WO2023106599A1 - 참조샘플라인의 유도 기반 인트라 예측을 이용하는 비디오 코딩을 위한 방법 및 장치 - Google Patents

참조샘플라인의 유도 기반 인트라 예측을 이용하는 비디오 코딩을 위한 방법 및 장치 Download PDF

Info

Publication number
WO2023106599A1
WO2023106599A1 PCT/KR2022/015401 KR2022015401W WO2023106599A1 WO 2023106599 A1 WO2023106599 A1 WO 2023106599A1 KR 2022015401 W KR2022015401 W KR 2022015401W WO 2023106599 A1 WO2023106599 A1 WO 2023106599A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference sample
sample line
mode
current block
derivation
Prior art date
Application number
PCT/KR2022/015401
Other languages
English (en)
French (fr)
Inventor
최한솔
이민훈
심동규
허진
박승욱
Original Assignee
현대자동차주식회사
기아 주식회사
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220129732A external-priority patent/KR20230085063A/ko
Application filed by 현대자동차주식회사, 기아 주식회사, 광운대학교 산학협력단 filed Critical 현대자동차주식회사
Priority to CN202280080888.7A priority Critical patent/CN118355658A/zh
Publication of WO2023106599A1 publication Critical patent/WO2023106599A1/ko
Priority to US18/734,540 priority patent/US20240323356A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the present disclosure relates to a video coding method and apparatus using inductive-based intra prediction of a reference sample line.
  • video data Since video data has a large amount of data compared to audio data or still image data, it requires a lot of hardware resources including memory to store or transmit itself without processing for compression.
  • an encoder when video data is stored or transmitted, an encoder is used to compress and store or transmit the video data, and a decoder receives, decompresses, and reproduces the compressed video data.
  • video compression technologies include H.264/AVC, High Efficiency Video Coding (HEVC), and Versatile Video Coding (VVC), which has improved coding efficiency by about 30% or more compared to HEVC.
  • VVC technology when predicting the current block (hereinafter, used interchangeably with 'prediction unit') according to the intra prediction mode, the current block according to modes such as MIP (Matrix-based Intra Prediction), DC, Planar, Angular, etc. Generates a prediction block of When the prediction mode is the MIP mode, a prediction block is generated without subblock partitioning of the current block according to Intra-sub Partitions (ISP). If the prediction mode is not the MIP mode, a prediction block may be generated with or without subblock division of the current block. The prediction mode can be parsed for the current block regardless of whether ISP is split or not. For subblocks within the current block, a prediction block of each subblock may be generated using the same prediction mode as that of the current block.
  • MIP Microx-based Intra Prediction
  • DC Planar
  • Angular etc.
  • reference sample lines can be derived.
  • a prediction block may be generated according to each prediction mode using the filtered reference sample lines.
  • a pixel line adjacent to the left side of the current block and a pixel line adjacent to the top side of the current block may be derived as reference sample lines.
  • MRL multi-reference line
  • one left pixel line and one top pixel line among three pixel lines close to the left and top of the current block may be selected as reference pixel lines.
  • a method of using a reference sample line needs to be further improved.
  • the present disclosure in order to improve video encoding efficiency and video quality, derives reference sample lines of a current block using various derivation schemes, and performs video intra prediction of the current block using the derived reference sample lines.
  • the purpose is to provide a coding method and device.
  • a method of intra prediction of a current block performed by a video decoding apparatus decoding an intra prediction mode and a derivation mode index of the current block from a bitstream, wherein the derivation mode indicate a reference sample line derivation mode, wherein the reference sample line derivation mode is one of a fixed position reference sample line mode, a variable position reference sample line mode and a reference sample line list reference mode; determining the reference sample line induction mode according to the induction mode index; deriving reference sample lines of the current block according to the reference sample line derivation mode, wherein the reference sample lines include a left reference sample line and an upper reference sample line; and generating a prediction block of the current block according to the intra prediction mode using reference samples within the reference sample lines.
  • a method of intra prediction of a current block includes determining an intra prediction mode of the current block; Determining a derivation mode index of the current block, wherein the derivation mode index indicates a reference sample line derivation mode, and the reference sample line derivation mode includes a fixed-position reference sample line mode, a variable-position reference sample line mode, and a reference sample line derivation mode.
  • the sample line list reference modes is one of the sample line list reference modes; determining the reference sample line induction mode according to the induction mode index; deriving reference sample lines of the current block according to the reference sample line derivation mode, wherein the reference sample lines include a left reference sample line and an upper reference sample line; and generating a prediction block of the current block according to the intra prediction mode using reference samples within the reference sample lines.
  • a computer readable recording medium storing a bitstream generated by an image encoding method, the image encoding method comprising: determining an intra prediction mode of a current block; Determining a derivation mode index of the current block, wherein the derivation mode index indicates a reference sample line derivation mode, and the reference sample line derivation mode includes a fixed-position reference sample line mode, a variable-position reference sample line mode, and a reference sample line derivation mode.
  • the sample line list reference modes is one of the sample line list reference modes; determining the reference sample line induction mode according to the induction mode index; deriving reference sample lines of the current block according to the reference sample line derivation mode, wherein the reference sample lines include a left reference sample line and an upper reference sample line; and generating a prediction block of the current block according to the intra prediction mode using reference samples in the reference sample lines.
  • a video coding method and apparatus for deriving reference sample lines of a current block using various derivation schemes and performing intra prediction of the current block using the derived reference sample lines are provided. By doing so, there is an effect of improving video encoding efficiency and improving video quality.
  • FIG. 1 is an exemplary block diagram of an image encoding apparatus capable of implementing the techniques of this disclosure.
  • FIG. 2 is a diagram for explaining a method of dividing a block using a QTBTTT structure.
  • 3A and 3B are diagrams illustrating a plurality of intra prediction modes including wide-angle intra prediction modes.
  • FIG. 4 is an exemplary diagram of neighboring blocks of a current block.
  • FIG. 5 is an exemplary block diagram of a video decoding apparatus capable of implementing the techniques of this disclosure.
  • FIG. 6 is a detailed block diagram of an intra prediction unit according to an embodiment of the present disclosure.
  • FIG. 7 is an exemplary diagram illustrating a first use condition of a variable position reference sample line mode or a reference sample line list reference mode according to an embodiment of the present disclosure.
  • 8A to 8D are exemplary diagrams illustrating derivation of reference sample lines in a variable position reference sample line mode according to an embodiment of the present disclosure.
  • FIG. 9 is an exemplary diagram illustrating sub reference sample lines in an upper reference sample line according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart illustrating an image encoding method according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart illustrating an image decoding method according to an embodiment of the present disclosure.
  • FIG. 1 is an exemplary block diagram of an image encoding apparatus capable of implementing the techniques of this disclosure.
  • an image encoding device and sub-components of the device will be described.
  • the image encoding apparatus includes a picture division unit 110, a prediction unit 120, a subtractor 130, a transform unit 140, a quantization unit 145, a rearrangement unit 150, an entropy encoding unit 155, and an inverse quantization unit. 160, an inverse transform unit 165, an adder 170, a loop filter unit 180, and a memory 190.
  • Each component of the image encoding device may be implemented as hardware or software, or as a combination of hardware and software. Also, the function of each component may be implemented as software, and the microprocessor may be implemented to execute the software function corresponding to each component.
  • One image is composed of one or more sequences including a plurality of pictures.
  • Each picture is divided into a plurality of areas and encoding is performed for each area.
  • one picture is divided into one or more tiles or/and slices.
  • one or more tiles may be defined as a tile group.
  • Each tile or/slice is divided into one or more Coding Tree Units (CTUs).
  • CTUs Coding Tree Units
  • each CTU is divided into one or more CUs (Coding Units) by a tree structure.
  • Information applied to each CU is coded as a CU syntax, and information commonly applied to CUs included in one CTU is coded as a CTU syntax.
  • information commonly applied to all blocks in one slice is coded as syntax of a slice header
  • information applied to all blocks constituting one or more pictures is a picture parameter set (PPS) or picture coded in the header.
  • PPS picture parameter set
  • information commonly referred to by a plurality of pictures is coded into a Sequence Parameter Set (SPS).
  • SPS Sequence Parameter Set
  • VPS video parameter set
  • information commonly applied to one tile or tile group may be encoded as syntax of a tile or tile group header. Syntax included in the SPS, PPS, slice header, tile or tile group header may be referred to as high level syntax.
  • the picture divider 110 determines the size of a coding tree unit (CTU).
  • CTU size Information on the size of the CTU (CTU size) is encoded as SPS or PPS syntax and transmitted to the video decoding apparatus.
  • the picture division unit 110 divides each picture constituting an image into a plurality of Coding Tree Units (CTUs) having a predetermined size, and then iteratively divides the CTUs using a tree structure. Divide (recursively). A leaf node in the tree structure becomes a coding unit (CU), which is a basic unit of encoding.
  • CTUs Coding Tree Units
  • a quad tree in which a parent node (or parent node) is divided into four subnodes (or child nodes) of the same size
  • a binary tree in which a parent node is divided into two subnodes , BT
  • a TernaryTree in which a parent node is split into three subnodes at a ratio of 1:2:1, or a structure in which two or more of these QT structures, BT structures, and TT structures are mixed.
  • QuadTree plus BinaryTree (QTBT) structure may be used, or a QuadTree plus BinaryTree TernaryTree (QTBTTT) structure may be used.
  • QTBTTT QuadTree plus BinaryTree TernaryTree
  • BTTT may be combined to be referred to as MTT (Multiple-Type Tree).
  • FIG. 2 is a diagram for explaining a method of dividing a block using a QTBTTT structure.
  • the CTU may first be divided into QT structures. Quadtree splitting can be repeated until the size of the splitting block reaches the minimum block size (MinQTSize) of leaf nodes allowed by QT.
  • a first flag (QT_split_flag) indicating whether each node of the QT structure is split into four nodes of a lower layer is encoded by the entropy encoder 155 and signaled to the video decoding device. If the leaf node of QT is not larger than the maximum block size (MaxBTSize) of the root node allowed in BT, it may be further divided into either a BT structure or a TT structure. A plurality of division directions may exist in the BT structure and/or the TT structure.
  • a second flag indicating whether nodes are split, and if split, a flag indicating additional split direction (vertical or horizontal) and/or split type (Binary or Ternary) is encoded by the entropy encoding unit 155 and signaled to the video decoding apparatus.
  • a CU split flag (split_cu_flag) indicating whether the node is split is coded. It could be.
  • the value of the CU split flag indicates that it is not split, the block of the corresponding node becomes a leaf node in the split tree structure and becomes a coding unit (CU), which is a basic unit of encoding.
  • the value of the CU split flag indicates splitting, the video encoding apparatus starts encoding from the first flag in the above-described manner.
  • the block of the corresponding node is divided into two blocks of the same size horizontally (i.e., symmetric horizontal splitting) and the type that splits vertically (i.e., symmetric vertical splitting).
  • Branches may exist.
  • a split flag (split_flag) indicating whether each node of the BT structure is split into blocks of a lower layer and split type information indicating a split type are encoded by the entropy encoder 155 and transmitted to the video decoding device.
  • split_flag split flag
  • a type in which a block of a corresponding node is divided into two blocks having an asymmetric shape may additionally exist.
  • the asymmetric form may include a form in which the block of the corresponding node is divided into two rectangular blocks having a size ratio of 1:3, or a form in which the block of the corresponding node is divided in a diagonal direction may be included.
  • a CU can have various sizes depending on the QTBT or QTBTTT split from the CTU.
  • a block corresponding to a CU to be encoded or decoded ie, a leaf node of QTBTTT
  • a 'current block' a block corresponding to a CU to be encoded or decoded
  • the shape of the current block may be rectangular as well as square.
  • the prediction unit 120 predicts a current block and generates a prediction block.
  • the prediction unit 120 includes an intra prediction unit 122 and an inter prediction unit 124 .
  • each current block in a picture can be coded predictively.
  • prediction of a current block uses an intra-prediction technique (using data from a picture containing the current block) or an inter-prediction technique (using data from a picture coded before the picture containing the current block). can be performed
  • Inter prediction includes both uni-prediction and bi-prediction.
  • the intra predictor 122 predicts pixels in the current block using pixels (reference pixels) located around the current block in the current picture including the current block.
  • a plurality of intra prediction modes exist according to the prediction direction.
  • the plurality of intra prediction modes may include two non-directional modes including a planar mode and a DC mode and 65 directional modes.
  • the neighboring pixels to be used and the arithmetic expression are defined differently.
  • directional modes For efficient directional prediction of the rectangular current block, directional modes (numbers 67 to 80 and -1 to -14 intra prediction modes) indicated by dotted arrows in FIG. 3B may be additionally used. These may be referred to as “wide angle intra-prediction modes”.
  • arrows indicate corresponding reference samples used for prediction and do not indicate prediction directions. The prediction direction is opposite to the direction the arrow is pointing.
  • Wide-angle intra prediction modes are modes that perform prediction in the opposite direction of a specific directional mode without additional bit transmission when the current block is rectangular. At this time, among the wide-angle intra prediction modes, some wide-angle intra prediction modes usable for the current block may be determined by the ratio of the width and height of the rectangular current block.
  • wide-angle intra prediction modes (67 to 80 intra prediction modes) having an angle smaller than 45 degrees are usable when the current block has a rectangular shape with a height smaller than a width, and a wide angle having an angle greater than -135 degrees.
  • Intra prediction modes (-1 to -14 intra prediction modes) are available when the current block has a rectangular shape where the width is greater than the height.
  • the intra prediction unit 122 may determine an intra prediction mode to be used for encoding the current block.
  • the intra prediction unit 122 may encode the current block using several intra prediction modes and select an appropriate intra prediction mode to be used from the tested modes.
  • the intra predictor 122 calculates rate-distortion values using rate-distortion analysis for several tested intra-prediction modes, and has the best rate-distortion characteristics among the tested modes. Intra prediction mode can also be selected.
  • the intra prediction unit 122 selects one intra prediction mode from among a plurality of intra prediction modes, and predicts a current block using neighboring pixels (reference pixels) determined according to the selected intra prediction mode and an arithmetic expression.
  • Information on the selected intra prediction mode is encoded by the entropy encoder 155 and transmitted to the video decoding apparatus.
  • the inter prediction unit 124 generates a prediction block for a current block using a motion compensation process.
  • the inter-prediction unit 124 searches for a block most similar to the current block in the encoded and decoded reference picture prior to the current picture, and generates a prediction block for the current block using the searched block. Then, a motion vector (MV) corresponding to displacement between the current block in the current picture and the prediction block in the reference picture is generated.
  • MV motion vector
  • motion estimation is performed on a luma component, and a motion vector calculated based on the luma component is used for both the luma component and the chroma component.
  • Motion information including reference picture information and motion vector information used to predict the current block is encoded by the entropy encoding unit 155 and transmitted to the video decoding apparatus.
  • the inter-prediction unit 124 may perform interpolation on a reference picture or reference block in order to increase prediction accuracy. That is, subsamples between two consecutive integer samples are interpolated by applying filter coefficients to a plurality of consecutive integer samples including the two integer samples.
  • the motion vector can be expressed with precision of decimal units instead of integer sample units.
  • the precision or resolution of the motion vector may be set differently for each unit of a target region to be encoded, for example, a slice, tile, CTU, or CU.
  • AMVR adaptive motion vector resolution
  • information on motion vector resolution to be applied to each target region must be signaled for each target region. For example, when the target region is a CU, information on motion vector resolution applied to each CU is signaled.
  • Information on the motion vector resolution may be information indicating the precision of differential motion vectors, which will be described later.
  • the inter prediction unit 124 may perform inter prediction using bi-prediction.
  • bi-directional prediction two reference pictures and two motion vectors representing positions of blocks most similar to the current block within each reference picture are used.
  • the inter prediction unit 124 selects a first reference picture and a second reference picture from reference picture list 0 (RefPicList0) and reference picture list 1 (RefPicList1), respectively, and searches for a block similar to the current block within each reference picture.
  • a first reference block and a second reference block are generated.
  • a prediction block for the current block is generated by averaging or weighted averaging the first reference block and the second reference block.
  • reference picture list 0 may include pictures prior to the current picture in display order among restored pictures
  • reference picture list 1 may include pictures after the current picture in display order among restored pictures.
  • ups and downs pictures subsequent to the current picture may be additionally included in reference picture list 0, and conversely, ups and downs pictures prior to the current picture may be additionally included in reference picture list 1. may also be included.
  • the motion information of the current block can be delivered to the video decoding apparatus by encoding information capable of identifying the neighboring block. This method is called 'merge mode'.
  • the inter prediction unit 124 selects a predetermined number of merge candidate blocks (hereinafter referred to as 'merge candidates') from neighboring blocks of the current block.
  • Neighboring blocks for deriving merge candidates include a left block (A0), a lower left block (A1), an upper block (B0), and an upper right block (B1) adjacent to the current block in the current picture, as shown in FIG. ), and all or part of the upper left block A2 may be used.
  • a block located in a reference picture (which may be the same as or different from a reference picture used to predict the current block) other than the current picture in which the current block is located may be used as a merge candidate.
  • a block co-located with the current block in the reference picture or blocks adjacent to the co-located block may be additionally used as a merge candidate. If the number of merge candidates selected by the method described above is less than the preset number, a 0 vector is added to the merge candidates.
  • the inter prediction unit 124 constructs a merge list including a predetermined number of merge candidates using these neighboring blocks. Among the merge candidates included in the merge list, a merge candidate to be used as motion information of the current block is selected, and merge index information for identifying the selected candidate is generated. The generated merge index information is encoded by the encoder 150 and transmitted to the video decoding apparatus.
  • Merge skip mode is a special case of merge mode. After performing quantization, when all transform coefficients for entropy encoding are close to zero, only neighboring block selection information is transmitted without transmitting a residual signal. By using the merge skip mode, it is possible to achieve a relatively high encoding efficiency in low-motion images, still images, screen content images, and the like.
  • merge mode and merge skip mode are collectively referred to as merge/skip mode.
  • AMVP Advanced Motion Vector Prediction
  • the inter prediction unit 124 derives predictive motion vector candidates for the motion vector of the current block using neighboring blocks of the current block.
  • Neighboring blocks used to derive predictive motion vector candidates include a left block A0, a lower left block A1, an upper block B0, and an upper right block adjacent to the current block in the current picture shown in FIG. B1), and all or part of the upper left block (A2) may be used.
  • a block located in a reference picture (which may be the same as or different from the reference picture used to predict the current block) other than the current picture where the current block is located will be used as a neighboring block used to derive motion vector candidates.
  • a collocated block co-located with the current block within the reference picture or blocks adjacent to the collocated block may be used. If the number of motion vector candidates is smaller than the preset number according to the method described above, a 0 vector is added to the motion vector candidates.
  • the inter-prediction unit 124 derives predicted motion vector candidates using the motion vectors of the neighboring blocks, and determines a predicted motion vector for the motion vector of the current block using the predicted motion vector candidates. Then, a differential motion vector is calculated by subtracting the predicted motion vector from the motion vector of the current block.
  • the predicted motion vector may be obtained by applying a predefined function (eg, median value, average value operation, etc.) to predicted motion vector candidates.
  • a predefined function eg, median value, average value operation, etc.
  • the video decoding apparatus also knows the predefined function.
  • the video decoding apparatus since a neighboring block used to derive a predicted motion vector candidate is a block that has already been encoded and decoded, the video decoding apparatus also knows the motion vector of the neighboring block. Therefore, the video encoding apparatus does not need to encode information for identifying a predictive motion vector candidate. Therefore, in this case, information on differential motion vectors and information on reference pictures used to predict the current block are encoded.
  • the predicted motion vector may be determined by selecting one of the predicted motion vector candidates.
  • information for identifying the selected predictive motion vector candidate is additionally encoded.
  • the subtractor 130 subtracts the prediction block generated by the intra prediction unit 122 or the inter prediction unit 124 from the current block to generate a residual block.
  • the transform unit 140 transforms the residual signal in the residual block having pixel values in the spatial domain into transform coefficients in the frequency domain.
  • the transform unit 140 may transform residual signals in the residual block by using the entire size of the residual block as a transform unit, or divide the residual block into a plurality of subblocks and use the subblocks as a transform unit to perform transformation. You may.
  • the residual signals may be divided into two subblocks, a transform region and a non-transform region, and transform the residual signals using only the transform region subblock as a transform unit.
  • the transformation region subblock may be one of two rectangular blocks having a size ratio of 1:1 based on a horizontal axis (or a vertical axis).
  • a flag (cu_sbt_flag) indicating that only subblocks have been transformed, directional (vertical/horizontal) information (cu_sbt_horizontal_flag), and/or location information (cu_sbt_pos_flag) are encoded by the entropy encoding unit 155 and signaled to the video decoding device.
  • the size of the transform region subblock may have a size ratio of 1:3 based on the horizontal axis (or vertical axis), and in this case, a flag (cu_sbt_quad_flag) for distinguishing the corresponding division is additionally encoded by the entropy encoder 155 to obtain an image It is signaled to the decryption device.
  • the transform unit 140 may individually transform the residual block in the horizontal direction and the vertical direction.
  • various types of transformation functions or transformation matrices may be used.
  • a pair of transformation functions for horizontal transformation and vertical transformation may be defined as a multiple transform set (MTS).
  • the transform unit 140 may select one transform function pair having the highest transform efficiency among the MTS and transform the residual blocks in the horizontal and vertical directions, respectively.
  • Information (mts_idx) on a pair of transform functions selected from the MTS is encoded by the entropy encoding unit 155 and signaled to the video decoding device.
  • the quantization unit 145 quantizes transform coefficients output from the transform unit 140 using a quantization parameter, and outputs the quantized transform coefficients to the entropy encoding unit 155 .
  • the quantization unit 145 may directly quantize a related residual block without transformation for a certain block or frame.
  • the quantization unit 145 may apply different quantization coefficients (scaling values) according to positions of transform coefficients in the transform block.
  • a quantization matrix applied to the two-dimensionally arranged quantized transform coefficients may be coded and signaled to the video decoding apparatus.
  • the rearrangement unit 150 may rearrange the coefficient values of the quantized residual values.
  • the reordering unit 150 may change a 2D coefficient array into a 1D coefficient sequence using coefficient scanning. For example, the reordering unit 150 may output a one-dimensional coefficient sequence by scanning DC coefficients to coefficients in a high frequency region using a zig-zag scan or a diagonal scan. .
  • zig-zag scan vertical scan that scans a 2D coefficient array in a column direction and horizontal scan that scans 2D block-shaped coefficients in a row direction may be used. That is, a scan method to be used among zig-zag scan, diagonal scan, vertical scan, and horizontal scan may be determined according to the size of the transform unit and the intra prediction mode.
  • the entropy encoding unit 155 uses various encoding schemes such as CABAC (Context-based Adaptive Binary Arithmetic Code) and Exponential Golomb to convert the one-dimensional quantized transform coefficients output from the reordering unit 150 to each other.
  • CABAC Context-based Adaptive Binary Arithmetic Code
  • Exponential Golomb Exponential Golomb to convert the one-dimensional quantized transform coefficients output from the reordering unit 150 to each other.
  • a bitstream is created by encoding the sequence.
  • the entropy encoding unit 155 encodes information such as CTU size, CU splitting flag, QT splitting flag, MTT splitting type, and MTT splitting direction related to block splitting so that the video decoding apparatus can divide the block in the same way as the video encoding apparatus. make it possible to divide
  • the entropy encoding unit 155 encodes information about a prediction type indicating whether the current block is encoded by intra prediction or inter prediction, and encodes intra prediction information (ie, intra prediction) according to the prediction type. mode) or inter prediction information (motion information encoding mode (merge mode or AMVP mode), merge index in case of merge mode, reference picture index and differential motion vector information in case of AMVP mode) are encoded.
  • the entropy encoding unit 155 encodes information related to quantization, that is, information about quantization parameters and information about quantization matrices.
  • the inverse quantization unit 160 inversely quantizes the quantized transform coefficients output from the quantization unit 145 to generate transform coefficients.
  • the inverse transform unit 165 transforms transform coefficients output from the inverse quantization unit 160 from a frequency domain to a spatial domain to restore a residual block.
  • the adder 170 restores the current block by adding the restored residual block and the predicted block generated by the predictor 120. Pixels in the reconstructed current block are used as reference pixels when intra-predicting the next block.
  • the loop filter unit 180 reconstructs pixels in order to reduce blocking artifacts, ringing artifacts, blurring artifacts, etc. caused by block-based prediction and transformation/quantization. perform filtering on The filter unit 180 is an in-loop filter and may include all or part of a deblocking filter 182, a sample adaptive offset (SAO) filter 184, and an adaptive loop filter (ALF) 186. .
  • a deblocking filter 182 a sample adaptive offset (SAO) filter 184
  • ALF adaptive loop filter
  • the deblocking filter 182 filters the boundary between reconstructed blocks to remove blocking artifacts caused by block-by-block encoding/decoding, and the SAO filter 184 and alf 186 perform deblocking filtering. Additional filtering is performed on the image.
  • the SAO filter 184 and the alf 186 are filters used to compensate for a difference between a reconstructed pixel and an original pixel caused by lossy coding.
  • the SAO filter 184 improves not only subjective picture quality but also coding efficiency by applying an offset in units of CTUs.
  • the ALF 186 performs block-by-block filtering. Distortion is compensated for by applying different filters by distinguishing the edge of the corresponding block and the degree of change.
  • Information on filter coefficients to be used for ALF may be coded and signaled to the video decoding apparatus.
  • the reconstruction block filtered through the deblocking filter 182, the SAO filter 184, and the ALF 186 is stored in the memory 190.
  • the reconstructed picture can be used as a reference picture for inter-prediction of blocks in the picture to be encoded later.
  • FIG. 5 is an exemplary block diagram of a video decoding apparatus capable of implementing the techniques of this disclosure.
  • a video decoding device and sub-elements of the device will be described.
  • the image decoding apparatus includes an entropy decoding unit 510, a rearrangement unit 515, an inverse quantization unit 520, an inverse transform unit 530, a prediction unit 540, an adder 550, a loop filter unit 560, and a memory ( 570) may be configured.
  • each component of the image decoding device may be implemented as hardware or software, or a combination of hardware and software.
  • the function of each component may be implemented as software, and the microprocessor may be implemented to execute the software function corresponding to each component.
  • the entropy decoding unit 510 determines a current block to be decoded by extracting information related to block division by decoding the bitstream generated by the video encoding apparatus, and provides prediction information and residual signals necessary for restoring the current block. extract information, etc.
  • the entropy decoding unit 510 determines the size of the CTU by extracting information about the CTU size from a sequence parameter set (SPS) or a picture parameter set (PPS), and divides the picture into CTUs of the determined size. Then, the CTU is divided using the tree structure by determining the CTU as the top layer of the tree structure, that is, the root node, and extracting division information for the CTU.
  • SPS sequence parameter set
  • PPS picture parameter set
  • a first flag (QT_split_flag) related to splitting of QT is first extracted and each node is split into four nodes of a lower layer.
  • QT_split_flag a second flag related to splitting of MTT and split direction (vertical / horizontal) and / or split type (binary / ternary) information are extracted and the corresponding leaf node is MTT split into structures Accordingly, each node below the leaf node of QT is recursively divided into a BT or TT structure.
  • a CU split flag (split_cu_flag) indicating whether the CU is split is first extracted, and when the corresponding block is split, a first flag (QT_split_flag) is extracted.
  • each node may have zero or more iterative MTT splits after zero or more repetitive QT splits.
  • the CTU may immediately undergo MTT splitting, or conversely, only QT splitting may occur multiple times.
  • a first flag (QT_split_flag) related to QT splitting is extracted and each node is split into four nodes of a lower layer. And, for a node corresponding to a leaf node of QT, a split flag (split_flag) indicating whether to further split into BTs and split direction information are extracted.
  • the entropy decoding unit 510 determines a current block to be decoded by using tree structure partitioning, it extracts information about a prediction type indicating whether the current block is intra-predicted or inter-predicted.
  • the prediction type information indicates intra prediction
  • the entropy decoding unit 510 extracts syntax elements for intra prediction information (intra prediction mode) of the current block.
  • the prediction type information indicates inter prediction
  • the entropy decoding unit 510 extracts syntax elements for the inter prediction information, that is, information indicating a motion vector and a reference picture to which the motion vector refers.
  • the entropy decoding unit 510 extracts quantization-related information and information about quantized transform coefficients of the current block as information about the residual signal.
  • the reordering unit 515 converts the sequence of 1-dimensional quantized transform coefficients entropy-decoded in the entropy decoding unit 510 into a 2-dimensional coefficient array (ie, in the reverse order of the coefficient scanning performed by the image encoding apparatus). block) can be changed.
  • the inverse quantization unit 520 inverse quantizes the quantized transform coefficients and inverse quantizes the quantized transform coefficients using a quantization parameter.
  • the inverse quantization unit 520 may apply different quantization coefficients (scaling values) to the two-dimensionally arranged quantized transform coefficients.
  • the inverse quantization unit 520 may perform inverse quantization by applying a matrix of quantization coefficients (scaling values) from the image encoding device to a 2D array of quantized transformation coefficients.
  • the inverse transform unit 530 inversely transforms the inverse quantized transform coefficients from the frequency domain to the spatial domain to restore residual signals, thereby generating a residual block for the current block.
  • the inverse transform unit 530 inverse transforms only a partial region (subblock) of a transform block, a flag (cu_sbt_flag) indicating that only a subblock of the transform block has been transformed, and direction information (vertical/horizontal) information (cu_sbt_horizontal_flag) of the transform block ) and/or the location information (cu_sbt_pos_flag) of the subblock, and inversely transforms the transform coefficients of the corresponding subblock from the frequency domain to the spatial domain to restore the residual signals. By filling , the final residual block for the current block is created.
  • the inverse transform unit 530 determines transform functions or transform matrices to be applied in the horizontal and vertical directions, respectively, using MTS information (mts_idx) signaled from the video encoding device, and uses the determined transform functions. Inverse transform is performed on the transform coefficients in the transform block in the horizontal and vertical directions.
  • the prediction unit 540 may include an intra prediction unit 542 and an inter prediction unit 544 .
  • the intra prediction unit 542 is activated when the prediction type of the current block is intra prediction
  • the inter prediction unit 544 is activated when the prediction type of the current block is inter prediction.
  • the intra prediction unit 542 determines the intra prediction mode of the current block among a plurality of intra prediction modes from the syntax element for the intra prediction mode extracted from the entropy decoding unit 510, and references the current block according to the intra prediction mode.
  • the current block is predicted using pixels.
  • the inter prediction unit 544 determines the motion vector of the current block and the reference picture referred to by the motion vector by using the syntax element for the inter prediction mode extracted from the entropy decoding unit 510, and converts the motion vector and the reference picture. to predict the current block.
  • the adder 550 restores the current block by adding the residual block output from the inverse transform unit and the prediction block output from the inter prediction unit or intra prediction unit. Pixels in the reconstructed current block are used as reference pixels when intra-predicting a block to be decoded later.
  • the loop filter unit 560 may include a deblocking filter 562, an SAO filter 564, and an ALF 566 as in-loop filters.
  • the deblocking filter 562 performs deblocking filtering on boundaries between reconstructed blocks in order to remove blocking artifacts generated by block-by-block decoding.
  • the SAO filter 564 and the ALF 566 perform additional filtering on the reconstructed block after deblocking filtering to compensate for the difference between the reconstructed pixel and the original pixel caused by lossy coding.
  • ALF filter coefficients are determined using information on filter coefficients decoded from the non-stream.
  • the reconstruction block filtered through the deblocking filter 562, the SAO filter 564, and the ALF 566 is stored in the memory 570.
  • the reconstructed picture is used as a reference picture for inter-prediction of blocks in the picture to be encoded later.
  • This embodiment relates to encoding and decoding of images (video) as described above. More specifically, a video coding method and apparatus for deriving reference sample lines of a current block using various derivation schemes and performing intra prediction of the current block using the derived reference sample lines are provided.
  • the following embodiments may be performed by the intra prediction unit 122 in a video encoding device. Also, it may be performed by the intra prediction unit 542 in the video decoding device.
  • the video encoding apparatus may generate signaling information related to the present embodiment in terms of bit rate distortion optimization in intra prediction of the current block.
  • the image encoding device may encode the image using the entropy encoding unit 155 and transmit it to the image decoding device.
  • the video decoding apparatus may decode signaling information related to intra prediction of the current block from a bitstream using the entropy decoding unit 510 .
  • the term 'prediction unit' particularly the current prediction unit, may be used in the same meaning as the current block or coding unit (CU) as described above, or a partial area of the coding unit. may mean
  • a value of one flag being true indicates a case in which the flag is set to 1.
  • a false value of one flag indicates a case in which the flag is set to 0.
  • the following embodiments may be applied to the inter prediction unit 124 in an image encoding device.
  • the inter prediction unit 124 in the video encoding apparatus may configure a merge candidate list by selecting a preset number (eg, 6) of merge candidates.
  • the inter prediction unit 124 searches for spatial merge candidates.
  • the inter prediction unit 124 searches for spatial merge candidates from neighboring blocks as illustrated in FIG. 4 . Up to four spatial merge candidates can be selected.
  • the inter prediction unit 124 searches for a temporal merge candidate.
  • the inter-prediction unit 124 includes a block (co-located at the same position as the current block) in a reference picture (which may be the same as or different from the reference picture used to predict the current block) other than the current picture where the target block is located. located block) can be added as a temporal merge candidate.
  • One temporal merge candidate may be selected.
  • the inter predictor 124 searches for a history-based motion vector predictor (HMVP) candidate.
  • the inter prediction unit 124 may store motion vectors of previous n (where n is a natural number) number of CUs in a table and then use them as merge candidates.
  • the size of the table is 6, and the motion vector of the previous CU is stored according to the FiFO (First-in First Out) method. This indicates that up to 6 HMVP candidates are stored in the table.
  • the inter prediction unit 124 may set recent motion vectors among HMVP candidates stored in the table as merge candidates.
  • the inter prediction unit 124 searches for a Pairwise Average MVP (PAMVP) candidate.
  • the inter prediction unit 124 may set an average of motion vectors of a first candidate and a second candidate in the merge candidate list as a merge candidate.
  • PAMVP Pairwise Average MVP
  • the inter prediction unit 124 adds a zero motion vector as a merge candidate.
  • the above-described method of constructing the merge candidate list may be equally performed by the inter prediction unit 544 in the video decoding apparatus.
  • the following embodiments are described centering on the intra prediction unit 542 of the video decoding apparatus, but may be equally implemented in the intra prediction unit 122 of the video encoding apparatus.
  • FIG. 6 is a detailed block diagram of an intra prediction unit according to an embodiment of the present disclosure.
  • the intra prediction unit 542 in the video decoding apparatus may include all or part of a subblock division derivation unit 602, a prediction mode derivation unit 604, a reference sample line derivation unit 606, and a prediction execution unit 608. .
  • the subblock division derivation unit 602 may derive whether the current block is divided into subblocks. When divided into subblocks, the reference sample line deriving unit 606 and the prediction performing unit 608 may perform corresponding operations in units of subblocks.
  • the prediction mode derivation unit 604 may derive an intra prediction mode of the current block.
  • the prediction mode may be a matrix-based prediction mode, a directional prediction mode, a non-directional prediction mode (such as DC or Planar), and the like.
  • the prediction mode deriving unit 604 may decode an intra prediction mode from a bitstream.
  • the operations of the subblock division derivation unit 602 and the prediction mode derivation unit 604 may also be performed by the entropy decoding unit 510.
  • the reference sample line deriving unit 606 may derive reference sample lines at necessary positions according to the prediction mode.
  • the prediction performer 608 may generate a prediction block of the current block according to a prediction mode using reference samples in the derived reference sample lines.
  • the reference sample line deriving unit 606 may decode a derivation mode index indicating the reference sample line derivation modes of the current block or subblocks. As illustrated in FIG. 6 , the reference sample line deriving unit 606 selects one of the derivation modes of a fixed position reference sample line mode, a variable position reference sample line mode, and a reference sample line list reference mode according to the induction mode index. After that, the reference sample line of the current block or current subblock may be derived using the selected derivation mode. When at least one of the first to third conditions is satisfied, the derivation mode index may be encoded by the video encoding apparatus to indicate a variable position reference sample line mode or a reference sample line list reference mode. On the other hand, when none of the first to third conditions are satisfied, the derivation mode index may be encoded by the video encoding apparatus to indicate the fixed position reference sample line mode.
  • the reference sample line deriving unit 606 checks whether one or more of the first to third conditions are satisfied, and if one or more is satisfied, the variable position reference sample line mode or the reference sample line list reference mode is used. can At this time, the reference sample line deriving unit 606 may parse a flag indicating one of the two modes. On the other hand, when none of the first to third conditions are satisfied, the reference sample line deriving unit 606 may use the fixed position reference sample line mode.
  • (x, y) coordinates of the upper left pixel of the current block are defined as (0, 0).
  • the first condition is a group such as (-1, -1), (-1, 0), (0, -1), (-1, puH) and (puW, -1). This is a case where more than a predetermined number of prediction units among reconstructed prediction units including adjacent pixels of the current block at set positions are reconstructed by inter prediction.
  • puW and puH represent the horizontal and vertical lengths of the current block, that is, the current prediction unit.
  • the second condition is a case where the motion vector encoding mode of the prediction units reconstructed according to inter prediction in the first condition is the spatial merge mode as described above.
  • the third condition is a case in which motion vectors of prediction units reconstructed according to inter prediction in the first condition are similar to each other.
  • the fixed position reference sample line mode uses an existing reference sample line derivation method.
  • the reference sample line deriving unit 606 may derive pixel lines adjacent to the left and top borders of the current block as reference sample lines.
  • 8A to 8D are exemplary diagrams illustrating derivation of reference sample lines in a variable position reference sample line mode according to an embodiment of the present disclosure.
  • the reference sample line deriving unit 606 may derive reference sample lines that are not adjacent to the current block. For example, the reference sample line deriving unit 606 may derive a left reference sample line and an upper reference sample line from a pixel line at a distance of N pixels from the left or upper boundary of the current block. Alternatively, the reference sample line deriving unit 606 may select one of a plurality of derivation methods as illustrated in FIGS. 8A to 8D and derive the left reference sample line and the top reference sample line according to the selected method.
  • the derivation method index of the left reference sample line and the derivation method index of the upper reference sample line may be signaled from the video encoding apparatus to the video decoding apparatus.
  • one derivation method index may be shared for the left reference sample line and the top reference sample line.
  • the coordinates of a pixel having the same y-axis coordinate as the top-left pixel of the current block among left adjacent samples of the processing unit including the current block are defined as (xL, yL).
  • the reference sample line deriving unit 606 may derive samples ranging from (xL, yL + ⁇ ) to (xL, yL + puH ⁇ 2 - 1) to the left reference sample line.
  • is a predetermined integer and may be, for example, -1.
  • puW and puH represent the horizontal and vertical lengths of the current block, that is, the current prediction unit.
  • a processing unit is a unit that can be created by dividing a coding tree unit.
  • One or more coding units may be included in one processing unit, or one or more processing units may be included in one coding unit.
  • An example of a processing unit is a Virtual Pipeline Data Unit (VPDU).
  • a VPDU is a unit of data that can be processed by a virtual pipeline.
  • a VPDU is a maximum unit capable of performing encoding and decoding at one time, and can be used to reduce hardware implementation costs due to an increase in the size of a CTU.
  • vpduW and vpduH represent the width and height of the VDPU.
  • the reference sample line deriving unit 606 may derive samples ranging from (xL, yL + ⁇ ) to (xL, yL + puH ⁇ 2 - 1) to the left reference sample line.
  • the coordinates of an arbitrary pixel existing to the left of the current block among regions decoded before the current block within the processing unit are defined as (xL, yL).
  • the reference sample line deriving unit 606 may derive samples ranging from (xL, yL + ⁇ ) to (xL, yL + puH ⁇ 2 - 1) to the left reference sample line.
  • the y-axis coordinate of the upper left pixel of the current block and the yL coordinate of an arbitrary pixel may be different. All pixels in the derived reference sample line may be included in the same prediction unit. Alternatively, some pixels may be included in another prediction unit.
  • the coordinates (xL, yL) of an arbitrary pixel may be signaled from the video encoding device to the video decoding device.
  • offset values between the coordinates of an arbitrary pixel and the coordinates of an upper-left pixel of the current block may be signaled from the image encoding device to the image decoding device.
  • the x-axis coordinates of pixels in the left reference sample line derived according to the first derivation method, the second derivation method, or the third derivation method may not be the same. Pixels having the same x-axis coordinate and consecutive y-axis coordinates in the left reference sample line are defined as a continuous pixel group. There may be two or more contiguous pixel groups. The number of contiguous pixel groups may be a predetermined number or may be parsed. Alternatively, the number of consecutive pixel groups may be parsed when a specific directional prediction mode is applied. Meanwhile, the length of the contiguous pixel group may be puH, puH+1, puH/2, puH/2+1, and the like.
  • the coordinates and length of the starting pixel can be parsed.
  • a list including the coordinates of the starting pixel and a list including the length may be set. Then, for each contiguous pixel group, an index indicating the coordinates of the starting pixel and an index indicating the length may be parsed.
  • the coordinates of a pixel having the same x-axis coordinate as the top left pixel of the current block among samples adjacent to the top of the processing unit including the current block are defined as (xT, yT).
  • the reference sample line deriving unit 606 may induce samples ranging from (xT + ⁇ , yT) to (xT + puW ⁇ 2 - 1, yT) to the upper reference sample line.
  • the coordinates of the pixel having the same x-axis coordinate as the top left (0, 0) pixel of the current block among the top adjacent samples of the prediction unit including the (0, -1) pixel are (xT, yT) is defined as
  • the reference sample line deriving unit 606 may induce samples ranging from (xT + ⁇ , yT) to (xT + puW ⁇ 2 - 1, yT) to the upper reference sample line.
  • the coordinates of an arbitrary pixel existing above the current block are defined as (xT, yT).
  • the reference sample line deriving unit 606 may induce samples ranging from (xT + ⁇ , yT) to (xT + puW ⁇ 2 - 1, yT) to the upper reference sample line.
  • the x-axis coordinate of the upper left pixel of the current block and the xT coordinate of an arbitrary pixel may be different.
  • the coordinates (xT, yT) of an arbitrary pixel may be signaled from the video encoding device to the video decoding device.
  • offset values between the coordinates of an arbitrary pixel and the coordinates of an upper-left pixel of the current block may be signaled from the image encoding device to the image decoding device.
  • the y-axis coordinates of the pixels in the left reference sample line derived according to the first derivation method, the second derivation method, or the third derivation method may not be the same. Pixels having the same y-axis coordinate and consecutive x-axis coordinates in the upper reference sample line may be referred to as a continuous pixel group. There may be two or more contiguous pixel groups. The number of contiguous pixel groups may be a predetermined number or may be parsed. Alternatively, the number of consecutive pixel groups may be parsed when a specific directional prediction mode is applied. Meanwhile, the length of the contiguous pixel group may be puW, puW+1, puW/2, puW/2+1, or the like.
  • the coordinates and length of the starting pixel can be parsed.
  • a list including the coordinates of the starting pixel and a list including the length may be set. Then, for each contiguous pixel group, an index indicating the coordinates of the starting pixel and an index indicating the length may be parsed.
  • FIG. 9 is an exemplary diagram illustrating sub reference sample lines in an upper reference sample line according to an embodiment of the present disclosure.
  • all pixels in the derived reference sample line may be included in the same prediction unit. There is. Alternatively, some pixels may be included in other prediction units. For example, in the upper reference sample line as in the example of FIG.
  • pixels in the range of (xT, yT) to (xT + a-1, yT) are included in the prediction unit A, and (xT + a, yT) to Pixels in the range of (xT+a+b-1, yT) are included in prediction unit B, and pixels in the range of (xT+a+b, yT) to (xT+a+b+c-1, yT) are predicted may be included in unit C.
  • reference samples included in one prediction unit among the reference sample lines are defined as sub-reference sample lines.
  • the sample line deriving unit 606 may perform blocking effect filtering.
  • (xT+a-1, yT), (xT+a, yT), (xT+a+b-1, yT), (xT+a+b, yT) and (xT+a+b+c-1 , yT) denotes pixels adjacent to the boundary among the upper reference sample lines.
  • the reference sample line deriving unit 606 may determine whether to perform filtering to remove a blocking phenomenon at candidate pixel boundaries. Filtering may be performed at candidate pixel boundaries that satisfy one or more of the following conditions.
  • the first condition is when the quantization parameters of two prediction units on both sides of the boundary are different.
  • the second condition is when the pixel value difference between two pixels of the boundary exceeds the lower limit threshold and is less than the upper limit threshold.
  • the upper threshold may be determined according to quantization parameters of two pixels.
  • the third condition is when a pixel value difference between the start and end pixels of the sub reference sample line is less than the upper limit threshold.
  • the reference sample line deriving unit 606 may perform filtering on d pixels on both sides of the boundary as follows.
  • the reference sample line deriving unit 606 may derive a filtered value by weighting the 2d number of pixel values in order to filter a random pixel p among the aforementioned 2d number of pixels.
  • positions of pixels used for filtering and a weight applied to each pixel may be determined according to a distance between the pixel p and the boundary.
  • filtering is performed as exemplified in Equations 1 and 2 for a pixel of coordinates (xT+a,yT) and a pixel of coordinates (xT+a+1,yT) illustrated in FIG. 9 . It can be.
  • I() and I'() denote pixel values before and after filtering.
  • the same or similar number of pixels on the left and right (or top and bottom) of pixel p may be used in the filtering process. As the pixel p is closer to the boundary, more pixels near the boundary can be used in the filtering process. Weights, that is, filter coefficients may have characteristics of a low pass filter. Filter coefficients based on the distance between the pixel p and the boundary may be used, and the absolute value of the multiplied filter coefficient may be increased for a pixel having a closer distance to the pixel p.
  • the reference sample line derivation unit 606 may select a reference sample line from the reference sample line list.
  • One reference sample line list may be used for the left reference sample line and the top reference sample line.
  • separate reference sample line lists may exist for the left reference sample line and the top reference sample line.
  • separate reference sample line lists may exist according to the length of the reference sample line.
  • the reference sample line deriving unit 606 may use the same fixed list as the reference sample line list. Alternatively, the reference sample line deriving unit 606 may initialize and sequentially update the reference sample line list in units of subframes, frames, frame groups, and the like.
  • the reference sample line list can be updated as follows.
  • the top or left boundary sample line of the reconstructed prediction unit may be added to the reference sample line list.
  • an upper or left boundary sample line of a prediction unit reconstructed using the variable position reference sample line mode or the reference sample line list reference mode may be added to the reference sample line list.
  • the reference sample line deriving unit 606 may select a (left or top) reference sample line by parsing a list reference index indicating one of the reference sample lines included in the reference sample line list. Also, the image decoding apparatus may parse and multiply the weight by each pixel of the reference sample line, or parse and add the offset to each pixel of the reference sample line.
  • FIG. 10 is a flowchart illustrating an image encoding method according to an embodiment of the present disclosure.
  • the video encoding apparatus determines the intra prediction mode of the current block (S1000).
  • the video encoding apparatus determines the induction mode index (S1002).
  • the guide mode index indicates a reference sample line guide mode
  • the reference sample line guide mode is one of a fixed position reference sample line mode, a variable position reference sample line mode, and a reference sample line list reference mode.
  • the video encoding apparatus determines a derivation mode index to indicate a variable position reference sample line mode or a reference sample line list reference mode when at least one of the first to third conditions as described above is satisfied. .
  • the video encoding apparatus determines the derivation mode index to indicate the fixed position reference sample line mode.
  • the video encoding apparatus may use the variable position reference sample line mode or the reference sample line list reference mode. In terms of encoding efficiency optimization, the video encoding apparatus may determine a flag indicating one of the two modes. On the other hand, when none of the first to third conditions are satisfied, the video encoding apparatus may use the fixed position reference sample line mode.
  • the video encoding apparatus determines a reference sample line induction mode according to the induction mode index (S1004).
  • the video encoding apparatus determines the reference sample line derivation mode based on whether the first to third conditions are satisfied and a flag indicating one of the variable position reference sample line mode and the reference sample line list reference mode.
  • the video encoding apparatus derives the reference sample lines of the current block according to the reference sample line derivation mode (S1006).
  • the reference sample lines include a left reference sample line and an upper reference sample line.
  • the image encoding apparatus derives pixel lines adjacent to the left and top borders of the current block as reference sample lines.
  • the video encoding apparatus determines the derivation method index of the left reference sample line and the derivation method index of the upper reference sample line.
  • the derivation method index of the left reference sample line and the derivation method index of the upper reference sample line indicate the first derivation method, the second derivation method, the third derivation method, or the fourth derivation method as described above.
  • the image encoding apparatus determines pixels adjacent to boundaries between the plurality of prediction units. , filtering can be performed to remove the blocking phenomenon.
  • the video encoding apparatus determines a reference index indicating one of the reference sample lines included in the reference sample line list. The video encoding apparatus derives the left reference sample line and the upper reference sample line from the reference sample line list using the reference index.
  • the video encoding device may update the reference sample line list.
  • the image encoding apparatus may add an upper boundary sample line or a left boundary sample line of the reconstructed prediction unit to the reference sample line list.
  • the video encoding apparatus generates a prediction block of a current block according to an intra prediction mode using reference samples in reference sample lines (S1008).
  • the image encoding apparatus generates a residual block by subtracting the prediction block from the current block (S1010).
  • the video encoding apparatus encodes the derivation mode index, the intra prediction mode, and the residual block (S1012).
  • FIG. 11 is a flowchart illustrating an image decoding method according to an embodiment of the present disclosure.
  • the video decoding apparatus decodes the residual block of the current block, the intra prediction mode, and the derivation mode index of the current block from the bitstream (S1100).
  • the guide mode index indicates a reference sample line guide mode
  • the reference sample line guide mode is one of a fixed position reference sample line mode, a variable position reference sample line mode, and a reference sample line list reference mode.
  • the derivation mode index is encoded by the video encoding apparatus to indicate a variable position reference sample line mode or a reference sample line list reference mode.
  • the derivation mode index may be encoded by the video encoding apparatus to indicate the fixed position reference sample line mode.
  • the image decoding apparatus may use a variable position reference sample line mode or a reference sample line list reference mode. In this case, the video decoding apparatus may parse a flag indicating one of the two modes. On the other hand, when none of the first to third conditions are satisfied, the video decoding apparatus may use the fixed position reference sample line mode.
  • the video decoding apparatus determines a reference sample line induction mode according to the induction mode index (S1102).
  • the video decoding apparatus determines the reference sample line derivation mode based on whether the first to third conditions are satisfied and a flag indicating one of the variable position reference sample line mode and the reference sample line list reference mode.
  • the video decoding apparatus derives the reference sample lines of the current block according to the reference sample line derivation mode (S1104).
  • the reference sample lines include a left reference sample line and an upper reference sample line.
  • the image decoding apparatus derives pixel lines adjacent to the left and top boundaries of the current block as reference sample lines.
  • the video decoding apparatus decodes the derivation method index of the left reference sample line and the derivation method index of the upper reference sample line from the bitstream.
  • the derivation method index of the left reference sample line and the derivation method index of the upper reference sample line indicate the first derivation method, the second derivation method, the third derivation method, or the fourth derivation method.
  • the image decoding apparatus determines pixels adjacent to boundaries between the plurality of prediction units. , filtering can be performed to remove the blocking phenomenon.
  • the video decoding apparatus decodes a reference index indicating one of the reference sample lines included in the reference sample line list from the bitstream.
  • the video decoding apparatus derives the left reference sample line and the upper reference sample line from the reference sample line list using the reference index.
  • the video decoding apparatus may update the reference sample line list. For example, the video decoding apparatus may add an upper boundary sample line or a left boundary sample line of the reconstructed prediction unit to the reference sample line list.
  • the video decoding apparatus generates a prediction block of the current block according to an intra prediction mode using reference samples in reference sample lines (S1106).
  • the video decoding apparatus restores the current block by adding the prediction block and the residual block (S1108).
  • Non-transitory recording media include, for example, all types of recording devices in which data is stored in a form readable by a computer system.
  • the non-transitory recording medium includes storage media such as an erasable programmable read only memory (EPROM), a flash drive, an optical drive, a magnetic hard drive, and a solid state drive (SSD).
  • EPROM erasable programmable read only memory
  • SSD solid state drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

