WO2023108325A1 - 脂肪定量成像方法、装置、设备及其存储介质 - Google Patents

脂肪定量成像方法、装置、设备及其存储介质 Download PDF

Info

Publication number
WO2023108325A1
WO2023108325A1 PCT/CN2021/137369 CN2021137369W WO2023108325A1 WO 2023108325 A1 WO2023108325 A1 WO 2023108325A1 CN 2021137369 W CN2021137369 W CN 2021137369W WO 2023108325 A1 WO2023108325 A1 WO 2023108325A1
Authority
WO
WIPO (PCT)
Prior art keywords
fat
signal
water
resonance frequency
sat
Prior art date
Application number
PCT/CN2021/137369
Other languages
English (en)
French (fr)
Inventor
吴垠
郑海荣
刘新
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2021/137369 priority Critical patent/WO2023108325A1/zh
Publication of WO2023108325A1 publication Critical patent/WO2023108325A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems

Definitions

  • the invention relates to the technical field of biomedical engineering, in particular to a fat quantitative imaging method, device, equipment and storage medium thereof.
  • Brown adipose tissue (BAT) is closely related to metabolic diseases, and it has been confirmed that BAT is significantly reduced in obesity and insulin resistance patients.
  • Dixon magnetic resonance imaging (MRI) is mainly used to calculate fat-water fraction (FWF) and distinguish BAT from white adipose tissue (WAT).
  • MRI Dixon magnetic resonance imaging
  • WAT white adipose tissue
  • this method may suffer from phase wrapping problems and is susceptible to the interference of fat-water reverse artifacts.
  • Magnetic resonance chemical exchange saturation transfer (CEST) imaging is a magnetic resonance molecular imaging method that can detect the micro-environmental characteristics of biological tissues. It can measure endogenous metabolites, compounds, and exogenous paramagnetic/diamagnetic CEST contrast agents. Provide new methods for imaging a variety of diseases. If saturated RF pulses are applied at the resonant frequency of fat and water, the signal will drop significantly due to direct saturation, so that the signals of fat and water can be obtained.
  • the fat imaging method based on CEST technology involves Lorentz model fitting, and its accuracy is affected by factors such as initial value selection and fitting boundary, and its stability is limited.
  • the collected signal deviates from the form of the Lorentz function, which will cause a large quantitative error.
  • FWF there is no theoretical basis for subjectively correcting FWF to be between 0-0.9.
  • the embodiment of the present application provides a fat quantitative imaging method, the method includes: respectively turning on and off the fat suppression module, collecting water signal data and mixed signal data; measuring the difference of the signal at the fat resonance frequency point to quantify the fat signal; combined with the water signal under fat-suppressed conditions to quantify FWF.
  • the respectively turning on and off the fat suppression module to collect water signal data and mixed signal data includes: turning on the fat suppression module to collect the water signal Z sat , and the Z sat is the fat resonance frequency (- 3.5ppm), the water resonance frequency (0ppm), and the chemical shift (eg -10ppm) of the frequency point where the magnetization transfer dominates.
  • the respectively turning on and off the fat suppression module to collect water signal data and mixed signal data includes: closing the fat suppression module to collect a mixed signal Z nosat containing water and fat, and the Z nosat is in It is collected in the frequency range covering fat resonance frequency (-3.5ppm) and water resonance frequency (0ppm).
  • the embodiment of the present application also provides a fat quantitative imaging device, the device includes: an acquisition unit, used to respectively turn on and off the fat suppression module, and collect water signal data and mixed signal data; a quantification unit, used to measure The difference of the signal at the fat resonance frequency point is used to quantify the fat signal; the calculation unit is used to quantify the FWF combined with the water signal under the fat suppression condition.
  • the embodiment of the present application also provides a computer device, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the program, it implements the The method described in any one of the descriptions of the examples.
  • the embodiment of the present application also provides a computer device, a computer-readable storage medium, on which a computer program is stored, and the computer program is used for: when the computer program is executed by a processor, the computer program according to the present application is implemented.
  • a computer device a computer-readable storage medium, on which a computer program is stored, and the computer program is used for: when the computer program is executed by a processor, the computer program according to the present application is implemented.
  • the fat quantitative imaging method provided by the present invention collects corresponding signals by turning on and off the fat suppression module, and then separates the water and fat signals. Enables quantitative imaging of fat.
  • FIG. 1 shows a schematic flow chart of a fat quantitative imaging method provided in an embodiment of the present application
  • FIG. 2 shows an exemplary structural block diagram of a fat quantitative imaging device 200 according to an embodiment of the present application
  • Fig. 3 shows a schematic structural diagram of a computer system suitable for implementing a terminal device according to an embodiment of the present application
  • Fig. 4 shows the schematic diagram of opening the fat suppression module provided by the embodiment of the present application
  • Fig. 5 shows a schematic diagram of a fat suppression module provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • FIG. 1 shows a schematic flowchart of a fat quantitative imaging method provided in an embodiment of the present application.
  • the method includes:
  • Step 110 respectively turning on and off the fat suppression module, collecting water signal data and mixed signal data;
  • Step 120 measuring the signal difference at the fat resonance frequency point to quantify the fat signal
  • Step 130 quantifying FWF in combination with the water signal under fat-suppressed conditions.
  • the corresponding signals are collected by turning on and off the fat suppression module, and then the water and fat signals are separated.
  • This method does not require model fitting and subjective correction, and is not affected by imaging conditions such as saturated pulse waveforms. It can stably realize fat quantitative imaging .
  • said respectively turning on and off the fat suppression module to collect water signal data and mixed signal data includes: turning on the fat suppression module to collect the water signal Z sat , and said Z sat is the fat resonance frequency (-3.5 ppm), the water resonance frequency (0ppm), and the chemical shift (eg -10ppm) of the frequency point where the magnetization transfer dominates.
  • said respectively turning on and off the fat suppression module to collect water signal data and mixed signal data includes: closing the fat suppression module to collect a mixed signal Z nosat containing water and fat, and said Z nosat is covered in Collected within the frequency range of fat resonance frequency (-3.5ppm) and water resonance frequency (0ppm).
  • said measuring the signal difference at the fat resonance frequency point to quantify the fat signal comprises:
  • FIG. 2 shows an exemplary structural block diagram of a fat quantitative imaging device 200 according to an embodiment of the present application.
  • the device includes:
  • the acquisition unit 210 is used to respectively turn on and off the fat suppression module, and collect water signal data and mixed signal data;
  • the quantization unit 220 is used to quantify the fat signal by measuring the signal difference at the fat resonance frequency point;
  • a computing unit 230 configured to quantify FWF in combination with water signals under fat-suppressed conditions.
  • the units or modules recorded in the device 200 correspond to the steps in the method described with reference to FIG. 1 . Therefore, the operations and features described above for the method are also applicable to the device 200 and the units contained therein, and will not be repeated here.
  • the apparatus 200 may be pre-implemented in the browser of the electronic device or other security applications, and may also be loaded into the browser of the electronic device or its security applications by downloading or other means.
  • the corresponding units in the apparatus 200 may cooperate with the units in the electronic device to implement the solutions of the embodiments of the present application.
  • FIG. 3 shows a schematic structural diagram of a computer system 300 suitable for implementing a terminal device or a server according to an embodiment of the present application.
  • a computer system 300 includes a central processing unit (CPU) 301 that can operate according to a program stored in a read-only memory (ROM) 302 or a program loaded from a storage section 308 into a random-access memory (RAM) 303 Instead, various appropriate actions and processes are performed.
  • ROM read-only memory
  • RAM random-access memory
  • various programs and data required for the operation of the system 300 are also stored.
  • the CPU 301, ROM 302, and RAM 303 are connected to each other through a bus 304.
  • An input/output (I/O) interface 305 is also connected to the bus 304 .
  • the following components are connected to the I/O interface 305: an input section 306 including a keyboard, a mouse, etc.; an output section 307 including a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker; a storage section 308 including a hard disk, etc. and a communication section 309 including a network interface card such as a LAN card, a modem, or the like.
  • the communication section 309 performs communication processing via a network such as the Internet.
  • a drive 310 is also connected to the I/O interface 305 as needed.
  • a removable medium 311, such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is mounted on the drive 310 as necessary so that a computer program read therefrom is installed into the storage section 308 as necessary.
  • the process described above with reference to FIG. 1 may be implemented as a computer software program.
  • embodiments of the present disclosure include a method of quantitative imaging of fat comprising a computer program tangibly embodied on a machine-readable medium, the computer program comprising program code for performing the method of FIG. 1 .
  • the computer program may be downloaded and installed from a network via communication portion 309 and/or installed from removable media 311 .
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more logical functions for implementing specified executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified functions or operations , or may be implemented by a combination of special purpose hardware and computer instructions.
  • the units or modules involved in the embodiments described in the present application may be implemented by means of software or by means of hardware.
  • the described units or modules may also be set in a processor.
  • a processor includes a first sub-region generating unit, a second sub-region generating unit, and a display region generating unit.
  • the names of these units or modules do not constitute limitations on the units or modules themselves in some cases, for example, the display area generation unit can also be described as "used to generate The cell of the display area of the text".
  • the present application also provides a computer-readable storage medium, which may be the computer-readable storage medium contained in the aforementioned devices in the above-mentioned embodiments; computer-readable storage media stored in the device.
  • the computer-readable storage medium stores one or more programs, and the aforementioned programs are used by one or more processors to execute the text generation method applied to transparent window envelopes described in this application.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种脂肪定量成像方法、装置(200)、设备及其存储介质,该方法包括:分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据(110);测量脂肪共振频率点上信号的差异来量化脂肪信号(120);结合脂肪抑制条件下的水信号量化FWF(130)。该方法,通过开启和关闭脂肪抑制模块采集相应信号,进而分离水和脂肪信号,该方法无需模型拟合和主观校正,且不受饱和脉冲波形等成像条件影响,可稳定实现脂肪定量成像。

Description

脂肪定量成像方法、装置、设备及其存储介质 技术领域
本发明涉及生物医学工程技术领域,具体涉及一种脂肪定量成像方法、装置、设备及其存储介质。
背景技术
棕色脂肪组织(BAT)与代谢疾病密切相关,已经证实BAT在肥胖症和胰岛素耐受性病人中明显降低。目前主要采用Dixon磁共振成像(MRI)来计算脂肪-水分数(FWF)以及区分BAT和白色脂肪组织(WAT)。但是该方法可能出现相位卷绕问题和易受到脂肪-水反向伪影的干扰。
磁共振化学交换饱和转移(CEST)成像是一种能够探测生物体组织微观环境特征的磁共振分子影像手段,可以测量内源性代谢物、化合物以及外源性顺磁性/逆磁性CEST对比剂,为多种疾病成像提供新方法。若在脂肪和水的共振频率上施加饱和射频脉冲,会由于直接饱和作用导致信号出现明显下降,由此可以获得脂肪和水的信号。
目前,基于CEST技术的脂肪成像(即Z谱成像)方法涉及洛伦兹模型拟合,其准确性受到初值选取、拟合边界等因素影响,稳定性有限。另外,在非连续波射频脉冲下,所采集到的信号与洛伦兹函数形式有所偏差,将引起较大定量误差。再者,主观地将FWF校正至0-0.9之间缺乏理论依据。
发明内容
鉴于现有技术中的上述缺陷或不足,期望提供一种脂肪定量成像方法、装置、设备及其存储介质。
第一方面,本申请实施例提供了一种脂肪定量成像方法,该方法包括:分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据;测量脂肪共振频率点上信号的差异来量化脂肪信号;结合脂肪抑制条件下的水信号量化FWF。
在其中一个实施例中,所述分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据,包括:开启脂肪抑制模块采集水信号Z sat,所述Z sat为在涵盖脂肪共振频率(-3.5ppm)、水共振频率(0ppm)以及磁化转移占据主导的频率点的化学位移(如-10ppm)范围内采集。
在其中一个实施例中,所述分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据,包括:关闭脂肪抑制模块,采集包含水和脂肪的混合信号Z nosat,所述Z nosat为在涵盖脂肪共振频率(-3.5ppm)、水共振频率(0ppm)的频率范围内采集。
在其中一个实施例中,所述测量脂肪共振频率点上信号的差异来量化脂肪信号,包括:计算脂肪信号,当脂肪抑制模块开启和关闭时,在脂肪共振频率点-3.5ppm上水信号强度保持不变,从而测量脂肪抑制模块开启和关闭时-3.5ppm上信号的差异,即可获得脂肪信号F=Z sat(-3.5ppm)–Z nosat(-3.5ppm);计算水信号,当脂肪抑制模块开启时,水共振频率点上对应的信号为磁化转移和水信号的总和,磁化转移信号能够由Z sat(-10ppm)测得,则水信号W=Z sat(-10ppm)–Z sat(0ppm)。
在其中一个实施例中,所述结合脂肪抑制条件下的水信号量化FWF,包括:根据脂肪信号F=Z sat(-3.5ppm)–Z nosat(-3.5ppm)和水信号W=Z sat(-10ppm)–Z sat(0ppm)计算脂肪-水分数FWF,所述 FWF=F/(F+W)。
第二方面,本申请实施例还提供了一种脂肪定量成像装置,该装置包括:采集单元,用于分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据;量化单元,用于测量脂肪共振频率点上信号的差异来量化脂肪信号;计算单元,用于结合脂肪抑制条件下的水信号量化FWF。
第三方面,本申请实施例还提供了一种计算机设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如本申请实施例描述中任一所述的方法。
第四方面,本申请实施例还提供了一种计算机设备一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序用于:所述计算机程序被处理器执行时实现如本申请实施例描述中任一所述的方法。
本发明的有益效果:
本发明提供的脂肪定量成像方法,通过开启和关闭脂肪抑制模块采集相应信号,进而分离水和脂肪信号,该方法无需模型拟合和主观校正,且不受饱和脉冲波形等成像条件影响,可稳定实现脂肪定量成像。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1示出了本申请实施例提供的脂肪定量成像方法的流程示意图;
图2示出了根据本申请一个实施例的脂肪定量成像装置200的示例性结构框图;
图3示出了适于用来实现本申请实施例的终端设备的计算机系统 的结构示意图;
图4示出了本申请实施例提供的开启脂肪抑制模块的示意图;
图5示出了本申请实施例提供的关闭脂肪抑制模块的示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也 可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参考图1,图1示出了本申请实施例提供的脂肪定量成像方法的流程示意图。
如图1所示,该方法包括:
步骤110,分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据;
步骤120,测量脂肪共振频率点上信号的差异来量化脂肪信号;
步骤130,结合脂肪抑制条件下的水信号量化FWF。
采用上述技术方案,通过开启和关闭脂肪抑制模块采集相应信号, 进而分离水和脂肪信号,该方法无需模型拟合和主观校正,且不受饱和脉冲波形等成像条件影响,可稳定实现脂肪定量成像。
在一些实施例中,所述分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据,包括:开启脂肪抑制模块采集水信号Z sat,所述Z sat为在涵盖脂肪共振频率(-3.5ppm)、水共振频率(0ppm)以及磁化转移占据主导的频率点的化学位移(如-10ppm)范围内采集。
具体地,如图4所示,由于在数据采集之前施加了脂肪抑制模块,因此脂肪信号将被抑制掉,所采集到的数据仅为水信号。在涵盖脂肪共振频率(-3.5ppm)、水共振频率(0ppm)以及磁化转移占据主导的频率点(如-10ppm)的化学位移范围内采集一系列CEST信号Z sat。其中,ω i为化学位移,i=1,2,…,N,N为所采集的化学位移总数目。
在一些实施例中,所述分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据,包括:关闭脂肪抑制模块,采集包含水和脂肪的混合信号Z nosat,所述Z nosat为在涵盖脂肪共振频率(-3.5ppm)、水共振频率(0ppm)的频率范围内采集。
具体地,如图5所示,由于在数据采集之前无脂肪抑制模块,因此水和脂肪信号将同时被采集进来。在涵盖脂肪共振频率(-3.5ppm)、水共振频率(0ppm)的频率范围内采集一系列CEST信号Z nosat。其中,ω i为化学位移,i=1,2,…,N,N为所采集的化学位移总数目。
在一些实施例中,所述测量脂肪共振频率点上信号的差异来量化脂肪信号,包括:
计算脂肪信号,当脂肪抑制模块开启和关闭时,在脂肪共振频率点-3.5ppm上水信号强度保持不变,从而测量脂肪抑制模块开启和关闭时-3.5ppm上信号的差异,即可获得脂肪信号F=Z sat(-3.5ppm)–Z nosat(-3.5ppm);
计算水信号,当脂肪抑制模块开启时,水共振频率点上对应的信 号为磁化转移和水信号的总和,磁化转移信号能够由Z sat(-10ppm)测得,则水信号W=Z sat(-10ppm)–Z sat(0ppm)。
在一些实施例中,所述结合脂肪抑制条件下的水信号量化FWF,包括:根据脂肪信号F=Z sat(-3.5ppm)–Z nosat(-3.5ppm)和水信号W=Z sat(-10ppm)–Z sat(0ppm)计算脂肪-水分数FWF,所述FWF=F/(F+W)。
进一步地,参考图2,图2示出了根据本申请一个实施例的脂肪定量成像装置200的示例性结构框图。
如图2所示,该装置包括:
采集单元210,用于分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据;
量化单元220,用于测量脂肪共振频率点上信号的差异来量化脂肪信号;
计算单元230,用于结合脂肪抑制条件下的水信号量化FWF。
应当理解,装置200中记载的诸单元或模块与参考图1描述的方法中的各个步骤相对应。由此,上文针对方法描述的操作和特征同样适用于装置200及其中包含的单元,在此不再赘述。装置200可以预先实现在电子设备的浏览器或其他安全应用中,也可以通过下载等方式而加载到电子设备的浏览器或其安全应用中。装置200中的相应单元可以与电子设备中的单元相互配合以实现本申请实施例的方案。
下面参考图3,其示出了适于用来实现本申请实施例的终端设备或服务器的计算机系统300的结构示意图。
如图3所示,计算机系统300包括中央处理单元(CPU)301,其可以根据存储在只读存储器(ROM)302中的程序或者从存储部分308加载到随机访问存储器(RAM)303中的程序而执行各种适当的动作和处理。在RAM 303中,还存储有系统300操作所需的各种程序和数 据。CPU 301、ROM 302以及RAM 303通过总线304彼此相连。输入/输出(I/O)接口305也连接至总线304。
以下部件连接至I/O接口305:包括键盘、鼠标等的输入部分306;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分307;包括硬盘等的存储部分308;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分309。通信部分309经由诸如因特网的网络执行通信处理。驱动器310也根据需要连接至I/O接口305。可拆卸介质311,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器310上,以便于从其上读出的计算机程序根据需要被安装入存储部分308。
特别地,根据本公开的实施例,上文参考图1描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种脂肪定量成像方法,其包括有形地包含在机器可读介质上的计算机程序,所述计算机程序包含用于执行图1的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分309从网络上被下载和安装,和/或从可拆卸介质311被安装。
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,前述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现, 或者可以用专用硬件与计算机指令的组合来实现。
描述于本申请实施例中所涉及到的单元或模块可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元或模块也可以设置在处理器中,例如,可以描述为:一种处理器包括第一子区域生成单元、第二子区域生成单元以及显示区域生成单元。其中,这些单元或模块的名称在某种情况下并不构成对该单元或模块本身的限定,例如,显示区域生成单元还可以被描述为“用于根据第一子区域和第二子区域生成文本的显示区域的单元”。
作为另一方面,本申请还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施例中前述装置中所包含的计算机可读存储介质;也可以是单独存在,未装配入设备中的计算机可读存储介质。计算机可读存储介质存储有一个或者一个以上程序,前述程序被一个或者一个以上的处理器用来执行描述于本申请的应用于透明窗口信封的文本生成方法。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离前述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

  1. 一种脂肪定量成像方法,其特征在于,该方法包括:
    分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据;
    测量脂肪共振频率点上信号的差异来量化脂肪信号;
    结合脂肪抑制条件下的水信号量化FWF。
  2. 根据权利要求1所述的脂肪定量成像方法,其特征在于,所述分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据,包括:
    开启脂肪抑制模块采集水信号Z sat,所述Z sat为在涵盖脂肪共振频率(-3.5ppm)、水共振频率(0ppm)以及磁化转移占据主导的频率点的化学位移范围内采集。
  3. 根据权利要求2所述的脂肪定量成像方法,其特征在于,所述分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据,包括:
    关闭脂肪抑制模块,采集包含水和脂肪的混合信号Z nosat,所述Z nosat为在涵盖脂肪共振频率(-3.5ppm)、水共振频率(0ppm)的频率范围内采集。
  4. 根据权利要求3所述的脂肪定量成像方法,其特征在于,所述测量脂肪共振频率点上信号的差异来量化脂肪信号,包括:
    计算脂肪信号,当脂肪抑制模块开启和关闭时,在脂肪共振频率点-3.5ppm上水信号强度保持不变,从而测量脂肪抑制模块开启和关闭时-3.5ppm上信号的差异,即可获得脂肪信号F=Z sat(-3.5ppm)–Z nosat(-3.5ppm);
    计算水信号,当脂肪抑制模块开启时,水共振频率点上对应的信号为磁化转移和水信号的总和,磁化转移信号能够由Z sat(-10ppm)测 得,则水信号W=Z sat(-10ppm)–Z sat(0ppm)。
  5. 根据权利要求4所述的脂肪定量成像方法,其特征在于,所述结合脂肪抑制条件下的水信号量化FWF,包括:
    根据脂肪信号F=Z sat(-3.5ppm)–Z nosat(-3.5ppm)和水信号W=Z sat(-10ppm)–Z sat(0ppm)计算脂肪-水分数FWF,所述FWF=F/(F+W)。
  6. 一种脂肪定量成像装置,其特征在于,该装置包括:
    采集单元,用于分别开启和关闭脂肪抑制模块,采集水信号数据和混合信号数据;
    量化单元,用于测量脂肪共振频率点上信号的差异来量化脂肪信号;
    计算单元,用于结合脂肪抑制条件下的水信号量化FWF。
  7. 根据权利要求6所述的脂肪定量成像装置,其特征在于,所述采集单元包括:
    开启脂肪抑制模块采集水信号Z sat,所述Z sat为在涵盖脂肪共振频率(-3.5ppm)、水共振频率(0ppm)以及磁化转移占据主导的频率点的化学位移范围内采集。
  8. 根据权利要求7所述的脂肪定量成像装置,其特征在于,所述采集单元还包括:
    关闭脂肪抑制模块,采集包含水和脂肪的混合信号Z nosat,所述Z nosat为在涵盖脂肪共振频率(-3.5ppm)、水共振频率(0ppm)的频率范围内采集。
  9. 一种计算机设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1-5中任一所述的方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,所述计 算机程序用于:
    所述计算机程序被处理器执行时实现如权利要求1-5中任一所述的方法。
PCT/CN2021/137369 2021-12-13 2021-12-13 脂肪定量成像方法、装置、设备及其存储介质 WO2023108325A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137369 WO2023108325A1 (zh) 2021-12-13 2021-12-13 脂肪定量成像方法、装置、设备及其存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137369 WO2023108325A1 (zh) 2021-12-13 2021-12-13 脂肪定量成像方法、装置、设备及其存储介质

Publications (1)

Publication Number Publication Date
WO2023108325A1 true WO2023108325A1 (zh) 2023-06-22

Family

ID=86775251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137369 WO2023108325A1 (zh) 2021-12-13 2021-12-13 脂肪定量成像方法、装置、设备及其存储介质

Country Status (1)

Country Link
WO (1) WO2023108325A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101530324A (zh) * 2008-03-13 2009-09-16 西门子公司 产生脂肪抑制空间分辨磁共振波谱的方法
US20100156413A1 (en) * 2008-12-19 2010-06-24 Sloan Kettering Institute For Cancer Research Corrected nuclear magnetic resonance imaging using magnetization transfer
CN102639055A (zh) * 2010-10-19 2012-08-15 株式会社东芝 磁共振成像装置以及磁共振成像方法
US20180231627A1 (en) * 2017-02-10 2018-08-16 Siemens Healthcare Gmbh Method and apparatus determining a fat content of a liver of a patient using measured spectral magnetic resonance data
CN108872901A (zh) * 2018-07-02 2018-11-23 华东师范大学 一种定量脂肪含量的磁共振波谱全自动后处理方法
CN109716155A (zh) * 2016-08-15 2019-05-03 皇家飞利浦有限公司 具有迪克逊型水/脂肪分离的mr成像
CN110068783A (zh) * 2019-04-29 2019-07-30 华东师范大学 一种消除脂肪伪影的化学交换饱和转移成像方法
CN110998350A (zh) * 2017-07-17 2020-04-10 阿姆拉医疗有限公司 用于计算质子密度脂肪分数的mri方法
CN111044958A (zh) * 2019-12-24 2020-04-21 上海联影医疗科技有限公司 组织分类方法、装置、存储介质和磁共振成像系统
CN113017596A (zh) * 2021-03-09 2021-06-25 深圳高性能医疗器械国家研究院有限公司 一种磁共振多参数定量方法及其应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101530324A (zh) * 2008-03-13 2009-09-16 西门子公司 产生脂肪抑制空间分辨磁共振波谱的方法
US20100156413A1 (en) * 2008-12-19 2010-06-24 Sloan Kettering Institute For Cancer Research Corrected nuclear magnetic resonance imaging using magnetization transfer
CN102639055A (zh) * 2010-10-19 2012-08-15 株式会社东芝 磁共振成像装置以及磁共振成像方法
CN109716155A (zh) * 2016-08-15 2019-05-03 皇家飞利浦有限公司 具有迪克逊型水/脂肪分离的mr成像
US20180231627A1 (en) * 2017-02-10 2018-08-16 Siemens Healthcare Gmbh Method and apparatus determining a fat content of a liver of a patient using measured spectral magnetic resonance data
CN110998350A (zh) * 2017-07-17 2020-04-10 阿姆拉医疗有限公司 用于计算质子密度脂肪分数的mri方法
CN108872901A (zh) * 2018-07-02 2018-11-23 华东师范大学 一种定量脂肪含量的磁共振波谱全自动后处理方法
CN110068783A (zh) * 2019-04-29 2019-07-30 华东师范大学 一种消除脂肪伪影的化学交换饱和转移成像方法
CN111044958A (zh) * 2019-12-24 2020-04-21 上海联影医疗科技有限公司 组织分类方法、装置、存储介质和磁共振成像系统
CN113017596A (zh) * 2021-03-09 2021-06-25 深圳高性能医疗器械国家研究院有限公司 一种磁共振多参数定量方法及其应用

Similar Documents

Publication Publication Date Title
Dimov et al. Bone quantitative susceptibility mapping using a chemical species–specific signal model with ultrashort and conventional echo data
Rustogi et al. Accuracy of MR elastography and anatomic MR imaging features in the diagnosis of severe hepatic fibrosis and cirrhosis
Mojtahed et al. Reference range of liver corrected T1 values in a population at low risk for fatty liver disease—a UK Biobank sub-study, with an appendix of interesting cases
Roberts et al. The effect of blood inflow and B1‐field inhomogeneity on measurement of the arterial input function in axial 3D spoiled gradient echo dynamic contrast‐enhanced MRI
Volz et al. Correction of systematic errors in quantitative proton density mapping
Messroghli et al. Optimization and validation of a fully‐integrated pulse sequence for modified look‐locker inversion‐recovery (MOLLI) T1 mapping of the heart
AG Teixeira et al. Fast quantitative MRI using controlled saturation magnetization transfer
Dula et al. Development of chemical exchange saturation transfer at 7T
Fitts et al. Arrhythmia insensitive rapid cardiac T1 mapping pulse sequence
Morisaka et al. Comparison of diagnostic accuracies of two‐and three‐dimensional MR elastography of the liver
Jokivarsi et al. Estimation of the onset time of cerebral ischemia using T1ρ and T2 MRI in rats
JP6315944B2 (ja) マルチエコー磁気共鳴イメージングを用いた多ステップ適応型適合法による脂肪および鉄の定量化
US20070285094A1 (en) Mri methods for combining separate species and quantifying a species
Langham et al. Retrospective correction for induced magnetic field inhomogeneity in measurements of large‐vessel hemoglobin oxygen saturation by MR susceptometry
Satogami et al. Normal pituitary stalk: high-resolution MR imaging at 3T
Ye et al. Apparent diffusion coefficient reproducibility of the pancreas measured at different MR scanners using diffusion‐weighted imaging
Krafft et al. Does fat suppression via chemically selective saturation affect R2*‐MRI for transfusional iron overload assessment? A clinical evaluation at 1.5 T and 3T
Hermann et al. Magnetic resonance fingerprinting for simultaneous renal T1 and T2* mapping in a single breath‐hold
CN107907846B (zh) 涡流校正方法、装置、移动终端及可读存储介质
Togao et al. A qualitative and quantitative correlation study of lumbar intervertebral disc degeneration using glycosaminoglycan chemical exchange saturation transfer, Pfirrmann grade, and T1-ρ
US8618797B2 (en) Composite spin locking pulse sequence and method of using the same
Lee et al. High resolution hyperpolarized 13C MRSI using SPICE at 9.4 T
Inoue et al. Comparison of multiparametric magnetic resonance imaging sequences with laboratory parameters for prognosticating renal function in chronic kidney disease
Azhar et al. Clinician’s guide to the basic principles of MRI
Low et al. Multiparametric MR assessment of liver fat, iron, and fibrosis: a concise overview of the liver “Triple Screen”

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE