission to perform according to the example of the invention disclosed in Fig. 6.
In step V in Fig. 6, the gNB 300 receives N 2 number of repetitions from the UE 100 and starts to blind decode the received N 2 number of UL repetitions.
In step VI in Fig. 6, the gNB 300 computes a decoding margin and/or a repetition offset based on the blind decoding in the previous step. The decoding margin can be obtained as an estimation from the gNB for the modulation and decoding scheme offset/SINR offset that can be applied while maintaining a successful decoding outcome of the UL transmission. The  repetition offset may be derived as the difference in the number of UL repetitions that the UE should apply in order to guarantee the successful decoding of UL data at the gNB side.
Based on the determined decoding margin and possible also the repetition offset, the gNB 300 may derive one or more of the mentioned first performance coefficients, also denoted steering coefficients, which were provided in a downlink control message 530 to the UE 100. The first performance coefficients are derived based on the UL decoding margin and/or a repetition offset with respect to the number of repetitions used by the UE 100, which is equal to N 2. The first performance coefficient conveys a measure of performance of the UE currently used UL repetition policy for setting the number of repetitions for the UL transmission. The first performance coefficient may be an explicit indication or a quantity derived from one or multiple of UL decoding margin and UL repetition offset.
The network may via the gNB 300 indicate the first performance coefficients following each UL transmission adapted by the UE 100, or in a batch or bundled format, i.e., grouping two or more first performance coefficients of multiple previous UL transmissions into a batch or bundled report in the downlink control message 530. Mentioned batch/bundled report may be compressed in the time domain. By reporting in a batch/bundled format reduced overhead is possible in the communication system. This is especially the case when the batch report is compressed in the time domain. The compression in the time domain may be performed using e.g., differential quantization, codebook-based compression, and/or dimensionality reduction/regression-based compression.
Moreover, the indications of the first performance coefficients may be performed according to a periodic, an aperiodic, or a semi-persistent procedure. In this respect suitable signaling schemes are employed. For example, when periodic procedure is used, the UE 100 knows the periodicity of first performance coefficients indication and adapt its model updates accordingly.
In case semi-persistent procedure is used, the UE 100 knows that first performance coefficients indications will be periodic, once activated, until being deactivated by the gNB 300. In this case the gNB 300 may transmit an activation/deactivation message to the UE 100 for first performance coefficients indication. In case of aperiodic procedure, the gNB 300 indicates first performance coefficients, sporadically when it estimates that it is needed to update UE policy and when enough resources are available to do so.
In step VII in Fig. 6, the gNB 300 transmits a further downlink control message 530′ indicating the first performance coefficient associated with the second number of repetitions  N 2. The gNB 300 may indicate the first performance coefficients in L1, L2, or higher layer signaling.
In step VIII in Fig. 6, the UE 100 receives the downlink control message 530′ and derives the first performance coefficient by decoding the downlink control message 530′.
In step IX in Fig. 6, the UE 100 based on the first performance coefficient adapt and/or updates the UL repetition policy for determining the second number of repetitions N 2, i.e., the number of repetitions that is decided by the UE 100 for an UL transmission. The UE 100 may in examples of the invention update the UL repetition policy according to a machine learning/artificial intelligence procedure which is described in the following disclosure.
In further examples of the invention, the UE 100 instead of directly performing the second number of repetitions, communicates its determined number of repetitions, i.e., N 2, for the UL transmission to the gNB 300 in the form of a recommendation message 520. The final decision about the number of repetitions for the UL transmission is therefore in these examples taken by the network which is illustrated in Fig. 7. In mentioned examples, the UE 100 may use the number of repetitions that is derived according to its own UL repetition policy only if the network validates or gives its approval. Otherwise, the gNB 300 indicates a third number of repetitions N 3 different to the second number of repetitions N 2 and informs the UE 100 about the third number of repetitions N 3. Thereby, even though the UE 100 does not decide on its own the UE 100 may still influence the actual number of repetitions by the transmission of the recommendation message 520 to the gNB 300.
Steps I–III in Fig. 7 are the same as steps I -III in Fig. 6.
In step IV in Fig. 7, the UE 100 however transmits a recommendation message 520 to the gNB 300 instead of performing the second number of UL repetitions N 2 to the gNB 300. The UE 100 hence informs the gNB 300 about its recommended number of repetitions, i.e., the value of N 2, since the second number of repetitions is indicated in the recommendation message 520. This type of signaling may be performed in any UL dynamic signaling. Hence, recommendation message 520 may be comprised in uplink control information (UCI) or UL MAC CE.