참조샘플라인의 유도 기반 인트라 예측을 이용하는 비디오 코딩방법 및 장치에 관한 개시로서, 본 실시예는, 다양한 유도 방식들을 이용하여 현재블록의 참조샘플라인들을 유도하고, 유도된 참조샘플라인들을 이용하여 현재블록의 인트라 예측을 수행하는 비디오 코딩방법 및 장치를 제공한다.

Description

참조샘플라인의 유도 기반 인트라 예측을 이용하는 비디오 코딩을 위한 방법 및 장치
본 개시는 참조샘플라인의 유도 기반 인트라 예측을 이용하는 비디오 코딩방법 및 장치에 관한 것이다.
이하에 기술되는 내용은 단순히 본 발명과 관련되는 배경 정보만을 제공할 뿐 종래기술을 구성하는 것이 아니다.
비디오 데이터는 음성 데이터나 정지 영상 데이터 등에 비하여 많은 데이터량을 가지기 때문에, 압축을 위한 처리 없이 그 자체를 저장하거나 전송하기 위해서는 메모리를 포함하여 많은 하드웨어 자원을 필요로 한다.
따라서, 통상적으로 비디오 데이터를 저장하거나 전송할 때에는 부호화기를 사용하여 비디오 데이터를 압축하여 저장하거나 전송하며, 복호화기에서는 압축된 비디오 데이터를 수신하여 압축을 해제하고 재생한다. 이러한 비디오 압축 기술로는 H.264/AVC, HEVC(High Efficiency Video Coding) 등을 비롯하여, HEVC에 비해 약 30% 이상의 부호화 효율을 향상시킨 VVC(Versatile Video Coding)가 존재한다.
그러나, 영상의 크기 및 해상도, 프레임률이 점차 증가하고 있고, 이에 따라 부호화해야 하는 데이터량도 증가하고 있으므로 기존의 압축 기술보다 더 부호화 효율이 좋고 화질 개선 효과도 높은 새로운 압축 기술이 요구된다.
VVC 기술은, 현재블록(이하, '예측유닛'과 호환적으로 사용)을 인트라 예측모드에 따라 예측하는 경우, MIP(Matrix-based Intra Prediction), DC, Planar, Angular 등의 모드에 따라 현재블록의 예측블록을 생성한다. 예측모드가 MIP 모드인 경우, 현재블록을 ISP(Intra-sub Partitions)에 따른 서브블록 분할을 하지 않은 채로 예측블록이 생성된다. 예측모드가 MIP 모드가 아닌 경우, 현재블록을 서브블록 분할을 하거나 하지 않은 채로 예측블록이 생성될 수 있다. ISP 분할 여부에 상관 없이 예측모드는 현재블록에 대해 파싱될 수 있다. 현재블록 내 서브블록들에 대해 현재블록과 동일한 예측모드를 이용하여 각 서브블록의 예측블록이 생성될 수 있다.
이러한 예측블록을 생성하기 위해, 참조샘플라인들이 유도될 수 있다. 또한, 참조샘플라인들에 필터링이 적용된 후, 필터링된 참조샘플라인들을 이용하여 각 예측모드에 따라 예측블록이 생성될 수 있다. 현재블록의 좌측에 인접한 픽셀라인과 상단에 인접한 픽셀라인이 참조샘플라인들로 유도될 수 있다. MRL(Multi-reference Line) 모드를 사용하는 경우, 현재블록의 좌측과 상단에 가까운 세 픽셀라인들 중 하나의 좌측 픽셀라인과 상단 픽셀라인이 참조픽셀라인들로 선택될 수 있다. 데이터량 증가에 따른, 비디오 부호화 효율을 향상시키고 화질을 개선하기 위해, 참조샘플라인의 사용 방식이 추가적으로 개선될 필요가 있다.
본 개시는, 비디오 부호화 효율을 향상시키고 비디오 화질을 개선하기 위해, 다양한 유도 방식들을 이용하여 현재블록의 참조샘플라인들을 유도하고, 유도된 참조샘플라인들을 이용하여 현재블록의 인트라 예측을 수행하는 비디오 코딩방법 및 장치를 제공하는 데 목적이 있다.
본 개시의 실시예에 따르면, 영상 복호화 장치가 수행하는, 현재블록을 인트라 예측하는 방법에 있어서, 비트스트림으로부터 현재블록의 인트라 예측모드, 및 유도모드 인덱스를 복호화하는 단계, 여기서, 상기 유도모드는 참조샘플라인 유도모드를 지시하고, 상기 참조샘플라인 유도모드는 고정위치 참조샘플라인 모드, 가변위치 참조샘플라인 모드 및 참조샘플라인 리스트참조 모드 중 하나임; 상기 유도모드 인덱스에 따라 상기 참조샘플라인 유도모드를 결정하는 단계; 상기 참조샘플라인 유도모드에 따라 상기 현재블록의 참조샘플라인들을 유도하는 단계, 여기서, 상기 참조샘플라인들은 좌측 참조샘플라인 및 상단 참조샘플라인을 포함함; 및 상기 참조샘플라인들 내 참조샘플들을 이용하여 상기 인트라 예측모드에 따라 상기 현재블록의 예측블록을 생성하는 단계를 포함하는 것을 특징으로 하는, 방법을 제공한다.
본 개시의 다른 실시예에 따르면, 영상 부호화 장치가 수행하는, 현재블록을 인트라 예측하는 방법에 있어서, 상기 현재블록의 인트라 예측모드를 결정하는 단계; 상기 현재블록의 유도모드 인덱스를 결정하는 단계, 여기서, 상기 유도모드 인덱스는 참조샘플라인 유도모드를 지시하고, 상기 참조샘플라인 유도모드는 고정위치 참조샘플라인 모드, 가변위치 참조샘플라인 모드 및 참조샘플라인 리스트참조 모드 중 하나임; 상기 유도모드 인덱스에 따라 상기 참조샘플라인 유도모드를 결정하는 단계; 상기 참조샘플라인 유도모드에 따라 상기 현재블록의 참조샘플라인들을 유도하는 단계, 여기서, 상기 참조샘플라인들은 좌측 참조샘플라인 및 상단 참조샘플라인을 포함함; 및 상기 참조샘플라인들 내 참조샘플들을 이용하여 상기 인트라 예측모드에 따라 상기 현재블록의 예측블록을 생성하는 단계를 포함하는 것을 특징으로 하는, 방법을 제공한다.
본 개시의 다른 실시예에 따르면, 영상 부호화 방법에 의해 생성된 비트스트림을 저장하는 컴퓨터 판독 가능한 기록매체로서, 상기 영상 부호화 방법은, 현재블록의 인트라 예측모드를 결정하는 단계; 상기 현재블록의 유도모드 인덱스를 결정하는 단계, 여기서, 상기 유도모드 인덱스는 참조샘플라인 유도모드를 지시하고, 상기 참조샘플라인 유도모드는 고정위치 참조샘플라인 모드, 가변위치 참조샘플라인 모드 및 참조샘플라인 리스트참조 모드 중 하나임; 상기 유도모드 인덱스에 따라 상기 참조샘플라인 유도모드를 결정하는 단계; 상기 참조샘플라인 유도모드에 따라 상기 현재블록의 참조샘플라인들을 유도하는 단계, 여기서, 상기 참조샘플라인들은 좌측 참조샘플라인 및 상단 참조샘플라인을 포함함; 및 상기 참조샘플라인들 내 참조샘플들을 이용하여 상기 인트라 예측모드에 따라 상기 현재블록의 예측블록을 생성하는 단계를 포함하는 것을 특징으로 하는, 기록매체를 제공한다.
이상에서 설명한 바와 같이 본 실시예에 따르면, 다양한 유도 방식들을 이용하여 현재블록의 참조샘플라인들을 유도하고, 유도된 참조샘플라인들을 이용하여 현재블록의 인트라 예측을 수행하는 비디오 코딩방법 및 장치를 제공함으로써, 비디오 부호화 효율을 향상시키고 비디오 화질을 개선하는 것이 가능해지는 효과가 있다.
도 1은 본 개시의 기술들을 구현할 수 있는 영상 부호화 장치에 대한 예시적인 블록도이다.
도 2는 QTBTTT 구조를 이용하여 블록을 분할하는 방법을 설명하기 위한 도면이다.
도 3a 및 도 3b는 광각 인트라 예측모드들을 포함한 복수의 인트라 예측모드들을 나타낸 도면이다.
도 4는 현재블록의 주변블록에 대한 예시도이다.
도 5는 본 개시의 기술들을 구현할 수 있는 영상 복호화 장치의 예시적인 블록도이다.
도 6은 본 개시의 일 실시예에 따른 인트라 예측부를 상세하게 나타내는 블록도이다.
도 7은 본 개시의 일 실시예에 따른, 가변위치 참조샘플라인 모드 또는 참조샘플라인 리스트참조 모드의 첫 번째 사용 조건을 나타내는 예시도이다.
도 8a 내지 도 8d는 본 개시의 일 실시예에 따른, 가변위치 참조샘플라인 모드에서 참조샘플라인들의 유도를 나타내는 예시도이다.
도 9는 본 개시의 일 실시예에 따른, 상단 참조샘플라인 내 서브참조샘플라인들을 나타내는 예시도이다.
도 10은 본 개시의 일 실시예에 따른, 영상 부호화 방법을 나타내는 순서도이다.
도 11은 본 개시의 일 실시예에 따른, 영상 복호화 방법을 나타내는 순서도이다.
이하, 본 발명의 실시예들을 예시적인 도면을 참조하여 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 실시예들을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 실시예들의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1은 본 개시의 기술들을 구현할 수 있는 영상 부호화 장치에 대한 예시적인 블록도이다. 이하에서는 도 1의 도시를 참조하여 영상 부호화 장치와 이 장치의 하위 구성들에 대하여 설명하도록 한다.
영상 부호화 장치는 픽처 분할부(110), 예측부(120), 감산기(130), 변환부(140), 양자화부(145), 재정렬부(150), 엔트로피 부호화부(155), 역양자화부(160), 역변환부(165), 가산기(170), 루프 필터부(180) 및 메모리(190)를 포함하여 구성될 수 있다.
영상 부호화 장치의 각 구성요소는 하드웨어 또는 소프트웨어로 구현되거나, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, 각 구성요소의 기능이 소프트웨어로 구현되고 마이크로프로세서가 각 구성요소에 대응하는 소프트웨어의 기능을 실행하도록 구현될 수도 있다.
하나의 영상(비디오)은 복수의 픽처들을 포함하는 하나 이상의 시퀀스로 구성된다. 각 픽처들은 복수의 영역으로 분할되고 각 영역마다 부호화가 수행된다. 예를 들어, 하나의 픽처는 하나 이상의 타일(Tile) 또는/및 슬라이스(Slice)로 분할된다. 여기서, 하나 이상의 타일을 타일 그룹(Tile Group)으로 정의할 수 있다. 각 타일 또는/슬라이스는 하나 이상의 CTU(Coding Tree Unit)로 분할된다. 그리고 각 CTU는 트리 구조에 의해 하나 이상의 CU(Coding Unit)들로 분할된다. 각 CU에 적용되는 정보들은 CU의 신택스로서 부호화되고, 하나의 CTU에 포함된 CU들에 공통적으로 적용되는 정보는 CTU의 신택스로서 부호화된다. 또한, 하나의 슬라이스 내의 모든 블록들에 공통적으로 적용되는 정보는 슬라이스 헤더의 신택스로서 부호화되며, 하나 이상의 픽처들을 구성하는 모든 블록들에 적용되는 정보는 픽처 파라미터 셋(PPS, Picture Parameter Set) 혹은 픽처 헤더에 부호화된다. 나아가, 복수의 픽처가 공통으로 참조하는 정보들은 시퀀스 파라미터 셋(SPS, Sequence Parameter Set)에 부호화된다. 그리고, 하나 이상의 SPS가 공통으로 참조하는 정보들은 비디오 파라미터 셋(VPS, Video Parameter Set)에 부호화된다. 또한, 하나의 타일 또는 타일 그룹에 공통으로 적용되는 정보는 타일 또는 타일 그룹 헤더의 신택스로서 부호화될 수도 있다. SPS, PPS, 슬라이스 헤더, 타일 또는 타일 그룹 헤더에 포함되는 신택스들은 상위수준(high level) 신택스로 칭할 수 있다.
픽처 분할부(110)는 CTU(Coding Tree Unit)의 크기를 결정한다. CTU의 크기에 대한 정보(CTU size)는 SPS 또는 PPS의 신택스로서 부호화되어 영상 복호화 장치로 전달된다.
픽처 분할부(110)는 영상을 구성하는 각 픽처(picture)를 미리 결정된 크기를 가지는 복수의 CTU(Coding Tree Unit)들로 분할한 이후에, 트리 구조(tree structure)를 이용하여 CTU를 반복적으로(recursively) 분할한다. 트리 구조에서의 리프 노드(leaf node)가 부호화의 기본 단위인 CU(coding unit)가 된다.
트리 구조로는 상위 노드(혹은 부모 노드)가 동일한 크기의 네 개의 하위 노드(혹은 자식 노드)로 분할되는 쿼드트리(QuadTree, QT), 또는 상위 노드가 두 개의 하위 노드로 분할되는 바이너리트리(BinaryTree, BT), 또는 상위 노드가 1:2:1 비율로 세 개의 하위 노드로 분할되는 터너리트리(TernaryTree, TT), 또는 이러한 QT 구조, BT 구조 및 TT 구조 중 둘 이상을 혼용한 구조일 수 있다. 예컨대, QTBT(QuadTree plus BinaryTree) 구조가 사용될 수 있고, 또는 QTBTTT(QuadTree plus BinaryTree TernaryTree) 구조가 사용될 수 있다. 여기서, BTTT를 합쳐서 MTT(Multiple-Type Tree)라 지칭될 수 있다.
도 2는 QTBTTT 구조를 이용하여 블록을 분할하는 방법을 설명하기 위한 도면이다.
도 2에 도시된 바와 같이, CTU는 먼저 QT 구조로 분할될 수 있다. 쿼드트리 분할은 분할 블록(splitting block)의 크기가 QT에서 허용되는 리프 노드의 최소 블록 크기(MinQTSize)에 도달할 때까지 반복될 수 있다. QT 구조의 각 노드가 하위 레이어의 4개의 노드들로 분할되는지 여부를 지시하는 제1 플래그(QT_split_flag)는 엔트로피 부호화부(155)에 의해 부호화되어 영상 복호화 장치로 시그널링된다. QT의 리프 노드가 BT에서 허용되는 루트 노드의 최대 블록 크기(MaxBTSize)보다 크지 않은 경우, BT 구조 또는 TT 구조 중 어느 하나 이상으로 더 분할될 수 있다. BT 구조 및/또는 TT 구조에서는 복수의 분할 방향이 존재할 수 있다. 예컨대, 해당 노드의 블록이 가로로 분할되는 방향과 세로로 분할되는 방향 두 가지가 존재할 수 있다. 도 2의 도시와 같이, MTT 분할이 시작되면, 노드들이 분할되었는지 여부를 지시하는 제2 플래그(mtt_split_flag)와, 분할이 되었다면 추가적으로 분할 방향(vertical 혹은 horizontal)을 나타내는 플래그 및/또는 분할 타입(Binary 혹은 Ternary)을 나타내는 플래그가 엔트로피 부호화부(155)에 의해 부호화되어 영상 복호화 장치로 시그널링된다.
대안적으로, 각 노드가 하위 레이어의 4개의 노드들로 분할되는지 여부를 지시하는 제1 플래그(QT_split_flag)를 부호화하기에 앞서, 그 노드가 분할되는지 여부를 지시하는 CU 분할 플래그(split_cu_flag)가 부호화될 수도 있다. CU 분할 플래그(split_cu_flag) 값이 분할되지 않았음을 지시하는 경우, 해당 노드의 블록이 분할 트리 구조에서의 리프 노드(leaf node)가 되어 부호화의 기본 단위인 CU(coding unit)가 된다. CU 분할 플래그(split_cu_flag) 값이 분할됨을 지시하는 경우, 영상 부호화 장치는 전술한 방식으로 제1 플래그부터 부호화를 시작한다.
트리 구조의 다른 예시로서 QTBT가 사용되는 경우, 해당 노드의 블록을 동일 크기의 두 개 블록으로 가로로 분할하는 타입(즉, symmetric horizontal splitting)과 세로로 분할하는 타입(즉, symmetric vertical splitting) 두 가지가 존재할 수 있다. BT 구조의 각 노드가 하위 레이어의 블록으로 분할되는지 여부를 지시하는 분할 플래그(split_flag) 및 분할되는 타입을 지시하는 분할 타입 정보가 엔트로피 부호화부(155)에 의해 부호화되어 영상 복호화 장치로 전달된다. 한편, 해당 노드의 블록을 서로 비대칭 형태의 두 개의 블록으로 분할하는 타입이 추가로 더 존재할 수도 있다. 비대칭 형태에는 해당 노드의 블록을 1:3의 크기 비율을 가지는 두 개의 직사각형 블록으로 분할하는 형태가 포함될 수 있고, 혹은 해당 노드의 블록을 대각선 방향으로 분할하는 형태가 포함될 수도 있다.
CU는 CTU로부터의 QTBT 또는 QTBTTT 분할에 따라 다양한 크기를 가질 수 있다. 이하에서는, 부호화 또는 복호화하고자 하는 CU(즉, QTBTTT의 리프 노드)에 해당하는 블록을 '현재블록'이라 칭한다. QTBTTT 분할의 채용에 따라, 현재블록의 모양은 정사각형뿐만 아니라 직사각형일 수도 있다.
예측부(120)는 현재블록을 예측하여 예측블록을 생성한다. 예측부(120)는 인트라 예측부(122)와 인터 예측부(124)를 포함한다.
일반적으로, 픽처 내 현재블록들은 각각 예측적으로 코딩될 수 있다. 일반적으로 현재블록의 예측은 (현재블록을 포함하는 픽처로부터의 데이터를 사용하는) 인트라 예측 기술 또는 (현재블록을 포함하는 픽처 이전에 코딩된 픽처로부터의 데이터를 사용하는) 인터 예측 기술을 사용하여 수행될 수 있다. 인터 예측은 단방향 예측과 양방향 예측 모두를 포함한다.
인트라 예측부(122)는 현재블록이 포함된 현재 픽처 내에서 현재블록의 주변에 위치한 픽셀(참조 픽셀)들을 이용하여 현재블록 내의 픽셀들을 예측한다. 예측 방향에 따라 복수의 인트라 예측모드가 존재한다. 예컨대, 도 3a에서 보는 바와 같이, 복수의 인트라 예측모드는 planar 모드와 DC 모드를 포함하는 2개의 비방향성 모드와 65개의 방향성 모드를 포함할 수 있다. 각 예측모드에 따라 사용할 주변 픽셀과 연산식이 다르게 정의된다.
직사각형 모양의 현재블록에 대한 효율적인 방향성 예측을 위해, 도 3b에 점선 화살표로 도시된 방향성 모드들(67 ~ 80번, -1 ~ -14 번 인트라 예측모드들)이 추가로 사용될 수 있다. 이들은 "광각 인트라 예측모드들(wide angle intra-prediction modes)"로 지칭될 수 있다. 도 3b에서 화살표들은 예측에 사용되는 대응하는 참조샘플들을 가리키는 것이며, 예측 방향을 나타내는 것이 아니다. 예측 방향은 화살표가 가리키는 방향과 반대이다. 광각 인트라 예측모드들은 현재블록이 직사각형일 때 추가적인 비트 전송 없이 특정 방향성 모드를 반대방향으로 예측을 수행하는 모드이다. 이때 광각 인트라 예측모드들 중에서, 직사각형의 현재블록의 너비와 높이의 비율에 의해, 현재블록에 이용 가능한 일부 광각 인트라 예측모드들이 결정될 수 있다. 예컨대, 45도보다 작은 각도를 갖는 광각 인트라 예측모드들(67 ~ 80번 인트라 예측모드들)은 현재블록이 높이가 너비보다 작은 직사각형 형태일 때 이용 가능하고, -135도보다 큰 각도를 갖는 광각 인트라 예측모드들(-1 ~ -14 번 인트라 예측모드들)은 현재블록이 너비가 높이보다 큰 직사각형 형태일 때 이용 가능하다.
인트라 예측부(122)는 현재블록을 부호화하는데 사용할 인트라 예측모드를 결정할 수 있다. 일부 예들에서, 인트라 예측부(122)는 여러 인트라 예측모드들을 사용하여 현재블록을 인코딩하고, 테스트된 모드들로부터 사용할 적절한 인트라 예측모드를 선택할 수도 있다. 예를 들어, 인트라 예측부(122)는 여러 테스트된 인트라 예측모드들에 대한 비트율 왜곡(rate-distortion) 분석을 사용하여 비트율 왜곡 값들을 계산하고, 테스트된 모드들 중 최선의 비트율 왜곡 특징들을 갖는 인트라 예측모드를 선택할 수도 있다.
인트라 예측부(122)는 복수의 인트라 예측모드 중에서 하나의 인트라 예측모드를 선택하고, 선택된 인트라 예측모드에 따라 결정되는 주변 픽셀(참조 픽셀)과 연산식을 사용하여 현재블록을 예측한다. 선택된 인트라 예측모드에 대한 정보는 엔트로피 부호화부(155)에 의해 부호화되어 영상 복호화 장치로 전달된다.
인터 예측부(124)는 움직임 보상 과정을 이용하여 현재블록에 대한 예측블록을 생성한다. 인터 예측부(124)는 현재 픽처보다 먼저 부호화 및 복호화된 참조픽처 내에서 현재블록과 가장 유사한 블록을 탐색하고, 그 탐색된 블록을 이용하여 현재블록에 대한 예측블록을 생성한다. 그리고, 현재 픽처 내의 현재블록과 참조픽처 내의 예측블록 간의 변위(displacement)에 해당하는 움직임벡터(Motion Vector: MV)를 생성한다. 일반적으로, 움직임 추정은 루마(luma) 성분에 대해 수행되고, 루마 성분에 기초하여 계산된 움직임벡터는 루마 성분 및 크로마 성분 모두에 대해 사용된다. 현재블록을 예측하기 위해 사용된 참조픽처에 대한 정보 및 움직임벡터에 대한 정보를 포함하는 움직임 정보는 엔트로피 부호화부(155)에 의해 부호화되어 영상 복호화 장치로 전달된다.
인터 예측부(124)는, 예측의 정확성을 높이기 위해, 참조픽처 또는 참조 블록에 대한 보간을 수행할 수도 있다. 즉, 연속한 두 정수 샘플 사이의 서브 샘플들은 그 두 정수 샘플을 포함한 연속된 복수의 정수 샘플들에 필터 계수들을 적용하여 보간된다. 보간된 참조픽처에 대해서 현재블록과 가장 유사한 블록을 탐색하는 과정을 수행하면, 움직임벡터는 정수 샘플 단위의 정밀도(precision)가 아닌 소수 단위의 정밀도까지 표현될 수 있다. 움직임벡터의 정밀도 또는 해상도(resolution)는 부호화하고자 하는 대상 영역, 예컨대, 슬라이스, 타일, CTU, CU 등의 단위마다 다르게 설정될 수 있다. 이와 같은 적응적 움직임벡터 해상도(Adaptive Motion Vector Resolution: AMVR)가 적용되는 경우 각 대상 영역에 적용할 움직임벡터 해상도에 대한 정보는 대상 영역마다 시그널링되어야 한다. 예컨대, 대상 영역이 CU인 경우, 각 CU마다 적용된 움직임벡터 해상도에 대한 정보가 시그널링된다. 움직임벡터 해상도에 대한 정보는 후술할 차분 움직임벡터의 정밀도를 나타내는 정보일 수 있다.
한편, 인터 예측부(124)는 양방향 예측(bi-prediction)을 이용하여 인터 예측을 수행할 수 있다. 양방향 예측의 경우, 두 개의 참조픽처와 각 참조픽처 내에서 현재블록과 가장 유사한 블록 위치를 나타내는 두 개의 움직임벡터가 이용된다. 인터 예측부(124)는 참조픽처 리스트 0(RefPicList0) 및 참조픽처 리스트 1(RefPicList1)로부터 각각 제1 참조픽처 및 제2 참조픽처를 선택하고, 각 참조픽처 내에서 현재블록과 유사한 블록을 탐색하여 제1 참조블록과 제2 참조블록을 생성한다. 그리고, 제1 참조블록과 제2 참조블록을 평균 또는 가중 평균하여 현재블록에 대한 예측블록을 생성한다. 그리고 현재블록을 예측하기 위해 사용한 두 개의 참조픽처에 대한 정보 및 두 개의 움직임벡터에 대한 정보를 포함하는 움직임 정보를 부호화부(150)로 전달한다. 여기서, 참조픽처 리스트 0은 기복원된 픽처들 중 디스플레이 순서에서 현재 픽처 이전의 픽처들로 구성되고, 참조픽처 리스트 1은 기복원된 픽처들 중 디스플레이 순서에서 현재 픽처 이후의 픽처들로 구성될 수 있다. 그러나 반드시 이에 한정되는 것은 아니며, 디스플레이 순서 상으로 현재 픽처 이후의 기복원 픽처들이 참조픽처 리스트 0에 추가로 더 포함될 수 있고, 역으로 현재 픽처 이전의 기복원 픽처들이 참조픽처 리스트 1에 추가로 더 포함될 수도 있다.
움직임 정보를 부호화하는 데에 소요되는 비트량을 최소화하기 위해 다양한 방법이 사용될 수 있다.
예컨대, 현재블록의 참조픽처와 움직임벡터가 주변블록의 참조픽처 및 움직임벡터와 동일한 경우에는 그 주변블록을 식별할 수 있는 정보를 부호화함으로써, 현재블록의 움직임 정보를 영상 복호화 장치로 전달할 수 있다. 이러한 방법을 '머지 모드(merge mode)'라 한다.
머지 모드에서, 인터 예측부(124)는 현재블록의 주변블록들로부터 기 결정된 개수의 머지 후보블록(이하, '머지 후보'라 함)들을 선택한다.
머지 후보를 유도하기 위한 주변블록으로는, 도 4에 도시된 바와 같이, 현재 픽처 내에서 현재블록에 인접한 좌측블록(A0), 좌하단블록(A1), 상단블록(B0), 우상단블록(B1), 및 좌상단블록(A2) 중에서 전부 또는 일부가 사용될 수 있다. 또한, 현재블록이 위치한 현재 픽처가 아닌 참조픽처(현재블록을 예측하기 위해 사용된 참조픽처와 동일할 수도 있고 다를 수도 있음) 내에 위치한 블록이 머지 후보로서 사용될 수도 있다. 예컨대, 참조픽처 내에서 현재블록과 동일 위치에 있는 블록(co-located block) 또는 그 동일 위치의 블록에 인접한 블록들이 머지 후보로서 추가로 더 사용될 수 있다. 이상에서 기술된 방법에 의해 선정된 머지 후보의 개수가 기설정된 개수보다 작으면, 0 벡터를 머지 후보에 추가한다.
인터 예측부(124)는 이러한 주변블록들을 이용하여 기 결정된 개수의 머지 후보를 포함하는 머지 리스트를 구성한다. 머지 리스트에 포함된 머지 후보들 중에서 현재블록의 움직임정보로서 사용할 머지 후보를 선택하고 선택된 후보를 식별하기 위한 머지 인덱스 정보를 생성한다. 생성된 머지 인덱스 정보는 부호화부(150)에 의해 부호화되어 영상 복호화 장치로 전달된다.
머지 스킵(merge skip) 모드는 머지 모드의 특별한 경우로서, 양자화를 수행한 후, 엔트로피 부호화를 위한 변환 계수가 모두 영(zero)에 가까울 때, 잔차신호의 전송 없이 주변블록 선택 정보만을 전송한다. 머지 스킵 모드를 이용함으로써, 움직임이 적은 영상, 정지 영상, 스크린 콘텐츠 영상 등에서 상대적으로 높은 부호화 효율을 달성할 수 있다.
이하, 머지 모드와 머지 스킵 모드를 통칭하여, 머지/스킵 모드로 나타낸다.
움직임 정보를 부호화하기 위한 또 다른 방법은 AMVP(Advanced Motion Vector Prediction) 모드이다.
AMVP 모드에서, 인터 예측부(124)는 현재블록의 주변블록들을 이용하여 현재블록의 움직임벡터에 대한 예측 움직임벡터 후보들을 유도한다. 예측 움직임벡터 후보들을 유도하기 위해 사용되는 주변블록으로는, 도 4에 도시된 현재 픽처 내에서 현재블록에 인접한 좌측블록(A0), 좌하단블록(A1), 상단블록(B0), 우상단블록(B1), 및 좌상단블록(A2) 중에서 전부 또는 일부가 사용될 수 있다. 또한, 현재블록이 위치한 현재 픽처가 아닌 참조픽처(현재블록을 예측하기 위해 사용된 참조픽처와 동일할 수도 있고 다를 수도 있음) 내에 위치한 블록이 예측 움직임벡터 후보들을 유도하기 위해 사용되는 주변블록으로서 사용될 수도 있다. 예컨대, 참조픽처 내에서 현재블록과 동일 위치에 있는 블록(collocated block) 또는 그 동일 위치의 블록에 인접한 블록들이 사용될 수 있다. 이상에서 기술된 방법에 의해 움직임벡터 후보의 개수가 기설정된 개수보다 작으면, 0 벡터를 움직임벡터 후보에 추가한다.
인터 예측부(124)는 이 주변블록들의 움직임벡터를 이용하여 예측 움직임벡터 후보들을 유도하고, 예측 움직임벡터 후보들을 이용하여 현재블록의 움직임벡터에 대한 예측 움직임벡터를 결정한다. 그리고, 현재블록의 움직임벡터로부터 예측 움직임벡터를 감산하여 차분 움직임벡터를 산출한다.
예측 움직임벡터는 예측 움직임벡터 후보들에 기 정의된 함수(예컨대, 중앙값, 평균값 연산 등)를 적용하여 구할 수 있다. 이 경우, 영상 복호화 장치도 기 정의된 함수를 알고 있다. 또한, 예측 움직임벡터 후보를 유도하기 위해 사용하는 주변블록은 이미 부호화 및 복호화가 완료된 블록이므로 영상 복호화 장치도 그 주변블록의 움직임벡터도 이미 알고 있다. 그러므로 영상 부호화 장치는 예측 움직임벡터 후보를 식별하기 위한 정보를 부호화할 필요가 없다. 따라서, 이 경우에는 차분 움직임벡터에 대한 정보와 현재블록을 예측하기 위해 사용한 참조픽처에 대한 정보가 부호화된다.
한편, 예측 움직임벡터는 예측 움직임벡터 후보들 중 어느 하나를 선택하는 방식으로 결정될 수도 있다. 이 경우에는 차분 움직임벡터에 대한 정보 및 현재블록을 예측하기 위해 사용한 참조픽처에 대한 정보와 함께, 선택된 예측 움직임벡터 후보를 식별하기 위한 정보가 추가로 부호화된다.
감산기(130)는 현재블록으로부터 인트라 예측부(122) 또는 인터 예측부(124)에 의해 생성된 예측블록을 감산하여 잔차블록을 생성한다.
변환부(140)는 공간 영역의 픽셀 값들을 가지는 잔차블록 내의 잔차신호를 주파수 도메인의 변환 계수로 변환한다. 변환부(140)는 잔차블록의 전체 크기를 변환 단위로 사용하여 잔차블록 내의 잔차신호들을 변환할 수 있으며, 또는 잔차블록을 복수 개의 서브블록으로 분할하고 그 서브블록을 변환 단위로 사용하여 변환을 할 수도 있다. 또는, 변환 영역 및 비변환 영역인 두 개의 서브블록으로 구분하여, 변환 영역 서브블록만 변환 단위로 사용하여 잔차신호들을 변환할 수 있다. 여기서, 변환 영역 서브블록은 가로축 (혹은 세로축) 기준 1:1의 크기 비율을 가지는 두 개의 직사각형 블록 중 하나일 수 있다. 이런 경우, 서브블록 만을 변환하였음을 지시하는 플래그(cu_sbt_flag), 방향성(vertical/horizontal) 정보(cu_sbt_horizontal_flag) 및/또는 위치 정보(cu_sbt_pos_flag)가 엔트로피 부호화부(155)에 의해 부호화되어 영상 복호화 장치로 시그널링된다. 또한, 변환 영역 서브블록의 크기는 가로축 (혹은 세로축) 기준 1:3의 크기 비율을 가질 수 있으며, 이런 경우 해당 분할을 구분하는 플래그(cu_sbt_quad_flag)가 추가적으로 엔트로피 부호화부(155)에 의해 부호화되어 영상 복호화 장치로 시그널링된다.
한편, 변환부(140)는 잔차블록에 대해 가로 방향과 세로 방향으로 개별적으로 변환을 수행할 수 있다. 변환을 위해, 다양한 타입의 변환 함수 또는 변환 행렬이 사용될 수 있다. 예컨대, 가로 방향 변환과 세로 방향 변환을 위한 변환 함수의 쌍을 MTS(Multiple Transform Set)로 정의할 수 있다. 변환부(140)는 MTS 중 변환 효율이 가장 좋은 하나의 변환 함수 쌍을 선택하고 가로 및 세로 방향으로 각각 잔차블록을 변환할 수 있다. MTS 중에서 선택된 변환 함수 쌍에 대한 정보(mts_idx)는 엔트로피 부호화부(155)에 의해 부호화되어 영상 복호화 장치로 시그널링된다.
양자화부(145)는 변환부(140)로부터 출력되는 변환 계수들을 양자화 파라미터를 이용하여 양자화하고, 양자화된 변환 계수들을 엔트로피 부호화부(155)로 출력한다. 양자화부(145)는, 어떤 블록 혹은 프레임에 대해, 변환 없이, 관련된 잔차 블록을 곧바로 양자화할 수도 있다. 양자화부(145)는 변환블록 내의 변환 계수들의 위치에 따라 서로 다른 양자화 계수(스케일링 값)을 적용할 수도 있다. 2차원으로 배열된 양자화된 변환 계수들에 적용되는 양자화 행렬은 부호화되어 영상 복호화 장치로 시그널링될 수 있다.
재정렬부(150)는 양자화된 잔차값에 대해 계수값의 재정렬을 수행할 수 있다.
재정렬부(150)는 계수 스캐닝(coefficient scanning)을 이용하여 2차원의 계수 어레이를 1차원의 계수 시퀀스로 변경할 수 있다. 예를 들어, 재정렬부(150)에서는 지그-재그 스캔(zig-zag scan) 또는 대각선 스캔(diagonal scan)을 이용하여 DC 계수부터 고주파수 영역의 계수까지 스캔하여 1차원의 계수 시퀀스를 출력할 수 있다. 변환 단위의 크기 및 인트라 예측모드에 따라 지그-재그 스캔 대신 2차원의 계수 어레이를 열 방향으로 스캔하는 수직 스캔, 2차원의 블록 형태 계수를 행 방향으로 스캔하는 수평 스캔이 사용될 수도 있다. 즉, 변환 단위의 크기 및 인트라 예측모드에 따라 지그-재그 스캔, 대각선 스캔, 수직 방향 스캔 및 수평 방향 스캔 중에서 사용될 스캔 방법이 결정될 수도 있다.
엔트로피 부호화부(155)는, CABAC(Context-based Adaptive Binary Arithmetic Code), 지수 골롬(Exponential Golomb) 등의 다양한 부호화 방식을 사용하여, 재정렬부(150)로부터 출력된 1차원의 양자화된 변환 계수들의 시퀀스를 부호화함으로써 비트스트림을 생성한다.
또한, 엔트로피 부호화부(155)는 블록 분할과 관련된 CTU size, CU 분할 플래그, QT 분할 플래그, MTT 분할 타입, MTT 분할 방향 등의 정보를 부호화하여, 영상 복호화 장치가 영상 부호화 장치와 동일하게 블록을 분할할 수 있도록 한다. 또한, 엔트로피 부호화부(155)는 현재블록이 인트라 예측에 의해 부호화되었는지 아니면 인터 예측에 의해 부호화되었는지 여부를 지시하는 예측 타입에 대한 정보를 부호화하고, 예측 타입에 따라 인트라 예측정보(즉, 인트라 예측모드에 대한 정보) 또는 인터 예측정보(움직임 정보의 부호화 모드(머지 모드 또는 AMVP 모드), 머지 모드의 경우 머지 인덱스, AMVP 모드의 경우 참조픽처 인덱스 및 차분 움직임벡터에 대한 정보)를 부호화한다. 또한, 엔트로피 부호화부(155)는 양자화와 관련된 정보, 즉, 양자화 파라미터에 대한 정보 및 양자화 행렬에 대한 정보를 부호화한다.
역양자화부(160)는 양자화부(145)로부터 출력되는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 생성한다. 역변환부(165)는 역양자화부(160)로부터 출력되는 변환 계수들을 주파수 도메인으로부터 공간 도메인으로 변환하여 잔차블록을 복원한다.
가산부(170)는 복원된 잔차블록과 예측부(120)에 의해 생성된 예측블록을 가산하여 현재블록을 복원한다. 복원된 현재블록 내의 픽셀들은 다음 순서의 블록을 인트라 예측할 때 참조 픽셀로서 사용된다.
루프(loop) 필터부(180)는 블록 기반의 예측 및 변환/양자화로 인해 발생하는 블록킹 아티팩트(blocking artifacts), 링잉 아티팩트(ringing artifacts), 블러링 아티팩트(blurring artifacts) 등을 줄이기 위해 복원된 픽셀들에 대한 필터링을 수행한다. 필터부(180)는 인루프(in-loop) 필터로서 디블록킹 필터(182), SAO(Sample Adaptive Offset) 필터(184) 및 ALF(Adaptive Loop Filter, 186)의 전부 또는 일부를 포함할 수 있다.
디블록킹 필터(182)는 블록 단위의 부호화/복호화로 인해 발생하는 블록킹 현상(blocking artifact)을 제거하기 위해 복원된 블록 간의 경계를 필터링하고, SAO 필터(184) 및 alf(186)는 디블록킹 필터링된 영상에 대해 추가적인 필터링을 수행한다. SAO 필터(184) 및 alf(186)는 손실 부호화(lossy coding)로 인해 발생하는 복원된 픽셀과 원본 픽셀 간의 차이를 보상하기 위해 사용되는 필터이다. SAO 필터(184)는 CTU 단위로 오프셋을 적용함으로써 주관적 화질뿐만 아니라 부호화 효율도 향상시킨다. 이에 비하여 ALF(186)는 블록 단위의 필터링을 수행하는데, 해당 블록의 에지 및 변화량의 정도를 구분하여 상이한 필터를 적용하여 왜곡을 보상한다. ALF에 사용될 필터 계수들에 대한 정보는 부호화되어 영상 복호화 장치로 시그널링될 수 있다.
디블록킹 필터(182), SAO 필터(184) 및 ALF(186)를 통해 필터링된 복원블록은 메모리(190)에 저장된다. 한 픽처 내의 모든 블록들이 복원되면, 복원된 픽처는 이후에 부호화하고자 하는 픽처 내의 블록을 인터 예측하기 위한 참조픽처로 사용될 수 있다.
도 5는 본 개시의 기술들을 구현할 수 있는 영상 복호화 장치의 예시적인 블록도이다. 이하에서는 도 5를 참조하여 영상 복호화 장치와 이 장치의 하위 구성들에 대하여 설명하도록 한다.
영상 복호화 장치는 엔트로피 복호화부(510), 재정렬부(515), 역양자화부(520), 역변환부(530), 예측부(540), 가산기(550), 루프 필터부(560) 및 메모리(570)를 포함하여 구성될 수 있다.
도 1의 영상 부호화 장치와 마찬가지로, 영상 복호화 장치의 각 구성요소는 하드웨어 또는 소프트웨어로 구현되거나, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, 각 구성요소의 기능이 소프트웨어로 구현되고 마이크로프로세서가 각 구성요소에 대응하는 소프트웨어의 기능을 실행하도록 구현될 수도 있다.
엔트로피 복호화부(510)는 영상 부호화 장치에 의해 생성된 비트스트림을 복호화하여 블록 분할과 관련된 정보를 추출함으로써 복호화하고자 하는 현재블록을 결정하고, 현재블록을 복원하기 위해 필요한 예측정보와 잔차신호에 대한 정보 등을 추출한다.
엔트로피 복호화부(510)는 SPS(Sequence Parameter Set) 또는 PPS(Picture Parameter Set)로부터 CTU size에 대한 정보를 추출하여 CTU의 크기를 결정하고, 픽처를 결정된 크기의 CTU로 분할한다. 그리고, CTU를 트리 구조의 최상위 레이어, 즉, 루트 노드로 결정하고, CTU에 대한 분할정보를 추출함으로써 트리 구조를 이용하여 CTU를 분할한다.
예컨대, QTBTTT 구조를 사용하여 CTU를 분할하는 경우, 먼저 QT의 분할과 관련된 제1 플래그(QT_split_flag)를 추출하여 각 노드를 하위 레이어의 네 개의 노드로 분할한다. 그리고, QT의 리프 노드에 해당하는 노드에 대해서는 MTT의 분할과 관련된 제2 플래그(MTT_split_flag) 및 분할 방향(vertical / horizontal) 및/또는 분할 타입(binary / ternary) 정보를 추출하여 해당 리프 노드를 MTT 구조로 분할한다. 이에 따라 QT의 리프 노드 이하의 각 노드들을 BT 또는 TT 구조로 반복적으로(recursively) 분할한다.
