WO2023106756A1 - Inspection device and inspection method using same - Google Patents
Inspection device and inspection method using same Download PDFInfo
- Publication number
- WO2023106756A1 WO2023106756A1 PCT/KR2022/019592 KR2022019592W WO2023106756A1 WO 2023106756 A1 WO2023106756 A1 WO 2023106756A1 KR 2022019592 W KR2022019592 W KR 2022019592W WO 2023106756 A1 WO2023106756 A1 WO 2023106756A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- electron beam
- micro light
- emitting devices
- intensity
- Prior art date
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims description 38
- 238000010894 electron beam technology Methods 0.000 claims abstract description 154
- 230000001678 irradiating effect Effects 0.000 claims abstract description 25
- 239000004065 semiconductor Substances 0.000 claims description 42
- 239000000758 substrate Substances 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 12
- 230000002950 deficient Effects 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 239000002041 carbon nanotube Substances 0.000 claims description 8
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 8
- 230000007547 defect Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 82
- 238000010586 diagram Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 11
- 239000012790 adhesive layer Substances 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000005684 electric field Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005136 cathodoluminescence Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/302—Contactless testing
- G01R31/305—Contactless testing using electron beams
- G01R31/307—Contactless testing using electron beams of integrated circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2607—Circuits therefor
- G01R31/2632—Circuits therefor for testing diodes
- G01R31/2635—Testing light-emitting diodes, laser diodes or photodiodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/282—Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
- G01R31/2825—Testing of electronic circuits specially adapted for particular applications not provided for elsewhere in household appliances or professional audio/video equipment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/48—Electron guns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/48—Electron guns
- H01J29/485—Construction of the gun or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/30—Cold cathodes
- H01J2201/304—Field emission cathodes
- H01J2201/30446—Field emission cathodes characterised by the emitter material
- H01J2201/30453—Carbon types
- H01J2201/30469—Carbon nanotubes (CNTs)
Definitions
- Embodiments relate to an inspection device and an inspection method capable of non-contactly inspecting whether a micro light emitting device is defective.
- LCD Liquid Crystal Display
- OLED Organic Light Emitting Diodes
- a light emitting diode is one of light emitting devices that emits light when a current is applied thereto.
- a light emitting diode can emit light with high efficiency at a low voltage, and thus has an excellent energy saving effect.
- Recently, the luminance problem of light emitting diodes has been greatly improved, and they are applied to various devices such as backlight units of liquid crystal display devices, electronic signboards, displays, and home appliances.
- Light emitting diodes containing compounds such as GaN and AlGaN have many advantages, such as having a wide and easily adjustable band gap energy, and can be used in various ways such as light emitting devices, light receiving devices, and various diodes. In particular, it has the advantages of low power consumption, semi-permanent lifespan, fast response speed, safety, and environmental friendliness.
- a method of inspecting the micro light emitting device can be divided into a contact method in which light is emitted by contacting the micro light emitting device and a non-contact method in which light is emitted without contacting the micro light emitting device.
- the conventional non-contact inspection apparatus places the micro light emitting device 100 and the field plate 11 apart and forms an electric field by applying a voltage to inject capacitive current into the micro light emitting device 100 to emit light. It is a structure.
- the capacitive current level may vary and only some of the micro light emitting devices may emit light. Therefore, there is a problem in that accurate inspection becomes difficult.
- Embodiments provide an inspection device that emits light from a micro light emitting device by irradiating an electron beam.
- An inspection device includes a stage on which a plurality of micro light emitting devices are disposed; an electron beam irradiator for irradiating electron beams to the plurality of micro light emitting devices; and a chamber accommodating the stage and the electron beam irradiator and forming a vacuum therein.
- a photodetector for detecting light emitted from the plurality of micro light emitting devices; and a control unit that determines whether or not the light emitting device is defective by using light emitting information of the plurality of micro light emitting devices detected by the photodetector.
- the electron beam emitter may include a first electrode layer and a plurality of emitters formed on the first electrode layer to emit electron beams toward the plurality of micro light emitting devices.
- the plurality of emitters may include carbon nanotubes.
- a voltage adjusting unit may be included to adjust the voltage applied to the electron beam irradiation unit.
- the plurality of micro light emitting devices include a first conductivity type semiconductor layer disposed on a substrate, an active layer disposed on the first conductivity type semiconductor layer, and a second conductivity type semiconductor disposed on the first conductivity type semiconductor layer.
- the active layer and the second conductivity type semiconductor layer of the plurality of micro light emitting devices are partitioned into plural pieces, the first conductivity type semiconductor layers of the plurality of micro light emitting devices are connected to each other, and the voltage control A part may apply a voltage to the first electrode layer and the first conductivity type semiconductor layer.
- the voltage controller may apply a voltage to the first electrode layer and the second electrode layer disposed under the plurality of micro light emitting devices.
- An electron beam measuring unit may be included to measure the intensity of the electron beam emitted from the electron beam irradiation unit.
- the electron beam irradiation unit includes a plurality of irradiation areas
- the electron beam measurement unit includes a plurality of sensing areas corresponding to the plurality of irradiation areas
- the control unit controls the intensity of electron beams detected in some sensing areas within a predetermined reference range. If it is out of range, the electron beam irradiation intensity of the irradiation area corresponding to the partial sensing area may be adjusted.
- the light detector may detect light generated from the plurality of micro light emitting devices and emitted to a lower portion of the stage.
- the light detector may detect light generated from the plurality of micro light emitting devices and emitted to an upper portion of the electron beam irradiator.
- Inspection method forming a vacuum inside the chamber; irradiating an electron beam to a plurality of micro light emitting devices disposed inside the chamber; measuring the luminous intensity of the plurality of micro light emitting devices; and determining whether the plurality of micro light emitting devices are defective.
- the micro light emitting device may emit light by irradiating an electron beam from an electron beam irradiator disposed inside the chamber.
- a plurality of micro light emitting devices can be inspected by uniformly emitting light by providing an inspection device that emits light from the micro light emitting devices by irradiating electron beams.
- FIG. 1 is a conceptual diagram of a conventional inspection device
- FIG. 2 is a conceptual diagram of an inspection device according to a first embodiment of the present invention
- FIG. 3 is a view showing a process of irradiating electron beams to a plurality of micro light emitting devices
- FIG. 4 is a view showing the principle that a light emitting element emits light by an electron beam
- FIG. 5 is a first modified example of FIG. 3;
- FIG. 6 is a second modified example of FIG. 3;
- 7a to 7e are diagrams showing various types of emitters
- 8A is a view showing a state in which the electron beam measurement unit measures the uniformity of the electron beam
- 8B is a view showing a state in which the first electrode layer and the electron beam measuring unit are divided into a plurality of regions;
- 9 is a view showing the measured luminous intensity of a plurality of micro light emitting devices.
- FIG. 10 is a conceptual diagram of an inspection device according to a second embodiment of the present invention.
- FIG. 11 is a conceptual diagram of an inspection device according to a third embodiment of the present invention.
- FIG. 12 is a conceptual diagram of an inspection device according to a fourth embodiment of the present invention.
- FIG. 13 is a view showing a state in which an adhesive layer of a pick-up device is attached to a plurality of micro light emitting devices
- FIG. 14 is a view showing a process of inspecting a plurality of micro light emitting devices after transferring them with a pick-up device;
- FIG. 15 is a modified example of FIG. 14;
- 16 is a diagram showing a process of transferring a plurality of micro light emitting devices transferred on a pick-up device to another substrate;
- 17 is a flowchart illustrating an inspection method according to an embodiment of the present invention.
- FIG. 2 is a conceptual diagram of an inspection device according to a first embodiment of the present invention
- FIG. 3 is a view showing a process of irradiating electron beams to a plurality of micro light emitting devices
- FIG. It is a drawing showing
- the inspection apparatus includes a stage 300 on which a plurality of micro light emitting devices 100 are disposed, and an electron beam irradiator 200 for irradiating electron beams to the plurality of micro light emitting devices 100. , and a chamber 500 accommodating the stage 300 and the electron beam irradiator 200 and forming a vacuum therein.
- the chamber 500 accommodates the stage 300 and the electron beam irradiator 200, and can prevent electron beams from scattering by forming a vacuum therein.
- the chamber 500 may maintain a vacuum of 10 ⁇ 5 Torr or less, and may have a continuous use time of 10,000 hours or more, but is not necessarily limited thereto, and may be adjusted to satisfy various conditions for irradiating electron beams to the micro light emitting device.
- the micro light emitting device 100 may be a light emitting diode having a size of 1 ⁇ m to 200 ⁇ m.
- the size of the micro light emitting device 100 may be 30 ⁇ m to 60 ⁇ m, but is not necessarily limited thereto, and light emitting devices of various sizes may be applied.
- a mini-sized light emitting device of 200 ⁇ m to 500 ⁇ m may also be applied.
- the micro light emitting device 100 may be mesa-etched (H1) so that the active layer 130 and the second conductivity type semiconductor layer 140 may be divided into a plurality of pieces, but the first conductivity type semiconductor layer 120 may be connected to each other. there is. However, it is not necessarily limited thereto, and the first conductivity type semiconductor layer 120 may also be completely separated.
- the micro light emitting device 100 is a metal organic chemical vapor deposition (MOCVD), a chemical vapor deposition (CVD), a plasma-enhanced chemical vapor deposition (PECVD), a molecular beam growth method (Molecular Epitaxial growth may be performed on the substrate 110 using a method such as beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), or sputtering.
- MOCVD metal organic chemical vapor deposition
- CVD chemical vapor deposition
- PECVD plasma-enhanced chemical vapor deposition
- MBE beam epitaxy
- HVPE hydride vapor phase epitaxy
- sputtering a method such as vapor deposition (HVPE), or sputtering.
- the electron beam irradiator 200 may include a first electrode layer 210 and a plurality of emitters 220 formed under the first electrode layer 210 to emit electron beams toward the plurality of micro light emitting devices 100. there is.
- the first electrode layer 210 may include Al, Ag, Cu, Ti, Pt, Ni, Ir, or Rh, but is not necessarily limited thereto.
- the first electrode layer 210 may be made of a transparent electrode such as ITO.
- the first electrode layer 210 may be a cathode.
- the emitter 220 may include carbon nanotubes (CNT), but is not necessarily limited thereto.
- An electron beam may be generated by an electric field applied to the carbon nanotubes.
- a plurality of carbon nanotubes constituting the emitter 220 may have a shape extending from the first electrode layer 210 in a first direction (vertical direction) toward the stage 300 . However, it is not necessarily limited thereto, and the plurality of carbon nanotubes may have a shape extending in a second direction (horizontal direction) perpendicular to the first direction.
- the plurality of emitters 220 may be uniformly arranged on the first electrode layer 210 . Accordingly, electron beams emitted from the plurality of emitters 220 may be uniformly irradiated to the plurality of micro light emitting devices 100 .
- the voltage controller 400 may apply a voltage to the first electrode layer 210 and the first conductivity type semiconductor layer 120 of the micro light emitting device 100 .
- the first electrode layer 210 may serve as a cathode, and the first conductive semiconductor layer 120 may serve as an anode.
- the voltage regulator 400 may pulse drive a high voltage of 3000V to 5000V at 1KHz or less. When a high voltage pulse is applied, an electric field may be formed between the first electrode layer 210 and the micro light emitting device 100 . Therefore, the electron beam emitted from the emitter 220 can be effectively irradiated to the micro light emitting device 100 .
- the photodetector 600 may capture an image or video of the plurality of micro light emitting devices 100 emitting light.
- the photodetector 600 may be a camera, but is not necessarily limited thereto, and various detection equipment capable of detecting whether or not the micro light emitting device 100 emits light may be applied without limitation.
- the photodetector 600 may analyze the collected emission intensity (spectrum) or wavelength, convert the collected light into an electrical signal, and transmit the electrical signal to the controller 700 .
- the control unit 700 is a processor that controls overall aspects of the inspection device.
- the controller 700 controls the operation of the electron beam emitter 200 and the voltage controller 400, receives the measurement result of the photodetector 600, and outputs map data including the evaluation result of the micro light emitting device 100. can do.
- the control unit 700 includes a memory (not shown) for storing data for an algorithm or a program for reproducing the algorithm for controlling the operation of components in the testing device, and a processor for performing the above-described operation using the data stored in the memory. (not shown).
- the memory and the processor may be implemented as separate chips, but are not necessarily limited thereto, and the memory and the processor may be implemented as a single chip.
- the control unit 700 may be connected to a storage unit (not shown) that stores processed data, and such a storage unit may include a Read Only Memory (ROM), a Programmable ROM (PROM), an Erasable Programmable ROM (EPROM), and an Electrically Erasable Programmable ROM (EEPROM).
- ROM Read Only Memory
- PROM Programmable ROM
- EPROM Erasable Programmable ROM
- EEPROM Electrically Erasable Programmable ROM
- Each micro light emitting device 100 may include a first conductivity type semiconductor layer 120 , an active layer 130 , and a second conductivity type semiconductor layer 140 .
- the first conductivity type semiconductor layer 120 may be implemented with a compound semiconductor such as group III-V or group II-VI, and the first dopant may be doped in the first conductivity type semiconductor layer 120 .
- the first conductivity-type semiconductor layer 120 is a semiconductor material having a composition formula of Al x In y Ga (1-xy) N (0 x 1, 0 y 1, 0 x + y 1), InAlGaN, AlGaAs, GaP, GaAs , GaAsP, AlGaInP may be formed of any one or more, but is not limited thereto.
- the first dopant is an n-type dopant such as Si, Ge, Sn, Se, or Te
- the first conductivity-type semiconductor layer 120 may be an n-type nitride semiconductor layer.
- the active layer 130 may be disposed on the first conductivity type semiconductor layer 120 . Also, the active layer 130 may be disposed between the first conductivity type semiconductor layer 120 and the second conductivity type semiconductor layer 140 .
- the active layer 130 is a layer where electrons (or holes) injected through the first conductivity type semiconductor layer 120 and holes (or electrons) injected through the second conductivity type semiconductor layer 140 meet.
- the active layer 130 transitions to a lower energy level as electrons and holes recombine, and can generate light having a wavelength corresponding to the transition.
- the active layer 130 may have a structure of any one of a single well structure, a multi-well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, or a quantum wire structure, and the active layer 130 The structure of is not limited to this.
- the active layer 130 may generate light in a visible light wavelength range.
- the second conductivity type semiconductor layer 140 may be disposed on the active layer 130 .
- the second conductivity type semiconductor layer 140 may be implemented with a compound semiconductor such as group III-V or group II-VI, and the second conductivity type semiconductor layer 140 may be doped with a second dopant.
- the second conductive semiconductor layer 140 is a semiconductor material having a composition formula of In x5 Al y2 Ga 1-x5-y2 N (0 x5 1, 0 y2 1, 0 x5+y2 1) or AlInN, AlGaAs, GaP, GaAs , GaAsP, may be formed of a material selected from AlGaInP.