In examples of the invention, the UE 100 may also indicate to the gNB 300 a UL repetition policy outcome coefficient, also denoted a second performance coefficient, which in contrast to the first performance coefficient is determined and provided by the UE 100. The second  performance coefficient indicates a performance metric of the current UL repetition policy employed by the UE 100, and may e.g., in a machine learning context represent accuracy, precision, recall of the used model at the UE side for adapted UL transmission repetition, or indicate the explicit UE predicted number of repetitions. Accuracy, precision and recall are known quantities quantifying machine learning model performance, when addressing classification or regression problems, where
● Accuracy = (True positive + True negative) / (True positive + True negative + False positive + False negative) ,
● Precision = True positive/ (True positive + False positive) , and
● Recall = True positive/ (True positive + False negative) .
The second performance coefficient may be signaled to the gNB 300 in a separate message, i.e., in a performance message 550, as shown in Fig. 7. However, the second performance coefficient may in examples also be signaled in the recommendation message 520 together with the other IEs of the recommendation message 520.
At the reception of the recommendation message 520, in step V in Fig. 7, the gNB 300 decodes and processes the recommendation message 520 in step VI in Fig. 7. This among other things involves that the gNB 300 has to decide if the second number of repetitions N 2 is to be validated or if another number of UL repetitions should be executed by the UE 100, i.e., a third number of repetitions N 3, which has a value that is different to the value of the second number of repetitions N 2 this different value being larger or smaller. In this regard the gNB 300 has to access the suitability of performing the recommended number of repetitions. If it is found that the recommended number of repetitions will result in acceptable UL decoding performance within acceptable delays, according to the traffic requirements and gNB prediction from gNB-side model, the gNB 300 will validate the UE recommendation. However, if the recommended number of repetitions is found too low, the gNB 300 will set the value N 3to larger than N 2, and in the opposite case if the recommended number of repetitions is found too high, the gNB 300 will set the value N 3 to smaller than N 2.
In step VII in Fig. 7, the gNB 300 transmits a recommendation reply message 540 to the UE 100. The recommendation reply message 540 either indicates a validation of the second number of repetitions N 2 that was indicated in the recommendation message 520 or instead indicates the third number of repetitions N 3 for the uplink transmission ULTX.
Upon reception of the recommendation reply message 540 in step VIII in Fig. 7, the UE 100 in step IX in Fig. 7 derives information about the content of the recommendation reply  message 540 by decoding the recommendation reply message 540.
In step X in Fig. 7, the UE 100 performs N 2 or N 3 number of UL repetitions according to the rule or policy:
● Transmit the second number of repetitions N 2 of the uplink transmission ULTX to the gNB 300 when or if the recommendation reply message 540 indicates a validation of the second number of repetitions N 2, or
● Transmit the third number of repetitions N 3 of the uplink transmission ULTX to the gNB 300 when or if the recommendation reply message 540 indicates the third number of repetitions N 3.
In step XI in Fig. 7, the gNB 300 receives N 2 or N 3 number of repetitions and blind decodes the received repetitions as aforementioned.
Moreover, 5G NR is expected to be the first generation of RAN that will incorporate extensive use of machine learning (ML) at different levels of the system and as part of the specifications. In 5G NR Rel-17, a RAN3 study item (SI) , namely Enhancements for Data Collection for NR and EN-DC (FS_NR_ENDC_data_collect) , is addressing the high-level principles, functional framework and use cases definitions for ML/AI (machine learning/artificial intelligence) enabled NG-RAN. Therein the focus is on higher layer use cases, including e.g., load balancing, network energy saving and mobility optimization. This work on ML/AI in NR-RAN is expected to continue and to address a wider scope in Rel-18. While the high-level principles and functional frameworks resulting from FS_NR_ENDC_data_collect are reusable in RAN 1 use cases, at least partially, additional challenges/constraints relevant to the physical layer need to be addressed. The consideration of ML/AI at physical layer can be justified by the ever-increasing processing capabilities of the user equipment and network equipment and the ability of ML/AI methods to solve problems that are not easy to solve using the conventional approach, e.g., NP-HARD problems.
The main use cases considered for RAN 1 study on ML/AI in RAN may be listed as follows: CSI enhancements: compression, estimation, prediction, RS overhead; beam management (BM) enhancements: RS overhead, measurements, prediction, blockage detection, and sensing; link adaptation enhancements; positioning; hardware impairment and mobile terminal (MT) /gNB-side implementation enhancement; and L1/L2-mobility support enhancement. The different considered enhancements have some common requirements from the system design point of view, namely flexible carrier (s) -the transmission of RS in  the UL or DL would require more flexibility in defining the RS mapping both in time and frequency domains; augmented functionalities of UL/DL dynamic signaling; flexible radio resource measurement (RRM) parameterization; and interworking with other NR features and lower capability devices.