또 다른 예로서, QTBTTT 구조를 사용하여 CTU를 분할하는 경우, 먼저 CU의 분할 여부를 지시하는 CU 분할 플래그(split_cu_flag)를 추출하고, 해당 블록이 분할된 경우, 제1 플래그(QT_split_flag)를 추출할 수도 있다. 분할 과정에서 각 노드는 0번 이상의 반복적인 QT 분할 후에 0번 이상의 반복적인 MTT 분할이 발생할 수 있다. 예컨대, CTU는 바로 MTT 분할이 발생하거나, 반대로 다수 번의 QT 분할만 발생할 수도 있다.
다른 예로서, QTBT 구조를 사용하여 CTU를 분할하는 경우, QT의 분할과 관련된 제1 플래그(QT_split_flag)를 추출하여 각 노드를 하위 레이어의 네 개의 노드로 분할한다. 그리고, QT의 리프 노드에 해당하는 노드에 대해서는 BT로 더 분할되는지 여부를 지시하는 분할 플래그(split_flag) 및 분할 방향 정보를 추출한다.
한편, 엔트로피 복호화부(510)는 트리 구조의 분할을 이용하여 복호화하고자 하는 현재블록을 결정하게 되면, 현재블록이 인트라 예측되었는지 아니면 인터 예측되었는지를 지시하는 예측 타입에 대한 정보를 추출한다. 예측 타입 정보가 인트라 예측을 지시하는 경우, 엔트로피 복호화부(510)는 현재블록의 인트라 예측정보(인트라 예측모드)에 대한 신택스 요소를 추출한다. 예측 타입 정보가 인터 예측을 지시하는 경우, 엔트로피 복호화부(510)는 인터 예측정보에 대한 신택스 요소, 즉, 움직임벡터 및 그 움직임벡터가 참조하는 참조픽처를 나타내는 정보를 추출한다.
또한, 엔트로피 복호화부(510)는 양자화 관련된 정보, 및 잔차신호에 대한 정보로서 현재블록의 양자화된 변환계수들에 대한 정보를 추출한다.
재정렬부(515)는, 영상 부호화 장치에 의해 수행된 계수 스캐닝 순서의 역순으로, 엔트로피 복호화부(510)에서 엔트로피 복호화된 1차원의 양자화된 변환계수들의 시퀀스를 다시 2차원의 계수 어레이(즉, 블록)로 변경할 수 있다.
역양자화부(520)는 양자화된 변환계수들을 역양자화하고, 양자화 파라미터를 이용하여 양자화된 변환계수들을 역양자화한다. 역양자화부(520)는 2차원으로 배열된 양자화된 변환계수들에 대해 서로 다른 양자화 계수(스케일링 값)을 적용할 수도 있다. 역양자화부(520)는 영상 부호화 장치로부터 양자화 계수(스케일링 값)들의 행렬을 양자화된 변환계수들의 2차원 어레이에 적용하여 역양자화를 수행할 수 있다.
역변환부(530)는 역양자화된 변환계수들을 주파수 도메인으로부터 공간 도메인으로 역변환하여 잔차신호들을 복원함으로써 현재블록에 대한 잔차블록을 생성한다.
또한, 역변환부(530)는 변환블록의 일부 영역(서브블록)만 역변환하는 경우, 변환블록의 서브블록만을 변환하였음을 지시하는 플래그(cu_sbt_flag), 서브블록의 방향성(vertical/horizontal) 정보(cu_sbt_horizontal_flag) 및/또는 서브블록의 위치 정보(cu_sbt_pos_flag)를 추출하여, 해당 서브블록의 변환계수들을 주파수 도메인으로부터 공간 도메인으로 역변환함으로써 잔차신호들을 복원하고, 역변환되지 않은 영역에 대해서는 잔차신호로 “0”값을 채움으로써 현재블록에 대한 최종 잔차블록을 생성한다.
또한, MTS가 적용된 경우, 역변환부(530)는 영상 부호화 장치로부터 시그널링된 MTS 정보(mts_idx)를 이용하여 가로 및 세로 방향으로 각각 적용할 변환 함수 또는 변환 행렬을 결정하고, 결정된 변환 함수를 이용하여 가로 및 세로 방향으로 변환블록 내의 변환계수들에 대해 역변환을 수행한다.
예측부(540)는 인트라 예측부(542) 및 인터 예측부(544)를 포함할 수 있다. 인트라 예측부(542)는 현재블록의 예측 타입이 인트라 예측일 때 활성화되고, 인터 예측부(544)는 현재블록의 예측 타입이 인터 예측일 때 활성화된다.
인트라 예측부(542)는 엔트로피 복호화부(510)로부터 추출된 인트라 예측모드에 대한 신택스 요소로부터 복수의 인트라 예측모드 중 현재블록의 인트라 예측모드를 결정하고, 인트라 예측모드에 따라 현재블록 주변의 참조 픽셀들을 이용하여 현재블록을 예측한다.
인터 예측부(544)는 엔트로피 복호화부(510)로부터 추출된 인터 예측모드에 대한 신택스 요소를 이용하여 현재블록의 움직임벡터와 그 움직임벡터가 참조하는 참조픽처를 결정하고, 움직임벡터와 참조픽처를 이용하여 현재블록을 예측한다.
가산기(550)는 역변환부로부터 출력되는 잔차블록과 인터 예측부 또는 인트라 예측부로부터 출력되는 예측블록을 가산하여 현재블록을 복원한다. 복원된 현재블록 내의 픽셀들은 이후에 복호화할 블록을 인트라 예측할 때의 참조픽셀로서 활용된다.
루프 필터부(560)는 인루프 필터로서 디블록킹 필터(562), SAO 필터(564) 및 ALF(566)를 포함할 수 있다. 디블록킹 필터(562)는 블록 단위의 복호화로 인해 발생하는 블록킹 현상(blocking artifact)을 제거하기 위해, 복원된 블록 간의 경계를 디블록킹 필터링한다. SAO 필터(564) 및 ALF(566)는 손실 부호화(lossy coding)으로 인해 발생하는 복원된 픽셀과 원본 픽셀 간의 차이를 보상하기 위해, 디블록킹 필터링 이후의 복원된 블록에 대해 추가적인 필터링을 수행한다. ALF의 필터 계수는 비스트림으로부터 복호한 필터 계수에 대한 정보를 이용하여 결정된다.
디블록킹 필터(562), SAO 필터(564) 및 ALF(566)를 통해 필터링된 복원블록은 메모리(570)에 저장된다. 한 픽처 내의 모든 블록들이 복원되면, 복원된 픽처는 이후에 부호화하고자 하는 픽처 내의 블록을 인터 예측하기 위한 참조픽처로 사용된다.
본 실시예는 이상에서 설명한 바와 같은 영상(비디오)의 부호화 및 복호화에 관한 것이다. 보다 자세하게는, 다양한 유도 방식들을 이용하여 현재블록의 참조샘플라인들을 유도하고, 유도된 참조샘플라인들을 이용하여 현재블록의 인트라 예측을 수행하는 비디오 코딩방법 및 장치를 제공한다.
이하의 실시예들은 영상 부호화 장치(video encoding device) 내 인트라 예측부(122)에 의해 수행될 수 있다. 또한, 영상 복호화 장치(video decoding device) 내 인트라 예측부(542)에 의해 수행될 수 있다.
영상 부호화 장치는, 현재블록의 인트라 예측에 있어서, 비트율 왜곡 최적화 측면에서 본 실시예와 관련된 시그널링 정보를 생성할 수 있다. 영상 부호화 장치는 엔트로피 부호화부(155)를 이용하여 이를 부호화한 후, 영상 복호화 장치로 전송할 수 있다. 영상 복호화 장치는 엔트로피 복호화부(510)를 이용하여 비트스트림으로부터 현재블록의 인트라 예측과 관련된 시그널링 정보를 복호화할 수 있다.
이하의 설명에서, '예측유닛(prediction unit)', 특히 현재 예측유닛이라는 용어는 전술한 바와 같은 현재블록 또는 코딩유닛(CU, Coding Unit)과 동일한 의미로 사용될 수 있고, 또는 코딩유닛의 일부 영역을 의미할 수도 있다.
또한, 하나의 플래그의 값이 참이라는 것은 플래그가 1로 설정되는 경우를 나타낸다. 또한, 하나의 플래그의 값이 거짓이라는 것은 플래그가 0으로 설정되는 경우를 나타낸다.
I. 인터 예측의 머지 모드
이하의 실시예들은 영상 부호화 장치 내 인터 예측부(124)에 적용될 수 있다.
이하, 인터 예측의 머지 모드에서 움직임 정보의 머지 후보 리스트를 구성하는 방법을 설명한다. 머지 모드를 지원하기 위해, 영상 부호화 장치 내 인터 예측부(124)는 기설정된 개수(예컨대, 6 개)의 머지 후보를 선정하여 머지 후보 리스트를 구성할 수 있다.
인터 예측부(124)는 공간적(spatial) 머지 후보를 탐색한다. 인터 예측부(124)는, 도 4의 예시된 바와 같은 주변블록들로부터 공간적 머지 후보를 탐색한다. 공간적 머지 후보는 최대 4 개까지 선정될 수 있다.
인터 예측부(124)는 시간적(temporal) 머지 후보를 탐색한다. 인터 예측부(124)는, 대상블록이 위치한 현재 픽처가 아닌 참조픽처(현재블록을 예측하기 위해 사용된 참조픽처와 동일할 수도 있고 다를 수도 있음) 내의 현재블록과 동일 위치에 있는 블록(co-located block)을 시간적 머지 후보로 추가할 수 있다. 시간적 머지 후보는 1 개가 선정될 수 있다.
인터 예측부(124)는 HMVP(History-based Motion Vector Predictor) 후보를 탐색한다. 인터 예측부(124)는 이전 n(여기서, n은 자연수) 개의 CU의 움직임벡터를 테이블에 저장한 후, 머지 후보로 이용할 수 있다. 테이블의 크기는 6이며, FiFO(First-in First Out) 방식에 따라 이전 CU의 움직임벡터를 저장한다. 이는 HMVP 후보가 최대 6 개까지 테이블에 저장됨을 나타낸다. 인터 예측부(124)는 테이블에 저장된 HMVP 후보 중, 최근의 움직임벡터들을 머지 후보로 설정할 수 있다.
인터 예측부(124)는 PAMVP(Pairwise Average MVP) 후보를 탐색한다. 인터 예측부(124)는 머지 후보 리스트에서 첫 번째 후보와 두 번째 후보의 움직임벡터 평균을 머지 후보로 설정할 수 있다.
전술한 탐색 과정을 모두 수행해도 머지 후보 리스트를 채울 수 없는 경우(즉, 기설정된 개수를 충원하지 못하는 경우), 인터 예측부(124)는 제로(zero) 움직임벡터를 머지 후보로 추가한다.
전술한 머지 후보 리스트를 구성하는 방법은 영상 복호화 장치 내 인터 예측부(544)에 의해 동일하게 수행될 수 있다.
II. 참조샘플라인들의 유도
이하의 실시예들은, 영상 복호화 장치의 인트라 예측부(542)를 중심으로 기술되나, 영상 부호화 장치의 인트라 예측부(122)에서도 동일하게 구현될 수 있다.
도 6은 본 개시의 일 실시예에 따른 인트라 예측부를 상세하게 나타내는 블록도이다.
영상 복호화 장치 내 인트라 예측부(542)는 서브블록 분할여부 유도부(602), 예측모드 유도부(604), 참조샘플라인 유도부(606) 및 예측 수행부(608)의 전부 또는 일부를 포함할 수 있다.
서브블록 분할여부 유도부(602)는 현재블록이 서브블록들로 분할되는지 여부를 유도할 수 있다. 서브블록들로 분할되는 경우, 참조샘플라인 유도부(606) 및 예측 수행부(608)는 서브블록 단위로 해당 동작을 수행할 수 있다.
예측모드 유도부(604)는 현재블록의 인트라 예측모드를 유도할 수 있다. 여기서, 예측모드는 매트릭스 기반 예측모드, 방향성 예측모드, (DC 또는 Planar와 같은) 비방향성 예측모드 등일 수 있다. 예컨대, 예측모드 유도부(604)는 비트스트림으로부터 인트라 예측모드를 복호화할 수 있다.
한편, 서브블록 분할여부 유도부(602) 및 예측모드 유도부(604)의 동작은 엔트로피 복호화부(510)에 의해서도 수행될 수 있다.
참조샘플라인 유도부(606)는 예측모드에 따라 필요한 위치의 참조샘플라인들을 유도할 수 있다.
예측 수행부(608)는 유도한 참조샘플라인들 내 참조샘플들을 이용하여 예측모드에 따라 현재블록의 예측블록을 생성할 수 있다.
일 예로서, 참조샘플라인 유도부(606)는 현재블록 또는 서브블록들의 참조샘플라인 유도모드를 지시하는 유도모드 인덱스를 복호화할 수 있다. 참조샘플라인 유도부(606)는, 도 6에 예시된 바와 같이, 유도모드 인덱스에 따라 고정위치 참조샘플라인 모드, 가변위치 참조샘플라인 모드 및 참조샘플라인 리스트참조 모드의 유도모드들 중 하나를 선택한 후, 선택된 유도모드를 이용하여 현재블록 또는 현재 서브블록의 참조샘플라인을 유도할 수 있다. 제1 조건 내지 제3 조건 중 하나 이상을 만족하는 경우, 유도모드 인덱스는 영상 부호화 장치에 의해 가변위치 참조샘플라인 모드 또는 참조샘플라인 리스트참조 모드를 지시하도록 부호화될 수 있다. 반면, 제1 조건 내지 제3 조건 중 하나도 만족하지 않는 경우, 유도모드 인덱스는 영상 부호화 장치에 의해 고정위치 참조샘플라인 모드를 지시하도록 부호화될 수 있다.
다른 예로서, 참조샘플라인 유도부(606)는 제1 조건 내지 제3 조건 중 하나 이상을 만족하는 지를 확인하여 하나 이상을 만족하는 경우, 가변위치 참조샘플라인 모드 또는 참조샘플라인 리스트참조 모드를 사용할 수 있다. 이때, 참조샘플라인 유도부(606)는 두 모드들 중 하나를 지시하는 플래그를 파싱할 수 있다. 반면, 제1 조건 내지 제3 조건 중 하나도 만족하지 않는 경우, 참조샘플라인 유도부(606)는 고정위치 참조샘플라인 모드를 사용할 수 있다.
이하, 전술한 제1 조건 내지 제3 조건을 기술한다. 또한, 현재블록의 좌상단 픽셀의 (x, y) 좌표를 (0, 0)으로 정의한다.
제1 조건은 도 7에 예시된 바와 같이, (-1, -1), (-1, 0), (0, -1), (-1, puH) 및 (puW, -1)와 같은 기설정된 위치들의, 현재블록의 인접 픽셀들을 포함하는 복원 예측유닛들 중 기설정된 개수 이상의 예측유닛들이 인터 예측에 의해 복원된 경우이다. 이러한 제1 조건에서 puW 및 puH는 현재블록, 즉 현재 예측유닛의 가로의 길이 및 세로의 길이를 나타낸다.
제2 조건은, 제1 조건에서 인터 예측에 따라 복원된 예측유닛들의 움직임벡터 부호화 모드가, 전술한 바와 같은 공간적 머지 모드인 경우이다.
제3 조건은, 제1 조건에서 인터 예측에 따라 복원된 예측유닛들의 움직임벡터들이 서로 유사한 경우이다.
참조샘플라인 유도모드들 중 고정위치 참조샘플라인 모드는 기존의 참조샘플라인 유도 방식을 이용한다. 참조샘플라인 유도부(606)는, 고정위치 참조샘플라인 모드가 선택된 경우, 현재블록의 좌측과 상단 경계에 각각 인접한 픽셀라인을 참조샘플라인들로 유도할 수 있다.
도 8a 내지 도 8d는 본 개시의 일 실시예에 따른, 가변위치 참조샘플라인 모드에서 참조샘플라인들의 유도를 나타내는 예시도이다.
참조샘플라인 유도모드들 중 가변위치 참조샘플라인 모드가 선택된 경우, 참조샘플라인 유도부(606)는 현재블록에 인접하지 않은 참조샘플라인들을 유도할 수 있다. 예를 들어, 참조샘플라인 유도부(606)는 현재블록의 좌측 또는 상단 경계에서 N 픽셀 거리에 있는 픽셀라인으로부터 좌측 참조샘플라인과 상단 참조샘플라인을 각각 유도할 수 있다. 또는, 참조샘플라인 유도부(606)는 도 8a 내지 도 8d에 예시된 바와 같은 다수의 유도방법들 중 하나를 선택하여, 선택된 방법에 따라 좌측 참조샘플라인과 상단 참조샘플라인을 유도할 수 있다. 좌측 참조샘플라인의 유도방법 인덱스 및 상단 참조샘플라인의 유도방법 인덱스는 영상 부호화 장치로부터 영상 복호화 장치로 시그널링될 수 있다. 다른 예로서, 좌측 참조샘플라인 및 상단 참조샘플라인에 대해 하나의 유도방법 인덱스가 공유될 수 있다.
이하, 도 8a 내지 도 8d의 도시를 이용하여 좌측 참조샘플라인의 유도방법들을 기술한다.
제1 유도방법에서, 현재블록을 포함하는 처리유닛의 좌측 인접 샘플들 중에 현재블록의 좌상단 픽셀과 동일한 y축 좌표를 갖는 픽셀의 좌표가 (xL, yL)로 정의된다. 참조샘플라인 유도부(606)는 도 8a에 예시된 바와 같이, (xL, yL + α)~(xL, yL + puH×2 - 1) 범위의 샘플들을 좌측 참조샘플라인으로 유도할 수 있다.
여기서, α는 기설정된 정수로서, 예컨대 -1일 수 있다. 또한, 전술한 바와 같이, puW 및 puH는 현재블록, 즉 현재 예측유닛의 가로의 길이 및 세로의 길이를 나타낸다.
처리유닛은 코딩트리유닛을 분할하여 생성될 수 있는 단위이다. 하나 이상의 코딩유닛들이 하나의 처리유닛에 포함되거나 하나 이상의 처리유닛들이 하나의 코딩유닛에 포함될 수 있다. 처리단위의 예로는 VPDU(Virtual Pipeline Data Unit)가 있다. VPDU는 가상 파이프라인에 의해 처리될 수 있는 데이터 단위이다. VPDU는 한번에 부호화 및 복호화를 수행할 수 있는 최대 단위로서, CTU의 크기 증가에 따른 하드웨어 구현의 비용을 감소시키기 위해 활용될 수 있다. 도 8a의 예시에서, vpduW 및 vpduH는 VDPU의 너비 및 높이를 나타낸다.
제2 유도방법에서, (-1, 0) 픽셀을 포함하는 예측유닛의 좌측 인접 샘플들 중에 현재블록의 좌상단 (0, 0) 픽셀과 동일한 y축 좌표를 갖는 픽셀의 좌표가 (xL, yL)로 정의된다. 참조샘플라인 유도부(606)는 도 8b에 예시된 바와 같이, (xL, yL + α)~(xL, yL + puH×2 - 1) 범위의 샘플들을 좌측 참조샘플라인으로 유도할 수 있다.
제3 유도방법에서 처리유닛 내에서 현재블록 이전에 복호화된 영역 중, 현재블록의 좌측에 존재하는 임의의 픽셀의 좌표가 (xL, yL)로 정의된다. 참조샘플라인 유도부(606)는 도 8c에 예시된 바와 같이, (xL, yL + α)~(xL, yL + puH×2 - 1) 범위의 샘플들을 좌측 참조샘플라인으로 유도할 수 있다. 이때, 현재블록의 좌상단 픽셀의 y축 좌표와 임의의 픽셀의 yL 좌표가 상이할 수 있다. 유도된 참조샘플라인 내 픽셀들은 모두 동일한 예측유닛에 포함될 수 있다. 또는, 일부 픽셀들은 다른 예측유닛에 포함될 수 있다.
임의의 픽셀의 좌표 (xL, yL)은 영상 부호화 장치로부터 영상 복호화 장치로 시그널링될 수 있다. 다른 예로서, 임의의 픽셀의 좌표와 현재블록의 좌상단 픽셀 좌표 간의 오프셋 값들이 영상 부호화 장치로부터 영상 복호화 장치로 시그널링될 수 있다.
제4 유도방법에서는, 도 8d에 예시된 바와 같이 제1 유도방법, 제2 유도방법 또는 제3 유도방법에 따라 유도된 좌측 참조샘플라인 내 픽셀들의 x축 좌표가 동일하지 않을 수 있다. 좌측 참조샘플라인 내 x축 좌표가 동일하고 y축 좌표가 연속적인 픽셀들을 연속픽셀그룹으로 정의한다. 연속픽셀그룹들은 두 개 이상일 수 있다. 연속픽셀그룹들의 개수는 기설정된 개수이거나, 파싱될 수 있다. 또는 연속픽셀그룹들의 개수는 특정 방향성 예측모드가 적용되는 경우에 파싱될 수 있다. 한편, 연속픽셀그룹의 길이는 puH, puH+1, puH/2, puH/2+1 등일 수 있다.
각 연속픽셀그룹에 대해 시작 픽셀의 좌표 및 길이가 파싱될 수 있다. 다른 예로서, 시작 픽셀의 좌표를 포함하는 리스트 및 길이를 포함하는 리스트가 설정될 수 있다. 이후, 각 연속픽셀그룹에 대해 시작 픽셀의 좌표를 지시하는 인덱스 및 길이를 지시하는 인덱스가 파싱될 수 있다.
이하, 도 8a 내지 도 8d의 도시를 이용하여 상단 참조샘플라인의 유도방법들을 기술한다.
제1 유도방법에서, 현재블록을 포함하는 처리유닛의 상단 인접 샘플들 중에 현재블록의 좌상단 픽셀과 동일한 x축 좌표를 갖는 픽셀의 좌표가 (xT, yT)로 정의된다. 참조샘플라인 유도부(606)는 도 8a에 예시된 바와 같이, (xT + α, yT)~(xT + puW×2 - 1, yT) 범위의 샘플들을 상단 참조샘플라인으로 유도할 수 있다.
제2 유도방법에서, (0, -1) 픽셀을 포함하는 예측유닛의 상단 인접 샘플들 중에 현재블록의 좌상단 (0, 0) 픽셀과 동일한 x축 좌표를 갖는 픽셀의 좌표가 (xT, yT)로 정의된다. 참조샘플라인 유도부(606)는 도 8b에 예시된 바와 같이, (xT + α, yT)~(xT + puW×2 - 1, yT) 범위의 샘플들을 상단 참조샘플라인으로 유도할 수 있다.
제3 유도방법에서, 처리유닛 내에서 현재블록 이전에 복호화된 영역 중, 현재블록의 상단에 존재하는 임의의 픽셀의 좌표가 (xT, yT)로 정의된다. 참조샘플라인 유도부(606)는 도 8c에 예시된 바와 같이, (xT + α, yT)~(xT + puW× 2 - 1, yT) 범위의 샘플들을 상단 참조샘플라인으로 유도할 수 있다. 이때, 현재블록의 좌상단 픽셀의 x축 좌표와 임의의 픽셀의 xT 좌표가 상이할 수 있다.
임의의 픽셀의 좌표 (xT, yT)는 영상 부호화 장치로부터 영상 복호화 장치로 시그널링될 수 있다. 다른 예로서, 임의의 픽셀의 좌표와 현재블록의 좌상단 픽셀 좌표 간의 오프셋 값들이 영상 부호화 장치로부터 영상 복호화 장치로 시그널링될 수 있다.
제4 유도방법에서는, 도 8d에 예시된 바와 같이 제1 유도방법, 제2 유도방법 또는 제3 유도방법에 따라 유도된 좌측 참조샘플라인 내 픽셀들의 y축 좌표가 동일하지 않을 수 있다. 상단 참조샘플라인 내 y축 좌표가 동일하고 x축 좌표가 연속적인 픽셀들을 연속픽셀그룹이라고 할 수 있다. 연속픽셀그룹들은 두 개 이상일 수 있다. 연속픽셀그룹들의 개수는 기설정된 개수이거나, 파싱될 수 있다. 또는 연속픽셀그룹들의 개수는 특정 방향성 예측모드가 적용되는 경우에 파싱될 수 있다. 한편, 연속픽셀그룹의 길이는 puW, puW+1, puW/2, puW/2+1 등일 수 있다.
각 연속픽셀그룹에 대해 시작 픽셀의 좌표 및 길이가 파싱될 수 있다. 다른 예로서, 시작 픽셀의 좌표를 포함하는 리스트 및 길이를 포함하는 리스트가 설정될 수 있다. 이후, 각 연속픽셀그룹에 대해 시작 픽셀의 좌표를 지시하는 인덱스 및 길이를 지시하는 인덱스가 파싱될 수 있다.
도 9는 본 개시의 일 실시예에 따른, 상단 참조샘플라인 내 서브참조샘플라인들을 나타내는 예시도이다.
제1 유도방법, 제2 유도방법, 제3 유도방법 또는 제4 유도방법에 따라 상단 참조샘플라인 또는 좌측 참조샘플라인이 유도된 경우, 유도된 참조샘플라인 내 픽셀들이 모두 동일한 예측유닛에 포함될 수 있다. 또는, 일부 픽셀들은 다른 예측유닛들에 포함될 수 있다. 예를 들어, 도 9의 예시와 같은 상단 참조샘플라인에서, (xT, yT)~(xT+a-1, yT) 범위의 픽셀들은 예측유닛 A에 포함되고, (xT+a, yT)~(xT+a+b-1, yT) 범위의 픽셀들은 예측유닛 B에 포함되며, (xT+a+b, yT)~(xT+a+b+c-1, yT) 범위의 픽셀들은 예측유닛 C에 포함될 수 있다. 이하, 도 9의 예시와 같이, 참조샘플라인 중 하나의 예측유닛 내에 포함된 참조샘플들을 서브참조샘플라인으로 정의한다.
제1 유도방법, 제2 유도방법 또는 제3 유도방법에 따라 상단 참조샘플라인 또는 좌측 참조샘플라인이 유도된 경우, 예측유닛들 간 경계들에 인접한 픽셀들, 또는 근처의 픽셀들에 대해, 참조샘플라인 유도부(606)는 블록킹 현상 제거 필터링을 수행할 수 있다. 도 9의 예시에서 (xT, yT). (xT+a-1, yT), (xT+a, yT), (xT+a+b-1, yT), (xT+a+b, yT) 및 (xT+a+b+c-1, yT)는 상단 참조샘플라인 중 경계에 인접한 픽셀들을 나타낸다.
참조샘플라인 유도부(606)는 후보 픽셀 경계들에서 블록킹 현상 제거를 위한 필터링의 수행 유무를 결정할 수 있다. 다음 조건들 중 하나 이상을 만족하는 후보 픽셀 경계에서 필터링이 수행될 수 있다.
첫 번째 조건은, 경계 양쪽의 두 예측유닛들의 양자화 파라미터들이 상이한 경우이다.
두 번째 조건은 경계의 두 픽셀의 간의 픽셀값 차이가 하한임계치 초과이고 상한임계치 미만인 경우이다. 이때, 상한임계치는 두 픽셀들의 양자화 파라미터들에 따라 결정될 수 있다.
세 번째 조건은 서브참조샘플라인의 시작과 끝 픽셀들 간의 픽셀값 차이가 상한임계치 이하인 경우이다.
참조샘플라인 유도부(606)는 다음과 같이 경계를 기준으로 양쪽 d 개의 픽셀들에 대하여 필터링을 수행할 수 있다. 참조샘플라인 유도부(606)는 전술한 2d 개의 픽셀들 중 임의의 픽셀 p를 필터링하기 위하여, 2d 개의 픽셀 값들을 가중합함으로써 필터링된 값을 도출할 수 있다. 이때, 필터링에 사용하는 픽셀들의 위치와, 각 픽셀에 곱해지는 가중치는 픽셀 p와 경계 간의 거리에 따라 정해질 수 있다. 예를 들어, 도 9에 예시된 (xT+a,yT) 좌표의 픽셀과 (xT+a+1,yT) 좌표의 픽셀에 대해, 수학식 1 및 수학식 2에 예시된 바와 같이 필터링이 수행될 수 있다.
Figure PCTKR2022015401-appb-img-000001
Figure PCTKR2022015401-appb-img-000002
여기서, I() 및 I'()는 필터링 전후의 픽셀값들을 나타낸다.
픽셀 p를 기준으로 좌측과 우측의(또는, 상단과 하단의) 동일한 또는 비슷한 개수의 픽셀들이 필터링 과정에서 사용될 수 있다. 픽셀 p가 경계에 가까울수록 더 많은 개수의 경계 근처 픽셀들이 필터링 과정에서 사용될 수 있다. 가중치들 즉, 필터 계수들은 저역통과 필터(low pass filter)의 특성을 가질 수 있다. 픽셀 p와 경계 간의 거리에 기반하는 필터 계수들이 사용될 수 있고, 픽셀 p와 거리가 가까운 픽셀일수록 곱해지는 필터 계수의 절대값이 증가될 수 있다.
참조샘플라인 유도모드들 중 참조샘플라인 리스트참조 모드가 선택된 경우, 참조샘플라인 유도부(606)는 참조샘플라인 리스트로부터 참조샘플라인을 선택할 수 있다.
좌측 참조샘플라인 및 상단 참조샘플라인에 대해 하나의 참조샘플라인 리스트가 사용될 수 있다. 또는, 좌측 참조샘플라인과 상단 참조샘플라인에 대해 별도의 참조샘플라인 리스트들이 존재할 수 있다. 또한, 참조샘플라인 길이에 따라서 별도의 참조샘플라인 리스트들이 존재할 수 있다.
참조샘플라인 유도부(606)는 동일한 고정 리스트를 참조샘플라인 리스트로 사용할 수 있다. 또는, 참조샘플라인 유도부(606)는 서브프레임, 프레임, 프레임 그룹 등의 단위로 참조샘플라인 리스트를 초기화하고 순차적으로 업데이트할 수 있다. 참조샘플라인 리스트는 다음과 같이 업데이트될 수 있다.
예를 들어, 복원된 예측유닛의 상단 또는 좌측 경계 샘플라인이 참조샘플라인 리스트에 추가될 수 있다. 또한, 가변위치 참조샘플라인 모드 또는 참조샘플라인 리스트참조 모드를 사용하여 복원된 예측유닛의 상단 또는 좌측 경계 샘플라인이 참조샘플라인 리스트에 추가될 수 있다.
참조샘플라인 유도부(606)는 참조샘플라인 리스트에 포함된 참조샘플라인들 중 하나를 지시하는 리스트참조 인덱스를 파싱하여 (좌측 또는 상단) 참조샘플라인을 선택할 수 있다. 또한, 영상 복호화 장치는 가중치를 파싱하여 참조샘플라인의 각 픽셀에 곱하거나, 오프셋을 파싱하여 참조샘플라인의 각 픽셀에 더할 수 있다.
이하, 도 10 및 도 11의 도시를 이용하여, 참조샘플라인의 유도 기반 인트라 예측을 이용하는 영상 부호화 방법 및 영상 복호화 방법을 기술한다.
도 10은 본 개시의 일 실시예에 따른, 영상 부호화 방법을 나타내는 순서도이다.
영상 부호화 장치는 현재블록의 인트라 예측모드를 결정한다(S1000).
영상 부호화 장치는 유도모드 인덱스를 결정한다(S1002).
여기서, 유도모드 인덱스는 참조샘플라인 유도모드를 지시하고, 참조샘플라인 유도모드는 고정위치 참조샘플라인 모드, 가변위치 참조샘플라인 모드 및 참조샘플라인 리스트참조 모드 중 하나이다.
일 예로서, 영상 부호화 장치는, 전술한 바와 같은 제1 조건 내지 제3 조건 중 하나 이상을 만족하는 경우, 가변위치 참조샘플라인 모드 또는 참조샘플라인 리스트참조 모드를 지시하도록 유도모드 인덱스를 결정한다. 반면, 제1 조건 내지 제3 조건 중 하나도 만족하지 않는 경우, 영상 부호화 장치는, 고정위치 참조샘플라인 모드를 지시하도록 유도모드 인덱스를 결정한다.
다른 예로서, 제1 조건 내지 제3 조건 중 하나 이상을 만족하는 지를 확인하여 하나 이상을 만족하는 경우, 영상 부호화 장치는 가변위치 참조샘플라인 모드 또는 참조샘플라인 리스트참조 모드를 사용할 수 있다. 부호화 효율 최적화 측면에서, 영상 부호화 장치는 두 모드들 중 하나를 지시하는 플래그를 결정할 수 있다. 반면, 제1 조건 내지 제3 조건 중 하나도 만족하지 않는 경우, 영상 부호화 장치는, 고정위치 참조샘플라인 모드를 사용할 수 있다.
영상 부호화 장치는 유도모드 인덱스에 따라 참조샘플라인 유도모드를 결정한다(S1004).
다른 예로서, 영상 부호화 장치는 제1 조건 내지 제3 조건의 만족 여부, 및 가변위치 참조샘플라인 모드 및 참조샘플라인 리스트참조 모드 중 하나를 지시하는 플래그에 기초하여, 참조샘플라인 유도모드를 결정할 수 있다.
영상 부호화 장치는 참조샘플라인 유도모드에 따라 현재블록의 참조샘플라인들을 유도한다(S1006). 여기서, 참조샘플라인들은 좌측 참조샘플라인 및 상단 참조샘플라인을 포함한다.
참조샘플라인 유도모드가 고정위치 참조샘플라인 모드인 경우, 영상 부호화 장치는 현재블록의 좌측과 상단 경계에 각각 인접한 픽셀라인을 참조샘플라인들로 유도한다.
참조샘플라인 유도모드가 가변위치 참조샘플라인 모드인 경우, 부호화 효율 최적화 측면에서, 영상 부호화 장치는 좌측 참조샘플라인의 유도방법 인덱스 및 상단 참조샘플라인의 유도방법 인덱스를 결정한다. 여기서, 좌측 참조샘플라인의 유도방법 인덱스 및 상단 참조샘플라인의 유도방법 인덱스는, 전술한 바와 같은 제1 유도방법, 제2 유도방법, 제3 유도방법 또는 제4 유도방법을 지시한다.
제1 유도방법 내지 제4 유도방법에 따라 영상 부호화 장치가 참조샘플라인들을 유도하는 방법은 이미 기술되었으므로, 더 이상의 자세한 설명을 생략한다.
제1 유도방법, 제2 유도방법 또는 제3 유도방법에 따라 유도된 참조샘플라인들이 다수의 예측유닛들에 포함되는 경우, 영상 부호화 장치는 다수의 예측유닛들 간 경계들에 인접한 픽셀들에 대해, 블록킹 현상 제거를 위한 필터링을 수행할 수 있다.
참조샘플라인 유도모드가 참조샘플라인 리스트참조 모드인 경우, 영상 부호화 장치는 참조샘플라인 리스트에 포함된 참조샘플라인들 중 하나를 지시하는 참조 인덱스를 결정한다. 영상 부호화 장치는 참조 인덱스를 이용하여 참조샘플라인 리스트로부터 좌측 참조샘플라인 및 상단 참조샘플라인을 유도한다.
또한, 영상 부호화 장치는 참조샘플라인 리스트를 업데이트할 수 있다. 예를 들어, 영상 부호화 장치는 복원된 예측유닛의 상단 경계 샘플라인 또는 좌측 경계 샘플라인을 참조샘플라인 리스트에 추가할 수 있다.
영상 부호화 장치는 참조샘플라인들 내 참조샘플들을 이용하여 인트라 예측모드에 따라 현재블록의 예측블록을 생성한다(S1008).
영상 부호화 장치는 현재블록으로부터 예측블록을 감산하여 잔차블록을 생성한다(S1010).
영상 부호화 장치는 유도모드 인덱스, 인트라 예측모드, 및 잔차블록을 부호화한다(S1012).
도 11은 본 개시의 일 실시예에 따른, 영상 복호화 방법을 나타내는 순서도이다.
영상 복호화 장치는 비트스트림으로부터 현재블록의 잔차블록, 현재블록의 인트라 예측모드, 및 유도모드 인덱스를 복호화한다(S1100).
여기서, 유도모드 인덱스는 참조샘플라인 유도모드를 지시하고, 참조샘플라인 유도모드는 고정위치 참조샘플라인 모드, 가변위치 참조샘플라인 모드 및 참조샘플라인 리스트참조 모드 중 하나이다.
일 예로서, 전술한 바와 같은 제1 조건 내지 제3 조건 중 하나 이상을 만족하는 경우, 유도모드 인덱스는 영상 부호화 장치에 의해 가변위치 참조샘플라인 모드 또는 참조샘플라인 리스트참조 모드를 지시하도록 부호화될 수 있다. 반면, 제1 조건 내지 제3 조건 중 하나도 만족하지 않는 경우, 유도모드 인덱스는 영상 부호화 장치에 의해 고정위치 참조샘플라인 모드를 지시하도록 부호화될 수 있다.
다른 예로서, 제1 조건 내지 제3 조건 중 하나 이상을 만족하는 지를 확인하여 하나 이상을 만족하는 경우, 영상 복호화 장치는 가변위치 참조샘플라인 모드 또는 참조샘플라인 리스트참조 모드를 사용할 수 있다. 이때, 영상 복호화 장치는 두 모드들 중 하나를 지시하는 플래그를 파싱할 수 있다. 반면, 제1 조건 내지 제3 조건 중 하나도 만족하지 않는 경우, 영상 복호화 장치는 고정위치 참조샘플라인 모드를 사용할 수 있다.
영상 복호화 장치는 유도모드 인덱스에 따라 참조샘플라인 유도모드를 결정한다(S1102).
다른 예로서, 영상 복호화 장치는 제1 조건 내지 제3 조건의 만족 여부, 및 가변위치 참조샘플라인 모드 및 참조샘플라인 리스트참조 모드 중 하나를 지시하는 플래그에 기초하여, 참조샘플라인 유도모드를 결정할 수 있다.
영상 복호화 장치는 참조샘플라인 유도모드에 따라 현재블록의 참조샘플라인들을 유도한다(S1104). 여기서, 참조샘플라인들은 좌측 참조샘플라인 및 상단 참조샘플라인을 포함한다.
참조샘플라인 유도모드가 고정위치 참조샘플라인 모드인 경우, 영상 복호화 장치는 현재블록의 좌측과 상단 경계에 각각 인접한 픽셀라인을 참조샘플라인들로 유도한다.
참조샘플라인 유도모드가 가변위치 참조샘플라인 모드인 경우, 영상 복호화 장치는 비트스트림으로부터 좌측 참조샘플라인의 유도방법 인덱스 및 상단 참조샘플라인의 유도방법 인덱스를 복호화한다. 좌측 참조샘플라인의 유도방법 인덱스 및 상단 참조샘플라인의 유도방법 인덱스는 제1 유도방법, 제2 유도방법, 제3 유도방법 또는 제4 유도방법을 지시한다.
제1 유도방법 내지 제4 유도방법에 따라 영상 복호화 장치가 참조샘플라인들을 유도하는 방법은 이미 기술되었으므로, 더 이상의 자세한 설명을 생략한다.
제1 유도방법, 제2 유도방법 또는 제3 유도방법에 따라 유도된 참조샘플라인들이 다수의 예측유닛들에 포함되는 경우, 영상 복호화 장치는 다수의 예측유닛들 간 경계들에 인접한 픽셀들에 대해, 블록킹 현상 제거를 위한 필터링을 수행할 수 있다.
참조샘플라인 유도모드가 참조샘플라인 리스트참조 모드인 경우, 영상 복호화 장치는 비트스트림으로부터 참조샘플라인 리스트에 포함된 참조샘플라인들 중 하나를 지시하는 참조 인덱스를 복호화한다. 영상 복호화 장치는 참조 인덱스를 이용하여 참조샘플라인 리스트로부터 좌측 참조샘플라인 및 상단 참조샘플라인을 유도한다.
또한, 영상 복호화 장치는 참조샘플라인 리스트를 업데이트할 수 있다. 예를 들어, 영상 복호화 장치는 복원된 예측유닛의 상단 경계 샘플라인 또는 좌측 경계 샘플라인을 참조샘플라인 리스트에 추가할 수 있다.
영상 복호화 장치는 참조샘플라인들 내 참조샘플들을 이용하여 인트라 예측모드에 따라 현재블록의 예측블록을 생성한다(S1106).
영상 복호화 장치는 예측블록과 잔차블록을 가산하여 현재블록을 복원한다(S1108).
본 명세서의 흐름도/타이밍도에서는 각 과정들을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 개시의 일 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것이다. 다시 말해, 본 개시의 일 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 개시의 일 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 흐름도/타이밍도에 기재된 순서를 변경하여 실행하거나 각 과정들 중 하나 이상의 과정을 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 흐름도/타이밍도는 시계열적인 순서로 한정되는 것은 아니다.
이상의 설명에서 예시적인 실시예들은 많은 다른 방식으로 구현될 수 있다는 것을 이해해야 한다. 하나 이상의 예시들에서 설명된 기능들 혹은 방법들은 하드웨어, 소프트웨어, 펌웨어 또는 이들의 임의의 조합으로 구현될 수 있다. 본 명세서에서 설명된 기능적 컴포넌트들은 그들의 구현 독립성을 특히 더 강조하기 위해 "...부(unit)" 로 라벨링되었음을 이해해야 한다.
한편, 본 실시예에서 설명된 다양한 기능들 혹은 방법들은 하나 이상의 프로세서에 의해 판독되고 실행될 수 있는 비일시적 기록매체에 저장된 명령어들로 구현될 수도 있다. 비일시적 기록매체는, 예를 들어, 컴퓨터 시스템에 의하여 판독가능한 형태로 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 예를 들어, 비일시적 기록매체는 EPROM(erasable programmable read only memory), 플래시 드라이브, 광학 드라이브, 자기 하드 드라이브, 솔리드 스테이트 드라이브(SSD)와 같은 저장매체를 포함한다.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
(부호의 설명)
122: 인트라 예측부
542: 인트라 예측부
602: 서브블록 분할여부 유도부
604: 예측모드 유도부
606: 참조샘플라인 유도부
606: 예측 수행부
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2021년 12월 06일 한국에 출원한 특허출원번호 제10-2021-0172938 호, 2022년 10월 11일 한국에 출원한 특허출원번호 제10-2022-0129732 호에 대해 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (14)

  1. 영상 복호화 장치가 수행하는, 현재블록을 인트라 예측하는 방법에 있어서,
    비트스트림으로부터 현재블록의 인트라 예측모드, 및 유도모드 인덱스를 복호화하는 단계, 여기서, 상기 유도모드는 참조샘플라인 유도모드를 지시하고, 상기 참조샘플라인 유도모드는 고정위치 참조샘플라인 모드, 가변위치 참조샘플라인 모드 및 참조샘플라인 리스트참조 모드 중 하나임;
    상기 유도모드 인덱스에 따라 상기 참조샘플라인 유도모드를 결정하는 단계;
    상기 참조샘플라인 유도모드에 따라 상기 현재블록의 참조샘플라인들을 유도하는 단계, 여기서, 상기 참조샘플라인들은 좌측 참조샘플라인 및 상단 참조샘플라인을 포함함; 및
    상기 참조샘플라인들 내 참조샘플들을 이용하여 상기 인트라 예측모드에 따라 상기 현재블록의 예측블록을 생성하는 단계
    를 포함하는 것을 특징으로 하는, 방법.
  2. 제1항에 있어서,
    상기 유도모드 인덱스는,
    제1 조건을 만족하는 경우, 상기 가변위치 참조샘플라인 모드 또는 상기 참조샘플라인 리스트참조 모드를 지시하도록 영상 부호화 장치에 의해 부호화되되,
    상기 제1 조건은,
    기설정된 위치들의, 상기 현재블록의 인접 픽셀들을 포함하는 복원 예측유닛들 중, 기설정된 개수 이상의 예측유닛들이 인터 예측에 의해 복원된 경우인 것을 특징으로 하는, 방법.
  3. 제1항에 있어서,
    상기 참조샘플라인들을 유도하는 단계는,
    상기 참조샘플라인 유도모드가 상기 고정위치 참조샘플라인 모드인 경우, 상기 현재블록의 좌측과 상단 경계에 각각 인접한 픽셀라인을 참조샘플라인들로 유도하는 것을 특징으로 하는, 방법.
  4. 제1항에 있어서,
    상기 참조샘플라인 유도모드가 상기 가변위치 참조샘플라인 모드인 경우, 상기 비트스트림으로부터 좌측 참조샘플라인의 유도방법 인덱스 및 상단 참조샘플라인의 유도방법 인덱스를 복호화하는 단계를 더 포함하고, 상기 좌측 참조샘플라인의 유도방법 인덱스 및 상단 참조샘플라인의 유도방법 인덱스는 제1 유도방법, 제2 유도방법, 또는 제3 유도방법을 지시하는 것을 특징으로 하는, 방법.
  5. 제4항에 있어서,
    상기 참조샘플라인들을 유도하는 단계는,
    상기 제1 유도방법을 이용하는 경우, 상기 현재블록을 포함하는 처리유닛의 좌측 인접 샘플들 중에 상기 현재블록의 좌상단 픽셀과 동일한 y축 좌표를 갖는 픽셀의 좌표 (xL, yL)에 대해, (xL, yL + α)~(xL, yL + puH×2 - 1) 범위의 샘플들을 상기 좌측 참조샘플라인으로 유도하되, 상기 α는 기설정된 정수이고, 상기 puH는 상기 현재블록의 높이인 것을 특징으로 하는, 방법.
  6. 제5항에 있어서,
    상기 처리유닛은,
    CTU(Coding Tree Unit)를 분할하여 생성된 단위로서, 적어도 하나 이상의 코딩유닛들이 상기 처리유닛에 포함되는 것을 특징으로 하는 방법.
  7. 제4항에 있어서,
    상기 참조샘플라인들을 유도하는 단계는,
    상기 제2 유도방법을 이용하는 경우, (-1, 0) 픽셀을 포함하는 예측유닛의 좌측 인접 샘플들 중에 상기 현재블록의 좌상단 (0, 0) 픽셀과 동일한 y축 좌표를 갖는 픽셀 (xL, yL)에 대해, (xL, yL + α)~(xL, yL + puH×2 - 1) 범위의 샘플들을 상기 좌측 참조샘플라인으로 유도하되, 상기 α는 기설정된 정수이고, 상기 puH는 상기 현재블록의 높이인 것을 특징으로 하는, 방법.
  8. 제4항에 있어서,
    상기 참조샘플라인들을 유도하는 단계는,
    상기 제3 유도방법을 이용하는 경우, 처리유닛 내에서 상기 현재블록 이전에 복호화된 영역 중, 상기 현재블록의 좌측에 존재하는 임의의 픽셀 (xL, yL)에 대해, (xL, yL + α)~(xL, yL + puH×2 - 1) 범위의 샘플들을 상기 좌측 참조샘플라인으로 유도하는 것을 특징으로 하되, 상기 α는 기설정된 정수이고, 상기 puH는 상기 현재블록의 높이인 것을 특징으로 하는, 방법.
  9. 제4항에 있어서,
    상기 참조샘플라인들을 유도하는 단계는,
    상기 제1 유도방법, 제2 유도방법 또는 제3 유도방법에 따라 유도된 참조샘플라인들이 다수의 예측유닛들에 포함되는 경우, 상기 다수의 예측유닛들 간 경계들에 인접한 픽셀들에 대해, 블록킹 현상 제거를 위한 필터링을 수행하는 것을 특징으로 하는, 방법.
  10. 제1항에 있어서,
    상기 참조샘플라인 유도모드가 상기 참조샘플라인 리스트참조 모드인 경우, 상기 비트스트림으로부터 참조샘플라인 리스트에 포함된 참조샘플라인들 중 하나를 지시하는 참조 인덱스를 복호화하는 단계를 더 포함하고,
    상기 참조샘플라인들을 유도하는 단계는,
    상기 참조 인덱스를 이용하여 상기 참조샘플라인 리스트로부터 상기 좌측 참조샘플라인 및 상기 상단 참조샘플라인을 유도하는 것을 특징으로 하는, 방법.
  11. 제10항에 있어서,
    상기 참조샘플라인들을 유도하는 단계는,
    복원된 예측유닛의 상단 경계 샘플라인 또는 좌측 경계 샘플라인을 상기 참조샘플라인 리스트에 추가함으로써, 상기 참조샘플라인 리스트를 업데이트하는 것을 특징으로 하는, 방법.
  12. 영상 부호화 장치가 수행하는, 현재블록을 인트라 예측하는 방법에 있어서,
    상기 현재블록의 인트라 예측모드를 결정하는 단계;
    상기 현재블록의 유도모드 인덱스를 결정하는 단계, 여기서, 상기 유도모드 인덱스는 참조샘플라인 유도모드를 지시하고, 상기 참조샘플라인 유도모드는 고정위치 참조샘플라인 모드, 가변위치 참조샘플라인 모드 및 참조샘플라인 리스트참조 모드 중 하나임;
    상기 유도모드 인덱스에 따라 상기 참조샘플라인 유도모드를 결정하는 단계;
    상기 참조샘플라인 유도모드에 따라 상기 현재블록의 참조샘플라인들을 유도하는 단계, 여기서, 상기 참조샘플라인들은 좌측 참조샘플라인 및 상단 참조샘플라인을 포함함; 및
    상기 참조샘플라인들 내 참조샘플들을 이용하여 상기 인트라 예측모드에 따라 상기 현재블록의 예측블록을 생성하는 단계
    를 포함하는 것을 특징으로 하는, 방법.
  13. 제12항에 있어서,
    상기 유도모드 인덱스는,
    제1 조건을 만족하는 경우, 상기 가변위치 참조샘플라인 모드 또는 상기 참조샘플라인 리스트참조 모드를 지시하되,
    상기 제1 조건은,
    기설정된 위치들의, 상기 현재블록의 인접 픽셀들을 포함하는 복원 예측유닛들 중, 기설정된 개수 이상의 예측유닛들이 인터 예측에 의해 복원된 경우인 것을 특징으로 하는, 방법.
  14. 영상 부호화 방법에 의해 생성된 비트스트림을 저장하는 컴퓨터 판독 가능한 기록매체로서, 상기 영상 부호화 방법은,
    현재블록의 인트라 예측모드를 결정하는 단계;
    상기 현재블록의 유도모드 인덱스를 결정하는 단계, 여기서, 상기 유도모드 인덱스는 참조샘플라인 유도모드를 지시하고, 상기 참조샘플라인 유도모드는 고정위치 참조샘플라인 모드, 가변위치 참조샘플라인 모드 및 참조샘플라인 리스트참조 모드 중 하나임;
    상기 유도모드 인덱스에 따라 상기 참조샘플라인 유도모드를 결정하는 단계;
    상기 참조샘플라인 유도모드에 따라 상기 현재블록의 참조샘플라인들을 유도하는 단계, 여기서, 상기 참조샘플라인들은 좌측 참조샘플라인 및 상단 참조샘플라인을 포함함; 및
    상기 참조샘플라인들 내 참조샘플들을 이용하여 상기 인트라 예측모드에 따라 상기 현재블록의 예측블록을 생성하는 단계
    를 포함하는 것을 특징으로 하는, 기록매체.
PCT/KR2022/015401 2021-12-06 2022-10-12 참조샘플라인의 유도 기반 인트라 예측을 이용하는 비디오 코딩을 위한 방법 및 장치 WO2023106599A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280080888.7A CN118355658A (zh) 2021-12-06 2022-10-12 用基于参考样本线导出的帧内预测的视频译码方法和装置
US18/734,540 US20240323356A1 (en) 2021-12-06 2024-06-05 Method and apparatus for video coding using intra prediction based on reference sample line derivation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210172938 2021-12-06
KR10-2021-0172938 2021-12-06
KR1020220129732A KR20230085063A (ko) 2021-12-06 2022-10-11 참조샘플라인의 유도 기반 인트라 예측을 이용하는 비디오 코딩방법 및 장치
KR10-2022-0129732 2022-10-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/734,540 Continuation US20240323356A1 (en) 2021-12-06 2024-06-05 Method and apparatus for video coding using intra prediction based on reference sample line derivation

Publications (1)

Publication Number Publication Date
WO2023106599A1 true WO2023106599A1 (ko) 2023-06-15

Family

ID=86730611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015401 WO2023106599A1 (ko) 2021-12-06 2022-10-12 참조샘플라인의 유도 기반 인트라 예측을 이용하는 비디오 코딩을 위한 방법 및 장치

Country Status (2)

Country Link
US (1) US20240323356A1 (ko)
WO (1) WO2023106599A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070790A1 (ko) * 2016-10-14 2018-04-19 세종대학교 산학협력단 영상의 부호화/복호화 방법 및 장치
WO2020058896A1 (en) * 2018-09-19 2020-03-26 Beijing Bytedance Network Technology Co., Ltd. Intra mode coding based on history information
KR20200128138A (ko) * 2018-04-02 2020-11-11 텐센트 아메리카 엘엘씨 비디오 코딩을 위한 방법 및 장치
WO2021058383A1 (en) * 2019-09-24 2021-04-01 Interdigital Vc Holdings France, Sas Method and apparatus using homogeneous syntax with coding tools
KR20210134267A (ko) * 2016-10-19 2021-11-09 에스케이텔레콤 주식회사 영상 부호화 또는 복호화하기 위한 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070790A1 (ko) * 2016-10-14 2018-04-19 세종대학교 산학협력단 영상의 부호화/복호화 방법 및 장치
KR20210134267A (ko) * 2016-10-19 2021-11-09 에스케이텔레콤 주식회사 영상 부호화 또는 복호화하기 위한 장치 및 방법
KR20200128138A (ko) * 2018-04-02 2020-11-11 텐센트 아메리카 엘엘씨 비디오 코딩을 위한 방법 및 장치
WO2020058896A1 (en) * 2018-09-19 2020-03-26 Beijing Bytedance Network Technology Co., Ltd. Intra mode coding based on history information
WO2021058383A1 (en) * 2019-09-24 2021-04-01 Interdigital Vc Holdings France, Sas Method and apparatus using homogeneous syntax with coding tools

Also Published As

Publication number Publication date
US20240323356A1 (en) 2024-09-26

Similar Documents

Publication Publication Date Title
WO2022186616A1 (ko) 인트라 예측모드 유도를 이용하는 비디오 코딩방법 및 장치
WO2023038447A1 (ko) 비디오 부호화/복호화 방법 및 장치
WO2022119301A1 (ko) 인트라 예측을 이용하는 비디오 코딩 방법 및 장치
WO2022114770A1 (ko) 기하학적 변환에 기반하는 블록 복사를 이용하는 인트라 예측방법과 장치
WO2023106599A1 (ko) 참조샘플라인의 유도 기반 인트라 예측을 이용하는 비디오 코딩을 위한 방법 및 장치
WO2023075124A1 (ko) 기하학적 인트라 예측모드를 이용하는 비디오 코딩방법 및 장치
WO2023132510A1 (ko) 개선된 차분 움직임벡터 머지를 이용하는 비디오 코딩을 위한 방법 및 장치
WO2023113200A1 (ko) 잔차신호들의 매핑을 이용하는 비디오 코딩을 위한 방법 및 장치
WO2023113209A1 (ko) 움직임벡터 예측자들의 후보 리스트를 이용하는 비디오 코딩을 위한 방법 및 장치
WO2023090613A1 (ko) 템플릿 매칭 기반의 인트라 예측을 사용하는 비디오 코딩을 위한 방법 및 장치
WO2023132514A1 (ko) 개선된 amvp-merge 모드를 이용하는 비디오 코딩을 위한 방법 및 장치
WO2022119302A1 (ko) 블록병합을 이용하는 비디오 코딩 방법 및 장치
WO2022211374A1 (ko) 매핑 기반 비디오 코딩방법 및 장치
WO2023106603A1 (ko) 템플릿 매칭 기반 이차적인 mpm 리스트를 이용하는 비디오 코딩을 위한 방법 및 장치
WO2023277602A1 (ko) 비디오 부호화/복호화 방법 및 장치
WO2023038444A1 (ko) 비디오 부호화/복호화 방법 및 장치
WO2023132508A1 (ko) 크로마 성분을 위한 템플릿 기반 인트라 모드 유도를 위한 방법
WO2023224289A1 (ko) 가상의 참조라인을 사용하는 비디오 코딩을 위한 방법 및 장치
WO2022186620A1 (ko) 인트라 예측의 예측 신호를 개선하는 비디오 코딩방법 및 장치
WO2022197137A1 (ko) 성분별 적응적 공간해상도를 갖는 움직임벡터를 이용하는 비디오 코딩방법 및 장치
WO2022211411A1 (ko) 적응적 공간해상도를 갖는 블록벡터를 이용하는 비디오 코딩방법 및 장치
WO2023224279A1 (ko) 기하학적 움직임 예측을 사용하는 비디오 코딩을 위한 방법 및 장치
WO2022103240A1 (ko) 크로마 인트라 방향성 예측모드를 적응적으로 결정하는 영상 부호화 및 복호화 방법
WO2023224280A1 (ko) 혼합 성분간 예측을 사용하는 비디오 코딩을 위한 방법 및 장치
WO2023113224A1 (ko) 매핑 기반 비디오 코딩에서 인루프 필터링

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE