WO2023106805A1 - Dispositif de génération d'aérosol et son procédé de fonctionnement - Google Patents

Dispositif de génération d'aérosol et son procédé de fonctionnement Download PDF

Info

Publication number
WO2023106805A1
WO2023106805A1 PCT/KR2022/019744 KR2022019744W WO2023106805A1 WO 2023106805 A1 WO2023106805 A1 WO 2023106805A1 KR 2022019744 W KR2022019744 W KR 2022019744W WO 2023106805 A1 WO2023106805 A1 WO 2023106805A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch input
input
generating device
touch
aerosol
Prior art date
Application number
PCT/KR2022/019744
Other languages
English (en)
Inventor
Yonghwan Kim
Dongsung Kim
Hunil LIM
Seoksu JANG
Original Assignee
Kt&G Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kt&G Corporation filed Critical Kt&G Corporation
Publication of WO2023106805A1 publication Critical patent/WO2023106805A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/60Devices with integrated user interfaces
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0482Interaction with lists of selectable items, e.g. menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04842Selection of displayed objects or displayed text elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/0485Scrolling or panning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/048Indexing scheme relating to G06F3/048
    • G06F2203/04808Several contacts: gestures triggering a specific function, e.g. scrolling, zooming, right-click, when the user establishes several contacts with the surface simultaneously; e.g. using several fingers or a combination of fingers and pen