- the second dopant is a p-type dopant such as Mg, Zn, Ca, Sr, or Ba
- the second conductivity-type semiconductor layer 140 doped with the second dopant may be a p-type semiconductor layer.
- the electron beams E when electron beams E are irradiated onto the micro light emitting device, the electron beams collide in the active layer to generate electron-hole pairs.
- the generated electron-hole pairs can be confined to the well layer by the barrier layer of the active layer.
- the bound electrons and holes may emit visible light through recombination.
- the intensity of visible light emitted from the micro light emitting device may be proportional to the intensity (or density) of the electron beam. Accordingly, the intensity (or density) of the electron beam may be adjusted so that light emitted from the micro light emitting device can be detected and whether or not a defect is determined.
- the micro light emitting device may include a blue light emitting device, a green light emitting device, and a red light emitting device. Accordingly, the micro light emitting device may emit light in a blue, green or red wavelength band. In addition, in the case of a micro light emitting device on which transfer is completed on a panel substrate, light in blue, green, and red wavelength bands may be simultaneously detected.
- a plurality of micro light emitting devices 100 can emit uniform light compared to other non-contact light emitting methods.
- SEM Scanning Electron Microscope
- a scanning electron microscope consists of an electron gun that generates and accelerates electron beams, a focusing lens and objective lens that narrows the electron beams, and a deflection coil that controls the path of electron beams until electrons leaving the filament reach the specimen. Consists of.
- the scanning electron microscope is different from the present embodiment in which electron beams are irradiated over a large area in that a chemical composition is measured by irradiating electron beams on a local area.
- a field emission display is a display in which a field emission emitter array, which is a cold cathode electron source, is arranged in a matrix form and electron beams are irradiated to a phosphor to emit cathode light.
- the emitter of the field emission display is generally made of micro tips and is different from the present embodiment in that it is not made of carbon nanotubes. Also, the required uniformity of the electron beam is lower than that of the present embodiment.
- the PL (Photoluminescence) method is a method in which light is injected into a sample and light is generated by excitation and recombination with the energy, whereas in the Cathodoluminescence (CL) method of the embodiment, field-emitted electrons are accelerated by an electric field. After obtaining energy, it is injected into the LED and there is a difference in that light is generated.
- CL Cathodoluminescence
- FIG. 5 is a first modified example of FIG. 3
- FIG. 6 is a second modified example of FIG. 3 .
- a plurality of micro light emitting devices 100 may be fabricated by performing isolation on the light emitting structure and then inspected for defects.
- the voltage adjusting unit 400 since the first conductivity-type semiconductor layer 120 of each micro light emitting device 100 is also completely separated by mesa etching (H2), the voltage adjusting unit 400 includes the first electrode layer 210 and a plurality of micro It may be connected to a separate second electrode layer (not shown) disposed below the light emitting device 100 .
- the voltage controller 400 may be connected to the first electrode layer 210 and the stage 300 to form an electric field.
- the first photodetector 610 disposed above the electron beam irradiator 200 may detect light emitted from the top of the active layer 130 and transmitted through the electron beam irradiator 200 . If the first electrode layer 210 is made of a light-transmitting electrode such as ITO and the electron beam irradiator 200 has sufficient light-transmitting properties, the first photodetector 610 can effectively measure the light emission intensity of the micro light emitting device 100. .
- the second photodetector 620 disposed below the stage 300 may detect light emitted from the lower portion of the active layer 130 and passing through the stage 300 .
- the stage 300 is made of a light-transmissive material, the second photodetector 620 can effectively measure the light emission intensity of the micro light emitting device 100 .
- the embodiment exemplifies that the first photodetector 610 and the second photodetector 620 are simultaneously provided, it is not necessarily limited thereto, and only one of the first photodetector 610 and the second photodetector 620 is used. may be provided.
- the inspection may be performed even before the light emitting structure is separated into a plurality of micro light emitting devices. Even when a non-emission region T1 is formed due to a defect in a partial region of the light emitting structure, whether or not light is emitted may be inspected in the remaining regions.
- a state in which only a portion of the light emitting structure is mesa-etched see FIG. 3
- a state in which a plurality of light emitting elements are manufactured by isolation see FIG. 5
- a state in which the light emitting structure is not separated see FIG. 6
- inspection is possible even after the micro light emitting device is separated from the substrate and transferred.
- 7A to 7E are diagrams showing various types of emitters.
- the electron beam may be uniformly irradiated to the plurality of micro light emitting devices. Accordingly, various structures that emit uniform electron beams may be selected as the emitter 220 .
- the first electrode layer 210 is disposed on the substrate 230, and the emitter 220 may have a sharp end to easily emit electrons. At this time, only the end portion of the emitter 220 may be exposed to the outside by the insulating layer 241 and the gate 242 . Referring to FIG. 7B , the emitter 220 may have a rapidly sharpening region toward the top.
- the emitter 220 may be disposed in a horizontal direction to emit electrons. At this time, the emitted electrons may be bent and emitted in a vertical direction.
- FIG. 7D when a voltage is applied to the 1-1st electrode layer 210a and the 1-2nd electrode layer 210b, light is emitted from the first emitter 220-1 formed on the 1-1st electrode layer 210a. It may be irradiated and reflected by the second emitter 220-2.
- electrons emitted from the emitter 220 may be emitted in a lateral direction and collide with a block 243 to change a traveling direction.
- FIG. 8A is a diagram showing a state in which the electron beam measurement unit measures the uniformity of the electron beam
- FIG. 8B is a diagram showing a state in which the first electrode layer and the electron beam measurement unit are divided into a plurality of regions.
- the electron beam measuring unit 910 is disposed between the electron beam irradiation unit 200 and the stage 300 to measure the uniformity of the electron beam. As described above, uniform light emission can be achieved only when uniform electron beams are irradiated to the plurality of micro light emitting devices 100 . If the intensity of the electron beam is weakened in some areas, there is a problem in that it can be determined that the light emitting device is defective even though it is a normal light emitting device.
- the inspection method by irradiating electron beams is an indirect measurement method, the emission intensity may be relatively weak compared to the method of directly applying current to emit light. Therefore, if the intensity of the electron beam is not uniform, it may be determined that some light emitting devices do not emit light. Therefore, accurate inspection may be difficult.
- the electron beam irradiation unit 200 may be divided into a plurality of irradiation areas S1 to S24.
- the voltage level of each irradiation area may be individually adjusted by the voltage controller 400 .
- the plurality of irradiation areas S1 to S24 is illustrated as being 24, it is not necessarily limited thereto and the number of irradiation areas may be adjusted in various ways.
- the electron beam measuring unit 910 may be divided into a plurality of sensing regions P1 to P24.
- the plurality of sensing areas P1 to P24 may be arranged to match each other with the plurality of irradiation areas S1 to S24.
- the plurality of detection regions P1 to P24 may also be divided into the same number.
- the electron beam measurement unit 910 before irradiating the electron beam to the micro light emitting device 100, the electron beam measurement unit 910 first measures the uniformity of the electron beam to detect a point where the intensity of the electron beam is relatively non-uniform, and the electron beam intensity in the corresponding area. (or density) can be adjusted to match a predetermined reference range (or average intensity).
- the electron beam measuring unit 910 is disposed below the electron beam irradiation unit 200 during measurement by a driving unit (not shown), and may be removed from the lower portion of the electron beam irradiation unit 200 when the measurement is completed.
- the tenth radiation region S10 disposed in the center may have relatively strong intensity due to the addition of a part of electron beams irradiated from the neighboring radiation regions S4, S9, S16, and S11.
- the intensity of the electron beam measured in the first detection region P1 may be weaker than the intensity of the electron beam measured in the tenth detection region P10.
- the controller may control the voltage regulator 400 to increase the voltage level of the first radiation region S1 compared to the tenth radiation region S10. Therefore, the intensity of the electron beam in the central region and the intensity of the electron beam in the edge region can be uniformly controlled.
- the voltage level of the ninth irradiation region S9 is lowered to reach the predetermined reference range (or average intensity). It can also be closely adjusted.
- the voltage level of the tenth irradiation region S10 may be increased to be close to a predetermined reference range (or average intensity).
- 9 is a view showing measured emission intensities of a plurality of micro light emitting devices.
- the controller may generate map data by collecting emission intensities of the plurality of micro light emitting devices 100 collected by a camera.
- the control unit may determine that the micro light emitting device 101 having an intensity lower than a predetermined emission intensity or not emitting light is defective.
- the normal micro light emitting devices 100 excluding the micro light emitting devices 101 determined to be defective may be selectively transferred.
- the micro light emitting device 101 determined to be defective may be selectively removed.
- FIG. 10 is a conceptual diagram of an inspection device according to a second embodiment of the present invention
- FIG. 11 is a conceptual diagram of an inspection device according to a third embodiment of the present invention.
- the chamber 500 includes a first door 510 into which the micro light emitting device 100 can be introduced, a second door 520 through which the micro light emitting device 100 that has been inspected can be discharged, And it may be provided with a vacuum pump 530 to form a vacuum. According to this configuration, since the micro light emitting device 100 can be continuously introduced and discharged by the robot arm or the conveyor belt, continuous inspection can be performed.
- the electron beam irradiator 200 further includes a body 250 on which the first electrode layer 210 is disposed and a first driving unit 260 that moves the body 250 up and down. can do. According to this configuration, when the micro light emitting device 100 is seated on the stage 300, the electron beam irradiator 200 may descend.
- the electron beam emitter 200 Since the distance between the stage 300 and the electron beam emitter 200 is optimally adjusted, there is an advantage in that the electron beam can be uniformly irradiated. However, it is not necessarily limited to this, and a second driving unit 310 that moves the stage 300 up and down may be disposed.
- the electron beam irradiation unit 200 may move up and down by the first driving unit 260 and the stage 300 may move up and down by the second driving unit 310 .
- the electron beam irradiation unit 200 and the stage 300 may move up and down together by the first driving unit 260 and the second driving unit 310 .
- the first photodetector 610 may be disposed inside the body 250 of the electron beam emitter 200 . If the first electrode layer 210 and the emitter 220 are sufficiently transparent, the first photodetector 610 can effectively detect light emitted upward from the micro light emitting device 100 .
- the second photodetector 620 may be disposed below the stage 300 . If the stage 300 is sufficiently transparent, the second photodetector 620 can effectively detect the light emitted downward from the micro light emitting device 100 .
- the embodiment exemplifies that the first photodetector 610 and the second photodetector 620 are simultaneously provided, it is not necessarily limited thereto, and only one of the first photodetector 610 and the second photodetector 620 is used. may be provided.
- the inspection device may include a structure for scanning the micro light emitting device 100 .
- the electron beam irradiation unit 200 may irradiate an electron beam to a partial area of the micro light emitting device 100, and the photodetector 600 may detect light emission intensity of the micro light emitting device 100 in the corresponding area.
- the electron beam irradiator 200 and the photodetector 600 may inspect the plurality of micro light emitting devices 100 while moving in one direction D1.
- FIG. 12 is a conceptual diagram of a test device according to a fourth embodiment of the present invention
- FIG. 13 is a view showing a state in which an adhesive layer of a pick-up device is attached to a plurality of micro light emitting elements
- FIG. FIG. 15 is a modified example of FIG. 14, and
- FIG. 16 is a view showing a process of transferring a plurality of micro light emitting devices transferred to a pick-up device to another substrate.
- a process of transferring the micro light emitting device 100 to a panel substrate is essential.
- the transfer process may be defined as an operation of separating the micro light emitting device 100 from the growth substrate 110 and transferring it to a panel substrate.
- a technique of transferring using static electricity a technique of transferring using Laser-Lift-Off (LLO), a technique of transferring using an adhesive tape, and the like may be used.
- LLO Laser-Lift-Off
- the micro light emitting device 100 may be separated from the growth substrate 110 by using the adhesive layer 820 formed on the header 800 .
- the header 800 may descend and the adhesive layer 820 may adhere to the micro light emitting device 100 . Then, as shown in FIG. 14 , when the header 800 is raised by the lifting part 830 , the micro light emitting device 100 may be separated from the substrate 110 and transferred to the adhesive layer 820 .
- the bonding strength between the substrate 110 and the micro light emitting device 100 may be adjusted to be weaker than the bonding strength between the adhesive layer 820 and the micro light emitting device 100 .
- the bonding force between the substrate 110 and the micro light emitting device 100 may be reduced by partially removing a contact surface between the substrate 110 and the micro light emitting device 100 by etching the substrate 110 .
- An electron beam emitter 200 and a photodetector 600 may be disposed on the header 800 . If the transfer process is performed in a vacuum state, the electron beam emitted from the electron beam irradiator 200 may pass through the adhesive layer 820 and be irradiated to the plurality of micro light emitting devices 100 . In addition, if the adhesive layer 820 and the electron beam emitter 200 are sufficiently transparent, the light detector 600 may detect light emitted from the plurality of micro light emitting devices 100 .
- inspection may be possible in the process of transferring the micro light emitting device 100 without having a separate inspection device.
- an inspection system may be more effective.
- the header 800 may be disposed on the micro light emitting device 100 and then inspected for defects by the above inspection method, and only normal light emitting devices may be selectively transferred.
- the photodetector 600 may be disposed below the header 800 . Therefore, when the micro light emitting device 100 emits light by the electron beam irradiator 200 disposed within the header 800, the photodetector 600 disposed below the header 800 can effectively measure the luminous intensity. there is.
- the header 800 may move to the transfer substrate 920 to transfer the plurality of micro light emitting devices 100 thereto.
- the adhesive layer 830 may lose viscosity.
- the plurality of micro light emitting devices 820 may be transferred to the transfer substrate 920 .
- the transfer substrate 920 may be a display panel substrate or a separate adhesive substrate.
- 17 is a flowchart illustrating an inspection method according to an embodiment of the present invention.
- the inspection method includes forming a vacuum inside the chamber 500 (S10), and the micro light emitting device 100 disposed inside the chamber 500. irradiating an electron beam to (S20); measuring the luminous intensity of the micro light emitting device 100 (S30); and determining whether the micro light emitting device 100 is defective (S40).
- a vacuum pump is operated to adjust the vacuum inside the chamber 500 to 10 -5 Torr or less.
- the vacuum in the chamber 500 is adjusted to 10 ⁇ 5 Torr or less, scattering of the electron beam to prevent plasma from being formed.
- a high voltage of 3000V to 5000V is pulsed at 1 KHz or less between the electron beam irradiator 200 and the micro light emitting device 100. can do.
- electron-hole pairs When electron beams are irradiated onto the micro light emitting device 100, electron-hole pairs may be generated by colliding the electron beams in the active layer. The generated electron-hole pairs can be confined to the well layer by the barrier layer of the active layer. The bound electrons and holes may emit visible light through recombination.
