WO2023106806A1 - Centrifugal separation device for starch extraction - Google Patents

Centrifugal separation device for starch extraction Download PDF

Info

Publication number
WO2023106806A1
WO2023106806A1 PCT/KR2022/019745 KR2022019745W WO2023106806A1 WO 2023106806 A1 WO2023106806 A1 WO 2023106806A1 KR 2022019745 W KR2022019745 W KR 2022019745W WO 2023106806 A1 WO2023106806 A1 WO 2023106806A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal
unit
tank
centrifugal separator
liquid
Prior art date
Application number
PCT/KR2022/019745
Other languages
French (fr)
Korean (ko)
Inventor
김영태
윤대한
심을섭
Original Assignee
김영태
서원학
윤대한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영태, 서원학, 윤대한 filed Critical 김영태
Publication of WO2023106806A1 publication Critical patent/WO2023106806A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/02Continuous feeding or discharging; Control arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/02Casings; Lids
    • B04B7/06Safety devices ; Regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B9/00Drives specially designed for centrifuges; Arrangement or disposition of transmission gearing; Suspending or balancing rotary bowls
    • B04B9/02Electric motor drives

Definitions

  • the present disclosure relates to a centrifugal separation device for starch extraction.
  • a solid component can be obtained from a suspension by centrifuging a suspension in which a solid and a liquid are mixed.
  • starch as a solid content can be separated by centrifuging a starch-containing suspension obtained by dissolving potato, tapioca, wheat, and corn as vegetable raw materials.
  • a conventional centrifugal separator has a decanter structure equipped with a screw conveyor inside a rotating body, and raw liquid is supplied to the rotating body through a supply pipe and separated into solid and liquid by the centrifugal force of the rotating body. The separated solids are transported and discharged to the tip of the cone by the screw conveyor, and the liquid is discharged through the end of the rotating body.
  • the conventional centrifugal separator is very expensive equipment and requires a lot of cost to provide facilities, so it is not easy to use in areas such as rural areas in underdeveloped countries with low income.
  • An object of the present invention is to provide a centrifugal separator for starch extraction that has a simple structure and is easy to manufacture.
  • the present problem is to provide a centrifugal separator for starch extraction that is easy to use and maintain.
  • An object of the present invention is to provide a centrifugal separator for extracting starch that can more easily collect the separated starch.
  • the object of the present invention is to provide a centrifugal separator for starch extraction which is capable of continuous operation.
  • the centrifugal separation device of the present embodiment includes a centrifugal separation unit for separating solids by applying centrifugal force to a mixed liquid, wherein the centrifugal separation unit forms an accommodation space therein and is rotatably disposed to perform solid-liquid separation by centrifugal force.
  • a tank and a driving unit for applying centrifugal force by rotating the rotating tank at high speed may be included.
  • the rotating tank is erected vertically to form an opening at the top, and a side wall portion extending along the axial direction from the top opening and separating the solid-liquid mixture from the liquid mixture is formed, protruding inward along the inner circumferential surface of the top opening, so that the mixed liquid It may include an inner flange to prevent the separation of the separated solid content.
  • a supply unit for supplying the mixed solution into the rotating tank may be further included.
  • the supply unit is connected to a supply line for transporting a mixture of solids and the supply line, and is inserted into the interior through an upper opening of the rotary tank, and an outlet at the lower end is bent toward the inner surface of the rotary tank. It may include a supply pipe for ejecting the mixed solution.
  • the supply unit may further include a rotation driver for rotating the supply pipe.
  • the rotating tank may further include an outer flange protruding outward along an outer circumferential surface of the upper opening to induce discharge of water.
  • the rotary tank may further include a discharge pipe communicating with the inside of the bottom center and extending in the axial direction to discharge solids flowing down from the side wall portion.
  • the rotating tank may further include an inclined wall portion formed between a lower end of the side wall portion and the discharge pipe and forming an inclined surface with an inner diameter gradually decreasing.
  • the drive unit may include a drive motor, a rotation shaft of the drive motor, a drive roll and a driven roll installed in the rotation tank, and a rotation belt connected between the drive roll and the driven roll.
  • the drive unit may further include a clutch provided between the rotation shaft of the drive motor and the drive roll to selectively connect or disconnect power.
  • the driving unit is connected to two centrifugal separators through the clutch to alternately operate each centrifugal separator, and after the driving motor stops, the clutch of one centrifugal separator in operation is separated and stopped
  • a clutch of the other centrifugal separation unit may be connected to transmit rotational force remaining after the drive motor is stopped to the other centrifugal separation unit that is stopped.
  • the centrifugal separator may further include a buffer for suppressing vibration.
  • the buffer unit may include at least one elastic member installed between the rotary tank and the external fixture.
  • the rotating tank has a container shape with a lower end closed, and a coupling shaft detachably mounted with the driving unit protrudes along the axial direction at a lower center, and a socket portion for fixing the coupling shaft is provided on the rotating shaft of the driving motor. It may have a structure in which the rotating tank is separated from the drive motor to collect solids separated from the solid and liquid.
  • It may further include a mixing unit that is connected to the supply line and provides a mixture of solid and liquid.
  • the mixing unit may include a hopper for accommodating the object, a grinder connected to the hopper to grind and grind the object, and a liquid supply unit connected to the grinder and supplying liquid to the grinder.
  • a recovery line connecting the rotating tank and the mixing unit to supply water discharged from an upper opening of the rotating tank to a grinder of the mixing unit may be further included.
  • a filter unit connected to and installed on the supply line may further include a filter unit for separating dregs of a predetermined particle size or more from the mixed solution.
  • the centrifugal separation device may further include a filter washing unit for washing the filter unit.
  • the filter washing part includes a washing liquid line connected to the supply line at the rear end of the filter part and supplying washing liquid to the filter part in the reverse direction, an inlet switching valve installed between the supply line and the washing liquid line, and a supply line at the front end of the filter part. It may include a discharge line for discharging the washing liquid that is connected and passed through the filter unit, and a discharge conversion valve installed between the supply line and the discharge line.
  • the centrifugal separation device includes a plurality of centrifugal separators, a plurality of branch lines branched on the supply line and connected to each centrifugal separator, and a switching valve installed in the supply line to control the supply of the mixed solution to each branch line. Including, it may be a structure in which a plurality of centrifugal separators are arranged in parallel in the supply line and operated alternately.
  • the centrifugal separation device includes a plurality of filter units, a plurality of filter lines branched on the supply line and connected to each filter unit, and installed in the supply line at the inlet and outlet of each filter line, respectively, for each filter line. It may have a structure in which a plurality of filter units are arranged in parallel in a supply line and operated alternately, including an inlet switching valve and an outlet switching valve for controlling the supply of the mixed solution.
  • the centrifugal separation device includes a filter washing unit for individually washing the plurality of filter units, and the filter washing unit is connected to a rear end of the filter unit to supply a washing liquid to the filter unit, and is connected to a front end of the filter unit. It includes a discharge line for discharging and processing the washing liquid that has passed through the filter unit, an inflow switching valve installed in the washing liquid line and a discharge switching valve installed in the discharge line, and the washing liquid line is branched into two at the rear end of the filter unit and each filter line and the discharge line is branched into two and connected to each filter line at the front end of the filter unit, and the inlet conversion valve is installed on the washing liquid line to control the supply of the washing liquid to each filter line, and the discharge It may be a structure in which a discharge switching valve is installed on the line to control the discharge of the washing liquid in each filter line.
  • the rotary tank is laid horizontally and rotatably disposed, has an opening at one end thereof, and extends in an axial direction from the opening and has a side wall portion in which solid-liquid separation of the mixed solution is performed, and protrudes inward along the inner circumferential surface of the opening It may include an inner flange which is formed and prevents the separation of the solids separated from the mixed solution.
  • a supply unit for supplying the mixed solution into the rotating tank may be further included.
  • the supply unit includes a supply line for transporting a mixed liquid mixed with solids, a supply pipe connected to the supply line, inserted into the rotating tank, and having an outlet bent toward the inner surface of the rotating tank to eject the mixed liquid into the inner surface of the rotating tank. can do.
  • a shaft member communicating with the inside and extending outward along an axial direction may be formed at a center of the front end opposite the opening of the rotating tank, and the supply pipe may be inserted into the rotating tank through the inside of the shaft member.
  • a slip ring is installed between the supply pipe and the supply line so that the supply pipe is rotatably connected with respect to the supply line, and the supply pipe may be fixed to the shaft member to rotate like the shaft member.
  • the rotating tank may further include an outer flange protruding outward along an outer circumferential surface of the opening to induce discharge of water.
  • a collection box installed outside the opening of the rotating tank along the circumferential direction to collect water discharged from the opening, connecting the collection box and the mixing unit to supply the water discharged from the opening of the rotating tank to the grinder of the mixing unit A recovery line may be further included.
  • the drive unit may include a drive motor, a rotation shaft of the drive motor, a drive roll and a driven roll installed on the shaft member of the rotation tank, and a rotation belt connected between the drive roll and the driven roll.
  • It may further include a control unit provided at the opening of the rotary tank to control the amount of solids extracted.
  • the control unit includes a discharge passage for discharging the mixed liquid by forming a relatively low height on the inner flange, a blocking plate installed on the inner flange and blocking the discharge passage, and changing the height of the blocking plate with respect to the discharge passage to obtain solid content. It may be a structure that controls the amount of extraction.
  • Long holes are formed at both ends of the blocking plate, and fastening holes for fastening bolts are formed at positions corresponding to the long holes on the front surface of the inner flange to adjust the height of the blocking plate by adjusting the position of the long holes for the bolts.
  • the separated starch can be easily collected using its own weight.
  • the structure is simple and manufacturing is possible at low cost, so it is possible to build equipment even in low-income farmhouses.
  • Energy waste can be minimized by supplying the rotational force remaining after the driving motor is stopped to another stopped centrifugal separator to provide the rotational force of the centrifugal separator.
  • FIG. 1 is a schematic diagram showing a centrifugal separator of this embodiment.
  • FIG. 2 is a schematic diagram showing another embodiment of a centrifugal separator.
  • Figure 3 is a schematic diagram for explaining the starch extraction action by the centrifugal separator of the present embodiment.
  • Fig. 4 is a schematic diagram showing a vibration reduction structure of the centrifugal separator of this embodiment.
  • FIG. 5 is a schematic diagram showing a centrifugal separation device of another embodiment.
  • FIG. 6 is a schematic diagram showing a vibration reduction structure of the centrifugal separator according to the embodiment of FIG. 5 .
  • FIG. 7 is a schematic diagram showing a centrifugal separation device of another embodiment.
  • FIG 8 and 9 are schematic diagrams showing the starch amount control structure of the centrifugal separator.
  • Fig. 10 is a schematic diagram showing the centrifugal separator and power transmission structure of this embodiment.
  • this embodiment will be described as an example of an apparatus for extracting starch through centrifugation.
  • This embodiment is not limited thereto and may be applied to all devices for centrifuging and extracting various solids other than starch.
  • Fig. 1 shows the centrifugal separator of this embodiment.
  • the centrifugal separator 10 is connected to a mixing unit 20 that provides a mixture of starch and liquid suspension (hereinafter referred to as a mixed liquid), and a supply line through which the mixed liquid is transported.
  • a mixing unit 20 that provides a mixture of starch and liquid suspension (hereinafter referred to as a mixed liquid), and a supply line through which the mixed liquid is transported.
  • a filter unit 40 installed on the supply line 30 to remove debris of a predetermined particle size or more from the mixed solution, a filter washing unit 50 for washing the filter unit 40, and a supply line 30
  • It may include a centrifugal separation unit 60 for separating starch, which is a solid content, by applying centrifugal force to the mixed solution supplied through the mixture.
  • the mixed solution provided from the mixing unit 20 is supplied to the centrifugal separator 60 after passing through the filter unit 40 along the supply line 30, and is separated into solid and liquid by centrifugal force in the centrifugal separator 60. Solids can be extracted.
  • the mixing unit 20 is connected to a hopper 21 for accommodating an object to be pulverized, a grinder 22 connected to the hopper 21 to grind and grind the object, and a grinder 22 to supply liquid to the grinder 22
  • a liquid supply unit 23 may be included.
  • the liquid may be water for example.
  • the mixing unit 20 may prepare a suspension by pulverizing various objects containing starch and mixing them with water.
  • the object may be, for example, potato, tapioca, wheat, or corn.
  • the object may be put into the grinder 22 from the hopper 21 and pulverized into fine particles.
  • the crusher 22 may be varied in various ways depending on the object.
  • water is introduced into the pulverizer 22 through the liquid supply unit 23 to create a mixed solution.
  • the mixed solution made through the grinder 22 is transported through the supply line 30.
  • the filter unit 40 is installed on the supply line 30 and separates debris of a predetermined particle size or more from the mixture.
  • the mixed solution containing only fine-sized starch particles may be supplied to the centrifugal separation unit 60 through the filter unit 40 .
  • a plurality of two or more filter units 40 may be provided and used alternately. Accordingly, it is possible to easily perform a replacement or cleaning operation of the filter unit 40 while continuously filtering the mixed solution by switching the operation of the filter unit 40 when necessary.
  • the apparatus 10 may have a structure in which two filter units 40 are disposed in parallel in a supply line 30 and operated alternately.
  • the device 10 includes two filter units 40, a filter line 41 branched on a supply line 30 and connected to each filter unit 40, and an inlet side of each filter line 41. It may include an inlet switching valve 42 and an outlet switching valve 43 installed on the supply line 30 at the outlet side and controlling the supply of the mixed liquid to each filter line 41.
  • the inlet switching valve 42 and the outlet switching valve 43 are, for example, 3-way valves connecting the supply line 30 and the two filter lines 41, and the supply line 30 is connected to the two Optionally connected to the filter line (41). The other filter line 41 is blocked so that the mixed liquid is not supplied.
  • the supply line 30 is connected to either filter line 41 of the two filter lines 41 to filter the mixed liquid. Therefore, when cleaning or replacing one filter unit 40, the mixed solution can be filtered through the other filter unit 40 and supplied to the centrifugal separation unit 60.
  • the apparatus 10 may further include a filter washing unit 50 for cleaning the filter unit 40 .
  • the filter washing unit 50 has a structure in which each of the two filter units 40 is individually washed.
  • the filter washing unit 50 is connected to the rear end of the filter unit 40 and is connected to the washing liquid line 51 for supplying the washing liquid to the filter unit 40, and is connected to the front end of the filter unit 40 and passes through the filter unit 40. It may include a discharge line 52 for discharging, an inflow conversion valve 53 installed in the washing liquid line 51 and a discharge conversion valve 54 installed in the discharge line 52.
  • the washing liquid line 51 is branched into two at the rear end of the filter unit 40 and connected to each filter line 41, and the discharge line 52 is branched into two and is connected to each filter line 41 at the front end of the filter unit 40. connected with
  • an inlet switching valve 53 is installed on the washing liquid line 51 to control the supply of washing liquid to each filter line 41
  • a discharge switching valve 54 is installed on the discharge line 52 to control each filter line 41. It has a structure that controls the discharge of the washing liquid from the filter line 41.
  • the inflow conversion valve 53 and the discharge conversion valve 54 are, for example, 3-way valves that switch the flow direction of the two branched washing fluid lines 51, and the washing fluid line 51 and the two filter lines (41) Optionally connect between them.
  • the washing liquid line 51 and the discharge line 52 are connected to one filter line 41 of the two filter lines 41 according to the operation of the inlet switching valve 53 and the discharge switching valve 54.
  • the washing liquid supplied from the rear end of the filter unit 40 through the washing liquid line 51 cleans the filter unit 40 while passing through the filter unit 40 in a reverse direction.
  • the washing liquid that has passed through the filter unit 40 is discharged through a discharge line 52 connected to the filter line 41 at the front end of the filter unit 40 .
  • the line 41 is blocked so that the mixed liquid is not supplied. Accordingly, the filter unit 40 can be easily cleaned by supplying the washing liquid in the reverse direction through the filter line 41 in a state in which the mixed liquid is not supplied.
  • the mixed solution from which debris is removed through the filter unit 40 is supplied to the centrifugal separation unit 60 connected to the supply line 30 .
  • the centrifugal separation unit 60 of the present embodiment forms an accommodation space therein, is erected vertically and rotatably arranged, and solid-liquid separation is performed by centrifugal force. It may include a drive unit 80 for applying and a supply unit for supplying the mixed solution into the rotary tank 70.
  • the mixed solution supplied from the supply unit to the inner circumferential surface of the rotating tank 70 is separated into solid and liquid by the centrifugal force of the rotating tank 70 rotating at high speed. Therefore, the solid starch is collected toward the inner circumference of the rotary tank 70, and the light water is collected toward the center and discharged to the outside through the open top opening 71 of the rotary tank 70.
  • the rotating tank 70 may be formed in a cylindrical shape with a circular cross-section.
  • the rotating tank 70 has a structure capable of discharging only water to the outside while blocking the discharge of the centrifuged starch.
  • the rotating tank 70 has an open top opening 71, a side wall portion 72 formed with the same diameter along the axial direction from the top opening 71 to separate the solid-liquid mixture, and the top opening 71 may include an inner flange 73 protruding inward along the inner circumferential surface to prevent separation of the solids separated from the mixed solution.
  • the side wall portion 72 extends vertically along the axial direction of the rotary tank 70.
  • the extension length of the side wall portion 72 may be variously modified.
  • the mixed liquid is supplied to the side wall portion 72 through the supply unit.
  • the liquid mixture is separated into solid and liquid at the side wall portion 72 as the rotating tank 70 rotates.
  • the solid-liquid separated water from the side wall portion 72 is discharged to the outside through the upper opening 71 by the centrifugal force of the rotating tank 70 .
  • An inner flange 73 is formed in the upper opening 71 of the side wall portion to block discharge of solids other than water.
  • the inner flange 73 continuously protrudes inward along the circumference of the upper opening 71 of the rotating tank 70.
  • the protruding length of the inner flange 73 may be variously modified.
  • the inner flange 73 acts as a stopper to prevent the separation of the solid-liquid separated starch.
  • the starch may be accommodated in the side wall portion 72 in a thickness from the inner surface of the side wall portion 72 to the upper end of the inner flange 73 .
  • the rotating tank 70 may further include a discharge pipe 74 communicating with the inside and extending in the axial direction at the lower center portion to discharge solids flowing down from the side wall portion 72 .
  • a discharge pipe 74 communicating with the inside and extending in the axial direction at the lower center portion to discharge solids flowing down from the side wall portion 72 .
  • the starch collected on the side wall portion 72 may fall downward due to its own weight and be discharged to the outside through the discharge pipe 74. Therefore, the starch extracted from the rotary tank 70 can be more easily discharged to the outside of the rotary tank 70 through the discharge pipe 74 and collected without separating the rotary tank 70 from the device 10.
  • the rotating tank 70 may further include an inclined wall portion 75 formed between the lower end of the side wall portion 72 and the discharge pipe 74 and forming an inclined surface with an inner diameter gradually reduced.
  • the starch falling from the side wall portion 72 can easily flow down toward the discharge pipe 74 along the inclined surface of the inclined wall portion 75 and be discharged.
  • the rotary tank 70 may further include an outer flange 76 protruding outward along an outer circumferential surface of the upper opening 71 to induce discharge of water.
  • the outer flange 76 continuously protrudes outward along the circumference of the upper opening 71 of the rotary tank 70.
  • the protruding length of the outer flange 76 may be variously modified.
  • the outer flange 76 may regulate a discharging position of the separated solid-liquid water. That is, the water beyond the inner flange 73 moves to the end of the outer flange 76 and is discharged to the outside. Accordingly, water passing through the inner flange 73 and passing through the upper opening 71 of the rotary tank 70 is guided by the outer flange 76 and can be discharged more smoothly and effectively. In addition, water is not scattered widely in the rotary tank 70 and is discharged only from the front end of the outer flange 76. Therefore, it is possible to collect the water discharged from the rotating tank 70 more effectively.
  • the apparatus 10 of this embodiment may further include a recovery line 62 for recycling the collected water.
  • the recovery line 62 may connect, for example, between the rotary tank 70 and the supply line 30 to re-supply the recovered water to the supply line.
  • the recovery line 62 may have a structure that connects the rotating tank 70 and the mixing unit 20 to supply water discharged from the rotating tank 70 to the grinder 22 of the mixing unit 20. there is.
  • the driving unit 80 is, for example, connected between a driving motor 81, a driving roll 82 and a driven roll 83, a driving roll and a driven roll installed in a rotating shaft and a rotating tank 70 of the driving motor 81 It may include a rotating belt 84 to be. Accordingly, when the drive motor 81 is driven, power is transmitted through the rotation belt 84 so that the rotation tank 70 is rotated at high speed.
  • the drive unit 80 may be modified in various ways in terms of a structure for rotating the rotating tank 70 at high speed.
  • the supply unit is connected to the supply line 30 for supplying the mixed solution and is inserted into the inside through the open top opening 71 of the rotating tank 70, and the lower end is bent toward the inner surface of the rotating tank 70 to rotate the tank. (70) It may include a supply pipe 64 for ejecting the mixed solution to the inner surface.
  • the supply pipe 64 may be disposed along the center of rotation of the rotating tank 70 .
  • the lower end of the supply pipe 64 forms the outlet 65 and has a structure bent toward the inner surface of the side wall portion 72 of the rotary tank 70. Accordingly, the mixed liquid may be discharged from the outlet 65 of the supply pipe 64 to the side wall portion 72 .
  • the supply pipe 64 is fixed to the top of the rotating tank 70 and can rotate like the rotating tank 70.
  • the supply line 30 may be freely rotatably connected to the supply pipe 64 via, for example, a slip ring or the like. Accordingly, the mixed solution supplied to the supply pipe 64 through the supply line 30 may be ejected to the shaft wall portion 72 through the outlet 65 of the supply pipe 64 that rotates like the rotating tank 70 .
  • the supply pipe 64 also rotates when the rotary tank 70 rotates, the mixed solution discharged from the outlet 65 of the supply pipe 64 does not fall downward due to the centrifugal force caused by the rotation of the supply pipe 64, and the side wall portion 72 can be ejected toward
  • the supply pipe 64 is provided separately from the rotating tank 70, and the supply unit may further include a rotary driving unit 66 for rotating the supply pipe 64.
  • the rotary drive unit 66 is connected to the supply pipe 64 to rotate the supply pipe 64 at a predetermined speed.
  • the rotational drive unit 66 may include, for example, a rotational belt connecting a motor, a rotational shaft of the motor, and the supply pipe 64 .
  • the supply pipe 64 may discharge the mixed solution while being rotated at a predetermined speed by the rotary driving unit 66 . Accordingly, the mixed liquid discharged from the outlet 65 of the supply pipe 64 is ejected toward the side wall portion 72 without falling downward due to the centrifugal force caused by the rotation of the supply pipe 64 . Accordingly, all of the mixed liquid is discharged through the side wall portion 72 to perform solid-liquid separation.
  • centrifugal separation device 10 of this embodiment two or more centrifugal separation units 60 may be provided and operated alternately. Therefore, by operating the two centrifugal separators 60 alternately, the operation of centrifuging the mixed solution by rotating the rotary tank 70 and the operation of collecting the centrifuged starch from the rotary tank 70 can be continuously performed. be able to
  • the apparatus 10 may have a structure in which two centrifugal separators 60 are arranged in parallel in a supply line 30 and operated alternately.
  • the apparatus 10 includes two centrifugal separators 60, a plurality of branch lines 68 branched on a supply line 30 and connected to each centrifugal separator 60, and a supply line 30 ) and may include a flow path conversion valve 69 for controlling the supply of the mixed solution to each branch line 68.
  • the supply line 30 is connected to one branch line 68 of the two branch lines 68 according to the operation of the flow path conversion valve 69, and the mixed solution is connected to the centrifugal separator connected to the branch line 68. (60) can be supplied.
  • the other side centrifugal separation unit 60 is stopped to collect the separated starch.
  • the mixture can be continuously centrifuged to extract starch.
  • the rotary tank 70 and the supply pipe 64 rotate at a set speed.
  • the mixed liquid supplied through the supply pipe 64 is discharged to the side wall portion 72 of the rotary tank 70 through the outlet 65 .
  • the mixed liquid discharged through the side wall portion 72 is rotated like a rotary tank 70 and separated into starch and water by centrifugal force.
  • Starch that is separated from solid-liquid and is heavier than water is collected on the inner surface of the side wall portion 72 by centrifugal force, and relatively light water is collected in layers toward the center of rotation on the inside of the starch.
  • the mixed solution is divided into a solid layer by starch and a liquid layer by water.
  • An inner flange 73 is formed at the upper opening 71 of the rotary tank 70, so that starch located on the inner side of the side wall portion 72 is blocked by the inner flange 73 and is not discharged to the outside.
  • the water separated from the mixture and located inside the starch is discharged outward beyond the inner flange 73 as the water level gradually increases.
  • the water level may refer to a height from the starch top toward the central axis from the inner surface of the side wall portion 72 to the water surface.
  • the thickness of the starch accumulated on the inner surface of the side wall portion 72 gradually increases.
  • the water layered inside the starch can be completely discharged beyond the inner flange 73. Accordingly, by separating the liquid mixture into solid and liquid through the centrifugal separator 60, only the solid starch on the inner surface of the side wall part 72 can be extracted.
  • the centrifugal separator 60 of this embodiment may further include a buffer for suppressing vibration.
  • FIG 4 shows various embodiments of the buffer unit according to the present embodiment.
  • Figure 4 (a) shows a structure in which the rotating tank 70 is rotatably supported and fixed.
  • the discharge pipe 74 of the rotating tank 70 may be pivotally supported on a bearing block or the like on a facility.
  • FIG. 4(b) shows a structure including at least one elastic member in which the buffer unit is installed in a suspended manner.
  • an elastic spring 90 is installed between the discharge pipe 74 of the rotary tank 70 and the equipment, so that the rotary tank 70 is suspended and installed on the equipment via the elastic spring 90.
  • the driving motor 81 of the driving unit 80 may also be installed hanging on the equipment via the elastic spring 90.
  • vibration generated from the driving unit 80 or the rotating tank 70 is dampened by the elastic spring 90, thereby minimizing vibration during operation.
  • Figure 4 (c) shows a structure in which the shock absorber is installed in a damper 91 method for supporting a load.
  • the discharge pipe 74 of the rotary tank 70 is installed on the equipment via a plurality of dampers 91 so that the load can be supported.
  • the driving motor 81 of the driving unit 80 may also be supported on the equipment by the damper 91.
  • the damper 91 may have a structure that absorbs an impact by, for example, a spring and hydraulic pressure. Accordingly, since the damper 91 supports the rotating tank 70 or the drive unit 80, vibration generated during operation can be effectively dampened by the damper 91.
  • FIG 5 shows another embodiment of the centrifugal separator.
  • centrifugal separation unit 60 of this embodiment is the same as those of the above-described embodiment except for the structure in which the lower end of the rotating tank 92 is blocked. omit explanation.
  • the centrifugal separator 60 of this embodiment may have a structure in which the lower end of the rotation tank 92 is blocked, and may have a structure in which the rotation tank 92 is separated from the drive motor 81 to collect solids separated from solid and liquid.
  • the rotating tank 92 may have a container shape with a lower end closed, and a coupling shaft 93 detachably mounted with the driving unit 80 in the lower center protruding along the axial direction. there is.
  • a socket unit 94 for fixing the coupling shaft 93 of the rotation tank 92 may be provided on the rotation shaft of the drive motor 81 for coupling between the rotation tank 92 and the drive unit 80 .
  • the rotary tank 92 has a container shape in which the lower end is blocked and the upper opening 71 is opened, so that the rotary tank 92 can be directly mounted on the rotation shaft of the drive motor 81 and used. there is.
  • the coupling shaft 93 and the socket portion 94 may have a structure in which, for example, a screw coupling method is coupled. That is, the coupling shaft 93 has a male screw formed on an outer circumferential surface, and the socket portion 94 has a female screw formed on an inner circumferential surface, so that they can be screwed together.
  • the coupling shaft 93 and the socket portion 94 may be detachably coupled and may be variously modified in terms of structures capable of transmitting rotational force.
  • the mixed solution may be separated into solid and liquid by directly coupling the rotary tank 92 to the rotary shaft of the drive motor 81 and rotating it at high speed.
  • the rotary tank 92 rotates, the solid-liquid separated starch is collected on the side wall 72 of the rotary tank 92, and the separated water is discharged to the outside through the upper opening 71 of the rotary tank 92. .
  • the mixed solution may be supplied into the rotating tank 92 through a supply line or a supply unit connected to the supply line.
  • the rotary tank 92 of this embodiment has a structure with a closed bottom, and the operator can pour and supply the mixed solution into the rotary tank without a separate supply line.
  • the rotating tank 81 rotates, the liquid mixture inside is pressed against the side wall portion 72 by the centrifugal force of the rotating tank and separated into solid-liquid.
  • the separated solid content remains on the side wall portion 72, and water is discharged to the outside through the upper opening 71 of the rotating tank 92 by centrifugal force.
  • the inner flange 73 or/and the outer flange 76 may be formed in the upper opening 71 of the rotating tank 92 of the present embodiment.
  • the structure and operation of the inner flange 73 and the outer flange 76 are the same as those described above, and a detailed description thereof will be omitted.
  • connection between the socket part 94 and the coupling shaft 93 is released to separate the drive motor 81 and the rotary tank 92, and then turn the rotary tank 92 over to remove the starch collected inside. can be emitted with
  • FIG. 6 shows various buffer structures of the centrifugal separation unit according to the embodiment of FIG. 5 .
  • Figure 6 (a) shows a structure in which the driving motor 81 of the driving unit 80 is fixedly installed on the equipment to minimize rotational vibration.
  • the rotating tank 92 can be stably rotated while installed in the driving motor 81 fixed to the facility, thereby minimizing the generation of vibration.
  • FIG. 6(b) shows a buffer structure using at least one elastic member installed in a suspension manner.
  • an elastic spring 90 is installed between the driving motor 81 of the driving unit 80 and the equipment, and the driving motor 81 is suspended on the equipment via the elastic spring 90. can Accordingly, vibration generated from the drive unit 80 or the rotating tank 92 is dampened by the elastic spring 90, thereby minimizing vibration during operation.
  • FIG. 6(c) shows a buffer structure installed in a damper 91 method for supporting and supporting a load.
  • the driving motor 81 is installed on the equipment via the damper 91 so that the load can be supported.
  • the damper 91 may have a structure that absorbs an impact by, for example, a spring 90 and hydraulic pressure. Accordingly, since the drive motor 81 and the rotating tank 92 are supported by the damper 91, vibration generated during operation can be effectively dampened by the damper 91.
  • FIG. 7 shows a centrifugal separator in another embodiment.
  • centrifugal separation unit 60 of this embodiment is the same as those of the above-described embodiment except that the rotating tank 70 is horizontally laid and rotated. Therefore, the same reference numerals are used for the same components, and detailed descriptions thereof are omitted.
  • the centrifugal separation unit 60 of this embodiment forms an accommodation space therein, is laid horizontally and is rotatably disposed, and at least one rotary tank 70 in which solid-liquid separation is performed by centrifugal force, rotation A driving unit 80 for rotating the tank 70 at high speed to apply centrifugal force, and a supply unit for supplying the mixed solution into the rotating tank 70 may be included.
  • the rotary tank 70 has an opening 71 formed at one end of the front end, and extends from the opening 71 along the axial direction, and the side wall portion 72 in which solid-liquid separation of the mixed solution is performed, and the inner circumferential surface of the opening 71 It may include an inner flange 73 protruding inward along the way to prevent separation of the solids separated from the mixed solution.
  • the rotary tank 70 may further include an outer flange 76 protruding outward along an outer circumferential surface of the opening 71 to induce discharge of water.
  • the rotating tank 70 is laid horizontally and rotated around the central axis. As a result, it can be driven more stably.
  • the liquid mixture supplied from the supply unit to the inner circumferential surface of the rotary tank 70 is separated into solid and liquid by the centrifugal force of the rotary tank 70 rotating at high speed. Therefore, the solid starch is collected toward the inner circumference of the rotary tank 70, and the light water is collected toward the center and discharged to the outside through the open opening 71 of the rotary tank 70.
  • a shaft member 77 communicating with the inside and extending outward along the axial direction is formed at the center of the front end opposite to the opening 71 of the rotating tank 70.
  • the shaft member 77 is connected to the drive unit 80 and may act as a rotation shaft for rotationally driving the rotation tank 70 .
  • the drive unit 80 includes a drive motor 81, a drive roll 82, a driven roll 83, a drive roll 82 installed on the rotation shaft of the drive motor 81 and the shaft member 77 of the rotation tank 70.
  • a rotation belt 84 connected between the driven rolls 83 may be included. Accordingly, when the drive motor 81 is operated, power is transmitted to the shaft member 77 through the rotation belt 84, and thus the rotation tank 70 is rotated at high speed.
  • the supply unit of this embodiment may have a structure for supplying the mixed solution into the rotating tank 70 through the shaft member 77 .
  • the supply unit is connected to the supply line 30 for transporting the mixture of solids, is inserted into the rotation tank 70 through the inside of the shaft member 77, and the outlet 65 is directed toward the inner surface of the rotation tank 70. It may include a supply pipe 640 that is bent and ejects the mixed solution into the inner surface of the rotary tank 70.
  • the mixed solution supplied through the supply pipe 64 may be ejected to the inner surface of the rotary tank 70 through the outlet and supplied to the side wall portion 72 .
  • the supply pipe 64 may have a relatively fixed structure with respect to the shaft member 77 .
  • the supply pipe 64 may be spaced apart from the shaft member 77 to prevent interference with each other, or a bearing or sealing member may be installed therebetween.
  • the supply pipe 64 may be a structure that is fixedly installed to the shaft member 77 and rotates like the shaft member 77. Between the supply line 30 and the supply pipe 64, for example, a slip ring 67 is installed, and the supply pipe 64 can be connected while freely rotating with respect to the supply line 30 via the slip ring 67. there is. Accordingly, the mixed solution supplied to the supply pipe 64 through the supply line 30 may be ejected to the side wall portion 72 through the outlet 65 of the supply pipe 64 that rotates like the rotating tank 70 .
  • the centrifugal separation unit 60 of the present embodiment is installed along the circumferential direction outside the opening 71 of the rotary tank 70, and includes a collection box 63 for collecting water discharged from the opening 71, and a collection box 63 It may further include a recovery line 62 connecting between the mixing unit and supplying the water discharged from the opening 71 of the rotary tank 70 to the grinder of the mixing unit.
  • the collection box 63 is a ring-shaped structure in which the surface of the opening 71 facing the outer flange 76 is open, and is continuously disposed along the circumference of the opening 71 .
  • the water discharged out of the opening 71 by the centrifugal force of the rotary tank 70 may be collected and collected in the ring-shaped collection box 63 installed along the circumference of the opening 71 .
  • a recovery line 62 is connected to the lower side of the collection box 63, so that the water collected in the collection box 63 is transported through the collection line 62 and can be reprocessed.
  • the centrifugal separation unit 60 of this embodiment may further include a control unit 100 provided in the opening 71 of the rotary tank 70 to adjust the amount of solids extracted.
  • control unit 100 of this embodiment is installed on the inner flange 73 to form a relatively low height to discharge the mixed solution 110 and the inner flange 73 and to the discharge path.
  • a blocking plate 120 blocking 110 may be included.
  • a structure may be used to adjust the amount of solid content extracted by changing the height of the blocking plate 120 relative to the discharge path 110 .
  • the discharge passage 110 acts as a stepped groove through which water is discharged by lowering the height of the wall of the inner flange 73 serving as a blocking wall. Accordingly, when a centrifugal force is applied to the rotating tank 70, water is drained through the discharge passage 110 having a low height, and solids are extracted only as high as the discharge passage 110. Therefore, when the height of the discharge path 110 is high, a large amount of solid content can be extracted, and when the height of the discharge path 110 is low, only a small amount of solid content can be extracted.
  • the height of the discharge path 110 may mean a length from the inner circumferential surface of the rotary tank 70 to the inner tip of the discharge path 110 protruding toward the center.
  • At least two or more discharge passages 110 may be arranged at a predetermined angle along the inner flange 73 based on the center of the rotating tank 70 .
  • they may be arranged at an angle of 180 degrees, and when there are three discharge passages 110, they may be arranged at an angle of 120 degrees. Accordingly, water may be discharged from the inside of the rotary tank 70 through the discharge path 110 while maintaining a balance.
  • the blocking plate 120 may be a flat plate structure having a size sufficient to sufficiently cover the discharge path 110 .
  • the blocking plate 120 is installed in front of the inner flange 73 to block the discharge path 110.
  • the blocking plate 120 blocks the discharge path 110 and forms an inner front end of the discharge path 110 .
  • the height of the discharge passage 110 may be changed by adjusting the position of the blocking plate 120 to change the height of the blocking plate 120 relative to the discharge passage 110 .
  • long holes 122 are formed at both ends of the blocking plate 120 so that the installation position of the blocking plate 120 can be changed, and the long holes 122 correspond to the front surface of the inner flange 73.
  • a fastening hole 124 for fastening the bolt 126 is formed at the position.
  • the long hole 122 may mean a long hole. Accordingly, the height of the blocking plate 120 can be changed by adjusting the position of the blocking plate 120 by moving the long hole 122 for the bolt 126 .
  • a plurality of blocking plates 120 having different heights of the blocking plates 120 with respect to the discharge passage 110 are provided, and the blocking plates 120 having a desired height are placed on the front surface of the inner flange 73 as necessary. It is possible to adjust the height of the discharge path 110 by installing.
  • FIG 9 shows a structure in which the amount of starch extraction is adjusted by varying the height of the blocking plate 120.
  • FIG. 9(a) shows a state in which the blocking plate 120 is fixed to the front surface of the inner flange 73 via the bolt 126 by moving the blocking plate 120 outward as much as possible.
  • the height of the blocking plate 120 that is, the height R of the discharge passage 110 formed by the inner tip of the blocking plate 120 is extremely low, so that the discharge passage 110 at a height R at which the water and solid content is lowered A large amount can be released through Therefore, only a small amount of solid content is extracted without being blocked by the blocking plate 120 and discharged.
  • FIG. 9 (b) shows a state in which the height (R) of the discharge path 110 is slightly increased by moving and installing the blocking plate 120 inward compared to (a), and
  • FIG. 9 (c) shows a state in which the height R of the discharge path 110 is increased to the maximum by moving the blocking plate 120 inward as much as possible.
  • the blocking plate 120 By moving and installing the blocking plate 120 inward, the height R of the discharge path 110 formed by the inner tip of the blocking plate 120 is increased, thereby reducing the amount of water and solids discharged, and the blocking plate 120 It is possible to increase the extraction amount of solids extracted without being clogged and discharged.
  • Two or more centrifugal separators 60 of this embodiment may be provided and operated alternately. Accordingly, by rotating the two centrifugal separators 60 alternately, the rotary tank 70 is rotated to centrifugally separate the mixture and the centrifuged starch collected from the rotary tank 70 is continuously performed. You will be able to do it. In addition, by transferring the remaining power of the driving unit to the other centrifugal separation unit 60 in a state in which the driving unit is stopped for the starch collection operation, it is possible to minimize energy loss.
  • FIG. 10 shows a power transmission structure for two centrifugal separators.
  • centrifugal separator A the centrifugal separation unit 60 on the left side of the drawings
  • centrifugal separator B the centrifugal separation unit 60 on the right side
  • the driving unit 80 may further include a clutch 85 for selectively connecting or disconnecting power between the rotation shaft of the driving motor 81 and the driving roll 82 .
  • the centrifugal separators 60 in (a) and (b) of FIG. 10 have the same structure except for the clutch connection structure of the drive unit. 10 (a) illustrates a structure in which a separate power transmission mechanism is connected and installed between the rotary shaft of the drive motor 81 and the clutch 85, and (b) shows a direct connection between the rotary shaft and the clutch of the drive motor 81. structure is illustrated.
  • the power of the driving motor 81 may be distributed to the centrifugal separator A or the centrifugal separator B using the clutch 85 . Accordingly, the starch extraction operation may be continuously performed by alternately driving the centrifugal separator A and the centrifugal separator B. In addition, in a state in which the drive motor 81 is stopped, the remaining rotational force of the drive motor can be supplied to other stopped centrifugal separators using the clutch 85 . Thus, it is possible to minimize energy waste of the drive unit.
  • the power of the driving motor 81 is transmitted to the centrifugal separator A in a state where the clutch 85 is connected to the centrifugal separator A and the clutch 85 of the centrifugal separator B is disconnected. do. Accordingly, the centrifuge A is rotated to perform starch extraction, and the centrifugal separator B is stopped to recover starch.
  • the centrifugal separator A is stopped while the rotational force gradually decreases, and the rotational speed of the centrifuge B gradually increases as the rotational force remaining in the state in which the driving motor 81 is stopped is transmitted through the clutch 85 and rotated.
  • the residual rotational force can be understood as a rotational moment until the rotation completely stops after the driving of the driving motor is stopped.
  • the centrifugal separator B can increase the rotational speed to a desired speed and continue to perform the starch extraction operation.

Landscapes

  • Centrifugal Separators (AREA)

Abstract

Provided is a centrifugal separation device for starch extraction, comprising at least one centrifugal separation unit that separates solids by applying centrifugal force to a mixed liquid such that the structure is simple, the device is easy to manufacture, and use and maintenance thereof are simple, wherein the centrifugal separation unit comprises: a rotating tank that has an accommodation space formed therein, and is erected vertically and rotatably disposed, so as to allow solid-liquid separation to be performed by centrifugal force; and a drive unit for applying centrifugal force by rotating the rotating tank at high speed.

Description

전분 추출을 위한 원심 분리 장치Centrifugal Separator for Starch Extraction
본 개시 내용은 전분 추출을 위한 원심 분리 장치에 관한 것이다.The present disclosure relates to a centrifugal separation device for starch extraction.
일반적으로, 고체와 액체가 혼합되어 있는 현탁액을 원심 분리함으로써, 현탁액에서 고체 성분을 얻을 수 있다. 예를 들어, 식물성 원료인 감자, 타피오카, 밀, 옥수수를 용해하여 얻어진 전분 함유 현탁액을 원심 분리함으로써, 고형분인 전분을 분리할 수 있다.In general, a solid component can be obtained from a suspension by centrifuging a suspension in which a solid and a liquid are mixed. For example, starch as a solid content can be separated by centrifuging a starch-containing suspension obtained by dissolving potato, tapioca, wheat, and corn as vegetable raw materials.
종래의 원심분리기는 회전체의 내부에 스크류 콘베이어가 구비된 디켄터(DECANTER) 구조로, 원액은 공급관을 통해 회전체로 공급되어 회전체의 원심력에 의해 고액 분리된다. 분리된 고형분은 스크류 콘베이어에 의해 원추부 선단으로 운송되어 배출되고, 액체는 회전체 끝을 통해 배출되는 구조로 되어 있다.A conventional centrifugal separator has a decanter structure equipped with a screw conveyor inside a rotating body, and raw liquid is supplied to the rotating body through a supply pipe and separated into solid and liquid by the centrifugal force of the rotating body. The separated solids are transported and discharged to the tip of the cone by the screw conveyor, and the liquid is discharged through the end of the rotating body.
그런데, 종래의 원심분리기는 매우 고가의 장비로 설비를 마련하는 데 많은 비용이 소요되어 소득이 낮은 저개발국가의 농촌 등의 지역에서는 사용이 용이하지 않다.However, the conventional centrifugal separator is very expensive equipment and requires a lot of cost to provide facilities, so it is not easy to use in areas such as rural areas in underdeveloped countries with low income.
또한, 원심분리기의 구조가 복잡하고 스크류를 이용하여 내부의 고형분을 수거해야 하므로, 사용은 물론 유지 보수가 쉽지 않은 단점이 있다.In addition, since the structure of the centrifuge is complicated and the solid content therein must be collected using a screw, use and maintenance are not easy.
또한, 원심분리기로 원액을 공급하고 고형분을 배출하는 일련의 과정이 불연속적으로 이루어짐에 따라 생산성을 높이기 어려운 문제가 있다. In addition, there is a problem in that it is difficult to increase productivity as a series of processes of supplying raw liquid to the centrifuge and discharging solids are discontinuously performed.
본 과제는 구조가 단순하고 제조가 용이한 전분 추출을 위한 원심 분리 장치를 제공하는 것이다.An object of the present invention is to provide a centrifugal separator for starch extraction that has a simple structure and is easy to manufacture.
본 과제는 사용 및 유지 보수가 간편한 전분 추출을 위한 원심 분리 장치를 제공하는 것이다.The present problem is to provide a centrifugal separator for starch extraction that is easy to use and maintain.
본 과제는 분리된 전분을 보다 용이하게 수거할 수 있도록 된 전분 추출을 위한 원심 분리 장치를 제공하는 것이다.An object of the present invention is to provide a centrifugal separator for extracting starch that can more easily collect the separated starch.
본 과제는 연속적으로 작업할 수 있도록 된 전분 추출을 위한 원심 분리 장치를 제공하는 것이다.The object of the present invention is to provide a centrifugal separator for starch extraction which is capable of continuous operation.
본 구현예의 원심 분리 장치는, 혼합액에 원심력을 가해 고형분을 분리하는 원심분리부를 포함하고, 상기 원심분리부는 내부에 수용공간을 형성하고 회전가능하게 배치되어 원심력에 의한 고액 분리가 이루어지는 적어도 하나의 회전탱크, 상기 회전탱크를 고속으로 회전시켜 원심력을 가하기 위한 구동부를 포함할 수 있다.The centrifugal separation device of the present embodiment includes a centrifugal separation unit for separating solids by applying centrifugal force to a mixed liquid, wherein the centrifugal separation unit forms an accommodation space therein and is rotatably disposed to perform solid-liquid separation by centrifugal force. A tank and a driving unit for applying centrifugal force by rotating the rotating tank at high speed may be included.
상기 회전탱크는 수직으로 세워져 상단에 개방구를 형성하고, 상기 상단 개방구로부터 축방향을 따라 연장되고 혼합액의 고액 분리가 이루어지는 측벽부, 상기 상단 개방구에 내주면을 따라 내측으로 돌출 형성되어 혼합액에서 분리된 고형분의 이탈을 방지하는 내측플랜지를 포함할 수 있다.The rotating tank is erected vertically to form an opening at the top, and a side wall portion extending along the axial direction from the top opening and separating the solid-liquid mixture from the liquid mixture is formed, protruding inward along the inner circumferential surface of the top opening, so that the mixed liquid It may include an inner flange to prevent the separation of the separated solid content.
상기 회전탱크 내부로 혼합액을 공급하기 위한 공급부를 더 포함할 수 있다.A supply unit for supplying the mixed solution into the rotating tank may be further included.
상기 공급부는 고형분을 혼합한 혼합액을 이송하는 공급라인, 상기 공급라인과 연결되고 상기 회전탱크의 상단 개방구를 통해 내부로 삽입되고 하단의 출구는 상기 회전탱크의 내면을 향하도록 굽어져 회전탱크 내면으로 혼합액을 분출하는 공급관을 포함할 수 있다.The supply unit is connected to a supply line for transporting a mixture of solids and the supply line, and is inserted into the interior through an upper opening of the rotary tank, and an outlet at the lower end is bent toward the inner surface of the rotary tank. It may include a supply pipe for ejecting the mixed solution.
상기 공급부는 상기 공급관을 회전시키기 위한 회전구동부를 더 포함할 수 있다.The supply unit may further include a rotation driver for rotating the supply pipe.
상기 회전탱크는 상기 상단 개방구에 외주면을 따라 외측으로 돌출 형성되어 물의 배출을 유도하는 외측플랜지를 더 포함할 수 있다.The rotating tank may further include an outer flange protruding outward along an outer circumferential surface of the upper opening to induce discharge of water.
상기 회전탱크는 하단 중심부에 내부와 연통되고 축방향으로 연장되어 측벽부에서 흘러내리는 고형분을 배출하는 배출관을 더 포함할 수 있다.The rotary tank may further include a discharge pipe communicating with the inside of the bottom center and extending in the axial direction to discharge solids flowing down from the side wall portion.
상기 회전탱크는 상기 측벽부 하단과 상기 배출관 사이에 형성되고 내경이 점차적으로 줄어 경사면을 이루는 경사벽부를 더 포함할 수 있다.The rotating tank may further include an inclined wall portion formed between a lower end of the side wall portion and the discharge pipe and forming an inclined surface with an inner diameter gradually decreasing.
상기 구동부는 구동모터, 구동모터의 회전축과 상기 회전탱크에 설치되는 구동롤과 피동롤, 상기 구동롤과 피동롤 사이에 연결되는 회전밸트를 포함할 수 있다. The drive unit may include a drive motor, a rotation shaft of the drive motor, a drive roll and a driven roll installed in the rotation tank, and a rotation belt connected between the drive roll and the driven roll.
상기 구동부는 상기 구동모터의 회전축과 상기 구동롤 사이에 마련되어 동력을 선택적으로 연결 또는 차단하는 클러치를 더 포함할 수 있다.The drive unit may further include a clutch provided between the rotation shaft of the drive motor and the drive roll to selectively connect or disconnect power.
상기 구동부는, 두 개의 원심분리부에 각각 상기 클러치를 매개로 연결되어 각 원심분리부를 교대로 가동하는 구조이고, 상기 구동모터의 구동 정지 후, 가동 중인 일측 원심분리부의 클러치를 분리하고 정지해 있는 타측 원심분리부의 클러치를 연결하여, 상기 구동모터 구동 정지 후 남아 있는 회전력을 정지해 있는 타측 원심분리부로 전달하는 구조일 수 있다.The driving unit is connected to two centrifugal separators through the clutch to alternately operate each centrifugal separator, and after the driving motor stops, the clutch of one centrifugal separator in operation is separated and stopped A clutch of the other centrifugal separation unit may be connected to transmit rotational force remaining after the drive motor is stopped to the other centrifugal separation unit that is stopped.
상기 원심분리부는 진동을 억제하기 위한 완충부를 더 포함할 수 있다.The centrifugal separator may further include a buffer for suppressing vibration.
상기 완충부는 상기 회전탱크와 외부 고정체 사이에 설치되는 적어도 하나 이상의 탄성부재를 포함할 수 있다.The buffer unit may include at least one elastic member installed between the rotary tank and the external fixture.
상기 회전탱크는 하단이 막힌 용기 형태를 이루고, 하부 중심부에는 상기 구동부와 착탈가능하게 장착되는 결합축이 축방향을 따라 돌출 형성되고, 상기 구동모터의 회전축에는 상기 결합축을 고정하는 소켓부가 마련되어, 상기 회전탱크를 구동모터에서 분리하여 고액 분리된 고형분을 수거하는 구조일 수 있다.The rotating tank has a container shape with a lower end closed, and a coupling shaft detachably mounted with the driving unit protrudes along the axial direction at a lower center, and a socket portion for fixing the coupling shaft is provided on the rotating shaft of the driving motor. It may have a structure in which the rotating tank is separated from the drive motor to collect solids separated from the solid and liquid.
상기 공급라인 상에 연결 설치되어 고체와 액체를 혼합하여 제공하는 혼합부를 더 포함할 수 있다.It may further include a mixing unit that is connected to the supply line and provides a mixture of solid and liquid.
상기 혼합부는 대상물을 수용하는 호퍼, 상기 호퍼와 연결되어 대상물을 갈아 분쇄하는 분쇄기, 상기 분쇄기에 연결되어 분쇄기로 액체를 공급하는 액체공급부를 포함할 수 있다.The mixing unit may include a hopper for accommodating the object, a grinder connected to the hopper to grind and grind the object, and a liquid supply unit connected to the grinder and supplying liquid to the grinder.
상기 회전탱크와 혼합부 사이를 연결하여 회전탱크의 상단 개방구에서 배출되는 물을 혼합부의 분쇄기로 공급하는 회수라인을 더 포함할 수 있다.A recovery line connecting the rotating tank and the mixing unit to supply water discharged from an upper opening of the rotating tank to a grinder of the mixing unit may be further included.
상기 공급라인 상에 연결 설치되어, 혼합액에서 소정 입도 이상의 찌꺼기를 분리하는 필터부를 더 포함할 수 있다.A filter unit connected to and installed on the supply line may further include a filter unit for separating dregs of a predetermined particle size or more from the mixed solution.
상기 원심 분리 장치는, 상기 필터부를 세척하기 위한 필터세척부를 더 포함할 수 있다.The centrifugal separation device may further include a filter washing unit for washing the filter unit.
상기 필터세척부는 상기 필터부 후단에서 상기 공급라인에 연결되어 필터부에 역방향으로 세척액을 공급하는 세척액라인, 상기 공급라인과 세척액라인 사이에 설치되는 유입전환밸브, 상기 필터부 전단에서 상기 공급라인에 연결되어 필터부를 거친 세척액을 배출 처리하기 위한 배출라인, 상기 공급라인과 배출라인 사이에 설치되는 배출전환밸브를 포함할 수 있다.The filter washing part includes a washing liquid line connected to the supply line at the rear end of the filter part and supplying washing liquid to the filter part in the reverse direction, an inlet switching valve installed between the supply line and the washing liquid line, and a supply line at the front end of the filter part. It may include a discharge line for discharging the washing liquid that is connected and passed through the filter unit, and a discharge conversion valve installed between the supply line and the discharge line.
상기 원심 분리 장치는, 복수개의 원심분리부와, 상기 공급라인 상에 분기되어 각 원심분리부와 연결되는 복수개의 분기라인, 상기 공급라인에 설치되어 각 분기라인에 대한 혼합액 공급을 제어하는 전환밸브를 포함하여, 공급라인에 복수개의 원심분리부를 병렬로 배치하여 교대로 운전하는 구조일 수 있다.The centrifugal separation device includes a plurality of centrifugal separators, a plurality of branch lines branched on the supply line and connected to each centrifugal separator, and a switching valve installed in the supply line to control the supply of the mixed solution to each branch line. Including, it may be a structure in which a plurality of centrifugal separators are arranged in parallel in the supply line and operated alternately.
상기 원심 분리 장치는, 복수개의 필터부와, 상기 공급라인 상에 분기되어 각 필터부와 연결되는 복수개의 필터라인, 상기 각 필터라인의 입측과 출측에서 공급라인에 각각 설치되어 각 필터라인에 대한 혼합액 공급을 제어하는 입측전환밸브와 출측전환밸브를 포함하여, 공급라인에 복수개의 필터부를 병렬로 배치하여 교대로 운전하는 구조일 수 있다.The centrifugal separation device includes a plurality of filter units, a plurality of filter lines branched on the supply line and connected to each filter unit, and installed in the supply line at the inlet and outlet of each filter line, respectively, for each filter line. It may have a structure in which a plurality of filter units are arranged in parallel in a supply line and operated alternately, including an inlet switching valve and an outlet switching valve for controlling the supply of the mixed solution.
상기 원심 분리 장치는, 상기 복수개의 필터부를 개별적으로 세척하기 위한 필터세척부를 구비하고, 상기 필터세척부는 상기 필터부 후단에 연결되어 필터부로 세척액을 공급하기 위한 세척액라인, 상기 필터부 전단에 연결되어 필터부를 거친 세척액을 배출 처리하는 배출라인, 상기 세척액라인에 설치되는 유입전환밸브와 상기 배출라인에 설치되는 배출전환밸브를 포함하고, 상기 세척액라인은 상기 필터부 후단에서 두 개로 분기되어 각 필터라인과 연결되고, 상기 배출라인은 두 개로 분기되어 상기 필터부 전단에서 각 필터라인과 연결되고, 상기 세척액라인 상에 상기 유입전환밸브가 설치되어 각 필터라인에 대한 세척액의 공급을 제어하고, 상기 배출라인 상에 배출전환밸브가 설치되어 각 필터라인의 세척액 배출을 제어하는 구조일 수 있다.The centrifugal separation device includes a filter washing unit for individually washing the plurality of filter units, and the filter washing unit is connected to a rear end of the filter unit to supply a washing liquid to the filter unit, and is connected to a front end of the filter unit. It includes a discharge line for discharging and processing the washing liquid that has passed through the filter unit, an inflow switching valve installed in the washing liquid line and a discharge switching valve installed in the discharge line, and the washing liquid line is branched into two at the rear end of the filter unit and each filter line and the discharge line is branched into two and connected to each filter line at the front end of the filter unit, and the inlet conversion valve is installed on the washing liquid line to control the supply of the washing liquid to each filter line, and the discharge It may be a structure in which a discharge switching valve is installed on the line to control the discharge of the washing liquid in each filter line.
상기 회전탱크는 수평으로 눕혀져 회전가능하게 배치되고, 일측 선단에 개방구를 형성하고, 상기 개방구으로부터 축방향을 따라 연장되고 혼합액의 고액 분리가 이루어지는 측벽부, 상기 개방구의 내주면을 따라 내측으로 돌출 형성되어 혼합액에서 분리된 고형분의 이탈을 방지하는 내측플랜지를 포함할 수 있다.The rotary tank is laid horizontally and rotatably disposed, has an opening at one end thereof, and extends in an axial direction from the opening and has a side wall portion in which solid-liquid separation of the mixed solution is performed, and protrudes inward along the inner circumferential surface of the opening It may include an inner flange which is formed and prevents the separation of the solids separated from the mixed solution.
상기 회전탱크 내부로 혼합액을 공급하기 위한 공급부를 더 포함할 수 있다.A supply unit for supplying the mixed solution into the rotating tank may be further included.
상기 공급부는 고형분을 혼합한 혼합액을 이송하는 공급라인, 상기 공급라인과 연결되고 상기 회전탱크 내부로 삽입되고 출구는 상기 회전탱크의 내면을 향하도록 굽어져 회전탱크 내면으로 혼합액을 분출하는 공급관을 포함할 수 있다.The supply unit includes a supply line for transporting a mixed liquid mixed with solids, a supply pipe connected to the supply line, inserted into the rotating tank, and having an outlet bent toward the inner surface of the rotating tank to eject the mixed liquid into the inner surface of the rotating tank. can do.
상기 회전탱크의 개방구 반대쪽 선단 중심부에는 내부와 연통되고 축방향을 따라 외측으로 연장되는 축부재가 형성되고, 상기 공급관이 상기 축부재 내부를 통해 상기 회전탱크 내부로 삽입 설치될 수 있다.A shaft member communicating with the inside and extending outward along an axial direction may be formed at a center of the front end opposite the opening of the rotating tank, and the supply pipe may be inserted into the rotating tank through the inside of the shaft member.
상기 공급관과 상기 공급라인 사이에 슬립링이 설치되어 공급관이 공급라인에 대해 회전가능하게 연결되고, 상기 공급관은 상기 축부재에 고정 설치되어 축부재와 같이 회전하는 구조일 수 있다.A slip ring is installed between the supply pipe and the supply line so that the supply pipe is rotatably connected with respect to the supply line, and the supply pipe may be fixed to the shaft member to rotate like the shaft member.
상기 회전탱크는 상기 개방구 외주면을 따라 외측으로 돌출 형성되어 물의 배출을 유도하는 외측플랜지를 더 포함할 수 있다.The rotating tank may further include an outer flange protruding outward along an outer circumferential surface of the opening to induce discharge of water.
상기 회전탱크의 개방구 외측에 원주방향을 따라 설치되어 개방구에서 배출되는 물을 수거하는 수거함, 상기 수거함과 혼합부 사이를 연결하여 회전탱크의 개방구에서 배출되는 물을 혼합부의 분쇄기로 공급하는 회수라인을 더 포함할 수 있다.A collection box installed outside the opening of the rotating tank along the circumferential direction to collect water discharged from the opening, connecting the collection box and the mixing unit to supply the water discharged from the opening of the rotating tank to the grinder of the mixing unit A recovery line may be further included.
상기 구동부는 구동모터, 구동모터의 회전축과 상기 회전탱크의 축부재에 설치된 구동롤과 피동롤, 상기 구동롤과 피동롤 사이에 연결되는 회전밸트를 포함할 수 있다. The drive unit may include a drive motor, a rotation shaft of the drive motor, a drive roll and a driven roll installed on the shaft member of the rotation tank, and a rotation belt connected between the drive roll and the driven roll.
상기 회전탱크의 개방구에 마련되어 고형분 추출량을 조절하기 위한 조절부를 더 포함할 수 있다.It may further include a control unit provided at the opening of the rotary tank to control the amount of solids extracted.
상기 조절부는 내측플랜지에 상대적으로 높이를 낮게 형성하여 혼합액을 배출하는 배출로, 상기 내측플랜지에 설치되고 상기 배출로를 막는 차단판을 포함하고, 상기 배출로에 대한 차단판의 높이를 변경하여 고형분 추출량을 조절하는 구조일 수 있다.The control unit includes a discharge passage for discharging the mixed liquid by forming a relatively low height on the inner flange, a blocking plate installed on the inner flange and blocking the discharge passage, and changing the height of the blocking plate with respect to the discharge passage to obtain solid content. It may be a structure that controls the amount of extraction.
상기 차단판 양 선단부에는 장공이 형성되고, 상기 내측플랜지 전면에는 상기 장공과 대응되는 위치에 볼트 체결을 위한 체결홀이 형성되어, 상기 볼트에 대한 장공 위치를 조절하여 차단판의 높이를 조절하는 구조일 수 있다.Long holes are formed at both ends of the blocking plate, and fastening holes for fastening bolts are formed at positions corresponding to the long holes on the front surface of the inner flange to adjust the height of the blocking plate by adjusting the position of the long holes for the bolts. can be
본 구현예의 의하면, 원심력을 이용하여 혼합액에서 전분 등의 고형분을 용이하게 분리해 낼 수 있다.According to this embodiment, it is possible to easily separate solids such as starch from the mixed solution using centrifugal force.
분리된 전분을 자중을 이용하여 용이하게 수거할 수 있다.The separated starch can be easily collected using its own weight.
구조가 단순하여 적은 비용으로도 제조가 가능하여, 소득이 낮은 농가 등에서도 설비를 구축할 수 있다.The structure is simple and manufacturing is possible at low cost, so it is possible to build equipment even in low-income farmhouses.
보다 간편하게 사용할 수 있고, 유지 보수도 용이하여 사용성을 높일 수 있다.It can be used more conveniently, and maintenance is easy, so usability can be improved.
복수개를 연속적으로 가동할 수 있어, 생산성을 극대화할 수 있다.Multiple units can be operated continuously, maximizing productivity.
구동모터 정지 후 잔존하는 회전력을 다른 정지하고 있던 원심분리부로 공급하여 원심분리부의 회전력으로 제공함으로써, 에너지 낭비를 최소화할 수 있게 된다.Energy waste can be minimized by supplying the rotational force remaining after the driving motor is stopped to another stopped centrifugal separator to provide the rotational force of the centrifugal separator.
도 1은 본 실시예의 원심 분리 장치를 도시한 개략적인 도면이다.1 is a schematic diagram showing a centrifugal separator of this embodiment.
도 2는 원심분리부의 또다른 실시예를 도시한 개략적인 도면이다.2 is a schematic diagram showing another embodiment of a centrifugal separator.
도 3은 본 실시예의 원심 분리 장치에 의한 전분 추출 작용을 설명하기 위한 개략적인 도면이다.Figure 3 is a schematic diagram for explaining the starch extraction action by the centrifugal separator of the present embodiment.
도 4는 본 실시예의 원심 분리 장치의 진동 저감 구조를 도시한 개략적인 도면이다.Fig. 4 is a schematic diagram showing a vibration reduction structure of the centrifugal separator of this embodiment.
도 5는 또다른 실시예의 원심 분리 장치를 도시한 개략적인 도면이다.5 is a schematic diagram showing a centrifugal separation device of another embodiment.
도 6은 도 5의 실시예에 따른 원심 분리 장치의 진동 저감 구조를 도시한 개략적인 도면이다.FIG. 6 is a schematic diagram showing a vibration reduction structure of the centrifugal separator according to the embodiment of FIG. 5 .
도 7은 또다른 실시예의 원심 분리 장치를 도시한 개략적인 도면이다.7 is a schematic diagram showing a centrifugal separation device of another embodiment.
도 8과 도 9는 원심 분리 장치의 전분량 조절 구조를 도시한 개략적인 도면이다.8 and 9 are schematic diagrams showing the starch amount control structure of the centrifugal separator.
도 10은 본 실시예의 원심 분리 장치와 동력 전달 구조를 도시한 개략적인 도면이다.Fig. 10 is a schematic diagram showing the centrifugal separator and power transmission structure of this embodiment.
이하, 본 발명의 실시예를 상세히 설명한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며, 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. 후술하는 실시예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 가능한 한 동일하거나 유사한 부분은 도면에서 동일한 도면부호를 사용하여 나타낸다.Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, and the present invention is not limited thereby, and the present invention is only defined by the scope of the claims to be described later. The embodiments described below may be modified in various forms without departing from the concept and scope of the present invention. Where possible, identical or similar parts are indicated using the same reference numerals in the drawings.
이하에서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 “포함하는”의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.The terminology used below is only for referring to specific embodiments and is not intended to limit the present invention. As used herein, the singular forms also include the plural forms unless the phrases clearly indicate the opposite. As used herein, the meaning of "comprising" specifies a particular characteristic, region, integer, step, operation, element, and/or component, and specifies another specific characteristic, region, integer, step, operation, element, element, and/or group. does not exclude the presence or addition of
이하, 본 실시예는 원심분리를 통해 전분을 추출하는 장치를 예로서 설명한다. 본 실시예는 이에 한정되지 않으며 전분 외에 다양한 고형분을 원심 분리하여 추출하는 장치에 모두 적용될 수 있다.Hereinafter, this embodiment will be described as an example of an apparatus for extracting starch through centrifugation. This embodiment is not limited thereto and may be applied to all devices for centrifuging and extracting various solids other than starch.
도 1은 본 실시예의 원심 분리 장치를 도시하고 있다.Fig. 1 shows the centrifugal separator of this embodiment.
도 1에 도시된 바와 같이, 원심분리장치(10)는 전분와 액체가 혼합된 현탁액(이하 혼합액이라 한다)을 제공하는 혼합부(20), 혼합부(20)와 연결되어 혼합액이 이송되는 공급라인(30), 공급라인(30) 상에 설치되어 혼합액에서 소정 입도 이상의 찌꺼기를 제거하는 필터부(40), 필터부(40)를 세척하기 위한 필터세척부(50), 공급라인(30)을 통해 공급된 혼합액에 원심력을 가해 고형분인 전분을 분리하는 원심분리부(60)를 포함할 수 있다.As shown in FIG. 1, the centrifugal separator 10 is connected to a mixing unit 20 that provides a mixture of starch and liquid suspension (hereinafter referred to as a mixed liquid), and a supply line through which the mixed liquid is transported. (30), a filter unit 40 installed on the supply line 30 to remove debris of a predetermined particle size or more from the mixed solution, a filter washing unit 50 for washing the filter unit 40, and a supply line 30 It may include a centrifugal separation unit 60 for separating starch, which is a solid content, by applying centrifugal force to the mixed solution supplied through the mixture.
이에, 혼합부(20)에서 제공되는 혼합액은 공급라인(30)을 따라 필터부(40)를 거친 후 원심분리부(60)로 공급되며, 원심분리부(60)에서 원심력에 의해 고액 분리되어 고형분이 추출될 수 있다.Accordingly, the mixed solution provided from the mixing unit 20 is supplied to the centrifugal separator 60 after passing through the filter unit 40 along the supply line 30, and is separated into solid and liquid by centrifugal force in the centrifugal separator 60. Solids can be extracted.
혼합부(20)는, 분쇄 대상물을 수용하는 호퍼(21), 호퍼(21)와 연결되어 대상물을 갈아 분쇄하는 분쇄기(22), 분쇄기(22)에 연결되어 분쇄기(22)로 액체를 공급하는 액체공급부(23)를 포함할 수 있다. 액체는 예를 들어 물일 수 있다. The mixing unit 20 is connected to a hopper 21 for accommodating an object to be pulverized, a grinder 22 connected to the hopper 21 to grind and grind the object, and a grinder 22 to supply liquid to the grinder 22 A liquid supply unit 23 may be included. The liquid may be water for example.
혼합부(20)는 전분을 포함하고 있는 다양한 대상물을 분쇄하고 이를 물과 혼합하여 현탁액을 제조할 수 있다. 대상물은 예를 들어, 감자나 타피오카, 밀, 옥수수 등일 수 있다. The mixing unit 20 may prepare a suspension by pulverizing various objects containing starch and mixing them with water. The object may be, for example, potato, tapioca, wheat, or corn.
대상물은 호퍼(21)에서 분쇄기(22)로 투입되어 고운 입자 형태로 분쇄될 수 있다. 분쇄기(22)는 대상물에 따라 다양하게 가변될 수 있다. 대상물 분쇄 과정에서 액체공급부(23)를 통해 분쇄기(22)로 물이 투입되어 혼합액이 만들어지게 된다.The object may be put into the grinder 22 from the hopper 21 and pulverized into fine particles. The crusher 22 may be varied in various ways depending on the object. In the process of pulverizing the object, water is introduced into the pulverizer 22 through the liquid supply unit 23 to create a mixed solution.
분쇄기(22)를 거쳐 만들어진 혼합액은 공급라인(30)을 통해 이송된다.The mixed solution made through the grinder 22 is transported through the supply line 30.
필터부(40)는 공급라인(30) 상에 설치되어, 혼합액에서 소정 입도 이상의 찌꺼기를 분리한다. 필터부(40)를 거쳐 미세한 크기의 전분 입자만을 포함하는 혼합액이 원심분리부(60)로 공급될 수 있다.The filter unit 40 is installed on the supply line 30 and separates debris of a predetermined particle size or more from the mixture. The mixed solution containing only fine-sized starch particles may be supplied to the centrifugal separation unit 60 through the filter unit 40 .
본 실시예에서, 필터부(40)는 2개 이상의 복수개가 마련되어 교대로 사용될 수 있다. 이에, 필요시 필터부(40)의 운전을 전환하여 혼합액을 연속적으로 필터링 처리하면서 필터부(40)의 교체나 세척 작업을 용이하게 수행할 수 있게 된다.In this embodiment, a plurality of two or more filter units 40 may be provided and used alternately. Accordingly, it is possible to easily perform a replacement or cleaning operation of the filter unit 40 while continuously filtering the mixed solution by switching the operation of the filter unit 40 when necessary.
도 1은 두 개의 필터부(40)를 구비한 구조를 예시하고 있다. 도 1에 도시된 바와 같이, 본 장치(10)는 공급라인(30)에 두 개의 필터부(40)를 병렬로 배치하여 교대로 운전하는 구조일 수 있다. 이를 위해, 본 장치(10)는 두 개의 필터부(40)와, 공급라인(30) 상에 분기되어 각 필터부(40)와 연결되는 필터라인(41), 각 필터라인(41)의 입측과 출측에서 공급라인(30)에 설치되어 각 필터라인(41)에 대한 혼합액의 공급을 제어하는 입측전환밸브(42)와 출측전환밸브(43)를 포함할 수 있다.1 illustrates a structure having two filter units 40 . As shown in FIG. 1 , the apparatus 10 may have a structure in which two filter units 40 are disposed in parallel in a supply line 30 and operated alternately. To this end, the device 10 includes two filter units 40, a filter line 41 branched on a supply line 30 and connected to each filter unit 40, and an inlet side of each filter line 41. It may include an inlet switching valve 42 and an outlet switching valve 43 installed on the supply line 30 at the outlet side and controlling the supply of the mixed liquid to each filter line 41.
입측전환밸브(42)와 출측전환밸브(43)는 예를 들어 공급라인(30)과 두 개의 필터라인(41)을 연결하는 3웨이 밸브(3way valve)로, 공급라인(30)을 두 개의 필터라인(41)에 선택적으로 연결한다. 다른 필터라인(41)은 차단되어 혼합액이 공급되지 않는다. The inlet switching valve 42 and the outlet switching valve 43 are, for example, 3-way valves connecting the supply line 30 and the two filter lines 41, and the supply line 30 is connected to the two Optionally connected to the filter line (41). The other filter line 41 is blocked so that the mixed liquid is not supplied.
이에, 입측전환밸브(42)와 출측전환밸브(43)의 구동에 따라 공급라인(30)은 두 개의 필터라인(41) 중 어느 한쪽 필터라인(41)과 연결되어 혼합액을 필터링할 수 있다. 따라서, 일측 필터부(40)의 세척이나 교체 등의 작업시에 다른 필터부(40)를 통해 혼합액을 필터링하여 원심분리부(60)로 공급할 수 있게 된다.Thus, according to the operation of the inlet switching valve 42 and the outlet switching valve 43, the supply line 30 is connected to either filter line 41 of the two filter lines 41 to filter the mixed liquid. Therefore, when cleaning or replacing one filter unit 40, the mixed solution can be filtered through the other filter unit 40 and supplied to the centrifugal separation unit 60.
이와 같이, 두 개의 필터부(40)를 교대로 운전함으로써, 연속적으로 혼합액을 공급하여 전분을 추출할 수 있게 된다.In this way, by operating the two filter units 40 alternately, it is possible to extract the starch by continuously supplying the mixed solution.
본 장치(10)는 필터부(40)를 세척하기 위한 필터세척부(50)를 더 포함할 수 있다.The apparatus 10 may further include a filter washing unit 50 for cleaning the filter unit 40 .
본 실시예에서, 필터세척부(50)는 두 개의 필터부(40)에 각각을 개별적으로 세척하는 구조로 되어 있다. 필터세척부(50)는 필터부(40) 후단에 연결되어 필터부(40)로 세척액을 공급하기 위한 세척액라인(51), 필터부(40) 전단에 연결되어 필터부(40)를 거친 세척액을 배출 처리하는 배출라인(52), 세척액라인(51)에 설치되는 유입전환밸브(53)와 배출라인(52)에 설치되는 배출전환밸브(54)를 포함할 수 있다. In this embodiment, the filter washing unit 50 has a structure in which each of the two filter units 40 is individually washed. The filter washing unit 50 is connected to the rear end of the filter unit 40 and is connected to the washing liquid line 51 for supplying the washing liquid to the filter unit 40, and is connected to the front end of the filter unit 40 and passes through the filter unit 40. It may include a discharge line 52 for discharging, an inflow conversion valve 53 installed in the washing liquid line 51 and a discharge conversion valve 54 installed in the discharge line 52.
세척액라인(51)은 필터부(40) 후단에서 두 개로 분기되어 각 필터라인(41)과 연결되고, 배출라인(52)은 두 개로 분기되어 필터부(40) 전단에서 각 필터라인(41)과 연결된다.The washing liquid line 51 is branched into two at the rear end of the filter unit 40 and connected to each filter line 41, and the discharge line 52 is branched into two and is connected to each filter line 41 at the front end of the filter unit 40. connected with
그리고, 세척액라인(51) 상에 유입전환밸브(53)가 설치되어 각 필터라인(41)에 대한 세척액의 공급을 제어하고, 배출라인(52) 상에 배출전환밸브(54)가 설치되어 각 필터라인(41)의 세척액 배출을 제어하는 구조로 되어 있다.In addition, an inlet switching valve 53 is installed on the washing liquid line 51 to control the supply of washing liquid to each filter line 41, and a discharge switching valve 54 is installed on the discharge line 52 to control each filter line 41. It has a structure that controls the discharge of the washing liquid from the filter line 41.
유입전환밸브(53)와 배출전환밸브(54)는 예를 들어 두 개로 분기된 세척액라인(51)의 유로 방향을 전환하는 3웨이 밸브(3way valve)로, 세척액라인(51)과 두 필터라인(41) 사이를 선택적으로 연결한다. The inflow conversion valve 53 and the discharge conversion valve 54 are, for example, 3-way valves that switch the flow direction of the two branched washing fluid lines 51, and the washing fluid line 51 and the two filter lines (41) Optionally connect between them.
이에, 유입전환밸브(53)와 배출전환밸브(54)의 구동에 따라 세척액라인(51)과 배출라인(52)은 두 개의 필터라인(41) 중 어느 한쪽 필터라인(41)과 연결된다. 필터부(40) 후단에서 세척액라인(51)을 통해 공급된 세척액은 필터부(40)를 역방향으로 지나면서 필터부(40)를 세척하게 된다. 필터부(40)를 거친 세척액은 필터부(40) 전단에서 필터라인(41)과 연결된 배출라인(52)을 통해 배출 처리된다. Accordingly, the washing liquid line 51 and the discharge line 52 are connected to one filter line 41 of the two filter lines 41 according to the operation of the inlet switching valve 53 and the discharge switching valve 54. The washing liquid supplied from the rear end of the filter unit 40 through the washing liquid line 51 cleans the filter unit 40 while passing through the filter unit 40 in a reverse direction. The washing liquid that has passed through the filter unit 40 is discharged through a discharge line 52 connected to the filter line 41 at the front end of the filter unit 40 .
언급한 바와 같이, 분기된 필터라인(41)의 입측과 출측에 설치된 입측전환밸브(42)와 출측전환밸브(43)에 의해 각 필터라인(41) 중 세척이 이루어지는 필터부(40)의 필터라인(41)은 차단되어 혼합액이 공급되지 않는다. 이에, 혼합액이 공급되지 않는 상태에서 필터라인(41)을 통해 세척액을 역방향으로 공급하여 필터부(40)를 용이하게 청소할 수 있다.As mentioned above, the filter of the filter unit 40 in which washing is performed among the filter lines 41 by the inlet switching valve 42 and the outlet switching valve 43 installed on the inlet and outlet sides of the branched filter line 41. The line 41 is blocked so that the mixed liquid is not supplied. Accordingly, the filter unit 40 can be easily cleaned by supplying the washing liquid in the reverse direction through the filter line 41 in a state in which the mixed liquid is not supplied.
필터부(40)를 거쳐 찌꺼기가 제거된 혼합액은 공급라인(30)과 연결되어 있는 원심분리부(60)로 공급된다. The mixed solution from which debris is removed through the filter unit 40 is supplied to the centrifugal separation unit 60 connected to the supply line 30 .
본 실시예의 원심분리부(60)는, 내부에 수용공간을 형성하고 수직으로 세워져 회전가능하게 배치되어 원심력에 의한 고액 분리가 이루어지는 회전탱크(70), 회전탱크(70)를 고속으로 회전시켜 원심력을 가하기 위한 구동부(80), 회전탱크(70) 내부로 혼합액을 공급하기 위한 공급부를 포함할 수 있다.The centrifugal separation unit 60 of the present embodiment forms an accommodation space therein, is erected vertically and rotatably arranged, and solid-liquid separation is performed by centrifugal force. It may include a drive unit 80 for applying and a supply unit for supplying the mixed solution into the rotary tank 70.
이에, 공급부로부터 회전탱크(70)의 내주면으로 공급된 혼합액은 고속회전하는 회전탱크(70)의 원심력에 의해 고액 분리된다. 따라서, 고형분인 전분은 회전탱크(70) 내주면 쪽으로 모아지고, 가벼운 물은 중심부쪽으로 모아져 회전탱크(70)의 개방된 상단 개방구(71)를 통해 외부로 배출된다.Accordingly, the mixed solution supplied from the supply unit to the inner circumferential surface of the rotating tank 70 is separated into solid and liquid by the centrifugal force of the rotating tank 70 rotating at high speed. Therefore, the solid starch is collected toward the inner circumference of the rotary tank 70, and the light water is collected toward the center and discharged to the outside through the open top opening 71 of the rotary tank 70.
회전탱크(70)는 원형 단면 구조의 원통 형태로 형성될 수 있다. 회전탱크(70)는 원심 분리된 전분의 배출은 차단하고 물만을 외부로 배출시킬 수 있는 구조로 되어 있다. 이를 위해, 회전탱크(70)는 개방된 상단 개방구(71)와, 상단 개방구(71)로부터 축방향을 따라 동일한 직경으로 형성되어 혼합액의 고액 분리가 이루어지는 측벽부(72), 상단 개방구(71)에 내주면을 따라 내측으로 돌출 형성되어 혼합액에서 분리된 고형분의 이탈을 방지하는 내측플랜지(73)를 포함할 수 있다.The rotating tank 70 may be formed in a cylindrical shape with a circular cross-section. The rotating tank 70 has a structure capable of discharging only water to the outside while blocking the discharge of the centrifuged starch. To this end, the rotating tank 70 has an open top opening 71, a side wall portion 72 formed with the same diameter along the axial direction from the top opening 71 to separate the solid-liquid mixture, and the top opening 71 may include an inner flange 73 protruding inward along the inner circumferential surface to prevent separation of the solids separated from the mixed solution.
측벽부(72)는 회전탱크(70) 축방향을 따라 상하로 길게 연장된다. 측벽부(72)의 연장 길이는 다양하게 변형될 수 있다. 공급부를 통해 측벽부(72)로 혼합액이 공급된다. 혼합액은 회전탱크(70)의 회전에 따라 측벽부(72)에서 고액 분리된다.The side wall portion 72 extends vertically along the axial direction of the rotary tank 70. The extension length of the side wall portion 72 may be variously modified. The mixed liquid is supplied to the side wall portion 72 through the supply unit. The liquid mixture is separated into solid and liquid at the side wall portion 72 as the rotating tank 70 rotates.
측벽부(72)에서 고액 분리된 물은 회전탱크(70)의 원심력에 의해 상단 개방구(71)를 통해 외부로 배출된다. 측벽부의 상단 개방구(71)에는 내측플랜지(73)가 형성되어 물 외에 고형분의 배출은 차단한다.The solid-liquid separated water from the side wall portion 72 is discharged to the outside through the upper opening 71 by the centrifugal force of the rotating tank 70 . An inner flange 73 is formed in the upper opening 71 of the side wall portion to block discharge of solids other than water.
내측플랜지(73)는 회전탱크(70)의 상단 개방구(71) 둘레를 따라 내측으로 연속적으로 돌출 형성된다. 내측플랜지(73)의 돌출된 길이는 다양하게 변형될 수 있다. 내측플랜지(73)는 고액 분리된 전분의 이탈을 방지하는 스토퍼로 작용한다. 측벽부(72) 내면에서 내측플랜지(73)의 상단까지 두께로 전분이 측벽부(72) 내에 수용될 수 있다.The inner flange 73 continuously protrudes inward along the circumference of the upper opening 71 of the rotating tank 70. The protruding length of the inner flange 73 may be variously modified. The inner flange 73 acts as a stopper to prevent the separation of the solid-liquid separated starch. The starch may be accommodated in the side wall portion 72 in a thickness from the inner surface of the side wall portion 72 to the upper end of the inner flange 73 .
또한, 회전탱크(70)는 하단 중심부에 내부와 연통되고 축방향으로 연장되어 측벽부(72)에서 흘러내리는 고형분을 배출하는 배출관(74)을 더 포함할 수 있다. 이에, 측벽부(72)에 모아진 전분이 자중에 의해 하부로 떨어져 배출관(74)을 통해 외부로 배출될 수 있다. 따라서, 회전탱크(70)를 장치(10)에서 분리하지 않고도 배출관(74)을 통해 회전탱크(70)에서 추출된 전분을 보다 용이하게 회전탱크(70) 외부로 배출하여 수거할 수 있게 된다. In addition, the rotating tank 70 may further include a discharge pipe 74 communicating with the inside and extending in the axial direction at the lower center portion to discharge solids flowing down from the side wall portion 72 . Thus, the starch collected on the side wall portion 72 may fall downward due to its own weight and be discharged to the outside through the discharge pipe 74. Therefore, the starch extracted from the rotary tank 70 can be more easily discharged to the outside of the rotary tank 70 through the discharge pipe 74 and collected without separating the rotary tank 70 from the device 10.
또한, 회전탱크(70)는 측벽부(72) 하단과 배출관(74) 사이에 형성되고 내경이 점차적으로 줄어 경사면을 이루는 경사벽부(75)를 더 포함할 수 있다. 이에, 측벽부(72)에서 낙하되는 전분은 경사벽부(75)의 경사면을 타고 용이하게 배출관(74)쪽으로 흘러내려 배출될 수 있다.In addition, the rotating tank 70 may further include an inclined wall portion 75 formed between the lower end of the side wall portion 72 and the discharge pipe 74 and forming an inclined surface with an inner diameter gradually reduced. Thus, the starch falling from the side wall portion 72 can easily flow down toward the discharge pipe 74 along the inclined surface of the inclined wall portion 75 and be discharged.
도 2에 도시된 바와 같이, 회전탱크(70)는 상단 개방구(71)에 외주면을 따라 외측으로 돌출 형성되어 물의 배출을 유도하는 외측플랜지(76)를 더 포함할 수 있다.As shown in FIG. 2 , the rotary tank 70 may further include an outer flange 76 protruding outward along an outer circumferential surface of the upper opening 71 to induce discharge of water.
외측플랜지(76)는 회전탱크(70)의 상단 개방구(71) 둘레를 따라 외측으로 연속적으로 돌출 형성된다. 외측플랜지(76)의 돌출된 길이는 다양하게 변형될 수 있다. 외측플랜지(76)는 고액 분리된 물의 배출 위치를 규제할 수 있다. 즉, 내측플랜지(73)를 넘은 물은 외측플랜지(76) 끝으로 이동하여 외부로 배출된다. 이에, 내측플랜지(73)를 넘어 회전탱크(70) 상단 개방구(71)를 빠져나가는 물이 외측플랜지(76)에 의해 유도되어 보다 원활하고 효과적으로 배출될 수 있다. 또한, 물이 회전탱크(70)에서 넓게 흩뿌려지지 않고 외측플랜지(76) 선단에서만 배출된다. 따라서, 회전탱크(70)에서 배출되는 물을 보다 효과적으로 수거할 수 있게 된다.The outer flange 76 continuously protrudes outward along the circumference of the upper opening 71 of the rotary tank 70. The protruding length of the outer flange 76 may be variously modified. The outer flange 76 may regulate a discharging position of the separated solid-liquid water. That is, the water beyond the inner flange 73 moves to the end of the outer flange 76 and is discharged to the outside. Accordingly, water passing through the inner flange 73 and passing through the upper opening 71 of the rotary tank 70 is guided by the outer flange 76 and can be discharged more smoothly and effectively. In addition, water is not scattered widely in the rotary tank 70 and is discharged only from the front end of the outer flange 76. Therefore, it is possible to collect the water discharged from the rotating tank 70 more effectively.
본 실시예의 장치(10)는, 이렇게 수거된 물을 재활용하기 위한 회수라인(62)을 더 포함할 수 있다. 회수라인(62)은 예를 들어 회전탱크(70)와 공급라인(30) 사이를 연결하여 회수된 물을 공급라인으로 재공급할 수 있다.The apparatus 10 of this embodiment may further include a recovery line 62 for recycling the collected water. The recovery line 62 may connect, for example, between the rotary tank 70 and the supply line 30 to re-supply the recovered water to the supply line.
바람직하게 회수라인(62)은, 회전탱크(70)와 혼합부(20) 사이를 연결하여 회전탱크(70)에서 배출되는 물을 혼합부(20)의 분쇄기(22)로 공급하는 구조일 수 있다.Preferably, the recovery line 62 may have a structure that connects the rotating tank 70 and the mixing unit 20 to supply water discharged from the rotating tank 70 to the grinder 22 of the mixing unit 20. there is.
이와 같이, 회전탱크(70)에서 고액 분리되어 배출되는 물을 버리지 않고 재활용함으로써, 물속에 잔류하는 전분의 낭비를 막고 전분 추출 효율을 극대화할 수 있게 된다.In this way, by recycling the water discharged from the solid-liquid separation in the rotary tank 70 without discarding it, it is possible to prevent waste of starch remaining in the water and maximize starch extraction efficiency.
구동부(80)는 예를 들어, 구동모터(81), 구동모터(81)의 회전축과 회전탱크(70)에 설치된 구동롤(82)과 피동롤(83), 구동롤과 피동롤 사이에 연결되는 회전밸트(84)를 포함할 수 있다. 이에 구동모터(81)가 구동되면 회전밸트(84)를 통해 동력이 전달되어 회전탱크(70)가 고속으로 회전된다. 구동부(80)는 회전탱크(70)를 고속으로 회전시키는 구조면 다양하게 변형될 수 있다.The driving unit 80 is, for example, connected between a driving motor 81, a driving roll 82 and a driven roll 83, a driving roll and a driven roll installed in a rotating shaft and a rotating tank 70 of the driving motor 81 It may include a rotating belt 84 to be. Accordingly, when the drive motor 81 is driven, power is transmitted through the rotation belt 84 so that the rotation tank 70 is rotated at high speed. The drive unit 80 may be modified in various ways in terms of a structure for rotating the rotating tank 70 at high speed.
공급부는 혼합액을 공급하는 공급라인(30)과 연결되고 회전탱크(70)의 개방된 상단 개방구(71)를 통해 내부로 삽입되고 하단은 회전탱크(70)의 내면을 향하도록 굽어져 회전탱크(70) 내면으로 혼합액을 분출하는 공급관(64)을 포함할 수 있다.The supply unit is connected to the supply line 30 for supplying the mixed solution and is inserted into the inside through the open top opening 71 of the rotating tank 70, and the lower end is bent toward the inner surface of the rotating tank 70 to rotate the tank. (70) It may include a supply pipe 64 for ejecting the mixed solution to the inner surface.
공급관(64)은 회전탱크(70)의 회전중심을 따라 배치될 수 있다. 공급관(64)의 하단은 출구(65)를 이루며 회전탱크(70)의 측벽부(72) 내면을 향해 굽어진 구조로 되어 있다. 이에, 혼합액은 공급관(64)의 출구(65)에서 측벽부(72)로 배출될 수 있다. The supply pipe 64 may be disposed along the center of rotation of the rotating tank 70 . The lower end of the supply pipe 64 forms the outlet 65 and has a structure bent toward the inner surface of the side wall portion 72 of the rotary tank 70. Accordingly, the mixed liquid may be discharged from the outlet 65 of the supply pipe 64 to the side wall portion 72 .
본 실시예에서, 공급관(64)는 회전탱크(70) 상단에 고정되어 회전탱크(70)와 같이 회전 될 수 있다. 공급라인(30)은 공급관(64)에 예를 들어, 슬립링 등을 매개로 자유 회전가능하게 연결될 수 있다. 이에, 공급라인(30)을 통해 공급관(64)으로 공급된 혼합액은 회전탱크(70)와 같이 회전되는 공급관(64)의 출구(65)를 통해 축벽부(72)로 분출될 수 있다.In this embodiment, the supply pipe 64 is fixed to the top of the rotating tank 70 and can rotate like the rotating tank 70. The supply line 30 may be freely rotatably connected to the supply pipe 64 via, for example, a slip ring or the like. Accordingly, the mixed solution supplied to the supply pipe 64 through the supply line 30 may be ejected to the shaft wall portion 72 through the outlet 65 of the supply pipe 64 that rotates like the rotating tank 70 .
회전탱크(70) 회전시 공급관(64)도 같이 회전함에 따라 공급관(64)의 출구(65)에서 배출되는 혼합액은 공급관(64)의 회전에 의한 원심력에 의해 밑으로 떨어지지 않고 측벽부(72)를 향해 분출될 수 있다.As the supply pipe 64 also rotates when the rotary tank 70 rotates, the mixed solution discharged from the outlet 65 of the supply pipe 64 does not fall downward due to the centrifugal force caused by the rotation of the supply pipe 64, and the side wall portion 72 can be ejected toward
또 다른 실시예로, 도 1에 도시된 바와 같이, 공급관(64)은 회전탱크(70)와 별도로 분리되어 마련되고, 공급부는 공급관(64)을 회전시키기 위한 회전구동부(66)를 더 포함할 수 있다.In another embodiment, as shown in FIG. 1, the supply pipe 64 is provided separately from the rotating tank 70, and the supply unit may further include a rotary driving unit 66 for rotating the supply pipe 64. can
회전구동부(66)는 공급관(64)에 연결되어 공급관(64)을 소정의 속도로 회전시키게 된다. 회전구동부(66)는 예를 들어, 모터, 모터의 회전축과 공급관(64) 사이를 연결하는 회전밸트를 포함할 수 있다. 회전구동부(66)에 의해 공급관(64)은 소정의 속도로 회전되면서 혼합액을 배출할 수 있다. 이에, 공급관(64)의 출구(65)에서 배출되는 혼합액은 공급관(64)의 회전에 의한 원심력에 의해 밑으로 떨어지지 않고 측벽부(72)를 향해 분출된다. 따라서, 혼합액을 모두 측벽부(72)로 배출하여 고액 분리시킬 수 있게 된다.The rotary drive unit 66 is connected to the supply pipe 64 to rotate the supply pipe 64 at a predetermined speed. The rotational drive unit 66 may include, for example, a rotational belt connecting a motor, a rotational shaft of the motor, and the supply pipe 64 . The supply pipe 64 may discharge the mixed solution while being rotated at a predetermined speed by the rotary driving unit 66 . Accordingly, the mixed liquid discharged from the outlet 65 of the supply pipe 64 is ejected toward the side wall portion 72 without falling downward due to the centrifugal force caused by the rotation of the supply pipe 64 . Accordingly, all of the mixed liquid is discharged through the side wall portion 72 to perform solid-liquid separation.
본 실시예의 원심 분리 장치(10)는, 원심분리부(60)가 2개 이상의 복수개가 마련되어 교대로 운전될 수 있다. 이에, 두 개의 원심분리부(60)를 교대로 가동함으로써, 회전탱크(70)를 회전시켜 혼합액을 원심분리하는 작업과 회전탱크(70)로부터 원심분리된 전분을 수거하는 작업을 연속적으로 수행할 수 있게 된다.In the centrifugal separation device 10 of this embodiment, two or more centrifugal separation units 60 may be provided and operated alternately. Therefore, by operating the two centrifugal separators 60 alternately, the operation of centrifuging the mixed solution by rotating the rotary tank 70 and the operation of collecting the centrifuged starch from the rotary tank 70 can be continuously performed. be able to
도 1은 두 개의 원심분리부(60)를 구비한 구조를 예시하고 있다. 도 1에 도시된 바와 같이, 본 장치(10)는 공급라인(30)에 두 개의 원심분리부(60)를 병렬로 배치하여 교대로 운전하는 구조일 수 있다. 이를 위해, 본 장치(10)는 두 개의 원심분리부(60)와, 공급라인(30) 상에 분기되어 각 원심분리부(60)와 연결되는 복수개의 분기라인(68), 공급라인(30)에 설치되어 각 분기라인(68)에 대한 혼합액 공급을 제어하는 유로전환밸브(69)를 포함할 수 있다.1 illustrates a structure having two centrifugal separators 60 . As shown in FIG. 1 , the apparatus 10 may have a structure in which two centrifugal separators 60 are arranged in parallel in a supply line 30 and operated alternately. To this end, the apparatus 10 includes two centrifugal separators 60, a plurality of branch lines 68 branched on a supply line 30 and connected to each centrifugal separator 60, and a supply line 30 ) and may include a flow path conversion valve 69 for controlling the supply of the mixed solution to each branch line 68.
이에, 유로전환밸브(69)의 구동에 따라 공급라인(30)은 두 개의 분기라인(68) 중 어느 한쪽 분기라인(68)과 연결되어 혼합액을 해당 분기라인(68) 상에 연결된 원심분리부(60)로 공급할 수 있다. Accordingly, the supply line 30 is connected to one branch line 68 of the two branch lines 68 according to the operation of the flow path conversion valve 69, and the mixed solution is connected to the centrifugal separator connected to the branch line 68. (60) can be supplied.
따라서, 일측 원심분리부(60)로 혼합액을 공급하여 원심분리하는 상태에서, 타측 원심분리부(60)를 정지하여, 분리된 전분을 수거하는 작업을 수행할 수 있다.Therefore, in a state in which the mixed solution is supplied to one side centrifugal separation unit 60 and centrifuged, the other side centrifugal separation unit 60 is stopped to collect the separated starch.
이와 같이, 두 개의 원심분리부(60)를 교대로 운전하면서, 연속적으로 혼합액을 원심분리하여 전분을 추출할 수 있게 된다.In this way, while alternately operating the two centrifugal separators 60, the mixture can be continuously centrifuged to extract starch.
도 3은 본 실시예에 따른 원심분리부의 작용을 나타내고 있다.3 shows the action of the centrifugal separator according to this embodiment.
도 3에 도시된 바와 같이, 원심분리부(60)가 구동되면, 회전탱크(70)와 공급관(64)은 설정된 속도로 회전하게 된다. 공급관(64)으로 공급된 혼합액은 출구(65)를 통해 회전탱크(70)의 측벽부(72)로 배출된다. 측벽부(72)로 배출된 혼합액은 회전탱크(70)와 같이 회전되고 원심력에 의해 전분과 물로 고액 분리된다. As shown in FIG. 3, when the centrifugal separator 60 is driven, the rotary tank 70 and the supply pipe 64 rotate at a set speed. The mixed liquid supplied through the supply pipe 64 is discharged to the side wall portion 72 of the rotary tank 70 through the outlet 65 . The mixed liquid discharged through the side wall portion 72 is rotated like a rotary tank 70 and separated into starch and water by centrifugal force.
고액 분리되어 물보다 무거운 전분은 원심력에 의해 측벽부(72) 내면에 모아지고, 상대적으로 가벼운 물은 회전중심을 향해 전분의 내측에 층을 이루어 모이게 된다. 이에, 혼합액은 전분에 의한 고체층과 물에 의한 액체층으로 나뉘게 된다.Starch that is separated from solid-liquid and is heavier than water is collected on the inner surface of the side wall portion 72 by centrifugal force, and relatively light water is collected in layers toward the center of rotation on the inside of the starch. Thus, the mixed solution is divided into a solid layer by starch and a liquid layer by water.
회전탱크(70)의 상단 개방구(71)에는 내측플랜지(73)가 형성되어 있어서, 상대적으로 측벽부(72) 내면쪽에 위치한 전분은 내측플랜지(73)에 막혀 외부로 배출되지 않는다. 반면에, 혼합액에서 분리되어 전분 내측에 위치하는 물은 점차적으로 수위가 증가하면서 내측플랜지(73)를 넘어 외측으로 배출된다. 여기서 물의 수위라 함은 측벽부(72) 내면에서 중심축을 향해 전분 상에서부터의 물 수면까지의 높이를 의미할 수 있다.An inner flange 73 is formed at the upper opening 71 of the rotary tank 70, so that starch located on the inner side of the side wall portion 72 is blocked by the inner flange 73 and is not discharged to the outside. On the other hand, the water separated from the mixture and located inside the starch is discharged outward beyond the inner flange 73 as the water level gradually increases. Here, the water level may refer to a height from the starch top toward the central axis from the inner surface of the side wall portion 72 to the water surface.
공급관(64)을 통해 계속 혼합액이 공급되고, 고액 분리가 계속 이루어지면서 측벽부(72) 내면에 쌓이는 전분의 두께가 점차 두꺼워지게 된다. 고액 분리된 전분이 내측플랜지(73) 높이에 도달하게 되면 전분의 내측에 층을 이루던 물은 내측플랜지(73)를 넘어 완전히 배출 처리될 수 있다. 이에, 원심분리부(60)를 통해 혼합액을 고액 분리함으로써 측벽부(72)의 내면에 고형분인 전분만을 잔류시켜 추출할 수 있게 된다.As the mixed solution is continuously supplied through the supply pipe 64 and solid-liquid separation continues, the thickness of the starch accumulated on the inner surface of the side wall portion 72 gradually increases. When the solid-liquid separated starch reaches the height of the inner flange 73, the water layered inside the starch can be completely discharged beyond the inner flange 73. Accordingly, by separating the liquid mixture into solid and liquid through the centrifugal separator 60, only the solid starch on the inner surface of the side wall part 72 can be extracted.
혼합액의 원심분리가 완료되면 브레이크 등이 구동되어 회전탱크(70)가 정지한다. 회전탱크(70)가 정지하면, 원심력에 의해 측벽부(72) 내면에 붙어 있던 전분이 자중에 의해 밑으로 흘려내려 낙하한다. 낙하되는 전분은 회전탱크(70)의 경사벽부(75)의 경사면을 타고 흘러내려 배출관(74)을 통해 회전탱크(70) 외측으로 배출되어 수거된다.When the centrifugation of the liquid mixture is completed, a brake or the like is driven to stop the rotary tank 70 . When the rotating tank 70 is stopped, the starch adhering to the inner surface of the side wall portion 72 by centrifugal force flows downward due to its own weight and falls. The falling starch flows down the inclined surface of the inclined wall portion 75 of the rotary tank 70 and is discharged to the outside of the rotary tank 70 through the discharge pipe 74 and collected.
본 실시예의 원심분리부(60)는 진동을 억제하기 위한 완충부를 더 포함할 수 있다.The centrifugal separator 60 of this embodiment may further include a buffer for suppressing vibration.
도 4는 본 실시예에 따른 완충부의 다양한 실시예를 나타내고 있다.4 shows various embodiments of the buffer unit according to the present embodiment.
도 4의 (a)는 회전탱크(70)가 회전가능하게 축지지되어 고정된 구조를 나타내고 있다. 이러한 실시예의 경우 예를 들어, 회전탱크(70)의 배출관(74)이 베어링블럭 등에 설비 상에 축지지될 수 있다.Figure 4 (a) shows a structure in which the rotating tank 70 is rotatably supported and fixed. In this embodiment, for example, the discharge pipe 74 of the rotating tank 70 may be pivotally supported on a bearing block or the like on a facility.
도 4의 (b)는 완충부가 현가 방식으로 설치되는 적어도 하나 이상의 탄성부재를 포함하는 구조를 나타내고 있다. 이러한 실시예의 경우, 예를 들어 회전탱크(70)의 배출관(74)과 설비 사이에 탄성스프링(90)이 설치되어 회전탱크(70)는 탄성스프링(90)을 매개로 설비 상에 매달려 설치될 수 있다. 구동부(80)의 구동모터(81) 역시 탄성스프링(90)을 매개로 설비 상에 매달려 설치될 수 있다. 이에, 구동부(80)나 회전탱크(70)에서 발생되는 진동이 탄성스프링(90)에 의해 완충되어 작동 과정에서 진동을 최소화할 수 있게 된다.4(b) shows a structure including at least one elastic member in which the buffer unit is installed in a suspended manner. In the case of this embodiment, for example, an elastic spring 90 is installed between the discharge pipe 74 of the rotary tank 70 and the equipment, so that the rotary tank 70 is suspended and installed on the equipment via the elastic spring 90. can The driving motor 81 of the driving unit 80 may also be installed hanging on the equipment via the elastic spring 90. Thus, vibration generated from the driving unit 80 or the rotating tank 70 is dampened by the elastic spring 90, thereby minimizing vibration during operation.
도 4의 (c)는 완충부가 하중을 받쳐 지지하는 댐퍼(91) 방식으로 설치되는 구조를 나타내고 있다. 이러한 실시예의 경우, 예를 들어 회전탱크(70)의 배출관(74)은 설비 상에 복수개의 댐퍼(91)를 매개로 설치되어 하중이 지지될 수 있다. 구동부(80)의 구동모터(81) 역시 댐퍼(91)에 의해 설비 상에 지지될 수 있다. 댐퍼(91)는 예를 들어, 스프링과 유압에 의해 충격을 완충하는 구조일 수 있다. 이에, 댐퍼(91)가 회전탱크(70)나 구동부(80)를 지지하고 있어 작동시 발생되는 진동이 댐퍼(91)에 의해 효과적으로 완충될 수 있다.Figure 4 (c) shows a structure in which the shock absorber is installed in a damper 91 method for supporting a load. In this embodiment, for example, the discharge pipe 74 of the rotary tank 70 is installed on the equipment via a plurality of dampers 91 so that the load can be supported. The driving motor 81 of the driving unit 80 may also be supported on the equipment by the damper 91. The damper 91 may have a structure that absorbs an impact by, for example, a spring and hydraulic pressure. Accordingly, since the damper 91 supports the rotating tank 70 or the drive unit 80, vibration generated during operation can be effectively dampened by the damper 91.
도 5는 원심분리부의 또 다른 실시예를 나타내고 있다.5 shows another embodiment of the centrifugal separator.
이하 본 실시예의 원심분리부(60)는 회전탱크(92)의 하단이 막힌 구조를 제외하고 다른 구성은 위에서 설명한 실시예와 동일하다, 이에, 동일한 구성에 대해서는 같은 도면 부호를 기재하며, 그 상세한 설명은 생략한다. Hereinafter, other configurations of the centrifugal separation unit 60 of this embodiment are the same as those of the above-described embodiment except for the structure in which the lower end of the rotating tank 92 is blocked. omit explanation.
본 실시예의 원심분리부(60)는 회전탱크(92)의 하단이 막힌 구조로, 회전탱크(92)를 구동모터(81)에서 분리하여 고액 분리된 고형분을 수거하는 구조일 수 있다.The centrifugal separator 60 of this embodiment may have a structure in which the lower end of the rotation tank 92 is blocked, and may have a structure in which the rotation tank 92 is separated from the drive motor 81 to collect solids separated from solid and liquid.
도 5에 도시된 바와 같이, 회전탱크(92)는 하단이 막힌 용기 형태를 이루고, 하부 중심부에는 구동부(80)와 착탈가능하게 장착되는 결합축(93)이 축방향을 따라 돌출 형성된 구조일 수 있다. 그리고, 회전탱크(92)와 구동부(80)의 결합을 위해, 구동모터(81) 회전축에는 회전탱크(92)의 결합축(93)을 고정하기 위한 소켓부(94)가 마련될 수 있다.As shown in FIG. 5, the rotating tank 92 may have a container shape with a lower end closed, and a coupling shaft 93 detachably mounted with the driving unit 80 in the lower center protruding along the axial direction. there is. In addition, a socket unit 94 for fixing the coupling shaft 93 of the rotation tank 92 may be provided on the rotation shaft of the drive motor 81 for coupling between the rotation tank 92 and the drive unit 80 .
이와 같이, 본 실시예는 회전탱크(92)가 하단이 막히고 상단 개방구(71)이 개방된 용기형태를 이룸에 따라 회전탱크(92)를 바로 구동모터(81)의 회전축에 장착하여 사용할 수 있다.As such, according to the present embodiment, the rotary tank 92 has a container shape in which the lower end is blocked and the upper opening 71 is opened, so that the rotary tank 92 can be directly mounted on the rotation shaft of the drive motor 81 and used. there is.
따라서, 동력 전달을 위한 구성을 생략하여 장치(10)의 구조를 보다 단순화함으로써 제조에 소요되는 비용을 보다 낮출 수 있게 된다.Therefore, by omitting the configuration for power transmission and simplifying the structure of the device 10, it is possible to lower the manufacturing cost.
결합축(93)과 소켓부(94)는 예를 들어, 나사 결합 방식으로 결합되는 구조일 수 있다. 즉, 결합축(93)은 외주면에 수나사가 형성되고, 소켓부(94)는 내주면에 암나사가 형성되어, 서로 나사결합될 수 있다. 결합축(93)과 소켓부(94)는 착탈가능하게 결합되어 회전력을 전달할 수 있는 구조면 다양하게 변형될 수 있다. The coupling shaft 93 and the socket portion 94 may have a structure in which, for example, a screw coupling method is coupled. That is, the coupling shaft 93 has a male screw formed on an outer circumferential surface, and the socket portion 94 has a female screw formed on an inner circumferential surface, so that they can be screwed together. The coupling shaft 93 and the socket portion 94 may be detachably coupled and may be variously modified in terms of structures capable of transmitting rotational force.
이에, 필요시 회전탱크(92)를 구동모터(81)의 회전축에 바로 결합하여 고속회전시켜 혼합액을 고액 분리할 수 있다. 회전탱크(92)가 회전됨에 따라 고액 분리된 전분은 회전탱크(92)의 측벽부(72)에 모아지고, 분리된 물은 회전탱크(92) 상단 개방구(71)를 통해 외부로 배출된다.Therefore, if necessary, the mixed solution may be separated into solid and liquid by directly coupling the rotary tank 92 to the rotary shaft of the drive motor 81 and rotating it at high speed. As the rotary tank 92 rotates, the solid-liquid separated starch is collected on the side wall 72 of the rotary tank 92, and the separated water is discharged to the outside through the upper opening 71 of the rotary tank 92. .
혼합액은 공급라인이나 공급라인에 연결된 공급부를 통해 회전탱크(92) 내부로 공급될 수 있다. 또한, 본 실시예의 회전탱크(92)는 하단이 막힌 구조로, 작업자는 별도의 공급라인 없이도 회전탱크 내부에 혼합액을 부어 공급할 수 있다. 회전탱크(81)가 회전됨에 따라 내부의 혼합액은 회전탱크의 원심력에 의해 측벽부(72)에 가압되면서 고액분리된다. 고액분리된 고형분은 측벽부(72)에 잔류하며, 물은 원심력에 의해 회전탱크(92)의 상단 개방구(71)를 통해 외부로 배출된다.The mixed solution may be supplied into the rotating tank 92 through a supply line or a supply unit connected to the supply line. In addition, the rotary tank 92 of this embodiment has a structure with a closed bottom, and the operator can pour and supply the mixed solution into the rotary tank without a separate supply line. As the rotating tank 81 rotates, the liquid mixture inside is pressed against the side wall portion 72 by the centrifugal force of the rotating tank and separated into solid-liquid. The separated solid content remains on the side wall portion 72, and water is discharged to the outside through the upper opening 71 of the rotating tank 92 by centrifugal force.
본 실시예의 회전탱크(92)에는 언급한 바와 마찬가지로, 회전탱크(92)의 상단 개방구(71)에 내측플랜지(73) 또는/및 외측플래지(76)가 형성될 수 있다. 내측플랜지(73)와 외측플랜지(76)의 구조와 그 작용은 위에서 설명한 바와 동일하며 이하 상세한 설명은 생략한다.As described above, the inner flange 73 or/and the outer flange 76 may be formed in the upper opening 71 of the rotating tank 92 of the present embodiment. The structure and operation of the inner flange 73 and the outer flange 76 are the same as those described above, and a detailed description thereof will be omitted.
고액 분리가 완료되면, 소켓부(94)와 결합축(93)의 결합을 해제하여 구동모터(81)와 회전탱크(92)를 분리한 후 회전탱크(92)를 뒤집어 내부에 모아진 전분을 외부로 배출할 수 있다.When the solid-liquid separation is completed, the connection between the socket part 94 and the coupling shaft 93 is released to separate the drive motor 81 and the rotary tank 92, and then turn the rotary tank 92 over to remove the starch collected inside. can be emitted with
도 6은 완충부는 도 5의 실시예에 따른 원심분리부의 다양한 완충 구조를 나타내고 있다. FIG. 6 shows various buffer structures of the centrifugal separation unit according to the embodiment of FIG. 5 .
도 6의 (a)는 구동부(80)의 구동모터(81)가 설비 상에 고정 설치되어 회전 진동을 최소화하는 구조를 나타내고 있다. 회전탱크(92)는 설비에 고정된 구동모터(81)에 설치된 상태로 안정적으로 회전되어 진동 발생을 최소화하 수 있다.Figure 6 (a) shows a structure in which the driving motor 81 of the driving unit 80 is fixedly installed on the equipment to minimize rotational vibration. The rotating tank 92 can be stably rotated while installed in the driving motor 81 fixed to the facility, thereby minimizing the generation of vibration.
도 6의 (b)는 현가 방식으로 설치되는 적어도 하나 이상의 탄성부재에 의한 완충 구조를 나타내고 있다. 이러한 실시예의 경우, 예를 들어 구동부(80)의 구동모터(81)와 설비 사이에 탄성스프링(90)이 설치되어 구동모터(81)는 탄성스프링(90)을 매개로 설비 상에 매달려 설치될 수 있다. 이에, 구동부(80)나 회전탱크(92)에서 발생되는 진동이 탄성스프링(90)에 의해 완충되어 작동 과정에서 진동을 최소화할 수 있게 된다.6(b) shows a buffer structure using at least one elastic member installed in a suspension manner. In the case of this embodiment, for example, an elastic spring 90 is installed between the driving motor 81 of the driving unit 80 and the equipment, and the driving motor 81 is suspended on the equipment via the elastic spring 90. can Accordingly, vibration generated from the drive unit 80 or the rotating tank 92 is dampened by the elastic spring 90, thereby minimizing vibration during operation.
도 6의 (c)는 하중을 받쳐 지지하는 댐퍼(91) 방식으로 설치되는 완충 구조를 나타내고 있다. 이러한 실시예의 경우, 예를 들어 구동모터(81)는 설비 상에 댐퍼(91)를 매개로 설치되어 하중이 지지될 수 있다. 댐퍼(91)는 예를 들어, 스프링(90)과 유압에 의해 충격을 완충하는 구조일 수 있다. 이에, 구동모터(81)와 회전탱크(92)가 댐퍼(91)에 의해 지지되어, 작동시 발생되는 진동이 댐퍼(91)에 의해 효과적으로 완충될 수 있다.6(c) shows a buffer structure installed in a damper 91 method for supporting and supporting a load. In the case of this embodiment, for example, the driving motor 81 is installed on the equipment via the damper 91 so that the load can be supported. The damper 91 may have a structure that absorbs an impact by, for example, a spring 90 and hydraulic pressure. Accordingly, since the drive motor 81 and the rotating tank 92 are supported by the damper 91, vibration generated during operation can be effectively dampened by the damper 91.
도 7은 또 다른 실시예의 원심분리부를 나타내고 있다.7 shows a centrifugal separator in another embodiment.
이하 본 실시예의 원심분리부(60)는 회전탱크(70)가 수평으로 눕혀져 회전하는 구조란 것을 제외하고 다른 구성은 위에서 설명한 실시예와 동일하다. 이에, 동일한 구성에 대해서는 같은 도면 부호를 기재하며, 그 상세한 설명은 생략한다. Hereinafter, other configurations of the centrifugal separation unit 60 of this embodiment are the same as those of the above-described embodiment except that the rotating tank 70 is horizontally laid and rotated. Therefore, the same reference numerals are used for the same components, and detailed descriptions thereof are omitted.
도 7에 도시된 바와 같이, 본 실시예의 원심분리부(60)는 내부에 수용공간을 형성하고 수평으로 눕혀져 회전가능하게 배치되어 원심력에 의한 고액 분리가 이루어지는 적어도 하나의 회전탱크(70), 회전탱크(70)를 고속으로 회전시켜 원심력을 가하기 위한 구동부(80), 회전탱크(70) 내부로 혼합액을 공급하기 위한 공급부를 포함할 수 있다.As shown in FIG. 7, the centrifugal separation unit 60 of this embodiment forms an accommodation space therein, is laid horizontally and is rotatably disposed, and at least one rotary tank 70 in which solid-liquid separation is performed by centrifugal force, rotation A driving unit 80 for rotating the tank 70 at high speed to apply centrifugal force, and a supply unit for supplying the mixed solution into the rotating tank 70 may be included.
회전탱크(70)는 일측 선단에 개방구(71)를 형성하고, 개방구(71)으로부터 축방향을 따라 연장되고 혼합액의 고액 분리가 이루어지는 측벽부(72), 개방구(71)의 내주면을 따라 내측으로 돌출 형성되어 혼합액에서 분리된 고형분의 이탈을 방지하는 내측플랜지(73)를 포함할 수 있다.The rotary tank 70 has an opening 71 formed at one end of the front end, and extends from the opening 71 along the axial direction, and the side wall portion 72 in which solid-liquid separation of the mixed solution is performed, and the inner circumferential surface of the opening 71 It may include an inner flange 73 protruding inward along the way to prevent separation of the solids separated from the mixed solution.
회전탱크(70)는 개방구(71) 외주면을 따라 외측으로 돌출 형성되어 물의 배출을 유도하는 외측플랜지(76)를 더 포함할 수 있다.The rotary tank 70 may further include an outer flange 76 protruding outward along an outer circumferential surface of the opening 71 to induce discharge of water.
회전탱크(70)는 수평으로 눕혀져 중심축선을 축으로 하여 회전된다. 이에, 보다 안정적으로 구동할 수 있다. The rotating tank 70 is laid horizontally and rotated around the central axis. As a result, it can be driven more stably.
공급부로부터 회전탱크(70)의 내주면으로 공급된 혼합액은 고속회전하는 회전탱크(70)의 원심력에 의해 고액 분리된다. 따라서, 고형분인 전분은 회전탱크(70) 내주면 쪽으로 모아지고, 가벼운 물은 중심부쪽으로 모아져 회전탱크(70)의 개방된 개방구(71)를 통해 외부로 배출된다.The liquid mixture supplied from the supply unit to the inner circumferential surface of the rotary tank 70 is separated into solid and liquid by the centrifugal force of the rotary tank 70 rotating at high speed. Therefore, the solid starch is collected toward the inner circumference of the rotary tank 70, and the light water is collected toward the center and discharged to the outside through the open opening 71 of the rotary tank 70.
회전탱크(70)의 개방구(71) 반대쪽 선단 중심부에는 내부와 연통되고 축방향을 따라 외측으로 연장되는 축부재(77)가 형성된다. 축부재(77)는 구동부(80)와 연결되어 회전탱크(70)를 회전 구동하기 위한 회전축으로 작용할 수 있다.A shaft member 77 communicating with the inside and extending outward along the axial direction is formed at the center of the front end opposite to the opening 71 of the rotating tank 70. The shaft member 77 is connected to the drive unit 80 and may act as a rotation shaft for rotationally driving the rotation tank 70 .
구동부(80)는 구동모터(81), 구동모터(81)의 회전축과 회전탱크(70)의 축부재(77)에 설치된 구동롤(82)과 피동롤(83), 구동롤(82)과 피동롤(83) 사이에 연결되는 회전밸트(84)를 포함할 수 있다. 이에, 구동모터(81)가 작동되면 회전밸트(84)를 통해 동력이 축부재(77)로 전달되어 회전탱크(70)가 고속으로 회전된다.The drive unit 80 includes a drive motor 81, a drive roll 82, a driven roll 83, a drive roll 82 installed on the rotation shaft of the drive motor 81 and the shaft member 77 of the rotation tank 70. A rotation belt 84 connected between the driven rolls 83 may be included. Accordingly, when the drive motor 81 is operated, power is transmitted to the shaft member 77 through the rotation belt 84, and thus the rotation tank 70 is rotated at high speed.
본 실시예의 공급부는 축부재(77)를 통해 회전탱크(70) 내부로 혼합액을 공급하는 구조일 수 있다.The supply unit of this embodiment may have a structure for supplying the mixed solution into the rotating tank 70 through the shaft member 77 .
공급부는 고형분을 혼합한 혼합액을 이송하는 공급라인(30)에 연결되어 축부재(77) 내부를 통해 회전탱크(70) 내부로 삽입되고 출구(65)는 회전탱크(70)의 내면을 향하도록 굽어져 회전탱크(70) 내면으로 혼합액을 분출하는 공급관(640을 포함할 수 있다.The supply unit is connected to the supply line 30 for transporting the mixture of solids, is inserted into the rotation tank 70 through the inside of the shaft member 77, and the outlet 65 is directed toward the inner surface of the rotation tank 70. It may include a supply pipe 640 that is bent and ejects the mixed solution into the inner surface of the rotary tank 70.
이에, 공급관(64)으로 공급된 혼합액은 출구를 통해 회전탱크(70)의 내면으로 분출되어 측벽부(72)로 공급될 수 있다. Accordingly, the mixed solution supplied through the supply pipe 64 may be ejected to the inner surface of the rotary tank 70 through the outlet and supplied to the side wall portion 72 .
공급관(64)은 축부재(77)에 대해 상대적으로 고정된 구조일 수 있다. 공급관(64)은 축부재(77)에 이격되어 서로 간섭을 방지하거나, 그 사이에 베어링 또는 실링부재가 설치될 수 있다.The supply pipe 64 may have a relatively fixed structure with respect to the shaft member 77 . The supply pipe 64 may be spaced apart from the shaft member 77 to prevent interference with each other, or a bearing or sealing member may be installed therebetween.
또한, 공급관(64)은 축부재(77)에 고정 설치되어 축부재(77)와 같이 회전되는 구조일 수 있다. 공급라인(30)과 공급관(64) 사이에는 예를 들어, 슬립링(67)이 설치되어, 슬립링(67)을 매개로 공급관(64)이 공급라인(30)에 대해 자유롭게 회전되면서 연결될 수 있다. 이에, 공급라인(30)을 통해 공급관(64)으로 공급된 혼합액은 회전탱크(70)와 같이 회전되는 공급관(64)의 출구(65)를 통해 측벽부(72)로 분출될 수 있다.In addition, the supply pipe 64 may be a structure that is fixedly installed to the shaft member 77 and rotates like the shaft member 77. Between the supply line 30 and the supply pipe 64, for example, a slip ring 67 is installed, and the supply pipe 64 can be connected while freely rotating with respect to the supply line 30 via the slip ring 67. there is. Accordingly, the mixed solution supplied to the supply pipe 64 through the supply line 30 may be ejected to the side wall portion 72 through the outlet 65 of the supply pipe 64 that rotates like the rotating tank 70 .
본 실시예의 원심분리부(60)는 회전탱크(70)의 개방구(71) 외측에 원주방향을 따라 설치되어 개방구(71)에서 배출되는 물을 수거하는 수거함(63), 수거함(63)과 혼합부 사이를 연결하여 회전탱크(70)의 개방구(71)에서 배출되는 물을 혼합부의 분쇄기로 공급하는 회수라인(62)을 더 포함할 수 있다.The centrifugal separation unit 60 of the present embodiment is installed along the circumferential direction outside the opening 71 of the rotary tank 70, and includes a collection box 63 for collecting water discharged from the opening 71, and a collection box 63 It may further include a recovery line 62 connecting between the mixing unit and supplying the water discharged from the opening 71 of the rotary tank 70 to the grinder of the mixing unit.
수거함(63)은 개방구(71)의 외측플랜지(76)를 향하는 면이 개방된 링 형태의 구조물로, 개방구(71) 둘레를 따라 연속적으로 배치된다.The collection box 63 is a ring-shaped structure in which the surface of the opening 71 facing the outer flange 76 is open, and is continuously disposed along the circumference of the opening 71 .
이에, 회전탱크(70)의 원심력에 의해 개방구(71)에서 밖으로 배출되는 물은 개방구(71) 둘레를 따라 설치된 링 형태의 수거함(63)으로 모아져 회수될 수 있다. 수거함(63) 하부쪽에는 회수라인(62)이 연결 설치되어 있어서, 수거함(63)으로 모아진 물은 회수라인(62)을 통해 이송되어 재처리될 수 있다.Thus, the water discharged out of the opening 71 by the centrifugal force of the rotary tank 70 may be collected and collected in the ring-shaped collection box 63 installed along the circumference of the opening 71 . A recovery line 62 is connected to the lower side of the collection box 63, so that the water collected in the collection box 63 is transported through the collection line 62 and can be reprocessed.
본 실시예의 원심분리부(60)는, 회전탱크(70)의 개방구(71)에 마련되어 고형분 추출량을 조절하기 위한 조절부(100)를 더 포함할 수 있다.The centrifugal separation unit 60 of this embodiment may further include a control unit 100 provided in the opening 71 of the rotary tank 70 to adjust the amount of solids extracted.
도 8에 도시된 바와 같이, 본 실시예의 조절부(100)는 내측플랜지(73)에 상대적으로 높이를 낮게 형성하여 혼합액을 배출하는 배출로(110), 내측플랜지(73)에 설치되고 배출로(110)를 막는 차단판(120)을 포함할 수 있다. 이에, 배출로(110)에 대한 차단판(120)의 높이를 변경하여 고형분 추출량을 조절하는 구조일 수 있다.As shown in FIG. 8, the control unit 100 of this embodiment is installed on the inner flange 73 to form a relatively low height to discharge the mixed solution 110 and the inner flange 73 and to the discharge path. A blocking plate 120 blocking 110 may be included. Thus, a structure may be used to adjust the amount of solid content extracted by changing the height of the blocking plate 120 relative to the discharge path 110 .
배출로(110)는 차단벽 역할을 하는 내측플랜지(73)의 벽 높이를 낮춰 물이 배출되는 단차진 홈으로 작용하게 된다. 이에, 회전탱크(70)에 원심력이 가해지게 되면 높이가 낮은 배출로(110)를 통해 물이 빠져나가게 되고, 배출로(110)의 높이만큼만 고형분이 추출된다. 따라서, 배출로(110)의 높이가 높으면 많은 고형분을 추출할 수 있고, 배출로(110)의 높이가 낮으면 적은 양의 고형분만을 추출할 수 있다.The discharge passage 110 acts as a stepped groove through which water is discharged by lowering the height of the wall of the inner flange 73 serving as a blocking wall. Accordingly, when a centrifugal force is applied to the rotating tank 70, water is drained through the discharge passage 110 having a low height, and solids are extracted only as high as the discharge passage 110. Therefore, when the height of the discharge path 110 is high, a large amount of solid content can be extracted, and when the height of the discharge path 110 is low, only a small amount of solid content can be extracted.
배출로(110)의 높이라 함은 회전탱크(70)의 내주면에서 중심부쪽으로 돌출되어 있는 배출로(110) 내측 선단까지의 길이를 의미할 수 있다.The height of the discharge path 110 may mean a length from the inner circumferential surface of the rotary tank 70 to the inner tip of the discharge path 110 protruding toward the center.
적어도 두 개 이상의 배출로(110)가 회전탱크(70)의 중심을 기준으로 내측플랜지(73)를 따라 일정한 각도로 배열 형성될 수 있다. 예를 들어, 배출로(110)가 두 개인 구조의 경우 180도 각도로 배열 형성될 수 있으며, 배출로(110)가 3개인 경우 120도 각도로 배열 형성될 수 있다. 이에, 균형을 유지하면서 회전탱크(70) 내부에서 물이 배출로(110)를 통해 배출될 수 있다.At least two or more discharge passages 110 may be arranged at a predetermined angle along the inner flange 73 based on the center of the rotating tank 70 . For example, in the case of a structure with two discharge passages 110, they may be arranged at an angle of 180 degrees, and when there are three discharge passages 110, they may be arranged at an angle of 120 degrees. Accordingly, water may be discharged from the inside of the rotary tank 70 through the discharge path 110 while maintaining a balance.
차단판(120)은 배출로(110)를 충분히 가릴 수 있는 정도의 크기로 된 평면의 플레이트 구조물일 수 있다. 차단판(120)은 내측플랜지(73) 전면에 설치되어 배출로(110)를 막게 된다.The blocking plate 120 may be a flat plate structure having a size sufficient to sufficiently cover the discharge path 110 . The blocking plate 120 is installed in front of the inner flange 73 to block the discharge path 110.
차단판(120)은 배출로(110)를 막아 배출로(110)의 내측 선단을 이룬다. 차단판(120)의 위치를 조절하여 배출로(110)에 대한 차단판(120)의 높이를 변경함으로써, 배출로(110)의 높이를 변경할 수 있다.The blocking plate 120 blocks the discharge path 110 and forms an inner front end of the discharge path 110 . The height of the discharge passage 110 may be changed by adjusting the position of the blocking plate 120 to change the height of the blocking plate 120 relative to the discharge passage 110 .
도 8에 도시된 바와 같이, 차단판(120)의 설치 위치를 변경할 수 있도록, 차단판(120) 양 선단부에는 장공(122)이 형성되고, 내측플랜지(73) 전면에는 장공(122)과 대응되는 위치에 볼트(126) 체결을 위한 체결홀(124)이 형성된다. 장공(122)은 길게 형성한 구멍을 의미할 수 있다. 이에, 볼트(126)에 대한 장공(122)을 움직여 차단판(120)의 위치를 조절함으로써, 차단판(120)의 높이를 변경할 수 있게 된다.As shown in FIG. 8, long holes 122 are formed at both ends of the blocking plate 120 so that the installation position of the blocking plate 120 can be changed, and the long holes 122 correspond to the front surface of the inner flange 73. A fastening hole 124 for fastening the bolt 126 is formed at the position. The long hole 122 may mean a long hole. Accordingly, the height of the blocking plate 120 can be changed by adjusting the position of the blocking plate 120 by moving the long hole 122 for the bolt 126 .
또다른 실시예로 배출로(110)에 대한 차단판(120)의 높이가 상이한 복수개의 차단판(120)을 구비하고 필요에 따라 원하는 높이의 차단판(120)을 내측플랜지(73) 전면에 설치하여 배출로(110)의 높이를 조절할 수 있다.In another embodiment, a plurality of blocking plates 120 having different heights of the blocking plates 120 with respect to the discharge passage 110 are provided, and the blocking plates 120 having a desired height are placed on the front surface of the inner flange 73 as necessary. It is possible to adjust the height of the discharge path 110 by installing.
도 9는 차단판(120)의 높이를 달리하여 전분 추출량을 조절하는 구조를 나타내고 있다.9 shows a structure in which the amount of starch extraction is adjusted by varying the height of the blocking plate 120.
도 9의 (a)는 차단판(120)을 최대한 외측으로 이동시켜 내측플랜지(73)에 전면에 볼트(126)를 매개로 차단판(120)을 고정한 상태를 나타내고 있다.9(a) shows a state in which the blocking plate 120 is fixed to the front surface of the inner flange 73 via the bolt 126 by moving the blocking plate 120 outward as much as possible.
이에, 차단판(120)의 높이 즉, 차단판(120) 내측 선단이 이루는 배출로(110)의 높이(R)가 초대한 낮아져 물과 고형분이 낮아진 높이(R)의 배출로(110)를 통해 다량 배출될 수 있다. 따라서, 소량의 고형분만이 차단판(120)에 의해 막혀 배출되지 않고 추출된다.Accordingly, the height of the blocking plate 120, that is, the height R of the discharge passage 110 formed by the inner tip of the blocking plate 120 is extremely low, so that the discharge passage 110 at a height R at which the water and solid content is lowered A large amount can be released through Therefore, only a small amount of solid content is extracted without being blocked by the blocking plate 120 and discharged.
도 9의 (b)는 (a)와 비교하여 차단판(120)을 내측으로 이동시켜 설치함으로써, 배출로(110)의 높이(R)를 조금 높인 상태를 나타내고 있으며, 도 9의 (c)는 최대한 차단판(120)을 내측으로 이동시켜 배출로(110)의 높이(R)을 최대한 높인 상태를 나타내고 있다.9 (b) shows a state in which the height (R) of the discharge path 110 is slightly increased by moving and installing the blocking plate 120 inward compared to (a), and FIG. 9 (c) shows a state in which the height R of the discharge path 110 is increased to the maximum by moving the blocking plate 120 inward as much as possible.
차단판(120)을 내측으로 이동시켜 설치함으로써, 차단판(120) 내측 선단이 이루는 배출로(110)의 높이(R)가 높아져 물과 고형분의 배출량을 줄일 수 있고, 차단판(120)에 의해 막혀 배출되지 않고 추출되는 고형분의 추출량을 증대시킬 수 있게 된다.By moving and installing the blocking plate 120 inward, the height R of the discharge path 110 formed by the inner tip of the blocking plate 120 is increased, thereby reducing the amount of water and solids discharged, and the blocking plate 120 It is possible to increase the extraction amount of solids extracted without being clogged and discharged.
이와 같이, 간단히 차단판(120)의 높이(R)를 조절하는 것으로 고형분의 추출량을 조절할 수 있게 된다. In this way, by simply adjusting the height R of the blocking plate 120, it is possible to adjust the extraction amount of the solid content.
본 실시예의 원심분리부(60)는 2개 이상의 복수개가 마련되어 교대로 운전될 수 있다. 이에, 두 개의 원심분리부(60)를 교대로 가구동함으로써, 회전탱크(70)를 회전시켜 혼합액을 원심분리하는 작업과 회전탱크(70)로부터 원심분리된 전분을 수거하는 작업을 연속적으로 수행할 수 있게 된다. 또한, 전분 수거작업시을 위해 구동부를 정지한 상태에서 구동부의 잔류 동력을 다른 원심분리부(60)로 전달함으로써, 에너지의 손실을 최소화할 수 있게 된다.Two or more centrifugal separators 60 of this embodiment may be provided and operated alternately. Accordingly, by rotating the two centrifugal separators 60 alternately, the rotary tank 70 is rotated to centrifugally separate the mixture and the centrifuged starch collected from the rotary tank 70 is continuously performed. You will be able to do it. In addition, by transferring the remaining power of the driving unit to the other centrifugal separation unit 60 in a state in which the driving unit is stopped for the starch collection operation, it is possible to minimize energy loss.
도 10은 두 개의 원심분리부에 대한 동력 전달 구조를 나타내고 있다.10 shows a power transmission structure for two centrifugal separators.
도 10의 (a)와 (b)는 두 개의 원심분리부(60)가 180도로 대향 배치된 구조로, 단일의 구동부(80)를 통해 동력을 전달받는 구조를 예시하고 있다. 이하 설명의 편의를 위해, 도면에서 좌측에 있는 원심분리부(60)를 원심분리A라 하고, 우측에 있는 원심분리부(60)를 원심분리B라 한다.10 (a) and (b) illustrate a structure in which two centrifugal separators 60 are arranged to face each other at 180 degrees, and a structure in which power is transmitted through a single driving unit 80 is illustrated. For convenience of description below, the centrifugal separation unit 60 on the left side of the drawings is referred to as a centrifugal separator A, and the centrifugal separation unit 60 on the right side is referred to as a centrifugal separator B.
구동부(80)는 구동모터(81)의 회전축과 구동롤(82) 사이에 동력을 선택적으로 연결 또는 차단하기 위한 클러치(85)가 더 구비될 수 있다. 도 10의 (a)와 (b)의 원심분리부(60)는 구동부의 클러치 연결 구조를 제외하고 동일한 구조로 되어 있다. 도 10의 (a)는 구동모터(81)의 회전축과 클러치(85) 사이에 별도의 동력전달기구가 연결 설치된 구조를 예시하고 있으며, (b)는 구동모터(81)의 회전축과 클러치가 직결된 구조를 예시하고 있다.The driving unit 80 may further include a clutch 85 for selectively connecting or disconnecting power between the rotation shaft of the driving motor 81 and the driving roll 82 . The centrifugal separators 60 in (a) and (b) of FIG. 10 have the same structure except for the clutch connection structure of the drive unit. 10 (a) illustrates a structure in which a separate power transmission mechanism is connected and installed between the rotary shaft of the drive motor 81 and the clutch 85, and (b) shows a direct connection between the rotary shaft and the clutch of the drive motor 81. structure is illustrated.
이에, 클러치(85)를 이용하여 구동모터(81)의 동력을 원심분리A 또는 원심분리B로 분배할 수 있다. 따라서, 원심분리A와 원심분리B를 교대로 구동하여 연속적으로 전분 추출 작업을 수행할 수 있다. 또한, 구동모터(81)를 정지시킨 상태에서 클러치(85)를 이용하여 구동모터의 잔존하는 회전력을 다른 정지하고 있던 원심분리부로 공급할 수 있다. 이에, 구동부의 에너지 낭비를 최소화할 수 있게 된다.Accordingly, the power of the driving motor 81 may be distributed to the centrifugal separator A or the centrifugal separator B using the clutch 85 . Accordingly, the starch extraction operation may be continuously performed by alternately driving the centrifugal separator A and the centrifugal separator B. In addition, in a state in which the drive motor 81 is stopped, the remaining rotational force of the drive motor can be supplied to other stopped centrifugal separators using the clutch 85 . Thus, it is possible to minimize energy waste of the drive unit.
즉, 도 10의 (c)에 나타낸 바와 같이, 클러치(85)가 원심분리A에 연결되고 원심분리B의 클러치(85)는 분리된 상태에서 구동모터(81)의 동력은 원심분리A로 전달된다. 이에, 원심분리A가 회전되면서 전분 추출 작업을 수행하게 되고, 원심분리B는 정지되어 전분을 회수할 수 있다.That is, as shown in (c) of FIG. 10, the power of the driving motor 81 is transmitted to the centrifugal separator A in a state where the clutch 85 is connected to the centrifugal separator A and the clutch 85 of the centrifugal separator B is disconnected. do. Accordingly, the centrifuge A is rotated to perform starch extraction, and the centrifugal separator B is stopped to recover starch.
이 상태에서 원심분리A에 대한 전분 추출 작업과 원심분리B에 대한 전분 회수작업이 완료되면, 구동모터(81)의 구동을 정지시키고 원심분리A의 클러치(85)를 분리한다. 그리고, 원심분리B의 클러치(85)를 연결하여 구동모터(81)와 원심분리B를 연결한다.In this state, when the starch extraction operation for the centrifugal separator A and the starch recovery operation for the centrifugal separator B are completed, the driving of the driving motor 81 is stopped and the clutch 85 of the centrifugal separator A is disconnected. Then, the drive motor 81 and the centrifugal separator B are connected by connecting the clutch 85 of the centrifugal separator B.
이에, 원심분리A는 서서히 회전력이 줄면서 정지되고, 원심분리B는 구동모터(81)가 정지된 상태에서 잔존하는 회전력이 클러치(85)를 통해 전달되어 회전되면서 서서히 회전속도가 높아지게 된다. 여기서, 잔존하는 회전력이란 구동모터의 구동 정지 후 완전히 회전이 멈출 때까지의 회전모멘트로 이해할 수 있다.Accordingly, the centrifugal separator A is stopped while the rotational force gradually decreases, and the rotational speed of the centrifuge B gradually increases as the rotational force remaining in the state in which the driving motor 81 is stopped is transmitted through the clutch 85 and rotated. Here, the residual rotational force can be understood as a rotational moment until the rotation completely stops after the driving of the driving motor is stopped.
원심분리B가 어느 정도 회전되는 상태에서 구동모터(81)를 다시 구동함으로써, 원심분리B는 회전속도를 원하는 속도까지 높여 전분 추출 작업을 계속 수행할 수 있게 된다.By driving the driving motor 81 again while the centrifugal separator B is rotated to some extent, the centrifugal separator B can increase the rotational speed to a desired speed and continue to perform the starch extraction operation.
이와 같이, 구동모터를 정지시키고 그 잔류하는 에너지를 쉬고 있는 원심분리부(60)의 초기 회전력으로 이용함으로써, 에너지 효율을 극대화할 수 있게 된다.In this way, by stopping the driving motor and using the remaining energy as the initial rotational force of the resting centrifugal separator 60, energy efficiency can be maximized.
이상 설명한 바와 같이 본 발명의 예시적인 실시예가 도시되어 설명되었지만, 다양한 변형과 다른 실시예가 본 분야의 숙련된 기술자들에 의해 행해질 수 있을 것이다. 이러한 변형과 다른 실시예들은 첨부된 청구범위에 모두 고려되고 포함되어, 본 발명의 진정한 취지 및 범위를 벗어나지 않는다 할 것이다.Although exemplary embodiments of the present invention have been shown and described as described above, various modifications and other embodiments may be made by those skilled in the art. All of these modifications and other embodiments are to be considered and included in the appended claims, without departing from the true spirit and scope of the present invention.

Claims (15)

  1. 혼합액에 원심력을 가해 고형분을 분리하는 적어도 하나의 원심분리부를 포함하고, At least one centrifugal separation unit for separating solids by applying centrifugal force to the mixed solution;
    상기 원심분리부는 내부에 수용공간을 형성하고 회전가능하게 배치되어 원심력에 의한 고액 분리가 이루어지는 적어도 하나의 회전탱크, 상기 회전탱크를 고속으로 회전시켜 원심력을 가하기 위한 구동부를 포함하고,The centrifugal separator includes at least one rotating tank forming an accommodation space therein and rotatably disposed to perform solid-liquid separation by centrifugal force, and a drive unit for applying centrifugal force by rotating the rotating tank at high speed,
    상기 회전탱크는 수직으로 세워져 상단에 개방구를 형성하고, 상기 상단 개방구로부터 축방향을 따라 연장되고 혼합액의 고액 분리가 이루어지는 측벽부, 상기 상단 개방구에 내주면을 따라 내측으로 돌출 형성되어 혼합액에서 분리된 고형분의 이탈을 방지하는 내측플랜지를 포함하는 전분 추출을 위한 원심 분리 장치.The rotating tank is erected vertically to form an opening at the top, and a side wall portion extending along the axial direction from the top opening and separating the solid-liquid mixture from the liquid mixture is formed, protruding inward along the inner circumferential surface of the top opening, so that the mixed liquid A centrifugal separator for extracting starch comprising an inner flange preventing separation of separated solids.
  2. 제 1 항에 있어서,According to claim 1,
    상기 회전탱크 내부로 혼합액을 공급하기 위한 공급부를 더 포함하고, Further comprising a supply unit for supplying the mixed solution into the rotating tank,
    상기 공급부는 고형분을 혼합한 혼합액을 이송하는 공급라인, 상기 공급라인과 연결되고 상기 회전탱크의 개방된 상단을 통해 내부로 삽입되고 하단의 출구는 상기 회전탱크의 내면을 향하도록 굽어져 회전탱크 내면으로 혼합액을 분출하는 공급관을 포함하는 전분 추출을 위한 원심 분리 장치.The supply unit is connected to a supply line for transporting a mixture of solids and the supply line, and is inserted into the interior through an open upper end of the rotary tank, and an outlet at the lower end is bent toward the inner surface of the rotary tank to be bent toward the inner surface of the rotary tank. A centrifugal separation device for starch extraction comprising a supply pipe for ejecting the mixed solution into the
  3. 혼합액에 원심력을 가해 고형분을 분리하는 적어도 하나의 원심분리부를 포함하고, At least one centrifugal separation unit for separating solids by applying centrifugal force to the mixed solution;
    상기 원심분리부는 내부에 수용공간을 형성하고 회전가능하게 배치되어 원심력에 의한 고액 분리가 이루어지는 적어도 하나의 회전탱크, 상기 회전탱크를 고속으로 회전시켜 원심력을 가하기 위한 구동부를 포함하고,The centrifugal separator includes at least one rotating tank forming an accommodation space therein and rotatably disposed to perform solid-liquid separation by centrifugal force, and a drive unit for applying centrifugal force by rotating the rotating tank at high speed,
    상기 회전탱크는 수평으로 눕혀져 회전가능하게 배치되고, 일측 선단에 개방구를 형성하고, 상기 개방구으로부터 축방향을 따라 연장되고 혼합액의 고액 분리가 이루어지는 측벽부, 상기 개방구의 내주면을 따라 내측으로 돌출 형성되어 혼합액에서 분리된 고형분의 이탈을 방지하는 내측플랜지를 포함하는 전분 추출을 위한 원심 분리 장치.The rotary tank is laid horizontally and rotatably disposed, has an opening at one end thereof, and extends in an axial direction from the opening and has a side wall portion in which solid-liquid separation of the mixed solution is performed, and protrudes inward along the inner circumferential surface of the opening A centrifugal separator for extracting starch comprising an inner flange formed to prevent the separation of solids separated from the mixed solution.
  4. 제 3 항에 있어서,According to claim 3,
    상기 회전탱크 내부로 혼합액을 공급하기 위한 공급부를 더 포함하고,Further comprising a supply unit for supplying the mixed solution into the rotating tank,
    상기 공급부는 고형분을 혼합한 혼합액을 이송하는 공급라인, 상기 공급라인과 연결되고 상기 회전탱크 내부로 삽입되고 출구는 상기 회전탱크의 내면을 향하도록 굽어져 회전탱크 내면으로 혼합액을 분출하는 공급관을 포함하고, The supply unit includes a supply line for transporting a mixed liquid mixed with solids, a supply pipe connected to the supply line, inserted into the rotating tank, and having an outlet bent toward the inner surface of the rotating tank to eject the mixed liquid into the inner surface of the rotating tank. do,
    상기 회전탱크의 개방구 반대쪽 선단 중심부에는 내부와 연통되고 축방향을 따라 외측으로 연장되는 축부재가 형성되고, 상기 공급관이 상기 축부재 내부를 통해 상기 회전탱크 내부로 삽입 설치되는 구조의 전분 추출을 위한 원심 분리 장치.A shaft member communicating with the inside and extending outward along the axial direction is formed at the center of the tip opposite the opening of the rotating tank, and the supply pipe is inserted into the rotating tank through the inside of the shaft member to extract starch. for centrifugal separation devices.
  5. 제 1 항 또는 제 3 항에 있어서,According to claim 1 or 3,
    상기 회전탱크는 상기 개방구 외주면을 따라 외측으로 돌출 형성되어 물의 배출을 유도하는 외측플랜지를 더 포함하는 전분 추출을 위한 원심 분리 장치.The rotary tank is a centrifugal separator for extracting starch further comprising an outer flange protruding outward along an outer circumferential surface of the opening to induce discharge of water.
  6. 제 1 항 또는 제 3 항에 있어서,According to claim 1 or 3,
    상기 원심분리부는 진동을 억제하기 위한 완충부를 더 포함하는 전분 추출을 위한 원심 분리 장치.The centrifugal separator for extracting starch further comprises a buffer for suppressing vibration.
  7. 제 2 항 또는 제 4 항에 있어서,According to claim 2 or 4,
    상기 회전탱크의 개방구에서 배출되는 물을 회수하여 상기 공급라인으로 공급하는 회수라인을 더 포함하는 전분 추출을 위한 원심 분리 장치.Centrifugal separator for extracting starch further comprising a recovery line for recovering water discharged from the opening of the rotary tank and supplying it to the supply line.
  8. 제 7 항에 있어서,According to claim 7,
    상기 회전탱크의 개방구 외측에 원주방향을 따라 설치되어 개방구에서 배출되는 물을 수거하는 수거함을 더 포함하는 전분 추출을 위한 원심 분리 장치.Centrifugal separator for extracting starch further comprising a collection box installed along the circumferential direction outside the opening of the rotary tank to collect water discharged from the opening.
  9. 제 1 항에 있어서,According to claim 1,
    상기 회전탱크는 하단 중심부에 내부와 연통되고 축방향으로 연장되어 측벽부에서 흘러내리는 고형분을 배출하는 배출관을 더 포함하는 전분 추출을 위한 원심 분리 장치.The rotary tank is a centrifugal separator for extracting starch further comprising a discharge pipe communicating with the inside at the bottom center and extending in the axial direction to discharge solids flowing down from the side wall portion.
  10. 제 1 항 또는 제 2 항에 있어서,According to claim 1 or 2,
    상기 회전탱크는 하단이 막힌 용기 형태를 이루고, 하부 중심부에는 상기 구동부와 착탈가능하게 장착되는 결합축이 축방향을 따라 돌출 형성되고, 상기 구동부의 구동모터 회전축에는 상기 결합축을 고정하는 소켓부가 마련되어, 상기 회전탱크를 구동모터에서 분리하여 고액 분리된 고형분을 수거하는 구조의 전분 추출을 위한 원심 분리 장치.The rotating tank has a container shape with a lower end closed, and a coupling shaft detachably mounted with the driving unit protrudes along the axial direction at a lower center, and a socket portion for fixing the coupling shaft is provided on the rotating shaft of the driving motor of the driving unit, A centrifugal separator for extracting starch of a structure that separates the rotating tank from the driving motor to collect the solid-liquid separated solids.
  11. 제 2 항 또는 제 4 항에 있어서,According to claim 2 or 4,
    상기 원심 분리 장치는, 복수개의 원심분리부와, 상기 공급라인 상에 분기되어 각 원심분리부와 연결되는 복수개의 분기라인, 상기 공급라인에 설치되어 각 분기라인에 대한 혼합액 공급을 제어하는 전환밸브를 포함하여, 공급라인에 복수개의 원심분리부를 병렬로 배치하여 교대로 운전하는 구조의 전분 추출을 위한 원심 분리 장치.The centrifugal separation device includes a plurality of centrifugal separators, a plurality of branch lines branched on the supply line and connected to each centrifugal separator, and a switching valve installed in the supply line to control the supply of the mixed solution to each branch line. Including, a centrifugal separator for extracting starch having a structure in which a plurality of centrifugal separators are arranged in parallel in a supply line and operated alternately.
  12. 제 2 항 또는 제 4 항에 있어서,According to claim 2 or 4,
    상기 공급라인 상에 연결 설치되어, 혼합액에서 소정 입도 이상의 찌꺼기를 분리하는 적어도 하나의 필터부를 더 포함하는 전분 추출을 위한 원심 분리 장치.A centrifugal separator for extracting starch further comprising at least one filter unit connected to the supply line and separating debris of a predetermined particle size or more from the mixed solution.
  13. 제 12 항에 있어서,According to claim 12,
    상기 필터부를 세척하기 위한 필터세척부를 더 포함하고,Further comprising a filter washing unit for washing the filter unit,
    상기 필터세척부는 상기 필터부 후단에서 상기 공급라인에 연결되어 필터부에 역방향으로 세척액을 공급하는 세척액라인, 상기 공급라인과 세척액라인 사이에 설치되는 유입전환밸브, 상기 필터부 전단에서 상기 공급라인에 연결되어 필터부를 거친 세척액을 배출 처리하기 위한 배출라인, 상기 공급라인과 배출라인 사이에 설치되는 배출전환밸브를 포함하는 전분 추출을 위한 원심 분리 장치.The filter washing part includes a washing liquid line connected to the supply line at the rear end of the filter part and supplying washing liquid to the filter part in the reverse direction, an inlet switching valve installed between the supply line and the washing liquid line, and a supply line at the front end of the filter part. A centrifugal separation device for extracting starch, comprising a discharge line for discharging the washing liquid that has passed through the filter unit and a discharge switching valve installed between the supply line and the discharge line.
  14. 제 1 항 또는 제 3 항에 있어서,According to claim 1 or 3,
    상기 회전탱크의 개방구에 마련되어 고형분 추출량을 조절하기 위한 조절부를 더 포함하고, Further comprising a control unit provided at the opening of the rotary tank to control the amount of solids extracted,
    상기 조절부는 내측플랜지에 상대적으로 높이를 낮게 형성하여 혼합액을 배출하는 배출로, 상기 내측플랜지에 설치되고 상기 배출로를 막는 차단판을 포함하여, 상기 배출로에 대한 차단판의 높이를 변경하여 고형분 추출량을 조절하는 구조의 전분 추출을 위한 원심 분리 장치.The control unit includes a discharge path for discharging the mixed liquid by forming a relatively low height on the inner flange, a blocking plate installed on the inner flange and blocking the discharge path, and changing the height of the blocking plate for the discharge path to increase the solid content. A centrifugal separator for starch extraction with a structure that controls the amount of extraction.
  15. 제 1 항 또는 제 3 항에 있어서,According to claim 1 or 3,
    상기 구동부는, 상기 원심분리부의 회전탱크 사이에 마련되어 동력을 선택적으로 연결 또는 차단하는 클러치를 더 포함하고, 두 개의 원심분리부에 각각 상기 클러치를 매개로 연결되어 각 원심분리부를 교대로 가동하는 구조이고,The driving unit further includes a clutch provided between the rotating tanks of the centrifugal separator to selectively connect or cut off power, and is connected to two centrifugal separators through the clutch to alternately operate each centrifugal separator. ego,
    상기 구동모터의 구동 정지 후, 가동 중인 일측 원심분리부의 클러치를 분리하고 정지해 있는 타측 원심분리부의 클러치를 연결하여, 상기 구동모터 구동 정지 후 남아 있는 회전력을 정지해 있는 타측 원심분리부로 전달하는 구조의 전분 추출을 위한 원심 분리 장치.After the drive motor stops driving, the clutch of one centrifugal separator on one side is disconnected and the clutch on the other centrifugal separator that is stopped is connected to transfer the rotational force remaining after the drive motor stops to the other centrifugal separator that is stopped. Centrifugal device for starch extraction of
PCT/KR2022/019745 2021-12-07 2022-12-06 Centrifugal separation device for starch extraction WO2023106806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0173618 2021-12-07
KR1020210173618A KR20230085975A (en) 2021-12-07 2021-12-07 Centrifugal apparatus for starch extraction

Publications (1)

Publication Number Publication Date
WO2023106806A1 true WO2023106806A1 (en) 2023-06-15

Family

ID=86730925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019745 WO2023106806A1 (en) 2021-12-07 2022-12-06 Centrifugal separation device for starch extraction

Country Status (2)

Country Link
KR (1) KR20230085975A (en)
WO (1) WO2023106806A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090118291A (en) * 2008-05-13 2009-11-18 조기환 Continual cleaning centrifugal screen
KR20100033752A (en) * 2008-09-22 2010-03-31 조기환 Particle coalescing centrifuge
JP5633805B2 (en) * 2010-11-26 2014-12-03 日立工機株式会社 centrifuge
KR20160024624A (en) * 2014-08-26 2016-03-07 제이에스이엔지(주) Centrifugal Separator
JP2019528085A (en) * 2016-07-26 2019-10-10 広州海力特生物科技有限公司 Separation and extraction method of exosomes by stacked centrifugal filtration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090118291A (en) * 2008-05-13 2009-11-18 조기환 Continual cleaning centrifugal screen
KR20100033752A (en) * 2008-09-22 2010-03-31 조기환 Particle coalescing centrifuge
JP5633805B2 (en) * 2010-11-26 2014-12-03 日立工機株式会社 centrifuge
KR20160024624A (en) * 2014-08-26 2016-03-07 제이에스이엔지(주) Centrifugal Separator
JP2019528085A (en) * 2016-07-26 2019-10-10 広州海力特生物科技有限公司 Separation and extraction method of exosomes by stacked centrifugal filtration

Also Published As

Publication number Publication date
KR20230085975A (en) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2016114523A1 (en) Dust collecting apparatus
WO2017043939A1 (en) Ring roller mill having screen selecting device
EP3893709A1 (en) Robot cleaner
WO2017171496A1 (en) Cleaning apparatus
WO2023106806A1 (en) Centrifugal separation device for starch extraction
KR100894451B1 (en) Dry-type classifier for fine aggregates
WO2021054564A1 (en) Fine-cutting apparatus for super absorbent polymer hydrogel
WO2019160178A1 (en) Improved dry separation device
WO2015060630A1 (en) Apparatus for recycling waste raw material
US6543710B2 (en) Separator mill
WO2016186439A1 (en) Grinding apparatus
EP3337370A1 (en) Cyclone dust collector and vacuum cleaner having the same
WO2014163258A1 (en) Dry separation apparatus and dry separation method
WO2019066120A1 (en) Dust collection device and vacuum cleaner having same
WO2020204306A2 (en) Screw for extraction juicer, and extraction juicer using same
WO2019156353A1 (en) Juice discharge cap, juice discharge assembly and juicer
WO2021015504A1 (en) Mixer and dewatering method thereof
WO2009110745A2 (en) Method of reclaiming silicon powder from slurry generated during back lapping process
WO2015163606A1 (en) Apparatus for separating components from printed circuit board, and method for screening copper
WO2022231149A1 (en) Outdoor cleaning device including double cyclone unit
WO2015020350A1 (en) Grease trap cleaner
CA2041732C (en) Apparatus for the treatment of milling products
WO2019098590A1 (en) Apparatus and method for purifying waste water from steel mills
US6823605B2 (en) Centrifuge for mechanical draining and thermal drying of sludges
WO2020204307A2 (en) Extraction juicer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904636

Country of ref document: EP

Kind code of ref document: A1