ML can be deployed independently at the UE 100, the gNB 300 or jointly at both sides. The training of RRM models, e.g., channel state information (CSI) , BM, CLI, etc., may be performed over the air interface or offline, each having their own pros and cons. Regardless, constant data collection will be needed either for inference or for training and inference. The main challenges of standardizing ML-based operations in a RAN framework include the often-conflicting requirements between ML-based methods and communication key performance indicators (KPIs) , which give rise to multiple trade-offs, the high complexity and inter-dependence of RAN features, and the necessity to maintain large degrees of freedom in terms of implementation.
While not yet highlighted as a major use case, the role that ML can play in managing UL transmission and its coverage and readability enhancement techniques is substantial and can provide considerable performance gain in terms of UE power consumption and interference conditions.
In Fig. 8 a reinforcement learning framework is deployed based on the proposed invention, in which the information flow and main functions involved in deriving and maintaining UE policy for initiating UL repetition adaptation, are presented, where I –III represents the UE side while IV –VI represents the gNB side or network side.
I in Fig. 8, the UE 100 may perform the following steps:
● Running the previously mentioned UL repetition policy model;
● Measure reference signals such as DL RSs, sidelink (SL) RSs and CLI RSs;
● Derive actual UL repetitions based on RRC configuration, i.e., the configuration message 510 and DCI, i.e., the downlink control message 530;
● Collect interference input to the UL repetition policy model including one or more of: number of actual repetitions, CLI measurements, RS measurements, QCL assumption for UL transmission, and SL interference and channel measurements;
● Maintain a data log of all the used features as input to the UL repetition policy model; and
● Update the UL repetition policy model based on the data log and first performance coefficients (regret/reward indications) received from the network.
II in Fig. 8: the UE 100 transmits PUSCH/PUCCH including CSI reports, RS and/or CLI measurements over a DL air interface in a radio environment. In examples, UE derived UL repetitions or UL repetition policy performance metric.
III in Fig. 8: the UE 100 receives UL channel, such as PDSCH and PDCCH, from the gNB 300 in the radio environment.
Hence, the UE 100 is in these cases the host of UL repetition termination policy model which it uses to select the appropriate number of UL repetitions for each scheduled UL transmission. The exact implementation of the UE side model can differ based on e.g., UE capabilities, environment requirements, traffic requirements, etc. However, the UE side model output format or performance metric may be configured, in case should be communicated explicitly to the network.
The main task of the UE model is to choose a number of repetitions for an UL transmission based on a set of input variable, part of which may be enforced by specification or network configuration. The collection of input for the UE side model represents the state of the UL transmission environment as observed by the UE. For a given state the UE infer an action in the form of a number of repetitions or a set of probabilities over different numbers of repetitions. The observed state may include one or multiple of the following features:
● CLI measurements based on a configured number of SRS;
● DL-RS measurements;
● QCL assumption for the UL transmission as indicated by the gNB 300;
● Time domain resource allocation (TDRA) indication in DCI and RRC message;
● UL MCS;
● DL MCS; and
● Quality of PDSCH reception, e.g., measured BLER, decoding margin, etc.
Typically, the UE model may be implemented as a neural network. An example implementation of an actor model based on fully connected layers is depicted in Fig. 9. With reference to Fig. 9, the input box represents an input layer that may include different scaling and preprocessing steps for the input data. The dense boxes represent fully connected neural network layers. The output box represents the output layer of a neural network which provides the predicted target quantity, in this case the second number of repetitions N 2. In some variants the output box may provide the UE with a probability distribution over a set of possible numbers of repetition. In another variants, the output box provides, explicitly, the  second number of repetitions N 2.
IV in Fig. 8, the gNB 300 may perform the following steps:
● Running model for deriving the first performance coefficients;
● Indicating TDRA via DCI signaling;
● Activate/deactivate the UE initiated UL repetition adaptation;
● Decode UL channels, such as PUSCH and PUCCH, received from the UE 100;
● Derive first performance coefficients which may indicate a quantity related to regret; reward, or advantages. Mentioned policy steering coefficients may be dependent on and a function of the decoding margin, soft HARQ, error probability and repetition offset;
● Collect data used as input for inference and training of the gNB-side model; and
● Update the gNB-side model.
Step V in Fig. 8: the gNB 300 transmits PDSCH/PDCCH over an UL air interface in a radio environment. The PDSCH/PDCCH may include policy steering coefficients, DL RS, DCI, etc. The gNB 300 may also schedule other UEs in the cell which is not shown in Fig. 8.
Step VI in Fig. 8: the gNB 300 receives PUSCH/PUCCH from the UE 100.
Hence, the gNB 300 is the host of the UL repetition policy steering model which it is used in order to evaluate the actions taken by the UL repetition policy employed by the UE 100 and provides the UE 100 with needed feedback information e.g., reward, regret, and advantages, to steer the UL repetition policy. The gNB side model may output a real value that can be understood as a rating of the action taken in previous state. The outputs of the gNB model may be indicated after each UL transmission or in a batch or bundled format to the UE 100.
The inputs for the gNB model may include but is not limited to:
● CLI measurements reporting from UE if any;
● UL RS measurements;
● CSI reports;
● QCL assumption for the UL transmission;
● TDRA indications in DCI;
● UL MCS; and
● UL decoding margin.
Typically, the gNB side model may be implemented as a neural network. An example of such  neural network is visualized in Fig. 10 which presents a simple implementation based on fully connected neural network layers. The input of the model for training and inference may include any of the features listed above. The output of the gNB side model may have various forms, most common of which being a regret, a reward or an advantage coefficient. With reference to Fig. 10, the input box represents different layers of the neural network, and the arrows represent the direction of information flow in the neural network. The dense boxes represent fully connected layers. The output box represents the output layer which may have different activation functions depending on the used quantity as the second performance quantity.
The client device herein may be denoted as a user device, a user equipment (UE) , a mobile station, an internet of things (IoT) device, a sensor device, a wireless terminal and/or a mobile terminal, and is enabled to communicate wirelessly in a wireless communication system, sometimes also referred to as a cellular radio system. The UEs may further be referred to as mobile telephones, cellular telephones, computer tablets or laptops with wireless capability. The UEs in this context may be, for example, portable, pocket-storable, hand-held, computer-comprised, or vehicle-mounted mobile devices, enabled to communicate voice and/or data, via a radio access network (RAN) , with another communication entity, such as another receiver or a server. The UE may further be a station (STA) , which is any device that contains an IEEE 802.11-conformant media access control (MAC) and physical layer (PHY) interface to the wireless medium (WM) . The UE may be configured for communication in 3GPP related long term evolution (LTE) , LTE-advanced, fifth generation (5G) wireless systems, such as new radio (NR) , and their evolutions, as well as in IEEE related Wi-Fi, worldwide interoperability for microwave access (WiMAX) and their evolutions.
The network access node herein may also be denoted as a radio network access node, an access network access node, an access point (AP) , or a base station (BS) , e.g., a radio base station (RBS) , which in some networks may be referred to as transmitter, “gNB” , “gNodeB” , “eNB” , “eNodeB” , “NodeB” or “B node” , depending on the standard, technology and terminology used. The radio network access nodes may be of different classes or types such as e.g., macro eNodeB, home eNodeB or pico base station, based on transmission power and thereby the cell size. The radio network access node may further be a station (STA) , which is any device that contains an IEEE 802.11-conformant media access control (MAC) and physical layer (PHY) interface to the wireless medium (WM) . The radio network access node may be configured for communication in 3GPP related long term evolution (LTE) , LTE-advanced, fifth generation (5G) wireless systems, such as new radio (NR) and their  evolutions, as well as in IEEE related Wi-Fi, worldwide interoperability for microwave access (WiMAX) and their evolutions.
Furthermore, any method according to examples of the invention may be implemented in a computer program, having code means, which when run by processing means causes the processing means to execute the steps of the method. The computer program is included in a computer readable medium of a computer program product. The computer readable medium may comprise essentially any memory, such as previously mentioned a read-only memory (ROM) , a programmable read-only memory (PROM) , an erasable PROM (EPROM) , a flash memory, an electrically erasable PROM (EEPROM) , or a hard disk drive.
Moreover, it should be realized that the client device and the network access node comprise the necessary communication capabilities in the form of e.g., functions, means, units, elements, etc., for performing or implementing examples of the invention. Examples of other such means, units, elements and functions are: processors, memory, buffers, control logic, encoders, decoders, rate matchers, de-rate matchers, mapping units, multipliers, decision units, selecting units, switches, interleavers, de-interleavers, modulators, demodulators, inputs, outputs, antennas, amplifiers, receiver units, transmitter units, DSPs, MSDs, TCM encoder, TCM decoder, power supply units, power feeders, communication interfaces, communication protocols, etc. which are suitably arranged together for performing the solution.
Therefore, the processor (s) of the client device and the network access node may comprise, e.g., one or more instances of a central processing unit (CPU) , a processing unit, a processing circuit, a processor, an application specific integrated circuit (ASIC) , a microprocessor, or other processing logic that may interpret and execute instructions. The expression “processor” may thus represent a processing circuitry comprising a plurality of processing circuits, such as e.g., any, some or all of the ones mentioned above. The processing circuitry may further perform data processing functions for inputting, outputting, and processing of data comprising data buffering and device control functions, such as call processing control, user interface control, or the like.
Finally, it should be understood that the invention is not limited to the examples described above, but also relates to and incorporates all examples within the scope of the appended independent claims.

