WO2023106899A1 - Material for hot stamping - Google Patents

Material for hot stamping Download PDF

Info

Publication number
WO2023106899A1
WO2023106899A1 PCT/KR2022/020150 KR2022020150W WO2023106899A1 WO 2023106899 A1 WO2023106899 A1 WO 2023106899A1 KR 2022020150 W KR2022020150 W KR 2022020150W WO 2023106899 A1 WO2023106899 A1 WO 2023106899A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
fine precipitates
hot stamping
diameter
weight
Prior art date
Application number
PCT/KR2022/020150
Other languages
French (fr)
Korean (ko)
Inventor
신누리
서용기
손지희
정상배
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Publication of WO2023106899A1 publication Critical patent/WO2023106899A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Definitions

  • Embodiments of the present invention relate to materials for hot stamping, and more particularly, to materials for hot stamping capable of securing excellent mechanical properties and delayed hydrogen fracture characteristics of hot stamping parts.
  • High-strength steel for weight reduction and stability is applied to parts used in automobiles and the like.
  • high-strength steel can secure high-strength characteristics in comparison to its weight, but as its strength increases, its press formability deteriorates, resulting in material breakage or spring back during processing, making it difficult to form products with complex and precise shapes. There are difficulties.
  • the hot stamping method is a forming technique for manufacturing a high-strength part by heating a boron steel sheet to an appropriate temperature, forming it in a press mold, and then rapidly cooling it.
  • Korean Unexamined Patent Publication No. 10-2017-0076009 it is possible to manufacture parts with good precision by suppressing problems such as crack generation or shape freezing defect during molding, which is a problem in high-strength steel sheets.
  • Korean Patent Laid-Open Publication No. 10-2020-0061922 discloses that preheating is performed before heating a hot stamping blank to a high temperature to form a thin oxide layer on the surface of the blank, thereby blocking the inflow of hydrogen in the high-temperature heating process and delaying hydrogen. Initiate minimizing destruction.
  • it is impossible to completely block the inflow of hydrogen there is a concern that the inflow of hydrogen cannot be controlled, leading to delayed hydrogen destruction.
  • Embodiments of the present invention are intended to solve various problems including the above-mentioned problems, and a material for hot stamping capable of securing high strength, high toughness, excellent mechanical properties and improved hydrogen delayed fracture characteristics of hot stamping parts and a manufacturing method thereof can provide.
  • these tasks are illustrative, and the scope of the present invention is not limited thereby.
  • a material for hot stamping contains carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P) : 0.05% by weight or less, sulfur (S): 0.01% by weight or less, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, additives: 0.1% by weight or less and the rest iron (Fe) and other unavoidable impurities; and fine precipitates distributed in the steel sheet, wherein the additive includes at least one of titanium (Ti), niobium (Nb) and vanadium (V), and the fine precipitates are titanium (Ti) and niobium (Nb) and vanadium (V) containing at least one nitride or carbide, trapping hydrogen, and dividing the standard deviation of the average diameter of the microprecipitates by the
  • the material for hot stamping, after hot stamping, may exhibit a tensile strength of 1,680 MPa or more, a bending angle of 40 degrees or more, and an amount of activated hydrogen of 0.5 wppm or less.
  • An average diameter of the fine precipitates may be 0.006 ⁇ m or less.
  • More than 90% of the fine precipitates may have a diameter of 0.01 ⁇ m or less.
  • More than 60% of the fine precipitates may have a diameter of 0.005 ⁇ m or less.
  • the number of fine precipitates per unit area may be 25,000 or more and 30,000 or less.
  • the number of fine precipitates having a diameter of 0.01 ⁇ m or less per unit area (100 ⁇ m 2 ) may be 23,000 or more and 29,000 or less.
  • the number of fine precipitates having a diameter of 0.005 ⁇ m or less per unit area (100 ⁇ m 2 ) may be 15,200 or more and 29,000 or less.
  • a number coefficient of variation which is a value obtained by dividing a standard deviation of an average number of the fine precipitates by an average number of the fine precipitates, may be 0.8 or less.
  • a material for hot stamping contains carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P) : 0.05% by weight or less, sulfur (S): 0.01% by weight or less, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, additives: 0.1% by weight or less and the rest iron (Fe) and other unavoidable impurities; and fine precipitates distributed in the steel sheet, wherein the additive includes at least one of titanium (Ti), niobium (Nb) and vanadium (V), and the fine precipitates are titanium (Ti) and niobium It contains at least one nitride or carbide of (Nb) and vanadium (V), traps hydrogen, and has a number coefficient of variation, which is a value obtained by dividing the
  • the material for hot stamping may exhibit a tensile strength of 1,680 MPa or more, a bending angle of 40 degrees or more, and an amount of activated hydrogen of 0.5 wppm or less after hot stamping.
  • the first number coefficient of variation which is a value obtained by dividing the standard deviation of the average number of fine precipitates having a diameter of 0.01 ⁇ m or less among the fine precipitates by the average number of fine precipitates having a diameter of 0.01 ⁇ m or less, may be 0.8 or less.
  • the second number coefficient of variation which is a value obtained by dividing the standard deviation of the average number of fine precipitates having a diameter of 0.005 ⁇ m or less among the fine precipitates by the average number of fine precipitates having a diameter of 0.005 ⁇ m or less, may be 0.8 or less.
  • the number of fine precipitates per unit area may be 25,000 or more and 30,000 or less.
  • the number of fine precipitates having a diameter of 0.01 ⁇ m or less per unit area (100 ⁇ m 2 ) may be 23,000 or more and 29,000 or less.
  • the number of fine precipitates having a diameter of 0.005 ⁇ m or less per unit area (100 ⁇ m 2 ) may be 15,200 or more and 29,000 or less.
  • An average diameter of the fine precipitates may be 0.006 ⁇ m or less.
  • More than 90% of the fine precipitates may have a diameter of 0.01 ⁇ m or less.
  • More than 60% of the fine precipitates may have a diameter of 0.005 ⁇ m or less.
  • FIG. 1 is a TEM (Transmission Electron Microscopy) image showing a part of a material for hot stamping according to an embodiment of the present invention.
  • Figures 2a and 2b are views schematically showing a portion of the state in which fine precipitates are dispersed according to an embodiment of the present invention.
  • 3A and 3B are exemplary views schematically showing a part of a state in which hydrogen is trapped in microprecipitates.
  • FIG. 4 is a flowchart schematically illustrating a method for manufacturing a material for hot stamping according to an embodiment of the present invention.
  • Figure 5 is a graph showing the comparison of tensile strength and bending stress according to the coiling temperature of Examples and Comparative Examples of the present invention.
  • 6A and 6B are images showing the results of a 4 point bending test according to the winding temperature of Examples and Comparative Examples.
  • a and/or B represents the case of A, B, or A and B.
  • at least one of A and B represents the case of A, B, or A and B.
  • films, regions, components, etc. when films, regions, components, etc. are connected, when films, regions, and components are directly connected, or/and other films, regions, and components are interposed between the films, regions, and components. It also includes cases where they are interposed and indirectly connected. For example, when a film, region, component, etc. is electrically connected in this specification, when a film, region, component, etc. is directly electrically connected, and/or another film, region, component, etc. is interposed therebetween. This indicates an indirect electrical connection.
  • FIG. 1 is a TEM (Transmission Electron Microscopy) image showing a part of a material for hot stamping according to an embodiment of the present invention.
  • the material 1 for hot stamping may include a steel plate 10 and fine precipitates 20 distributed in the steel plate 10 .
  • the material 1 for hot stamping may be controlled such that the content of alloy elements included in the steel sheet 10 and the precipitation behavior of the fine precipitates 20 satisfy preset conditions. Through this, the molded part after hot stamping can have excellent mechanical properties of high strength and high toughness, and improved hydrogen delayed fracture properties.
  • the material 1 for hot stamping may exhibit a tensile strength of 1,680 MPa or more after hot stamping, and preferably may exhibit a tensile strength of 1,680 MPa or more and less than 2,300 MPa.
  • a bending angle of 40 degrees or more and an amount of activated hydrogen of 0.5 wppm or less may be indicated.
  • "bending angle” may mean a V-bending angle in a rolling direction (RD).
  • the steel sheet 10 may be a steel sheet manufactured by performing a hot rolling process and/or a cold rolling process on a slab cast to include a predetermined content of a predetermined alloy element.
  • the steel sheet 10 contains carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), chromium (Cr), boron (B), and the balance of iron (Fe) and other unavoidable impurities.
  • the steel sheet 10 may further include at least one of titanium (Ti), niobium (Nb), and vanadium (V) as an additive.
  • the steel sheet 10 may further include a predetermined amount of calcium (Ca).
  • the steel sheet 10 contains carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P): greater than 0 0.05% by weight or less, sulfur (S): greater than 0 and less than 0.01% by weight, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, titanium (Ti) and niobium (Nb) as additives , And the sum of one or more of vanadium (V): more than 0 and 0.1 wt% or less, and the rest may include iron (Fe) and other unavoidable impurities.
  • C carbon
  • Si silicon
  • Mn manganese
  • P phosphorus
  • S sulfur
  • S greater than 0 and less than 0.01% by weight
  • Cr chromium
  • B boron
  • Ti titanium
  • Nb ni
  • Carbon (C) acts as an austenite stabilizing element in the steel sheet 10.
  • Carbon is the main element that determines the strength and hardness of the steel sheet 10, and after the hot stamping process, the purpose of securing the tensile strength of the steel sheet 10 (eg, tensile strength of 1,680 MPa or more) and securing hardenability characteristics can be added as Such carbon may be included in an amount of about 0.28wt% to about 0.50wt% based on the total weight of the steel sheet 10 .
  • the carbon content is less than about 0.28wt%, it may be difficult to satisfy the mechanical strength of the steel sheet 10 because it is difficult to secure a hard phase (such as martensite).
  • a hard phase such as martensite
  • Silicon (Si) may act as a ferrite stabilizing element in the steel sheet 10 .
  • Silicon (Si) as a solid-solution strengthening element, can improve the ductility of the steel sheet 10 and improve the carbon concentration in austenite by suppressing the formation of low-temperature carbides.
  • silicon is a key element for hot rolling, cold rolling, hot press structure homogenization (perlite, manganese segregation zone control), and fine dispersion of ferrite. Silicon acts as a martensitic strength heterogeneity control element and serves to improve impact performance. Silicon may be included in an amount of about 0.15 wt % to about 0.70 wt % based on the total weight of the steel sheet 10 .
  • the content of silicon is less than 0.15wt%, it is difficult to obtain the above-mentioned effect, cementite formation and coarsening may occur in the final hot-stamped martensite structure, and the effect of equalizing the steel sheet 10 is insignificant and the V-bending angle can be secured. may become impossible
  • the content of silicon exceeds about 0.70 wt%, the hot rolling and cold rolling loads increase, the hot rolled red scale becomes excessive, and the plating characteristics of the steel sheet 10 may deteriorate.
  • Manganese (Mn) acts as an austenite stabilizing element in the steel sheet 10.
  • Manganese may be added for the purpose of increasing hardenability and strength during heat treatment.
  • Manganese may be included in an amount of about 0.5 wt % to about 2.0 wt % based on the total weight of the steel sheet 10 .
  • the content of manganese is less than about 0.5 wt%, the crystal grain refinement effect is not sufficient, and the hard phase fraction in the molded article after hot stamping may be insufficient due to insufficient hardenability.
  • Phosphorus (P) may be included in an amount greater than 0 and less than or equal to about 0.05 wt% based on the total weight of the steel sheet 10 in order to prevent deterioration in toughness of the steel sheet 10 .
  • the content of phosphorus exceeds about 0.05 wt%, iron phosphide compounds are formed, resulting in deterioration in toughness and weldability, and cracks may be induced in the steel sheet 10 during the manufacturing process.
  • S may be included in an amount greater than 0 and about 0.01 wt% or less based on the total weight of the steel sheet 10 .
  • sulfur content exceeds about 0.01 wt%, hot workability, weldability, and impact properties are deteriorated, and surface defects such as cracks may occur due to the formation of large inclusions.
  • Chromium (Cr) may be added for the purpose of improving hardenability and strength of the steel sheet 10 . Chromium can make crystal grain refinement and strength secured through precipitation hardening. Chromium may be included in an amount of about 0.1 wt % to about 0.5 wt % based on the total weight of the steel sheet 10 . When the chromium content is less than about 0.1wt%, the precipitation hardening effect is poor, and on the contrary, when the chromium content exceeds 0.5wt%, the amount of Cr-based precipitates and matrix solids increases, resulting in lowered toughness and increased cost. Production costs may increase
  • Boron (B) may be added for the purpose of securing hardenability and strength of the steel sheet 10 by suppressing ferrite, pearlite, and bainite transformations to secure a martensitic structure.
  • boron may be segregated at grain boundaries to lower grain boundary energy to increase hardenability, and may have an effect of grain refinement by increasing austenite grain growth temperature.
  • Boron may be included in an amount of about 0.001 wt % to about 0.005 wt % based on the total weight of the steel sheet 10 . When boron is included in the above range, it is possible to prevent grain boundary brittleness in the hard phase and to secure high toughness and bendability.
  • the hardenability effect is insufficient, and on the contrary, when the boron content exceeds about 0.005wt%, the solid solubility is low and the hardenability is easily precipitated at the grain boundary depending on the heat treatment conditions. Deterioration or high-temperature embrittlement may occur, and toughness and bendability may be reduced due to grain boundary brittleness in the hard phase.
  • the additive is a nitride or carbide generating element that contributes to the formation of the fine precipitates 20 .
  • the additive may include at least one of titanium (Ti), niobium (Nb), and vanadium (V). Titanium (Ti), niobium (Nb), and vanadium (V) form nitride or carbide-type fine precipitates 20, thereby securing the strength of a member subjected to hot stamping and quenching.
  • these are contained in the Fe-Mn-based composite oxide, function as a hydrogen trap site effective for improving delayed fracture resistance, and may be elements necessary for improving delayed fracture resistance.
  • additives may be included in an amount greater than 0 and less than or equal to about 0.1 wt% based on the total weight of the steel sheet 10 in total. If the content of the additive exceeds about 0.1 wt%, the increase in yield strength may be excessively increased.
  • Titanium (Ti) may be added for the purpose of strengthening hardenability and improving the material by forming precipitates after hot press heat treatment.
  • a precipitate phase such as Ti (C, N) at high temperature, it effectively contributes to the refinement of austenite crystal grains.
  • Titanium may be included in an amount of about 0.01wt% to about 0.05wt% based on the total weight of the steel sheet 10 .
  • titanium is included in the above content range, it is possible to prevent poor performance and coarsening of precipitates, easily secure physical properties of steel materials, and prevent defects such as cracks on the surface of steel materials.
  • the content of titanium exceeds about 0.05wt%, the precipitate is coarsened and elongation and bendability may decrease.
  • Niobium (Nb) and vanadium (V) may be added for the purpose of increasing strength and toughness according to a decrease in martensite packet size.
  • Each of niobium and vanadium may be included in an amount of about 0.01 wt % to about 0.05 wt % based on the total weight of the steel sheet 10 .
  • the crystal grain refinement effect of steel is excellent in hot rolling and cold rolling processes, cracks in slabs during steelmaking/playing, and brittle fractures of products are prevented, and steelmaking coarse precipitates are generated can be minimized.
  • the additive includes titanium (Ti) and niobium (Nb)
  • the total amount of titanium (Ti) and niobium (Nb) may be about 0.02wt% to about 0.09wt% based on the total weight of the steel sheet 10. It is not limited to this.
  • Calcium (Ca) may be added to control the inclusion shape. Calcium may be included in an amount of about 0.003 wt% or less based on the total weight of the steel sheet 10 .
  • the fine precipitates 20 may serve to trap hydrogen by being distributed in the steel sheet 10 . That is, the fine precipitates 20 can improve the hydrogen delayed fracture characteristics of the hot stamped product by providing a trap site for hydrogen introduced into the inside during or after the manufacturing process of the material 1 for hot stamping.
  • the microprecipitates 20 may include nitrides or carbides of additives.
  • the fine precipitates 20 may include at least one nitride or carbide of titanium (Ti), niobium (Nb), and vanadium (V).
  • Precipitation behavior of the fine precipitates 20 can be controlled by adjusting process conditions. For example, by controlling the coiling temperature (CT) range of process conditions, it is possible to control precipitation behavior such as the number of fine precipitates 20, the average distance between the fine precipitates 20, and the diameter of the fine precipitates 20. can A detailed description of process conditions will be described later with reference to FIG. 4 .
  • CT coiling temperature
  • Precipitation behavior of the fine precipitates 20 may be controlled to satisfy preset conditions.
  • the precipitation behavior of these fine precipitates 20 can be controlled through process conditions (eg, coiling temperature (CT) range).
  • CT coiling temperature
  • the diameter average coefficient of variation (C2, C21, C22), etc. representing the can be controlled to satisfy preset conditions.
  • a detailed description of process conditions will be described later with reference to FIGS. 4 and 5 .
  • Precipitation behavior conditions for the number coefficient of variation (C1) and average diameter coefficient of variation (C2, C21, C22) will be described later in more detail through Examples and Comparative Examples.
  • the precipitation behavior of such fine precipitates 20 can be measured by a method of analyzing a TEM (Transmission Electron Microscopy) image. Specifically, TEM images of arbitrary regions are acquired as many as a preset number of specimens. Fine precipitates 20 are extracted from the acquired images through an image analysis program, etc., and the number of fine precipitates 20 with respect to the extracted fine precipitates 20, the average distance between the fine precipitates 20, and the number of fine precipitates The diameter of (20) can be measured.
  • TEM Transmission Electron Microscopy
  • a surface replication method may be applied as a pretreatment to the specimen to be measured.
  • a one-step replica method, a two-step replica method, an extraction replica method, and the like may be applied, but are not limited to the above examples.
  • the diameter of the fine precipitates 20 may be calculated by converting the shape of the fine precipitates 20 into a circle in consideration of the non-uniformity of the shape of the fine precipitates 20. Specifically, the diameter of the microprecipitate 20 is measured by measuring the area of the microprecipitate 20 extracted using a unit pixel having a specific area, and converting the microprecipitate 20 into a circle having the same area as the measured area. can be calculated.
  • the average distance between the fine precipitates 20 may be measured through the above-described mean free path. Specifically, the average distance between the fine precipitates 20 can be calculated using the particle area fraction and the number of particles per unit length. For example, the average distance between the fine precipitates 20 may have a correlation as shown in Equation 1 below.
  • a method of measuring the precipitation behavior of the fine precipitates 20 is not limited to the above-described example, and various methods may be applied.
  • the precipitation behavior of the fine precipitates 20 greatly affects the mechanical properties and delayed hydrogen fracture characteristics of the molded part after hot stamping.
  • differences in the improvement effect of the mechanical properties and delayed hydrogen fracture characteristics of a molded part after hot stamping according to the precipitation behavior of the fine precipitates 20 will be described with reference to FIGS. 2A to 3B.
  • Figures 2a and 2b are views schematically showing a portion of the state in which fine precipitates are dispersed according to an embodiment of the present invention.
  • FIG. 2A shows a case where the size and distribution of the fine precipitates 20 dispersed inside the steel plate 10 are relatively non-uniform
  • FIG. 2B the fine precipitates dispersed inside the steel plate 10 ( 20) is shown where the size and distribution are relatively uniform.
  • fine precipitates 20 are non-uniform and biasedly distributed inside the steel sheet 10 . Accordingly, a region in which a relatively large number of fine precipitates 20 are aggregated may exist in some regions inside the steel plate 10 . In addition, relatively more defects (eg, dislocations, etc.) may be aggregated in a region where a relatively large number of fine precipitates 20 are aggregated. In addition to this, when the sizes of the fine precipitates 20 are not uniform as shown in FIG. 2A, relatively more defects (eg, dislocations, etc.) may be aggregated in the relatively large-sized fine precipitates 20. . That is, defects may also be biasedly distributed within the steel sheet 10 , not uniformly.
  • fine precipitates 20 having a relatively uniform size are evenly dispersed inside the steel sheet 10 . Accordingly, defects (eg, dislocations, etc.) can be relatively uniformly distributed inside the steel sheet 10, and there is an effect of minimizing or preventing the occurrence of a region acting as the aforementioned notch.
  • the number per unit area of the fine precipitates 20 dispersed inside the steel sheet 10 may be controlled to satisfy a preset range. Specifically, the number of fine precipitates 20 dispersed inside the steel sheet 10 per unit area (100 ⁇ m 2 ) may be 25,000 or more and 30,000 or less. That is, the fine precipitates 20 may be formed in an amount of 25,000/100 ⁇ m 2 or more and 30,000/100 ⁇ m 2 or less inside the steel plate 10 .
  • the number of fine precipitates 20 having a diameter of 0.01 ⁇ m or less among the fine precipitates 20 dispersed inside the steel sheet 10 per unit area (100 ⁇ m 2 ) may be 23,000 or more and 29,000 or less. That is, the fine precipitates 20 may be formed in an amount of 23,000/100 ⁇ m 2 or more and 29,000/100 ⁇ m 2 or less inside the steel sheet 10 .
  • the number of fine precipitates 20 having a diameter of 0.005 ⁇ m or less among the fine precipitates 20 dispersed inside the steel sheet 10 per unit area (100 ⁇ m 2 ) may be 15,200 or more and 29,000 or less. That is, the fine precipitates 20 may be formed in an amount of 15,200/100 ⁇ m 2 or more and 29,000/100 ⁇ m 2 or less inside the steel sheet 10 .
  • the number of fine precipitates 20 per unit area satisfies the aforementioned range, it is possible to secure required tensile strength (eg, 1,680 MPa or more) after hot stamping and improve formability or bendability.
  • required tensile strength eg, 1,680 MPa or more
  • the number of fine precipitates 20 is less than 25,000 / 100 ⁇ m 2 or the number of fine precipitates 20 having a diameter of 0.01 ⁇ m or less is less than 23,000 / 100 ⁇ m 2 or the number of fine precipitates 20 having a diameter of 0.005 ⁇ m or less If the number is less than 15,200/100 ⁇ m 2 , strength may decrease.
  • the number of fine precipitates 20 exceeds 30,000 / 100 ⁇ m 2 or the number of fine precipitates 20 having a diameter of 0.01 ⁇ m or less exceeds 29,000 / 100 ⁇ m 2 or fine precipitates having a diameter of 0.005 ⁇ m or less ( 20) in excess of 29,000/100 ⁇ m 2 , formability or bendability may deteriorate.
  • the coefficient of variation of the number average representing the uniformity of the distribution of the total number of fine precipitates per unit area (100 ⁇ m 2 ) and the size (diameter) of the fine precipitates may be referred to as the second coefficient of variation (C2).
  • the second coefficient of variation C2 may be defined as a value obtained by dividing the standard deviation of the number average by the number average.
  • the second coefficient of variation C2 may satisfy about 0.8 or less. When the second coefficient of variation (C2) exceeds about 0.8, the bendability may be deteriorated.
  • the average distance between adjacent fine precipitates 20 may be controlled to satisfy a preset range.
  • the "average distance” may mean a mean free path of the fine precipitates 20, and details of a method for measuring this will be described later.
  • the average distance between the fine precipitates 20 may be about 0.15 ⁇ m or more and about 0.4 ⁇ m or less.
  • the average distance between the fine precipitates 20 is less than about 0.15 ⁇ m, formability or bendability may deteriorate, whereas when the average distance exceeds about 0.4 ⁇ m, strength may decrease.
  • the diameter of the above-described fine precipitates 20 can have a great effect on improving hydrogen delayed fracture characteristics.
  • the difference in the hydrogen delayed fracture characteristic improvement effect according to the diameter of the fine precipitates 20 will be described.
  • 3A and 3B are diagrams schematically showing a part of a state in which hydrogen is trapped in the fine precipitates 20.
  • FIG. 3A shows a state in which hydrogen is trapped in fine precipitates 20 having a relatively large diameter
  • FIG. 3B shows a state in which hydrogen is trapped in fine precipitates 20 having a relatively small diameter. This is shown
  • the number of hydrogen atoms trapped in one microprecipitate 20 may increase. That is, hydrogen atoms introduced into the steel sheet 10 may not be evenly dispersed, and the probability of a plurality of hydrogen atoms being trapped at one hydrogen trap site may increase. A plurality of hydrogen atoms trapped in one hydrogen trap site may combine with each other to form hydrogen molecules (H 2 ). The formed hydrogen molecules increase the probability of generating internal pressure, and as a result, the hydrogen delayed fracture characteristics of the hot stamped product may be deteriorated.
  • the probability of a plurality of hydrogen atoms being trapped in one microprecipitate 10 may decrease. That is, hydrogen atoms introduced into the steel sheet 10 may be relatively evenly dispersed by being trapped at different hydrogen trap sites. Accordingly, since the hydrogen atoms are prevented from bonding with each other, the probability of generating internal pressure due to the hydrogen molecules is reduced, and the hydrogen delayed fracture characteristics of the hot stamped product may be improved.
  • the diameter average of the fine precipitates 20 dispersed inside the steel sheet 10 is controlled to satisfy a preset range in order to improve the hydrogen delayed fracture characteristics.
  • the average diameter of the fine precipitates 20 dispersed inside the steel sheet 10 may be about 0.006 ⁇ m or less.
  • about 90% or more of the fine precipitates 20 dispersed inside the steel sheet 10 may have a diameter of about 0.01 ⁇ m or less.
  • about 60% or more of the fine precipitates 20 dispersed inside the steel sheet 10 may have a diameter of about 0.005 ⁇ m or less.
  • the coefficient of variation of the size (diameter) of the entire fine precipitate per unit area (100 ⁇ m 2 ) may be referred to as the first coefficient of variation (C1).
  • the first coefficient of variation C1 may be defined as a value obtained by dividing the standard deviation of the average diameter of all fine precipitates by the average diameter.
  • the first coefficient of variation C1 may satisfy about 0.7 or less.
  • the first coefficient of variation (C1) exceeds about 0.7, tensile strength and delayed hydrogen fracture characteristics may be deteriorated.
  • the size (diameter) distribution of the fine precipitates is non-uniform, the non-uniform diameter distribution acts as an obstacle to dislocation movement, and thus the strength may decrease.
  • miniaturization of the fine precipitates 20 can improve the bending characteristics of the molded part after hot stamping.
  • the micronized microprecipitates 20 may act as an obstacle to crystal grain growth, thereby minimizing the prior austenite grain size (PAGS).
  • PAGS prior austenite grain size
  • the martensite packet size and martensite lath size may decrease. Accordingly, a block boundary interval within a packet may decrease and block density may increase. This block boundary can act as a slip band when the martensitic structure is deformed by external impact, and the refinement of the fine precipitates 20 can secure more slip bands and contribute to improving bending properties. there is.
  • FIG. 4 is a flowchart schematically illustrating a method for manufacturing a material for hot stamping according to an embodiment of the present invention.
  • the method for manufacturing a material for hot stamping includes a reheating step (S100), a hot rolling step (S200), a cooling/coiling step (S300), and a cold rolling step (S400). ), an annealing heat treatment step (S500) and a plating step (S600) may be included.
  • steps S100 to S600 are shown as independent steps in FIG. 4 , some of steps S100 to S600 may be performed in one process, and some may be omitted if necessary.
  • a semi-finished slab to be subjected to the process of forming the material 1 for hot stamping is prepared.
  • the slab contains carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P): greater than 0 and less than 0.05% by weight, sulfur (S ): more than 0 and 0.01% by weight or less, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, additives: more than 0 and 0.1% by weight or less, and the rest iron (Fe) and other unavoidable impurities can include
  • the additive may include at least one of titanium (Ti), niobium (Nb), and vanadium (V).
  • each content of titanium (Ti), niobium (Nb), and/or vanadium (V) may be about 0.010 wt
  • the reheating step (S100) is a step of reheating the slab for hot rolling.
  • components segregated during casting may be re-dissolved by reheating the slab obtained through the continuous casting process in a predetermined temperature range.
  • Slab reheating temperature can be controlled within a preset temperature range to maximize austenite refinement and precipitation hardening effect.
  • the slab reheating temperature (SRT) range is included in the temperature range (about 1,000 ° C or more) in which the additives (Ti, Nb and / or V) are fully employed based on the equilibrium precipitation amount of the fine precipitates 20 when the slab is reheated. can If the slab reheating temperature (SRT) does not reach the full solidification temperature range of the additives (Ti, Nb and/or V), the driving force required to control the microstructure during hot rolling is not sufficiently reflected, resulting in excellent mechanical properties through the required precipitation control. The securing effect cannot be obtained.
  • the slab reheat temperature (SRT) may be controlled between about 1,200°C and about 1,250°C.
  • SRT slab reheating temperature
  • the slab reheating temperature (SRT) is less than about 1,200 ° C, there is a problem in that the components segregated during casting are not sufficiently re-dissolved, making it difficult to see a large homogenization effect of alloy elements and a large solid solution effect of titanium (Ti).
  • Ti titanium
  • the higher the slab reheating temperature (SRT) the higher the homogenization, but when it exceeds about 1,250 °C, the grain size of austenite increases, making it difficult to secure strength and the excessive heating process only increases the manufacturing cost of the steel sheet.
  • the hot rolling step (S200) is a step of manufacturing a steel sheet by hot rolling the slab reheated in step S100 in a predetermined finishing delivery temperature (FDT) range.
  • the finish rolling temperature (FDT) range may be controlled from about 840°C to about 920°C. If the finish rolling temperature (FDT) is less than 840°C, it is difficult to secure the workability of the steel sheet due to the occurrence of a mixed structure due to abnormal rolling, and there is a problem of deterioration in workability due to the non-uniformity of the microstructure, as well as hot rolling due to rapid phase change. During rolling, a problem of sheetability may occur.
  • the finish rolling temperature exceeds 920 °C
  • the austenite grains may be coarsened.
  • the fine precipitates 20 may be precipitated at grain boundaries with unstable energy.
  • the fine precipitates 20 precipitated at the grain boundary act as an element that hinders the grain growth of austenite, thereby providing an effect of improving strength through austenite refinement.
  • the fine precipitates 20 precipitated in steps S100 and S200 may be about 0.007wt% based on the equilibrium precipitated amount, but are not limited thereto.
  • the cooling/coiling step (S300) is a step of cooling and winding the hot-rolled steel sheet in step S200 in a predetermined coiling temperature (Coiling Temperature: CT) range, and forming fine precipitates 20 in the steel sheet. That is, in step S300, fine precipitates 20 are formed by forming nitrides or carbides of additives (Ti, Nb, and/or V) included in the slab. Meanwhile, winding may be performed in a ferrite station so that the equilibrium precipitate amount of the fine precipitates 20 may reach a maximum value. In this way, when the structure is transformed into ferrite after the crystal grain recrystallization is completed, the particle size of the fine precipitates 20 may be uniformly precipitated not only at the grain boundary but also within the grain.
  • CT Coiling Temperature
  • the winding temperature (CT) may be about 700 °C to about 780 °C.
  • the coiling temperature (CT) can affect the redistribution of carbon (C).
  • C redistribution of carbon
  • the coiling temperature (CT) is less than about 700 ° C, the low-temperature phase fraction due to overcooling increases, so there is a risk of increasing strength and intensifying rolling load during cold rolling, and there is a problem in that ductility rapidly decreases.
  • the coiling temperature exceeds about 780 ° C there is a problem in that moldability and strength deterioration occurs due to abnormal crystal grain growth or excessive crystal grain growth.
  • CT coiling temperature
  • the steel sheet wound in step S300 is uncoiled, pickled, and then cold rolled.
  • pickling is performed for the purpose of removing the scale of the rolled steel sheet, that is, the hot-rolled coil manufactured through the hot-rolling process.
  • the reduction ratio during cold rolling may be controlled to 30% to 70%, but is not limited thereto.
  • Annealing heat treatment step (S500) is a step of annealing heat treatment at a temperature of about 700 ° C or more of the cold-rolled steel sheet in step S400.
  • the annealing heat treatment includes heating the cold-rolled sheet material and cooling the heated cold-rolled sheet material at a predetermined cooling rate.
  • the plating step (S600) is a step of forming a plating layer on the annealed and heat-treated steel sheet.
  • an Al-Si plating layer may be formed on the steel sheet subjected to the annealing heat treatment in step S500.
  • the plating step (S600) includes forming a hot-dip plating layer on the surface of the steel sheet by immersing the steel sheet in a plating bath having a temperature of about 650°C to about 700°C, and cooling the steel sheet on which the hot-dip plating layer is formed to form the plated layer. It may include a cooling step of forming.
  • the plating bath may include Si, Fe, Al, Mn, Cr, Mg, Ti, Zn, Sb, Sn, Cu, Ni, Co, In, Bi, etc. as additive elements, but is not limited thereto.
  • the hot stamping process By performing the hot stamping process on the hot stamping material 1 manufactured through steps S100 to S600 as described above, it is possible to satisfy the conditions for the precipitation behavior of the fine precipitates 20 described above, and thus required strength and bending. It is possible to manufacture hot stamping parts satisfying the properties.
  • the material for hot stamping (1) manufactured to satisfy the above-described content conditions and process conditions has a tensile strength of 1,680 MPa or more, a bendability of 50 degrees or more, and an activation number of 0.8 wppm or less after hot stamping. may have a small amount.
  • Figure 5 is a graph showing the comparison of tensile strength and bending stress according to the winding temperature of Examples and Comparative Examples of the present invention
  • Figures 6a and 6b is a 4-point bending test (4 point bending test) according to the winding temperature of Examples and Comparative Examples These are images showing the results of the test).
  • Example (CT700) and Comparative Example (CT800) are specimens manufactured by hot stamping the material for hot stamping (1) prepared by performing steps S100 to S600 on a slab having the composition shown in Table 1 below. At this time, Example (CT700) and Comparative Example (CT800) are specimens manufactured by applying the same content conditions and process conditions in the manufacturing process of the material 1 for hot stamping, but differentially applying only the winding temperature (CT) as a variable. .
  • Example (CT700) and Comparative Example (CT800) are slab reheating temperature (SRT): 1,230 ° C, finish rolling temperature (FDT): 900 ° C, rolling reduction during hot rolling: 95%, annealing heat treatment temperature: 780 °C, plating immersion temperature: specimens prepared by hot stamping after heating the hot stamping material manufactured under the conditions of 660 °C at 950 °C for 270 seconds.
  • the embodiment (CT700) is a specimen manufactured by hot stamping the material for hot stamping (1) manufactured by applying a winding temperature (CT) of 700 ° C
  • CT800 is a specimen manufactured by applying a winding temperature (CT) of 800 ° C. It is a specimen manufactured by hot stamping the material for hot stamping (1) manufactured by applying the temperature (CT).
  • FIG. 5 is a graph showing measured tensile strength and bending stress of Example (CT700) and Comparative Example (CT800).
  • Example (CT700) is greater than that of Comparative Example (CT800), and the bending stress affecting impact properties is also comparable to that of Example (CT700). It can be seen that the improvement is compared to the bending stress of the example (CT800).
  • the equilibrium precipitation amount means the maximum number of precipitates that can be precipitated when thermodynamically equilibrium is achieved, and the greater the equilibrium precipitation amount, the greater the number of precipitates.
  • the amount of activated hydrogen refers to the amount of hydrogen excluding hydrogen trapped in the fine precipitates 20 among the hydrogen introduced into the steel sheet 10 .
  • the amount of activated hydrogen can be measured using a thermal desorption spectroscopy method. Specifically, while heating the specimen at a preset heating rate and raising the temperature, the amount of hydrogen released from the specimen below a specific temperature may be measured. At this time, hydrogen released from the specimen below a certain temperature can be understood as activated hydrogen that is not trapped among the hydrogen introduced into the specimen and affects delayed hydrogen destruction.
  • Table 2 shows the results of a 4-point bending test for each of the samples with different equilibrium precipitation amounts of fine precipitates and the amount of activated hydrogen measured using the thermal desorption spectroscopy method.
  • the 4 point bending test is a test to check whether stress corrosion cracking occurs by applying stress below the elastic limit to a specimen prepared by reproducing the state in which the specimen is exposed to a corrosive environment at a specific point way.
  • stress corrosion cracking means a crack that occurs when corrosion and continuous tensile stress act simultaneously.
  • the results of the 4 point bending test in Table 2 are the results of confirming whether or not breakage occurred by applying a stress of 1,000 MPa in air for 100 hours to each of the samples.
  • the amount of activated hydrogen was measured using the thermal desorption spectroscopy method described above, and the temperature was raised from room temperature to 500 °C at a heating rate of 20 °C/min for each sample at 350 °C.
  • the amount of hydrogen released from the specimen is measured.
  • the equilibrium precipitation amount of Example (CT700) was 0.040wt%
  • the equilibrium precipitation amount of Comparative Example (CT800) was measured as 0.029wt%. That is, it can be seen that the embodiment (CT700) can provide more hydrogen trap sites by forming more fine precipitates 20 compared to the comparative example (CT800).
  • the example (CT700) was not broken and the comparative example (CT800) was broken.
  • the amount of activated hydrogen in Example (CT700) was about 0.453 wppm
  • the amount of activated hydrogen in Comparative Example (CT800) was measured to be about 0.550 wppm.
  • Example (CT700) Example (CT700) compared to Comparative Example (CT800), and accordingly, the amount of activated hydrogen decreased.
  • CT700 the amount of hydrogen trapped inside in the embodiment (CT700) increased compared to the comparative example (CT800), and as a result, it can be understood that the hydrogen delayed fracture characteristics are improved.
  • FIG. 6A and 6B are images showing the results of a 4-point bending test for the Example (CT700) and Comparative Example (CT800), respectively. Specifically, FIG. 6a shows the result of the 4-point bending test for the example (CT700), and FIG. 6b shows the 4-point bending test for the comparative example (CT800) under the same conditions as the example (CT700). corresponds to a result.
  • this is a specimen manufactured by hot stamping the material 1 for hot stamping prepared by applying a coiling temperature (CT) of 700 ° C, and having a diameter of 0.01 ⁇ m or less.
  • Fine precipitates 20 are formed in 23,000 or more and 29,000 or less per unit area (100 ⁇ m 2 ), and the average distance between the fine precipitates 20 satisfies 0.15 ⁇ m or more and 0.4 ⁇ m or less. Therefore, it can be confirmed that the embodiment (CT700) efficiently disperses and traps hydrogen introduced into the steel sheet 10, thereby improving hydrogen delayed fracture characteristics and improving tensile strength and bending characteristics.
  • the comparative example (CT800) of FIG. 6B as a specimen prepared by hot stamping the material for hot stamping (1) prepared by applying a coiling temperature (CT) of 800 ° C, the fine precipitates (20) The amount of precipitate is not sufficient, and the diameter of the fine precipitates 20 is coarsened, increasing the probability of occurrence of internal pressure due to hydrogen bonding. Therefore, it can be confirmed that the comparative example (CT800) cannot efficiently disperse and trap hydrogen introduced into the steel sheet 10, and the tensile strength, bending characteristics, and delayed hydrogen fracture characteristics are deteriorated.
  • CT coiling temperature
  • Tables 3 to 6 below quantify tensile strength, bendability, and hydrogen delayed fracture characteristics according to differences in precipitation behavior of fine precipitates 20 for a plurality of specimens. Specifically, in Tables 3 to 6, for a plurality of specimens, measured values of precipitation behavior (number of fine precipitates, average distance between fine precipitates, diameter of fine precipitates, etc.) and characteristics after hot stamping ( Tensile strength, bendability and amount of activated hydrogen) are measured.
  • the plurality of specimens were each heated to 950 ° C and cooled at a cooling rate of 30 ° C / s or more to 300 ° C or less, and then the tensile strength, bendability and amount of activated hydrogen were measured.
  • VDA German Automobile Industry Association
  • the precipitation behavior of the microprecipitates was measured through the above-described TEM image analysis.
  • the precipitation behavior of the fine precipitates was measured for arbitrary regions having an area of 0.5 ⁇ m*0.5 ⁇ m and converted based on a unit area (100 ⁇ m 2 ).
  • Psalter Ingredients (wt%) C Si Mn P S Cr B Ti A 0.30 0.19 1.5 0.02 or less Less than 0.015 0.2 0.002 0.03 B 0.28 0.19 1.4 0.02 or less Less than 0.015 0.2 0.002 0.03 C 0.29 0.20 1.6 0.02 or less Less than 0.015 0.2 0.002 0.03 D 0.29 0.21 1.5 0.02 or less Less than 0.015 0.2 0.002 0.03 E 0.28 0.20 1.4 0.02 or less Less than 0.015 0.2 0.002 0.033 F 0.30 0.25 1.3 0.02 or less Less than 0.015 0.2 0.002 0.033 G 0.31 0.25 1.4 0.02 or less Less than 0.015 0.2 0.002 0.033 H 0.30 0.20 1.4 0.02 or less Less than 0.015 0.2 0.002 0.033 I 0.29 0.20 1.5 0.02 or less Less than 0.015 0.2 0.0025 0.033 J 0.29 0.30 1.4 0.02 or less Less than 0.015 0.
  • Psalter Ingredients (wt%) C Si Mn P S Cr B Ti L 0.30 0.19 1.5 0.02 or less Less than 0.015 0.2 0.002 0.03 M 0.28 0.19 1.4 0.02 or less Less than 0.015 0.2 0.002 0.03 N 0.29 0.20 1.6 0.02 or less Less than 0.015 0.2 0.002 0.03 O 0.29 0.21 1.5 0.02 or less Less than 0.015 0.2 0.002 0.03 P 0.28 0.20 1.4 0.02 or less Less than 0.015 0.2 0.002 0.033 Q 0.30 0.25 1.3 0.02 or less Less than 0.015 0.2 0.002 0.033 R 0.31 0.25 1.4 0.02 or less Less than 0.015 0.2 0.002 0.033 S 0.30 0.20 1.4 0.02 or less Less than 0.015 0.2 0.002 0.033 T 0.29 0.20 1.5 0.02 or less Less than 0.015 0.2 0.0025 0.033 U 0.29 0.30 1.4 0.02 or less Less than 0.015 0.
  • Tables 3 to 6 show the measured values of the precipitation behavior of the microprecipitates (the number of microprecipitates, the average distance between the microprecipitates, the diameter of the microprecipitates, etc.) and the characteristics after hot stamping (tensile strength, bendability and amount of activated hydrogen).
  • specimens A to K are specimens manufactured by hot stamping the material for hot stamping manufactured through steps S100 to S600 by applying the above-described process conditions to slabs satisfying the content conditions shown in Table 3.
  • specimens A to K had a slab reheating temperature (SRT): 1230 ° C, a finish rolling temperature (FDT): 900 ° C, a reduction rate during hot rolling: 95%, a coiling temperature (CT): 780 ° C, annealing heat treatment temperature: 780 °C, plating immersion temperature: specimens prepared by hot stamping after heating the hot stamping material manufactured under the condition of 660 °C at 950 °C for 270 seconds. That is, specimens A to K are specimens satisfying the above-described conditions for precipitation behavior of fine precipitates.
  • fine precipitates were formed in the steel sheet in an amount of 25,000/100 ⁇ m 2 or more and 30,000/100 ⁇ m 2 or less, the average diameter of all the fine precipitates was 0.006 ⁇ m or less, and the average distance between all the fine precipitates was 0.15 ⁇ m or more and 0.4 ⁇ m or less are satisfied.
  • more than 90% of the fine precipitates formed in the steel sheet have a diameter of 0.01 ⁇ m or less, and the number of fine precipitates having a diameter of 0.01 ⁇ m or less satisfies 23,000/100 ⁇ m 2 or more and 29,000/100 ⁇ m 2 or less.
  • more than 60% of the fine precipitates formed in the steel sheet have a diameter of 0.005 ⁇ m or less, and the number of fine precipitates having a diameter of 0.005 ⁇ m or less satisfies 15,200/100 ⁇ m 2 or more and 29,000/100 ⁇ m 2 or less.
  • specimens A to K satisfying the precipitation behavior conditions of the present invention have improved tensile strength, bendability, and delayed hydrogen fracture characteristics. Specifically, samples A to K satisfy tensile strength of 1,680 MPa or more after hot stamping, bendability of 40 degrees or more after hot stamping, and an amount of activated hydrogen after hot stamping of 0.5 wppm or less. .
  • specimens L to V are specimens manufactured by hot stamping the material for hot stamping manufactured through steps S100 to S600 by applying the above-described process conditions to slabs satisfying the content conditions shown in Table 5.
  • specimens L to V had a slab reheating temperature (SRT): 1230 ° C, a finish rolling temperature (FDT): 900 ° C, a reduction ratio during hot rolling: 95%, a coiling temperature (CT): 790 ° C, annealing heat treatment temperature: 780 °C, plating immersion temperature: specimens prepared by hot stamping after heating the hot stamping material manufactured under the condition of 660 °C at 950 °C for 270 seconds.
  • SRT slab reheating temperature
  • FDT finish rolling temperature
  • CT coiling temperature
  • annealing heat treatment temperature 780 °C
  • plating immersion temperature specimens prepared by hot stamping after heating the hot stamping material manufactured under the condition of 660 °C at 950 °C for 270 seconds.
  • specimens L to V are specimens that do not satisfy at least some of the above-described precipitation behavior conditions of fine precipitates, and it can be confirmed that the tensile strength, bendability, and/or delayed hydrogen fracture characteristics are inferior to those of specimens A to K. there is.
  • the number of fine precipitates with a diameter of 0.01 ⁇ m or less is 22,998. This is less than the lower limit of the condition for the number of fine precipitates having a diameter of 0.01 ⁇ m or less. Accordingly, it can be confirmed that the tensile strength of specimen L is only 1,671 MPa, which is relatively low.
  • specimen M the total number of fine precipitates was 24,999, and the number of fine precipitates having a diameter of 0.01 ⁇ m or less was 22,874. This falls short of the lower limit of the condition for the total number of fine precipitates and the lower limit of the condition for the number of fine precipitates having a diameter of 0.01 ⁇ m or less. Accordingly, it can be confirmed that the tensile strength of specimen M is only 1,664 MPa, which is relatively low.
  • specimen N the number of fine precipitates with a diameter of 0.01 ⁇ m or less is 29,005. This exceeds the upper limit of the condition for the number of fine precipitates having a diameter of 0.01 ⁇ m or less. Accordingly, it can be confirmed that the bendability of specimen N is only 37 degrees, which is relatively low.
  • the total number of fine precipitates is 30,009. This exceeds the upper limit of the condition for the total number of fine precipitates. Accordingly, it can be confirmed that the bendability of specimen O is only 35 degrees, which is relatively low.
  • the average diameter of all microprecipitates is 0.0071 ⁇ m. This exceeds the upper limit of the condition of the average diameter of all fine precipitates. Accordingly, the amount of activated hydrogen of specimen P was measured as a relatively high 0.505 wppm, confirming that the hydrogen delayed fracture characteristics were relatively deteriorated.
  • the ratio of fine precipitates with a diameter of 0.01 ⁇ m or less is 89.8%. This falls short of the lower limit of the condition for the ratio of fine precipitates with a diameter of 0.005 ⁇ m or less. Accordingly, the amount of activated hydrogen of specimen Q was measured as a relatively high 0.514 wppm, confirming that the hydrogen delayed fracture characteristics were relatively deteriorated.
  • the ratio of fine precipitates with a diameter of 0.005 ⁇ m or less is 59.9%. This falls short of the lower limit of the condition for the ratio of fine precipitates with a diameter of 0.005 ⁇ m or less. Accordingly, the amount of activated hydrogen of specimen R was measured as a relatively high 0.502 wppm, confirming that the hydrogen delayed fracture characteristics were relatively deteriorated.
  • the ratio of fine precipitates with a diameter of 0.005 ⁇ m or less is 59.7%. This falls short of the lower limit of the condition for the ratio of fine precipitates with a diameter of 0.005 ⁇ m or less. Accordingly, the amount of activated hydrogen of specimen S was measured as a relatively high 0.504 wppm, confirming that the hydrogen delayed fracture characteristics were relatively deteriorated.
  • the average distance between all the microprecipitates is 0.14 ⁇ m. This falls short of the lower limit of the average distance condition between all the fine precipitates. Accordingly, it can be confirmed that the bendability of specimen T is only 38 degrees, which is relatively low.
  • specimen U In the case of specimen U, the average distance of all microprecipitates is 0.41 ⁇ m. This exceeds the upper limit of the total fine precipitate average distance condition. Accordingly, it can be confirmed that the tensile strength of specimen U is only 1,678 MPa, which is relatively low.
  • the number of fine precipitates with a diameter of 0.005 ⁇ m or less is 15,112. This is less than the lower limit of the condition for the number of fine precipitates having a diameter of 0.005 ⁇ m or less. Accordingly, it can be confirmed that the tensile strength is only 1,671 MPa, which is relatively low.
  • Precipitation behavior of the following fine precipitates was measured through the above-described TEM image analysis.
  • Precipitation behavior of fine precipitates is measured for 10 random areas having an area of 0.5 ⁇ m*0.5 ⁇ m and converted based on a unit area (100 ⁇ m 2 ), and hereinafter, 'average' refers to random areas means the average of the precipitation behavior values for The total number of precipitates in the arbitrary regions was calculated, and their average value was referred to as 'the average number of total precipitates'.
  • the average distance between the fine precipitates was calculated through the mean free path in the arbitrary regions, and the average value thereof was referred to as 'average distance between the precipitates'.
  • the ‘average of the total number of precipitates’ The ratios were referred to as 'average ratios of 10 nm or less' and 'average ratios of 5 nm or less'.
  • the average of the diameters of all the fine precipitates in the above arbitrary regions was referred to as 'the average diameter of all precipitates', and the standard deviation of these values was referred to as the 'standard deviation of the average diameter'.
  • the diameter average coefficient of variation that is, the first coefficient of variation (C1), was defined as a value obtained by dividing the standard deviation of the average diameter by the average diameter. In the present invention, the first coefficient of variation (C1) may be 0.8 or less.
  • Table 7 quantifies the tensile strength and hydrogen delayed fracture characteristics according to the precipitation behavior of fine precipitates for a plurality of specimens.
  • the precipitation behavior of the microprecipitates is the average number of all microprecipitates, the average distance between the microprecipitates, the average ratio of the microprecipitates of a specific diameter or less, and the total microprecipitates.
  • Measured values for the average diameter of the precipitates, the standard deviation of the average diameter, the first coefficient of variation (C1), and the resulting properties after hot stamping, the measured values for the tensile strength and the amount of activated hydrogen are described. In particular, it will be described in terms of tensile strength and hydrogen delayed fracture characteristics according to the first coefficient of variation (C1), which is the coefficient of variation of the average diameter.
  • Specimens X1 to X12 contain carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P): greater than 0 and less than 0.05% by weight, Sulfur (S): more than 0 and 0.01% by weight or less, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, titanium (Ti), niobium (Nb), and vanadium (V )
  • C carbon
  • Si silicon
  • Mn manganese
  • P phosphorus
  • S sulfur
  • S more than 0 and 0.01% by weight or less
  • Cr chromium
  • B boron
  • Ti titanium
  • Nb niobium
  • V vanadium
  • specimens X1 to X12 had a slab reheating temperature (SRT): 1230 ° C, a finish rolling temperature (FDT): 900 ° C, a reduction ratio during hot rolling: 95%, a coiling temperature (CT): 780 ° C, annealing heat treatment temperature: 780 °C, plating immersion temperature: specimens prepared by hot stamping after heating the hot stamping material manufactured under the condition of 660 °C at 950 °C for 270 seconds.
  • X1 to X12 may satisfy not only the precipitation behavior with respect to the first coefficient of variation C1 but also the precipitation behavior with respect to the aforementioned second coefficient of variation C2. That is, X1 to X12 are specimens satisfying the above-described precipitation behavior conditions of fine precipitates.
  • the total number of fine precipitates in specimens X1 to X12 is 25,000 to 30,000/ ⁇ m 2
  • the average distance between adjacent fine precipitates is 0.15 ⁇ m or more and 0.40 ⁇ m or less
  • the ratio of fine precipitates with a diameter of 0.01 ⁇ m or less is 90, respectively.
  • the ratio of fine precipitates having a diameter of 0.005 ⁇ m or less is 60% or more
  • the average diameter of all fine precipitates satisfies 0.006 ⁇ m or less.
  • specimens X1 to X8 satisfy the condition that the first coefficient of variation is 0.7 or less, and specimens X9 to X12 have a first coefficient of variation greater than 0.7 and do not satisfy the precipitation behavior condition according to the first coefficient of variation of the present invention. It can be seen that specimens X1 to X8 having a first coefficient of variation of 0.7 or less have superior tensile strength and delayed hydrogen fracture characteristics to specimens X9 to X12 having a first coefficient of variation of more than 0.7.
  • specimens X1 to X8 have a tensile strength of 1700 MPa or more after hot stamping and an amount of activated hydrogen of 0.4 wppm or less
  • specimens X9 to X12 have a tensile strength of 1,680 MPa to 1700 MPa (less than 1700 MPa) and an amount of activated hydrogen after hot stamping.
  • specimens X1 to X8 have excellent tensile strength and delayed hydrogen fracture characteristics compared to specimens X9 to X12.
  • specimens X1 to X4 have an average number of total precipitates of 25,000 or more and 27,500 or less, of which the average ratio of fine precipitates with a diameter of 10 nm or less is 90% to 92%, and the average ratio of fine precipitates with a diameter of 5 nm or less is 60 % to 63%, since the total number of precipitates and the ratio of fine precipitates having a diameter of 10 nm or 5 nm or less are also small, it may be a very difficult condition to secure tensile strength or delayed hydrogen fracture characteristics after hot stamping. Nevertheless, since specimens X1 to X4 satisfy the precipitation behavior condition of the present invention that the first coefficient of variation is 0.7 or less, they have relatively high tensile strength and delayed hydrogen fracture characteristics compared to specimens X9 to X12.
  • specimen X12 has an average number of precipitates of 29,424, and the ratio of fine precipitates with diameters of 10 nm and 5 nm or less is also high at 97.1% and 91.4%, respectively, which is a relatively favorable condition for securing tensile strength and hydrogen delayed fracture characteristics.
  • specimen X12 does not satisfy the precipitation behavior condition of the present invention that the first coefficient of variation is 0.7 or less, so it has relatively low tensile strength and hydrogen delayed fracture characteristics compared to specimens X1 to X8.
  • Precipitation behavior of the following fine precipitates was measured through the above-described TEM image analysis.
  • Precipitation behavior of fine precipitates is measured for 10 random areas having an area of 0.5 ⁇ m*0.5 ⁇ m and converted based on a unit area (100 ⁇ m 2 ), and hereinafter, 'average' refers to random areas means the average of the precipitation behavior values for After measuring the total number of precipitates, the number of fine precipitates having a diameter of 10 nm or less, and the number of fine precipitates having a diameter of 5 nm or less in the arbitrary regions, they are converted based on the unit area (100 ⁇ m 2 ), and the average value of each of these is ‘total They were referred to as 'average number of precipitates', 'average number of precipitates of 10 nm or less', and 'average number of precipitates of 5 nm or
  • the number coefficient of variation that is, the second coefficient of variation (C2) was defined as a value obtained by dividing the standard deviation of the number average by the number average.
  • the second coefficient of variation (C2) may be 0.8 or less.
  • the second coefficient of variation (C2) includes a 2-1 coefficient of variation (C21), which is a coefficient of variation in the number of fine precipitates having a diameter of 10 nm or less, and a 2-2 coefficient of variation (C22), which is a coefficient of variation in the number of fine precipitates having a diameter of 5 nm or less. .
  • the 2-1 coefficient of variation (C21) is defined as a value obtained by dividing the standard deviation of the number average of fine precipitates having a diameter of 0.01 ⁇ m or less among all fine precipitates by the average number of fine precipitates having a diameter of 0.01 ⁇ m or less, and the second- 1
  • the coefficient of variation C21 may be 0.8 or less.
  • the 2-1st coefficient of variation C21 may be referred to as a 'first number coefficient of variation'.
  • the 2-2 coefficient of variation (C22) is defined as a value obtained by dividing the standard deviation of the average number of fine precipitates having a diameter of 0.005 ⁇ m or less among all the fine precipitates by the average number of fine precipitates having a diameter of 0.005 ⁇ m or less, and the second- 2
  • the coefficient of variation C22 may be 0.8 or less.
  • the 2-2 coefficient of variation C22 may be referred to as a 'second number coefficient of variation'.
  • Table 8 quantifies the bending angle according to the precipitation behavior of fine precipitates for a plurality of specimens. Specifically, in Table 8, with respect to the plurality of specimens (Y1 to Y14), as the precipitation behavior of the microprecipitates, the number average of all microprecipitates, microprecipitates with a diameter of 10 nm or less and fine precipitates with a diameter of 5 nm or less, respectively, the number average Measured values for the standard deviation, the second coefficient of variation (C2), which is the coefficient of variation of the number of fine precipitates, and the measured values for the bending angle as characteristics after hot stamping according thereto are described. In particular, it will be described from the viewpoint of bendability according to the second coefficient of variation C2, which is the coefficient of variation of the number average.
  • Specimens Y1 to Y14 contain carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P): greater than 0 and less than 0.05% by weight, Sulfur (S): more than 0 and 0.01% by weight or less, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, titanium (Ti), niobium (Nb), and vanadium (V )
  • C carbon
  • Si silicon
  • Mn manganese
  • P phosphorus
  • S sulfur
  • S more than 0 and 0.01% by weight or less
  • Cr chromium
  • B boron
  • Ti titanium
  • Nb niobium
  • V vanadium
  • specimens Y1 to Y14 had a slab reheating temperature (SRT): 1230 ° C, a finish rolling temperature (FDT): 900 ° C, a reduction ratio during hot rolling: 95%, a coiling temperature (CT): 780 ° C, annealing heat treatment temperature: 780 °C, plating immersion temperature: specimens prepared by hot stamping after heating the hot stamping material manufactured under the condition of 660 °C at 950 °C for 270 seconds.
  • specimens Y1 to Y14 may satisfy not only the precipitation behavior with respect to the second coefficient of variation (C2) described later, but also the precipitation behavior with respect to the aforementioned first coefficient of variation (C1). That is, Y1 to Y14 are specimens satisfying the above-described precipitation behavior conditions of fine precipitates.
  • the total number of microprecipitates in specimens Y1 to Y14 is 25,000 to 30,000/ ⁇ m 2
  • the average distance between adjacent microprecipitates is 0.15 ⁇ m or more and 0.40 ⁇ m or less
  • the number of fine precipitates with a diameter of 10 nm or less is 23,000 to 29,000 / ⁇ m 2
  • the number of fine precipitates having a diameter of 5 nm or less is 15,200 to 29,000/ ⁇ m 2 .
  • the ratio of fine precipitates with a diameter of 0.01 ⁇ m or less was 90% or more
  • the ratio of fine precipitates with a diameter of 0.005 ⁇ m or less was 60% or more
  • the average diameter of all fine precipitates was 0.006 ⁇ m or less is satisfied.
  • specimens Y1 to Y8 satisfy the condition that the second coefficient of variation is 0.8 or less, and specimens Y9 to Y14 have a second coefficient of variation greater than 0.8, which does not satisfy the precipitation behavior condition according to the second coefficient of variation of the present invention. It can be seen that specimens Y1 to Y8 having a second coefficient of variation of 0.8 or less have better bendability than specimens Y9 to Y14 having a first coefficient of variation of more than 0.8.
  • specimens Y9 to Y14 have a bending angle (°) of 40 to 50 degrees after hot stamping, and specimens Y9 to Y14 have a bending angle of 50 degrees or more and less than 60 degrees after hot stamping, whereas specimens Y1 to Y8 have It is superior in bendability to specimens Y9 to Y14.
  • the bendability of specimen Y9 is only 44 degrees, which is relatively low.
  • the second coefficient of variation (C2) is 0.81 to 0.85, exceeding the upper limit of the condition of the second coefficient of variation (C2). Accordingly, it can be confirmed that the bendability of specimens Y10 to Y12 is only 42 degrees to 45 degrees, which are relatively low.
  • the 2-1 coefficient of variation (C21) is 0.82, exceeding the upper limit of the 2-1 coefficient of variation (C21) condition. Accordingly, it can be confirmed that the bendability of specimen Y13 is only 43 degrees, which is relatively low.
  • the 2-2 coefficient of variation (C22) is 0.82, exceeding the upper limit of the 2-2 coefficient of variation (C22) condition. Accordingly, it can be confirmed that the bendability of specimen Y14 is only 41 degrees, which is relatively low.
  • specimens Y5 to Y8 have an average number of total precipitates per unit area (100 ⁇ m 2 ) of 28,000 or more and 30,000 or less, and among them, the number of fine precipitates with a diameter of 10 nm or less and fine precipitates with a diameter of 5 nm or less are relatively high. In many ways, it may be a difficult condition to secure bendability. Nevertheless, specimens Y5 to Y8 satisfy the precipitation behavior condition of the present invention that the second coefficient of variation is 0.8 or less, and thus have relatively high bendability compared to specimens Y9 to Y14.
  • samples Y9 to Y14 have a large number of total precipitates and fine precipitates having diameters of 10 nm and 5 nm or less, which may be relatively favorable conditions for securing bendability. Nevertheless, specimens Y9 to Y14 do not satisfy the precipitation behavior condition of the present invention that the second coefficient of variation is 0.8 or less, so they have relatively low bendability compared to specimens Y1 to Y8.
  • the material for hot stamping manufactured by the material manufacturing method for hot stamping to which the above-described content conditions and process conditions of the present invention are applied satisfies the above-described precipitation behavior conditions of the fine precipitates after undergoing hot stamping, and such fine precipitates It was confirmed that the hot stamping products satisfying the precipitation behavior conditions of these improved tensile strength, bendability and hydrogen delayed fracture characteristics.
  • the material for hot stamping according to embodiments of the present invention satisfies the diameter average coefficient of variation and/or the number coefficient of variation among precipitation behavior conditions and uniformly distributes the number or size (diameter) of fine precipitates, thereby forming after hot stamping. It can be seen that the tensile strength, bendability and delayed hydrogen fracture characteristics of the parts are further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A material for hot stamping according to an embodiment of the present invention comprises: a steel sheet comprising 0.28 to 0.50 wt% of carbon (C), 0.15 to 0.70 wt% of silicon (Si), 0.5 to 2.0 wt% of manganese (Mn), 0.05 wt% or less of phosphorus (P), 0.01 wt% or less of sulfur (S), 0.1 to 0.5 wt% of chromium (Cr), 0.001 to 0.005 wt% of boron (B), 0.1 wt% or less of an additive, and the remainder of iron (Fe) and other inevitable impurities; and fine precipitates distributed in the steel sheet, wherein the additive includes at least one of titanium (Ti), niobium (Nb) and vanadium (V), the fine precipitates include a nitride or carbide of the at least one of titanium (Ti), niobium (Nb) and vanadium (V) and trap hydrogen, and the coefficient of variation of the average diameter, which is a value obtained by dividing the standard deviation of the average diameter of the fine precipitates by the average diameter of the fine precipitates, is 0.7 or less.

Description

핫 스탬핑용 소재Material for hot stamping
본 발명의 실시예들은 핫 스탬핑용 소재에 관한 것으로서, 더 상세하게는 핫스탬핑 부품의 우수한 기계적 물성 및 수소지연파괴 특성을 확보할 수 있는 핫 스탬핑용 소재에 관한 것이다.Embodiments of the present invention relate to materials for hot stamping, and more particularly, to materials for hot stamping capable of securing excellent mechanical properties and delayed hydrogen fracture characteristics of hot stamping parts.
자동차 등에 사용되는 부품에는 경량화 및 안정성을 위한 고강도강이 적용된다. 한편, 고강도강은 중량 대비 고강도 특성을 확보할 수 있으나, 강도가 증가함에 따라 프레스 성형성이 저하되어 가공 중 소재의 파단이 발생하거나, 스프링 백 현상이 발생하여 복잡하고 정밀한 형상의 제품의 성형에 어려움이 있다.High-strength steel for weight reduction and stability is applied to parts used in automobiles and the like. On the other hand, high-strength steel can secure high-strength characteristics in comparison to its weight, but as its strength increases, its press formability deteriorates, resulting in material breakage or spring back during processing, making it difficult to form products with complex and precise shapes. There are difficulties.
이러한 문제점을 개선하기 위한 방안으로 대표적으로 핫스탬핑 공법이 있으며 이에 대한 관심이 높아지면서 핫 스탬핑용 소재에 대한 연구도 활발히 이루어지고 있다. 예컨대, 한국 공개특허공보 제10-2017-0076009호 발명에 개시된 바와 같이, 핫스탬핑 공법은 붕소 강판을 적정 온도로 가열하여 프레스 금형 내에서 성형 후 급속 냉각하여 고강도 부품을 제조하는 성형기술이다. 한국 공개특허공보 제10-2017-0076009호 발명에 의하면 고강도 강판에서 문제가 되는 성형 시 균열 발생 또는 형상 동결 불량 등의 문제가 억제되어 양호한 정밀도의 부품을 제조하는 것이 가능하다.As a method to improve these problems, there is a hot stamping method as a representative method, and as interest in this method increases, research on materials for hot stamping is being actively conducted. For example, as disclosed in Korean Patent Laid-Open Publication No. 10-2017-0076009, the hot stamping method is a forming technique for manufacturing a high-strength part by heating a boron steel sheet to an appropriate temperature, forming it in a press mold, and then rapidly cooling it. According to the invention of Korean Unexamined Patent Publication No. 10-2017-0076009, it is possible to manufacture parts with good precision by suppressing problems such as crack generation or shape freezing defect during molding, which is a problem in high-strength steel sheets.
하지만, 핫 스탬핑 강판의 경우, 핫스탬핑 공정에서 유입된 수소 및 잔류응력에 의해 수소지연파괴가 발생하는 문제점이 있다. 이와 관련하여 한국 공개특허공보 제10-2020-0061922호는 핫 스탬핑 블랭크를 고온 가열하기 전에 프리 히팅을 실시하여 블랭크의 표면에 얇은 산화층을 형성함으로써 고온 가열 공정에서의 수소의 유입을 차단하여 수소지연파괴를 최소화하는 것을 개시한다. 그러나 수소의 유입을 완전히 차단하는 것을 불가능한 바, 유입된 수소를 제어하지 못하여 수소지연파괴로 이어질 수 있는 우려가 있다.However, in the case of a hot stamping steel sheet, there is a problem in that delayed hydrogen fracture occurs due to hydrogen introduced in the hot stamping process and residual stress. In this regard, Korean Patent Laid-Open Publication No. 10-2020-0061922 discloses that preheating is performed before heating a hot stamping blank to a high temperature to form a thin oxide layer on the surface of the blank, thereby blocking the inflow of hydrogen in the high-temperature heating process and delaying hydrogen. Initiate minimizing destruction. However, since it is impossible to completely block the inflow of hydrogen, there is a concern that the inflow of hydrogen cannot be controlled, leading to delayed hydrogen destruction.
본 발명의 실시예들은 상술한 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 핫스탬핑 부품의 고강도, 고인성의 우수한 기계적 물성 및 향상된 수소지연파괴 특성을 확보할 수 있는 핫 스탬핑용 소재 및 그 제조방법을 제공할 수 있다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.Embodiments of the present invention are intended to solve various problems including the above-mentioned problems, and a material for hot stamping capable of securing high strength, high toughness, excellent mechanical properties and improved hydrogen delayed fracture characteristics of hot stamping parts and a manufacturing method thereof can provide. However, these tasks are illustrative, and the scope of the present invention is not limited thereby.
본 발명의 일 실시예에 따른 핫 스탬핑용 소재는 탄소(C): 0.28~0.50중량%, 실리콘(Si): 0.15~0.70중량%, 망간(Mn): 0.5~2.0중량%, 인(P): 0.05중량% 이하, 황(S): 0.01중량% 이하, 크롬(Cr): 0.1~0.5중량%, 붕소(B): 0.001~0.005중량%, 첨가제: 0.1중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 강판; 및 상기 강판 내에 분포된 미세석출물들;을 포함하고, 상기 첨가제는 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 적어도 어느 하나를 포함하며, 상기 미세석출물들은, 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 적어도 어느 하나의 질화물 또는 탄화물을 포함하고, 수소를 트랩하고, 상기 미세석출물들의 직경 평균의 표준편차를 상기 미세석출물들의 직경 평균으로 나눈 값인 직경 평균 변동계수는 0.7 이하이다.A material for hot stamping according to an embodiment of the present invention contains carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P) : 0.05% by weight or less, sulfur (S): 0.01% by weight or less, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, additives: 0.1% by weight or less and the rest iron (Fe) and other unavoidable impurities; and fine precipitates distributed in the steel sheet, wherein the additive includes at least one of titanium (Ti), niobium (Nb) and vanadium (V), and the fine precipitates are titanium (Ti) and niobium (Nb) and vanadium (V) containing at least one nitride or carbide, trapping hydrogen, and dividing the standard deviation of the average diameter of the microprecipitates by the average diameter of the microprecipitates, the diameter average coefficient of variation is 0.7 below
상기 핫 스탬핑용 소재는, 핫 스탬핑 후, 1,680 MPa 이상의 인장강도, 40 도(degree) 이상의 굽힘각, 0.5 wppm 이하의 활성화 수소량을 나타낼 수 있다.The material for hot stamping, after hot stamping, may exhibit a tensile strength of 1,680 MPa or more, a bending angle of 40 degrees or more, and an amount of activated hydrogen of 0.5 wppm or less.
상기 미세석출물들의 직경 평균은 0.006㎛ 이하일 수 있다.An average diameter of the fine precipitates may be 0.006 μm or less.
상기 미세석출물들의 90% 이상이 0.01㎛ 이하의 직경을 가질 수 있다.More than 90% of the fine precipitates may have a diameter of 0.01 μm or less.
상기 미세석출물들의 60% 이상이 0.005㎛ 이하의 직경을 가질 수 있다.More than 60% of the fine precipitates may have a diameter of 0.005 μm or less.
상기 미세석출물들의 단위면적(100㎛2)당 개수는 25,000개 이상 30,000개 이하일 수 있다.The number of fine precipitates per unit area (100 μm 2 ) may be 25,000 or more and 30,000 or less.
직경이 0.01㎛ 이하인 미세석출물들의 단위면적(100㎛2)당 개수는 23,000개 이상 29,000개 이하일 수 있다.The number of fine precipitates having a diameter of 0.01 μm or less per unit area (100 μm 2 ) may be 23,000 or more and 29,000 or less.
직경이 0.005㎛ 이하인 미세석출물들의 단위면적(100㎛2)당 개수는 15,200개 이상 29,000개 이하일 수 있다.The number of fine precipitates having a diameter of 0.005 μm or less per unit area (100 μm 2 ) may be 15,200 or more and 29,000 or less.
상기 미세석출물들의 개수 평균의 표준편차를 상기 미세석출물들의 개수 평균으로 나눈 값인 개수 변동계수는 0.8 이하일 수 있다.A number coefficient of variation, which is a value obtained by dividing a standard deviation of an average number of the fine precipitates by an average number of the fine precipitates, may be 0.8 or less.
본 발명의 일 실시예에 따른 핫 스탬핑용 소재는 탄소(C): 0.28~0.50중량%, 실리콘(Si): 0.15~0.70중량%, 망간(Mn): 0.5~2.0중량%, 인(P): 0.05중량% 이하, 황(S): 0.01중량% 이하, 크롬(Cr): 0.1~0.5중량%, 붕소(B): 0.001~0.005중량%, 첨가제: 0.1중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 강판; 및 상기 강판 내에 분포된 미세석출물들;을 포함하고, 상기 첨가제는 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 적어도 어느 하나를 포함하며, 상기 미세석출물들은, 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 적어도 어느 하나의 질화물 또는 탄화물을 포함하고, 수소를 트랩하고, 상기 미세석출물들의 개수 평균의 표준편차를 상기 미세석출물들의 개수 평균으로 나눈 값인 개수 변동계수는 0.8 이하이다.A material for hot stamping according to an embodiment of the present invention contains carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P) : 0.05% by weight or less, sulfur (S): 0.01% by weight or less, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, additives: 0.1% by weight or less and the rest iron (Fe) and other unavoidable impurities; and fine precipitates distributed in the steel sheet, wherein the additive includes at least one of titanium (Ti), niobium (Nb) and vanadium (V), and the fine precipitates are titanium (Ti) and niobium It contains at least one nitride or carbide of (Nb) and vanadium (V), traps hydrogen, and has a number coefficient of variation, which is a value obtained by dividing the standard deviation of the average number of the fine precipitates by the average number of the fine precipitates, is 0.8 or less. am.
상기 핫 스탬핑용 소재는 핫 스탬핑 후, 1,680 MPa 이상의 인장강도, 40 도(degree) 이상의 굽힘각, 0.5 wppm 이하의 활성화 수소량을 나타낼 수 있다.The material for hot stamping may exhibit a tensile strength of 1,680 MPa or more, a bending angle of 40 degrees or more, and an amount of activated hydrogen of 0.5 wppm or less after hot stamping.
상기 미세석출물들 중 직경이 0.01㎛ 이하인 미세석출물의 개수 평균의 표준편차를, 상기 직경이 0.01㎛ 이하인 미세석출물들의 개수 평균으로 나눈 값인 제1 개수 변동계수는 0.8 이하일 수 있다.The first number coefficient of variation, which is a value obtained by dividing the standard deviation of the average number of fine precipitates having a diameter of 0.01 μm or less among the fine precipitates by the average number of fine precipitates having a diameter of 0.01 μm or less, may be 0.8 or less.
상기 미세석출물들 중 직경이 0.005㎛ 이하인 미세석출물의 개수 평균의 표준편차를 상기 직경이 0.005㎛ 이하인 미세석출물들의 개수 평균으로 나눈 값인 제2 개수 변동계수는 0.8 이하일 수 있다.The second number coefficient of variation, which is a value obtained by dividing the standard deviation of the average number of fine precipitates having a diameter of 0.005 μm or less among the fine precipitates by the average number of fine precipitates having a diameter of 0.005 μm or less, may be 0.8 or less.
상기 미세석출물들의 단위면적(100㎛2)당 개수는 25,000개 이상 30,000개 이하일 수 있다.The number of fine precipitates per unit area (100 μm 2 ) may be 25,000 or more and 30,000 or less.
직경이 0.01㎛ 이하인 미세석출물들의 단위면적(100㎛2)당 개수는 23,000개 이상 29,000개 이하일 수 있다.The number of fine precipitates having a diameter of 0.01 μm or less per unit area (100 μm 2 ) may be 23,000 or more and 29,000 or less.
직경이 0.005㎛ 이하인 미세석출물들의 단위면적(100㎛2)당 개수는 15,200개 이상 29,000개 이하일 수 있다.The number of fine precipitates having a diameter of 0.005 μm or less per unit area (100 μm 2 ) may be 15,200 or more and 29,000 or less.
상기 미세석출물들의 직경 평균은 0.006㎛ 이하일 수 있다.An average diameter of the fine precipitates may be 0.006 μm or less.
상기 미세석출물들의 90% 이상이 0.01㎛ 이하의 직경을 가질 수 있다.More than 90% of the fine precipitates may have a diameter of 0.01 μm or less.
상기 미세석출물들의 60% 이상이 0.005㎛ 이하의 직경을 가질 수 있다.More than 60% of the fine precipitates may have a diameter of 0.005 μm or less.
본 발명의 실시예들에 의하면, 핫 스탬핑 부품의 고강도, 고인성의 우수한 기계적 물성 및 향상된 수소지연파괴 특성을 확보할 수 있는 핫 스탬핑용 소재 및 그 제조방법을 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to embodiments of the present invention, it is possible to implement a material for hot stamping and a manufacturing method thereof capable of securing high strength, high toughness, excellent mechanical properties, and improved hydrogen delayed fracture characteristics of hot stamping parts. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 핫 스탬핑용 소재의 일부를 도시하는 TEM(Transmission Electron Microscopy) 이미지이다.1 is a TEM (Transmission Electron Microscopy) image showing a part of a material for hot stamping according to an embodiment of the present invention.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 미세석출물들이 분산된 모습의 일부를 개략적으로 도시하는 도면들이다.Figures 2a and 2b are views schematically showing a portion of the state in which fine precipitates are dispersed according to an embodiment of the present invention.
도 3a 및 도 3b는 미세석출물들에 수소가 트랩된 모습의 일부를 개략적으로 도시하는 예시도들이다.3A and 3B are exemplary views schematically showing a part of a state in which hydrogen is trapped in microprecipitates.
도 4는 본 발명의 일 실시예에 따른 핫 스탬핑용 소재 제조방법을 개략적으로 도시하는 흐름도이다.4 is a flowchart schematically illustrating a method for manufacturing a material for hot stamping according to an embodiment of the present invention.
도 5는 본 발명의 실시예 및 비교예의 권취 온도에 따른 인장강도 및 굽힘 응력을 비교하여 나타낸 그래프이다.Figure 5 is a graph showing the comparison of tensile strength and bending stress according to the coiling temperature of Examples and Comparative Examples of the present invention.
도 6a 및 도 6b는 실시예 및 비교예의 권취 온도에 따른 4점 굴곡 시험(4 point bending test)의 결과를 도시하는 이미지들이다.6A and 6B are images showing the results of a 4 point bending test according to the winding temperature of Examples and Comparative Examples.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다. Since the present invention can apply various transformations and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the detailed description. Effects and features of the present invention, and methods for achieving them will become clear with reference to the embodiments described later in detail together with the drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various forms.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, and when describing with reference to the drawings, the same or corresponding components are assigned the same reference numerals, and overlapping descriptions thereof will be omitted. .
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다. In the following embodiments, terms such as first and second are used for the purpose of distinguishing one component from another component without limiting meaning.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following examples, expressions in the singular number include plural expressions unless the context clearly dictates otherwise.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서 상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. In the following embodiments, terms such as include or have mean that features or elements described in the specification exist, and do not preclude the possibility that one or more other features or elements may be added.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다. In the following embodiments, when a part such as a film, region, component, etc. is said to be on or on another part, not only when it is directly above the other part, but also when another film, region, component, etc. is interposed therebetween. Including if there is
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.In the drawings, the size of components may be exaggerated or reduced for convenience of description. For example, since the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, the present invention is not necessarily limited to the illustrated bar.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다. When an embodiment is otherwise implementable, a specific process sequence may be performed differently from the described sequence. For example, two processes described in succession may be performed substantially simultaneously, or may be performed in an order reverse to the order described.
본 명세서에서 "A 및/또는 B"은 A이거나, B이거나, A와 B인 경우를 나타낸다. 그리고, "A 및 B 중 적어도 하나"는 A이거나, B이거나, A와 B인 경우를 나타낸다.In this specification, "A and/or B" represents the case of A, B, or A and B. And, "at least one of A and B" represents the case of A, B, or A and B.
이하의 실시예에서, 막, 영역, 구성 요소 등이 연결되었다고 할 때, 막, 영역, 구성 요소들이 직접적으로 연결된 경우, 또는/및 막, 영역, 구성요소들 중간에 다른 막, 영역, 구성 요소들이 개재되어 간접적으로 연결된 경우도 포함한다. 예컨대, 본 명세서에서 막, 영역, 구성 요소 등이 전기적으로 연결되었다고 할 때, 막, 영역, 구성 요소 등이 직접 전기적으로 연결된 경우, 및/또는 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 간접적으로 전기적 연결된 경우를 나타낸다. In the following embodiments, when films, regions, components, etc. are connected, when films, regions, and components are directly connected, or/and other films, regions, and components are interposed between the films, regions, and components. It also includes cases where they are interposed and indirectly connected. For example, when a film, region, component, etc. is electrically connected in this specification, when a film, region, component, etc. is directly electrically connected, and/or another film, region, component, etc. is interposed therebetween. This indicates an indirect electrical connection.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 핫 스탬핑용 소재의 일부를 도시하는 TEM(Transmission Electron Microscopy) 이미지이다.1 is a TEM (Transmission Electron Microscopy) image showing a part of a material for hot stamping according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 핫 스탬핑용 소재(1)는 강판(10) 및 강판(10) 내에 분포된 미세석출물(20)들을 포함할 수 있다.As shown in FIG. 1 , the material 1 for hot stamping according to an embodiment of the present invention may include a steel plate 10 and fine precipitates 20 distributed in the steel plate 10 .
핫 스탬핑용 소재(1)는 강판(10)이 포함하는 합금 원소들의 함량 및 미세석출물(20)들의 석출 거동이 사전 설정된 조건을 만족하도록 제어될 수 있다. 이를 통해 핫 스탬핑 후의 성형 부품은 고강도, 고인성의 우수한 기계적 특성 및 향상된 수소지연파괴 특성을 가질 수 있다. 일 실시예에서, 핫 스탬핑용 소재(1)는 핫 스탬핑 후, 1,680MPa 이상의 인장강도를 나타낼 수 있고, 바람직하게는 1,680MPa 이상 2,300MPa 미만의 인장강도를 나타낼 수 있다. 또한, 40도(degree) 이상의 굽힘각, 0.5wppm 이하의 활성화 수소량을 나타낼 수 있다. 여기서 "굽힘각"은 압연 방향(rolling direction, RD)의 V-벤딩각을 의미할 수 있다.The material 1 for hot stamping may be controlled such that the content of alloy elements included in the steel sheet 10 and the precipitation behavior of the fine precipitates 20 satisfy preset conditions. Through this, the molded part after hot stamping can have excellent mechanical properties of high strength and high toughness, and improved hydrogen delayed fracture properties. In one embodiment, the material 1 for hot stamping may exhibit a tensile strength of 1,680 MPa or more after hot stamping, and preferably may exhibit a tensile strength of 1,680 MPa or more and less than 2,300 MPa. In addition, a bending angle of 40 degrees or more and an amount of activated hydrogen of 0.5 wppm or less may be indicated. Here, "bending angle" may mean a V-bending angle in a rolling direction (RD).
강판(10)은 소정의 합금 원소를 소정 함량 포함하도록 주조된 슬래브에 대해 열연 공정 및/또는 냉연 공정을 진행하여 제조된 강판일 수 있다. 강판(10)은 탄소(C), 실리콘(Si), 망간(Mn), 인(P), 황(S), 크롬(Cr), 붕소(B) 및 잔부의 철(Fe)과 기타 불가피한 불순물을 포함할 수 있다. 또한, 일 실시예에서, 강판(10)은 첨가제로서 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 적어도 어느 하나를 더 포함할 수 있다. 또는, 강판(10)은 소정 함량의 칼슘(Ca)을 더 포함할 수 있다.The steel sheet 10 may be a steel sheet manufactured by performing a hot rolling process and/or a cold rolling process on a slab cast to include a predetermined content of a predetermined alloy element. The steel sheet 10 contains carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), chromium (Cr), boron (B), and the balance of iron (Fe) and other unavoidable impurities. can include Also, in one embodiment, the steel sheet 10 may further include at least one of titanium (Ti), niobium (Nb), and vanadium (V) as an additive. Alternatively, the steel sheet 10 may further include a predetermined amount of calcium (Ca).
일 실시예에서, 강판(10)은 탄소(C): 0.28~0.50중량%, 실리콘(Si): 0.15~0.70중량%, 망간(Mn): 0.5~2.0중량%, 인(P): 0 초과 0.05중량% 이하, 황(S): 0 초과 0.01중량% 이하, 크롬(Cr): 0.1~0.5중량%, 붕소(B): 0.001~0.005중량%, 첨가제로서 티타늄(Ti), 니오븀(Nb), 및 바나듐(V) 중 1종 이상의 합: 0 초과 0.1wt% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함할 수 있다.In one embodiment, the steel sheet 10 contains carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P): greater than 0 0.05% by weight or less, sulfur (S): greater than 0 and less than 0.01% by weight, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, titanium (Ti) and niobium (Nb) as additives , And the sum of one or more of vanadium (V): more than 0 and 0.1 wt% or less, and the rest may include iron (Fe) and other unavoidable impurities.
탄소(C)는 강판(10) 내 오스테나이트 안정화 원소로 작용한다. 탄소는 강판(10)의 강도 및 경도를 결정하는 주요 원소이며, 핫스탬핑 공정 이후, 강판(10)의 인장강도(예컨대, 1,680MPa 이상의 인장강도)를 확보하고, 소입성 특성을 확보하기 위한 목적으로 첨가될 수 있다. 이러한 탄소는 강판(10) 전체 중량에 대하여 약 0.28wt% 내지 약 0.50wt%로 포함될 수 있다. 탄소의 함량이 약 0.28wt% 미만인 경우, 경질상(마르텐사이트 등) 확보가 어려워 강판(10)의 기계적 강도를 만족시키기 어려울 수 있다. 이와 반대로 탄소의 함량이 약 0.50wt%를 초과하는 경우, 강판(10)의 취성 발생 또는 굽힘 성능 저감 문제가 야기될 수 있다.Carbon (C) acts as an austenite stabilizing element in the steel sheet 10. Carbon is the main element that determines the strength and hardness of the steel sheet 10, and after the hot stamping process, the purpose of securing the tensile strength of the steel sheet 10 (eg, tensile strength of 1,680 MPa or more) and securing hardenability characteristics can be added as Such carbon may be included in an amount of about 0.28wt% to about 0.50wt% based on the total weight of the steel sheet 10 . When the carbon content is less than about 0.28wt%, it may be difficult to satisfy the mechanical strength of the steel sheet 10 because it is difficult to secure a hard phase (such as martensite). Conversely, when the carbon content exceeds about 0.50 wt%, brittleness of the steel sheet 10 or reduction in bending performance may be caused.
실리콘(Si)은 강판(10) 내 페라이트 안정화 원소로 작용할 수 있다. 실리콘(Si)은 고용 강화 원소로서 강판(10)의 연성을 향상시키며, 저온역 탄화물의 형성을 억제함으로써 오스테나이트 내 탄소 농화도를 향상시킬 수 있다. 또한, 실리콘은 열연, 냉연, 열간 프레스 조직 균질화(펄라이트, 망간 편석대 제어) 및 페라이트 미세 분산의 핵심 원소이다. 실리콘은 마르텐사이트 강도 불균질 제어 원소로 작용하여 충돌 성능을 향상시키는 역할을 한다. 이러한 실리콘은 강판(10) 전체 중량에 대하여 약 0.15wt% 내지 약 0.70wt% 포함될 수 있다. 실리콘의 함량이 0.15wt% 미만인 경우, 상술한 효과를 얻기 어려우며 최종 핫스탬핑 마르텐사이트 조직에서 세멘타이트 형성 및 조대화 발생할 수 있고, 강판(10)의 균일화 효과가 미미하고 V-벤딩각을 확보할 수 없게 될 수 있다. 이와 반대로 실리콘의 함량이 약 0.70wt%를 초과하는 경우, 열연, 냉연 부하가 증가하며 열연 붉은형 스케일이 과다해지고 강판(10)의 도금 특성이 저하될 수 있다.Silicon (Si) may act as a ferrite stabilizing element in the steel sheet 10 . Silicon (Si), as a solid-solution strengthening element, can improve the ductility of the steel sheet 10 and improve the carbon concentration in austenite by suppressing the formation of low-temperature carbides. In addition, silicon is a key element for hot rolling, cold rolling, hot press structure homogenization (perlite, manganese segregation zone control), and fine dispersion of ferrite. Silicon acts as a martensitic strength heterogeneity control element and serves to improve impact performance. Silicon may be included in an amount of about 0.15 wt % to about 0.70 wt % based on the total weight of the steel sheet 10 . If the content of silicon is less than 0.15wt%, it is difficult to obtain the above-mentioned effect, cementite formation and coarsening may occur in the final hot-stamped martensite structure, and the effect of equalizing the steel sheet 10 is insignificant and the V-bending angle can be secured. may become impossible On the contrary, when the content of silicon exceeds about 0.70 wt%, the hot rolling and cold rolling loads increase, the hot rolled red scale becomes excessive, and the plating characteristics of the steel sheet 10 may deteriorate.
망간(Mn)은 강판(10) 내 오스테나이트 안정화 원소로 작용한다. 망간은 열처리 시 소입성 및 강도 증가 목적으로 첨가될 수 있다. 이러한 망간은 강판(10) 전체 중량에 대하여 약 0.5wt% 내지 약 2.0wt% 포함될 수 있다. 망간의 함량이 약 0.5wt% 미만인 경우, 결정립 미세화 효과가 충분하지 못하여, 소입성 미달로 핫 스탬핑 후 성형품 내의 경질상 분율이 미달될 수 있다. 반면에, 망간의 함량이 약 2.0wt%를 초과하는 경우, 망간 편석 또는 펄라이트 밴드에 의한 연성 및 인성이 저하될 수 있으며, 굽힘 성능 저하의 원인이 되고 불균질 미세조직이 발생할 수 있다.Manganese (Mn) acts as an austenite stabilizing element in the steel sheet 10. Manganese may be added for the purpose of increasing hardenability and strength during heat treatment. Manganese may be included in an amount of about 0.5 wt % to about 2.0 wt % based on the total weight of the steel sheet 10 . When the content of manganese is less than about 0.5 wt%, the crystal grain refinement effect is not sufficient, and the hard phase fraction in the molded article after hot stamping may be insufficient due to insufficient hardenability. On the other hand, when the content of manganese exceeds about 2.0 wt%, ductility and toughness may be deteriorated due to segregation of manganese or pearlite band, and a deterioration in bending performance may occur and a heterogeneous microstructure may occur.
인(P)은, 강판(10)의 인성 저하를 방지하기 위해, 강판(10) 전체 중량에 대하여 0 초과 약 0.05wt% 이하로 포함될 수 있다. 인의 함량이 약 0.05wt%를 초과하는 경우, 인화철 화합물이 형성되어 인성 및 용접성이 저하되고, 제조 공정 중 강판(10)에 크랙이 유발될 수 있다.Phosphorus (P) may be included in an amount greater than 0 and less than or equal to about 0.05 wt% based on the total weight of the steel sheet 10 in order to prevent deterioration in toughness of the steel sheet 10 . When the content of phosphorus exceeds about 0.05 wt%, iron phosphide compounds are formed, resulting in deterioration in toughness and weldability, and cracks may be induced in the steel sheet 10 during the manufacturing process.
황(S)은 강판(10) 전체 중량에 대하여 0 초과 약 0.01wt% 이하 포함될 수 있다. 황의 함량이 약 0.01wt%를 초과하면 열간 가공성, 용접성 및 충격 특성이 저하되고, 거대 개재물 생성에 의해 크랙 등 표면 결함이 발생할 수 있다.Sulfur (S) may be included in an amount greater than 0 and about 0.01 wt% or less based on the total weight of the steel sheet 10 . When the sulfur content exceeds about 0.01 wt%, hot workability, weldability, and impact properties are deteriorated, and surface defects such as cracks may occur due to the formation of large inclusions.
크롬(Cr)은 강판(10)의 소입성 및 강도를 향상시키는 목적으로 첨가될 수 있다. 크롬은 석출 경화를 통한 결정립 미세화 및 강도 확보를 가능하게 할 수 있다. 이러한 크롬은 강판(10) 전체 중량에 대하여 약 0.1wt% 내지 약 0.5wt% 포함될 수 있다. 크롬의 함량이 약 0.1wt% 미만인 경우, 석출 경화 효과가 저조하고, 이와 반대로, 크롬의 함량이 0.5wt%를 초과하는 경우, Cr계 석출물 및 매트릭스 고용량이 증가하여 인성이 저하되고, 원가 상승으로 생산비가 증가할 수 있다Chromium (Cr) may be added for the purpose of improving hardenability and strength of the steel sheet 10 . Chromium can make crystal grain refinement and strength secured through precipitation hardening. Chromium may be included in an amount of about 0.1 wt % to about 0.5 wt % based on the total weight of the steel sheet 10 . When the chromium content is less than about 0.1wt%, the precipitation hardening effect is poor, and on the contrary, when the chromium content exceeds 0.5wt%, the amount of Cr-based precipitates and matrix solids increases, resulting in lowered toughness and increased cost. Production costs may increase
붕소(B)는 페라이트, 펄라이트 및 베이나이트 변태를 억제하여 마르텐사이트 조직을 확보함으로써, 강판(10)의 소입성 및 강도를 확보하는 목적으로 첨가될 수 있다. 또한, 붕소는 결정입계에 편석되어 입계 에너지를 낮추어 소입성을 증가시키고, 오스테나이트 결정립 성장 온도 증가로 결정립 미세화 효과를 가질 수 있다. 이러한 붕소는 강판(10) 전체 중량에 대하여 약 0.001wt% 내지 약 0.005wt%로 포함될 수 있다. 붕소가 상기 범위로 포함시 경질상 입계 취성 발생을 방지하며, 고인성과 굽힘성을 확보할 수 있다. 붕소의 함량이 약 0.001wt% 미만인 경우, 소입성 효과가 부족하고, 이와 반대로, 보론의 함량이 약 0.005wt%를 초과하는 경우, 고용도가 낮아 열처리 조건에 따라 결정립계에서 쉽게 석출되어 소입성이 열화되거나 고온 취화의 원인이 될 수 있고, 경질상 입계 취성 발생으로 인성 및 굽힘성이 저하될 수 있다.Boron (B) may be added for the purpose of securing hardenability and strength of the steel sheet 10 by suppressing ferrite, pearlite, and bainite transformations to secure a martensitic structure. In addition, boron may be segregated at grain boundaries to lower grain boundary energy to increase hardenability, and may have an effect of grain refinement by increasing austenite grain growth temperature. Boron may be included in an amount of about 0.001 wt % to about 0.005 wt % based on the total weight of the steel sheet 10 . When boron is included in the above range, it is possible to prevent grain boundary brittleness in the hard phase and to secure high toughness and bendability. When the boron content is less than about 0.001wt%, the hardenability effect is insufficient, and on the contrary, when the boron content exceeds about 0.005wt%, the solid solubility is low and the hardenability is easily precipitated at the grain boundary depending on the heat treatment conditions. Deterioration or high-temperature embrittlement may occur, and toughness and bendability may be reduced due to grain boundary brittleness in the hard phase.
첨가제는 미세석출물(20)들 형성에 기여하는 질화물 또는 탄화물 생성 원소이다. 구체적으로, 첨가제는 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 적어도 어느 하나를 포함할 수 있다. 티타늄(Ti), 니오븀(Nb) 및 바나듐(V)은 질화물 또는 탄화물 형태의 미세석출물(20)들을 형성함으로써, 핫 스탬핑, 담금질한 부재의 강도를 확보할 수 있다. 또한, 이들은 Fe-Mn계 복합 산화물에 함유되고, 내지연 파괴 특성 향상에 유효한 수소 트랩 사이트로서 기능하고, 내지연 파괴성을 개선하는 데 필요한 원소일 수 있다. 이러한 첨가제는 합계로 강판(10) 전체 중량에 대하여 0 초과 약 0.1wt% 이하로 포함될 수 있다. 첨가제의 함량이 약 0.1wt%를 초과하면 항복 강도의 상승이 과도하게 커질 수 있다. The additive is a nitride or carbide generating element that contributes to the formation of the fine precipitates 20 . Specifically, the additive may include at least one of titanium (Ti), niobium (Nb), and vanadium (V). Titanium (Ti), niobium (Nb), and vanadium (V) form nitride or carbide-type fine precipitates 20, thereby securing the strength of a member subjected to hot stamping and quenching. In addition, these are contained in the Fe-Mn-based composite oxide, function as a hydrogen trap site effective for improving delayed fracture resistance, and may be elements necessary for improving delayed fracture resistance. These additives may be included in an amount greater than 0 and less than or equal to about 0.1 wt% based on the total weight of the steel sheet 10 in total. If the content of the additive exceeds about 0.1 wt%, the increase in yield strength may be excessively increased.
티타늄(Ti)은 열간 프레스 열처리 후 석출물 형성에 의한 소입성 강화 및 재질 상향 목적으로 첨가될 수 있다. 또한, 고온에서 Ti(C, N) 등의 석출상을 형성하여, 오스테나이트 결정립 미세화에 효과적으로 기여한다. 이러한 티타늄은 강판(10) 전체 중량에 대하여 약 0.01wt% 내지 약 0.05wt% 포함될 수 있다. 티타늄이 전술한 함량 범위로 포함되면, 연주 불량 및 석출물 조대화를 방지하고, 강재의 물성을 용이하게 확보할 수 있으며, 강재 표면에 크랙 발생 등의 결함을 방지할 수 있다. 반면에, 티타늄의 함량이 약 0.05wt%를 초과하면, 석출물이 조대화되어 연신율 및 굽힘성 하락이 발생할 수 있다.Titanium (Ti) may be added for the purpose of strengthening hardenability and improving the material by forming precipitates after hot press heat treatment. In addition, by forming a precipitate phase such as Ti (C, N) at high temperature, it effectively contributes to the refinement of austenite crystal grains. Titanium may be included in an amount of about 0.01wt% to about 0.05wt% based on the total weight of the steel sheet 10 . When titanium is included in the above content range, it is possible to prevent poor performance and coarsening of precipitates, easily secure physical properties of steel materials, and prevent defects such as cracks on the surface of steel materials. On the other hand, when the content of titanium exceeds about 0.05wt%, the precipitate is coarsened and elongation and bendability may decrease.
니오븀(Nb) 및 바나듐(V)은 마르텐사이트 패캣 크기(Packet size) 감소에 따른 강도 및 인성 증가를 목적으로 첨가될 수 있다. 니오븀 및 바나듐 각각은 강판(10) 전체 중량에 대하여 약 0.01wt% 내지 약 0.05wt% 포함될 수 있다. 니오븀 및 바나듐이 전술한 범위로 포함시 열간압연 및 냉간압연 공정에서 강재의 결정립 미세화 효과가 우수하고, 제강/연주시 슬래브의 크랙 발생과, 제품의 취성 파단 발생을 방지하며, 제강성 조대 석출물 생성을 최소화할 수 있다.Niobium (Nb) and vanadium (V) may be added for the purpose of increasing strength and toughness according to a decrease in martensite packet size. Each of niobium and vanadium may be included in an amount of about 0.01 wt % to about 0.05 wt % based on the total weight of the steel sheet 10 . When niobium and vanadium are included in the above range, the crystal grain refinement effect of steel is excellent in hot rolling and cold rolling processes, cracks in slabs during steelmaking/playing, and brittle fractures of products are prevented, and steelmaking coarse precipitates are generated can be minimized.
한편, 첨가제가 티타늄(Ti) 및 니오븀(Nb)을 포함하는 경우, 티타늄(Ti) 및 니오븀(Nb)은 합계로 강판(10) 전체 중량에 대하여 약 0.02wt% 내지 약 0.09wt% 포함될 수 있으나 이에 한정되는 것은 아니다.Meanwhile, when the additive includes titanium (Ti) and niobium (Nb), the total amount of titanium (Ti) and niobium (Nb) may be about 0.02wt% to about 0.09wt% based on the total weight of the steel sheet 10. It is not limited to this.
칼슘(Ca)은 개재물 형상 제어를 위해 첨가될 수 있다. 이러한 칼슘은 강판(10) 전체 중량에 대하여 약 0.003wt% 이하로 포함될 수 있다.Calcium (Ca) may be added to control the inclusion shape. Calcium may be included in an amount of about 0.003 wt% or less based on the total weight of the steel sheet 10 .
미세석출물(20)들은 강판(10) 내에 분포되어 수소를 트랩하는 역할을 할 수 있다. 즉, 미세석출물(20)들은 핫 스탬핑용 소재(1)의 제조 과정 또는 제조 후에 내부로 유입된 수소에 대한 트랩사이트를 제공함으로써 핫스탬핑 가공된 제품의 수소지연파괴 특성을 향상시킬 수 있다. 일 실시예에서, 미세석출물(20)들은 첨가제의 질화물 또는 탄화물을 포함할 수 있다. 구체적으로, 미세석출물(20)들은 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 적어도 어느 하나의 질화물 또는 탄화물을 포함할 수 있다.The fine precipitates 20 may serve to trap hydrogen by being distributed in the steel sheet 10 . That is, the fine precipitates 20 can improve the hydrogen delayed fracture characteristics of the hot stamped product by providing a trap site for hydrogen introduced into the inside during or after the manufacturing process of the material 1 for hot stamping. In one embodiment, the microprecipitates 20 may include nitrides or carbides of additives. Specifically, the fine precipitates 20 may include at least one nitride or carbide of titanium (Ti), niobium (Nb), and vanadium (V).
이와 같은 미세석출물(20)들의 석출 거동은 공정 조건을 조절함으로써 제어할 수 있다. 예컨대, 공정 조건 중 권취 온도(Coiling Temperature: CT) 범위를 조절함으로써, 미세석출물(20)들의 개수, 미세석출물(20)들 간의 평균 거리, 미세석출물(20)들의 직경 등과 같은 석출 거동을 제어할 수 있다. 공정 조건에 대한 상세한 설명은 도 4를 참조하여 후술한다.Precipitation behavior of the fine precipitates 20 can be controlled by adjusting process conditions. For example, by controlling the coiling temperature (CT) range of process conditions, it is possible to control precipitation behavior such as the number of fine precipitates 20, the average distance between the fine precipitates 20, and the diameter of the fine precipitates 20. can A detailed description of process conditions will be described later with reference to FIG. 4 .
미세석출물(20)들의 석출거동은 사전 설정된 조건을 만족하도록 제어될 수 있다. 또한, 이러한 미세석출물(20)들의 석출거동은 공정 조건(예컨대, 권취 온도(Coiling Temperature: CT) 범위)을 통해 제어할 수 있다. 예컨대 미세석출물(20)들의 단위면적당 개수, 단위면적당 개수 분포의 균일도를 나타내는 개수 변동계수(C1), 미세석출물(20)들 간의 평균 거리, 미세석출물(20)들의 직경, 단위면적당 직경 분포의 균일도를 나타내는 직경 평균 변동계수(C2, C21, C22) 등이 사전 설정된 조건을 만족하도록 제어할 수 있다. 공정 조건에 대한 상세한 설명은 도 4 및 도 5를 참조하여 후술한다. 개수 변동계수(C1), 직경 평균 변동계수(C2, C21, C22)에 관한 석출거동 조건에 관하여는 실시예 및 비교예를 통하여 더 상세히 후술한다.Precipitation behavior of the fine precipitates 20 may be controlled to satisfy preset conditions. In addition, the precipitation behavior of these fine precipitates 20 can be controlled through process conditions (eg, coiling temperature (CT) range). For example, the number of fine precipitates 20 per unit area, the number variation coefficient C1 representing the uniformity of the number distribution per unit area, the average distance between the fine precipitates 20, the diameter of the fine precipitates 20, and the uniformity of the diameter distribution per unit area. The diameter average coefficient of variation (C2, C21, C22), etc. representing the can be controlled to satisfy preset conditions. A detailed description of process conditions will be described later with reference to FIGS. 4 and 5 . Precipitation behavior conditions for the number coefficient of variation (C1) and average diameter coefficient of variation (C2, C21, C22) will be described later in more detail through Examples and Comparative Examples.
한편, 이와 같은 미세석출물(20)들의 석출 거동은 TEM(Transmission Electron Microscopy) 이미지를 분석하는 방법으로 측정할 수 있다. 구체적으로, 시편에 대하여 사전 설정된 개수만큼 임의의 영역들에 대한 TEM 이미지를 획득한다. 획득한 이미지들로부터 이미지 분석 프로그램 등을 통해 미세석출물(20)들을 추출하고, 추출된 미세석출물(20)들에 대하여 미세석출물(20)들의 개수, 미세석출물(20)들 간의 평균 거리, 미세석출물(20)들의 직경 등을 측정할 수 있다.On the other hand, the precipitation behavior of such fine precipitates 20 can be measured by a method of analyzing a TEM (Transmission Electron Microscopy) image. Specifically, TEM images of arbitrary regions are acquired as many as a preset number of specimens. Fine precipitates 20 are extracted from the acquired images through an image analysis program, etc., and the number of fine precipitates 20 with respect to the extracted fine precipitates 20, the average distance between the fine precipitates 20, and the number of fine precipitates The diameter of (20) can be measured.
일 실시예에서, 미세석출물(20)들의 석출 거동 측정을 위해 측정 대상 시편에 전처리로서 표면복제법(Replication method)을 적용할 수 있다. 예컨대, 1단계 레플리카법, 2단계 레플리카법, 추출 레플리카법 등이 적용될 수 있으나, 상술한 예시로 한정되는 것은 아니다.In one embodiment, in order to measure the precipitation behavior of the fine precipitates 20, a surface replication method may be applied as a pretreatment to the specimen to be measured. For example, a one-step replica method, a two-step replica method, an extraction replica method, and the like may be applied, but are not limited to the above examples.
또는, 미세석출물(20)들의 직경 측정 시, 미세석출물(20)들의 형태의 불균일성을 고려하여 미세석출물(20)들의 형상을 원으로 환산하여 미세석출물(20)들의 직경을 산출할 수 있다. 구체적으로, 특정한 면적을 갖는 단위 픽셀을 이용하여 추출된 미세석출물(20)의 면적을 측정하고, 미세석출물(20)을 측정된 면적과 동일한 면적을 갖는 원으로 환산하여 미세석출물(20)의 직경을 산출할 수 있다.Alternatively, when measuring the diameter of the fine precipitates 20, the diameter of the fine precipitates 20 may be calculated by converting the shape of the fine precipitates 20 into a circle in consideration of the non-uniformity of the shape of the fine precipitates 20. Specifically, the diameter of the microprecipitate 20 is measured by measuring the area of the microprecipitate 20 extracted using a unit pixel having a specific area, and converting the microprecipitate 20 into a circle having the same area as the measured area. can be calculated.
또는, 미세석출물(20)들 간의 평균 거리는 전술한 평균 자유 경로(mean free path)를 통해 측정할 수 있다. 구체적으로, 미세석출물(20)들 간의 평균 거리는 입자 면적분율과 단위 길이당 입자 개수를 이용하여 산출할 수 있다. 예컨대, 미세석출물(20)들 간의 평균 거리는 아래와 같은 수학식 1과 같은 상관관계를 가질 수 있다.Alternatively, the average distance between the fine precipitates 20 may be measured through the above-described mean free path. Specifically, the average distance between the fine precipitates 20 can be calculated using the particle area fraction and the number of particles per unit length. For example, the average distance between the fine precipitates 20 may have a correlation as shown in Equation 1 below.
[수학식 1][Equation 1]
λ=(1-AA)/NLλ=(1-AA)/NL
(λ: 입자 간 평균 거리, AA: 입자 면적분율, NL: 단위 길이당 입자 개수)(λ: average distance between particles, AA: particle area fraction, NL: number of particles per unit length)
미세석출물(20)들의 석출 거동을 측정하는 방법은 상술한 예시로 제한되지 않고 다양한 방법이 적용될 수 있다.A method of measuring the precipitation behavior of the fine precipitates 20 is not limited to the above-described example, and various methods may be applied.
이와 같은 미세석출물(20)들의 석출거동은 핫 스탬핑 후의 성형 부품의 기계적 특성 및 수소지연파괴 특성에 큰 영향을 준다. 이하, 도 2a 내지 도 3b를 참조하여 미세석출물(20)들의 석출거동에 따른 핫 스탬핑 후의 성형 부품의 기계적 특성 및 수소지연파괴 특성의 개선 효과 차이를 설명한다.The precipitation behavior of the fine precipitates 20 greatly affects the mechanical properties and delayed hydrogen fracture characteristics of the molded part after hot stamping. Hereinafter, differences in the improvement effect of the mechanical properties and delayed hydrogen fracture characteristics of a molded part after hot stamping according to the precipitation behavior of the fine precipitates 20 will be described with reference to FIGS. 2A to 3B.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 미세석출물들이 분산된 모습의 일부를 개략적으로 도시하는 도면들이다.Figures 2a and 2b are views schematically showing a portion of the state in which fine precipitates are dispersed according to an embodiment of the present invention.
구체적으로, 도 2a에는 강판(10) 내부에 분산되어 있는 미세석출물(20)들의 크기 및 분포가 상대적으로 불균일한 경우가 도시되어 있고, 도 2b에는 강판(10) 내부에 분산되어 있는 미세석출물(20)들의 크기 및 분포가 상대적으로 균일한 경우가 도시되어 있다.Specifically, FIG. 2A shows a case where the size and distribution of the fine precipitates 20 dispersed inside the steel plate 10 are relatively non-uniform, and in FIG. 2B, the fine precipitates dispersed inside the steel plate 10 ( 20) is shown where the size and distribution are relatively uniform.
도 2a를 참조하면, 미세석출물(20)들이 강판(10) 내부에서 균일하지 않고 편향적으로 분산되어 있다. 이에 따라 강판(10) 내부의 일부 영역에는 상대적으로 많은 개수의 미세석출물(20)들이 응집되어 있는 영역이 존재할 수 있다. 또한, 상대적으로 많은 개수의 미세석출물(20)들이 응집되어 있는 영역에는 상대적으로 더 많은 결함들(예컨대, 전위 등)이 응집될 수 있다. 이 뿐만 아니라, 도 2a와 같이 미세석출물(20)들의 크기가 균일하지 않은 경우, 상대적으로 크기가 큰 미세석출물(20)들에 상대적으로 더 많은 결함들(예컨대, 전위 등)이 응집될 수 있다. 즉, 결함들 또한 강판(10) 내부에서 균일하지 않고 편향적으로 분포할 수 있다.Referring to FIG. 2A , fine precipitates 20 are non-uniform and biasedly distributed inside the steel sheet 10 . Accordingly, a region in which a relatively large number of fine precipitates 20 are aggregated may exist in some regions inside the steel plate 10 . In addition, relatively more defects (eg, dislocations, etc.) may be aggregated in a region where a relatively large number of fine precipitates 20 are aggregated. In addition to this, when the sizes of the fine precipitates 20 are not uniform as shown in FIG. 2A, relatively more defects (eg, dislocations, etc.) may be aggregated in the relatively large-sized fine precipitates 20. . That is, defects may also be biasedly distributed within the steel sheet 10 , not uniformly.
이와 같이 특정 영역에 상대적으로 더 많은 결함들(예컨대, 전위 등)이 응집되는 경우, 해당 영역은 파단 노치(notch)로 작용하여 불균일한 응력 분포 및 응력 집중을 유발하여 강도 및 굽힘성 등의 기계적 특성을 저하시키는 문제가 있다.In this way, when relatively more defects (eg, dislocations, etc.) are aggregated in a specific region, the region acts as a fracture notch, causing non-uniform stress distribution and stress concentration, resulting in mechanical damage such as strength and bendability. There is a problem of degrading the characteristics.
반면에, 도 2b를 참조하면, 상대적으로 균일한 크기의 미세석출물(20)들이 강판(10) 내부에서 고르게 분산되어 있다. 이에 따라 결함들(예컨대, 전위 등)은 강판(10) 내부에서 상대적으로 균일하게 분포될 수 있고, 전술한 노치로 작용하는 영역이 발생하는 것을 최소화 또는 방지할 수 있는 효과가 있다.On the other hand, referring to FIG. 2B , fine precipitates 20 having a relatively uniform size are evenly dispersed inside the steel sheet 10 . Accordingly, defects (eg, dislocations, etc.) can be relatively uniformly distributed inside the steel sheet 10, and there is an effect of minimizing or preventing the occurrence of a region acting as the aforementioned notch.
일 실시예에서, 강판(10) 내부에 분산되어 있는 미세석출물(20)들의 단위면적당 개수는 사전 설정된 범위를 만족하도록 제어될 수 있다. 구체적으로, 강판(10) 내부에 분산되어 있는 미세석출물(20)들의 단위면적(100㎛2) 당 개수는 25,000개 이상 30,000개 이하일 수 있다. 즉, 미세석출물(20)들은 강판(10) 내부에 25,000개/100㎛2 이상 30,000개/100㎛2 이하로 형성될 수 있다.In one embodiment, the number per unit area of the fine precipitates 20 dispersed inside the steel sheet 10 may be controlled to satisfy a preset range. Specifically, the number of fine precipitates 20 dispersed inside the steel sheet 10 per unit area (100 μm 2 ) may be 25,000 or more and 30,000 or less. That is, the fine precipitates 20 may be formed in an amount of 25,000/100 μm 2 or more and 30,000/100 μm 2 or less inside the steel plate 10 .
또한, 강판(10) 내부에 분산되어 있는 미세석출물(20)들 중 직경이 0.01㎛ 이하인 미세석출물(20)들의 단위면적(100㎛2) 당 개수는 23,000개 이상 29,000개 이하일 수 있다. 즉, 미세석출물(20)들은 강판(10) 내부에 23,000개/100㎛2 이상 29,000개/100㎛2 이하로 형성될 수 있다.In addition, the number of fine precipitates 20 having a diameter of 0.01 μm or less among the fine precipitates 20 dispersed inside the steel sheet 10 per unit area (100 μm 2 ) may be 23,000 or more and 29,000 or less. That is, the fine precipitates 20 may be formed in an amount of 23,000/100 μm 2 or more and 29,000/100 μm 2 or less inside the steel sheet 10 .
또한, 강판(10) 내부에 분산되어 있는 미세석출물(20)들 중 직경이 0.005㎛ 이하인 미세석출물(20)들의 단위면적(100㎛2) 당 개수는 15,200개 이상 29,000개 이하일 수 있다. 즉, 미세석출물(20)들은 강판(10) 내부에 15,200개/100㎛2 이상 29,000개/100㎛2 이하로 형성될 수 있다.In addition, the number of fine precipitates 20 having a diameter of 0.005 μm or less among the fine precipitates 20 dispersed inside the steel sheet 10 per unit area (100 μm 2 ) may be 15,200 or more and 29,000 or less. That is, the fine precipitates 20 may be formed in an amount of 15,200/100 μm 2 or more and 29,000/100 μm 2 or less inside the steel sheet 10 .
미세석출물(20)들의 단위면적당 개수가 상술한 범위를 만족하면, 핫스탬핑 후 요구되는 인장강도(예컨대, 1,680MPa 이상)를 확보하고 성형성 내지 굽힘성을 향상시킬 수 있다. 예컨대, 미세석출물(20)들의 개수가 25,000개/100㎛2 미만이거나 직경이 0.01㎛ 이하인 미세석출물(20)들의 개수가 23,000개/100㎛2 미만이거나 직경이 0.005㎛ 이하인 미세석출물(20)들의 개수가 15,200개/100㎛2 미만인 경우, 강도가 저하될 수 있다. 반면에, 미세석출물(20)들의 개수가 30,000개/100㎛2를 초과하거나 직경이 0.01㎛ 이하인 미세석출물(20)들의 개수가 29,000개/100㎛2를 초과하거나 직경이 0.005㎛ 이하인 미세석출물(20)들의 개수가 29,000개/100㎛2를 초과하는 경우, 성형성 내지 굽힘성이 저하될 수 있다.When the number of fine precipitates 20 per unit area satisfies the aforementioned range, it is possible to secure required tensile strength (eg, 1,680 MPa or more) after hot stamping and improve formability or bendability. For example, the number of fine precipitates 20 is less than 25,000 / 100 μm 2 or the number of fine precipitates 20 having a diameter of 0.01 μm or less is less than 23,000 / 100 μm 2 or the number of fine precipitates 20 having a diameter of 0.005 μm or less If the number is less than 15,200/100 μm 2 , strength may decrease. On the other hand, the number of fine precipitates 20 exceeds 30,000 / 100 μm 2 or the number of fine precipitates 20 having a diameter of 0.01 μm or less exceeds 29,000 / 100 μm 2 or fine precipitates having a diameter of 0.005 μm or less ( 20) in excess of 29,000/100 μm 2 , formability or bendability may deteriorate.
이하에서, 단위면적(100㎛2)당 전체 미세석출물, 크기(직경)별 미세석출물 개수 분포의 균일도를 나타내는 개수 평균의 변동계수를 제2 변동계수(C2)로 지칭할 수 있다. 제2 변동계수(C2)는 개수 평균의 표준 편차를 개수 평균으로 나눈 값으로 정의될 수 있다. 일 실시예에서, 제2 변동계수(C2)는 약 0.8 이하를 만족할 수 있다. 제2 변동계수(C2)가 약 0.8을 초과하는 경우 굽힘성이 저하될 수 있다. 구체적으로, 미세석출물의 개수 분포가 불균일한 경우 미세석출물이 적게 분포하는 영역에서 초기 오스테나이트 결정립 크기(prior austenite grain size; PAGS)의 미세화를 통한 블록 바운더리(block boundary)의 밀도의 증가가 저하되고 이에 따라 충분한 슬립 밴드(slip band)를 확보하기 어려운 문제가 발생할 수 있다. 따라서, 제2 변동계수(C2)가 약 0.8을 초과하는 경우 성형성 및 굽힘성이 저하될 수 있다. 제2 변동계수(C2)를 통한 개수 분포에 관한 석출거동에 관하여는 후술하는 비교예 및 실시예를 통해 더 상세히 설명한다.Hereinafter, the coefficient of variation of the number average representing the uniformity of the distribution of the total number of fine precipitates per unit area (100 μm 2 ) and the size (diameter) of the fine precipitates may be referred to as the second coefficient of variation (C2). The second coefficient of variation C2 may be defined as a value obtained by dividing the standard deviation of the number average by the number average. In one embodiment, the second coefficient of variation C2 may satisfy about 0.8 or less. When the second coefficient of variation (C2) exceeds about 0.8, the bendability may be deteriorated. Specifically, when the number distribution of fine precipitates is non-uniform, the increase in the density of the block boundary through refinement of the prior austenite grain size (PAGS) in the area where the fine precipitates are small is reduced, and Accordingly, it may be difficult to secure a sufficient slip band. Therefore, when the second coefficient of variation (C2) exceeds about 0.8, formability and bendability may be deteriorated. The precipitation behavior related to the number distribution through the second coefficient of variation C2 will be described in more detail through comparative examples and examples to be described later.
일 실시예에서, 인접하는 미세석출물(20)들 간의 평균 거리는 사전 설정된 범위를 만족하도록 제어될 수 있다. 여기서 "평균 거리"는 미세석출물(20)들의 평균 자유 경로(mean free path)를 의미할 수 있으며, 이를 측정하는 방법에 대한 상세한 내용은 후술한다.In one embodiment, the average distance between adjacent fine precipitates 20 may be controlled to satisfy a preset range. Here, the "average distance" may mean a mean free path of the fine precipitates 20, and details of a method for measuring this will be described later.
구체적으로, 미세석출물(20)들 간의 평균 거리는 약 0.15㎛ 이상 약 0.4㎛ 이하일 수 있다. 미세석출물(20)들 간의 평균 거리가 약 0.15㎛ 미만인 경우, 성형성 내지 굽힘성이 저하될 수 있고, 반면에, 약 0.4㎛를 초과하는 경우, 강도가 저하될 수 있다.Specifically, the average distance between the fine precipitates 20 may be about 0.15 μm or more and about 0.4 μm or less. When the average distance between the fine precipitates 20 is less than about 0.15 μm, formability or bendability may deteriorate, whereas when the average distance exceeds about 0.4 μm, strength may decrease.
상술한 미세석출물(20)들의 직경은 수소지연파괴 특성 개선에 큰 영향을 줄 수 있다. 이하, 도 3a 및 도 3b를 참조하여 미세석출물(20)들의 직경에 따른 수소지연파괴 특성 개선 효과 차이를 설명한다.The diameter of the above-described fine precipitates 20 can have a great effect on improving hydrogen delayed fracture characteristics. Hereinafter, with reference to FIGS. 3A and 3B , the difference in the hydrogen delayed fracture characteristic improvement effect according to the diameter of the fine precipitates 20 will be described.
도 3a 및 도 3b는 미세석출물(20)들에 수소가 트랩된 모습의 일부를 개략적으로 도시하는 도면들이다.3A and 3B are diagrams schematically showing a part of a state in which hydrogen is trapped in the fine precipitates 20.
구체적으로, 도 3a에는 직경이 상대적으로 큰 미세석출물(20)들에 수소가 트랩핑된 모습이 도시되어 있고, 도 3b에는 직경이 상대적으로 작은 미세석출물(20)들에 수소가 트랩핑된 모습이 도시되어 있다.Specifically, FIG. 3A shows a state in which hydrogen is trapped in fine precipitates 20 having a relatively large diameter, and FIG. 3B shows a state in which hydrogen is trapped in fine precipitates 20 having a relatively small diameter. this is shown
도 3a와 같이 미세석출물(20)들의 직경이 상대적으로 큰 경우, 하나의 미세석출물(20)에 트랩핑되는 수소 원자의 개수가 증가할 수 있다. 즉, 강판(10) 내부로 유입된 수소 원자들이 고르게 분산되지 않고, 하나의 수소 트랩 사이트에 복수개의 수소 원자들이 트랩될 확률이 증가하게 될 수 있다. 하나의 수소 트랩 사이트에 트랩된 복수개의 수소 원자들은 서로 결합하여 수소 분자(H2)를 형성할 수 있다. 형성된 수소 분자는 내부 압력 발생 확률을 증가시키며, 결과적으로 핫스탬핑 가공된 제품의 수소지연파괴 특성을 저하시킬 수 있다.When the microprecipitates 20 have relatively large diameters as shown in FIG. 3A , the number of hydrogen atoms trapped in one microprecipitate 20 may increase. That is, hydrogen atoms introduced into the steel sheet 10 may not be evenly dispersed, and the probability of a plurality of hydrogen atoms being trapped at one hydrogen trap site may increase. A plurality of hydrogen atoms trapped in one hydrogen trap site may combine with each other to form hydrogen molecules (H 2 ). The formed hydrogen molecules increase the probability of generating internal pressure, and as a result, the hydrogen delayed fracture characteristics of the hot stamped product may be deteriorated.
이와 달리 도 3b와 같이 미세석출물(20)들의 직경이 상대적으로 작은 경우, 하나의 미세석출물(10)에 복수개의 수소 원자들이 트랩될 확률이 감소하게 될 수 있다. 즉, 강판(10) 내부로 유입된 수소 원자들은 서로 다른 수소 트랩 사이트에 트랩됨으로써, 상대적으로 고르게 분산될 수 있다. 이에 따라 수소 원자들이 서로 결합하지 못하게 됨으로써, 수소 분자로 인해 내부 압력 발생 확률이 감소하여 핫 스탬핑 가공된 제품의 수소지연파괴 특성이 향상될 수 있다.In contrast, when the microprecipitates 20 have a relatively small diameter, as shown in FIG. 3B, the probability of a plurality of hydrogen atoms being trapped in one microprecipitate 10 may decrease. That is, hydrogen atoms introduced into the steel sheet 10 may be relatively evenly dispersed by being trapped at different hydrogen trap sites. Accordingly, since the hydrogen atoms are prevented from bonding with each other, the probability of generating internal pressure due to the hydrogen molecules is reduced, and the hydrogen delayed fracture characteristics of the hot stamped product may be improved.
본 발명의 일 실시예에 따른 핫 스탬핑용 강판(1)은 수소지연파괴 특성을 향상시키기 위하여 강판(10) 내부에 분산되어 있는 미세석출물(20)들의 직경 평균이 사전 설정된 범위를 만족하도록 제어될 수 있다. 구체적으로, 강판(10) 내부에 분산되어 있는 미세석출물(20)들의 직경 평균은 약 0.006㎛ 이하일 수 있다. 또한, 강판(10) 내부에 분산되어 있는 미세석출물(20)들의 약 90% 이상이 약 0.01㎛ 이하의 직경을 가질 수 있다. 또한, 강판(10) 내부에 분산되어 있는 미세석출물(20)들의 약 60% 이상이 약 0.005㎛ 이하의 직경을 가질 수 있다.In the steel sheet 1 for hot stamping according to an embodiment of the present invention, the diameter average of the fine precipitates 20 dispersed inside the steel sheet 10 is controlled to satisfy a preset range in order to improve the hydrogen delayed fracture characteristics. can Specifically, the average diameter of the fine precipitates 20 dispersed inside the steel sheet 10 may be about 0.006 μm or less. In addition, about 90% or more of the fine precipitates 20 dispersed inside the steel sheet 10 may have a diameter of about 0.01 μm or less. In addition, about 60% or more of the fine precipitates 20 dispersed inside the steel sheet 10 may have a diameter of about 0.005 μm or less.
이하에서, 단위면적(100㎛2)당 전체 미세석출물의 크기(직경)의 변동계수를 제1 변동계수(C1)로 지칭할 수 있다. 제1 변동계수(C1)는 전체 미세석출물의 직경 평균의 표준 편차를 직경 평균으로 나눈 값으로 정의될 수 있다. 일 실시예에서, 제1 변동계수(C1)는 약 0.7 이하를 만족할 수 있다. 제1 변동계수(C1)가 약 0.7을 초과하는 경우 인장강도 및 수소지연파괴 특성이 저하될 수 있다. 구체적으로, 미세석출물의 크기(직경) 분포가 불균일한 경우 불균일한 직경 분포가 전위 이동의 방해 요소로 작용하여 강도가 저하될 수 있다. 즉, 핫 스탬핑 후의 강판에 외부 충격이 가해진 경우, 크기(직경)가 큰 미세 석출물이 밀집된 부분이 전위 집적으로 인한 파단 노치(Notch)로 작용할 수 있다. 또한, 미세석출물에 트랩되는 수소량이 불균일하여 수소 간 결합에 의한 국부적인 수소 분압 증가로 인해 수소지연파괴 특성이 저하될 수 있다. 제1 변동계수(C1)를 통한 직경 분포에 관한 석출거동에 관하여는 후술하는 비교예 및 실시예를 통해 더 상세히 설명한다.Hereinafter, the coefficient of variation of the size (diameter) of the entire fine precipitate per unit area (100 μm 2 ) may be referred to as the first coefficient of variation (C1). The first coefficient of variation C1 may be defined as a value obtained by dividing the standard deviation of the average diameter of all fine precipitates by the average diameter. In one embodiment, the first coefficient of variation C1 may satisfy about 0.7 or less. When the first coefficient of variation (C1) exceeds about 0.7, tensile strength and delayed hydrogen fracture characteristics may be deteriorated. Specifically, when the size (diameter) distribution of the fine precipitates is non-uniform, the non-uniform diameter distribution acts as an obstacle to dislocation movement, and thus the strength may decrease. That is, when an external impact is applied to the steel sheet after hot stamping, a portion where fine precipitates having a large size (diameter) are concentrated may act as a fracture notch due to dislocation accumulation. In addition, since the amount of hydrogen trapped in the fine precipitates is non-uniform, hydrogen delayed fracture characteristics may be deteriorated due to a local increase in hydrogen partial pressure due to hydrogen bonds. Precipitation behavior related to the diameter distribution through the first coefficient of variation (C1) will be described in more detail through comparative examples and examples to be described later.
한편, 미세석출물(20)들의 미세화는 핫 스탬핑 후의 성형 부품의 굽힘 특성을 개선할 수 있다. 일 실시예에서, 미세화된 미세석출물(20)들은 결정립 성장의 방해 요소로 작용하여 초기 오스테나이트 결정립 크기(prior austenite grain size; PAGS)를 미세화할 수 있다. 초기 오스테나이트 결정립 크기(prior austenite grain size; PAGS)가 미세화될수록 마르텐사이트 패킷(packet) 크기 및 마르텐사이트 래스상(lath) 크기가 감소할 수 있다. 이에 따라 패킷 내 블록 바운더리(block boundary) 간격이 감소하고 블록의 밀도가 증가할 수 있다. 이러한 블록 바운더리는 마르텐사이트 조직의 외부 충격에 의한 변형 시 슬립 밴드(slip band)로 작용할 수 있는 바, 미세석출물(20)들의 미세화는 더 많은 슬립 밴드를 확보할 수 있도록 하여 굽힘 특성 향상에 기여할 수 있다.On the other hand, miniaturization of the fine precipitates 20 can improve the bending characteristics of the molded part after hot stamping. In one embodiment, the micronized microprecipitates 20 may act as an obstacle to crystal grain growth, thereby minimizing the prior austenite grain size (PAGS). As the prior austenite grain size (PAGS) is refined, the martensite packet size and martensite lath size may decrease. Accordingly, a block boundary interval within a packet may decrease and block density may increase. This block boundary can act as a slip band when the martensitic structure is deformed by external impact, and the refinement of the fine precipitates 20 can secure more slip bands and contribute to improving bending properties. there is.
도 4는 본 발명의 일 실시예에 따른 핫 스탬핑용 소재 제조방법을 개략적으로 도시하는 흐름도이다.4 is a flowchart schematically illustrating a method for manufacturing a material for hot stamping according to an embodiment of the present invention.
도 4에 도시된 바와 같이, 본 발명의 일 실시예에 따른 핫 스탬핑용 소재 제조방법은, 재가열 단계(S100), 열간압연 단계(S200), 냉각/권취 단계(S300), 냉간압연 단계(S400), 소둔 열처리 단계(S500) 및 도금 단계(S600)를 포함할 수 있다. As shown in FIG. 4, the method for manufacturing a material for hot stamping according to an embodiment of the present invention includes a reheating step (S100), a hot rolling step (S200), a cooling/coiling step (S300), and a cold rolling step (S400). ), an annealing heat treatment step (S500) and a plating step (S600) may be included.
참고로 도 4에는 S100 내지 S600 단계가 독립적인 단계로 도시되어 있으나, S100 내지 S600 단계 중 일부는 하나의 공정에서 수행될 수 있으며, 필요에 따라 일부가 생략되는 것도 가능하다.For reference, although steps S100 to S600 are shown as independent steps in FIG. 4 , some of steps S100 to S600 may be performed in one process, and some may be omitted if necessary.
먼저, 핫 스탬핑용 소재(1)를 형성하는 공정의 대상이 되는 반제품 상태의 슬래브를 준비한다. 슬래브는 탄소(C): 0.28~0.50중량%, 실리콘(Si): 0.15~0.70중량%, 망간(Mn): 0.5~2.0중량%, 인(P): 0 초과 0.05중량% 이하, 황(S): 0 초과 0.01중량% 이하, 크롬(Cr): 0.1~0.5중량%, 붕소(B): 0.001~0.005중량%, 첨가제: 0 초과 0.1중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함할 수 있다. 이때, 첨가제는 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 적어도 어느 하나를 포함할 수 있다. 예컨대, 티타늄(Ti), 니오븀(Nb) 및/또는 바나듐(V) 각각의 함량은 약 0.010중량% 내지 약 0.050중량%일 수 있다.First, a semi-finished slab to be subjected to the process of forming the material 1 for hot stamping is prepared. The slab contains carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P): greater than 0 and less than 0.05% by weight, sulfur (S ): more than 0 and 0.01% by weight or less, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, additives: more than 0 and 0.1% by weight or less, and the rest iron (Fe) and other unavoidable impurities can include In this case, the additive may include at least one of titanium (Ti), niobium (Nb), and vanadium (V). For example, each content of titanium (Ti), niobium (Nb), and/or vanadium (V) may be about 0.010 wt % to about 0.050 wt %.
재가열 단계(S100)는 열간 압연을 위해 상기 슬래브를 재가열하는 단계이다. 재가열 단계(S100)에서는 연속 주조 공정을 통해 확보한 슬래브를 소정의 온도 범위에서 재가열하는 것을 통하여, 주조 시 편석된 성분을 재고용하게 될 수 있다.The reheating step (S100) is a step of reheating the slab for hot rolling. In the reheating step (S100), components segregated during casting may be re-dissolved by reheating the slab obtained through the continuous casting process in a predetermined temperature range.
슬래브 재가열 온도(Slab Reheating Temperature: SRT)는 오스테나이트 미세화 및 석출 경화 효과 극대화를 위하여 사전 설정된 온도 범위 내로 제어될 수 있다. 이때, 슬래브 재가열 온도(SRT) 범위는 슬래브 재가열 시 미세석출물(20)의 평형 석출량을 기준으로 첨가제(Ti, Nb 및/또는 V)가 전고용되는 온도 범위(약 1,000°C 이상)에 포함될 수 있다. 슬래브 재가열 온도(SRT)가 첨가제(Ti, Nb 및/또는 V)의 전고용 온도 범위에 미달하는 경우 열간압연 시 미세조직 제어에 필요한 구동력이 충분히 반영되지 않아 요구되는 석출량 제어를 통한 우수한 기계적 물성 확보 효과를 얻을 수 없다.Slab reheating temperature (SRT) can be controlled within a preset temperature range to maximize austenite refinement and precipitation hardening effect. At this time, the slab reheating temperature (SRT) range is included in the temperature range (about 1,000 ° C or more) in which the additives (Ti, Nb and / or V) are fully employed based on the equilibrium precipitation amount of the fine precipitates 20 when the slab is reheated. can If the slab reheating temperature (SRT) does not reach the full solidification temperature range of the additives (Ti, Nb and/or V), the driving force required to control the microstructure during hot rolling is not sufficiently reflected, resulting in excellent mechanical properties through the required precipitation control. The securing effect cannot be obtained.
일 실시예에서, 슬래브 재가열 온도(SRT)는 약 1,200°C 내지 약 1,250°C로 제어될 수 있다. 슬래브 재가열 온도(SRT)가 약 1,200°C 미만인 경우에는 주조 시 편석된 성분이 충분히 재고용되지 못해 합금 원소의 균질화 효과를 크게 보기 어렵고, 티타늄(Ti)의 고용 효과를 크게 보기 어렵다는 문제점이 있다. 반면에, 슬래브 재가열 온도(SRT)는 고온일수록 균질화에 유리하나 약 1,250°C를 초과할 경우에는 오스테나이트 결정 입도가 증가하여 강도 확보가 어려울 뿐만 아니라 과도한 가열 공정으로 인하여 강판의 제조 비용만 상승할 수 있다.In one embodiment, the slab reheat temperature (SRT) may be controlled between about 1,200°C and about 1,250°C. When the slab reheating temperature (SRT) is less than about 1,200 ° C, there is a problem in that the components segregated during casting are not sufficiently re-dissolved, making it difficult to see a large homogenization effect of alloy elements and a large solid solution effect of titanium (Ti). On the other hand, the higher the slab reheating temperature (SRT), the higher the homogenization, but when it exceeds about 1,250 °C, the grain size of austenite increases, making it difficult to secure strength and the excessive heating process only increases the manufacturing cost of the steel sheet. can
열간압연 단계(S200)는 S100 단계에서 재가열된 슬래브를 소정의 마무리 압연 온도(Finishing Delivery Temperature: FDT) 범위에서 열간 압연하여 강판을 제조하는 단계이다. 일 실시예로, 마무리 압연 온도(FDT) 범위는 약 840°C 내지 약 920°C로 제어될 수 있다. 마무리 압연 온도(FDT)가 840°C 미만인 경우, 이상 영역 압연에 의한 혼립 조직이 발생으로 강판의 가공성 확보가 어렵고, 미세조직 불균일에 따라 가공성이 저하되는 문제가 있을 뿐만 아니라 급격한 상 변화에 의해 열간 압연 중 통판성의 문제가 발생할 수 있다. 이와 반대로, 마무리 압연 온도(FDT)가 920°C를 초과할 경우에는 오스테나이트 결정립이 조대화될 수 있다. 또한, TiC 석출물이 조대화되어 최종 부품 성능이 저하될 위험이 있다.The hot rolling step (S200) is a step of manufacturing a steel sheet by hot rolling the slab reheated in step S100 in a predetermined finishing delivery temperature (FDT) range. In one embodiment, the finish rolling temperature (FDT) range may be controlled from about 840°C to about 920°C. If the finish rolling temperature (FDT) is less than 840°C, it is difficult to secure the workability of the steel sheet due to the occurrence of a mixed structure due to abnormal rolling, and there is a problem of deterioration in workability due to the non-uniformity of the microstructure, as well as hot rolling due to rapid phase change. During rolling, a problem of sheetability may occur. Conversely, when the finish rolling temperature (FDT) exceeds 920 °C, the austenite grains may be coarsened. In addition, there is a risk that the TiC precipitate is coarsened and the performance of the final part is deteriorated.
한편, 재가열 단계(S100) 및 열간압연 단계(S200)에서는 에너지가 불안정한 입계에서 미세석출물(20)들의 일부가 석출될 수 있다. 이때, 입계에 석출된 미세석출물(20)들은 오스테나이트의 결정립 성장을 방해하는 요소로 작용하여 오스테나이트 미세화를 통한 강도 향상의 효과를 제공할 수 있다. 한편, S100 및 S200 단계에서 석출되는 미세석출물(20)들은 평형 석출량 기준 약 0.007wt% 수준일 수 있으나 이에 한정되는 것은 아니다.On the other hand, in the reheating step (S100) and the hot rolling step (S200), some of the fine precipitates 20 may be precipitated at grain boundaries with unstable energy. At this time, the fine precipitates 20 precipitated at the grain boundary act as an element that hinders the grain growth of austenite, thereby providing an effect of improving strength through austenite refinement. On the other hand, the fine precipitates 20 precipitated in steps S100 and S200 may be about 0.007wt% based on the equilibrium precipitated amount, but are not limited thereto.
냉각/권취 단계(S300)는 S200 단계에서 열간압연된 강판을 소정의 권취 온도(Coiling Temperature: CT) 범위에서 냉각시키며 권취하며, 강판 내에 미세석출물(20)들을 형성하는 단계이다. 즉, S300 단계에서는 슬래브가 포함하는 첨가제(Ti, Nb 및/또는 V)의 질화물 또는 탄화물을 형성함으로써, 미세석출물(20)들이 형성된다. 한편, 권취는 미세석출물(20)들의 평형 석출량이 최대치에 도달할 수 있도록 페라이트역에서 진행될 수 있다. 이와 같이 결정립 재결정이 완료된 후 페라이트로 조직 변태 시 입계뿐 아니라 입내에서도 미세석출물(20)들의 입자 크기가 균질하게 석출될 수 있다.The cooling/coiling step (S300) is a step of cooling and winding the hot-rolled steel sheet in step S200 in a predetermined coiling temperature (Coiling Temperature: CT) range, and forming fine precipitates 20 in the steel sheet. That is, in step S300, fine precipitates 20 are formed by forming nitrides or carbides of additives (Ti, Nb, and/or V) included in the slab. Meanwhile, winding may be performed in a ferrite station so that the equilibrium precipitate amount of the fine precipitates 20 may reach a maximum value. In this way, when the structure is transformed into ferrite after the crystal grain recrystallization is completed, the particle size of the fine precipitates 20 may be uniformly precipitated not only at the grain boundary but also within the grain.
일 실시예로, 권취 온도(CT)는 약 700°C 내지 약 780°C 일 수 있다. 권취 온도(CT)는 탄소(C)의 재분배에 영향을 미칠 수 있다. 이러한 권취 온도(CT)가 약 700°C 미만일 경우에는 과냉으로 인한 저온상 분율이 높아져 강도 증가 및 냉간압연 시 압연 부하가 심화될 우려가 있으며, 연성이 급격히 저하되는 문제점이 있다. 반대로, 권취 온도가 약 780°C를 초과할 경우에는 이상 결정입자 성장이나 과도한 결정입자 성장으로 성형성 및 강도 열화가 발생하는 문제가 있다.In one embodiment, the winding temperature (CT) may be about 700 °C to about 780 °C. The coiling temperature (CT) can affect the redistribution of carbon (C). When the coiling temperature (CT) is less than about 700 ° C, the low-temperature phase fraction due to overcooling increases, so there is a risk of increasing strength and intensifying rolling load during cold rolling, and there is a problem in that ductility rapidly decreases. Conversely, when the coiling temperature exceeds about 780 ° C, there is a problem in that moldability and strength deterioration occurs due to abnormal crystal grain growth or excessive crystal grain growth.
이와 같이 본 실시예에 의하면, 권취 온도(CT) 범위를 제어함으로써, 미세석출물(20)들의 석출 거동을 제어할 수 있다. 권취 온도(CT) 범위에 따른 핫 스탬핑용 소재(1)의 특성 변화에 대한 실험예는 도 5, 도 6a 및 도 6b를 참조하여 후술한다.In this way, according to this embodiment, by controlling the coiling temperature (CT) range, it is possible to control the precipitation behavior of the fine precipitates (20). Experimental examples of changes in the characteristics of the material 1 for hot stamping according to the coiling temperature (CT) range will be described later with reference to FIGS. 5, 6a, and 6b.
냉간압연 단계(S400)는 S300 단계에서 권취된 강판을 언코일링(uncoiling)하여 산세 처리한 후, 냉간압연하는 단계이다. 이때, 산세는 권취된 강판, 즉 상기의 열연 과정을 통하여 제조된 열연 코일의 스케일을 제거하기 위한 목적으로 실시하게 된다. 한편, 일 실시예로, 냉간압연 시 압하율은 30% 내지 70%로 제어될 수 있으나 이에 제한되는 것은 아니다.In the cold rolling step (S400), the steel sheet wound in step S300 is uncoiled, pickled, and then cold rolled. At this time, pickling is performed for the purpose of removing the scale of the rolled steel sheet, that is, the hot-rolled coil manufactured through the hot-rolling process. On the other hand, in one embodiment, the reduction ratio during cold rolling may be controlled to 30% to 70%, but is not limited thereto.
소둔 열처리 단계(S500)는 S400단계에서 냉간 압연된 강판을 약 700°C 이상의 온도에서 소둔 열처리하는 단계이다. 일 구체예에서 소둔 열처리는 냉연 판재를 가열하고, 가열된 냉연 판재를 소정의 냉각속도로 냉각하는 단계를 포함한다.Annealing heat treatment step (S500) is a step of annealing heat treatment at a temperature of about 700 ° C or more of the cold-rolled steel sheet in step S400. In one embodiment, the annealing heat treatment includes heating the cold-rolled sheet material and cooling the heated cold-rolled sheet material at a predetermined cooling rate.
도금 단계(S600)는 소둔 열처리된 강판에 대해 도금층을 형성하는 단계이다. 일 실시예로, 도금 단계(S600)에서, S500단계에서 소둔 열처리된 강판 상에 Al-Si 도금층을 형성할 수 있다.The plating step (S600) is a step of forming a plating layer on the annealed and heat-treated steel sheet. In one embodiment, in the plating step (S600), an Al-Si plating layer may be formed on the steel sheet subjected to the annealing heat treatment in step S500.
구체적으로, 도금 단계(S600)는 강판을 약 650°C 내지 약 700°C의 온도를 가지는 도금욕에 침지시켜 강판의 표면에 용융도금층을 형성하는 단계 및 상기 용융도금층이 형성된 강판을 냉각시켜 도금층을 형성하는 냉각 단계를 포함할 수 있다. 이때, 도금욕은 첨가 원소로서 Si, Fe, Al, Mn, Cr, Mg, Ti, Zn, Sb, Sn, Cu, Ni, Co, In, Bi 등이 포함될 수 있으나 이에 한정되는 것은 아니다.Specifically, the plating step (S600) includes forming a hot-dip plating layer on the surface of the steel sheet by immersing the steel sheet in a plating bath having a temperature of about 650°C to about 700°C, and cooling the steel sheet on which the hot-dip plating layer is formed to form the plated layer. It may include a cooling step of forming. At this time, the plating bath may include Si, Fe, Al, Mn, Cr, Mg, Ti, Zn, Sb, Sn, Cu, Ni, Co, In, Bi, etc. as additive elements, but is not limited thereto.
이와 같이 S100 내지 S600 단계를 거쳐 제조한 핫 스탬핑용 소재(1)에 대하여 핫 스탬핑 공정을 수행함으로써, 전술한 미세석출물(20)들의 석출거동에 대한 조건을 만족할 수 있고 이에 따라 요구되는 강도 및 굽힘성을 만족하는 핫스탬핑 부품을 제조할 수 있다. 일 실시예로, 전술한 함량 조건 및 공정 조건을 만족하도록 제조한 핫 스탬핑용 소재(1)는, 핫스탬핑 후에 1,680MPa 이상의 인장강도, 50도(degree) 이상의 굽힘성 및 0.8 wppm 이하의 활성화 수소량을 가질 수 있다. By performing the hot stamping process on the hot stamping material 1 manufactured through steps S100 to S600 as described above, it is possible to satisfy the conditions for the precipitation behavior of the fine precipitates 20 described above, and thus required strength and bending. It is possible to manufacture hot stamping parts satisfying the properties. In one embodiment, the material for hot stamping (1) manufactured to satisfy the above-described content conditions and process conditions has a tensile strength of 1,680 MPa or more, a bendability of 50 degrees or more, and an activation number of 0.8 wppm or less after hot stamping. may have a small amount.
이하에서는, 실시예 및 비교예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 하기의 실시예 및 비교예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예 및 비교예에 의하여 한정되는 것은 아니다. 하기의 실시예 및 비교예는 본 발명의 범위 내에서 당업자에 의해 적절히 수정, 변경될 수 있다.Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples. However, the following Examples and Comparative Examples are intended to explain the present invention in more detail, and the scope of the present invention is not limited by the following Examples and Comparative Examples. The following Examples and Comparative Examples may be appropriately modified or changed by those skilled in the art within the scope of the present invention.
도 5는 본 발명의 실시예 및 비교예의 권취 온도에 따른 인장강도 및 굽힘 응력을 비교하여 나타낸 그래프이고, 도 6a 및 도 6b는 실시예 및 비교예의 권취 온도에 따른 4점 굴곡 시험(4 point bending test)의 결과를 도시하는 이미지들이다.Figure 5 is a graph showing the comparison of tensile strength and bending stress according to the winding temperature of Examples and Comparative Examples of the present invention, Figures 6a and 6b is a 4-point bending test (4 point bending test) according to the winding temperature of Examples and Comparative Examples These are images showing the results of the test).
실시예(CT700) 및 비교예(CT800)는 하기 표 1과 같은 조성을 갖는 슬래브에 대하여 전술한 S100 내지 S600 단계를 수행하여 제조한 핫 스탬핑용 소재(1)를 핫 스탬핑하여 제조된 시편들이다. 이때, 실시예(CT700) 및 비교예(CT800)는 핫 스탬핑용 소재(1)의 제조 과정에서 동일한 함량 조건 및 공정 조건을 적용하되, 권취 온도(CT)만을 변수로 차별 적용하여 제조된 시편들이다. 구체적으로, 실시예(CT700) 및 비교예(CT800)는 표 1과 같은 조성을 갖는 슬래브에 대하여 슬래브 재가열 온도(SRT): 1,230℃, 마무리 압연 온도(FDT): 900℃, 열간 압연 시 압하율: 95%, 소둔 열처리 온도: 780℃, 도금 침지 온도: 660℃ 의 조건에서 제조한 핫 스탬핑 소재를 950℃에서 270초 동안 가열 후 핫 스탬핑하여 제조된 시편들이다.Example (CT700) and Comparative Example (CT800) are specimens manufactured by hot stamping the material for hot stamping (1) prepared by performing steps S100 to S600 on a slab having the composition shown in Table 1 below. At this time, Example (CT700) and Comparative Example (CT800) are specimens manufactured by applying the same content conditions and process conditions in the manufacturing process of the material 1 for hot stamping, but differentially applying only the winding temperature (CT) as a variable. . Specifically, Example (CT700) and Comparative Example (CT800) are slab reheating temperature (SRT): 1,230 ° C, finish rolling temperature (FDT): 900 ° C, rolling reduction during hot rolling: 95%, annealing heat treatment temperature: 780 ℃, plating immersion temperature: specimens prepared by hot stamping after heating the hot stamping material manufactured under the conditions of 660 ℃ at 950 ℃ for 270 seconds.
성분(wt%)Ingredients (wt%)
CC SiSi MnMn PP SS CrCr BB TiTi
0.290.29 0.20.2 1.51.5 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.00250.0025 0.0350.035
구체적으로, 실시예(CT700)는 700°C의 권취 온도(CT)를 적용하여 제조한 핫 스탬핑용 소재(1)를 핫 스탬핑하여 제조된 시편이고, 비교예(CT800)는 800°C의 권취 온도(CT)를 적용하여 제조한 핫 스탬핑용 소재(1)를 핫 스탬핑하여 제조된 시편이다.Specifically, the embodiment (CT700) is a specimen manufactured by hot stamping the material for hot stamping (1) manufactured by applying a winding temperature (CT) of 700 ° C, and the comparative example (CT800) is a specimen manufactured by applying a winding temperature (CT) of 800 ° C. It is a specimen manufactured by hot stamping the material for hot stamping (1) manufactured by applying the temperature (CT).
여기서 도 5를 함께 참조하여 설명한다. 도 5는 실시예(CT700) 및 비교예(CT800)의 인장강도 및 굽힘 응력을 측정하여 나타낸 그래프이다.Here, description will be made with reference to FIG. 5 . 5 is a graph showing measured tensile strength and bending stress of Example (CT700) and Comparative Example (CT800).
도 5를 참조하면, 인장강도의 경우, 실시예(CT700)의 인장강도는 비교예(CT800)의 인장강도보다 크고, 충격 특성에 영향을 미치는 굽힘 응력 역시 실시예(CT700)의 굽힘 응력이 비교예(CT800)의 굽힘 응력과 대비하여 개선되었음을 확인할 수 있다.Referring to FIG. 5, in the case of tensile strength, the tensile strength of Example (CT700) is greater than that of Comparative Example (CT800), and the bending stress affecting impact properties is also comparable to that of Example (CT700). It can be seen that the improvement is compared to the bending stress of the example (CT800).
이는 하기 표 2에서 확인할 수 있는 바와 같이, 실시예(CT700)의 경우가 비교예(CT800)에 비해 미세석출물(20)들의 석출량의 증가 및 이에 따른 수소 포집 능력이 향상되었기 때문이다.As can be seen in Table 2 below, this is because the amount of fine precipitates 20 increased in the case of the example (CT700) and the improved hydrogen scavenging ability as compared to the comparative example (CT800).
하기 표 2는 실시예(CT700)와 비교예(CT800)의 평형 석출량과 활성화 수소량의 측정값 및 굽힘 빔 응력 부식 시험(Bent-beam stress corrosion test) 결과이다. 여기서, 평형 석출량이란, 열역학적으로 평형상태를 이룰 때 석출될 수 있는 석출물의 최대 개수를 의미하며, 이러한 평형 석출량이 클수록 석출되는 석출물의 개수가 증가한다. 또한, 활성화 수소량은, 강판(10) 내에 유입된 수소 중 미세석출물(20)들에 트랩된 수소를 제외한 수소량을 의미한다. Table 2 below shows the measured values of the equilibrium precipitation amount and the amount of activated hydrogen of the Example (CT700) and Comparative Example (CT800) and the results of a bent-beam stress corrosion test. Here, the equilibrium precipitation amount means the maximum number of precipitates that can be precipitated when thermodynamically equilibrium is achieved, and the greater the equilibrium precipitation amount, the greater the number of precipitates. In addition, the amount of activated hydrogen refers to the amount of hydrogen excluding hydrogen trapped in the fine precipitates 20 among the hydrogen introduced into the steel sheet 10 .
이와 같은 활성화 수소량은 가열 탈가스 분석(Thermal desorption spectroscopy) 방법을 이용하여 측정할 수 있다. 구체적으로, 시편을 사전 설정된 가열 속도로 가열하여 승온시키면서, 특정 온도 이하에서 시편으로부터 방출되는 수소량을 측정할 수 있다. 이때, 특정 온도 이하에서 시편으로부터 방출되는 수소는 시편 내에 유입된 수소 중 트랩되지 못하고 수소지연파괴에 영향을 주는 활성화 수소로 이해될 수 있다.The amount of activated hydrogen can be measured using a thermal desorption spectroscopy method. Specifically, while heating the specimen at a preset heating rate and raising the temperature, the amount of hydrogen released from the specimen below a specific temperature may be measured. At this time, hydrogen released from the specimen below a certain temperature can be understood as activated hydrogen that is not trapped among the hydrogen introduced into the specimen and affects delayed hydrogen destruction.
샘플명sample name 평형 석출량
(wt%)
equilibrium precipitation amount
(wt%)
4점 굴곡 시험(4 point bending test) 결과4 point bending test result 활성화 수소량
(wppm)
amount of activated hydrogen
(wppm)
CT700CT700 0.0400.040 비파단non-break 0.4530.453
CT800CT800 0.0290.029 파단fracture 0.5500.550
표 2는 미세석출물의 평형 석출량이 상이한 샘플들 각각에 대하여 4점 굴곡 시험(4 point bending test)을 수행한 결과와, 가열 탈가스 분석(Thermal desorption spectroscopy) 방법을 이용하여 측정한 활성화 수소량을 나타낸다.Table 2 shows the results of a 4-point bending test for each of the samples with different equilibrium precipitation amounts of fine precipitates and the amount of activated hydrogen measured using the thermal desorption spectroscopy method. indicate
여기서, 4점 굴곡 시험(4 point bending test)은, 시편을 부식 환경에 노출시킨 상태를 재현하여 제조한 시편을 특정 지점에 탄성 한계 이하 수준의 응력을 가하며 응력부식균열의 발생 여부를 확인하는 시험 방법이다. 이때, 응력부식균열은 부식과 지속적인 인장 응력이 동시에 작용할 때 발생하는 균열을 의미한다.Here, the 4 point bending test is a test to check whether stress corrosion cracking occurs by applying stress below the elastic limit to a specimen prepared by reproducing the state in which the specimen is exposed to a corrosive environment at a specific point way. At this time, stress corrosion cracking means a crack that occurs when corrosion and continuous tensile stress act simultaneously.
구체적으로, 표 2의 4점 굴곡 시험(4 point bending test) 결과는, 샘플들 각각에 대하여 공기 중에서 1,000MPa의 응력을 100시간 동안 인가하여 파단 발생 여부를 확인한 결과이다. 또한, 활성화 수소량은 전술한 가열 탈가스 분석(Thermal desorption spectroscopy) 방법을 이용하여 측정된 것으로, 샘플들 각각에 대하여 20°C/min의 가열 속도로 상온에서 500°C까지 승온시키면서 350°C 이하에서 시편으로부터 방출되는 수소량을 측정한 값이다.Specifically, the results of the 4 point bending test in Table 2 are the results of confirming whether or not breakage occurred by applying a stress of 1,000 MPa in air for 100 hours to each of the samples. In addition, the amount of activated hydrogen was measured using the thermal desorption spectroscopy method described above, and the temperature was raised from room temperature to 500 °C at a heating rate of 20 °C/min for each sample at 350 °C. Hereinafter, the amount of hydrogen released from the specimen is measured.
표 2를 참조하면, 미세석출물(20)들의 평형 석출량의 경우, 실시예(CT700)의 평형 석출량은 0.040wt%이고, 비교예(CT800)의 평형 석출량은 0.029wt%로 측정되었다. 즉, 실시예(CT700)가 비교예(CT800)와 대비하여 더 많은 미세석출물(20)들이 형성됨으로써, 보다 많은 수소 트랩사이트를 제공할 수 있음을 확인할 수 있다. Referring to Table 2, in the case of the equilibrium precipitation amount of the fine precipitates 20, the equilibrium precipitation amount of Example (CT700) was 0.040wt%, and the equilibrium precipitation amount of Comparative Example (CT800) was measured as 0.029wt%. That is, it can be seen that the embodiment (CT700) can provide more hydrogen trap sites by forming more fine precipitates 20 compared to the comparative example (CT800).
한편, 4점 굴곡 시험 결과의 경우, 실시예(CT700)는 파단되지 않고 비교예(CT800)는 파단되었다. 또한, 활성화 수소량의 경우, 실시예(CT700)의 활성화 수소량은 약 0.453wppm이고, 비교예(CT800)의 활성화 수소량은 약 0.550wppm으로 측정되었다. 이와 관련하여, 활성화 수소량이 상대적으로 더 낮은 실시예(CT700)는 파단되지 않고, 활성화 수소량이 상대적으로 더 높은 비교예(CT800)는 파단되었음을 확인할 수 있다. 이는 실시예(CT700)가 비교예(CT800)와 대비하여 수소지연파괴 특성이 향상된 것으로 이해될 수 있다.On the other hand, in the case of the 4-point bending test result, the example (CT700) was not broken and the comparative example (CT800) was broken. In addition, in the case of the amount of activated hydrogen, the amount of activated hydrogen in Example (CT700) was about 0.453 wppm, and the amount of activated hydrogen in Comparative Example (CT800) was measured to be about 0.550 wppm. In this regard, it can be confirmed that the example (CT700) with a relatively lower amount of activated hydrogen was not broken, and the comparative example (CT800) with a relatively higher amount of activated hydrogen was broken. It can be understood that the hydrogen delayed fracture characteristics of the embodiment (CT700) are improved compared to the comparative example (CT800).
즉, 실시예(CT700)는 비교예(CT800)와 대비하여 미세석출물(20)들의 석출량이 증가하고, 이에 따라 활성화 수소량이 감소하였다. 이는 실시예(CT700)에서 내부에 트랩된 수소의 양이 비교예(CT800)와 대비하여 증가한 것을 의미하며, 그 결과 수소지연파괴 특성이 향상된 것으로 이해될 수 있다. That is, the amount of fine precipitates 20 increased in Example (CT700) compared to Comparative Example (CT800), and accordingly, the amount of activated hydrogen decreased. This means that the amount of hydrogen trapped inside in the embodiment (CT700) increased compared to the comparative example (CT800), and as a result, it can be understood that the hydrogen delayed fracture characteristics are improved.
도 6a 및 도 6b는 각각 실시예(CT700) 및 비교예(CT800)에 대하여 4점 굴곡 시험(4 point bending test)을 시행한 결과를 도시하는 이미지들이다. 구체적으로, 도 6a는 실시예(CT700)에 대하여 4점 굴곡 시험을 시행한 결과이고, 도 6b는 비교예(CT800)에 대하여 실시예(CT700)와 동일한 조건을 적용하여 4점 굴곡 시험을 시행한 결과에 대응된다.6A and 6B are images showing the results of a 4-point bending test for the Example (CT700) and Comparative Example (CT800), respectively. Specifically, FIG. 6a shows the result of the 4-point bending test for the example (CT700), and FIG. 6b shows the 4-point bending test for the comparative example (CT800) under the same conditions as the example (CT700). corresponds to a result.
도 6a 및 도 6b에 도시된 바와 같이, 실시예(CT700)의 경우, 4점 굴곡 시험 결과 시편이 파단되지 않은 반면, 비교예(CT800)의 경우, 시편이 파단되었음을 확인할 수 있다.As shown in FIGS. 6A and 6B , in the case of the embodiment (CT700), the specimen was not broken as a result of the 4-point bending test, whereas in the case of the comparative example (CT800), it was confirmed that the specimen was broken.
이는, 도 6a의 실시예(CT700)의 경우, 700°C의 권취 온도(CT)를 적용하여 제조한 핫 스탬핑용 소재(1)를 핫 스탬핑하여 제조된 시편으로서, 0.01㎛ 이하의 직경을 갖는 미세석출물(20)들이 단위면적(100㎛2)당 23,000개 이상 29,000개 이하로 형성되고, 미세석출물(20)들 간 평균 거리가 0.15㎛ 이상 0.4㎛ 이하를 만족한다. 따라서, 실시예(CT700)는 강판(10) 내 유입된 수소를 효율적으로 분산하고 트랩핑하여 수소지연파괴 특성이 향상되고, 인장강도 및 굽힘 특성이 향상된 것을 확인할 수 있다.In the case of the embodiment (CT700) of FIG. 6A, this is a specimen manufactured by hot stamping the material 1 for hot stamping prepared by applying a coiling temperature (CT) of 700 ° C, and having a diameter of 0.01 μm or less. Fine precipitates 20 are formed in 23,000 or more and 29,000 or less per unit area (100 μm 2 ), and the average distance between the fine precipitates 20 satisfies 0.15 μm or more and 0.4 μm or less. Therefore, it can be confirmed that the embodiment (CT700) efficiently disperses and traps hydrogen introduced into the steel sheet 10, thereby improving hydrogen delayed fracture characteristics and improving tensile strength and bending characteristics.
이와 반대로, 도 6b의 비교예(CT800)의 경우, 800°C의 권취 온도(CT)를 적용하여 제조한 핫 스탬핑용 소재(1)를 핫 스탬핑하여 제조된 시편으로서, 미세석출물(20)들의 석출량이 충분하지 않고, 미세석출물(20)들의 직경이 조대화되어 수소 결합에 의한 내압 발생 확률이 증가한다. 따라서, 비교예(CT800)는 강판(10) 내 유입된 수소를 효율적으로 분산 트랩핑할 수 없고, 인장강도, 굽힘 특성 및 수소지연파괴 특성이 저하된 것을 확인할 수 있다.On the contrary, in the case of the comparative example (CT800) of FIG. 6B, as a specimen prepared by hot stamping the material for hot stamping (1) prepared by applying a coiling temperature (CT) of 800 ° C, the fine precipitates (20) The amount of precipitate is not sufficient, and the diameter of the fine precipitates 20 is coarsened, increasing the probability of occurrence of internal pressure due to hydrogen bonding. Therefore, it can be confirmed that the comparative example (CT800) cannot efficiently disperse and trap hydrogen introduced into the steel sheet 10, and the tensile strength, bending characteristics, and delayed hydrogen fracture characteristics are deteriorated.
즉, 동일한 성분들로 구성되더라도 권취 온도(CT)의 차이로 인하여, 핫스탬핑 소재(1)가 핫스탬핑 공정을 거친 후 가지는 강도, 굽힘성 및 수소지연파괴 특성 등에 차이가 발생한다. 이는 권취 온도(CT)에 따라 미세석출물(20)들의 석출 거동에 차이가 발생하기 때문이다. 따라서, 전술한 본 발명의 실시예들에 따른 함량 조건 및 공정 조건을 적용하면 고강도를 확보하고, 굽힘성 및 수소지연파괴 특성을 향상시킬 수 있다.That is, even though they are composed of the same components, due to the difference in coiling temperature (CT), the strength, bendability, and delayed hydrogen fracture characteristics of the hot stamping material 1 after the hot stamping process are different. This is because a difference occurs in the precipitation behavior of the fine precipitates 20 according to the coiling temperature CT. Therefore, when the content conditions and process conditions according to the above-described embodiments of the present invention are applied, high strength may be secured, and bendability and delayed hydrogen fracture characteristics may be improved.
아래 표 3 내지 표 6은 복수의 시편들에 대하여 미세석출물(20)들의 석출 거동의 차이에 따른 인장강도, 굽힘성 및 수소지연파괴 특성을 수치화한 것이다. 구체적으로, 표 3 내지 표 6에는 복수의 시편들에 대하여, 석출 거동(미세석출물들의 개수, 미세석출물들 간의 평균 거리, 미세석출물들의 직경 등)의 측정값들과, 핫스탬핑 이후 갖는 특성들(인장강도, 굽힘성 및 활성화 수소량)의 측정값들이 기재되어 있다.Tables 3 to 6 below quantify tensile strength, bendability, and hydrogen delayed fracture characteristics according to differences in precipitation behavior of fine precipitates 20 for a plurality of specimens. Specifically, in Tables 3 to 6, for a plurality of specimens, measured values of precipitation behavior (number of fine precipitates, average distance between fine precipitates, diameter of fine precipitates, etc.) and characteristics after hot stamping ( Tensile strength, bendability and amount of activated hydrogen) are measured.
한편, 복수의 시편들은 각각 950℃ 로 가열하고 300°C 이하까지 30°C/s 이상의 냉각속도로 냉각한 후, 인장강도, 굽힘성 및 활성화 수소량을 측정한 것이다.Meanwhile, the plurality of specimens were each heated to 950 ° C and cooled at a cooling rate of 30 ° C / s or more to 300 ° C or less, and then the tensile strength, bendability and amount of activated hydrogen were measured.
이때, 인장강도 및 활성화 수소량은 전술한 4점 굴곡 시험(4 point bending test) 및 가열 탈가스 분석(Thermal desorption spectroscopy) 방법을 기반으로 측정한 것이고, 굽힘성은 독일 자동차산업협회(VDA: Verband Der Automobilindustrie)의 규격인 VDA238-100에 따라 V-벤딩각을 측정한 것이다.At this time, the tensile strength and the amount of activated hydrogen were measured based on the aforementioned 4-point bending test and thermal desorption spectroscopy, and the bendability was measured by the German Automobile Industry Association (VDA: Verband Der The V-bending angle was measured according to VDA238-100, a standard of Automobilindustrie.
또한, 미세석출물들의 석출 거동(미세석출물들의 개수, 미세석출물들 간의 평균 거리, 미세석출물들의 직경 등)은 전술한 TEM 이미지 분석을 통해 측정하였다. 또한, 미세석출물들의 석출 거동은 0.5㎛*0.5㎛의 면적을 갖는 임의의 영역들에 대하여 측정하여 단위 면적(100㎛2)을 기준으로 환산하여 측정하였다.In addition, the precipitation behavior of the microprecipitates (the number of microprecipitates, the average distance between the microprecipitates, the diameter of the microprecipitates, etc.) was measured through the above-described TEM image analysis. In addition, the precipitation behavior of the fine precipitates was measured for arbitrary regions having an area of 0.5 μm*0.5 μm and converted based on a unit area (100 μm 2 ).
시편Psalter 성분(wt%)Ingredients (wt%)
CC SiSi MnMn PP SS CrCr BB TiTi
AA 0.300.30 0.190.19 1.51.5 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.030.03
BB 0.280.28 0.190.19 1.41.4 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.030.03
CC 0.290.29 0.200.20 1.61.6 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.030.03
DD 0.290.29 0.210.21 1.51.5 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.030.03
EE 0.280.28 0.200.20 1.41.4 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.0330.033
FF 0.300.30 0.250.25 1.31.3 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.0330.033
GG 0.310.31 0.250.25 1.41.4 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.0330.033
HH 0.300.30 0.200.20 1.41.4 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.0330.033
II 0.290.29 0.200.20 1.51.5 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.00250.0025 0.0330.033
JJ 0.290.29 0.300.30 1.41.4 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.250.25 0.00250.0025 0.030.03
KK 0.280.28 0.300.30 1.41.4 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.250.25 0.00250.0025 0.0330.033
시편Psalter 전체 미세석출물total fine precipitates 직경 0.01㎛ 이하의 미세석출물Fine precipitates with a diameter of 0.01 μm or less 직경 0.005㎛ 이하의 미세석출물Fine precipitates with a diameter of 0.005㎛ or less 핫 스탬핑 후 특징Features after hot stamping
개수
(개/100㎛2)
Count
(pcs/100㎛ 2 )
평균
거리
(㎛)
average
distance
(μm)
평균
직경
(㎛)
average
diameter
(μm)
개수
(개/100㎛2)
/ 비율(%)
Count
(pcs/100㎛ 2 )
/ ratio(%)
개수
(개/100㎛2)
/ 비율(%)
Count
(pcs/100㎛ 2 )
/ ratio(%)
인장
강도
(MPa)
Seal
robbery
(MPa)
굽힘각
(º)
bending angle
(º)
활성화 수소량
(wppm)
amount of activated hydrogen
(wppm)
AA 25,51125,511 0.310.31 0.00570.0057 23,011 / 90.2%23,011 / 90.2% 15,400 / 60.4%15,400 / 60.4% 17081708 4242 0.4940.494
BB 25,33325,333 0.290.29 0.00560.0056 23,572 / 93.0%23,572 / 93.0% 15,200 / 60.0%15,200 / 60.0% 16991699 4343 0.4910.491
CC 25,01225,012 0.280.28 0.00410.0041 24,412 / 97.6%24,412 / 97.6% 23,236 / 92.9%23,236 / 92.9% 16951695 4242 0.4970.497
DD 28,16028,160 0.180.18 0.00440.0044 27,960 / 99.3%27,960 / 99.3% 19,800 / 70.3%19,800 / 70.3% 17411741 4646 0.4530.453
EE 28,87528,875 0.180.18 0.00420.0042 28,813 / 99.8%28,813 / 99.8% 24,438 / 84.6%24,438 / 84.6% 17501750 4444 0.4480.448
FF 27,58327,583 0.190.19 0.00470.0047 26,148 / 94.8%26,148 / 94.8% 20,715 / 75.1%20,715 / 75.1% 17451745 4848 0.4550.455
GG 29,99829,998 0.160.16 0.00530.0053 26,998 / 90%26,998 / 90% 18,269 / 60.9%18,269 / 60.9% 17561756 5050 0.4710.471
HH 29,92729,927 0.150.15 0.00460.0046 28,999 / 96.9%28,999 / 96.9% 18,255 / 61.0%18,255 / 61.0% 17571757 4646 0.4220.422
II 29,85529,855 0.150.15 0.00380.0038 28,393 / 95.1%28,393 / 95.1% 25,228 / 84.5%25,228 / 84.5% 17501750 4444 0.4250.425
JJ 26,17726,177 0.40.4 0.00560.0056 24,397 / 93.2%24,397 / 93.2% 15,994 / 61.1%15,994 / 61.1% 17151715 4242 0.4910.491
KK 27,80027,800 0.20.2 0.0060.006 27,355 / 98.4%27,355 / 98.4% 21,573 / 77.6%21,573 / 77.6% 17361736 5555 0.4580.458
시편Psalter 성분(wt%)Ingredients (wt%)
CC SiSi MnMn PP SS CrCr BB TiTi
LL 0.300.30 0.190.19 1.51.5 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.030.03
MM 0.280.28 0.190.19 1.41.4 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.030.03
NN 0.290.29 0.200.20 1.61.6 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.030.03
OO 0.290.29 0.210.21 1.51.5 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.030.03
PP 0.280.28 0.200.20 1.41.4 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.0330.033
QQ 0.300.30 0.250.25 1.31.3 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.0330.033
RR 0.310.31 0.250.25 1.41.4 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.0330.033
SS 0.300.30 0.200.20 1.41.4 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.0020.002 0.0330.033
TT 0.290.29 0.200.20 1.51.5 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.20.2 0.00250.0025 0.0330.033
UU 0.290.29 0.300.30 1.41.4 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.250.25 0.00250.0025 0.030.03
VV 0.280.28 0.300.30 1.41.4 0.02 이하0.02 or less 0.015 이하Less than 0.015 0.250.25 0.00250.0025 0.0330.033
시편Psalter 전체 미세석출물total fine precipitates 직경 0.01㎛ 이하의 미세석출물Fine precipitates with a diameter of 0.01 μm or less 직경 0.005㎛ 이하의 미세석출물Fine precipitates with a diameter of 0.005㎛ or less 핫 스탬핑 후 특징Features after hot stamping
개수
(개/100㎛2)
Count
(pcs/100㎛ 2 )
평균
거리
(㎛)
average
distance
(μm)
평균
직경
(㎛)
average
diameter
(μm)
개수
(개/100㎛2)
/ 비율(%)
Count
(pcs/100㎛ 2 )
/ ratio(%)
개수
(개/100㎛2)
/ 비율(%)
Count
(pcs/100㎛ 2 )
/ ratio(%)
인장
강도
(MPa)
Seal
robbery
(MPa)
굽힘각
(º)
bending angle
(º)
활성화 수소량
(wppm)
amount of activated hydrogen
(wppm)
LL 25,52525,525 0.350.35 0.00550.0055 22,998 / 90.1%22,998 / 90.1% 15,545 / 60.9%15,545 / 60.9% 16711671 4545 0.4520.452
MM 24,99924,999 0.370.37 0.00510.0051 22,874 / 91.5%22,874 / 91.5% 15,200 / 60.8%15,200 / 60.8% 16641664 5050 0.4950.495
NN 29,29829,298 0.160.16 0.00390.0039 29,005 / 99%29,005 / 99% 21,446 / 73.2%21,446 / 73.2% 17521752 3737 0.4570.457
OO 30,00930,009 0.160.16 0.00490.0049 27,969 / 93.2%27,969 / 93.2% 18,909 / 63.0%18,909 / 63.0% 17641764 3535 0.4810.481
PP 27,48527,485 0.230.23 0.00710.0071 26,028 / 94.7%26,028 / 94.7% 16,903 / 61.5%16,903 / 61.5% 16781678 4242 0.5050.505
QQ 29,95729,957 0.170.17 0.00420.0042 26,901 / 89.8%26,901 / 89.8% 25,403 / 84.8%25,403 / 84.8% 17421742 4040 0.5140.514
RR 25,02325,023 0.320.32 0.00580.0058 23,997 / 95.9%23,997 / 95.9% 14,989 / 59.9%14,989 / 59.9% 17121712 5151 0.5020.502
SS 29,99929,999 0.370.37 0.00510.0051 15,691 / 52.3%15,691 / 52.3% 17,909 / 59.7%17,909 / 59.7% 17551755 4343 0.5040.504
TT 29,98529,985 0.140.14 0.00360.0036 28,996 / 96.7%28,996 / 96.7% 28,426 / 94.8%28,426 / 94.8% 17531753 3838 0.4380.438
UU 24,21524,215 0.410.41 0.00590.0059 21,939 / 90.6%21,939 / 90.6% 14,578 / 60.2%14,578 / 60.2% 16781678 4444 0.4980.498
VV 25,11025,110 0.330.33 0.00550.0055 22,624 / 90.1%22,624 / 90.1% 15,112 / 60.2%15,112 / 60.2% 16711671 5454 0.4920.492
표 3 내지 표 6은 시편 A 내지 V에 대하여 미세석출물들의 석출거동(미세석출물들의 개수, 미세석출물들 간의 평균 거리, 미세석출물들의 직경 등)의 측정값들과, 핫스탬핑 이후 갖는 특성들(인장강도, 굽힘성 및 활성화 수소량)의 측정값들을 나타낸다.Tables 3 to 6 show the measured values of the precipitation behavior of the microprecipitates (the number of microprecipitates, the average distance between the microprecipitates, the diameter of the microprecipitates, etc.) and the characteristics after hot stamping (tensile strength, bendability and amount of activated hydrogen).
시편 A 내지 K는, 표 3에 도시된 함량 조건을 만족하는 슬래브에 대하여 전술한 공정 조건을 적용하여 S100 내지 S600 단계를 통해 제조한 핫 스탬핑용 소재를 핫 스탬핑하여 제조된 시편들이다. 이때, 시편 A 내지 K는 슬래브 재가열 온도(SRT): 1230℃, 마무리 압연 온도(FDT): 900℃, 열간압연 시 압하율: 95%, 권취 온도(CT): 780℃, 소둔 열처리 온도: 780℃, 도금 침지 온도: 660℃ 의 조건에서 제조된 핫 스탬핑 소재를 950℃에서 270초 동안 가열 후 핫 스탬핑하여 제조된 시편들이다. 즉, 시편 A 내지 K는 전술한 미세석출물들의 석출 거동 조건들을 만족하는 시편들이다.Specimens A to K are specimens manufactured by hot stamping the material for hot stamping manufactured through steps S100 to S600 by applying the above-described process conditions to slabs satisfying the content conditions shown in Table 3. At this time, specimens A to K had a slab reheating temperature (SRT): 1230 ° C, a finish rolling temperature (FDT): 900 ° C, a reduction rate during hot rolling: 95%, a coiling temperature (CT): 780 ° C, annealing heat treatment temperature: 780 ℃, plating immersion temperature: specimens prepared by hot stamping after heating the hot stamping material manufactured under the condition of 660 ℃ at 950 ℃ for 270 seconds. That is, specimens A to K are specimens satisfying the above-described conditions for precipitation behavior of fine precipitates.
구체적으로, 시편 A 내지 K는 미세석출물들이 강판 내에 25,000개/100㎛2 이상 30,000개/100㎛2 이하로 형성되고, 전체 미세석출물들의 평균 직경은 0.006㎛ 이하이고, 전체 미세석출물들 간의 평균 거리는 0.15㎛ 이상 0.4㎛ 이하를 만족한다. 또한, 강판 내에 형성되는 미세석출물들 중 90% 이상이 0.01㎛ 이하의 직경을 가지며, 직경이 0.01㎛ 이하인 미세석출물의 개수는 23,000개/100㎛2 이상 29,000개/100㎛2 이하를 만족한다. 또한, 강판 내에 형성되는 미세석출물들 중 60% 이상이 0.005㎛ 이하의 직경을 가지며, 직경이 0.005㎛ 이하인 미세석출물의 개수는 15,200개/100㎛2 이상 29,000개/100㎛2 이하를 만족한다.Specifically, in specimens A to K, fine precipitates were formed in the steel sheet in an amount of 25,000/100 μm 2 or more and 30,000/100 μm 2 or less, the average diameter of all the fine precipitates was 0.006 μm or less, and the average distance between all the fine precipitates was 0.15 μm or more and 0.4 μm or less are satisfied. In addition, more than 90% of the fine precipitates formed in the steel sheet have a diameter of 0.01 μm or less, and the number of fine precipitates having a diameter of 0.01 μm or less satisfies 23,000/100 μm 2 or more and 29,000/100 μm 2 or less. In addition, more than 60% of the fine precipitates formed in the steel sheet have a diameter of 0.005 μm or less, and the number of fine precipitates having a diameter of 0.005 μm or less satisfies 15,200/100 μm 2 or more and 29,000/100 μm 2 or less.
이와 같은 본 발명의 석출 거동 조건을 만족하는 시편 A 내지 K는 인장강도, 굽힘성 및 수소지연파괴 특성이 향상되었음을 확인할 수 있다. 구체적으로, 시편 A 내지 K는 핫스탬핑 후 인장강도가 1,680MPa 이상을 만족하고, 핫스탬핑 후 굽힘성이 40도(degree) 이상을 만족하고, 핫스탬핑 후 활성화 수소량이 0.5wppm 이하를 만족한다.It can be confirmed that specimens A to K satisfying the precipitation behavior conditions of the present invention have improved tensile strength, bendability, and delayed hydrogen fracture characteristics. Specifically, samples A to K satisfy tensile strength of 1,680 MPa or more after hot stamping, bendability of 40 degrees or more after hot stamping, and an amount of activated hydrogen after hot stamping of 0.5 wppm or less. .
반면에, 시편 L 내지 V는 표 5에 도시된 함량 조건을 만족하는 슬래브에 대하여 전술한 공정 조건을 적용하여 S100 내지 S600 단계를 통해 제조된 핫 스탬핑용 소재를 핫 스탬핑하여 제조된 시편들이다. 이때, 시편 L 내지 V는 슬래브 재가열 온도(SRT): 1230℃, 마무리 압연 온도(FDT): 900℃, 열간압연 시 압하율: 95%, 권취 온도(CT): 790℃, 소둔 열처리 온도: 780℃, 도금 침지 온도: 660℃ 의 조건에서 제조된 핫 스탬핑 소재를 950℃에서 270초 동안 가열 후 핫 스탬핑하여 제조된 시편들이다. 즉, 시편 L 내지 V는 전술한 미세석출물들의 석출 거동 조건들 중 적어도 일부를 만족시키지 못하는 시편들로써, 인장강도, 굽힘성 및/또는 수소지연파괴 특성이 시편 A 내지 K와 대비하여 떨어지는 것을 확인할 수 있다.On the other hand, specimens L to V are specimens manufactured by hot stamping the material for hot stamping manufactured through steps S100 to S600 by applying the above-described process conditions to slabs satisfying the content conditions shown in Table 5. At this time, specimens L to V had a slab reheating temperature (SRT): 1230 ° C, a finish rolling temperature (FDT): 900 ° C, a reduction ratio during hot rolling: 95%, a coiling temperature (CT): 790 ° C, annealing heat treatment temperature: 780 ℃, plating immersion temperature: specimens prepared by hot stamping after heating the hot stamping material manufactured under the condition of 660 ℃ at 950 ℃ for 270 seconds. That is, specimens L to V are specimens that do not satisfy at least some of the above-described precipitation behavior conditions of fine precipitates, and it can be confirmed that the tensile strength, bendability, and/or delayed hydrogen fracture characteristics are inferior to those of specimens A to K. there is.
시편 L의 경우, 직경 0.01㎛ 이하 미세석출물 개수가 22,998개이다. 이는 직경 0.01㎛ 이하 미세석출물 개수 조건의 하한에 미달한다. 이에 따라 시편 L의 인장강도는 상대적으로 낮은 1,671MPa에 불과함을 확인할 수 있다.In the case of specimen L, the number of fine precipitates with a diameter of 0.01 μm or less is 22,998. This is less than the lower limit of the condition for the number of fine precipitates having a diameter of 0.01 μm or less. Accordingly, it can be confirmed that the tensile strength of specimen L is only 1,671 MPa, which is relatively low.
시편 M의 경우, 전체 미세석출물 개수가 24,999개이고, 직경 0.01㎛ 이하 미세석출물 개수가 22,874개이다. 이는 전체 미세석출물 개수 조건의 하한 및 직경 0.01㎛ 이하 미세석출물 개수 조건의 하한에 미달한다. 이에 따라 시편 M의 인장강도는 상대적으로 낮은 1,664MPa에 불과함을 확인할 수 있다.In the case of specimen M, the total number of fine precipitates was 24,999, and the number of fine precipitates having a diameter of 0.01 μm or less was 22,874. This falls short of the lower limit of the condition for the total number of fine precipitates and the lower limit of the condition for the number of fine precipitates having a diameter of 0.01 μm or less. Accordingly, it can be confirmed that the tensile strength of specimen M is only 1,664 MPa, which is relatively low.
시편 N의 경우, 직경 0.01㎛ 이하 미세석출물 개수가 29,005개이다. 이는 직경 0.01㎛ 이하 미세석출물 개수 조건의 상한을 초과한다. 이에 따라 시편 N의 굽힘성은 상대적으로 낮은 37도에 불과함을 확인할 수 있다.In the case of specimen N, the number of fine precipitates with a diameter of 0.01 μm or less is 29,005. This exceeds the upper limit of the condition for the number of fine precipitates having a diameter of 0.01 μm or less. Accordingly, it can be confirmed that the bendability of specimen N is only 37 degrees, which is relatively low.
시편 O의 경우, 전체 미세석출물 개수가 30,009개이다. 이는 전체 미세석출물 개수 조건의 상한을 초과한다. 이에 따라 시편 O의 굽힘성은 상대적으로 낮은 35도에 불과함을 확인할 수 있다.In the case of specimen O, the total number of fine precipitates is 30,009. This exceeds the upper limit of the condition for the total number of fine precipitates. Accordingly, it can be confirmed that the bendability of specimen O is only 35 degrees, which is relatively low.
시편 P의 경우, 전체 미세석출물 평균 직경이 0.0071㎛이다. 이는 전체 미세석출물 평균 직경 조건의 상한을 초과한다. 이에 따라 시편 P의 활성화 수소량은 상대적으로 높은 0.505wppm으로 측정되어 수소지연파괴 특성이 상대적으로 저하되었음을 확인할 수 있다.In the case of specimen P, the average diameter of all microprecipitates is 0.0071 μm. This exceeds the upper limit of the condition of the average diameter of all fine precipitates. Accordingly, the amount of activated hydrogen of specimen P was measured as a relatively high 0.505 wppm, confirming that the hydrogen delayed fracture characteristics were relatively deteriorated.
시편 Q의 경우, 직경 0.01㎛ 이하 미세석출물의 비율이 89.8%이다. 이는 직경 0.005㎛ 이하 미세석출물의 비율 조건의 하한에 미달한다. 이에 따라 시편 Q의 활성화 수소량은 상대적으로 높은 0.514wppm으로 측정되어 수소지연파괴 특성이 상대적으로 저하되었음을 확인할 수 있다.In the case of specimen Q, the ratio of fine precipitates with a diameter of 0.01 μm or less is 89.8%. This falls short of the lower limit of the condition for the ratio of fine precipitates with a diameter of 0.005 μm or less. Accordingly, the amount of activated hydrogen of specimen Q was measured as a relatively high 0.514 wppm, confirming that the hydrogen delayed fracture characteristics were relatively deteriorated.
시편 R의 경우, 직경 0.005㎛ 이하 미세석출물의 비율이 59.9%이다. 이는 직경 0.005㎛ 이하 미세석출물의 비율 조건의 하한에 미달한다. 이에 따라 시편 R의 활성화 수소량은 상대적으로 높은 0.502wppm으로 측정되어 수소지연파괴 특성이 상대적으로 저하되었음을 확인할 수 있다.In the case of specimen R, the ratio of fine precipitates with a diameter of 0.005 μm or less is 59.9%. This falls short of the lower limit of the condition for the ratio of fine precipitates with a diameter of 0.005 μm or less. Accordingly, the amount of activated hydrogen of specimen R was measured as a relatively high 0.502 wppm, confirming that the hydrogen delayed fracture characteristics were relatively deteriorated.
시편 S의 경우, 직경 0.005㎛ 이하 미세석출물의 비율이 59.7%이다. 이는 직경 0.005㎛ 이하 미세석출물의 비율 조건의 하한에 미달한다. 이에 따라 시편 S의 활성화 수소량은 상대적으로 높은 0.504wppm으로 측정되어 수소지연파괴 특성이 상대적으로 저하되었음을 확인할 수 있다.In the case of specimen S, the ratio of fine precipitates with a diameter of 0.005 μm or less is 59.7%. This falls short of the lower limit of the condition for the ratio of fine precipitates with a diameter of 0.005 μm or less. Accordingly, the amount of activated hydrogen of specimen S was measured as a relatively high 0.504 wppm, confirming that the hydrogen delayed fracture characteristics were relatively deteriorated.
시편 T의 경우, 전체 미세석출물들 간의 평균 거리가 0.14㎛이다. 이는 전체 미세석출물들 간의 평균 거리 조건의 하한에 미달한다. 이에 따라 시편 T의 굽힘성은 상대적으로 낮은 38도에 불과함을 확인할 수 있다.In the case of specimen T, the average distance between all the microprecipitates is 0.14 μm. This falls short of the lower limit of the average distance condition between all the fine precipitates. Accordingly, it can be confirmed that the bendability of specimen T is only 38 degrees, which is relatively low.
시편 U의 경우, 전체 미세석출물 평균 거리가 0.41㎛이다. 이는 전체 미세석출물 평균 거리 조건의 상한을 초과한다. 이에 따라 시편 U의 인장강도는 상대적으로 낮은 1,678MPa에 불과함을 확인할 수 있다.In the case of specimen U, the average distance of all microprecipitates is 0.41 μm. This exceeds the upper limit of the total fine precipitate average distance condition. Accordingly, it can be confirmed that the tensile strength of specimen U is only 1,678 MPa, which is relatively low.
시편 V의 경우, 직경 0.005㎛ 이하 미세석출물 개수가 15,112개이다. 이는 직경 0.005㎛ 이하 미세석출물 개수 조건의 하한에 미달한다. 이에 따라 인장강도는 상대적으로 낮은 1,671MPa에 불과함을 확인할 수 있다.In the case of specimen V, the number of fine precipitates with a diameter of 0.005 μm or less is 15,112. This is less than the lower limit of the condition for the number of fine precipitates having a diameter of 0.005 μm or less. Accordingly, it can be confirmed that the tensile strength is only 1,671 MPa, which is relatively low.
이하, 표 7을 사용하여 미세석출물(20)들의 석출거동에 따른 핫 스탬핑 후의 성형 부품의 인장강도 및 수소지연파괴 특성의 개선 효과 차이를 설명한다. 이하의 미세석출물들의 석출거동은 전술한 TEM 이미지 분석을 통해 측정하였다. 미세석출물들의 석출거동은 0.5㎛*0.5㎛의 면적을 갖는 10개의 임의의 영역들에 대하여 측정하여 단위 면적(100㎛2)을 기준으로 환산하고, 이하 '평균'이라 함은 임의의 영역들에 대한 석출거동 값의 평균을 의미한다. 상기 임의의 영역들에서의 전체 석출물 개수를 산출하고, 이들의 평균값을 '전체 석출물 개수 평균'으로 지칭하였다. 마찬가지로, 상기 임의의 영역들에서의 평균 자유 경로(mean free path)를 통해 미세석출물들 간의 평균 거리를 산출하고, 이들의 평균값을 '석출물간 거리 평균'으로 지칭하였다. 상기 임의의 영역들의 직경 10nm 이하의 미세석출물 및 직경 5nm 이하의 미세석출물 각각의 개수를 단위 면적(100㎛2)을 기준으로 환산하고 이들의 평균값을 산출한 후, 상기 '전체 석출물 개수 평균'에 대한 비율을 '10nm 이하 비율 평균' 및 '5nm 이하 비율 평균'으로 지칭하였다.Hereinafter, differences in the improvement effect of the tensile strength and delayed hydrogen fracture characteristics of molded parts after hot stamping according to the precipitation behavior of the fine precipitates 20 will be described using Table 7. Precipitation behavior of the following fine precipitates was measured through the above-described TEM image analysis. Precipitation behavior of fine precipitates is measured for 10 random areas having an area of 0.5㎛*0.5㎛ and converted based on a unit area (100㎛ 2 ), and hereinafter, 'average' refers to random areas means the average of the precipitation behavior values for The total number of precipitates in the arbitrary regions was calculated, and their average value was referred to as 'the average number of total precipitates'. Similarly, the average distance between the fine precipitates was calculated through the mean free path in the arbitrary regions, and the average value thereof was referred to as 'average distance between the precipitates'. After converting the number of fine precipitates having a diameter of 10 nm or less and micro precipitates having a diameter of 5 nm or less in the arbitrary regions based on a unit area (100 μm 2 ) and calculating their average value, the ‘average of the total number of precipitates’ The ratios were referred to as 'average ratios of 10 nm or less' and 'average ratios of 5 nm or less'.
상기 임의의 영역들에서의 전체 미세석출물들 간의 직경의 평균을 '전체 석출물 직경 평균'으로 지칭하고, 이들 값을 표준편차를 '직경 평균의 표준편차'로 지칭하였다. 직경 평균 변동계수, 즉 제1 변동계수(C1)는 상기 직경 평균의 표준 편차를 상기 직경 평균으로 나눈 값으로 정의하였다. 본 발명에서 제1 변동계수(C1)는 0.8 이하일 수 있다The average of the diameters of all the fine precipitates in the above arbitrary regions was referred to as 'the average diameter of all precipitates', and the standard deviation of these values was referred to as the 'standard deviation of the average diameter'. The diameter average coefficient of variation, that is, the first coefficient of variation (C1), was defined as a value obtained by dividing the standard deviation of the average diameter by the average diameter. In the present invention, the first coefficient of variation (C1) may be 0.8 or less.
시편Psalter 전체 석출물
개수 평균
(개/㎛2)
whole precipitate
count average
(pcs/㎛ 2 )
석출물 간
거리 평균
(㎛)
precipitate liver
distance average
(μm)
10nm
이하
비율
평균
(%)
10 nm
below
ratio
average
(%)
5nm
이하
비율
평균
(%)
5nm
below
ratio
average
(%)
전체
석출물
직경
평균
(㎛)
entire
precipitate
diameter
average
(μm)
직경
평균의
표준
편차
diameter
average
standard
Deviation
직경
평균
변동계수
(C1)
diameter
average
coefficient of variation
(C1)
H/S 후
인장강도
(MPa)
After H/S
tensile strength
(MPa)
H/S 후
활성화 수소량
(wppm)
After H/S
amount of activated hydrogen
(wppm)
X1X1 25,13925,139 0.40 0.40 91.5 91.5 62.7 62.7 0.0044 0.0044 0.0041 0.0041 0.70 0.70 17411741 0.3880.388
X2X2 25,71825,718 0.40 0.40 90.2 90.2 61.5 61.5 0.0029 0.0029 0.0016 0.0016 0.39 0.39 17471747 0.3910.391
X3X3 26,71226,712 0.26 0.26 91.6 91.6 61.2 61.2 0.0031 0.0031 0.0025 0.0025 0.67 0.67 17551755 0.3810.381
X4X4 27,23627,236 0.23 0.23 90.3 90.3 61.7 61.7 0.0059 0.0059 0.0053 0.0053 0.66 0.66 17561756 0.3720.372
X5X5 26,63126,631 0.26 0.26 99.5 99.5 81.8 81.8 0.0032 0.0032 0.0019 0.0019 0.44 0.44 17431743 0.3710.371
X6X6 28,30228,302 0.23 0.23 98.4 98.4 92.6 92.6 0.0026 0.0026 0.0009 0.0009 0.25 0.25 17801780 0.3650.365
X7X7 28,88928,889 0.21 0.21 97.6 97.6 76.2 76.2 0.0035 0.0035 0.0016 0.0016 0.31 0.31 17981798 0.3660.366
X8X8 29,68829,688 0.15 0.15 96.7 96.7 69.4 69.4 0.0058 0.0058 0.0051 0.0051 0.67 0.67 17891789 0.3670.367
X9X9 25,08225,082 0.39 0.39 90.7 90.7 63.4 63.4 0.0046 0.0046 0.0044 0.0044 0.71 0.71 16811681 0.4810.481
X10X10 27,12127,121 0.26 0.26 90.6 90.6 63.4 63.4 0.0050 0.0050 0.0047 0.0047 0.73 0.73 16851685 0.4790.479
X11X11 27,33427,334 0.24 0.24 90.1 90.1 60.5 60.5 0.0059 0.0059 0.0057 0.0057 0.72 0.72 16951695 0.4830.483
X12X12 29,42429,424 0.17 0.17 97.1 97.1 91.4 91.4 0.0026 0.0026 0.0026 0.0026 0.72 0.72 16971697 0.4540.454
표 7은 복수의 시편들에 대하여 미세석출물들의 석출거동에 따른 인장강도 및 수소지연파괴 특성을 수치화한 것이다. 구체적으로, 표 7에는 복수의 시편들(X1~X12)에 대하여, 미세석출물들의 석출거동으로서 전체 미세석출물의 개수 평균, 미세석출물들 간의 평균 거리, 특정 직경 이하의 미세석출물의 평균 비율, 전체 미세석출물들의 직경 평균, 상기 직경 평균의 표준편차, 제1 변동계수(C1)에 대한 측정값들과, 그에 따른 핫 스탬핑 이후 갖는 특성들로써, 인장강도 및 활성화 수소량에 대한 측정값들이 기재되어 있다. 특히 직경평균의 변동계수인 제1 변동계수(C1)에 따른 인장강도 및 수소지연파괴 특성 관점에서 설명한다.Table 7 quantifies the tensile strength and hydrogen delayed fracture characteristics according to the precipitation behavior of fine precipitates for a plurality of specimens. Specifically, in Table 7, with respect to the plurality of specimens (X1 to X12), the precipitation behavior of the microprecipitates is the average number of all microprecipitates, the average distance between the microprecipitates, the average ratio of the microprecipitates of a specific diameter or less, and the total microprecipitates. Measured values for the average diameter of the precipitates, the standard deviation of the average diameter, the first coefficient of variation (C1), and the resulting properties after hot stamping, the measured values for the tensile strength and the amount of activated hydrogen are described. In particular, it will be described in terms of tensile strength and hydrogen delayed fracture characteristics according to the first coefficient of variation (C1), which is the coefficient of variation of the average diameter.
시편 X1 내지 X12는 탄소(C): 0.28~0.50중량%, 실리콘(Si): 0.15~0.70중량%, 망간(Mn): 0.5~2.0중량%, 인(P): 0 초과 0.05중량% 이하, 황(S): 0 초과 0.01중량% 이하, 크롬(Cr): 0.1~0.5중량%, 붕소(B): 0.001~0.005중량%, 첨가제로서 티타늄(Ti), 니오븀(Nb), 및 바나듐(V) 중 1종 이상의 합: 0 초과 0.1wt% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 슬래브에 대하여, 전술한 공정 조건을 적용하여 S100 내지 S600 단계를 통해 제조된 핫 스탬핑용 소재를 핫 스탬핑하여 제조된 시편들이다. 이때, 시편 X1 내지 X12는 슬래브 재가열 온도(SRT): 1230℃, 마무리 압연 온도(FDT): 900℃, 열간압연 시 압하율: 95%, 권취 온도(CT): 780℃, 소둔 열처리 온도: 780℃, 도금 침지 온도: 660℃ 의 조건에서 제조된 핫 스탬핑 소재를 950℃에서 270초 동안 가열 후 핫 스탬핑하여 제조된 시편들이다. 한편, X1 내지 X12는 제1 변동계수(C1)에 관한 석출 거동 뿐만 아니라 상술한 제2 변동계수(C2)에 관한 석출 거동 또한 만족할 수 있다. 즉, X1 내지 X12는 전술한 미세석출물들의 석출거동 조건들을 만족하는 시편들이다.Specimens X1 to X12 contain carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P): greater than 0 and less than 0.05% by weight, Sulfur (S): more than 0 and 0.01% by weight or less, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, titanium (Ti), niobium (Nb), and vanadium (V ) The sum of one or more of: 0 to 0.1 wt% or less, and to the slab containing the remaining iron (Fe) and other unavoidable impurities, the material for hot stamping manufactured through steps S100 to S600 by applying the above-described process conditions Specimens produced by hot stamping. At this time, specimens X1 to X12 had a slab reheating temperature (SRT): 1230 ° C, a finish rolling temperature (FDT): 900 ° C, a reduction ratio during hot rolling: 95%, a coiling temperature (CT): 780 ° C, annealing heat treatment temperature: 780 ℃, plating immersion temperature: specimens prepared by hot stamping after heating the hot stamping material manufactured under the condition of 660 ℃ at 950 ℃ for 270 seconds. Meanwhile, X1 to X12 may satisfy not only the precipitation behavior with respect to the first coefficient of variation C1 but also the precipitation behavior with respect to the aforementioned second coefficient of variation C2. That is, X1 to X12 are specimens satisfying the above-described precipitation behavior conditions of fine precipitates.
구체적으로, 시편 X1 내지 X12의 전체 미세석출물들의 개수는 25,000~30,000개/㎛2이고, 인접한 미세석출물들 간의 평균 거리는 0.15㎛ 이상 0.40㎛ 이하이고, 직경 0.01㎛ 이하의 미세석출물의 비율은 각각 90% 이상이고, 직경 0.005㎛ 이하의 미세석출물의 비율은 60% 이상이며, 전체 미세석출물들의 직경 평균은 0.006㎛ 이하를 만족한다.Specifically, the total number of fine precipitates in specimens X1 to X12 is 25,000 to 30,000/㎛ 2 , the average distance between adjacent fine precipitates is 0.15 μm or more and 0.40 μm or less, and the ratio of fine precipitates with a diameter of 0.01 μm or less is 90, respectively. % or more, the ratio of fine precipitates having a diameter of 0.005 μm or less is 60% or more, and the average diameter of all fine precipitates satisfies 0.006 μm or less.
다만, 시편 X1 내지 X8은 제1 변동계수가 0.7 이하인 조건을 만족하고, 시편 X9 내지 X12는 제1 변동계수가 0.7 초과로서 본 발명의 제1 변동계수에 따른 석출거동 조건을 만족하지 못한다. 제1 변동계수가 0.7 이하인 시편 X1 내지 X8은 제1 변동계수가 0.7 초과인 시편 X9 내지 X12보다 인장강도 및 수소지연파괴 특성이 우수한 것을 확인할 수 있다. 구체적으로, 시편 X1 내지 X8은 핫 스탬핑 후 인장강도가 1700MPa 이상이고 활성화 수소량이 0.4wppm 이하로서, 시편 X9 내지 X12는 핫 스탬핑 후 인장강도는 1,680MPa 내지 1700MPa (1700MPa 미만)이고 활성화 수소량은 0.4wppm 내지 0.5wppm인 것과 대비하여, 시편 X1 내지 X8가 시편 X9 내지 X12과 대비하여 인장강도 및 수소지연파괴 특성이 우수하다.However, specimens X1 to X8 satisfy the condition that the first coefficient of variation is 0.7 or less, and specimens X9 to X12 have a first coefficient of variation greater than 0.7 and do not satisfy the precipitation behavior condition according to the first coefficient of variation of the present invention. It can be seen that specimens X1 to X8 having a first coefficient of variation of 0.7 or less have superior tensile strength and delayed hydrogen fracture characteristics to specimens X9 to X12 having a first coefficient of variation of more than 0.7. Specifically, specimens X1 to X8 have a tensile strength of 1700 MPa or more after hot stamping and an amount of activated hydrogen of 0.4 wppm or less, and specimens X9 to X12 have a tensile strength of 1,680 MPa to 1700 MPa (less than 1700 MPa) and an amount of activated hydrogen after hot stamping. Compared to 0.4 wppm to 0.5 wppm, specimens X1 to X8 have excellent tensile strength and delayed hydrogen fracture characteristics compared to specimens X9 to X12.
특히, 시편 X1 내지 X4는 전체 석출물 개수 평균이 25,000개 이상 27,500개 이하이고, 그 중 직경 10nm 이하의 미세석출물의 비율 평균은 90% 내지 92%이고, 직경 5nm 이하의 미세석출물의 비율 평균은 60% 내지 63%로서, 전체 석출물의 개수 및 직경이 10nm 또는 5nm 이하인 미세석출물의 비율 또한 적으므로, 핫 스탬핑 후 인장강도나 수소지연파괴 특성 확보가 매우 어려운 조건일 수 있다. 그럼에도 불구하고 시편 X1 내지 X4는 제1 변동계수가 0.7 이하라는 본 발명의 석출거동 조건을 만족하므로 시편 X9 내지 X12과 대비하여 상대적으로 높은 인장강도 및 수소지연파괴 특성을 가진다.In particular, specimens X1 to X4 have an average number of total precipitates of 25,000 or more and 27,500 or less, of which the average ratio of fine precipitates with a diameter of 10 nm or less is 90% to 92%, and the average ratio of fine precipitates with a diameter of 5 nm or less is 60 % to 63%, since the total number of precipitates and the ratio of fine precipitates having a diameter of 10 nm or 5 nm or less are also small, it may be a very difficult condition to secure tensile strength or delayed hydrogen fracture characteristics after hot stamping. Nevertheless, since specimens X1 to X4 satisfy the precipitation behavior condition of the present invention that the first coefficient of variation is 0.7 or less, they have relatively high tensile strength and delayed hydrogen fracture characteristics compared to specimens X9 to X12.
한편, 시편 X12는 전체 석출물 개수 평균이 29,424개로서 많은 편이고 직경이 10nm 및 5nm 이하인 미세석출물의 비율 또한 각각 97.1% 및 91.4%로 높은 편으로서 인장강도 및 수소지연파괴 특성 확보에 상대적으로 유리한 조건일 수 있다. 그럼에도 불구하고 시편 X12는 제1 변동계수가 0.7 이하라는 본 발명의 석출거동 조건을 만족하지 못하므로 시편 X1 내지 X8과 대비하여 상대적으로 낮은 인장강도 및 수소지연파괴 특성을 가진다.On the other hand, specimen X12 has an average number of precipitates of 29,424, and the ratio of fine precipitates with diameters of 10 nm and 5 nm or less is also high at 97.1% and 91.4%, respectively, which is a relatively favorable condition for securing tensile strength and hydrogen delayed fracture characteristics. can Nevertheless, specimen X12 does not satisfy the precipitation behavior condition of the present invention that the first coefficient of variation is 0.7 or less, so it has relatively low tensile strength and hydrogen delayed fracture characteristics compared to specimens X1 to X8.
이하, 표 8을 사용하여 미세석출물(20)들의 석출거동에 따른 핫 스탬핑 후의 성형 부품의 굽힘성 개선 효과 차이를 설명한다. 이하의 미세석출물들의 석출거동은 전술한 TEM 이미지 분석을 통해 측정하였다. 미세석출물들의 석출거동은 0.5㎛*0.5㎛의 면적을 갖는 10개의 임의의 영역들에 대하여 측정하여 단위 면적(100㎛2)을 기준으로 환산하고, 이하 '평균'이라 함은 임의의 영역들에 대한 석출거동 값의 평균을 의미한다. 상기 임의의 영역들에서의 전체 석출물 개수, 직경 10nm 이하의 미세석출물 개수, 직경 5nm 이하의 미세석출물 개수를 측정한 후 단위 면적(100㎛2)을 기준으로 환산하고, 이들 각각의 평균값을 '전체석출물 개수 평균', '10nm 이하 석출물 개수 평균', '5nm 이하 석출물 개수 평균'으로 지칭하고 각각의 표준 편차를 측정하였다. 상기 임의의 영역들에서의 평균 자유 경로(mean free path)를 통해 미세석출물들 간의 평균 거리를 산출하고, 이들의 평균값을 '석출물간 거리 평균'으로 지칭하였다. Hereinafter, differences in the effect of improving the bendability of molded parts after hot stamping according to the precipitation behavior of the fine precipitates 20 will be described using Table 8. Precipitation behavior of the following fine precipitates was measured through the above-described TEM image analysis. Precipitation behavior of fine precipitates is measured for 10 random areas having an area of 0.5㎛*0.5㎛ and converted based on a unit area (100㎛ 2 ), and hereinafter, 'average' refers to random areas means the average of the precipitation behavior values for After measuring the total number of precipitates, the number of fine precipitates having a diameter of 10 nm or less, and the number of fine precipitates having a diameter of 5 nm or less in the arbitrary regions, they are converted based on the unit area (100 μm 2 ), and the average value of each of these is ‘total They were referred to as 'average number of precipitates', 'average number of precipitates of 10 nm or less', and 'average number of precipitates of 5 nm or less', and standard deviations of each were measured. The average distance between the fine precipitates was calculated through the mean free path in the arbitrary regions, and the average value thereof was referred to as 'average distance between the precipitates'.
개수 변동계수, 즉 제2 변동계수(C2)는 상기 개수 평균의 표준 편차를 상기 개수 평균으로 나눈 값으로 정의하였다. 본 발명에서 제2 변동계수(C2)는 0.8 이하일 수 있다. 제2 변동계수(C2)는 직경 10nm 이하 미세석출물의 개수 변동계수인 제2-1 변동계수(C21) 및 직경 5nm 이하 미세석출물의 개수 변동계수인 제2-2 변동계수(C22)를 포함한다. The number coefficient of variation, that is, the second coefficient of variation (C2) was defined as a value obtained by dividing the standard deviation of the number average by the number average. In the present invention, the second coefficient of variation (C2) may be 0.8 or less. The second coefficient of variation (C2) includes a 2-1 coefficient of variation (C21), which is a coefficient of variation in the number of fine precipitates having a diameter of 10 nm or less, and a 2-2 coefficient of variation (C22), which is a coefficient of variation in the number of fine precipitates having a diameter of 5 nm or less. .
제2-1 변동계수(C21)는 전체 미세석출물들 중 직경이 0.01㎛ 이하인 미세석출물의 개수 평균의 표준편차를 직경이 0.01㎛ 이하인 미세석출물들 간의 개수 평균으로 나눈 값으로 정의되며, 제2-1 변동계수(C21)는 0.8 이하일 수 있다. 이하, 제2-1 변동계수(C21)는 '제1 개수 변동계수'로 지칭될 수도 있다. 제2-2 변동계수(C22)는 전체 미세석출물들 중 직경이 0.005㎛ 이하인 미세석출물의 개수 평균의 표준편차를 직경이 0.005㎛ 이하인 미세석출물들 간의 개수 평균으로 나눈 값으로 정의되며, 제2-2 변동계수(C22)는 0.8 이하일 수 있다. 이하, 제2-2 변동계수(C22)는 '제2 개수 변동계수'로 지칭될 수도 있다.The 2-1 coefficient of variation (C21) is defined as a value obtained by dividing the standard deviation of the number average of fine precipitates having a diameter of 0.01 μm or less among all fine precipitates by the average number of fine precipitates having a diameter of 0.01 μm or less, and the second- 1 The coefficient of variation C21 may be 0.8 or less. Hereinafter, the 2-1st coefficient of variation C21 may be referred to as a 'first number coefficient of variation'. The 2-2 coefficient of variation (C22) is defined as a value obtained by dividing the standard deviation of the average number of fine precipitates having a diameter of 0.005 μm or less among all the fine precipitates by the average number of fine precipitates having a diameter of 0.005 μm or less, and the second- 2 The coefficient of variation C22 may be 0.8 or less. Hereinafter, the 2-2 coefficient of variation C22 may be referred to as a 'second number coefficient of variation'.
시편Psalter 전체 석출물whole precipitate 10nm 이하 석출물Precipitates of 10 nm or less 5nm 이하 석출물Precipitates of 5 nm or less H/S후
굽힘성 (°)
After H/S
Bendability (°)
개수 평균
(개/㎛2)
count average
(pcs/㎛ 2 )
개수 평균
표준 편차
count average
Standard Deviation
개수
변동계수(C2)
Count
Coefficient of variation (C2)
석출물간
거리
평균
(㎛)
between precipitates
distance
average
(μm)
개수 평균
(개/㎛2)
count average
(pcs/㎛ 2 )
개수 평균
표준 편차
count average
Standard Deviation
개수
변동계수
(C21)
Count
coefficient of variation
(C21)
개수 평균
(개/㎛2)
count average
(pcs/㎛ 2 )
개수 평균
표준 편차
count average
Standard Deviation
개수
변동계수
(C22)
Count
coefficient of variation
(C22)
Y1Y1 25,04925,049 19,75319,753 0.79 0.79 0.19 0.19 23,04423,044 18,43518,435 0.80 0.80 15,77015,770 12,07512,075 0.77 0.77 5353
Y2Y2 26,70826,708 14,65114,651 0.55 0.55 0.26 0.26 25,70225,702 14,39314,393 0.56 0.56 20,04720,047 13,05913,059 0.65 0.65 5454
Y3Y3 27,96927,969 13,10513,105 0.47 0.47 0.26 0.26 26,21326,213 17,07617,076 0.65 0.65 24,99024,990 19,70619,706 0.79 0.79 5353
Y4Y4 29,54229,542 17,21917,219 0.58 0.58 0.26 0.26 26,63026,630 20,69520,695 0.78 0.78 28,22428,224 22,57922,579 0.80 0.80 5252
Y5Y5 28,78128,781 23,02523,025 0.80 0.80 0.19 0.19 27,68427,684 20,24920,249 0.73 0.73 24,08724,087 17,89317,893 0.74 0.74 5555
Y6Y6 29,87029,870 21,50721,507 0.72 0.72 0.17 0.17 28,73628,736 21,34721,347 0.74 0.74 25,79025,790 20,04220,042 0.78 0.78 5555
Y7Y7 29,75829,758 22,10622,106 0.74 0.74 0.18 0.18 28,57928,579 21,55721,557 0.75 0.75 26,92126,921 21,53721,537 0.80 0.80 5555
Y8Y8 29,93329,933 23,60523,605 0.79 0.79 0.16 0.16 28,98828,988 22,85922,859 0.79 0.79 27,64327,643 22,11422,114 0.80 0.80 5353
Y9Y9 25,02725,027 20,59320,593 0.82 0.82 0.21 0.21 23,97623,976 19,45519,455 0.81 0.81 18,94018,940 15,36915,369 0.81 0.81 4444
Y10Y10 26,69326,693 21,65921,659 0.81 0.81 0.24 0.24 25,70925,709 17,33617,336 0.67 0.67 20,21320,213 9,4719,471 0.47 0.47 4545
Y11Y11 29,53429,534 24,97724,977 0.85 0.85 0.15 0.15 28,60428,604 14,05714,057 0.49 0.49 24,00124,001 13,98913,989 0.58 0.58 4242
Y12Y12 25,12925,129 20,39020,390 0.81 0.81 0.38 0.38 23,04223,042 17,38017,380 0.75 0.75 15,62615,626 11,60811,608 0.74 0.74 4343
Y13Y13 26,19926,199 19,16319,163 0.73 0.73 0.36 0.36 23,75623,756 19,54819,548 0.82 0.82 16,97316,973 13,19013,190 0.78 0.78 4343
Y14Y14 27,28627,286 19,95719,957 0.73 0.73 0.37 0.37 24,78424,784 18,97718,977 0.77 0.77 17,75417,754 14,60914,609 0.82 0.82 4141
표 8은 복수의 시편들에 대하여 미세석출물들의 석출거동에 따른 굽힘각을 수치화한 것이다. 구체적으로, 표 8에는 복수의 시편들(Y1~Y14)에 대하여, 미세석출물들의 석출거동으로서 전체 미세석출물, 직경 10nm 이하의 미세석출물 및 직경 5nm 이하의 미세석출물 각각의 개수 평균, 상기 개수 평균의 표준편차, 미세석출물 개수의 변동계수인 제2 변동계수(C2)에 대한 측정값들과, 그에 따른 핫 스탬핑 이후 갖는 특성들로써, 굽힘각에 대한 측정값들이 기재되어 있다. 특히 개수 평균의 변동계수인 제2 변동계수(C2)에 따른 굽힘성 관점에서 설명한다.Table 8 quantifies the bending angle according to the precipitation behavior of fine precipitates for a plurality of specimens. Specifically, in Table 8, with respect to the plurality of specimens (Y1 to Y14), as the precipitation behavior of the microprecipitates, the number average of all microprecipitates, microprecipitates with a diameter of 10 nm or less and fine precipitates with a diameter of 5 nm or less, respectively, the number average Measured values for the standard deviation, the second coefficient of variation (C2), which is the coefficient of variation of the number of fine precipitates, and the measured values for the bending angle as characteristics after hot stamping according thereto are described. In particular, it will be described from the viewpoint of bendability according to the second coefficient of variation C2, which is the coefficient of variation of the number average.
시편 Y1 내지 Y14는 탄소(C): 0.28~0.50중량%, 실리콘(Si): 0.15~0.70중량%, 망간(Mn): 0.5~2.0중량%, 인(P): 0 초과 0.05중량% 이하, 황(S): 0 초과 0.01중량% 이하, 크롬(Cr): 0.1~0.5중량%, 붕소(B): 0.001~0.005중량%, 첨가제로서 티타늄(Ti), 니오븀(Nb), 및 바나듐(V) 중 1종 이상의 합: 0 초과 0.1wt% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 슬래브에 대하여, 전술한 공정 조건을 적용하여 S100 내지 S600 단계를 통해 제조된 핫 스탬핑용 소재를 핫 스탬핑하여 제조된 시편들이다. 이때, 시편 Y1 내지 Y14는 슬래브 재가열 온도(SRT): 1230℃, 마무리 압연 온도(FDT): 900℃, 열간압연 시 압하율: 95%, 권취 온도(CT): 780℃, 소둔 열처리 온도: 780℃, 도금 침지 온도: 660℃ 의 조건에서 제조된 핫 스탬핑 소재를 950℃에서 270초 동안 가열 후 핫 스탬핑하여 제조된 시편들이다. 한편, 시편 Y1 내지 Y14는 후술하는 제2 변동계수(C2)에 관한 석출 거동 뿐만 아니라 상술한 제1 변동계수(C1)에 관한 석출 거동 또한 만족할 수 있다. 즉, Y1 내지 Y14는 전술한 미세석출물들의 석출거동 조건들을 만족하는 시편들이다. Specimens Y1 to Y14 contain carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P): greater than 0 and less than 0.05% by weight, Sulfur (S): more than 0 and 0.01% by weight or less, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, titanium (Ti), niobium (Nb), and vanadium (V ) The sum of one or more of: 0 to 0.1 wt% or less, and to the slab containing the remaining iron (Fe) and other unavoidable impurities, the material for hot stamping manufactured through steps S100 to S600 by applying the above-described process conditions Specimens produced by hot stamping. At this time, specimens Y1 to Y14 had a slab reheating temperature (SRT): 1230 ° C, a finish rolling temperature (FDT): 900 ° C, a reduction ratio during hot rolling: 95%, a coiling temperature (CT): 780 ° C, annealing heat treatment temperature: 780 ℃, plating immersion temperature: specimens prepared by hot stamping after heating the hot stamping material manufactured under the condition of 660 ℃ at 950 ℃ for 270 seconds. On the other hand, specimens Y1 to Y14 may satisfy not only the precipitation behavior with respect to the second coefficient of variation (C2) described later, but also the precipitation behavior with respect to the aforementioned first coefficient of variation (C1). That is, Y1 to Y14 are specimens satisfying the above-described precipitation behavior conditions of fine precipitates.
구체적으로, 시편 Y1 내지 Y14의 전체 미세석출물들의 개수는 25,000~30,000개/㎛2이고, 인접한 미세석출물들 간의 평균 거리는 0.15㎛ 이상 0.40㎛ 이하이며, 직경 10nm 이하 미세석출물들의 개수는 23,000~29,000개/㎛2이고, 직경 5nm 이하 미세석출물들의 개수는 15,200~29,000개/㎛2이다. 표 8에는 도시하지 않았으나 시편 Y1 내지 Y14는 직경 0.01㎛ 이하의 미세석출물의 비율은 각각 90% 이상이고, 직경 0.005㎛ 이하의 미세석출물의 비율은 60% 이상이며, 전체 미세석출물들의 직경 평균은 0.006㎛ 이하를 만족한다.Specifically, the total number of microprecipitates in specimens Y1 to Y14 is 25,000 to 30,000/μm 2 , the average distance between adjacent microprecipitates is 0.15 μm or more and 0.40 μm or less, and the number of fine precipitates with a diameter of 10 nm or less is 23,000 to 29,000 / μm 2 , and the number of fine precipitates having a diameter of 5 nm or less is 15,200 to 29,000/μm 2 . Although not shown in Table 8, in specimens Y1 to Y14, the ratio of fine precipitates with a diameter of 0.01 μm or less was 90% or more, the ratio of fine precipitates with a diameter of 0.005 μm or less was 60% or more, and the average diameter of all fine precipitates was 0.006 ㎛ or less is satisfied.
다만, 시편 Y1 내지 Y8은 제2 변동계수가 0.8 이하인 조건을 만족하고, 시편 Y9 내지 Y14는 제2 변동계수가 0.8 초과로서 본 발명의 제2 변동계수에 따른 석출거동 조건을 만족하지 못한다. 제2 변동계수가 0.8 이하인 시편 Y1 내지 Y8은 제1 변동계수가 0.8 초과인 시편 Y9 내지 Y14보다 굽힘성이 우수한 것을 확인할 수 있다. 구체적으로, 시편 Y9 내지 Y14는 핫 스탬핑 후 굽힘각(°)이 40도 내지 50도로서, 시편 Y9 내지 Y14는 핫 스탬핑 후 굽힘각이 50도 이상 60도 미만인 것과 대비하여, 시편 Y1 내지 Y8이 시편 Y9 내지 Y14보다 굽힘성이 우수하다.However, specimens Y1 to Y8 satisfy the condition that the second coefficient of variation is 0.8 or less, and specimens Y9 to Y14 have a second coefficient of variation greater than 0.8, which does not satisfy the precipitation behavior condition according to the second coefficient of variation of the present invention. It can be seen that specimens Y1 to Y8 having a second coefficient of variation of 0.8 or less have better bendability than specimens Y9 to Y14 having a first coefficient of variation of more than 0.8. Specifically, specimens Y9 to Y14 have a bending angle (°) of 40 to 50 degrees after hot stamping, and specimens Y9 to Y14 have a bending angle of 50 degrees or more and less than 60 degrees after hot stamping, whereas specimens Y1 to Y8 have It is superior in bendability to specimens Y9 to Y14.
시편 Y9의 경우, 제2 변동계수(C2), 제2-1 변동계수(C21) 및 제2-2 변동계수(C22)가 각각 0.82, 0.81 및 0.81으로서, 개수 변동계수(C2, C21, C22) 조건의 상한(0.8)을 초과한다. 이에 따라 시편 Y9의 굽힘성은 상대적으로 낮은 44도에 불과함을 확인할 수 있다.In the case of specimen Y9, the 2nd coefficient of variation (C2), the 2-1st coefficient of variation (C21) and the 2-2nd coefficient of variation (C22) are 0.82, 0.81 and 0.81, respectively, and the number of coefficients of variation (C2, C21, C22 ) exceeds the upper limit (0.8) of the condition. Accordingly, it can be confirmed that the bendability of specimen Y9 is only 44 degrees, which is relatively low.
시편 Y10 내지 Y12의 경우, 제2 변동계수(C2)가 0.81 내지 0.85으로서, 제2 변동계수(C2) 조건의 상한을 초과한다. 이에 따라 시편 Y10 내지 Y12의 굽힘성은 상대적으로 낮은 42도 내지 45도에 불과함을 확인할 수 있다.In the case of specimens Y10 to Y12, the second coefficient of variation (C2) is 0.81 to 0.85, exceeding the upper limit of the condition of the second coefficient of variation (C2). Accordingly, it can be confirmed that the bendability of specimens Y10 to Y12 is only 42 degrees to 45 degrees, which are relatively low.
시편 Y13의 경우, 제2-1 변동계수(C21)가 0.82로서, 제2-1 변동계수(C21) 조건의 상한을 초과한다. 이에 따라 시편 Y13의 굽힘성은 상대적으로 낮은 43도에 불과함을 확인할 수 있다. 시편 Y14의 경우, 제2-2 변동계수(C22)가 0.82로서, 제2-2 변동계수(C22) 조건의 상한을 초과한다. 이에 따라 시편 Y14의 굽힘성은 상대적으로 낮은 41도에 불과함을 확인할 수 있다.In the case of specimen Y13, the 2-1 coefficient of variation (C21) is 0.82, exceeding the upper limit of the 2-1 coefficient of variation (C21) condition. Accordingly, it can be confirmed that the bendability of specimen Y13 is only 43 degrees, which is relatively low. In the case of specimen Y14, the 2-2 coefficient of variation (C22) is 0.82, exceeding the upper limit of the 2-2 coefficient of variation (C22) condition. Accordingly, it can be confirmed that the bendability of specimen Y14 is only 41 degrees, which is relatively low.
특히, 시편 Y5 내지 Y8은 단위 면적(100㎛2) 당 전체 석출물 개수 평균이 28,000개 이상 30,000개 이하로 많은 편이고, 그 중 직경 10nm 이하의 미세석출물 및 직경 5nm 이하의 미세석출물의 개수도 상대적으로 많은 편으로 굽힘성 확보가 어려운 조건일 수 있다. 그럼에도 불구하고, 시편 Y5 내지 Y8은 제2 변동계수가 0.8 이하라는 본 발명의 석출거동 조건을 만족하므로 시편 Y9 내지 Y14과 대비하여 상대적으로 높은 굽힘성을 가진다.In particular, specimens Y5 to Y8 have an average number of total precipitates per unit area (100 μm 2 ) of 28,000 or more and 30,000 or less, and among them, the number of fine precipitates with a diameter of 10 nm or less and fine precipitates with a diameter of 5 nm or less are relatively high. In many ways, it may be a difficult condition to secure bendability. Nevertheless, specimens Y5 to Y8 satisfy the precipitation behavior condition of the present invention that the second coefficient of variation is 0.8 or less, and thus have relatively high bendability compared to specimens Y9 to Y14.
반면, 시편 Y9 내지 Y14는 전체 석출물, 직경이 10nm 및 5nm 이하인 미세석출물의 개수가 많은 편으로서 굽힘성 확보에 상대적으로 유리한 조건일 수 있다. 그럼에도 불구하고 시편 Y9 내지 Y14는 제2 변동계수가 0.8 이하라는 본 발명의 석출거동 조건을 만족하지 못하므로 시편 Y1 내지 Y8과 대비하여 상대적으로 낮은 굽힘성을 가진다.On the other hand, samples Y9 to Y14 have a large number of total precipitates and fine precipitates having diameters of 10 nm and 5 nm or less, which may be relatively favorable conditions for securing bendability. Nevertheless, specimens Y9 to Y14 do not satisfy the precipitation behavior condition of the present invention that the second coefficient of variation is 0.8 or less, so they have relatively low bendability compared to specimens Y1 to Y8.
결과적으로, 전술한 본 발명의 함량 조건 및 공정 조건을 적용한 핫 스탬핑용 소재 제조방법으로 제조한 핫 스탬핑용 소재는 핫 스탬핑을 거친 후 전술한 미세석출물들의 석출 거동 조건을 만족하며, 이와 같은 미세석출물들의 석출 거동 조건을 만족하는 핫스탬핑 제품은 인장강도, 굽힘성 및 수소지연파괴 특성이 향상되었음을 확인하였다. 특히, 본 발명의 실시예들에 따른 핫 스탬핑용 소재는 석출거동 조건 중 직경 평균 변동계수 및/또는 개수 변동계수를 만족하여 미세석출물의 개수나 크기(직경)가 균일하게 분포됨으로써 핫 스탬핑 후의 성형 부품의 인장강도, 굽힘성 및 수소지연파괴 특성이 더욱 향상된 것을 확인할 수 있다.As a result, the material for hot stamping manufactured by the material manufacturing method for hot stamping to which the above-described content conditions and process conditions of the present invention are applied satisfies the above-described precipitation behavior conditions of the fine precipitates after undergoing hot stamping, and such fine precipitates It was confirmed that the hot stamping products satisfying the precipitation behavior conditions of these improved tensile strength, bendability and hydrogen delayed fracture characteristics. In particular, the material for hot stamping according to embodiments of the present invention satisfies the diameter average coefficient of variation and/or the number coefficient of variation among precipitation behavior conditions and uniformly distributes the number or size (diameter) of fine precipitates, thereby forming after hot stamping. It can be seen that the tensile strength, bendability and delayed hydrogen fracture characteristics of the parts are further improved.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.

Claims (19)

  1. 탄소(C): 0.28~0.50중량%, 실리콘(Si): 0.15~0.70중량%, 망간(Mn): 0.5~2.0중량%, 인(P): 0 초과 0.05중량% 이하, 황(S): 0 초과 0.01중량% 이하, 크롬(Cr): 0.1~0.5중량%, 붕소(B): 0.001~0.005중량%, 첨가제: 0 초과 0.1중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 강판; 및Carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P): greater than 0 and less than 0.05% by weight, sulfur (S): More than 0 and less than 0.01% by weight, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, additives: more than 0 and less than 0.1% by weight, and the rest containing iron (Fe) and other unavoidable impurities grater; and
    상기 강판 내에 분포된 미세석출물들;을 포함하고,Including; fine precipitates distributed in the steel sheet,
    상기 첨가제는 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 적어도 어느 하나를 포함하며,The additive includes at least one of titanium (Ti), niobium (Nb) and vanadium (V),
    상기 미세석출물들은, 상기 티타늄(Ti), 상기 니오븀(Nb) 및 상기 바나듐(V) 중 적어도 어느 하나의 질화물 또는 탄화물을 포함하고, 수소를 트랩하고,The fine precipitates include a nitride or carbide of at least one of the titanium (Ti), the niobium (Nb), and the vanadium (V), trap hydrogen,
    상기 미세석출물들의 직경 평균의 표준편차를 상기 미세석출물들의 직경 평균으로 나눈 값인 직경 평균 변동계수는 0.7 이하인, 핫 스탬핑용 소재.The material for hot stamping, wherein the average diameter coefficient of variation, which is a value obtained by dividing the standard deviation of the average diameter of the fine precipitates by the average diameter of the fine precipitates, is 0.7 or less.
  2. 제1항에 있어서,According to claim 1,
    핫 스탬핑 후, 1,680 MPa 이상의 인장강도, 40 도(degree) 이상의 굽힘각, 0.5 wppm 이하의 활성화 수소량을 나타내는, 핫 스탬핑용 소재.A material for hot stamping, which exhibits a tensile strength of 1,680 MPa or more, a bending angle of 40 degrees or more, and an amount of activated hydrogen of 0.5 wppm or less after hot stamping.
  3. 제1항에 있어서,According to claim 1,
    상기 미세석출물들의 직경 평균은 0.006㎛ 이하인, 핫 스탬핑용 소재.The average diameter of the fine precipitates is 0.006㎛ or less, material for hot stamping.
  4. 제3항에 있어서,According to claim 3,
    상기 미세석출물들의 90% 이상이 0.01㎛ 이하의 직경을 갖는, 핫 스탬핑용 소재.A material for hot stamping, wherein 90% or more of the fine precipitates have a diameter of 0.01 μm or less.
  5. 제4항에 있어서,According to claim 4,
    상기 미세석출물들의 60% 이상이 0.005㎛ 이하의 직경을 갖는, 핫 스탬핑용 소재.A material for hot stamping, wherein 60% or more of the fine precipitates have a diameter of 0.005 μm or less.
  6. 제1항에 있어서,According to claim 1,
    상기 미세석출물들의 단위면적(100㎛2)당 개수는 25,000개 이상 30,000개 이하인, 핫 스탬핑용 소재.The number of fine precipitates per unit area (100㎛ 2 ) is 25,000 or more and 30,000 or less, a material for hot stamping.
  7. 제6항에 있어서,According to claim 6,
    직경이 0.01㎛ 이하인 미세석출물들의 단위면적(100㎛2)당 개수는 23,000개 이상 29,000개 이하인, 핫 스탬핑용 소재.A material for hot stamping in which the number of fine precipitates having a diameter of 0.01 μm or less per unit area (100 μm 2 ) is 23,000 or more and 29,000 or less.
  8. 제7항에 있어서,According to claim 7,
    직경이 0.005㎛ 이하인 미세석출물들의 단위면적(100㎛2)당 개수는 15,200개 이상 29,000개 이하인, 핫 스탬핑용 소재.A material for hot stamping in which the number of fine precipitates having a diameter of 0.005 μm or less per unit area (100 μm 2 ) is 15,200 or more and 29,000 or less.
  9. 제1항에 있어서,According to claim 1,
    상기 미세석출물들의 개수 평균의 표준편차를 상기 미세석출물들의 개수 평균으로 나눈 값인 개수 변동계수는 0.8 이하인, 핫 스탬핑용 소재.The number coefficient of variation, which is a value obtained by dividing the standard deviation of the average number of the fine precipitates by the average number of the fine precipitates, is 0.8 or less, a material for hot stamping.
  10. 탄소(C): 0.28~0.50중량%, 실리콘(Si): 0.15~0.70중량%, 망간(Mn): 0.5~2.0중량%, 인(P): 0 초과 0.05중량% 이하, 황(S): 0 초과 0.01중량% 이하, 크롬(Cr): 0.1~0.5중량%, 붕소(B): 0.001~0.005중량%, 첨가제: 0 초과 0.1중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 강판; 및Carbon (C): 0.28 to 0.50% by weight, silicon (Si): 0.15 to 0.70% by weight, manganese (Mn): 0.5 to 2.0% by weight, phosphorus (P): greater than 0 and less than 0.05% by weight, sulfur (S): More than 0 and less than 0.01% by weight, chromium (Cr): 0.1 to 0.5% by weight, boron (B): 0.001 to 0.005% by weight, additives: more than 0 and less than 0.1% by weight, and the rest containing iron (Fe) and other unavoidable impurities grater; and
    상기 강판 내에 분포된 미세석출물들;을 포함하고,Including; fine precipitates distributed in the steel sheet,
    상기 첨가제는 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 적어도 어느 하나를 포함하며,The additive includes at least one of titanium (Ti), niobium (Nb) and vanadium (V),
    상기 미세석출물들은, 상기 티타늄(Ti), 상기 니오븀(Nb) 및 상기 바나듐(V) 중 적어도 어느 하나의 질화물 또는 탄화물을 포함하고, 수소를 트랩하고,The fine precipitates include a nitride or carbide of at least one of the titanium (Ti), the niobium (Nb), and the vanadium (V), trap hydrogen,
    상기 미세석출물들의 개수 평균의 표준편차를 상기 미세석출물들의 개수 평균으로 나눈 값인 개수 변동계수는 0.8 이하인, 핫 스탬핑용 소재.The number coefficient of variation, which is a value obtained by dividing the standard deviation of the average number of the fine precipitates by the average number of the fine precipitates, is 0.8 or less, a material for hot stamping.
  11. 제10항에 있어서,According to claim 10,
    핫 스탬핑 후, 1,680 MPa 이상의 인장강도, 40 도(degree) 이상의 굽힘각, 0.5 wppm 이하의 활성화 수소량을 나타내는, 핫 스탬핑용 소재.A material for hot stamping, which exhibits a tensile strength of 1,680 MPa or more, a bending angle of 40 degrees or more, and an amount of activated hydrogen of 0.5 wppm or less after hot stamping.
  12. 제10항에 있어서,According to claim 10,
    상기 미세석출물들 중 직경이 0.01㎛ 이하인 미세석출물의 개수 평균의 표준편차를, 상기 직경이 0.01㎛ 이하인 미세석출물들의 개수 평균으로 나눈 값인 제1 개수 변동계수는 0.8 이하인, 핫 스탬핑용 소재.The first number coefficient of variation, which is a value obtained by dividing the standard deviation of the average number of fine precipitates having a diameter of 0.01 μm or less among the fine precipitates by the average number of fine precipitates having a diameter of 0.01 μm or less, is 0.8 or less. Material for hot stamping.
  13. 제12항에 있어서,According to claim 12,
    상기 미세석출물들 중 직경이 0.005㎛ 이하인 미세석출물의 개수 평균의 표준편차를 상기 직경이 0.005㎛ 이하인 미세석출물들의 개수 평균으로 나눈 값인 제2 개수 변동계수는 0.8 이하인, 핫 스탬핑용 소재.The second number coefficient of variation, which is a value obtained by dividing the standard deviation of the number average of fine precipitates having a diameter of 0.005 μm or less among the fine precipitates by the average number of fine precipitates having a diameter of 0.005 μm or less, is 0.8 or less, material for hot stamping.
  14. 제10항에 있어서,According to claim 10,
    상기 미세석출물들의 단위면적(100㎛2)당 개수는 25,000개 이상 30,000개 이하인, 핫 스탬핑용 소재.The number of fine precipitates per unit area (100㎛ 2 ) is 25,000 or more and 30,000 or less, a material for hot stamping.
  15. 제14항에 있어서,According to claim 14,
    직경이 0.01㎛ 이하인 미세석출물들의 단위면적(100㎛2)당 개수는 23,000개 이상 29,000개 이하인, 핫 스탬핑용 소재.A material for hot stamping in which the number of fine precipitates having a diameter of 0.01 μm or less per unit area (100 μm 2 ) is 23,000 or more and 29,000 or less.
  16. 제15항에 있어서,According to claim 15,
    직경이 0.005㎛ 이하인 미세석출물들의 단위면적(100㎛2)당 개수는 15,200개 이상 29,000개 이하인, 핫 스탬핑용 소재.A material for hot stamping in which the number of fine precipitates having a diameter of 0.005 μm or less per unit area (100 μm 2 ) is 15,200 or more and 29,000 or less.
  17. 제10항에 있어서,According to claim 10,
    상기 미세석출물들의 직경 평균은 0.006㎛ 이하인, 핫 스탬핑용 소재.The average diameter of the fine precipitates is 0.006㎛ or less, material for hot stamping.
  18. 제17항에 있어서,According to claim 17,
    상기 미세석출물들의 90% 이상이 0.01㎛ 이하의 직경을 갖는, 핫 스탬핑용 소재.A material for hot stamping, wherein 90% or more of the fine precipitates have a diameter of 0.01 μm or less.
  19. 제18항에 있어서,According to claim 18,
    상기 미세석출물들의 60% 이상이 0.005㎛ 이하의 직경을 갖는, 핫 스탬핑용 소재.A material for hot stamping, wherein 60% or more of the fine precipitates have a diameter of 0.005 μm or less.
PCT/KR2022/020150 2021-12-10 2022-12-12 Material for hot stamping WO2023106899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0177000 2021-12-10
KR1020210177000A KR20230088118A (en) 2021-12-10 2021-12-10 Material for hot stamping

Publications (1)

Publication Number Publication Date
WO2023106899A1 true WO2023106899A1 (en) 2023-06-15

Family

ID=86731029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020150 WO2023106899A1 (en) 2021-12-10 2022-12-12 Material for hot stamping

Country Status (2)

Country Link
KR (1) KR20230088118A (en)
WO (1) WO2023106899A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068548A (en) * 2003-02-28 2005-03-17 Nippon Steel Corp High strength thin steel sheet excellent in hydrogen embitterment resistance and its manufacturing method
JP2005126733A (en) * 2003-10-21 2005-05-19 Nippon Steel Corp Steel sheet for hot press having excellent hot workability, and automotive member
KR20140102310A (en) * 2012-01-13 2014-08-21 신닛테츠스미킨 카부시키카이샤 Hot stamp molded article and method for producing same
KR20180133508A (en) * 2016-05-25 2018-12-14 제이에프이 스틸 가부시키가이샤 Plated steel sheet and manufacturing method thereof
KR20190001493A (en) * 2017-06-27 2019-01-04 현대제철 주식회사 Hot stamping product and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170076009A (en) 2015-12-24 2017-07-04 현대제철 주식회사 Hot stamping coating steel sheets and method of manufacturing the same
KR102144194B1 (en) 2018-11-26 2020-08-12 현대제철 주식회사 Method of manufacturing hot stamping parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068548A (en) * 2003-02-28 2005-03-17 Nippon Steel Corp High strength thin steel sheet excellent in hydrogen embitterment resistance and its manufacturing method
JP2005126733A (en) * 2003-10-21 2005-05-19 Nippon Steel Corp Steel sheet for hot press having excellent hot workability, and automotive member
KR20140102310A (en) * 2012-01-13 2014-08-21 신닛테츠스미킨 카부시키카이샤 Hot stamp molded article and method for producing same
KR20180133508A (en) * 2016-05-25 2018-12-14 제이에프이 스틸 가부시키가이샤 Plated steel sheet and manufacturing method thereof
KR20190001493A (en) * 2017-06-27 2019-01-04 현대제철 주식회사 Hot stamping product and method of manufacturing the same

Also Published As

Publication number Publication date
KR20230088118A (en) 2023-06-19

Similar Documents

Publication Publication Date Title
WO2018117543A1 (en) Hot press forming plated steel sheet having excellent impact property, hot press molding member, and manufacturing method thereof
WO2015174605A1 (en) High-strength cold rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet and method for manufacturing same
WO2016098964A1 (en) High-strength cold rolled steel sheet with low material non-uniformity and excellent formability, hot dipped galvanized steel sheet, and manufacturing method therefor
WO2016104881A1 (en) Hot press-formed (hpf) member having excellent bending characteristics and method for manufacturing same
WO2019124688A1 (en) High-strength steel sheet having excellent impact properties and formability and method for manufacturing same
WO2020050573A1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio and manufacturing method for same
WO2022050501A1 (en) Material for hot stamping and method for manufacturing same
WO2017111524A1 (en) Ultra high-strength steel sheet having excellent hole expandability and manufacturing method therefor
WO2017188654A1 (en) Ultrahigh-strength and high-ductility steel sheet having excellent yield ratio and manufacturing method therefor
WO2020067752A1 (en) High-strength cold rolled steel sheet having high hole expansion ratio, high-strength hot-dip galvanized steel sheet, and manufacturing methods therefor
WO2020022778A1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2019124781A1 (en) Zinc-based plated steel sheet having excellent room temperature aging resistance and bake hardenability, and method for producing same
WO2021117989A1 (en) Cold rolled steel sheet with ultra-high strength, and manufacturing method therefor
WO2013154254A1 (en) High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same
WO2022050500A1 (en) Material for hot stamping, and method for manufacturing same
WO2016093513A2 (en) Dual-phase steel sheet with excellent formability and manufacturing method therefor
WO2023106899A1 (en) Material for hot stamping
WO2022097965A1 (en) Plated steel sheets for hot press forming having excellent hydrogen brittleness resistance and impact resistance, hot press formed parts, and manufacturing methods thereof
WO2023106898A1 (en) Material for hot stamping
WO2021125581A1 (en) Hot stamped part and method of manufacturing same
WO2018117500A1 (en) High tensile strength steel having excellent bendability and stretch-flangeability and manufacturing method thereof
WO2021091140A1 (en) High-strength steel having high yield ratio and excellent durability, and method for producing same
WO2021112488A1 (en) Thick composite-phase steel having excellent durability and manufacturing method therefor
WO2020130329A1 (en) High strength hot-rolled steel sheet having excellent workability, and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904728

Country of ref document: EP

Kind code of ref document: A1