Definitions

  • the present disclosure relates to an aerosol generating device and a method of operating the same.
  • An aerosol-generating device is a device that extracts certain components from a medium or a substance by forming an aerosol.
  • the medium may contain a multicomponent substance.
  • the substance contained in the medium may be a multicomponent flavoring substance.
  • the substance contained in the medium may include a nicotine component, an herbal component, and/or a coffee component. Recently, various research on aerosol-generating devices has been conducted.
  • an aerosol generating device includes: a heater configured to heat an aerosol generating substance; a touch panel configured to receive a touch input; a display panel corresponding to the touch panel; a motor configured to generate vibration; and a controller, wherein the controller is configured to: in response to receiving a touch input through the touch panel, determine whether the touch input is valid based on a touched region of the touch panel corresponding to the touch input; when the touch input is determined to be valid, control the motor to generate vibration in response to the touch input; and perform an operation according to the valid touch input.
  • a method of operating an aerosol generating device may include: in response to receiving a touch input through a touch panel of the aerosol generating device, determining whether the touch input is valid based on a touched region of the touch panel corresponding to the touch input; when the touch input is determined to be valid, generating, through a motor of the aerosol generating device, vibration in response to the touch input; and performing an operation according to the valid touch input.
  • a screen displayed on a display may be intuitively switched.
  • a user touch input may be more accurately processed.
  • feedback on the result of a user touch input may be output in an intuitive manner.
  • FIG. 1 is a block diagram of an aerosol-generating device according to an embodiment of the present disclosure
  • FIGS. 2 to 4 are views for explaining an aerosol-generating device according to embodiments of the present disclosure
  • FIGS. 5 and 6 are views for explaining a stick according to embodiments of the present disclosure.
  • FIG. 7 is a flowchart showing a method of operating an aerosol-generating device according to an embodiment of the present disclosure.
  • FIGS. 8A and 13c are views for explaining operation of an aerosol-generating device according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram of an aerosol-generating device according to an embodiment of the present disclosure.
  • an aerosol-generating device 10 may include a communication interface 11, an input/output interface 12, an aerosol-generating module 13, a memory 14, a sensor module 15, a battery 16, and/or a controller 17.
  • the aerosol-generating device 10 may be composed only of a main body. In this case, components included in the aerosol-generating device 10 may be located in the main body. In another embodiment, the aerosol-generating device 10 may be composed of a cartridge, which contains an aerosol-generating substance, and a main body. In this case, the components included in the aerosol-generating device 10 may be located in at least one of the main body or the cartridge.
  • the communication interface 11 may include at least one communication module for communication with an external device and/or a network.
  • the communication interface 11 may include a communication module for wired communication, such as a Universal Serial Bus (USB).
  • the communication interface 11 may include a communication module for wireless communication, such as Wireless Fidelity (Wi-Fi), Bluetooth, Bluetooth Low Energy (BLE), ZigBee, or nearfield communication (NFC).
  • Wi-Fi Wireless Fidelity
  • BLE Bluetooth Low Energy
  • ZigBee ZigBee
  • NFC nearfield communication
  • the input/output device 12 may include an input device (not shown) for receiving a command from a user and/or an output device (not shown) for outputting information to the user.
  • the input device may include a touch panel, a physical button, a microphone, or the like.
  • the output device may include a display device for outputting visual information, such as a display or a light-emitting diode (LED), an audio device for outputting auditory information, such as a speaker or a buzzer, a motor for outputting tactile information such as haptic effect, or the like.
  • the input/output device 12 may transmit data corresponding to a command input by the user through the input device to another component (or other components) of the aerosol-generating device 100.
  • the input/output device 12 may output information corresponding to data received from another component (or other components) of the aerosol-generating device 10 through the output device.
  • the aerosol-generating module 13 may generate an aerosol from an aerosol-generating substance.
  • the aerosol-generating substance may be a substance in a liquid state, a solid state, or a gel state, which is capable of generating an aerosol, or a combination of two or more aerosol-generating substances.
  • the liquid aerosol-generating substance may be a liquid including a tobacco-containing material having a volatile tobacco flavor component.
  • the liquid aerosol-generating substance may be a liquid including a non-tobacco material.
  • the liquid aerosol-generating substance may include water, solvents, nicotine, plant extracts, flavorings, flavoring agents, vitamin mixtures, etc.
  • the solid aerosol-generating substance may include a solid material based on a tobacco raw material such as a reconstituted tobacco sheet, shredded tobacco, or granulated tobacco.
  • the solid aerosol-generating substance may include a solid material having a taste control agent and a flavoring material.
  • the taste control agent may include calcium carbonate, sodium bicarbonate, calcium oxide, etc.
  • the flavoring material may include a natural material such as herbal granules, or may include a material such as silica, zeolite, or dextrin, which includes an aroma ingredient.
  • the aerosol-generating substance may further include an aerosol-forming agent such as glycerin or propylene glycol.
  • the aerosol-generating module 13 may include at least one heater (not shown).
  • the aerosol-generating module 13 may include an electro-resistive heater.
  • the electro-resistive heater may include at least one electrically conductive track.
  • the electro-resistive heater may be heated as current flows through the electrically conductive track.
  • the aerosol-generating substance may be heated by the heated electro-resistive heater.
  • the electrically conductive track may include an electro-resistive material.
  • the electrically conductive track may be formed of a metal material.
  • the electrically conductive track may be formed of a ceramic material, carbon, a metal alloy, or a composite of a ceramic material and metal.
  • the electro-resistive heater may include an electrically conductive track that is formed in any of various shapes.
  • the electrically conductive track may be formed in any one of a tubular shape, a plate shape, a needle shape, a rod shape, and a coil shape.
  • the aerosol-generating module 13 may include a heater that uses an induction-heating method.
  • the induction heater may include an electrically conductive coil.
  • the induction heater may generate an alternating magnetic field, which periodically changes in direction, by adjusting the current flowing through the electrically conductive coil.
  • energy loss may occur in the magnetic body due to eddy current loss and hysteresis loss.
  • the lost energy may be released as thermal energy.
  • the aerosol-generating substance located adjacent to the magnetic body may be heated.
  • an object that generates heat due to the magnetic field may be referred to as a susceptor.
  • the aerosol-generating module 13 may generate ultrasonic vibrations to thereby generate an aerosol from the aerosol-generating substance.
  • the aerosol-generating device 10 may be referred to as a cartomizer, an atomizer, or a vaporizer.
  • the memory 14 may store programs for processing and controlling each signal in the controller 17.
  • the memory 14 may store processed data and data to be processed.
  • the memory 14 may store applications designed for the purpose of performing various tasks that can be processed by the controller 17.
  • the memory 14 may selectively provide some of the stored applications in response to the request from the controller 17.
  • the memory 14 may store data on the operation time of the aerosol-generating device 100, the maximum number of puffs, the current number of puffs, the number of uses of battery 16, at least one temperature profile, the user's inhalation pattern, and data about charging/discharging.
  • puff means inhalation by the user.
  • inhalation means the user's act of taking air or other substances into the user's oral cavity, nasal cavity, or lungs through the user's mouth or nose.
  • the memory 14 may include at least one of volatile memory (e.g. dynamic random access memory (DRAM), static random access memory (SRAM), or synchronous dynamic random access memory (SDRAM)), nonvolatile memory (e.g. flash memory), a hard disk drive (HDD), or a solid-state drive (SSD).
  • volatile memory e.g. dynamic random access memory (DRAM), static random access memory (SRAM), or synchronous dynamic random access memory (SDRAM)
  • nonvolatile memory e.g. flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the sensor module 15 may include at least one sensor.
  • the sensor module 15 may include a sensor for sensing a puff (hereinafter referred to as a "puff sensor").
  • the puff sensor may be implemented as a proximity sensor such as an IR sensor, a pressure sensor, a gyro sensor, an acceleration sensor, a magnetic field sensor, or the like.
  • the sensor module 15 may include a sensor for sensing a puff (hereinafter referred to as a "puff sensor").
  • the puff sensor may be implemented by a pressure sensor, a gyro sensor, an acceleration sensor, a magnetic field sensor, or the like.
  • the sensor module 15 may include a sensor for sensing the temperature of the heater included in the aerosol-generating module 13 and the temperature of the aerosol-generating substance (hereinafter referred to as a "temperature sensor").
  • the heater included in the aerosol-generating module 13 may also serve as the temperature sensor.
  • the electro-resistive material of the heater may be a material having a predetermined temperature coefficient of resistance.
  • the sensor module 15 may measure the resistance of the heater, which varies according to the temperature, to thereby sense the temperature of the heater.
  • the sensor module 15 may include a sensor for sensing insertion of the stick (hereinafter referred to as a "stick detection sensor").
  • the sensor module 15 may include a sensor for sensing mounting/demounting of the cartridge and the position of the cartridge (hereinafter referred to as a "cartridge detection sensor").
  • the stick detection sensor and/or the cartridge detection sensor may be implemented as an inductance-based sensor, a capacitive sensor, a resistance sensor, or a Hall sensor (or Hall IC) using a Hall effect.
  • the sensor module 15 may include a voltage sensor for sensing a voltage applied to a component (e.g. the battery 16) provided in the aerosol-generating device 10 and/or a current sensor for sensing a current.
  • a voltage sensor for sensing a voltage applied to a component (e.g. the battery 16) provided in the aerosol-generating device 10
  • a current sensor for sensing a current.
  • the battery 16 may supply electric power used for the operation of the aerosol-generating device 10 under the control of the controller 17.
  • the battery 16 may supply electric power to other components provided in the aerosol-generating device 100.
  • the battery 16 may supply electric power to the communication module included in the communication interface 11, the output device included in the input/output interface 12, and the heater included in the aerosol-generating module 13.
  • the battery 16 may be a rechargeable battery or a disposable battery.
  • the battery 16 may be a lithium-ion (Li-ion) battery or a lithium polymer (Li-polymer) battery.
  • the present disclosure is not limited thereto.
  • the charging rate (C-rate) of the battery 16 may be 10C
  • the discharging rate (C-rate) thereof may be 10C to 20C.
  • the present disclosure is not limited thereto.
  • the battery 16 may be manufactured such that 80% or more of the total capacity may be ensured even when charging/discharging is performed 2000 times.
  • the aerosol-generating device 10 may further include a protection circuit module (PCM) (not shown), which is a circuit for protecting the battery 16.
  • the protection circuit module (PCM) may be disposed adjacent to the upper surface of the battery 16. For example, in order to prevent overcharging and overdischarging of the battery 16, the protection circuit module (PCM) may cut off the electrical path to the battery 16 when a short circuit occurs in a circuit connected to the battery 16, when an overvoltage is applied to the battery 16, or when an overcurrent flows through the battery 16.
  • the aerosol-generating device 10 may further include a charging terminal to which electric power supplied from the outside is input.
  • the charging terminal may be formed at one side of the main body of the aerosol-generating device 100.
  • the aerosol-generating device 10 may charge the battery 16 using electric power supplied through the charging terminal.
  • the charging terminal may be configured as a wired terminal for USB communication, a pogo pin, or the like.
  • the aerosol-generating device 10 may further include a power terminal (not shown) to which electric power supplied from the outside is input.
  • a power line may be connected to the power terminal, which is disposed at one side of the main body of the aerosol-generating device 100.
  • the aerosol-generating device 10 may use the electric power supplied through the power line connected to the power terminal to charge the battery 16.
  • the power terminal may be a wired terminal for USB communication.
  • the aerosol-generating device 10 may wirelessly receive electric power supplied from the outside through the communication interface 11.
  • the aerosol-generating device 10 may wirelessly receive electric power using an antenna included in the communication module for wireless communication.
  • the aerosol-generating device 10 may charge the battery 16 using the wirelessly supplied electric power.
  • the controller 17 may control the overall operation of the aerosol-generating device 100.
  • the controller 17 may be connected to each of the components provided in the aerosol-generating device 100.
  • the controller 17 may transmit and/or receive a signal to and/or from each of the components, thereby controlling the overall operation of each of the components.
  • the controller 17 may include at least one processor.
  • the controller 17 may control the overall operation of the aerosol-generating device 10 using the processor included therein.
  • the processor may be a general processor such as a central processing unit (CPU).
  • the processor may be a dedicated device such as an application-specific integrated circuit (ASIC), or may be any of other hardware-based processors.
  • the controller 17 may perform any one of a plurality of functions of the aerosol-generating device 100.
  • the controller 17 may perform any one of a plurality of functions of the aerosol-generating device 10 (e.g. a preheating function, a heating function, a charging function, and a cleaning function) according to the state of each of the components provided in the aerosol-generating device 10 and the user's command received through the input/output interface 12.
  • the controller 17 may control the operation of each of the components provided in the aerosol-generating device 10 based on data stored in the memory 14. For example, the controller 17 may control the supply of a predetermined amount of electric power from the battery 16 to the aerosol-generating module 13 for a predetermined time based on the data on the temperature profile, the user's inhalation pattern, which is stored in the memory 14.
  • the controller 17 may determine the occurrence or non-occurrence of a puff using the puff sensor included in the sensor module 15. For example, the controller 17 may check a temperature change, a flow change, a pressure change, and a voltage change in the aerosol-generating device 10 based on the values sensed by the puff sensor. The controller 17 may determine the occurrence or non-occurrence of a puff based on the value sensed by the puff sensor.
  • the controller 17 may control the operation of each of the components provided in the aerosol-generating device 10 according to the occurrence or non-occurrence of a puff and/or the number of puffs. For example, the controller 17 may perform control such that the temperature of the heater is changed or maintained based on the temperature profile stored in the memory 14.
  • the controller 17 may perform control such that the supply of electric power to the heater is interrupted according to a predetermined condition. For example, the controller 17 may perform control such that the supply of electric power to the heater is interrupted when the stick is removed, when the cartridge is demounted, when the number of puffs reaches the predetermined maximum number of puffs, when a puff is not sensed during a predetermined period of time or longer, or when the remaining capacity of the battery 16 is less than a predetermined value.
  • the controller 17 may calculate the remaining capacity with respect to the full charge capacity of the battery 16. For example, the controller 17 may calculate the remaining capacity of the battery 16 based on the values sensed by the voltage sensor and/or the current sensor included in the sensor module 15.
  • the controller 17 may perform control such that electric power is supplied to the heater using at least one of a pulse width modulation (PWM) method or a proportional-integral-differential (PID) method.
  • PWM pulse width modulation
  • PID proportional-integral-differential
  • the controller 17 may perform control such that a current pulse having a predetermined frequency and a predetermined duty ratio is supplied to the heater using the PWM method.
  • the controller 17 may control the amount of electric power supplied to the heater by adjusting the frequency and the duty ratio of the current pulse.
  • the controller 17 may determine a target temperature to be controlled based on the temperature profile.
  • the controller 17 may control the amount of electric power supplied to the heater using the PID method, which is a feedback control method using a difference value between the temperature of the heater and the target temperature, a value obtained by integrating the difference value with respect to time, and a value obtained by differentiating the difference value with respect to time.
  • the PWM method and the PID method are described as examples of methods of controlling the supply of electric power to the heater, the present disclosure is not limited thereto, and may employ any of various control methods, such as a proportional-integral (PI) method or a proportional-differential (PD) method.
  • PI proportional-integral
  • PD proportional-differential
  • the controller 17 may perform control such that electric power is supplied to the heater according to a predetermined condition. For example, when a cleaning function for cleaning the space into which the stick is inserted is selected in response to a command input by the user through the input/output interface 12, the controller 17 may perform control such that a predetermined amount of electric power is supplied to the heater.
  • FIGS. 2 to 4 are views for explaining an aerosol-generating device according to embodiments of the present disclosure.
  • the aerosol-generating device 10 may include a main body 100 and/or a cartridge 200.
  • the aerosol-generating device 10 may include a main body 100, which is formed such that a stick 20 can be inserted into the inner space formed by a housing 101.
  • the stick 20 may be similar to a general combustive cigarette.
  • the stick 20 may be divided into a first portion including an aerosol generating material and a second portion including a filter and the like.
  • an aerosol generating material may be included in the second portion of the stick 20.
  • a flavoring substance made in the form of granules or capsules may be inserted into the second portion.
  • the entire first portion is inserted into the insertion space of the aerosol-generating device 10, and the second portion may be exposed to the outside.
  • the aerosol may be generated by passing external air through the first portion, and the generated aerosol may be delivered to the user's mouth through the second portion.
  • the main body 100 may be structured such that external air is introduced into the main body 100 in the state in which the stick 20 is inserted thereinto. In this case, the external air introduced into the main body 100 may flow into the mouth of the user via the stick 20.
  • the heater may be disposed in the main body 100 at a position corresponding to the position at which the stick 20 is inserted into the main body 100.
  • the heater is an electrically conductive heater 110 including a needle-shaped electrically conductive track, the present disclosure is not limited thereto.
  • the heater may heat the interior and/or exterior of the stick 20 using the electric power supplied from the battery 16.
  • An aerosol may be generated from the heated stick 20.
  • the user may hold one end of the stick 20 in the mouth to inhale the aerosol containing a tobacco material.
  • the controller 17 may perform control such that electric power is supplied to the heater in the state in which the stick 20 is not inserted into the main body according to a predetermined condition. For example, when a cleaning function for cleaning the space into which the stick 20 is inserted is selected in response to a command input by the user through the input/output interface 12, the controller 17 may perform control such that a predetermined amount of electric power is supplied to the heater.
  • the controller 17 may monitor the number of puffs based on the value sensed by the puff sensor from the point in time at which the stick 20 was inserted into the main body.
  • the controller 17 may initialize the current number of puffs stored in the memory 14.
  • the aerosol-generating device 10 may include a main body 100 and a cartridge 200.
  • the main body 100 may support the cartridge 200, and the cartridge 200 may contain an aerosol-generating substance.
  • the cartridge 200 may be configured so as to be detachably mounted to the main body 100.
  • the cartridge 200 may be integrally configured with the main body 100.
  • the cartridge 200 may be mounted to the main body 100 in a manner such that at least a portion of the cartridge 200 is inserted into the insertion space formed by a housing 101 of the main body 100.
  • the main body 100 may be formed to have a structure in which external air can be introduced into the main body 100 in the state in which the cartridge 200 is inserted thereinto.
  • the external air introduced into the main body 100 may flow into the user's mouth via the cartridge 200.
  • the controller 17 may determine whether the cartridge 200 is in a mounted state or a detached state using a cartridge detection sensor included in the sensor module 15.
  • the cartridge detection sensor may transmit a pulse current through a first terminal connected with the cartridge 200.
  • the controller 17 may determine whether the cartridge 200 is in a connected state, based on whether the pulse current is received through a second terminal.
  • the cartridge 200 may include a heater 210 configured to heat the aerosol-generating substance and/or a reservoir 220 configured to contain the aerosol-generating substance.
  • a liquid delivery element impregnated with (containing) the aerosol-generating substance may be disposed inside the reservoir 220.
  • the electrically conductive track of the heater 210 may be formed in a structure that is wound around the liquid delivery element. In this case, when the liquid delivery element is heated by the heater 210, an aerosol may be generated.
  • the liquid delivery element may include a wick made of, for example, cotton fiber, ceramic fiber, glass fiber, or porous ceramic.
  • the cartridge 200 may include an insertion space 230 configured to allow the stick 20 to be inserted.
  • the cartridge 200 may include the insertion space formed by an inner wall extending in a circumferential direction along a direction in which the stick 20 is inserted.
  • the insertion space may be formed by opening the inner side of the inner wall up and down.
  • the stick 20 may be inserted into the insertion space formed by the inner wall.
  • the insertion space into which the stick 20 is inserted may be formed in a shape corresponding to the shape of a portion of the stick 20 inserted into the insertion space.
  • the insertion space may be formed in a cylindrical shape.
  • the outer surface of the stick 20 may be surrounded by the inner wall and contact the inner wall.
  • a portion of the stick 20 may be inserted into the insertion space, the remaining portion of the stick 20 may be exposed to the outside.
  • the user may inhale the aerosol while biting one end of the stick 20 with the mouth.
  • the aerosol generated by the heater 210 may pass through the stick 20 and be delivered to the user's mouth.
  • the material contained in the stick 20 may be added to the aerosol.
  • the material-infused aerosol may be inhaled into the user's oral cavity through the one end of the stick 20.
  • the aerosol-generating device 10 may include a main body 100 supporting the cartridge 200 and a cartridge 200 containing an aerosol-generating substance.
  • the main body 100 may be formed so as to allow the stick 20 to be inserted into an insertion space 1300 therein.
  • the aerosol-generating device 10 may include a first heater for heating the aerosol-generating substance stored in the cartridge 200. For example, when the user holds one end of the stick 20 in the mouth to inhale the aerosol, the aerosol generated by the first heater may pass through the stick 20. At this time, while the aerosol passes through the stick 20, a flavor may be added to the aerosol. The aerosol containing the flavor may be drawn into the user's oral cavity through one end of the stick 20.
  • the aerosol-generating device 10 may include a first heater for heating the aerosol-generating substance stored in the cartridge 200 and a second heater for heating the stick 20 inserted into the main body 100.
  • the aerosol-generating device 10 may generate an aerosol by heating the aerosol-generating substance stored in the cartridge 200 and the stick 20 using the first heater and the second heater, respectively.
  • FIGS. 5 and 6 are views for explaining a stick according to embodiments of the present disclosure.
  • the stick 20 may include a tobacco rod 21 and a filter rod 22.
  • the first portion described above with reference to FIG. 2 may include the tobacco rod.
  • the second portion described above with reference to FIG. 2 may include the filter rod 22.
  • FIG. 5 illustrates that the filter rod 22 includes a single segment.
  • the filter rod 22 is not limited thereto.
  • the filter rod 22 may include a plurality of segments.
  • the filter rod 22 may include a first segment configured to cool an aerosol and a second segment configured to filter a certain component included in the aerosol.
  • the filter rod 22 may further include at least one segment configured to perform other functions.
  • a diameter of the stick 20 may be within a range of 5 mm to 9 mm, and a length of the stick 20 may be about 48 mm, but embodiments are not limited thereto.
  • a length of the tobacco rod 21 may be about 12 mm
  • a length of a first segment of the filter rod 22 may be about 10 mm
  • a length of a second segment of the filter rod 22 may be about 14 mm
  • a length of a third segment of the filter rod 22 may be about 12 mm, but embodiments are not limited thereto.
  • the stick 20 may be wrapped using at least one wrapper 24.
  • the wrapper 24 may have at least one hole through which external air may be introduced or internal air may be discharged.
  • the stick 20 may be wrapped using one wrapper 24.
  • the stick 20 may be double-wrapped using at least two wrappers 24.
  • the tobacco rod 21 may be wrapped using a first wrapper 241.
  • the filter rod 22 may be wrapped using wrappers 242, 243, 244.
  • the tobacco rod 21 and the filter rod 22 wrapped by wrappers may be combined.
  • the stick 20 may be re-wrapped by a single wrapper 245.
  • each segment may be wrapped using wrappers 242, 243, 244.
  • the entirety of stick 20 composed of a plurality of segments wrapped by wrappers may be re-wrapped by another wrapper
  • the first wrapper 241 and the second wrapper 242 may be formed of general filter wrapping paper.
  • the first wrapper 241 and the second wrapper 242 may be porous wrapping paper or non-porous wrapping paper.
  • the first wrapper 241 and the second wrapper 242 may be made of an oil-resistant paper sheet and an aluminum laminate packaging material.
  • the third wrapper 243 may be made of a hard wrapping paper.
  • a basis weight of the third wrapper 243 may be within a range of 88 g/m2 to 96 g/m2.
  • the basis weight of the third wrapper 243 may be within a range of 90 g/m2 to 94 g/m2.
  • a total thickness of the third wrapper 243 may be within a range of 1200 ⁇ m to 1300 ⁇ m.
  • the total thickness of the third wrapper 243 may be 125 ⁇ m.
  • the fourth wrapper 244 may be made of an oil-resistant hard wrapping paper.
  • a basis weight of the fourth wrapper 244 may be within a range of about 88 g/m2 to about 96 g/m2.
  • the basis weight of the fourth wrapper 244 may be within a range of 90 g/m2 to 94 g/m2.
  • a total thickness of the fourth wrapper 244 may be within a range of 1200 ⁇ m to 1300 ⁇ m.
  • the total thickness of the fourth wrapper 244 may be 125 ⁇ m.
  • the fifth wrapper 245 may be made of a sterilized paper (MFW).
  • MFW refers to a paper specially manufactured to have enhanced tensile strength, water resistance, smoothness, and the like, compared to ordinary paper.
  • a basis weight of the fifth wrapper 245 may be within a range of 57 g/m2 to 63 g/m2.
  • a basis weight of the fifth wrapper 245 may be about 60 g/m2.
  • the total thickness of the fifth wrapper 245 may be within a range of 64 ⁇ m to 70 ⁇ m.
  • the total thickness of the fifth wrapper 245 may be 67 ⁇ m.
  • a predetermined material may be included in the fifth wrapper 245.
  • an example of the predetermined material may be, but is not limited to, silicon.
  • silicon exhibits characteristics like heat resistance with little change due to the temperature, oxidation resistance, resistances to various chemicals, water repellency, electrical insulation, etc.
  • any material other than silicon may be applied to (or coated on) the fifth wrapper 245 without limitation as long as the material has the above-mentioned characteristics.
  • the fifth wrapper 245 may prevent the stick 20 from being burned.
  • the tobacco rod 21 is heated by the heater 110, there is a possibility that the stick 20 is burned.
  • the temperature is raised to a temperature above the ignition point of any one of materials included in the tobacco rod 21, the stick 20 may be burned. Even in this case, since the fifth wrapper 245 include a non-combustible material, the burning of the stick 20 may be prevented.
  • the fifth wrapper 245 may prevent the aerosol generating device 100 from being contaminated by substances formed by the stick 20.
  • liquid substances may be formed in the stick 20.
  • liquid materials e.g., moisture, etc.
  • the fifth wrapper 245 wraps the stick 20, the liquid materials formed in the stick 20 may be prevented from being leaked out of the stick 20.
  • the tobacco rod 21 may include an aerosol generating material.
  • the aerosol generating material may include at least one of glycerin, propylene glycol, ethylene glycol, dipropylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and oleyl alcohol, but it is not limited thereto.
  • the tobacco rod 21 may include other additives, such as flavors, a wetting agent, and/or organic acid.
  • the tobacco rod 21 may include a flavored liquid, such as menthol or a moisturizer, which is injected to the tobacco rod 21.
  • the tobacco rod 21 may be manufactured in various forms.
  • the tobacco rod 21 may be formed as a sheet or a strand.
  • the tobacco rod 21 may be formed as a pipe tobacco, which is formed of tiny bits cut from a tobacco sheet.
  • the tobacco rod 21 may be surrounded by a heat conductive material.
  • the heat-conducting material may be, but is not limited to, a metal foil such as aluminum foil.
  • the heat conductive material surrounding the tobacco rod 21 may uniformly distribute heat transmitted to the tobacco rod 21, and thus, the heat conductivity applied to the tobacco rod may be increased and taste of the tobacco may be improved.
  • the heat conductive material surrounding the tobacco rod 21 may function as a susceptor heated by the induction heater.
  • the tobacco rod 21 may further include an additional susceptor, in addition to the heat conductive material surrounding the tobacco rod 21.
  • the filter rod 22 may include a cellulose acetate filter. Shapes of the filter rod 22 are not limited.
  • the filter rod 22 may include a cylinder-type rod or a tube-type rod having a hollow inside.
  • the filter rod 22 may include a recess-type rod. When the filter rod 22 includes a plurality of segments, at least one of the plurality of segments may have a different shape.
  • the first segment of the filter rod 22 may be a cellulous acetate filter.
  • the first segment may be a tube-type structure having a hollow inside.
  • the first segment may prevent an internal material of the tobacco rod 21 from being pushed back when the heater 110 is inserted into the tobacco rod 21 and may also provide a cooling effect to aerosol.
  • a diameter of the hollow included in the first segment may be an appropriate diameter within a range of 2 mm to 4.5 mm but is not limited thereto.
  • the length of the first segment may be an appropriate length within a range of 4 mm to 30 mm but is not limited thereto.
  • the length of the first segment may be 10 mm but is not limited thereto.
  • the second segment of the filter rod 22 cools the aerosol which is generated when the heater 110 heats the tobacco rod 21. Therefore, the user may puff the aerosol which is cooled at an appropriate temperature.
  • the length or diameter of the second segment may be variously determined according to the shape of the stick 20.
  • the length of the second segment may be an appropriate length within a range of 7 mm to 20 mm.
  • the length of the second segment may be about 14 mm but is not limited thereto.
  • the second segment may be manufactured by weaving a polymer fiber.
  • a flavoring liquid may also be applied to the fiber formed of the polymer.
  • the second segment may be manufactured by weaving together an additional fiber coated with a flavoring liquid and a fiber formed of a polymer.
  • the second segment may be formed by a crimped polymer sheet.
  • a polymer may be formed of a material selected from the group consisting of polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polylactic acid (PLA), cellulous acetate (CA), and aluminum coil.
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • PLA polylactic acid
  • CA cellulous acetate
  • aluminum coil aluminum coil
  • the second segment may include a single channel or a plurality of channels extending in a longitudinal direction.
  • a channel refers to a passage through which a gas (e.g., air or aerosol) passes.
  • the second segment formed of the crimped polymer sheet may be formed from a material having a thickness between about 5 ⁇ m and about 300 ⁇ m, for example, between about 10 ⁇ m and about 250 ⁇ m.
  • a total surface area of the second segment may be between about 300 mm2/mm and about 1000 mm2/mm.
  • an aerosol cooling element may be formed from a material having a specific surface area between about 10 mm2/mg and about 100 mm2/mg.
  • the second segment may include a thread including a volatile flavor component.
  • the volatile flavor component may be menthol but is not limited thereto.
  • the thread may be filled with a sufficient amount of menthol to provide the second segment with menthol of 1.5 mg or more.
  • the third segment of the filter rod 22 may be a cellulous acetate filter.
  • the length of the third segment may be an appropriate length within a range of 4 mm to 20 mm.
  • the length of the third segment may be about 12 mm but is not limited thereto.
  • the filter rod 22 may be manufactured to generate flavors.
  • a flavoring liquid may be injected onto the filter rod 22.
  • an additional fiber coated with a flavoring liquid may be inserted into the filter rod 22.
  • the filter rod 22 may include at least one capsule 23.
  • the capsule 23 may generate a flavor.
  • the capsule 23 may generate an aerosol.
  • the capsule 23 may have a configuration in which a liquid including a flavoring material is wrapped with a film.
  • the capsule 23 may have a spherical or cylindrical shape but is not limited thereto.
  • a stick 30 may further include a front-end plug 33.
  • the front-end plug 33 may be located on a side of a tobacco rod 31, the side not facing a filter rod 32.
  • the front-end plug 33 may prevent the tobacco rod 31 from being detached and prevent liquefied aerosol from flowing into the aerosol generating device 10 from the tobacco rod 31, during smoking.
  • the filter rod 32 may include a first segment 321 and a second segment 322.
  • the first segment 321 may correspond to the first segment of the filter rod 22 of FIG. 4.
  • the segment 322 may correspond to the third segment of the filter rod 22 of FIG. 4.
  • a diameter and a total length of the stick 30 may correspond to the diameter and a total length of the stick 20 of FIG. 4.
  • a length of the front-end plug 33 may be about 7 mm
  • a length of the tobacco rod 31 may be about 15 mm
  • a length of the first segment 321 may be about 12 mm
  • a length of the second segment 322 may be about 14 mm, but embodiments are not limited thereto.
  • the stick 30 may be wrapped using at least one wrapper 35.
  • the wrapper 35 may have at least one hole through which external air may be introduced or internal air may be discharged.
  • the front-end plug 33 may be wrapped using a first wrapper 351
  • the tobacco rod 31 may be wrapped using a second wrapper 352
  • the first segment 321 may be wrapped using a third wrapper 353
  • the second segment 322 may be wrapped using a fourth wrapper 354.
  • the entire stick 30 may be re-wrapped using a fifth wrapper 355.
  • the fifth wrapper 355 may have at least one perforation 36 formed therein.
  • the perforation 36 may be formed in an area of the fifth wrapper 355 surrounding the tobacco rod 31 but is not limited thereto.
  • the perforation 36 may transfer heat formed by the heater 210 illustrated in FIG. 3 into the tobacco rod 31.
  • the second segment 322 may include at least one capsule 34.
  • the capsule 34 may generate a flavor.
  • the capsule 34 may generate an aerosol.
  • the capsule 34 may have a configuration in which a liquid including a flavoring material is wrapped with a film.
  • the capsule 34 may have a spherical or cylindrical shape but is not limited thereto.
  • the first wrapper 351 may be formed by combining general filter wrapping paper with a metal foil such as an aluminum coil.
  • a total thickness of the first wrapper 351 may be within a range of 45 ⁇ m to 55 ⁇ m.
  • the total thickness of the first wrapper 351 may be 50.3 ⁇ m.
  • a thickness of the metal coil of the first wrapper 351 may be within a range 6 ⁇ m to 7 ⁇ m.
  • the thickness of the metal coil of the first wrapper 351 may be 6.3 ⁇ m.
  • a basis weight of the first wrapper 351 may be within a range of 50 g/m2 to 55 g/m2.
  • the basis weight of the first wrapper 351 may be 53 g/m2.
  • the second wrapper 352 and the third wrapper 353 may be formed of general filter wrapping paper.
  • the second wrapper 352 and the third wrapper 353 may be porous wrapping paper or non-porous wrapping paper.
  • porosity of the second wrapper 352 may be 35000 CU but is not limited thereto.
  • a thickness of the second wrapper 352 may be within a range of 70 ⁇ m to 80 ⁇ m.
  • the thickness of the second wrapper 352 may be 78 ⁇ m.
  • a basis weight of the second wrapper 352 may be within a range of 20 g/m2 to 25 g/m2.
  • the basis weight of the second wrapper 352 may be 23.5 g/m2.
  • porosity of the third wrapper 353 may be 24000 CU but is not limited thereto.
  • a thickness of the third wrapper 353 may be in a range of about 60 ⁇ m to about 70 ⁇ m.
  • the thickness of the third wrapper 353 may be 68 ⁇ m.
  • a basis weight of the third wrapper 353 may be in a range of about 20 g/m2 to about 25 g/m2.
  • the basis weight of the third wrapper 353 may be 21 g/m2.
  • the fourth wrapper 354 may be formed of PLA laminated paper.
  • the PLA laminated paper refers to three-layer paper including a paper layer, a PLA layer, and a paper layer.
  • a thickness of the fourth wrapper 353 may be in a range of 100 ⁇ m to 1200 ⁇ m.
  • the thickness of the fourth wrapper 353 may be 110 ⁇ m.
  • a basis weight of the fourth wrapper 354 may be in a range of 80 g/m2 to 100 g/m2.
  • the basis weight of the fourth wrapper 354 may be 88 g/m2.
  • the fifth wrapper 355 may be formed of sterilized paper (MFW).
  • the sterilized paper (MFW) refers to paper which is particularly manufactured to improve tensile strength, water resistance, smoothness, and the like more than ordinary paper.
  • a basis weight of the fifth wrapper 355 may be in a range of 57 g/m2 to 63 g/m2.
  • the basis weight of the fifth wrapper 355 may be 60 g/m2.
  • a thickness of the fifth wrapper 355 may be in a range of 64 ⁇ m to 70 ⁇ m.
  • the thickness of the fifth wrapper 355 may be 67 ⁇ m.
  • the fifth wrapper 355 may include a preset material added thereto.
  • An example of the material may include silicon, but it is not limited thereto. Silicon has characteristics such as heat resistance robust to temperature conditions, oxidation resistance, resistance to various chemicals, water repellency to water, and electrical insulation, etc. Besides silicon, any other materials having characteristics as described above may be applied to (or coated on) the fifth wrapper 355 without limitation.
  • the front-end plug 33 may be formed of cellulous acetate.
  • the front-end plug 33 may be formed by adding a plasticizer (e.g., triacetin) to cellulous acetate tow.
  • a plasticizer e.g., triacetin
  • Mono-denier of filaments constituting the cellulous acetate tow may be in a range of 1.0 to 10.0.
  • the mono-denier of filaments constituting the cellulous acetate tow may be within a range of 4.0 to 6.0.
  • the mono-denier of the filaments of the front-end plug 33 may be 5.0.
  • a cross-section of the filaments constituting the front-end plug 33 may be a Y shape.
  • Total denier of the front-end plug 33 may be in a range of 20000 to 30000.
  • the total denier of the front-end plug 33 may be within a range of 25000 to 30000.
  • the total denier of the front-end plug 33 may be 28000.
  • the front-end plug 33 may include at least one channel.
  • a cross-sectional shape of the channel may be manufactured in various shapes.
  • the tobacco rod 31 may correspond to the tobacco rod 21 described above with reference to FIG. 4. Therefore, hereinafter, the detailed description of the tobacco rod 31 will be omitted.
  • the first segment 321 may be formed of cellulous acetate.
  • the first segment 321 may be a tube-type structure having a hollow inside.
  • the first segment 321 may be manufactured by adding a plasticizer (e.g., triacetin) to cellulous acetate tow.
  • a plasticizer e.g., triacetin
  • mono-denier and total denier of the first segment 321 may be the same as the mono-denier and total denier of the front-end plug 33.
  • the second segment 322 may be formed of cellulous acetate.
  • Mono denier of filaments constituting the second segment 322 may be in a range of 1.0 to 10.0.
  • the mono denier of the filaments of the second segment 322 may be within a range of about 8.0 to about 10.0.
  • the mono denier of the filaments of the second segment 322 may be 9.0.
  • a cross-section of the filaments of the second segment 322 may be a Y shape.
  • Total denier of the second segment 322 may be in a range of 20000 to 30000.
  • the total denier of the second segment 322 may be 25000.
  • FIG. 7 is a flowchart illustrating a method of operating an aerosol generating device according to an embodiment of the present disclosure.
  • the aerosol generating device 10 may determine whether a touch input of a user is received in operation S710. For example, the aerosol generating device 10 may monitor whether a touch input of the user is received while a screen is displayed through a display.
  • an insertion space into which a cigarette 20 is inserted may be provided at an upper end of a housing 201 of the aerosol generating device 10.
  • the insertion space may be recessed into the housing 201 by a predetermined depth, so as to allow at least a portion of the cigarette 20 to be inserted therein.
  • the depth of the insertion space may correspond to the length of a section or portion of the cigarette 20 that contains an aerosol generating substance.
  • the aerosol generating device 10 is a device capable of using the cigarette 20 of FIG. 5
  • the depth of the insertion space may correspond to the length of the tobacco rod 21 of the cigarette 20.
  • the battery 16, a printed circuit board 810, a heater, and the like may be disposed in the housing 201 of the aerosol generating device 10.
  • Each of the components provided at the aerosol generating device 10 may be mounted on one surface and/or another surface of a printed circuit board 810.
  • the components mounted on the printed circuit board 810 may transmit or receive signals to or from each other through a wiring layer of the printed circuit board 810.
  • at least one communication module included in the communication interface 11, at least one sensor included in the sensor module 15, the controller 17, and the like may be mounted on the printed circuit board 810.
  • the printed circuit board 810 may be disposed adjacent to the battery 16.
  • the printed circuit board 810 may be disposed such that one surface thereof faces the battery 16.
  • a temperature sensor may be mounted on one surface of the printed circuit board 810.
  • the temperature sensor may be implemented using a thermistor, which is a device whose resistance changes with temperature, or the like.
  • the temperature sensor may include a negative temperature coefficient thermistor (NTC thermistor) whose resistance decreases as temperature increases.
  • NTC thermistor negative temperature coefficient thermistor
  • the controller 17 may determine a temperature of the battery 16 based on a value detected by the temperature sensor. For example, the controller 17 may determine the value detected by the temperature sensor as the temperature of the battery 16. For example, the controller 17 may determine a result value, which is obtained by compensating the value detected by the temperature sensor based on a predetermined reference, as the temperature of the battery 16.
  • a display 820 may be disposed on one side of the housing 201.
  • the display 820 may display a screen based on a signal transmitted from the controller 17.
  • a power terminal 830 may be disposed on one side of the housing 201 of the aerosol generating device 10.
  • the power terminal 830 may be a wired terminal for wired communication such as USB.
  • a power supply circuit (not shown) may be disposed between the battery 16 and the power terminal 830.
  • the power supply circuit may transmit power supplied from the outside to the battery 16 through the power terminal 830.
  • a power line 835 for supplying power may be connected to the power terminal 830.
  • the power terminal 830 may be coupled to a connector of the power line 835.
  • the controller 17 may determine whether the power line 835 is connected to the power terminal 830. For example, the controller 17 may determine whether the power line 835 is connected to the power terminal 830 based on a signal generated in response to connection between the power terminal 830 and the power line 835.
  • the controller 17 may start charging the battery 16.
  • the controller 17 may control the operation of each of the components provided at the aerosol generating device 10, so that power supplied through the power line 835 is transmitted to the battery 16.
  • the controller 17 may cut off the supply of power to the aerosol generating module 130, and may start charging of the battery 16.
  • At least one motor 840 that produces vibration to generate a haptic effect may be disposed in the housing 101.
  • the motor 840 may be mounted on another surface of the printed circuit board 810.
  • the motor 840 may be implemented as a linear actuator or the like, but is not limited thereto.
  • the structure of the aerosol generating device 10 is not limited to that shown in FIG. 8A, and the arrangement of the battery 16, the printed circuit board 810, the display 820, the power terminal 830, and the motor 840 may vary according to an embodiment.
  • the motor 840 may be mounted on a board (or substrate) on which the display 820 is mounted.
  • the display 820 may include a cover glass 821, a display panel 823, and/or a touch panel 825.
  • the cover glass 821 together with the housing 201, may define an outer appearance of the aerosol generating device 10.
  • the cover glass 821 may come into contact with a part of the body of a user.
  • the cover glass 821 may protect the display panel 823 and/or the touch panel 825 from external impact.
  • the display panel 823 may be disposed in a direction from the cover glass 821 toward an inside of the housing 201.
  • the display panel 823 may be disposed parallel to the cover glass 821.
  • the display panel 823 may output an image.
  • the display panel 823 may output an image based on a signal transmitted from the controller 17.
  • the display panel 823 may be implemented as a liquid crystal display (LCD) panel, an organic light emitting diode (OLED) panel, or the like, but is not limited thereto.
  • the touch panel 825 may be disposed in a direction from the cover glass 821 toward the inside of the housing 201.
  • the touch panel 825 may be disposed parallel to the cover glass 821 and the display panel 823.
  • the touch panel 825 may detect a touch corresponding to contact of an object.
  • the touch panel 825 may detect a touch corresponding to a touch of a part of the body of the user.
  • the touch panel 825 may include at least one touch sensor for sensing or detecting a touch.
  • the touch sensor may include a capacitive touch sensor, a resistive touch sensor, a surface acoustic wave touch sensor, and an infrared touch sensor, but are not limited thereto.
  • a plurality of touch sensors included in the touch panel 825 may receive a driving signal according to a predetermined period.
  • the plurality of touch sensors included in the touch panel 825 may receive a driving signal according to a predetermined period.
  • the plurality of touch sensors may each output an electrical signal corresponding to a state (e.g., pressure, magnetic field, capacitance, and quantity of light).
  • the controller 17 may determine whether a touch input is received by monitoring a signal output from the touch panel 825.
  • the controller 17 may perform a determination on a touch input based on the signal output from the touch panel 825. For example, the controller 17 may perform a determination on coordinates of a touch input, a touch area (or region), single touch, multi-touch, the intensity of a touch, and the like.
  • the controller 17 may perform a determination on a long touch input, which is a touch detected for a predetermined time or longer, a short touch input, which is a touch detected for less than the predetermined time, and a swiping (or swipe) touch input in which the position of a touch input is continuously changed in a specific direction.
  • the display panel 823 and the touch panel 825 may be configured as one panel.
  • the touch panel 825 may be inserted into the display panel 823 (on-cell type or in-cell type).
  • the touch panel 825 may be added on the display panel 823 (add-on type).
  • the aerosol generating device 10 may output a home screen 900 through the display 820.
  • the home screen 900 may be displayed through the display 820.
  • the home screen 900 may include at least one indicator.
  • the home screen 900 may include an indicator 910 that indicates an operating state of the aerosol generating device 10, an indicator 920 that indicates a communication state, an indicator 930 that indicates a remaining power capacity of the battery 16, and an indicator 940 that indicates a current time.
  • the aerosol generating device 10 may determine whether the touch input is valid in operation S720. For example, the aerosol generating device 10 may determine whether a touch input is valid based on a touched region (or portion) of the touch panel 825 corresponding to the touch input.
  • the aerosol generating device 10 may ignore the received touch input.
  • the aerosol generating device 10 may determine that a touch input is invalid when there are a plurality of touched regions of the touch panel 825. For example, the aerosol generating device 10 may determine that a touch input is invalid when multi-touches, which are a plurality of touch inputs different from each other, on the touch panel 825 are received.
  • the aerosol generating device 10 may determine whether a touch input is valid based on a proportion of a touched region occupying an entire (or total) region corresponding to the touch panel 825. For example, the aerosol generating device 10 may determine that a touch input is invalid when a touched region accounts for a predetermined proportion (e.g., 40%) or more of the entire region corresponding to the touch panel 825.
  • a predetermined proportion e.g. 40%
  • the aerosol generating device 10 may determine a valid region of the touch panel 825 based on the screen displayed through the display panel 823. In this case, the aerosol generating device 10 may determine that a touch input received in the valid region of the touch panel 825 is a valid input. By contrast, the aerosol generating device 10 may determine that a touch input received in a remaining region except the valid region of the touch panel 825 (hereinafter referred to as an "invalid region”) is an invalid input.
  • the aerosol generating device 10 may determine whether a touch input is valid based on the area of the touched region included in each valid region. For example, when all of a specific valid region, among a plurality of valid regions, corresponds to a touched region, the aerosol generating device 10 may determine that a touch input on the specific valid region is valid. For example, when the area of a touched region included in a specific valid region, among a plurality of valid regions, is the largest, the aerosol generating device 10 may determine that a touch input on the specific valid region is valid.
  • the aerosol generating device 10 may generate vibration as feedback on reception of the valid touch input in operation S730. For example, when a touch input is valid, the aerosol generating device 10 may operate the motor 840 to produce vibration for a haptic effect.
  • the aerosol generating device 10 may generate vibration according to the type of touch input. For example, when a short touch input, which is a touch detected for less than a predetermined time, is received, the aerosol generating device 10 may generate vibration once through the motor 840. For example, when a long touch input, which is a touch defected for the predetermined time or longer, is received, the aerosol generating device 10 may generate vibration twice through the motor 840.
  • the aerosol generating device 10 may perform an operation according to the touch input in operation S740. For example, when any one of objects included in the screen displayed on the display 820 is selected, the aerosol generating device 10 may execute an application corresponding to the selected object.
  • the aerosol generating device 10 may receive a touch input while a home screen 900 is displayed on the display 820.
  • a valid region corresponding to the home screen 900 may correspond to the entire region of the touch panel 825, which is the maximum size of the screen displayed on the display 820.
  • the aerosol generating device 10 may output, through the display 820, a setting screen 1000 for setting the type of home screen.
  • the aerosol generating device 10 may generate, through the motor 840, vibration as feedback in response to receiving the long touch input 1001.
  • the setting screen 1000 may include a preview object 1010 that indicates the type of home screen, an END object 1020 that closes or terminates the display of the setting screen 1000, and the like.
  • the aerosol generating device 10 may display a first image 1011 corresponding to the type of a currently set home screen as the preview object 1010.
  • the aerosol generating device 10 may determine a region of the touch panel 825 corresponding to the preview object 1010 and a region of the END object 1020 as a valid region of the touch panel 825. In this case, a remaining region except the valid region of an entire region of the setting screen 1000 may be determined as an invalid region 1030.
  • the aerosol generating device 10 may ignore the touch input 1002 on the invalid region 1030.
  • the aerosol generating device 10 may determine that the swiping touch input (1003, 1004, 1005) is valid.
  • the aerosol generating device 10 may generate, through the motor 840, vibration as feedback in response to receiving the swiping touch input (1003, 1004, 1005).
  • the aerosol generating device 10 may ignore the swiping touch input on the invalid area 1030.
  • the aerosol generating device 10 may change an image displayed as the preview object 1010 according to the valid swiping touch input (1003, 1004, 1005). For example, when a swiping touch input 1003 toward the left (or in a left direction) is received while the first image 1011 is displayed as the preview object 1010, the aerosol generating device 10 may switch the first image 1011 to a second image 1012. For example, when a swiping touch input 1004 toward the right (or in a right direction) is received while the second image 1012 is displayed as the preview object 1010, the aerosol generating device 10 may switch the second image 1012 to the first image 1011 again. For example, when a swiping touch input 1005 toward the left is received while the second image 1012 is displayed as the preview object 1010, the aerosol generating device 10 may switch the second image 1012 to a third image 1013.
  • the aerosol generating device 10 may switch the screen output through the display 820.
  • the aerosol generating device 10 may set the type of home screen to a type corresponding to the third image 1013.
  • the aerosol generating device 10 may output, through the display 820, a home screen 905 corresponding to the third image 1013.
  • the aerosol generating device 10 may switch the home screen 900 displayed through the display 920 to an application screen 1100.
  • the aerosol generating device 10 may switch the home screen 900 displayed through the display 820 to the application screen 1100.
  • the application screen 1100 may include at least one object corresponding to applications installed in the aerosol generating device 10.
  • a valid region corresponding to the application screen 1100 may be regions of the touch panel 825 that correspond to respective objects corresponding to the applications.
  • the aerosol generating device 10 may execute an application corresponding to the selected object.
  • the user may select, through a touch input, any one of the objects included in the application screen 1100.
  • the aerosol generating device 10 may determine the object selected by the user from among the objects included in the application screen 1100.
  • the aerosol generating device 10 may generate, through the motor 840, vibration as feedback in response to receiving the touch input of selecting any one of the objects included in the application screen 1100.
  • the aerosol generating device 10 may determine that the calendar object 1210 is selected by the user. In this case, the aerosol generating device 10 may execute an application corresponding to the calendar object 1210.
  • the aerosol generating device 10 may determine whether the touch input 1202 is valid based on the area of the touched region included in each valid region.
  • the aerosol generating device 10 may determine that the calendar object 1210 is selected by the user. In this case, the aerosol generating device 10 may execute an application corresponding to the calendar object 1210.
  • the aerosol generating device 10 may determine whether the touch input 1203 is valid based on the area of the touched region included in each valid region.
  • the aerosol generating device 10 may determine that the calendar object 1210 is selected by the user. In this case, the aerosol generating device 10 may execute an application corresponding to the calendar object 1210.
  • the aerosol generating device 10 may determine that the touch input 1301, which is a single touch, is valid. In this case, the aerosol generating device 10 may generate, through the motor 840, vibration as feedback in response to receiving the single touch input 1301.
  • the aerosol generating device 10 may determine that the touch input 1302 and the touch input 1303, which are multi-touches, are invalid. In this case, the aerosol generating device 10 may ignore the multi-touch inputs 1302 and 1303.
  • the aerosol generating device 10 may determine that the touch input 1304 is invalid. In this case, the aerosol generating device 10 may ignore the touch input 1304 accounting for the predetermined proportion of the entire region corresponding to the touch panel 825.
  • a predetermined proportion e.g. 40%
  • the aerosol generating device 10 may ignore the touch input 1304 accounting for the predetermined proportion of the entire region corresponding to the touch panel 825.
  • a screen displayed on the display 820 may be intuitively switched.
  • a user touch input may be more accurately processed.
  • feedback on the result of a user touch input may be output in an intuitive manner.
  • an aerosol generating device 10 may include: a heater 110 configured to heat an aerosol generating substance; a touch panel 825 configured to receive a touch input; a display panel 823 corresponding to the touch panel 825; a motor 840 configured to generate vibration; and a controller 17.
  • the controller 17 may be configured to: in response to receiving a touch input through the touch panel 825, determine whether the touch input is valid based on a touched region of the touch panel 825 corresponding to the touch input; when the touch input is determined to be valid, control the motor 840 to generate vibration in response to the touch input; and perform an operation according to the valid touch input.
  • the controller 17 may be configured to, when the touch input is determined to be invalid, ignore the received touch input.
  • the controller 17 may be configured to, based on the touched region being plural in number, determine that the touch input is invalid.
  • the controller 17 may be configured to, based on the touched region accounting for a predetermined proportion or more of an entire region corresponding to the touch panel 825, determine that the touch input is invalid.
  • the controller 17 may be configured to: determine a valid region of the touch panel 825 configured to receive the touch input based on a screen displayed through the display panel 823; and determine whether the touch input is valid according to whether the touched region is included in the valid region.
  • the controller 17 may be configured to: based on the valid touch input being an input of selecting one of at least one object included in a screen displayed through the display panel 823, determine a specific object corresponding to the touch input; and perform an operation corresponding to the specific object.
  • the controller 17 may be configured to: when the touch input is determined to be valid, determine a type of the touch input based on at least one of a time at which the touch input is detected and a direction of the touch input; and perform an operation corresponding to the type of the touch input.
  • a method of operating an aerosol generating device 10 may include: in response to receiving a touch input through a touch panel 825 of the aerosol generating device 10, determining whether the touch input is valid based on a touched region of the touch panel 825 corresponding to the touch input; when the touch input is determined to be valid, generating, through a motor 840 of the aerosol generating device 10, vibration in response to the touch input; and performing an operation according to the valid touch input.
  • the method may further include ignoring, when the touch input is determined to be invalid, the received touch input.
  • the determining whether the touch input is valid may include, based on the touched region being plural in number, determining that the touch input is invalid.
  • the determining whether the touch input is valid may include, based on the touched region accounting for a predetermined proportion or more of an entire region corresponding to the touch panel 825, determining that the touch input is invalid.
  • the determining whether the touch input is valid may include: determining a valid region of the touch panel 825 configured to receive the touch input based on a screen displayed through a display panel 823 of the aerosol generating device 10; and determining whether the touch input is valid according to whether the touched region is included in the valid region.
  • the performing of the operation according to the valid touch input may include: based on the valid touch input being an input of selecting one of at least one object included in a screen displayed through a display panel 823 of the aerosol generating device 10, determining a specific object corresponding to the touch input; and performing an operation corresponding to the specific object.
  • the performing of the operation according to the valid touch input may include: determining a type of the touch input based on at least one of a time at which the touch input is detected and a direction of the touch input; and performing an operation corresponding to the type of the touch input.
  • a configuration "A” described in one embodiment of the disclosure and the drawings and a configuration "B” described in another embodiment of the disclosure and the drawings may be combined with each other. Namely, although the combination between the configurations is not directly described, the combination is possible except in the case where it is described that the combination is impossible.

Abstract

L'invention concerne un dispositif de génération d'aérosol et son procédé de fonctionnement. Le dispositif de génération d'aérosol comprend : un élément chauffant configuré pour chauffer une substance de génération d'aérosol; un panneau tactile configuré pour recevoir une entrée tactile; un panneau d'affichage correspondant au panneau tactile; un moteur configuré pour générer des vibrations; et un dispositif de commande, le dispositif de commande étant configuré pour : en réponse à la réception d'une entrée tactile par l'intermédiaire du panneau tactile, déterminer si l'entrée tactile est valide sur la base d'une région touchée du panneau tactile correspondant à l'entrée tactile; commander le moteur pour générer une vibration en réponse à l'entrée tactile sur la base d'une détermination que l'entrée tactile est valide; et effectuer une opération en fonction de l'entrée tactile valide.
PCT/KR2022/019744 2021-12-07 2022-12-06 Dispositif de génération d'aérosol et son procédé de fonctionnement WO2023106805A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0174258 2021-12-07
KR1020210174258A KR20230085770A (ko) 2021-12-07 2021-12-07 에어로졸 생성장치 및 그 동작방법

Publications (1)

Publication Number Publication Date
WO2023106805A1 true WO2023106805A1 (fr) 2023-06-15

Family

ID=86730926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019744 WO2023106805A1 (fr) 2021-12-07 2022-12-06 Dispositif de génération d'aérosol et son procédé de fonctionnement

Country Status (2)

Country Link
KR (1) KR20230085770A (fr)
WO (1) WO2023106805A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120105481A1 (en) * 2010-11-03 2012-05-03 Samsung Electronics Co. Ltd. Touch control method and portable terminal supporting the same
US20130341218A1 (en) * 2012-06-20 2013-12-26 Qiuming Liu Electronic Cigarette Case
WO2016009202A1 (fr) * 2014-07-16 2016-01-21 Cambridge Design Partnership Llp Inhalateurs
US20190252888A1 (en) * 2014-04-30 2019-08-15 Philip Morris Products S.A. Electrically heated aerosol-generating system
WO2021066442A1 (fr) * 2019-10-01 2021-04-08 Kt&G Corporation Dispositif de génération d'aérosol comprenant un dispositif d'affichage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120105481A1 (en) * 2010-11-03 2012-05-03 Samsung Electronics Co. Ltd. Touch control method and portable terminal supporting the same
US20130341218A1 (en) * 2012-06-20 2013-12-26 Qiuming Liu Electronic Cigarette Case
US20190252888A1 (en) * 2014-04-30 2019-08-15 Philip Morris Products S.A. Electrically heated aerosol-generating system
WO2016009202A1 (fr) * 2014-07-16 2016-01-21 Cambridge Design Partnership Llp Inhalateurs
WO2021066442A1 (fr) * 2019-10-01 2021-04-08 Kt&G Corporation Dispositif de génération d'aérosol comprenant un dispositif d'affichage

Also Published As

Publication number Publication date
KR20230085770A (ko) 2023-06-14

Similar Documents

Publication Publication Date Title
WO2023068639A1 (fr) Dispositif de génération d'aérosol et son procédé de fonctionnement
WO2023106805A1 (fr) Dispositif de génération d'aérosol et son procédé de fonctionnement
WO2023106804A1 (fr) Dispositif de génération d'aérosol et son procédé de fonctionnement
WO2023128605A1 (fr) Dispositif de génération d'aérosol et son procédé de fonctionnement
WO2023068803A1 (fr) Dispositif de génération d'aérosol
WO2023075558A1 (fr) Dispositif de génération d'aérosol et système le comprenant
WO2023128666A1 (fr) Dispositif de génération d'aérosol
WO2023075378A1 (fr) Dispositif de génération d'aérosol et son procédé de fonctionnement
WO2023219327A1 (fr) Dispositif de génération d'aérosol
WO2023177090A1 (fr) Dispositif de génération d'aérosol
WO2023214733A1 (fr) Dispositif de génération d'aérosol
WO2023068809A1 (fr) Dispositif de génération d'aérosol et son procédé de fonctionnement
WO2023068793A1 (fr) Dispositif de génération d'aérosol et son procédé de fonctionnement
WO2023214734A1 (fr) Dispositif de génération d'aérosol
WO2023068791A1 (fr) Dispositif de génération d'aérosol et son procédé de fonctionnement
WO2023128667A1 (fr) Dispositif de génération d'aérosol
WO2023136517A1 (fr) Dispositif de génération d'aérosol et son procédé d'utilisation
WO2023068800A1 (fr) Dispositif de génération d'aérosol et son procédé de fonctionnement
WO2023075505A1 (fr) Dispositif de génération d'aérosol
WO2023068644A1 (fr) Dispositif de génération d'aérosol et son procédé de fonctionnement
WO2023214732A1 (fr) Dispositif de production d'aérosol
WO2023068748A1 (fr) Dispositif de génération d'aérosol
WO2023219419A1 (fr) Dispositif de génération d'aérosol
WO2023068640A1 (fr) Dispositif de génération d'aérosol
WO2023075380A1 (fr) Dispositif de génération d'aérosol et son procédé de fonctionnement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904635

Country of ref document: EP

Kind code of ref document: A1