Claims (18)

  1. A client device (100) for a communication system (500) , the client device (100) being configured to
    receive a configuration message (510) from a network access node (300) , the configuration message (510) indicating a first number of repetitions N 1 for an uplink transmission (ULTX) ;
    determine the first number of repetitions N 1 for the uplink transmission (ULTX) based on the configuration message (510) ;
    determine a second number of repetitions N 2 for the uplink transmission (ULTX) based on the configuration message (510) , the second number of repetitions N 2 being different to the first number of repetitions N 1 for the uplink transmission (ULTX) ; and
    transmit the second number of repetitions N 2 of the uplink transmission (ULTX) to the network access node (300) , or
    transmit a recommendation message (520) to the network access node (300) , the recommendation message (520) indicating the second number of repetitions N 2 for the uplink transmission (ULTX) .
  2. The client device (100) according to claim 1, wherein the first number of repetitions N 1 is larger than the second number of repetitions N 2 for the uplink transmission (ULTX) .
  3. The client device (100) according to claim 1 or 2, further configured to
    receive a downlink control message (530) from the network access node (300) , the downlink control message (530) indicating one or more in the group comprising: time and frequency resource allocation, a transmit precoding matrix index, and a transmit power control command for the uplink transmission (ULTX) ; and
    determine the first number of repetitions N 1 and/or the second number of repetitions N 2 for the uplink transmission (ULTX) based on the configuration message (510) and the downlink control message (530) .
  4. The client device (100) according to claim 3, wherein the downlink control message (530) further indicates a first performance coefficient associated with the determination of the second number of repetitions N 2 for the uplink transmission (ULTX) .
  5. The client device (100) according to any one of the preceding claims, further configured to
    determine the second number of repetitions N 2 for the uplink transmission (ULTX) further based on one or more in the group comprising: a cross link interference measurement,  a downlink reference signal measurement, a sidelink reference signal measurement, a traffic type key performance or priority indicator, an application-specific quality-of-service indicator, a power control parameter, an uplink precoding matrix indicator, an uplink or a joint uplink and downlink transmission configuration indicator, an uplink waveform type, an uplink modulation and coding scheme, and a position and/or an orientation information of the client device (100) .
  6. The client device (100) according to any one of the preceding claims, further configured to
    receive a recommendation reply message (540) from the network access node (300) , the recommendation reply message (540) indicating a validation of the second number of repetitions N 2 indicated in the recommendation message (520) or a third number of repetitions N 3 for the uplink transmission (ULTX) ; and
    transmit the second number of repetitions N 2 of the uplink transmission (ULTX) to the network access node (300) when the recommendation reply message (540) indicates the validation of the second number of repetitions N 2, or
    transmit the third number of repetitions N 3 of the uplink transmission (ULTX) to the network access node (300) when the recommendation reply message (540) indicates the third number of repetitions N 3.
  7. The client device (100) according to any one of the preceding claims, further configured to
    determine a second performance coefficient based on the determination of the second number of repetitions N 2 for the uplink transmission (ULTX) ; and
    transmit a performance message (550) to the network access node (300) , the performance message (550) indicating the second performance coefficient.
  8. The client device (100) according to any one of the preceding claims, further configured to
    receive an activation/deactivation message (560) from the network access node (300) , the activation/deactivation message (560) indicating an activation/deactivation of the determination of the second number of repetitions N 2 or the transmission of the recommendation message (520) by the client device (100) .
  9. A network access node (300) for a communication system (500) , the network access node (300) being configured to
    transmit a configuration message (510) to a client device (100) , the configuration message (510) indicating a first number of repetitions N 1 for an uplink transmission (ULTX) ; and
    receive a second number of repetitions N 2 of the uplink transmission (ULTX) from the client device (100) , or
    receive a recommendation message (520) from the client device (100) , the recommendation message (520) indicating the second number of repetitions N 2 for the uplink transmission (ULTX) , wherein
    the second number of repetitions N 2 is different to the first number of repetitions N 1 for the uplink transmission (ULTX) .
  10. The network access node (300) according to claim 9, wherein the first number of repetitions N 1 is larger than the second number of repetitions N 2 for the uplink transmission (ULTX) .
  11. The network access node (300) according to claim 9 or 10, further configured to
    transmit a downlink control message (530) to the client device (100) , the downlink control message (530) indicating one or more in the group comprising: time and frequency resource allocation, a transmit precoding matrix index, and a transmit power control command for the uplink transmission (ULTX) .
  12. The network access node (300) according to claim 11, further configured to
    decode the second number of repetitions N 2 of the uplink transmission (ULTX) to obtain a decoding margin for the second number of repetitions N 2;
    determine a first performance coefficient based on the decoding margin; and
    indicate the first performance coefficient in the downlink control message (530) .
  13. The network access node (300) according to any one of claims 9 to 12, further configured to
    transmit a recommendation reply message (540) to the client device (100) , the recommendation reply message (540) indicating a validation of the second number of repetitions N 2 indicated in the recommendation message (520) or a third number of repetitions N 3 for the uplink transmission (ULTX) ; and
    receive the second number of repetitions N 2 of the uplink transmission (ULTX) from the client device (100) when the recommendation reply message (540) indicates the validation of the second number of repetitions N 2, or
    receive the third number of repetitions N 3 of the uplink transmission (ULTX) from the client device (100) when the recommendation reply message (540) indicates the third number of repetitions N 3.
  14. The network access node (300) according to any one of claims 9 to 13, further configured to
    receive a performance message (550) from the client device (100) , the performance message (550) indicating a second performance coefficient associated with the determination of the second number of repetitions N 2 for the uplink transmission (ULTX) .
  15. The network access node (300) according to any one of claims 9 to 14, further configured to
    transmit an activation/deactivation message (560) to the client device (100) , the activation/deactivation message (560) indicating activation/deactivation of the determination of the second number of repetitions N 2 or the transmission of the recommendation message (520) by the client device (100) .
  16. A method (200) for a client device (100) , the method (200) comprising:
    receiving (202) a configuration message (510) from a network access node (300) , the configuration message (510) indicating a first number of repetitions N 1 for an uplink transmission (ULTX) ;
    determining (204) the first number of repetitions N 1 for the uplink transmission (ULTX) based on the configuration message (510) ;
    determining (206) a second number of repetitions N 2 for the uplink transmission (ULTX) based on the configuration message (510) , the second number of repetitions N 2 being different to the first number of repetitions N 1 for the uplink transmission (ULTX) ; and
    transmitting (208) the second number of repetitions N 2 of the uplink transmission (ULTX) to the network access node (300) , or
    transmitting (210) a recommendation message (520) to the network access node (300) , the recommendation message (520) indicating the second number of repetitions N 2 for the uplink transmission (ULTX) .
  17. A method (400) for a network access node (300) , the method (400) comprising:
    transmitting (402) a configuration message (510) to a client device (100) , the configuration message (510) indicating a first number of repetitions N 1 for an uplink transmission (ULTX) ; and
    receiving (404) a second number of repetitions N 2 of the uplink transmission (ULTX) from the client device (100) , or
    receiving (406) a recommendation message (520) from the client device (100) , the recommendation message (520) indicating the second number of repetitions N 2 for the uplink transmission (ULTX) , wherein
    the second number of repetitions N 2 is different to the first number of repetitions N 1 for the uplink transmission (ULTX) .
  18. A computer program with a program code for performing a method according to claim 16 or 17 when the computer program runs on a computer.
PCT/CN2021/138877 2021-12-16 2021-12-16 Client device adapted uplink repetitions WO2023108557A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/138877 WO2023108557A1 (en) 2021-12-16 2021-12-16 Client device adapted uplink repetitions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/138877 WO2023108557A1 (en) 2021-12-16 2021-12-16 Client device adapted uplink repetitions

Publications (1)

Publication Number Publication Date
WO2023108557A1 true WO2023108557A1 (en) 2023-06-22

Family

ID=86775073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138877 WO2023108557A1 (en) 2021-12-16 2021-12-16 Client device adapted uplink repetitions

Country Status (1)

Country Link
WO (1) WO2023108557A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200120693A1 (en) * 2017-06-16 2020-04-16 Huawei Technologies Co., Ltd. Data sending and receiving method and apparatus
US20210360631A1 (en) * 2020-05-14 2021-11-18 Comcast Cable Communications, Llc Configuration of Wireless Resources For Transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200120693A1 (en) * 2017-06-16 2020-04-16 Huawei Technologies Co., Ltd. Data sending and receiving method and apparatus
US20210360631A1 (en) * 2020-05-14 2021-11-18 Comcast Cable Communications, Llc Configuration of Wireless Resources For Transmission

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Potential solutions for PUSCH coverage enhancement", 3GPP TSG RAN WG1 MEETING #103-E R1-2007583, 17 October 2020 (2020-10-17), XP051939800 *
INTEL CORPORATION: "On potential techniques for PUSCH coverage enhancement", 3GPP TSG RAN WG1 #103-E R1-2007954, 17 October 2020 (2020-10-17), XP051939982 *
OPPO: "Enhancements on PUSCH repetition type A", 3GPP TSG RAN WG1 #104-E R1-2100172, 18 January 2021 (2021-01-18), XP051970290 *

Similar Documents

Publication Publication Date Title
EP3488551B1 (en) Channel estimation enhancement
US8588801B2 (en) Multi-point equalization framework for coordinated multi-point transmission
CN103814616A (en) Method and apparatus for scheduling user equipment
EP2870712B1 (en) Method and access point for assigning sounding resources
US10904839B2 (en) Interference control in cellular communication system
EP2763446A1 (en) Method, user device and base station for measuring channel state information
KR20230156362A (en) Method and apparatus for channel estimation and mobility improvement in wireless communication system
US10516501B2 (en) Network node, user device and methods thereof
US20230309133A1 (en) Method and system for user equipment pairing in full duplex networks based on machine learning
Gulati et al. Performance analysis of distributed multi-cell coordinated scheduler
WO2023108557A1 (en) Client device adapted uplink repetitions
US10687344B2 (en) Network node and method thereof
US20240098773A1 (en) Method for user device assisted link adaptation in communication networks
US11129192B2 (en) Client device, network node, and methods thereof for predicting user-experienced signal-to-interference-plus-noise ratio
US10856233B2 (en) Coverage extension for wireless devices
EP3284183A1 (en) Coordinated interference cancellation in wireless network
US20230199565A1 (en) Methods and devices for management of the radio resources
WO2023078523A1 (en) Efficient radio resource measurements based on client device recommendation
WO2023240546A1 (en) Model monitoring methods and apparatus, device, and medium
WO2023201698A1 (en) Power control parameter reset associated with beam failure recovery
WO2023206200A1 (en) Reference signal received power fingerprint reporting for beam blockage prediction
WO2024092755A1 (en) Management of machine learning models in communication systems
WO2022238060A1 (en) Reporting of delta channel quality indicator (cqi)-modulation and coding scheme (mcs) information
WO2024065507A1 (en) Joint transmission channel state information reporting
WO2024065372A1 (en) Methods and apparatuses for reporting csi prediction for a set of beams

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967692

Country of ref document: EP

Kind code of ref document: A1