- the intensity of visible light emitted from the micro light emitting device may be proportional to the intensity (or density) of the electron beam. Accordingly, the intensity (or density) of the electron beam may be adjusted so that light emitted from the micro light emitting device can be detected and whether or not a defect is determined.
- the photodetector 600 may capture an image or video of the plurality of micro light emitting devices 100 emitting light.
- the photodetector 600 may be a camera, but is not necessarily limited thereto, and various detection equipment capable of detecting whether or not the micro light emitting device 100 emits light may be applied without limitation.
- the photodetector 600 may analyze the collected emission intensity or wavelength, convert it into an electrical signal, and transmit the electrical signal to the controller 700 .
- Determining whether the micro light emitting device 100 is defective detects light emitted from each micro light emitting device 100 and determines whether the micro light emitting device 100 emitting light with a predetermined reference intensity or less is defective. can be judged by
- the step of forming a vacuum (S10) and the step of irradiating an electron beam (S20) measuring electron beam intensities in a plurality of radiation areas of an electron beam irradiation unit disposed inside the chamber; and adjusting the intensity of the electron beam in an irradiation area out of a predetermined intensity range among the plurality of irradiation areas.
- the electron beam measurement unit 910 may first measure the uniformity of the electron beam before irradiating the electron beam to the micro light emitting device 100 .
- the electron beam measuring unit 910 is disposed below the electron beam irradiation unit 200 during measurement by a driving unit (not shown), and may be removed from the lower portion of the electron beam irradiation unit 200 when the measurement is completed.
- the electron beam measuring unit 910 may be divided into a plurality of sensing regions P1 to P24.
- the plurality of sensing areas P1 to P24 may be arranged to match each other with the plurality of irradiation areas S1 to S24. Accordingly, it is possible to determine which irradiation area has non-uniform electron beams using values measured in the plurality of sensing areas P1 to P24.
- a point where the intensity of the electron beam is relatively non-uniform may be detected and the intensity of the electron beam in the corresponding region may be adjusted to match a predetermined reference range (or average intensity).
- the voltage level of the irradiation area may be increased at a point where the intensity of the electron beam is weak, and the voltage level of the irradiation area may be decreased at a point where the intensity of the electron beam is high.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Multimedia (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Disclosed in an embodiment is an inspection device comprising: a stage having a plurality of micro light-emitting elements arranged thereon; an electron beam irradiation unit for irradiating the plurality of micro light-emitting elements with an electron beam; and a chamber for accommodating the stage and the electron beam irradiation unit therein, and forming a vacuum.
Description
실시예는 마이크로 발광소자의 불량 여부를 비접촉식으로 검사할 수 있는 검사장치 및 검사방법에 관한 것이다.Embodiments relate to an inspection device and an inspection method capable of non-contactly inspecting whether a micro light emitting device is defective.
현재 상용화된 디스플레이는 LCD(Liquid Crystal Display)와 OLED(Organic Light Emitting Diodes)로 대표되고 있다. 최근에는 OLED 디스플레이에 대한 개발이 활발하나 OLED 디스플레이는 수명이 짧고, 양산 수율이 좋지 않다는 문제점이 있다.Currently commercialized displays are represented by LCD (Liquid Crystal Display) and OLED (Organic Light Emitting Diodes). Recently, development of OLED displays is active, but OLED displays have problems in that their lifespan is short and the mass production yield is not good.
발광 다이오드(Light Emitting Diode: LED)는 전류가 인가되면 광을 방출하는 발광 소자 중 하나이다. 발광 다이오드는 저전압으로 고효율의 광을 방출할 수 있어 에너지 절감 효과가 뛰어나다. 최근, 발광 다이오드의 휘도 문제가 크게 개선되어, 액정표시장치의 백라이트 유닛(Backlight Unit), 전광판, 표시기, 가전 제품 등과 같은 각종 기기에 적용되고 있다.A light emitting diode (LED) is one of light emitting devices that emits light when a current is applied thereto. A light emitting diode can emit light with high efficiency at a low voltage, and thus has an excellent energy saving effect. Recently, the luminance problem of light emitting diodes has been greatly improved, and they are applied to various devices such as backlight units of liquid crystal display devices, electronic signboards, displays, and home appliances.
GaN, AlGaN 등의 화합물을 포함하는 발광 다이오드는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다. 특히 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다.Light emitting diodes containing compounds such as GaN and AlGaN have many advantages, such as having a wide and easily adjustable band gap energy, and can be used in various ways such as light emitting devices, light receiving devices, and various diodes. In particular, it has the advantages of low power consumption, semi-permanent lifespan, fast response speed, safety, and environmental friendliness.
최근에는 발광 다이오드를 작게 제작한 마이크로 발광소자를 디스플레이의 픽셀로 사용하는 기술에 대한 연구가 진행되고 있다. 이러한 마이크로 발광소자는 한 장의 웨이퍼에 매우 많은 발광소자가 제작되므로 발광소자의 불량 여부를 정확히 검사하는 것이 중요하다.Recently, research on a technology for using a micro light emitting device made of a small light emitting diode as a pixel of a display is being conducted. Since many light emitting devices are manufactured on a single wafer, it is important to accurately inspect the light emitting devices for defects.
마이크로 발광소자를 검사하는 방법은 마이크로 발광소자에 접촉하여 발광시키는 접촉 방식과, 발광소자에 접촉하지 않고 발광시키는 비접촉 방식으로 구분될 수 있다.A method of inspecting the micro light emitting device can be divided into a contact method in which light is emitted by contacting the micro light emitting device and a non-contact method in which light is emitted without contacting the micro light emitting device.
종래 비접촉식 검사장치는 도 1과 같이 마이크로 발광소자(100)와 필드 플레이트(11)를 이격 배치하고 전압을 인가하여 전기적 필드를 형성함으로써, 마이크로 발광소자(100)에 용량성 전류를 주입하여 발광시키는 구조이다.As shown in FIG. 1, the conventional non-contact inspection apparatus places the micro light emitting device 100 and the field plate 11 apart and forms an electric field by applying a voltage to inject capacitive current into the micro light emitting device 100 to emit light. It is a structure.
그러나, 마이크로 발광소자(100)와 필드 플레이트(11) 사이의 갭(G1, G2)이 일정하지 않으면 용량성 전류 레벨이 달라져 일부 마이크로 발광소자만 발광할 수 있다. 따라서 정확한 검사가 어려워지는 문제가 있다.However, if the gaps G1 and G2 between the micro light emitting device 100 and the field plate 11 are not constant, the capacitive current level may vary and only some of the micro light emitting devices may emit light. Therefore, there is a problem in that accurate inspection becomes difficult.
실시예는 전자빔을 조사하여 마이크로 발광소자를 발광시키는 검사장치를 제공한다.Embodiments provide an inspection device that emits light from a micro light emitting device by irradiating an electron beam.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.The problem to be solved in the embodiment is not limited thereto, and it will be said that the solution to the problem described below or the purpose or effect that can be grasped from the embodiment is also included.
본 발명의 일 특징에 따른 검사장치는, 복수 개의 마이크로 발광소자가 배치되는 스테이지; 상기 복수 개의 마이크로 발광소자에 전자빔을 조사하는 전자빔 조사부; 및 상기 스테이지와 상기 전자빔 조사부가 수용되고 내부에 진공을 형성하는 챔버를 포함한다.An inspection device according to one aspect of the present invention includes a stage on which a plurality of micro light emitting devices are disposed; an electron beam irradiator for irradiating electron beams to the plurality of micro light emitting devices; and a chamber accommodating the stage and the electron beam irradiator and forming a vacuum therein.
상기 복수 개의 마이크로 발광소자에서 발광하는 광을 검출하는 광검출부; 및 상기 광검출부에서 검출한 상기 복수 개의 마이크로 발광소자의 발광 정보를 이용하여 불량 여부를 판단하는 제어부를 포함할 수 있다.a photodetector for detecting light emitted from the plurality of micro light emitting devices; and a control unit that determines whether or not the light emitting device is defective by using light emitting information of the plurality of micro light emitting devices detected by the photodetector.
상기 전자빔 조사부는 제1 전극층, 및 상기 제1 전극층 상에 형성되어 상기 복수 개의 마이크로 발광소자를 향해 전자빔을 방출하는 복수 개의 에미터를 포함할 수 있다.The electron beam emitter may include a first electrode layer and a plurality of emitters formed on the first electrode layer to emit electron beams toward the plurality of micro light emitting devices.
상기 복수 개의 에미터는 탄소나노튜브를 포함할 수 있다.The plurality of emitters may include carbon nanotubes.
상기 전자빔 조사부에 인가되는 전압을 조절하는 전압 조절부를 포함할 수 있다.A voltage adjusting unit may be included to adjust the voltage applied to the electron beam irradiation unit.
상기 복수 개의 마이크로 발광소자는, 기판 상에 배치되는 제1 도전형 반도체층, 상기 제1 도전형 반도체층 상에 배치되는 활성층, 및 상기 제1 도전형 반도체층 상에 배치되는 제2 도전형 반도체층을 포함하고, 상기 복수 개의 마이크로 발광소자의 상기 활성층과 상기 제2 도전형 반도체층은 복수 개로 구획되고, 상기 복수 개의 마이크로 발광소자의 상기 제1 도전형 반도체층은 서로 연결되고, 상기 전압 조절부는 상기 제1 전극층과 상기 제1 도전형 반도체층에 전압을 인가할 수 있다.The plurality of micro light emitting devices include a first conductivity type semiconductor layer disposed on a substrate, an active layer disposed on the first conductivity type semiconductor layer, and a second conductivity type semiconductor disposed on the first conductivity type semiconductor layer. The active layer and the second conductivity type semiconductor layer of the plurality of micro light emitting devices are partitioned into plural pieces, the first conductivity type semiconductor layers of the plurality of micro light emitting devices are connected to each other, and the voltage control A part may apply a voltage to the first electrode layer and the first conductivity type semiconductor layer.
상기 전압 조절부는 상기 제1 전극층과 상기 복수 개의 마이크로 발광소자의 하부에 배치된 제2 전극층에 전압을 인가할 수 있다.The voltage controller may apply a voltage to the first electrode layer and the second electrode layer disposed under the plurality of micro light emitting devices.
상기 전자빔 조사부에서 조사하는 전자빔의 강도를 측정하는 전자빔 측정부를 포함할 수 있다.An electron beam measuring unit may be included to measure the intensity of the electron beam emitted from the electron beam irradiation unit.
상기 전자빔 조사부는 복수 개의 조사 영역을 포함하고, 상기 전자빔 측정부는 상기 복수 개의 조사 영역에 대응되는 복수 개의 감지 영역을 포함하고, 상기 제어부는 일부 감지 영역에서 감지된 전자빔의 강도가 미리 정해진 기준 범위에서 벗어나는 경우, 상기 일부 감지 영역에 대응되는 조사 영역의 전자빔 조사 강도를 조절할 수 있다.The electron beam irradiation unit includes a plurality of irradiation areas, the electron beam measurement unit includes a plurality of sensing areas corresponding to the plurality of irradiation areas, and the control unit controls the intensity of electron beams detected in some sensing areas within a predetermined reference range. If it is out of range, the electron beam irradiation intensity of the irradiation area corresponding to the partial sensing area may be adjusted.
상기 광검출부는 상기 복수 개의 마이크로 발광소자에서 생성되어 상기 스테이지의 하부로 출사되는 광을 검출할 수 있다.The light detector may detect light generated from the plurality of micro light emitting devices and emitted to a lower portion of the stage.
상기 광검출부는 상기 복수 개의 마이크로 발광소자에서 생성되어 상기 전자빔 조사부의 상부로 출사되는 광을 검출할 수 있다.The light detector may detect light generated from the plurality of micro light emitting devices and emitted to an upper portion of the electron beam irradiator.
본 발명의 일 특징에 따른 검사방법은, 챔버 내부에 진공을 형성하는 단계; 상기 챔버 내부에 배치된 복수 개의 마이크로 발광소자에 전자빔을 조사하는 단계; 상기 복수 개의 마이크로 발광소자의 발광 강도를 측정하는 단계; 및 상기 복수 개의 마이크로 발광소자의 불량 여부를 판단하는 단계를 포함할 수 있다.Inspection method according to one feature of the present invention, forming a vacuum inside the chamber; irradiating an electron beam to a plurality of micro light emitting devices disposed inside the chamber; measuring the luminous intensity of the plurality of micro light emitting devices; and determining whether the plurality of micro light emitting devices are defective.
상기 전자빔을 조사하는 단계는, 상기 챔버 내부에 배치된 전자빔 조사부에서 전자빔을 조사하여 상기 마이크로 발광소자를 발광시킬 수 있다.In the irradiating of the electron beam, the micro light emitting device may emit light by irradiating an electron beam from an electron beam irradiator disposed inside the chamber.
상기 진공을 형성하는 단계와 상기 전자빔을 조사하는 단계 사이에, 상기 챔버 내부에 배치된 전자빔 조사부의 복수 개의 조사 영역에서 전자빔 강도를 측정하는 단계; 및 상기 복수 개의 조사 영역 중에서 미리 정해진 강도 범위를 벗어나는 조사 영역의 전자빔 강도를 조절하는 단계를 포함할 수 있다.between the step of forming the vacuum and the step of irradiating the electron beam, measuring electron beam intensities in a plurality of irradiation areas of an electron beam irradiation unit disposed inside the chamber; and adjusting an electron beam intensity of an irradiation area out of a predetermined intensity range among the plurality of irradiation areas.
실시예에 따르면, 전자빔을 조사하여 마이크로 발광소자를 발광시키는 검사장치를 제공함으로써 복수 개의 마이크로 발광소자를 균일하게 발광시켜 검사할 수 있는 장점이 있다.According to the embodiment, there is an advantage in that a plurality of micro light emitting devices can be inspected by uniformly emitting light by providing an inspection device that emits light from the micro light emitting devices by irradiating electron beams.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.Various advantageous advantages and effects of the present invention are not limited to the above description, and will be more easily understood in the process of describing specific embodiments of the present invention.
도 1은 종래 검사장치의 개념도이고,1 is a conceptual diagram of a conventional inspection device;
도 2는 본 발명의 제1 실시예에 따른 검사장치의 개념도이고,2 is a conceptual diagram of an inspection device according to a first embodiment of the present invention;
도 3은 복수 개의 마이크로 발광소자에 전자빔을 조사하는 과정을 보여주는 도면이고,3 is a view showing a process of irradiating electron beams to a plurality of micro light emitting devices;
도 4는 발광소자가 전자빔에 의해 발광하는 원리를 보여주는 도면이고,4 is a view showing the principle that a light emitting element emits light by an electron beam,
도 5는 도 3의 제1 변형예이고,5 is a first modified example of FIG. 3;
도 6은 도 3의 제2 변형예이고,6 is a second modified example of FIG. 3;
도 7a 내지 도 7e는 다양한 형태의 에미터를 보여주는 도면이고,7a to 7e are diagrams showing various types of emitters,
도 8a는 전자빔 측정부가 전자빔의 균일도를 측정하는 상태를 보여주는 도면이고,8A is a view showing a state in which the electron beam measurement unit measures the uniformity of the electron beam;
도 8b는 제1 전극층과 전자빔 측정부가 복수 개의 영역으로 구분된 상태를 보여주는 도면이고,8B is a view showing a state in which the first electrode layer and the electron beam measuring unit are divided into a plurality of regions;
도 9는 측정된 복수 개의 마이크로 발광소자의 발광 강도를 보여주는 도면이고,9 is a view showing the measured luminous intensity of a plurality of micro light emitting devices;
도 10은 본 발명의 제2 실시예에 따른 검사장치의 개념도이고,10 is a conceptual diagram of an inspection device according to a second embodiment of the present invention;
도 11은 본 발명의 제3 실시예에 따른 검사장치의 개념도이고,11 is a conceptual diagram of an inspection device according to a third embodiment of the present invention;
도 12는 본 발명의 제4 실시예에 다른 검사장치의 개념도이고,12 is a conceptual diagram of an inspection device according to a fourth embodiment of the present invention;
도 13은 픽업 장치의 점착층을 복수 개의 마이크로 발광소자에 부착한 상태를 보여주는 도면이고,13 is a view showing a state in which an adhesive layer of a pick-up device is attached to a plurality of micro light emitting devices;
도 14는 픽업 장치로 복수 개의 마이크로 발광소자를 전사한 후 검사하는 과정을 보여주는 도면이고, 14 is a view showing a process of inspecting a plurality of micro light emitting devices after transferring them with a pick-up device;
도 15는 도 14의 변형예이고,15 is a modified example of FIG. 14;
도 16은 픽업 장치에 전사된 복수 개의 마이크로 발광소자를 다른 기판에 전사하는 과정을 보여주는 도면이고,16 is a diagram showing a process of transferring a plurality of micro light emitting devices transferred on a pick-up device to another substrate;
도 17은 본 발명의 일 실시 예에 따른 검사 방법을 보여주는 흐름도이다.17 is a flowchart illustrating an inspection method according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the present invention can make various changes and have various embodiments, specific embodiments will be illustrated and described in the drawings. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다. Terms including ordinal numbers such as second and first may be used to describe various components, but the components are not limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a second element may be termed a first element, and similarly, a first element may be termed a second element, without departing from the scope of the present invention. The terms and/or include any combination of a plurality of related recited items or any of a plurality of related recited items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. It is understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, but other elements may exist in the middle. It should be. On the other hand, when an element is referred to as “directly connected” or “directly connected” to another element, it should be understood that no other element exists in the middle.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, the terms "include" or "have" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present application, they should not be interpreted in an ideal or excessively formal meaning. don't
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, the embodiments will be described in detail with reference to the accompanying drawings, but the same or corresponding components regardless of reference numerals are given the same reference numerals, and overlapping descriptions thereof will be omitted.
도 2는 본 발명의 제1 실시예에 따른 검사장치의 개념도이고, 도 3은 복수 개의 마이크로 발광소자에 전자빔을 조사하는 과정을 보여주는 도면이고, 도 4는 발광소자가 전자빔에 의해 발광하는 원리를 보여주는 도면이다.2 is a conceptual diagram of an inspection device according to a first embodiment of the present invention, FIG. 3 is a view showing a process of irradiating electron beams to a plurality of micro light emitting devices, and FIG. It is a drawing showing
도 2 및 도 3을 참조하면, 실시예에 따른 검사장치는 복수 개의 마이크로 발광소자(100)가 배치되는 스테이지(300), 복수 개의 마이크로 발광소자(100)에 전자빔을 조사하는 전자빔 조사부(200), 및 스테이지(300)와 전자빔 조사부(200)가 수용되고 내부에 진공을 형성하는 챔버(500)를 포함한다.2 and 3, the inspection apparatus according to the embodiment includes a stage 300 on which a plurality of micro light emitting devices 100 are disposed, and an electron beam irradiator 200 for irradiating electron beams to the plurality of micro light emitting devices 100. , and a chamber 500 accommodating the stage 300 and the electron beam irradiator 200 and forming a vacuum therein.
챔버(500)는 스테이지(300) 및 전자빔 조사부(200)가 수용되며, 내부에 진공을 형성하여 전자빔이 스캐터링되는 것을 방지할 수 있다. 챔버(500)는 10-5 Torr 이하의 진공을 유지할 수 있고, 연속사용시간은 10,000시간 이상일 수 있으나 반드시 이에 한정되는 것은 아니고 마이크로 발광소자에 전자빔을 조사하기 위한 다양한 조건을 만족하도록 조정될 수 있다.The chamber 500 accommodates the stage 300 and the electron beam irradiator 200, and can prevent electron beams from scattering by forming a vacuum therein. The chamber 500 may maintain a vacuum of 10 −5 Torr or less, and may have a continuous use time of 10,000 hours or more, but is not necessarily limited thereto, and may be adjusted to satisfy various conditions for irradiating electron beams to the micro light emitting device.
마이크로 발광소자(100)는 사이즈가 1㎛ 내지 200㎛인 발광 다이오드일 수 있다. 예시적으로 마이크로 발광소자(100)의 사이즈는 30㎛ 내지 60㎛일 수 있으나, 반드시 이에 한정하는 것은 아니고 다양한 사이즈의 발광 소자가 적용될 수 있다. 또한, 마이크로 발광소자(100) 이외에 200㎛ 내지 500㎛의 미니 사이즈 발광소자도 적용될 수 있다.The micro light emitting device 100 may be a light emitting diode having a size of 1 μm to 200 μm. Illustratively, the size of the micro light emitting device 100 may be 30 μm to 60 μm, but is not necessarily limited thereto, and light emitting devices of various sizes may be applied. In addition to the micro light emitting device 100, a mini-sized light emitting device of 200 μm to 500 μm may also be applied.
마이크로 발광소자(100)는 메사 식각(H1)되어 활성층(130) 및 제2 도전형 반도체층(140)이 복수 개로 구분될 수 있으나, 제1 도전형 반도체층(120)은 서로 연결된 상태일 수 있다. 그러나, 반드시 이에 한정되는 것은 아니고 제1 도전형 반도체층(120)도 완전히 분리될 수 있다.The micro light emitting device 100 may be mesa-etched (H1) so that the active layer 130 and the second conductivity type semiconductor layer 140 may be divided into a plurality of pieces, but the first conductivity type semiconductor layer 120 may be connected to each other. there is. However, it is not necessarily limited thereto, and the first conductivity type semiconductor layer 120 may also be completely separated.
마이크로 발광소자(100)는 유기금속 화학 증착법(Metal Organic Chemical Vapor Deposition; MOCVD), 화학 증착법(Chemical Vapor Deposition; CVD), 플라즈마 화학 증착법(Plasma-Enhanced Chemical Vapor Deposition; PECVD), 분자선 성장법(Molecular Beam Epitaxy; MBE), 수소화물 기상 성장법(Hydride Vapor Phase Epitaxy; HVPE), 스퍼터링(Sputtering) 등의 방법을 이용하여 기판(110) 상에 에피 성장시킬 수 있다.The micro light emitting device 100 is a metal organic chemical vapor deposition (MOCVD), a chemical vapor deposition (CVD), a plasma-enhanced chemical vapor deposition (PECVD), a molecular beam growth method (Molecular Epitaxial growth may be performed on the substrate 110 using a method such as beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), or sputtering.
전자빔 조사부(200)는 제1 전극층(210), 및 제1 전극층(210)의 하부에 형성되어 복수 개의 마이크로 발광소자(100)를 향해 전자빔을 방출하는 복수 개의 에미터(220)를 포함할 수 있다. The electron beam irradiator 200 may include a first electrode layer 210 and a plurality of emitters 220 formed under the first electrode layer 210 to emit electron beams toward the plurality of micro light emitting devices 100. there is.
제1 전극층(210)은 Al, Ag, Cu, Ti, Pt, Ni, Ir 또는 Rh을 포함할 수 있으나 반드시 이에 한정하지 않는다. 예시적으로 제1 전극층(210)은 ITO와 같은 투명 전극으로 제작될 수도 있다. 제1 전극층(210)은 음극일 수 있다.The first electrode layer 210 may include Al, Ag, Cu, Ti, Pt, Ni, Ir, or Rh, but is not necessarily limited thereto. Illustratively, the first electrode layer 210 may be made of a transparent electrode such as ITO. The first electrode layer 210 may be a cathode.
에미터(220)는 탄소나노튜브(CNT)를 포함할 수 있으나 반드시 이에 한정하지 않는다. 탄소나노튜브에 인가되는 전계에 의해 전자빔이 생성될 수 있다. The emitter 220 may include carbon nanotubes (CNT), but is not necessarily limited thereto. An electron beam may be generated by an electric field applied to the carbon nanotubes.
에미터(220)를 구성하는 복수 개의 탄소나노튜브는 제1 전극층(210)에서 스테이지(300)를 향하는 제1 방향(수직 방향)으로 연장된 형상을 가질 수 있다. 그러나, 반드시 이에 한정되는 것은 아니고 복수 개의 탄소나노튜브는 제1 방향과 수직한 제2 방향(수평 방향)으로 연장된 형상을 가질 수도 있다.A plurality of carbon nanotubes constituting the emitter 220 may have a shape extending from the first electrode layer 210 in a first direction (vertical direction) toward the stage 300 . However, it is not necessarily limited thereto, and the plurality of carbon nanotubes may have a shape extending in a second direction (horizontal direction) perpendicular to the first direction.
복수 개의 에미터(220)는 제1 전극층(210)에 균일하게 배열될 수 있다. 따라서, 복수 개의 에미터(220)에서 방출되는 전자빔은 균일하게 복수 개의 마이크로 발광소자(100)에 조사될 수 있다.The plurality of emitters 220 may be uniformly arranged on the first electrode layer 210 . Accordingly, electron beams emitted from the plurality of emitters 220 may be uniformly irradiated to the plurality of micro light emitting devices 100 .
전압 조절부(400)는 제1 전극층(210)과 마이크로 발광소자(100)의 제1 도전형 반도체층(120)에 전압을 인가할 수 있다. 제1 전극층(210)은 음극 역할을 수행하고, 제1 도전형 반도체층(120)은 양극 역할을 수행할 수 있다.The voltage controller 400 may apply a voltage to the first electrode layer 210 and the first conductivity type semiconductor layer 120 of the micro light emitting device 100 . The first electrode layer 210 may serve as a cathode, and the first conductive semiconductor layer 120 may serve as an anode.
전압 조절부(400)는 3000V 내지 5000V의 고전압을 1KHz 이하로 펄스 구동할 수 있다. 고전압 펄스가 인가되면 제1 전극층(210)과 마이크로 발광소자(100) 사이에는 전계(Electric Field)가 형성될 수 있다. 따라서, 에미터(220)에서 방출된 전자빔은 마이크로 발광소자(100)에 유효하게 조사될 수 있다.The voltage regulator 400 may pulse drive a high voltage of 3000V to 5000V at 1KHz or less. When a high voltage pulse is applied, an electric field may be formed between the first electrode layer 210 and the micro light emitting device 100 . Therefore, the electron beam emitted from the emitter 220 can be effectively irradiated to the micro light emitting device 100 .
광검출부(600)는 복수 개의 마이크로 발광소자(100)가 발광하는 이미지 또는 영상을 촬영할 수 있다. 광검출부(600)는 카메라일 수 있으나 반드시 이에 한정하는 것은 아니고 마이크로 발광소자(100)의 발광 여부를 검출할 수 있는 다양한 검출 장비가 제한 없이 적용될 수 있다.The photodetector 600 may capture an image or video of the plurality of micro light emitting devices 100 emitting light. The photodetector 600 may be a camera, but is not necessarily limited thereto, and various detection equipment capable of detecting whether or not the micro light emitting device 100 emits light may be applied without limitation.
광검출부(600)는 수집된 발광 강도(스펙트럼) 또는 파장을 분석하여 전기적 신호로 변환한 후, 제어부(700)로 전기적 신호를 전달할 수 있다.The photodetector 600 may analyze the collected emission intensity (spectrum) or wavelength, convert the collected light into an electrical signal, and transmit the electrical signal to the controller 700 .
제어부(700)는 검사장치의 전반을 제어하는 프로세서(Processor)이다. 제어부(700)는 전자빔 조사부(200) 및 전압 조절부(400)의 동작을 제어하며, 광검출부(600)의 측정 결과를 수신하여 마이크로 발광소자(100)의 평가 결과가 포함되는 맵 데이터를 출력할 수 있다.The control unit 700 is a processor that controls overall aspects of the inspection device. The controller 700 controls the operation of the electron beam emitter 200 and the voltage controller 400, receives the measurement result of the photodetector 600, and outputs map data including the evaluation result of the micro light emitting device 100. can do.
제어부(700)는 검사장치 내 구성요소들의 동작을 제어하기 위한 알고리즘 또는 알고리즘을 재현한 프로그램에 대한 데이터를 저장하는 메모리(미도시), 및 메모리에 저장된 데이터를 이용하여 전술한 동작을 수행하는 프로세서(미도시)로 구현될 수 있다. 이때, 메모리와 프로세서는 각각 별개의 칩으로 구현될 수 있으나 반드시 이에 한정하는 것은 아니고 메모리와 프로세서는 단일 칩으로 구현될 수도 있다.The control unit 700 includes a memory (not shown) for storing data for an algorithm or a program for reproducing the algorithm for controlling the operation of components in the testing device, and a processor for performing the above-described operation using the data stored in the memory. (not shown). In this case, the memory and the processor may be implemented as separate chips, but are not necessarily limited thereto, and the memory and the processor may be implemented as a single chip.
제어부(700)는 처리한 데이터를 저장하는 저장부(미도시)와 연결될 수 있으며, 이러한 저장부는 ROM(Read Only Memory), PROM(Programmable ROM), EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM) 및 플래쉬 메모리(Flash memory)와 같은 비휘발성 메모리 소자 또는 RAM(Random Access Memory)과 같은 휘발성 메모리 소자 또는 하드디스크 드라이브(HDD, Hard Disk Drive), CD-ROM과 같은 저장 매체 중 적어도 하나로 구현될 수 있으나 반드시 이에 한정되지는 않는다. The control unit 700 may be connected to a storage unit (not shown) that stores processed data, and such a storage unit may include a Read Only Memory (ROM), a Programmable ROM (PROM), an Erasable Programmable ROM (EPROM), and an Electrically Erasable Programmable ROM (EEPROM). Implemented as at least one of non-volatile memory devices such as ROM) and flash memory, volatile memory devices such as RAM (Random Access Memory), or storage media such as Hard Disk Drive (HDD) and CD-ROM It can be, but is not necessarily limited thereto.
각각의 마이크로 발광소자(100)는 제1 도전형 반도체층(120), 활성층(130), 및 제2 도전형 반도체층(140)을 포함할 수 있다. 제1 도전형 반도체층(120)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1 도전형 반도체층(120)에 제1 도펀트가 도핑될 수 있다. Each micro light emitting device 100 may include a first conductivity type semiconductor layer 120 , an active layer 130 , and a second conductivity type semiconductor layer 140 . The first conductivity type semiconductor layer 120 may be implemented with a compound semiconductor such as group III-V or group II-VI, and the first dopant may be doped in the first conductivity type semiconductor layer 120 .
제1 도전형 반도체층(120)은 AlxInyGa(1-x-y)N (0 x 1, 0 y 1, 0 x+y 1)의 조성식을 갖는 반도체 물질, InAlGaN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 어느 하나 이상으로 형성될 수 있으나, 이에 한정하지 않는다. 제1 도펀트가 Si, Ge, Sn, Se, Te 등과 같은 n형 도펀트인 경우, 제1 도전형 반도체층(120)은 n형 질화물 반도체층일 수 있다.The first conductivity-type semiconductor layer 120 is a semiconductor material having a composition formula of Al x In y Ga (1-xy) N (0 x 1, 0 y 1, 0 x + y 1), InAlGaN, AlGaAs, GaP, GaAs , GaAsP, AlGaInP may be formed of any one or more, but is not limited thereto. When the first dopant is an n-type dopant such as Si, Ge, Sn, Se, or Te, the first conductivity-type semiconductor layer 120 may be an n-type nitride semiconductor layer.
활성층(130)은 제1 도전형 반도체층(120) 상에 배치될 수 있다. 또한, 활성층(130)은 제1 도전형 반도체층(120)과 제2 도전형 반도체층(140) 사이에 배치될 수 있다.The active layer 130 may be disposed on the first conductivity type semiconductor layer 120 . Also, the active layer 130 may be disposed between the first conductivity type semiconductor layer 120 and the second conductivity type semiconductor layer 140 .
활성층(130)은 제1 도전형 반도체층(120)을 통해서 주입되는 전자(또는 정공)와 제2 도전형 반도체층(140)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(130)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 그에 상응하는 파장을 가지는 빛을 생성할 수 있다.The active layer 130 is a layer where electrons (or holes) injected through the first conductivity type semiconductor layer 120 and holes (or electrons) injected through the second conductivity type semiconductor layer 140 meet. The active layer 130 transitions to a lower energy level as electrons and holes recombine, and can generate light having a wavelength corresponding to the transition.
활성층(130)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(130)의 구조는 이에 한정하지 않는다. 활성층(130)은 가시광 파장대의 광을 생성할 수 있다. The active layer 130 may have a structure of any one of a single well structure, a multi-well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, or a quantum wire structure, and the active layer 130 The structure of is not limited to this. The active layer 130 may generate light in a visible light wavelength range.
제2 도전형 반도체층(140)은 활성층(130) 상에 배치될 수 있다. 제2 도전형 반도체층(140)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 반도체층(140)에 제2 도펀트가 도핑될 수 있다. The second conductivity type semiconductor layer 140 may be disposed on the active layer 130 . The second conductivity type semiconductor layer 140 may be implemented with a compound semiconductor such as group III-V or group II-VI, and the second conductivity type semiconductor layer 140 may be doped with a second dopant.
제2 도전형 반도체층(140)은 Inx5Aly2Ga1-x5-y2N (0 x5 1, 0 y2 1, 0 x5+y2 1)의 조성식을 갖는 반도체 물질 또는 AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 선택된 물질로 형성될 수 있다. 제2 도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2 도펀트가 도핑된 제2 도전형 반도체층(140)은 p형 반도체층일 수 있다. The second conductive semiconductor layer 140 is a semiconductor material having a composition formula of In x5 Al y2 Ga 1-x5-y2 N (0 x5 1, 0 y2 1, 0 x5+y2 1) or AlInN, AlGaAs, GaP, GaAs , GaAsP, may be formed of a material selected from AlGaInP. When the second dopant is a p-type dopant such as Mg, Zn, Ca, Sr, or Ba, the second conductivity-type semiconductor layer 140 doped with the second dopant may be a p-type semiconductor layer.
도 4를 참조하면, 전자빔(E)이 마이크로 발광소자에 조사되면 활성층에서 전자빔이 충돌하여 전자-정공쌍이 생성될 수 있다. 생성된 전자-정공쌍은 활성층의 장벽층에 의해 우물층에 구속될 수 있다. 구속된 전자와 정공은 재결합을 통해 가시광을 발광할 수 있다. Referring to FIG. 4 , when electron beams E are irradiated onto the micro light emitting device, the electron beams collide in the active layer to generate electron-hole pairs. The generated electron-hole pairs can be confined to the well layer by the barrier layer of the active layer. The bound electrons and holes may emit visible light through recombination.
마이크로 발광소자에서 방출되는 가시광의 강도는 전자빔의 강도(또는 밀도)에 비례할 수 있다. 따라서, 마이크로 발광소자에서 방출되는 광을 검출하여 불량 여부를 판단할 수 있도록 전자빔의 강도(또는 밀도)는 조절될 수 있다.The intensity of visible light emitted from the micro light emitting device may be proportional to the intensity (or density) of the electron beam. Accordingly, the intensity (or density) of the electron beam may be adjusted so that light emitted from the micro light emitting device can be detected and whether or not a defect is determined.
마이크로 발광소자는 청색 발광소자, 녹색 발광소자, 및 적색 발광소자를 포함할 수 있다. 따라서, 마이크로 발광소자는 청색, 녹색 또는 적색 파장대의 광을 발광할 수 있다. 또한, 패널 기판에 전사가 완료된 마이크로 발광소자의 경우 청색, 녹색, 및 적색 파장대의 광이 동시에 검출될 수도 있다.The micro light emitting device may include a blue light emitting device, a green light emitting device, and a red light emitting device. Accordingly, the micro light emitting device may emit light in a blue, green or red wavelength band. In addition, in the case of a micro light emitting device on which transfer is completed on a panel substrate, light in blue, green, and red wavelength bands may be simultaneously detected.
실시예에 따르면, 전자빔을 조사하여 마이크로 발광소자를 발광시키는 음극 발광(Cathodoluminescence, CL)방식이므로 다른 비접촉식 발광 방식에 비해 복수 개의 마이크로 발광소자(100)를 균일하게 발광시킬 수 있는 장점이 있다.According to the embodiment, since it is a cathode luminescence (CL) method in which micro light emitting devices emit light by irradiating electron beams, a plurality of micro light emitting devices 100 can emit uniform light compared to other non-contact light emitting methods.
주사전자현미경(Scanning Electron Microscope, SEM)은 고체 상태에서 작은 크기의 미세 조직과 형상을 관찰할 때 널리 쓰이는 현미경으로서 초점 심도가 깊고 3차원적인 영상의 관찰이 용이해서 복잡한 표면구조나 결정외형 등의 입체적인 형상을 높은 배율로 관찰할 수 있는 분석 장비이다.Scanning Electron Microscope (SEM) is a microscope widely used to observe small-sized microstructures and shapes in a solid state. It is an analysis equipment that can observe three-dimensional shapes at high magnification.
주사전자현미경은 전자빔을 발생 및 가속시키는 전자총(electron gun), 전자빔을 가늘게 모아주는 집속렌즈와 대물렌즈, 필라멘트를 떠난 전자가 시편에 닿을 때까지 전자빔의 경로를 조절하는 주사코일(deflection coil)로 구성되어 있다.A scanning electron microscope consists of an electron gun that generates and accelerates electron beams, a focusing lens and objective lens that narrows the electron beams, and a deflection coil that controls the path of electron beams until electrons leaving the filament reach the specimen. Consists of.
그러나 주사전자현미경은 국소적인 영역에 전자빔을 조사하여 화학 조성을 측정하는 점에서 대면적으로 전자빔을 조사하는 본 실시예와 차이가 있다.However, the scanning electron microscope is different from the present embodiment in which electron beams are irradiated over a large area in that a chemical composition is measured by irradiating electron beams on a local area.
전계방출 디스플레이(Field Emission Display)는 냉음극 전자원인 전계 방출 에미터 어레이를 매트릭스 형태로 배치하고 전자선을 형광체에 조사하여 음극 발광시키는 디스플레이다. 그러나, 전계방출 디스플레이의 에미터는 일반적으로 초소형 전자팁(Micro tips)으로 제작되며 탄소나노튜브로 제작되지 않는 점에서 본 실시예와 차이가 있다. 또한 요구되는 전자빔의 균일도가 본 실시예보다 낮다.A field emission display is a display in which a field emission emitter array, which is a cold cathode electron source, is arranged in a matrix form and electron beams are irradiated to a phosphor to emit cathode light. However, the emitter of the field emission display is generally made of micro tips and is different from the present embodiment in that it is not made of carbon nanotubes. Also, the required uniformity of the electron beam is lower than that of the present embodiment.
또한, PL(Photoluminesecnce) 방식은 시료에 빛을 주입하여 그 에너지로 여기와 재결합에 의해 빛이 발생하는 방식인 반면, 실시예의 음극 발광(Cathodoluminescence, CL) 방식은 전계 방출된 전자가 전기장에 의해 가속되어 에너지를 얻은 후 LED에 주입되어 빛이 발생하는 점에서 차이가 있다.In addition, the PL (Photoluminescence) method is a method in which light is injected into a sample and light is generated by excitation and recombination with the energy, whereas in the Cathodoluminescence (CL) method of the embodiment, field-emitted electrons are accelerated by an electric field. After obtaining energy, it is injected into the LED and there is a difference in that light is generated.
도 5는 도 3의 제1 변형예이고, 도 6은 도 3의 제2 변형예이다.FIG. 5 is a first modified example of FIG. 3 , and FIG. 6 is a second modified example of FIG. 3 .
도 5를 참조하면, 발광 구조물을 아이솔레이션을 수행하여 복수 개의 마이크로 발광소자(100)를 제작한 후 불량 여부를 검사할 수도 있다. 실시예에 따르면, 각 마이크로 발광소자(100)의 제1 도전형 반도체층(120)도 메사 식각(H2)에 의해 완전히 분리되므로 전압 조절부(400)는 제1 전극층(210)과 복수 개의 마이크로 발광소자(100)의 하부에 배치된 별도의 제2 전극층(미도시)과 연결될 수 있다.Referring to FIG. 5 , a plurality of micro light emitting devices 100 may be fabricated by performing isolation on the light emitting structure and then inspected for defects. According to the embodiment, since the first conductivity-type semiconductor layer 120 of each micro light emitting device 100 is also completely separated by mesa etching (H2), the voltage adjusting unit 400 includes the first electrode layer 210 and a plurality of micro It may be connected to a separate second electrode layer (not shown) disposed below the light emitting device 100 .
스테이지(300)가 전도성 재질로 제작된 경우 전압 조절부(400)는 제1 전극층(210)과 스테이지(300)에 연결되어 전계를 형성할 수도 있다.When the stage 300 is made of a conductive material, the voltage controller 400 may be connected to the first electrode layer 210 and the stage 300 to form an electric field.
전자빔 조사부(200)의 상부에 배치된 제1 광검출부(610)는 활성층(130)의 상부로 출사되어 전자빔 조사부(200)를 투과하는 광을 검출할 수 있다. 제1 전극층(210)이 ITO와 같은 투광성 전극으로 제작되어 전자빔 조사부(200)가 충분히 투광성을 갖는다면 제1 광검출부(610)는 유효하게 마이크로 발광소자(100)의 발광 강도를 측정할 수 있다.The first photodetector 610 disposed above the electron beam irradiator 200 may detect light emitted from the top of the active layer 130 and transmitted through the electron beam irradiator 200 . If the first electrode layer 210 is made of a light-transmitting electrode such as ITO and the electron beam irradiator 200 has sufficient light-transmitting properties, the first photodetector 610 can effectively measure the light emission intensity of the micro light emitting device 100. .
스테이지(300)의 하부에 배치된 제2 광검출부(620)는 활성층(130)의 하부로 출사되어 스테이지(300)를 투과하는 광을 검출할 수 있다. 스테이지(300)가 투광성 재질로 제작되는 경우 제2 광검출부(620)는 유효하게 마이크로 발광소자(100)의 발광 강도를 측정할 수 있다.The second photodetector 620 disposed below the stage 300 may detect light emitted from the lower portion of the active layer 130 and passing through the stage 300 . When the stage 300 is made of a light-transmissive material, the second photodetector 620 can effectively measure the light emission intensity of the micro light emitting device 100 .
실시예에서는 제1 광검출부(610)와 제2 광검출부(620)가 동시에 구비된 것을 예시하였으나, 반드시 이에 한정되는 것은 아니고 제1 광검출부(610) 또는 제2 광검출부(620) 중 어느 하나만을 구비할 수도 있다.Although the embodiment exemplifies that the first photodetector 610 and the second photodetector 620 are simultaneously provided, it is not necessarily limited thereto, and only one of the first photodetector 610 and the second photodetector 620 is used. may be provided.
도 6을 참조하면, 발광 구조물이 복수 개의 마이크로 발광소자로 분리되기 전에도 검사를 진행할 수도 있다. 발광 구조물의 일부 영역에 결함으로 인해 비발광 영역(T1)이 형성된 경우에도 나머지 영역에서는 발광 여부를 검사할 수 있다.Referring to FIG. 6 , the inspection may be performed even before the light emitting structure is separated into a plurality of micro light emitting devices. Even when a non-emission region T1 is formed due to a defect in a partial region of the light emitting structure, whether or not light is emitted may be inspected in the remaining regions.
즉, 실시예에 따르면, 발광 구조물에 일부분만을 메사 식각한 상태(도 3 참조), 아이솔레이션에 의해 복수 개의 발광소자를 제작한 상태(도 5 참조), 또는 발광 구조물을 분리하지 않은 상태(도 6 참조)에서도 모두 검사가 가능하다. 또한, 마이크로 발광소자를 기판에서 분리한 전사 이후에서도 검사가 가능하다.That is, according to the embodiment, a state in which only a portion of the light emitting structure is mesa-etched (see FIG. 3), a state in which a plurality of light emitting elements are manufactured by isolation (see FIG. 5), or a state in which the light emitting structure is not separated (see FIG. 6 ) can also be inspected. In addition, inspection is possible even after the micro light emitting device is separated from the substrate and transferred.
도 7a 내지 도 7e는 다양한 형태의 에미터를 보여주는 도면이다.7A to 7E are diagrams showing various types of emitters.
실시예에 따르면, 전자빔이 균일하게 복수 개의 마이크로 발광소자에 조사되는 것이 중요할 수 있다. 따라서, 에미터(220)는 균일한 전자빔을 방출하는 다양한 구조가 선택될 수 있다.According to the embodiment, it may be important that the electron beam is uniformly irradiated to the plurality of micro light emitting devices. Accordingly, various structures that emit uniform electron beams may be selected as the emitter 220 .
도 7a를 참조하면, 기판(230) 상에 제1 전극층(210)이 배치되고, 에미터(220)는 끝단이 뽀족하게 형성되어 전자를 방출하기 용이한 구조를 가질 수 있다. 이때, 절연층(241)과 게이트(242)에 의해 에미터(220)의 끝단 부분만 외부로 노출될 수 있다. 도 7b를 참조하면, 에미터(220)는 상부로 갈수록 급격히 샤프해지는 영역을 가질 수도 있다.Referring to FIG. 7A , the first electrode layer 210 is disposed on the substrate 230, and the emitter 220 may have a sharp end to easily emit electrons. At this time, only the end portion of the emitter 220 may be exposed to the outside by the insulating layer 241 and the gate 242 . Referring to FIG. 7B , the emitter 220 may have a rapidly sharpening region toward the top.
도 7c를 참조하면, 에미터(220)가 횡방향으로 배치되어 전자를 방출할 수도 있다. 이때, 방출된 전자는 휘어져 수직 방향으로 방출될 수 있다. 도 7d를 참조하면, 전압이 제1-1 전극층(210a)과 제1-2 전극층(210b)에 인가되면 제1-1 전극층(210a)에 형성된 제1 에미터(220-1)에서 광이 조사되어 제2 에미터(220-2)에 의해 반사될 수 있다. 도 7e를 참조하면, 에미터(220)에서 방출된 전자가 횡방향으로 방출되어 블록(243)에 의해 충돌하여 진행 방향이 변경될 수도 있다. Referring to FIG. 7C , the emitter 220 may be disposed in a horizontal direction to emit electrons. At this time, the emitted electrons may be bent and emitted in a vertical direction. Referring to FIG. 7D , when a voltage is applied to the 1-1st electrode layer 210a and the 1-2nd electrode layer 210b, light is emitted from the first emitter 220-1 formed on the 1-1st electrode layer 210a. It may be irradiated and reflected by the second emitter 220-2. Referring to FIG. 7E , electrons emitted from the emitter 220 may be emitted in a lateral direction and collide with a block 243 to change a traveling direction.
도 8a는 전자빔 측정부가 전자빔의 균일도를 측정하는 상태를 보여주는 도면이고, 도 8b는 제1 전극층과 전자빔 측정부가 복수 개의 영역으로 구분된 상태를 보여주는 도면이다.8A is a diagram showing a state in which the electron beam measurement unit measures the uniformity of the electron beam, and FIG. 8B is a diagram showing a state in which the first electrode layer and the electron beam measurement unit are divided into a plurality of regions.
도 8a 및 도 8b를 참조하면, 전자빔 측정부(910)는 전자빔 조사부(200)와 스테이지(300) 사이에 배치되어 전자빔의 균일도를 측정할 수 있다. 전술한 바와 같이 복수 개의 마이크로 발광소자(100)에 균일한 전자빔이 조사되어야 균일한 발광이 가능해질 수 있다. 만약 일부 영역에서 전자빔의 강도가 약해진다면 정상적인 발광소자임에도 불량인 것으로 판단할 수 있는 문제가 있다.Referring to FIGS. 8A and 8B , the electron beam measuring unit 910 is disposed between the electron beam irradiation unit 200 and the stage 300 to measure the uniformity of the electron beam. As described above, uniform light emission can be achieved only when uniform electron beams are irradiated to the plurality of micro light emitting devices 100 . If the intensity of the electron beam is weakened in some areas, there is a problem in that it can be determined that the light emitting device is defective even though it is a normal light emitting device.
전자빔을 조사하여 검사하는 방식은 간접 측정 방식이므로 직접 전류를 인가하여 발광시키는 방식에 비해 상대적으로 발광 강도가 약할 수 있다. 따라서, 전자빔의 강도가 균일하지 않으면 일부 발광소자가 발광하지 않는 것으로 판단될 수 있다. 따라서, 정확한 검사가 어려워질 수 있다.Since the inspection method by irradiating electron beams is an indirect measurement method, the emission intensity may be relatively weak compared to the method of directly applying current to emit light. Therefore, if the intensity of the electron beam is not uniform, it may be determined that some light emitting devices do not emit light. Therefore, accurate inspection may be difficult.
실시예에 따르면, 전자빔 조사부(200)는 복수 개의 조사 영역(S1 내지 S24)으로 구분될 수 있다. 각 조사 영역은 전압 조절부(400)에 의해 개별적으로 전압 레벨이 조절될 수 있다. 복수 개의 조사 영역(S1 내지 S24)은 24개인 것으로 도시되었으나 반드시 이에 한정하는 것은 아니고 조사 영역의 개수는 다양하게 조절될 수 있다.According to the embodiment, the electron beam irradiation unit 200 may be divided into a plurality of irradiation areas S1 to S24. The voltage level of each irradiation area may be individually adjusted by the voltage controller 400 . Although the plurality of irradiation areas S1 to S24 is illustrated as being 24, it is not necessarily limited thereto and the number of irradiation areas may be adjusted in various ways.
전자빔 측정부(910)는 복수 개의 감지 영역(P1 내지 P24)으로 구분될 수 있다. 복수 개의 감지 영역(P1 내지 P24)은 복수 개의 조사 영역(S1 내지 S24)과 서로 매칭되게 배치될 수 있다. 복수 개의 조사 영역(S1 내지 S24)이 24개로 구획된 경우 복수 개의 감지 영역(P1 내지 P24)도 동일한 개수로 구획될 수 있다.The electron beam measuring unit 910 may be divided into a plurality of sensing regions P1 to P24. The plurality of sensing areas P1 to P24 may be arranged to match each other with the plurality of irradiation areas S1 to S24. When the plurality of irradiation regions S1 to S24 are divided into 24, the plurality of detection regions P1 to P24 may also be divided into the same number.
일 실시예에 따르면, 마이크로 발광소자(100)에 전자빔을 조사하기 전에 먼저 전자빔 측정부(910)가 전자빔의 균일도를 측정하여 상대적으로 전자빔의 강도가 불균일한 지점을 검출하고, 해당 영역의 전자빔 강도(또는 밀도)가 미리 정해진 기준 범위(또는 평균 강도)와 매칭되도록 조정할 수 있다. According to an embodiment, before irradiating the electron beam to the micro light emitting device 100, the electron beam measurement unit 910 first measures the uniformity of the electron beam to detect a point where the intensity of the electron beam is relatively non-uniform, and the electron beam intensity in the corresponding area. (or density) can be adjusted to match a predetermined reference range (or average intensity).
전자빔 측정부(910)는 구동부(미도시)에 의해 측정시 전자빔 조사부(200)의 하부에 배치되고, 측정이 완료되면 전자빔 조사부(200)의 하부에서 이탈할 수 있다. The electron beam measuring unit 910 is disposed below the electron beam irradiation unit 200 during measurement by a driving unit (not shown), and may be removed from the lower portion of the electron beam irradiation unit 200 when the measurement is completed.
예시적으로 중앙에 배치된 제10 조사 영역(S10)은 이웃한 조사 영역(S4, S9, S16, S11)에서 조사된 전자빔의 일부가 더해져 상대적으로 강도가 강할 수 있다. 이에 비해, 가장자리에 배치된 제1 조사 영역(S1)은 이웃한 조사 영역(S2, S7)이 적기 때문에 더해지는 전자빔의 양이 적어 상대적으로 강도가 약할 수 있다. 따라서, 제1 감지 영역(P1)에서 측정한 전자빔의 강도는 제10 감지 영역(P10)에서 측정한 전자빔의 강도보다 약할 수 있다.Exemplarily, the tenth radiation region S10 disposed in the center may have relatively strong intensity due to the addition of a part of electron beams irradiated from the neighboring radiation regions S4, S9, S16, and S11. In comparison, since the number of neighboring radiation regions S2 and S7 is small, the amount of electron beam added to the first radiation region S1 disposed at the edge may be relatively weak. Therefore, the intensity of the electron beam measured in the first detection region P1 may be weaker than the intensity of the electron beam measured in the tenth detection region P10.
이 경우 제어부는 제10 조사 영역(S10)에 비해 제1 조사 영역(S1)의 전압 레벨을 증가시키도록 전압 조절부(400)를 제어할 수 있다. 따라서, 중앙 영역에서의 전자빔의 강도와 가장자리 영역에서의 전자빔 강도를 균일하게 제어할 수 있다. In this case, the controller may control the voltage regulator 400 to increase the voltage level of the first radiation region S1 compared to the tenth radiation region S10. Therefore, the intensity of the electron beam in the central region and the intensity of the electron beam in the edge region can be uniformly controlled.
또는, 검사 결과 제9 감지 영역(P9)의 강도가 미리 정해진 기준 범위(또는 평균 강도)보다 강한 것으로 판단되면 제9 조사 영역(S9)의 전압 레벨을 낮추어 미리 정해진 기준 범위(또는 평균 강도)에 근접하게 조절할 수도 있다. 또한, 제10 감지 영역(P10)의 강도가 약한 것으로 판단되면 제10 조사 영역(S10)의 전압 레벨을 높여 미리 정해진 기준 범위(또는 평균 강도)에 근접하게 조절할 수도 있다. 이러한 조정을 통해 전자빔 조사부(200)에서 조사되는 전자빔의 균일도를 일정하게 조절할 수 있다.Alternatively, when it is determined that the intensity of the ninth sensing region P9 is greater than the predetermined reference range (or average intensity) as a result of the inspection, the voltage level of the ninth irradiation region S9 is lowered to reach the predetermined reference range (or average intensity). It can also be closely adjusted. In addition, when it is determined that the intensity of the tenth sensing region P10 is weak, the voltage level of the tenth irradiation region S10 may be increased to be close to a predetermined reference range (or average intensity). Through this adjustment, the uniformity of the electron beam irradiated from the electron beam irradiator 200 can be constantly adjusted.
도 9는 측정된 복수 개의 마이크로 발광소자의 발광 강도를 보여주는 도면이다.9 is a view showing measured emission intensities of a plurality of micro light emitting devices.
도 9를 참조하면, 제어부는 카메라에 수집된 복수 개의 마이크로 발광소자(100)의 발광 강도를 수집하여 맵 데이터를 생성할 수 있다. 제어부는 미리 정해진 발광 강도보다 약한 강도를 갖거나 발광이 없는 마이크로 발광소자(101)는 불량으로 판단할 수 있다. Referring to FIG. 9 , the controller may generate map data by collecting emission intensities of the plurality of micro light emitting devices 100 collected by a camera. The control unit may determine that the micro light emitting device 101 having an intensity lower than a predetermined emission intensity or not emitting light is defective.
전사 공정시에는 불량으로 판단된 마이크로 발광소자(101)를 제외한 정상 마이크로 발광소자(100)만을 선택적으로 전사할 수 있다. 또한, 전사가 완료된 이후에 검사한 경우에는 불량으로 판단된 마이크로 발광소자(101)를 선택적으로 제거할 수 있다. During the transfer process, only the normal micro light emitting devices 100 excluding the micro light emitting devices 101 determined to be defective may be selectively transferred. In addition, when the inspection is performed after the transfer is completed, the micro light emitting device 101 determined to be defective may be selectively removed.
도 10은 본 발명의 제2 실시예에 따른 검사장치의 개념도이고, 도 11은 본 발명의 제3 실시예에 따른 검사장치의 개념도이다.10 is a conceptual diagram of an inspection device according to a second embodiment of the present invention, and FIG. 11 is a conceptual diagram of an inspection device according to a third embodiment of the present invention.
도 10을 참조하면, 챔버(500)는 마이크로 발광소자(100)가 유입될 수 있는 제1 도어(510), 검사가 완료된 마이크로 발광소자(100)가 배출될 수 있는 제2 도어(520), 및 진공을 형성하는 진공 펌프(530)를 구비할 수 있다. 이러한 구성에 의하면 로봇암 또는 컨베이어벨트에 의해 연속적으로 마이크로 발광소자(100)가 유입 및 배출될 수 있으므로 연속적인 검사가 가능해질 수 있다.Referring to FIG. 10 , the chamber 500 includes a first door 510 into which the micro light emitting device 100 can be introduced, a second door 520 through which the micro light emitting device 100 that has been inspected can be discharged, And it may be provided with a vacuum pump 530 to form a vacuum. According to this configuration, since the micro light emitting device 100 can be continuously introduced and discharged by the robot arm or the conveyor belt, continuous inspection can be performed.
전자빔 조사부(200)는 제1 전극층(210)과 에미터(220) 이외에도 제1 전극층(210)이 배치되는 몸체(250) 및 몸체(250)를 승하강하는 제1 구동부(260)를 더 포함할 수 있다. 이러한 구성에 의하면 스테이지(300)에 마이크로 발광소자(100)가 안착되면 전자빔 조사부(200)가 하강할 수 있다. In addition to the first electrode layer 210 and the emitter 220, the electron beam irradiator 200 further includes a body 250 on which the first electrode layer 210 is disposed and a first driving unit 260 that moves the body 250 up and down. can do. According to this configuration, when the micro light emitting device 100 is seated on the stage 300, the electron beam irradiator 200 may descend.
스테이지(300)와 전자빔 조사부(200) 사이의 간격이 최적으로 조정되므로 전자빔을 균일하게 조사할 수 있는 장점이 있다. 그러나, 반드시 이에 한정하는 것은 아니고 스테이지(300)를 승하강시키는 제2 구동부(310)가 배치될 수도 있다. Since the distance between the stage 300 and the electron beam emitter 200 is optimally adjusted, there is an advantage in that the electron beam can be uniformly irradiated. However, it is not necessarily limited to this, and a second driving unit 310 that moves the stage 300 up and down may be disposed.
즉, 제1 구동부(260)에 의해 전자빔 조사부(200)가 승하강할 수도 있고, 제2 구동부(310)에 의해 스테이지(300)가 승하강할 수도 있다. 또한, 제1 구동부(260)와 제2 구동부(310)에 의해 전자빔 조사부(200)와 스테이지(300)가 함께 승하강할 수도 있다.That is, the electron beam irradiation unit 200 may move up and down by the first driving unit 260 and the stage 300 may move up and down by the second driving unit 310 . In addition, the electron beam irradiation unit 200 and the stage 300 may move up and down together by the first driving unit 260 and the second driving unit 310 .
제1 광검출부(610)는 전자빔 조사부(200)의 몸체(250) 내부에 배치될 수 있다. 제1 전극층(210)과 에미터(220)가 충분히 투명하다면 제1 광검출부(610)는 마이크로 발광소자(100)에서 상부로 방출된 광을 유효하게 검출할 수 있다. The first photodetector 610 may be disposed inside the body 250 of the electron beam emitter 200 . If the first electrode layer 210 and the emitter 220 are sufficiently transparent, the first photodetector 610 can effectively detect light emitted upward from the micro light emitting device 100 .
제2 광검출부(620)는 스테이지(300)의 하부에 배치될 수도 있다. 스테이지(300)가 충분히 투명하다면 제2 광검출부(620)는 마이크로 발광소자(100)에서 하부로 방출된 광을 유효하게 검출할 수 있다.The second photodetector 620 may be disposed below the stage 300 . If the stage 300 is sufficiently transparent, the second photodetector 620 can effectively detect the light emitted downward from the micro light emitting device 100 .
실시예에서는 제1 광검출부(610)와 제2 광검출부(620)가 동시에 구비된 것을 예시하였으나, 반드시 이에 한정되는 것은 아니고 제1 광검출부(610) 또는 제2 광검출부(620) 중 어느 하나만을 구비할 수도 있다.Although the embodiment exemplifies that the first photodetector 610 and the second photodetector 620 are simultaneously provided, it is not necessarily limited thereto, and only one of the first photodetector 610 and the second photodetector 620 is used. may be provided.
도 11을 참조하면, 검사장치는 마이크로 발광소자(100)를 스캐닝하는 구조를 포함할 수도 있다. 전자빔 조사부(200)는 마이크로 발광소자(100)의 일부 영역에 전자빔을 조사하고 광검출부(600)는 해당 영역에서 마이크로 발광소자(100)의 발광 강도를 검출할 수 있다. 또한, 전자빔 조사부(200)와 광검출부(600)는 일 방향(D1)으로 이동하면서 복수 개의 마이크로 발광소자(100)를 검사할 수도 있다.Referring to FIG. 11 , the inspection device may include a structure for scanning the micro light emitting device 100 . The electron beam irradiation unit 200 may irradiate an electron beam to a partial area of the micro light emitting device 100, and the photodetector 600 may detect light emission intensity of the micro light emitting device 100 in the corresponding area. In addition, the electron beam irradiator 200 and the photodetector 600 may inspect the plurality of micro light emitting devices 100 while moving in one direction D1.
이러한 구조에 의하면, 전자빔 조사부의 크기를 작게 제작할 수 있고, 마이크로 발광소자의 사이즈에 관계 없이 검사가 가능한 장점이 있다.According to this structure, there is an advantage in that the size of the electron beam irradiation unit can be made small, and inspection can be performed regardless of the size of the micro light emitting device.
도 12는 본 발명의 제4 실시예에 다른 검사장치의 개념도이고, 도 13은 픽업 장치의 점착층을 복수 개의 마이크로 발광소자에 부착한 상태를 보여주는 도면이고, 도 14는 픽업 장치로 복수 개의 마이크로 발광소자를 전사한 후 검사하는 과정을 보여주는 도면이고, 도 15는 도 14의 변형예이고, 도 16은 픽업 장치에 전사된 복수 개의 마이크로 발광소자를 다른 기판에 전사하는 과정을 보여주는 도면이다.12 is a conceptual diagram of a test device according to a fourth embodiment of the present invention, FIG. 13 is a view showing a state in which an adhesive layer of a pick-up device is attached to a plurality of micro light emitting elements, and FIG. FIG. 15 is a modified example of FIG. 14, and FIG. 16 is a view showing a process of transferring a plurality of micro light emitting devices transferred to a pick-up device to another substrate.
도 12를 참조하면, 마이크로 발광소자(100)는 패널 기판에 전사하는 공정이 필수적이다. 전사 공정이란 마이크로 발광소자(100)를 성장 기판(110)에서 분리하여 패널 기판에 옮기는 작업으로 정의할 수 있다.Referring to FIG. 12 , a process of transferring the micro light emitting device 100 to a panel substrate is essential. The transfer process may be defined as an operation of separating the micro light emitting device 100 from the growth substrate 110 and transferring it to a panel substrate.
전사 기술은 정전기를 이용하여 전사하는 기술, LLO(Laser-Lift-Off)를 이용하여 전사하는 기술, 및 점착 테이프를 이용하여 전사하는 기술 등이 사용될 수 있다. As the transfer technique, a technique of transferring using static electricity, a technique of transferring using Laser-Lift-Off (LLO), a technique of transferring using an adhesive tape, and the like may be used.
예시적으로 점착 테이프를 이용하는 기술은 헤더(800)에 형성된 점착층(820)을 이용하여 마이크로 발광소자(100)를 성장 기판(110)에서 분리할 수 있다.For example, in the technique of using an adhesive tape, the micro light emitting device 100 may be separated from the growth substrate 110 by using the adhesive layer 820 formed on the header 800 .
도 13을 참조하면, 헤더(800)가 하강하여 점착층(820)이 마이크로 발광소자(100)에 접착될 수 있다. 이후, 도 14와 같이 헤더(800)가 승강부(830)에 의해 상승하면 마이크로 발광소자(100)는 기판(110)에서 분리되어 점착층(820)으로 전사될 수 있다. Referring to FIG. 13 , the header 800 may descend and the adhesive layer 820 may adhere to the micro light emitting device 100 . Then, as shown in FIG. 14 , when the header 800 is raised by the lifting part 830 , the micro light emitting device 100 may be separated from the substrate 110 and transferred to the adhesive layer 820 .
이때, 기판(110)과 마이크로 발광소자(100)의 결합력이 점착층(820)과 마이크로 발광소자(100)의 결합력보다 약해지도록 조정할 수 있다. 예시적으로 기판(110)을 식각하여 기판(110)과 마이크로 발광소자(100) 사이의 접촉면을 일부 제거하여 기판(110)과 마이크로 발광소자(100)의 결합력을 줄일 수 있다.At this time, the bonding strength between the substrate 110 and the micro light emitting device 100 may be adjusted to be weaker than the bonding strength between the adhesive layer 820 and the micro light emitting device 100 . For example, the bonding force between the substrate 110 and the micro light emitting device 100 may be reduced by partially removing a contact surface between the substrate 110 and the micro light emitting device 100 by etching the substrate 110 .
헤더(800)에는 전자빔 조사부(200)와 광검출부(600)가 배치될 수 있다. 전사 공정이 진공 상태에서 진행된다면, 전자빔 조사부(200)에서 방출된 전자빔은 점착층(820)을 통과하여 복수 개의 마이크로 발광소자(100)에 조사될 수 있다. 또한, 점착층(820)과 전자빔 조사부(200)가 충분히 투명하다면 광 검출부(600)는 복수 개의 마이크로 발광소자(100)에서 발광된 광을 검출할 수 있다.An electron beam emitter 200 and a photodetector 600 may be disposed on the header 800 . If the transfer process is performed in a vacuum state, the electron beam emitted from the electron beam irradiator 200 may pass through the adhesive layer 820 and be irradiated to the plurality of micro light emitting devices 100 . In addition, if the adhesive layer 820 and the electron beam emitter 200 are sufficiently transparent, the light detector 600 may detect light emitted from the plurality of micro light emitting devices 100 .
이러한 구성에 의하면, 별도의 검사장치에 구비하지 않고도 마이크로 발광소자(100)를 전사하는 과정에서 검사가 가능할 수 있다. 마이크로 발광소자(100)를 선택적으로 전사할 수 있는 정전기 방식 또는 LLO 방식의 경우 이러한 검사 시스템이 더욱 효과적일 수 있다. 예시적으로 헤더(800)를 마이크로 발광소자(100)에 배치하여 상기 검사방식에 의해 불량 여부를 검사한 후 정상인 발광소자만을 선택적으로 전사할 수도 있다.According to this configuration, inspection may be possible in the process of transferring the micro light emitting device 100 without having a separate inspection device. In the case of an electrostatic method or an LLO method capable of selectively transferring the micro light emitting device 100, such an inspection system may be more effective. Exemplarily, the header 800 may be disposed on the micro light emitting device 100 and then inspected for defects by the above inspection method, and only normal light emitting devices may be selectively transferred.
도 15를 참조하면, 광검출부(600)는 헤더(800)의 하측에 배치될 수도 있다. 따라서, 헤더(800) 내에 배치된 전자빔 조사부(200)에 의해 마이크로 발광소자(100)가 발광하게 되면, 헤더(800)의 하측에 배치된 광검출부(600)는 유효하게 발광 강도를 측정할 수 있다.Referring to FIG. 15 , the photodetector 600 may be disposed below the header 800 . Therefore, when the micro light emitting device 100 emits light by the electron beam irradiator 200 disposed within the header 800, the photodetector 600 disposed below the header 800 can effectively measure the luminous intensity. there is.
도 16을 참조하면, 헤더(800)는 전사 기판(920)으로 이동하여 복수 개의 마이크로 발광소자(100)를 전사시킬 수 있다. 예시적으로 헤더(800)의 점착층(830)에 UV 또는 열을 가하면 점착층(830)은 점성을 잃을 수 있다. 따라서 복수 개의 마이크로 발광소자(820)는 전사 기판(920)에 전사될 수 있다. 전사 기판(920)은 디스플레이 패널 기판일 수도 있고, 별도의 점착 기판일 수도 있다.Referring to FIG. 16 , the header 800 may move to the transfer substrate 920 to transfer the plurality of micro light emitting devices 100 thereto. For example, when UV or heat is applied to the adhesive layer 830 of the header 800, the adhesive layer 830 may lose viscosity. Accordingly, the plurality of micro light emitting devices 820 may be transferred to the transfer substrate 920 . The transfer substrate 920 may be a display panel substrate or a separate adhesive substrate.
도 17은 본 발명의 일 실시 예에 따른 검사 방법을 보여주는 흐름도이다.17 is a flowchart illustrating an inspection method according to an embodiment of the present invention.
도 2 및 도 17을 참조하면, 본 발명의 일 실시 예에 따른 검사 방법은, 챔버(500) 내부에 진공을 형성하는 단계(S10), 챔버(500) 내부에 배치된 마이크로 발광소자(100)에 전자빔을 조사하는 단계(S20); 마이크로 발광소자(100)의 발광 강도를 측정하는 단계(S30); 및 마이크로 발광소자(100)의 불량 여부를 판단하는 단계(S40)를 포함할 수 있다.2 and 17, the inspection method according to an embodiment of the present invention includes forming a vacuum inside the chamber 500 (S10), and the micro light emitting device 100 disposed inside the chamber 500. irradiating an electron beam to (S20); measuring the luminous intensity of the micro light emitting device 100 (S30); and determining whether the micro light emitting device 100 is defective (S40).
챔버(500) 내부에 진공을 형성하는 단계(S10)는, 마이크로 발광소자(100)가 챔버(500) 내에 배치되면 진공펌프를 가동시켜 챔버(500) 내부의 진공을 10-5 Torr 이하로 조절할 수 있다. 챔버(500) 내의 진공을 10-5 Torr 이하로 조절하면 전자빔이 스캐터링되어 플라즈마가 형성되는 것을 방지할 수 있다.In the step of forming a vacuum inside the chamber 500 (S10), when the micro light emitting device 100 is disposed in the chamber 500, a vacuum pump is operated to adjust the vacuum inside the chamber 500 to 10 -5 Torr or less. can When the vacuum in the chamber 500 is adjusted to 10 −5 Torr or less, scattering of the electron beam to prevent plasma from being formed.
챔버(500) 내부에 배치된 마이크로 발광소자(100)에 전자빔을 조사하는 단계(S20)는, 전자빔 조사부(200)와 마이크로 발광소자(100) 사이에 3000V 내지 5000V의 고전압을 1KHz 이하로 펄스 구동할 수 있다.In the step of irradiating the electron beam to the micro light emitting device 100 disposed inside the chamber 500 (S20), a high voltage of 3000V to 5000V is pulsed at 1 KHz or less between the electron beam irradiator 200 and the micro light emitting device 100. can do.
전자빔이 마이크로 발광소자(100)에 조사되면 활성층에서 전자빔이 충돌하여 전자-정공쌍이 생성될 수 있다. 생성된 전자-정공쌍은 활성층의 장벽층에 의해 우물층에 구속될 수 있다. 구속된 전자와 정공은 재결합을 통해 가시광을 발광할 수 있다. When electron beams are irradiated onto the micro light emitting device 100, electron-hole pairs may be generated by colliding the electron beams in the active layer. The generated electron-hole pairs can be confined to the well layer by the barrier layer of the active layer. The bound electrons and holes may emit visible light through recombination.
마이크로 발광소자에서 방출되는 가시광의 강도는 전자빔의 강도(또는 밀도)에 비례할 수 있다. 따라서, 마이크로 발광소자에서 방출되는 광을 검출하여 불량 여부를 판단할 수 있도록 전자빔의 강도(또는 밀도)는 조절될 수 있다.The intensity of visible light emitted from the micro light emitting device may be proportional to the intensity (or density) of the electron beam. Accordingly, the intensity (or density) of the electron beam may be adjusted so that light emitted from the micro light emitting device can be detected and whether or not a defect is determined.
마이크로 발광소자(100)의 발광 강도를 측정하는 단계(S30)는, 광검출부(600)가 복수 개의 마이크로 발광소자(100)가 발광하는 이미지 또는 영상을 촬영할 수 있다. 광검출부(600)는 카메라일 수 있으나 반드시 이에 한정하는 것은 아니고 마이크로 발광소자(100)의 발광 여부를 검출할 수 있는 다양한 검출 장비가 제한 없이 적용될 수 있다.In the step of measuring the emission intensity of the micro light emitting device 100 ( S30 ), the photodetector 600 may capture an image or video of the plurality of micro light emitting devices 100 emitting light. The photodetector 600 may be a camera, but is not necessarily limited thereto, and various detection equipment capable of detecting whether or not the micro light emitting device 100 emits light may be applied without limitation.
광검출부(600)는 수집된 발광 강도 또는 파장을 분석하여 전기적 신호로 변환한 후, 제어부(700)로 전기적 신호를 전달할 수 있다.The photodetector 600 may analyze the collected emission intensity or wavelength, convert it into an electrical signal, and transmit the electrical signal to the controller 700 .
마이크로 발광소자(100)의 불량 여부를 판단하는 단계(S40)는, 각각의 마이크로 발광소자(100)에서 출사되는 광을 검출하여 정해진 기준 강도 이하의 광을 방출하는 마이크로 발광소자(100)를 불량으로 판단할 수 있다.Determining whether the micro light emitting device 100 is defective (S40) detects light emitted from each micro light emitting device 100 and determines whether the micro light emitting device 100 emitting light with a predetermined reference intensity or less is defective. can be judged by
실시예에 따르면, 진공을 형성하는 단계(S10)와 전자빔을 조사하는 단계(S20) 사이에, 챔버 내부에 배치된 전자빔 조사부의 복수 개의 조사 영역에서 전자빔 강도를 측정하는 단계; 및 복수 개의 조사 영역 중에서 미리 정해진 강도 범위를 벗어나는 조사 영역의 전자빔 강도를 조절하는 단계를 포함할 수 있다.According to the embodiment, between the step of forming a vacuum (S10) and the step of irradiating an electron beam (S20), measuring electron beam intensities in a plurality of radiation areas of an electron beam irradiation unit disposed inside the chamber; and adjusting the intensity of the electron beam in an irradiation area out of a predetermined intensity range among the plurality of irradiation areas.
도 8a 및 도 8b를 참조하면, 전자빔 강도를 측정하는 단계는 마이크로 발광소자(100)에 전자빔을 조사하기 전에 먼저 전자빔 측정부(910)가 전자빔의 균일도를 측정할 수 있다. 전자빔 측정부(910)는 구동부(미도시)에 의해 측정시 전자빔 조사부(200)의 하부에 배치되고, 측정이 완료되면 전자빔 조사부(200)의 하부에서 이탈할 수 있다.Referring to FIGS. 8A and 8B , in the step of measuring the electron beam intensity, the electron beam measurement unit 910 may first measure the uniformity of the electron beam before irradiating the electron beam to the micro light emitting device 100 . The electron beam measuring unit 910 is disposed below the electron beam irradiation unit 200 during measurement by a driving unit (not shown), and may be removed from the lower portion of the electron beam irradiation unit 200 when the measurement is completed.
전자빔 측정부(910)는 복수 개의 감지 영역(P1 내지 P24)으로 구분될 수 있다. 복수 개의 감지 영역(P1 내지 P24)은 복수 개의 조사 영역(S1 내지 S24)과 서로 매칭되게 배치될 수 있다. 따라서, 복수 개의 감지 영역(P1 내지 P24)에서 측정한 값을 이용하여 어느 조사 영역의 전자빔이 불균일한지 판단할 수 있다.The electron beam measuring unit 910 may be divided into a plurality of sensing regions P1 to P24. The plurality of sensing areas P1 to P24 may be arranged to match each other with the plurality of irradiation areas S1 to S24. Accordingly, it is possible to determine which irradiation area has non-uniform electron beams using values measured in the plurality of sensing areas P1 to P24.
전자빔 강도를 조절하는 단계는 상대적으로 전자빔의 강도가 불균일한 지점을 검출하여 해당 영역의 전자빔 강도가 미리 정해진 기준 범위(또는 평균 강도)와 매칭되도록 조정할 수 있다. In the adjusting of the electron beam intensity, a point where the intensity of the electron beam is relatively non-uniform may be detected and the intensity of the electron beam in the corresponding region may be adjusted to match a predetermined reference range (or average intensity).
예시적으로 전자빔의 강도가 약한 지점은 조사 영역의 전압 레벨을 높일 수 있고, 전자빔의 강도가 강한 지점은 조사 영역의 전압 레벨을 낮출 수 있다.For example, the voltage level of the irradiation area may be increased at a point where the intensity of the electron beam is weak, and the voltage level of the irradiation area may be decreased at a point where the intensity of the electron beam is high.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Although the above has been described with reference to the embodiments, this is only an example and does not limit the present invention, and those skilled in the art to which the present invention belongs will not deviate from the essential characteristics of the present embodiment. It will be appreciated that various variations and applications are possible. For example, each component specifically shown in the embodiment can be modified and implemented. And differences related to these modifications and applications should be construed as being included in the scope of the present invention as defined in the appended claims.
Claims (14)
- 복수 개의 마이크로 발광소자가 배치되는 스테이지;a stage on which a plurality of micro light emitting devices are disposed;상기 복수 개의 마이크로 발광소자에 전자빔을 조사하는 전자빔 조사부; 및an electron beam irradiator for irradiating electron beams to the plurality of micro light emitting devices; and상기 스테이지와 상기 전자빔 조사부가 수용되고 내부에 진공을 형성하는 챔버를 포함하는 검사장치.and a chamber accommodating the stage and the electron beam irradiator and forming a vacuum therein.
- 제1항에 있어서,According to claim 1,상기 복수 개의 마이크로 발광소자에서 발광하는 광을 검출하는 광검출부; 및a photodetector for detecting light emitted from the plurality of micro light emitting devices; and상기 광검출부에서 검출한 상기 복수 개의 마이크로 발광소자의 발광 정보를 이용하여 불량 여부를 판단하는 제어부를 포함하는 검사장치.and a control unit for determining whether or not a defect is present using light emitting information of the plurality of micro light emitting devices detected by the photodetector.
- 제2항에 있어서,According to claim 2,상기 전자빔 조사부는 제1 전극층, 및 상기 제1 전극층 상에 형성되어 상기 복수 개의 마이크로 발광소자를 향해 전자빔을 방출하는 복수 개의 에미터를 포함하는 검사장치.The electron beam irradiation unit includes a first electrode layer and a plurality of emitters formed on the first electrode layer to emit electron beams toward the plurality of micro light emitting devices.
- 제3항에 있어서,According to claim 3,상기 복수 개의 에미터는 탄소나노튜브를 포함하는 검사장치.Wherein the plurality of emitters include carbon nanotubes.
- 제3항에 있어서,According to claim 3,상기 전자빔 조사부에 인가되는 전압을 조절하는 전압 조절부를 포함하는 검사장치.and a voltage controller configured to adjust a voltage applied to the electron beam irradiator.
- 제5항에 있어서,According to claim 5,상기 복수 개의 마이크로 발광소자는, 기판 상에 배치되는 제1 도전형 반도체층, 상기 제1 도전형 반도체층 상에 배치되는 활성층, 및 상기 제1 도전형 반도체층 상에 배치되는 제2 도전형 반도체층을 포함하고,The plurality of micro light emitting devices include a first conductivity type semiconductor layer disposed on a substrate, an active layer disposed on the first conductivity type semiconductor layer, and a second conductivity type semiconductor disposed on the first conductivity type semiconductor layer. contains layers,상기 복수 개의 마이크로 발광소자의 상기 활성층과 상기 제2 도전형 반도체층은 복수 개로 구획되고, 상기 복수 개의 마이크로 발광소자의 상기 제1 도전형 반도체층은 서로 연결되고,The active layer and the second conductivity type semiconductor layer of the plurality of micro light emitting devices are partitioned into a plurality, and the first conductivity type semiconductor layers of the plurality of micro light emitting devices are connected to each other;상기 전압 조절부는 상기 제1 전극층과 상기 제1 도전형 반도체층에 전압을 인가하는 검사장치.The voltage adjusting unit applies a voltage to the first electrode layer and the first conductivity-type semiconductor layer.
- 제5항에 있어서,According to claim 5,상기 전압 조절부는 상기 제1 전극층과 상기 복수 개의 마이크로 발광소자의 하부에 배치된 제2 전극층에 전압을 인가하는 검사장치.The voltage adjusting unit applies a voltage to the first electrode layer and the second electrode layer disposed under the plurality of micro light emitting devices.
- 제5항에 있어서,According to claim 5,상기 전자빔 조사부에서 조사하는 전자빔의 강도를 측정하는 전자빔 측정부를 포함하는 검사 장치.and an electron beam measurement unit for measuring an intensity of an electron beam emitted from the electron beam irradiation unit.
- 제8항에 있어서,According to claim 8,상기 전자빔 조사부는 복수 개의 조사 영역을 포함하고,The electron beam irradiation unit includes a plurality of irradiation areas,상기 전자빔 측정부는 상기 복수 개의 조사 영역에 대응되는 복수 개의 감지 영역을 포함하고,The electron beam measuring unit includes a plurality of sensing areas corresponding to the plurality of irradiation areas,상기 제어부는 일부 감지 영역에서 감지된 전자빔의 강도가 미리 정해진 기준 범위에서 벗어나는 경우, 상기 일부 감지 영역에 대응되는 조사 영역의 전자빔 조사 강도를 조절하는 검사장치.Wherein the control unit adjusts the electron beam irradiation intensity of the irradiation area corresponding to the partial sensing area when the intensity of the electron beam detected in the partial sensing area deviates from a predetermined reference range.
- 제2항에 있어서,According to claim 2,상기 광검출부는 상기 복수 개의 마이크로 발광소자에서 생성되어 상기 스테이지의 하부로 출사되는 광을 검출하는 검사장치.The light detection unit detects light generated from the plurality of micro light emitting devices and emitted to a lower portion of the stage.
- 제2항에 있어서,According to claim 2,상기 광검출부는 상기 복수 개의 마이크로 발광소자에서 생성되어 상기 전자빔 조사부의 상부로 출사되는 광을 검출하는 검사장치.The light detection unit detects light generated from the plurality of micro light emitting devices and emitted to an upper portion of the electron beam irradiation unit.
- 챔버 내부에 진공을 형성하는 단계; forming a vacuum inside the chamber;상기 챔버 내부에 배치된 복수 개의 마이크로 발광소자에 전자빔을 조사하는 단계; irradiating an electron beam to a plurality of micro light emitting devices disposed inside the chamber;상기 복수 개의 마이크로 발광소자의 발광 강도를 측정하는 단계; 및 measuring the luminous intensity of the plurality of micro light emitting devices; and상기 복수 개의 마이크로 발광소자의 불량 여부를 판단하는 단계를 포함하는 검사방법.and determining whether the plurality of micro light emitting devices are defective.
- 제12항에 있어서,According to claim 12,상기 전자빔을 조사하는 단계는, The step of irradiating the electron beam,상기 챔버 내부에 배치된 전자빔 조사부에서 전자빔을 조사하여 상기 마이크로 발광소자를 발광시키는 검사방법.An inspection method in which the micro light emitting device emits light by irradiating an electron beam from an electron beam irradiator disposed inside the chamber.
- 제12항에 있어서,According to claim 12,상기 진공을 형성하는 단계와 상기 전자빔을 조사하는 단계 사이에, Between the step of forming the vacuum and the step of irradiating the electron beam,상기 챔버 내부에 배치된 전자빔 조사부의 복수 개의 조사 영역에서 전자빔 강도를 측정하는 단계; 및measuring electron beam intensities in a plurality of irradiation areas of an electron beam irradiation unit disposed inside the chamber; and상기 복수 개의 조사 영역 중에서 미리 정해진 강도 범위를 벗어나는 조사 영역의 전자빔 강도를 조절하는 단계를 포함하는 검사방법.and adjusting an electron beam intensity of an irradiation area out of a predetermined intensity range among the plurality of irradiation areas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280081548.6A CN118401847A (en) | 2021-12-09 | 2022-12-05 | Inspection device and inspection method using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0176015 | 2021-12-09 | ||
KR1020210176015A KR20230087241A (en) | 2021-12-09 | 2021-12-09 | Inspection device and inspection method using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023106756A1 true WO2023106756A1 (en) | 2023-06-15 |
Family
ID=86730854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/019592 WO2023106756A1 (en) | 2021-12-09 | 2022-12-05 | Inspection device and inspection method using same |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR20230087241A (en) |
CN (1) | CN118401847A (en) |
TW (1) | TW202338384A (en) |
WO (1) | WO2023106756A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100593317B1 (en) * | 2003-03-04 | 2006-06-26 | 가부시키가이샤 시마즈세이사쿠쇼 | Apparatus and method for testing pixels arranged in a matrix array |
JP4729626B2 (en) * | 2005-10-26 | 2011-07-20 | テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム | Exposed conductor system and method for sensing an electron beam |
KR101831368B1 (en) * | 2011-06-03 | 2018-02-23 | 삼성디스플레이 주식회사 | Array test device and array test method for organic light emitting display device and method for manufacturing the organic light emitting display device |
US20190004105A1 (en) * | 2017-06-20 | 2019-01-03 | Tesoro Scientific, Inc. | Light emitting diode (led) test apparatus and method of manufacture |
KR102170679B1 (en) * | 2019-06-07 | 2020-10-27 | 손효근 | Nondestructive assessment system for assessing object and method for assessing object used thefefor |
-
2021
- 2021-12-09 KR KR1020210176015A patent/KR20230087241A/en not_active Application Discontinuation
-
2022
- 2022-12-05 WO PCT/KR2022/019592 patent/WO2023106756A1/en active Application Filing
- 2022-12-05 TW TW111146631A patent/TW202338384A/en unknown
- 2022-12-05 CN CN202280081548.6A patent/CN118401847A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100593317B1 (en) * | 2003-03-04 | 2006-06-26 | 가부시키가이샤 시마즈세이사쿠쇼 | Apparatus and method for testing pixels arranged in a matrix array |
JP4729626B2 (en) * | 2005-10-26 | 2011-07-20 | テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム | Exposed conductor system and method for sensing an electron beam |
KR101831368B1 (en) * | 2011-06-03 | 2018-02-23 | 삼성디스플레이 주식회사 | Array test device and array test method for organic light emitting display device and method for manufacturing the organic light emitting display device |
US20190004105A1 (en) * | 2017-06-20 | 2019-01-03 | Tesoro Scientific, Inc. | Light emitting diode (led) test apparatus and method of manufacture |
KR102170679B1 (en) * | 2019-06-07 | 2020-10-27 | 손효근 | Nondestructive assessment system for assessing object and method for assessing object used thefefor |
Also Published As
Publication number | Publication date |
---|---|
CN118401847A (en) | 2024-07-26 |
KR20230087241A (en) | 2023-06-16 |
TW202338384A (en) | 2023-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10962586B2 (en) | Light emitting diode (LED) test apparatus and method of manufacture | |
KR20200010590A (en) | Light emitting diode (LED) test device and manufacturing method | |
WO2023106756A1 (en) | Inspection device and inspection method using same | |
WO2023200160A1 (en) | Test device and test method using same | |
KR102688442B1 (en) | Inspection device and inspection method using the same | |
KR20240000255A (en) | Inspection device and inspection method using the same | |
KR20240028784A (en) | Inspection device and inspection method using the same | |
KR20230147323A (en) | Inspection device and inspection method using the same | |
KR20230150122A (en) | Inspection device and inspection method using the same | |
KR20240010782A (en) | Inspection device and inspection method using the same | |
KR20240037758A (en) | Inspection device and inspection method using the same | |
KR20240041164A (en) | Inspection device and inspection method using the same | |
KR20240013299A (en) | Inspection device and inspection method using the same | |
KR20230165443A (en) | Inspection device and inspection method using the same | |
KR20240045805A (en) | Inspection device and inspection method using the same | |
KR20240000254A (en) | Inspection device and inspection method using the same | |
KR20240007382A (en) | Inspection device and inspection method using the same | |
KR20240003184A (en) | Inspection device and inspection method using the same | |
KR20230169803A (en) | Inspection device and inspection method using the same | |
KR20240025159A (en) | Inspection device and inspection method using the same | |
KR20240022671A (en) | Inspection device and inspection method using the same | |
KR20240019573A (en) | Inspection device and inspection method using the same | |
KR20240016055A (en) | Inspection device and inspection method using the same | |
KR20240052177A (en) | Inspection device and inspection method using the same | |
KR20230159135A (en) | Inspection device and inspection method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22904586 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280081548.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |