WO2023106588A1 - Body-wearable pain management system based on bio-signal collection and analysis - Google Patents

Body-wearable pain management system based on bio-signal collection and analysis Download PDF

Info

Publication number
WO2023106588A1
WO2023106588A1 PCT/KR2022/015170 KR2022015170W WO2023106588A1 WO 2023106588 A1 WO2023106588 A1 WO 2023106588A1 KR 2022015170 W KR2022015170 W KR 2022015170W WO 2023106588 A1 WO2023106588 A1 WO 2023106588A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
pain
signal
biosignal
bio
Prior art date
Application number
PCT/KR2022/015170
Other languages
French (fr)
Korean (ko)
Inventor
이성원
장상현
조재현
Original Assignee
(주)웰스케어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)웰스케어 filed Critical (주)웰스케어
Publication of WO2023106588A1 publication Critical patent/WO2023106588A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4824Touch or pain perception evaluation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/7214Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using signal cancellation, e.g. based on input of two identical physiological sensors spaced apart, or based on two signals derived from the same sensor, for different optical wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy

Definitions

  • the present invention relates to a body-wearable pain management system based on bio-signal collection and analysis.
  • the present invention relates to a body-wearable pain management system based on bio-signal collection and analysis.
  • Ultrasonic waves are sound waves with a frequency exceeding the audible limit, and are used for non-invasive treatment of pain areas in orthopedics, pain medicine, and the like.
  • the photoplethysmogram is a signal that measures the change in blood volume in blood vessels according to the heartbeat using light absorption, reflection, and scattering. Phenomenon and biological response can be grasped.
  • Patent Document Republic of Korea Patent Publication No. 10-2021-0133424 (published on November 8, 2021)
  • An object of the present invention is to provide a body wearable pain management system based on biosignal collection and analysis, which enables personalized pain assessment through collection and analysis of individual user's biosignals and pain treatment accordingly.
  • An analysis unit that derives a change is included, and the analysis unit includes a preprocessing unit that preprocesses the biosignal, a determination unit that determines whether the biosignal preprocessed by the preprocessing unit is a good signal, and a biosignal determined as a good signal by the determination unit.
  • Bio-signal collection and analysis including an indicator derivation unit that derives a set indicator from the indicator derivation unit, and a comparison analysis unit that compares and analyzes the set indicator derived by the indicator derivation unit with reference data to derive the degree of pain or bio-signal change before and after the procedure.
  • a body wearable pain management system based on the present invention is provided.
  • the determination unit may determine whether the biosignal is a good signal by iteratively learning the biosignal through a predetermined machine learning-based signal quality evaluation model so as to improve the biosignal discrimination accuracy.
  • the determination unit includes a matrix transformation unit for matrix transformation of the biosignal image, a layer generation unit for generating a layer by performing a convolution operation on the matrix converted by the matrix transformation unit, and a normalization unit for normalizing the layer generated by the layer generation unit.
  • An activation unit for nonlinearly activating the layer normalized by the first normalizer, a subsampling unit for subsampling the layer nonlinearly activated by the activation unit, and an integrated connection of the layers subsampled by the subsampling unit to generate an integration matrix.
  • Including an integration unit that normalizes and connects the integration matrix generated by the integration unit, and a determination unit that determines whether the biosignal is a good signal according to a probability derived by applying a probability function to the integration matrix normalized and connected by the connection unit. can do.
  • the biosignal includes a photoplethysmogram
  • the preprocessor includes a first processing unit that removes signal noise by sequentially applying a nonlinear filter and a linear filter to the photoplethysmogram collected by the biosignal collection unit, and the signal by the first processing unit.
  • a second processing unit may be included to remove and interpolate ectopic beats from the noise-removed photoplethysmogram.
  • the biosignal includes a photoplethysmogram
  • the preprocessing unit includes a first processing unit that removes signal noise by sequentially applying a nonlinear filter and a linear filter to the photoplethysmogram collected by the biosignal collection unit, wherein the first processing unit includes: First, a nonlinear filter is applied to the optical pulse wave to remove baseline fluctuation noise, and a second, linear filter is applied to obtain a signal of a set frequency band excluding the low frequency band including the low frequency component, the respiratory component, and the motion component. can pass
  • the biosignal includes a photoplethysmogram
  • the preprocessor includes a first processing unit that removes signal noise by sequentially applying a nonlinear filter and a linear filter to the photoplethysmogram collected by the biosignal collection unit, and the signal by the first processing unit.
  • a second processing unit may be included to extract poles from the noise-removed photoplethysmogram, detect pole intervals, determine intervals of ectopic beats through the pole intervals, remove ectopic beats, and perform interpolation.
  • the body-wearable pain management system based on bio-signal collection and analysis according to the present invention, personalized and accurate pain evaluation based on user's personal bio-signal collection and analysis is possible.
  • the accuracy of pain evaluation can be improved through repetitive learning of biosignals through an artificial intelligence model.
  • the body-wearable pain management system based on bio-signal collection and analysis according to the present invention, it is possible to evaluate, diagnose, and manage self-pain in a non-face-to-face manner in daily life without a user visiting a hospital.
  • the body-wearable pain management system based on bio-signal collection and analysis according to the present invention, it is possible to provide customized pain treatment according to the result of a user's self-diagnosis of pain.
  • pain diagnosis and pain treatment can be performed in-line.
  • FIG. 1 is a schematic diagram showing a body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
  • FIG. 3 is a view showing the normalized setting indicators of the body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
  • FIG. 5 is a perspective view illustrating a pain treatment unit of a body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
  • FIG. 6 is a plan view and a bottom view illustrating a pain treatment unit of a body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along lines AA', (b) lines BB', and (c) lines CC' of FIG. 5;
  • FIG. 9 is a flowchart illustrating a body-wearable pain management process based on bio-signal collection and analysis according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram illustrating a process of pole detection and pole correction through adaptive threshold search according to an embodiment of the present invention.
  • 16 is a schematic diagram showing normalization of an optical pulse wave-based setting index according to an embodiment of the present invention.
  • 17 is a schematic diagram showing a differentiated common pulse wave-based setting index according to an embodiment of the present invention.
  • the body-wearable pain management system 300 based on bio-signal collection and analysis according to an embodiment of the present invention includes a pain treatment unit 100 that performs a procedure for pain relief or pain treatment. and a pain measuring unit 200 that collects and analyzes changes in the user's biosignals using the pain treatment unit 100, derives the degree of pain of the user or changes in biosignals before and after the procedure, and provides the result to the user. there is.
  • the pain measurer 200 may collect and analyze changes in biosignals of the user using the pain treatment unit 100 to derive the degree of pain of the user or changes in biosignals before and after the procedure, and provide the result to the user.
  • the biosignal may include a photoplethysmogram wave, but is not limited thereto, and description will be made mainly on the assumption that the biosignal is a photoplethysmogram wave.
  • the pain measurer 200 analyzes the bio-signal collection unit 210 that collects bio-signals and the bio-signals collected by the bio-signal collector 210 to derive the degree of pain or changes in bio-signals before and after the procedure.
  • An analysis unit 220 may be included.
  • the pain measurement unit 200 may be understood as a kind of server, and in this case, the biosignal collection unit 210 may be understood as a kind of database included in the server.
  • the pain measuring unit 200 is provided to enable bi-directional communication with the pain treatment unit 100, and can provide the user with the user's pain level or changes in biosignals before and after the procedure inline.
  • the analyzer 220 includes a preprocessor 230 that preprocesses the biosignal, a discriminator 240 that determines whether the biosignal preprocessed by the preprocessor 230 is a good signal, and the discriminator 240.
  • An index derivation unit 250 that derives a set index from the biosignal determined as a good signal, and the index derivation unit 250 compares and analyzes the set index derived by the reference data to determine the degree of pain or changes in the biosignal before and after the procedure. It may include a comparison and analysis unit 260 to derive, and will be described in detail below for each configuration.
  • the pre-processor 230 includes a first processor 232 that removes signal noise by sequentially applying a nonlinear filter and a linear filter to the optical pulse wave collected by the biosignal collector 210, and the first processor 232 It may include a second processing unit 234 for removing and interpolating ectopic beats from the optical pulse wave from which signal noise has been removed by .
  • the first processing unit 232 firstly applies a nonlinear filter to the photoplethysmogram to remove baseline fluctuation noise, and secondarily applies a linear filter to a low-frequency band including a low-frequency component, a respiratory component, and a motion component. It is possible to pass the signal of the set frequency band except for .
  • IIR filter infinite impulse response filter
  • a linear filter as a secondary filter can minimize signal delay and phase distortion, and as a finite impulse response filter (FIR filter), a band pass filter for a frequency band of 0.5 to 10 Hz; BPF), and accordingly, a low frequency band including a low frequency component (less than 0.5 Hz), a respiratory component (0.15 to 0.4 Hz), and a motion component (less than 0.1 Hz) can be filtered.
  • FIR filter finite impulse response filter
  • BPF finite impulse response filter
  • the second processing unit 234 extracts poles from the photoplethysmogram wave from which signal noise has been removed by the first processing unit 232, detects the pole intervals, determines the intervals of ectopic beats through the pole intervals, and removes the ectopic beats. and can interpolate.
  • the second processing unit 234 may perform data normalization prior to peak extraction, and specifically, by 0-1 Normalization, (value-min(value))/(max(value)-min( value)) can be followed.
  • the second processing unit 234 may detect a peak through an adaptive threshold search process, and specifically, through the slope of an empirically selected waveform, the next The waveform is tracked until a pulsation is found, and when the next pulsation is detected, a pole is extracted by moving to a maximum threshold, and then the pole can be extracted by repeatedly performing the above-described process.
  • the second processing unit 234 may perform correction of the extracted pole point, and specifically, the correction of the pole point may be performed through local maxima / minima. At this time, when there is a reflected wave, the corresponding part is excluded ( may have a predetermined refractory period (0.5 to 1 sec, preferably 0.6 sec) after the pole to be ignored.
  • the second processing unit 234 may detect a peak to peak interval (PPI) or a heart rate interval (R to R interval) according to peak locs[n]-peak locs[n-1], and detect The ectopic beat-to-beat interval can be determined according to 0.675*PPI[n-1] ⁇ PPI[n] ⁇ 1.245*PPI[n-1] through the polar interval.
  • PPI peak to peak interval
  • R to R interval heart rate interval
  • the determining unit 240 compares good signal indicators including ectopic beats, heart rate, continuous heart rate difference, and pole amplitude of the preprocessed photoplethysmogram wave with set parameters for the good signal indicator to determine whether the photoplethysmogram wave is a good or bad signal. It can be determined whether
  • the determination unit 240 aligns the pole interval values, calculates the length of the 25% (q1)-75% (q3) section in the distribution of corresponding values, and calculates the heart rate. If there is an interval between poles whose interval (RRI) is less than q1-1.5*iqr or greater than q3+1.5*iqr, it can be determined as a bad signal.
  • the determination unit 240 may determine that the signal is defective when the measured bpm based on the pole point is greater than max(200) or less than min(30).
  • the determination unit 240 may determine that the difference between the bpm measured at the systolic extreme point and the bpm measured at the pulsation start point exceeds 10 as a bad signal.
  • the determination unit 240 may determine that the signal is defective when the differential difference between the amplitudes of the systolic poles is 0.75 or more or the differential difference between the pulsation start points is 0.75 or more.
  • the determination unit 240 may determine whether the biosignal is a good signal by iteratively learning the biosignal through a predetermined machine learning-based signal quality evaluation model so as to improve the biosignal discrimination accuracy.
  • the determination unit 240 learns the data of the photoplethysmogram, which is determined as a good or bad signal, and analyzes the preprocessed one-dimensional signal image of the photoplethysmogram based on the learning result to determine whether the photoplethysmogram is a good or bad signal. It is possible to use a signal quality evaluation model capable of discriminating whether or not it is recognized, and accordingly, the processing speed of photoplethysmogram data can be increased, thereby further improving the real-time processing function of data.
  • the signal quality assessment (SQR) model was obtained from photoplethysmograms (from the left finger to measurement) based on a validation data set (excellent: 14,644, acceptable: 31,413, unfit: 3,196, abnormal: 308) manually evaluated by an experienced researcher in Learning may be performed, and evaluation accuracy may be further improved by performing learning on good or bad signals of the photoplethysmogram determined according to the above-described method.
  • CNN convolution neural network
  • the signal quality evaluation model includes a matrix conversion unit 242 that converts an image of a biosignal into a matrix, a layer generation unit 243 that generates a layer by performing a convolution operation on the matrix converted by the matrix conversion unit 242, and a layer A normalizer 244 that normalizes the layer generated by the generation unit 243, an activation unit 245 that nonlinearly activates the layer normalized by the first normalizer 244, and a nonlinear activation by the activation unit 245
  • a subsampling unit 246 subsampling the subsampled layer, an integrating unit 247 generating an integration matrix by integrating and connecting the layers subsampled by the subsampling unit 246, and the integration generated by the integrating unit 247.
  • connection unit 248 for normalizing and connecting the matrices, and a determination unit 249 for determining whether the biosignal is a good signal according to a probability derived by applying a probability function to the integration matrix normalized and connected by the connection unit 248.
  • the matrix conversion unit 242 converts the preprocessed signal image of the optical pulse wave into a matrix
  • the layer generation unit 243 performs convolution operation on the matrices to generate (convolution) layers.
  • the activated layer at this time, steps 2) to 5) can be repeated multiple times, preferably twice, and 6) merged in the integration unit 247.
  • the indicator derivation unit may derive a set indicator from the biosignal determined as a good signal by the determination unit.
  • the setting index may include an index related to an area, an index related to a length, an index related to a time, an index related to an amplitude, and an index related to a slope of the photoplethysmogram waveform.
  • the set index is derived in relation to the waveform shape of the photoplethysmogram wave, as shown in FIG. 15, based on the fact that the blood volume change can be estimated through the photoplethysmogram waveform and the autonomic nerve activity can be predicted accordingly.
  • Detailed indicators organized in the table of FIG. 3 may be included.
  • Photoplethysmography has an arbitrary unit that is difficult to compare relative to due to the influence of various factors such as skin color, anatomical factor, ambient light, sensor sensitivity, and measurement environment.
  • the area-related index can be normalized (spatial/temporal normalization) by dividing the entire waveform area or amplitude, and the length-related index by PPI or calculating a ratio.
  • the set index may include a time-related index and an amplitude-related index derived by calculating a time interval and an amplitude interval having a high expected pain correlation in the first-differentiated photoplethysmogram waveform, and may also include a beat-to-beat interval. Or, it may include non-dimensionalized and normalized indicators with amplitude.
  • the comparison and analysis unit may compare and analyze the set indicator derived by the indicator derivation unit with reference data to derive the degree of pain or change in biosignals before and after the procedure.
  • the reference data may include a set index value derived from the photoplethysmogram before the user's procedure or data serving as an index or standard of the degree of pain.
  • the pain treatment unit 100 includes a body portion 110 having a plurality of penetration holes 112 to allow light transmission, a battery 120 disposed inside the body portion 110 to supply electrical energy, and a battery A circuit board 130 electrically connected to the body 110 and disposed inside the body 110, and a low-power laser that is electrically connected to the circuit board 130 and irradiates a low-power laser to the treatment site through the penetration hole 112.
  • the light irradiation unit 140, the ultrasonic transmission unit 150 electrically connected to the circuit board 130 to deliver ultrasonic waves to the treatment site, and the circuit board 130 electrically connected to the optical volume for pain analysis of the treatment site
  • a life signal detection sensor 160 for detecting a pulse wave may be included, and each component will be described in detail below.
  • the body part 110 may have a plurality of transmission holes 112 to allow light transmission.
  • the penetration hole 112 may serve as a passage through which the low-power light irradiation unit 140 disposed inside the body portion 110 irradiates a low-power laser beam to the treatment site, as will be described later.
  • An adjustment button 114 may be disposed on the body 110 to allow a user to adjust the degree of ultrasound transmission and/or low-power laser irradiation.
  • a band part 116 that can be worn on the body by being combined with the body part 110 may be further included.
  • a space capable of coupling the body portion 110 may be provided in the band portion 116, and the band portion 116 may have a strap shape as in a wrist watch, as well as an armband or belt shape so as to be coupled to a thicker body part. there is.
  • the battery 120 may be disposed inside the body 110 to supply electrical energy.
  • the circuit board 130 may be electrically connected to the battery 120 and disposed inside the body 110 .
  • the circuit board 130 is electrically connected to the battery 120 to operate the low-power light irradiation unit 140, the ultrasonic transmission unit 150, and other components electrically connected to the circuit board 130 to be described later.
  • the circuit board 130 may be a printed circuit board (PCB).
  • the low-power light irradiation unit 140 is electrically connected to the circuit board 130 and can irradiate a low-power laser beam to the treatment area through the transmission hole 112 .
  • Low-power light irradiation unit 140 Also, since the low-power light irradiation unit 140 generates a large amount of heat while irradiating the low-power laser, a heat sink is provided between the laser element and the body 110 to dissipate this heat. (146) may be intervened.
  • Group 1 Evaluation after 30 minutes of laser irradiation on the soles of pain-induced rats and 30 minutes of rest
  • Group 2 Evaluation after 60 minutes of laser irradiation on the soles of pain-induced rats and 30 minutes of rest
  • the ultrasonic transmitter 150 may be electrically connected to the circuit board 130 to deliver ultrasonic waves to the treatment site.
  • the ultrasonic transmitter 150 is coupled to the body 110 and disposed in the case 152 having an internal space, and disposed in the internal space of the case 152 and is electrically connected to the circuit board 130 to have a piezoelectric effect. Accordingly, a piezoelectric element 154 for generating ultrasonic waves by converting electrical energy into vibration energy may be included.
  • One surface of the case 152 is in contact with the skin to transmit ultrasonic waves generated by the piezoelectric element 154 disposed in the internal space to the skin.
  • the case 152 can transmit ultrasonic waves to the treatment site more effectively It may protrude beyond the body portion 110 .
  • the bio-signal detection sensor 160 is electrically connected to the circuit board 130 and can detect photoplethysmograms to analyze pain in the treatment site.
  • the bio-signal detection sensor 160 may detect a photoplethysmogram by radiating light to an area to be measured and then receiving the returned light.
  • the bio-signal detection sensor 160 may not have the heat sink 146 interposed between the body unit 110 and the body unit 110 in order to receive the returned light.
  • the control unit selects one of the low-power light irradiation unit 140 and the ultrasonic transmission unit 150 according to the degree of pain analyzed using the optical pulse wave detected by the bio-signal detection sensor 160 or the change in the bio-signal before and after the procedure. At least one operation can be controlled.
  • control unit may receive data on the degree of pain analyzed by the pain measurement unit 200 or changes in biological signals before and after the procedure from the communication unit, which will be described later, and the low-power light irradiation unit 140 and/or Alternatively, the intensity of low-power laser irradiation and/or ultrasonic transmission may be adjusted by controlling the ultrasonic transmission unit 150 .
  • the low power light irradiation unit 140 may have an output value of 100 mW or less.
  • the optical element may include a laser diode or an LED, and may also include various other light emitting elements.
  • the low-power light irradiator 140 may include a first element 142 for irradiating a low-power laser in a wavelength range of 630 nm to 680 nm, and a second element 144 for irradiating a low-power laser in a wavelength range of 800 nm to 850 nm. .
  • the low-power light emitter 140 may further include a third element (not shown) for irradiating a low-power laser in a wavelength range of 900 nm to 1000 nm.
  • the ultrasound transmission unit 150 may generate effects such as pain relief by transmitting ultrasound in a frequency band of 1 to 5 MHz that can reach superficial and deep muscles to the treatment site.
  • the first element 142 and the second element 144 may be operated alternately or simultaneously.
  • the first element 142 and the second element 144 are formed in plurality, respectively, the ultrasonic transmission unit 150 is disposed in the central region of the body part 110, and the first element 142 and the second element ( 144 may be alternately disposed along the peripheral area of the body portion 110 .
  • the ultrasonic transmission unit 150 transmits ultrasonic waves to the treatment site, and the plurality of first elements 142 are disposed to irradiate the low-power laser, so that the pain relief effect can be further enhanced.
  • the plurality of second elements 144 are arranged and operated between the first elements 142, blood flow improvement, cell regeneration, and/or cell activation effects are generated in the treatment area, and thus the pain treatment effect can be further improved. there is.
  • the biological signal detection sensor 160 includes a light emitting unit 162 that radiates light to a measurement site through a transmission hole 112, and a light receiving unit 164 that receives light transmitted or reflected after being irradiated by the light emitting unit 162. ), and a light blocking unit 166 interposed between the light receiving unit 164 and the low power light irradiation unit 140 to prevent the low power laser light irradiated from the low power light irradiation unit 140 from entering the light receiving unit 164.
  • the light blocking portion 166 is formed as a dark film and is interposed between the circuit board 130 and the body portion 110 to spatially block and divide the low power light irradiation portion 140 and the light receiving portion 164 .
  • the inflow of the low-power laser light into the receiving unit is prevented through the light-blocking unit 166, thereby increasing the accuracy of the PDP measurement, and accordingly, the accuracy of the pain analysis result using the PDP can be improved.
  • the ALC circuit module may avoid interference between light received by the biosignal detection sensor 160 and ambient light.
  • the low-noise power supply circuit module can prevent noise generated by power switching from interfering with the optical pulse wave detection of the biological signal detection sensor 160 .
  • a communication unit (not shown) that is electrically connected to the circuit board 130 and transmits the photoplethysmogram detected by the biosignal detection sensor 160 to the user terminal 400 may be further included.
  • the communication unit may be a short-distance communication module, and in this case, Bluetooth may be used.
  • the user terminal 400 may transmit the photoplethysmogram received from the communication unit to the pain measurement unit 200, and the pain measurement unit 200 may use the photoplethysmogram wave to analyze the degree of pain or changes in biosignals before and after the procedure.
  • the resultant data analyzed by the pain measurer 200 is transmitted to the user terminal 400 again, and the communication unit may receive the corresponding data from the user terminal 400 .
  • the communication unit may transmit the photoplethysmogram detected by the biological signal detection sensor 160 to the user terminal 400.
  • the user terminal 400 may transmit the photoplethysmogram received from the communication unit to the pain measuring unit 200.
  • step 140 includes removing baseline fluctuation noise by firstly applying a nonlinear filter to the photoplethysmogram wave, and secondarily applying a linear filter to the photoplethysmogram wave to include a low-frequency component, a respiratory component, and a motion component. It may include passing a signal of a set frequency band other than a low-band frequency band to be used.
  • the second processing unit 234 may remove ectopic beats from the OPTIC wave from which signal noise has been removed by the first processing unit 232, and may perform interpolation.
  • Step 150 includes, in detail, steps of extracting poles from the preprocessed photoplethysmogram and detecting pole intervals, determining ectopic beat intervals through the detected pole intervals and removing ectopic beats, and determining the removed ectopic beats. It may include interpolating the position.
  • the determining unit 240 may determine whether the preprocessed photoplethysmogram is a good or bad signal.
  • step 160 good signal indices including ectopic beats, heart rate, continuous heart rate difference and pole amplitude of the preprocessed PPD are compared with set parameters for the good signal indices, so that the PPD is a good or bad signal. It can be determined whether or not
  • the determination unit 240 may determine whether the biosignal is a good signal by iteratively learning the biosignal through a predetermined machine learning-based signal quality evaluation model so as to improve the biosignal discrimination accuracy.
  • the determination unit 240 learns the data of the photoplethysmogram, which is determined as a good or bad signal, and analyzes the preprocessed one-dimensional signal image of the photoplethysmogram based on the learning result to determine whether the photoplethysmogram is good or bad.
  • a signal quality evaluation model capable of discriminating whether it is a signal may be used.
  • the matrix conversion unit 242 performs matrix conversion of the preprocessed signal image of the optical pulse wave (S171);
  • the layer generation unit 243 performs a convolution operation on the matrices to generate (convolution) layers (S172), and the normalization unit 244 performs batch normalization on the layers (S173) , the activation unit 245 nonlinearly activating the normalized layer (rectified linear unit activation; ReLU) (S174), the subsampling unit 246 subsampling the nonlinearly activated layer (subsampling; max pooling) ( S175) (At this time, steps 172 to 175 may be repeated multiple times, preferably performed twice), the integrator 247 generates an integration matrix by integrating and connecting the subsampled layers.
  • Step S176, step S177 of normalizing the integration matrix (dropout, dropout rate 05) (step 176 can be additionally performed after step 177), and the decision unit 249 adds a regression probability function ( It may include determining whether the photoplethysmogram is a good or bad signal according to the probability derived by applying softmax (S178).
  • the index derivation unit 250 may derive a setting index from the photoplethysmogram determined as a good signal.
  • step 185 the comparison and analysis unit 260 compares and analyzes the set index with reference data to derive the degree of pain or changes in biosignals before and after the procedure.
  • the reference data may include set index values of photoplethysmograms before the procedure or index or reference data of the degree of pain.
  • the analysis result by the comparison and analysis unit 260 may be transmitted to the user terminal 400 , where the degree of pain improvement or the change in biosignals before and after the procedure may be included.
  • control unit controls the operation of at least one of the low-power light irradiation unit 140 and the ultrasonic transmission unit 150 according to the degree of pain analyzed by the pain measurer 200 received by the communication unit or changes in bio signals before and after the procedure. You can control it.
  • the user terminal 400 may receive a satisfaction index for ultrasound and/or low-power laser treatment from the user.
  • control unit may calculate an improvement index by determining whether the degree of pain improvement analyzed by the pain measurer 200 is equal to or greater than a reference value.
  • the control unit compares the improvement index with the reference index, and when the improvement index is less than the reference index, the control unit may control the operation of at least one of the low-power light irradiation unit 140 and the ultrasonic transmission unit 150, and also improve When the index is equal to or greater than the reference index, first user data including the degree of pain improvement, the satisfaction index, and the improvement index may be transmitted to the user terminal 400 .
  • the pain measurer 200 may receive first user data from the user terminal 400 and store it in a database.
  • the pain measurer 200 may learn the first user data stored in the database to generate and provide a recommended treatment mode for low-power laser and/or ultrasound, thereby providing a personalized treatment to the user. be able to
  • the pain measurer 200 may receive second user data including body information and indications from the user terminal 400 and store them in a database.
  • the pain measurer 200 may generate and update population statistical information by receiving and analyzing first user data and second user data from the user terminals 400 of a plurality of users.
  • the pain measurer 200 may generate and provide a recommended treatment mode for low-power laser and/or ultrasound according to the first user data of the population statistical information corresponding to the user's second user information. Accordingly, the user can receive and use an effective treatment mode in the population included in the user.
  • the pain measurer 200 may transmit the analyzed degree of pain or changes in biosignals before and after the procedure to a medical institution information server so that the pain measurer 200 can use it as first-diagnosis data when the user visits the hospital.
  • the medical institution information server may include an electronic medical record (EMR), a personal health record (PHR), and the like.
  • EMR electronic medical record
  • PHR personal health record
  • step 310 the pain measuring unit 200 compares the analyzed pain level or biosignal change before and after the procedure with a reference value, and if the value is greater than or equal to the reference value, a visit recommendation message may be sent to the user terminal 400.
  • the wearable pain management system 300 based on biosignal collection and analysis according to the present invention, personalized and accurate pain evaluation based on user's individual biosignal collection and analysis is possible.
  • the accuracy of pain evaluation can be improved through repetitive learning of bio-signals through an artificial intelligence model.
  • the body-wearable pain management system 300 based on bio-signal collection and analysis according to the present invention, it is possible to evaluate, diagnose, and manage self-pain in a non-face-to-face manner in daily life without a user visiting a hospital.
  • the body-wearable pain management system 300 based on bio-signal collection and analysis according to the present invention, customized pain treatment according to the result of a user's self-diagnosis of pain is possible.
  • each component can be identified as each process.
  • the process of the above-described embodiment can be easily grasped from the viewpoint of components of the device.

Abstract

A body-wearable pain management system based on bio-signal collection and analysis is disclosed. According to one aspect of the present invention, provided is a body-wearable pain management system based on bio-signal collection and analysis, comprising: a pain treatment unit performing a procedure for pain relief or pain treatment; and a pain measurement unit, which collects and analyzes changes in bio-signals of a user using the pain treatment unit, so as to derive the degree of pain or changes in bio-signals of the user before and after a procedure, thereby providing same to the user, wherein the pain measurement unit includes a bio-signal collection unit, which collects bio-signals, and an analysis unit, which analyzes the bio-signals collected by means of the bio-signal collection unit so as to derive the degree of pain or changes in bio-signals before and after the procedure, and the analysis unit includes: a pre-processing unit for pre-processing the bio-signal; a determination unit for determining whether the bio-signal pre-processed by the pre-processing unit is a normal signal; an index derivation unit for deriving a set index from the bio-signal determined to be a normal signal by means of the determination unit; and a comparative analysis unit, which compares the set index derived by the index derivation unit with reference data and analyzes same so as to derive the degree of pain or changes in bio-signals before and after the procedure.

Description

생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템Body wearable pain management system based on vital signal collection and analysis
본 발명은 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템에 관한 것이다.The present invention relates to a body-wearable pain management system based on bio-signal collection and analysis.
[이 발명을 지원한 국가연구개발사업][National research and development project supporting this invention]
[과제고유번호] 1425153809[Assignment identification number] 1425153809
[과제번호] S2962695[Assignment number] S2962695
[부처명] 중소벤처기업부[Name of Department] Ministry of Small and Medium Venture Business
[과제관리(전문)기관명] 중소기업기술정보진흥원[Task management (professional) organization name] Small and Medium Business Technology Information Promotion Agency
[연구사업명] 전략형창업과제[Research Project Name] Strategic Entrepreneurship Project
[연구과제명] 복합에너지(콜드레이저+초음파)를 이용한 통증완화 및 광용적맥파를 이용한 통증 개선 정도를 나타낼 수 있는 웨어러블 기기의 개발[Research Project Title] Development of a wearable device that can indicate pain relief using complex energy (cold laser + ultrasound) and pain improvement using photoplethysmography
[기여율] 1/1[Contribution rate] 1/1
[과제수행기관명] (주)웰스케어[Name of project performing organization] Wellscare Co., Ltd.
[연구기간] 2020.12.31 ~ 2022.12.30[Research period] 2020.12.31 ~ 2022.12.30
본 발명은 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템에 관한 것이다.The present invention relates to a body-wearable pain management system based on bio-signal collection and analysis.
초음파(ultrasonic waves)는 가청 한계를 넘는 주파수를 가진 음파로서, 정형외과, 통증의학과 등에서 통증 부위에 대한 비침습적 치료를 위해 사용되고 있다.Ultrasonic waves are sound waves with a frequency exceeding the audible limit, and are used for non-invasive treatment of pain areas in orthopedics, pain medicine, and the like.
또한, 저출력 레이저(low level laser; LLL)는 여러 임상 실험들의 결과를 통해, 그 파장 범위에 따라 통증 완화, 혈류 개선, 혈류 강화, 피부 재생, 세포 활성화, 지방 분해, 및 세포 자극 등의 다양한 효과가 있는 것으로 알려져 있다.In addition, low-level laser (LLL) has various effects such as pain relief, blood flow improvement, blood flow enhancement, skin regeneration, cell activation, lipolysis, and cell stimulation depending on the wavelength range through the results of various clinical trials. It is known that there is
한편, 광용적맥파(photoplethysmogram; PPG)는 심박에 따른 혈관 내 혈량 변화를 빛의 흡수, 반사, 산란을 이용해 측정한 신호로서, 심혈관계와 관련된 많은 정보를 담고 있어 그 파형의 분석을 통해 다양한 생리 현상 및 생체 반응을 파악할 수 있다.On the other hand, the photoplethysmogram (PPG) is a signal that measures the change in blood volume in blood vessels according to the heartbeat using light absorption, reflection, and scattering. Phenomenon and biological response can be grasped.
선행기술문헌 : (특허문헌) 대한민국 공개특허공보 제10-2021-0133424호 (2021.11.08. 공개)Prior Art Document: (Patent Document) Republic of Korea Patent Publication No. 10-2021-0133424 (published on November 8, 2021)
본 발명은 사용자 개인의 생체 신호를 수집 및 분석을 통한 개인 맞춤형 통증 평가 및 그에 따른 통증 치료가 가능한 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템을 제공하기 위한 것이다.An object of the present invention is to provide a body wearable pain management system based on biosignal collection and analysis, which enables personalized pain assessment through collection and analysis of individual user's biosignals and pain treatment accordingly.
본 발명의 일 측면에 따르면, 통증 완화 또는 통증 치료를 위한 시술을 수행하는 통증 치료부, 및 통증 치료부를 사용하는 사용자의 생체 신호 변화를 수집 및 분석하여, 사용자의 통증 정도 또는 시술 전후의 생체 신호 변화를 도출하여 사용자에게 제공하는 통증 측정부를 포함하고, 통증 측정부는, 생체 신호를 수집하는 생체 신호 수집부, 및 생체 신호 수집부에 의해 수집된 생체 신호를 분석 하여 통증 정도 또는 시술 전후의 생체 신호 변화를 도출하는 분석부를 포함하고, 분석부는, 생체 신호를 전처리하는 전처리부, 전처리부에 의해 전처리된 생체 신호가 양호 신호인지 여부를 판별하는 판별부, 판별부에 의해 양호 신호로 판별된 생체 신호로부터 설정 지표를 도출하는 지표 도출부, 및 지표 도출부에 의해 도출된 설정 지표를 기준 데이터와 비교 분석하여 통증 정도 또는 시술 전후의 생체 신호 변화를 도출하는 비교 분석부를 포함하는, 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템이 제공된다.According to one aspect of the present invention, a pain treatment unit that performs a procedure for pain relief or pain treatment, and a user's physiological signal change using the pain treatment unit is collected and analyzed to determine the degree of pain of the user or the bio signal before and after the procedure. It includes a pain measurement unit that derives changes and provides them to the user, and the pain measurement unit analyzes the bio-signals collected by the bio-signal collection unit and the bio-signal collection unit to collect bio-signals and measures the degree of pain or bio-signals before and after the procedure. An analysis unit that derives a change is included, and the analysis unit includes a preprocessing unit that preprocesses the biosignal, a determination unit that determines whether the biosignal preprocessed by the preprocessing unit is a good signal, and a biosignal determined as a good signal by the determination unit. Bio-signal collection and analysis, including an indicator derivation unit that derives a set indicator from the indicator derivation unit, and a comparison analysis unit that compares and analyzes the set indicator derived by the indicator derivation unit with reference data to derive the degree of pain or bio-signal change before and after the procedure. A body wearable pain management system based on the present invention is provided.
판별부는, 생체 신호 판별 정확도를 향상 가능하도록, 생체 신호를 기설정된 머신 러닝 기반의 신호 품질 평가 모델을 통해 반복 학습함으로써 생체신호가 양호 신호인지 여부를 판별할 수 있다.The determination unit may determine whether the biosignal is a good signal by iteratively learning the biosignal through a predetermined machine learning-based signal quality evaluation model so as to improve the biosignal discrimination accuracy.
판별부는, 생체 신호의 이미지를 행렬 변환하는 행렬 변환부, 행렬 변환부에 의해 변환된 행렬을 합성곱 연산 처리하여 계층을 생성하는 계층 생성부, 계층 생성부에 의해 생성된 계층을 정규화하는 정규화부, 제1 정규화부에 의해 정규화된 계층을 비선형 활성화하는 활성화부, 활성화부에 의해 비선형 활성화된 계층을 부표본화하는 부표본화부, 부표본화부에 의해 부표본화된 계층을 통합 연결하여 통합 행렬을 생성하는 통합부, 통합부에 의해 생성된 통합 행렬을 정규화 연결하는 연결부, 및 연결부에 의해 정규화 연결된 통합 행렬에 확률 함수를 적용하여 도출된 확률에 따라 생체 신호가 양호 신호인지 여부를 판별하는 결정부를 포함할수 있다.The determination unit includes a matrix transformation unit for matrix transformation of the biosignal image, a layer generation unit for generating a layer by performing a convolution operation on the matrix converted by the matrix transformation unit, and a normalization unit for normalizing the layer generated by the layer generation unit. , An activation unit for nonlinearly activating the layer normalized by the first normalizer, a subsampling unit for subsampling the layer nonlinearly activated by the activation unit, and an integrated connection of the layers subsampled by the subsampling unit to generate an integration matrix. Including an integration unit that normalizes and connects the integration matrix generated by the integration unit, and a determination unit that determines whether the biosignal is a good signal according to a probability derived by applying a probability function to the integration matrix normalized and connected by the connection unit. can do.
통증 측정부는, 통증 치료부와 양방향 통신 가능하도록 구비되어, 사용자의 통증 정도 또는 시술 전후의 생체 신호 변화를 인라인(in-line)으로 사용자에게 제공할 수 있다.The pain measurement unit is provided to enable bi-directional communication with the pain treatment unit, and can provide the user with the user's pain level or changes in biosignals before and after the procedure in-line.
생체 신호는 광용적맥파를 포함하고, 전처리부는, 생체 신호 수집부에 의해 수집된 광용적맥파에 비선형 필터 및 선형 필터를 순차 적용하여 신호 잡음을 제거하는 제1 처리부, 및 제1 처리부에 의해 신호 잡음이 제거된 광용적맥파에서 이소성 박동을 제거하고 보간하는 제2 처리부를 포함할 수 있다.The biosignal includes a photoplethysmogram, and the preprocessor includes a first processing unit that removes signal noise by sequentially applying a nonlinear filter and a linear filter to the photoplethysmogram collected by the biosignal collection unit, and the signal by the first processing unit. A second processing unit may be included to remove and interpolate ectopic beats from the noise-removed photoplethysmogram.
생체 신호는 광용적맥파를 포함하고, 전처리부는 생체 신호 수집부에 의해 수집된 광용적맥파에 비선형 필터 및 선형 필터를 순차 적용하여 신호 잡음을 제거하는 제1 처리부를 포함하되, 제1 처리부는, 광용적맥파에 1차적으로 비선형 필터를 적용하여 기저선 변동 잡음을 제거하고, 2차적으로 선형 필터를 적용하여 저주파 성분, 호흡 성분, 및 움직임 성분을 포함하는 저역 주파수 대역을 제외한 설정 주파수 대역의 신호를 통과시킬 수 있다.The biosignal includes a photoplethysmogram, and the preprocessing unit includes a first processing unit that removes signal noise by sequentially applying a nonlinear filter and a linear filter to the photoplethysmogram collected by the biosignal collection unit, wherein the first processing unit includes: First, a nonlinear filter is applied to the optical pulse wave to remove baseline fluctuation noise, and a second, linear filter is applied to obtain a signal of a set frequency band excluding the low frequency band including the low frequency component, the respiratory component, and the motion component. can pass
생체 신호는 광용적맥파를 포함하고, 전처리부는, 생체 신호 수집부에 의해 수집된 광용적맥파에 비선형 필터 및 선형 필터를 순차 적용하여 신호 잡음을 제거하는 제1 처리부, 및 제1 처리부에 의해 신호 잡음이 제거된 광용적맥파에서 극점을 추출하여 극점 간격을 검출하고, 극점 간격을 통해 이소성 박동의 간격을 판단하여 이소성 박동을 제거하고 보간하는 제2 처리부를 포함할 수 있다.The biosignal includes a photoplethysmogram, and the preprocessor includes a first processing unit that removes signal noise by sequentially applying a nonlinear filter and a linear filter to the photoplethysmogram collected by the biosignal collection unit, and the signal by the first processing unit. A second processing unit may be included to extract poles from the noise-removed photoplethysmogram, detect pole intervals, determine intervals of ectopic beats through the pole intervals, remove ectopic beats, and perform interpolation.
본 발명에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템에 의하면, 사용자 개인의 생체 신호 수집과 분석을 기반으로 한 개인 맞춤형의 정확한 통증 평가가 가능하다.According to the body-wearable pain management system based on bio-signal collection and analysis according to the present invention, personalized and accurate pain evaluation based on user's personal bio-signal collection and analysis is possible.
본 발명에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템에 의하면, 인공 지능 모델을 통한 생체 신호의 반복 학습을 통해 통증 평가의 정확도를 향상시킬 수 있다.According to the wearable pain management system based on biosignal collection and analysis according to the present invention, the accuracy of pain evaluation can be improved through repetitive learning of biosignals through an artificial intelligence model.
본 발명에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템에 의하면, 사용자가 내원하지 않고도 일상 생활 속에서 비대면으로 자가통증 평가, 진단, 및 관리 가능하다.According to the body-wearable pain management system based on bio-signal collection and analysis according to the present invention, it is possible to evaluate, diagnose, and manage self-pain in a non-face-to-face manner in daily life without a user visiting a hospital.
본 발명에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템에 의하면, 사용자의 자가 통증 진단 결과에 따른 맞춤형 통증 치료가 가능하다.According to the body-wearable pain management system based on bio-signal collection and analysis according to the present invention, it is possible to provide customized pain treatment according to the result of a user's self-diagnosis of pain.
본 발명에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템에 의하면, 통증 진단과 그에 따른 통증 치료가 인라인(in-line)으로 진행될 수 있다.According to the body-wearable pain management system based on bio-signal collection and analysis according to the present invention, pain diagnosis and pain treatment can be performed in-line.
도 1은 본 발명의 일 실시예에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템을 나타낸 모식도.1 is a schematic diagram showing a body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템을 나타낸 도면.2 is a diagram showing a body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템의 정규화된 설정 지표를 정리하여 나타낸 도면.3 is a view showing the normalized setting indicators of the body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템의 통증 치료부를 나타낸 사용 상태도.4 is a use state diagram showing a pain treatment unit of a body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템의 통증 치료부를 나타낸 사시도.5 is a perspective view illustrating a pain treatment unit of a body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템의 통증 치료부를 나타낸 평면도 및 저면도.6 is a plan view and a bottom view illustrating a pain treatment unit of a body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
도 7은 도 5의 (a) AA'선, (b) BB'선, (c) CC'선에 따른 단면도.7 is a cross-sectional view taken along lines AA', (b) lines BB', and (c) lines CC' of FIG. 5;
도 8은 본 발명의 일 실시예에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템의 통증 치료부의 통증에 대한 저출력 레이저의 치료적 효과 평가를 위한 임상 실험에 대한 도면.8 is a diagram of a clinical experiment for evaluating the therapeutic effect of a low-power laser on pain in a pain treatment unit of a body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 프로세스를 나타낸 순서도.9 is a flowchart illustrating a body-wearable pain management process based on bio-signal collection and analysis according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템의 신호 품질 평가 모델의 신호 평가 프로세스를 나타낸 순서도.10 is a flowchart illustrating a signal evaluation process of a signal quality evaluation model of a body-wearable pain management system based on bio-signal collection and analysis according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 적응형 임계치 탐색을 통한 극점 검출 및 극점의 보정 과정을 나타낸 모식도.11 is a schematic diagram illustrating a process of pole detection and pole correction through adaptive threshold search according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 신호 품질 평가 모델의 신호 품질 평가 프로세스를 나타낸 모식도.12 is a schematic diagram illustrating a signal quality evaluation process of a signal quality evaluation model according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 신호 품질 평가의 결과를 정리하여 나타낸 도면.13 is a diagram showing the results of signal quality evaluation according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 신호 품질 평가 모델과 기존 연구의 성능의 비교 결과를 나타낸 도면.14 is a diagram showing a comparison result of the performance of a signal quality evaluation model according to an embodiment of the present invention and an existing study.
도 15는 본 발명의 일 실시예에 따른 광용적맥파 기반 설정 지표를 나타낸 모식도.15 is a schematic diagram showing a photoplethysmogram-based setting index according to an embodiment of the present invention.
도 16은 본 발명의 일 실시예에 따른 광용적맥파 기반 설정 지표 정규화를 나타낸 모식도16 is a schematic diagram showing normalization of an optical pulse wave-based setting index according to an embodiment of the present invention.
도 17은 본 발명의 일 실시예에 따른 미분된 공용적맥파 기반 설정 지표를 나타낸 모식도.17 is a schematic diagram showing a differentiated common pulse wave-based setting index according to an embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Since the present invention can apply various transformations and can have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, it should be understood that this is not intended to limit the present invention to specific embodiments, and includes all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of related known technologies may obscure the gist of the present invention, the detailed description will be omitted.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, the terms "include" or "have" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
이하, 본 발명에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템(300)에 대해 첨부도면을 참조하여 상세히 설명하기로 한다. 첨부도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, the body-wearable pain management system 300 based on bio-signal collection and analysis according to the present invention will be described in detail with reference to the accompanying drawings. In the description with reference to the accompanying drawings, the same or corresponding components are given the same reference numerals, and overlapping descriptions thereof will be omitted.
이하, 본 발명의 실시예에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템(300)에 대해 설명한다. 도 1 내지 도 3을 참조하면, 본 발명의 실시예에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템(300)은 통증 완화 또는 통증 치료를 위한 시술을 수행하는 통증 치료부(100), 및 통증 치료부(100)를 사용하는 사용자의 생체 신호 변화를 수집 및 분석하여, 사용자의 통증 정도 또는 시술 전후의 생체 신호 변화를 도출하여 사용자에게 제공하는 통증 측정부(200)를 포함할 수 있다.Hereinafter, a body-wearable pain management system 300 based on bio-signal collection and analysis according to an embodiment of the present invention will be described. 1 to 3, the body-wearable pain management system 300 based on bio-signal collection and analysis according to an embodiment of the present invention includes a pain treatment unit 100 that performs a procedure for pain relief or pain treatment. and a pain measuring unit 200 that collects and analyzes changes in the user's biosignals using the pain treatment unit 100, derives the degree of pain of the user or changes in biosignals before and after the procedure, and provides the result to the user. there is.
통증 치료부(100)는 통증 완화 또는 통증 치료를 위한 시술을 수행할 수 있다.구체적으로, 통증 치료부(100)는 근골격계 통증 질환, 예컨대 허리디스크 통증, 손목터널증후군, 무릎 관절염, 슬관절 통증, 상과염 통증, 자라목 증후군, 그리고 각종 관절 부위 통증을 치료하는 다양한 시술을 수행할 수 있다. 일 예로서, 통증 치료부(110)는 저출력 레이져 요법(Low Level Laser Therapy, LLLT) 기반의 통증 치료를 수행할 수 있다. 저출력 레이저 요법은 피부 세포의 미토콘드리아 발색단 (chromophore)에 광자가 흡수되어 결과적으로 전자 수송, 아데노신 3-인산 (ATP), 산화 질소 방출, 혈류 개선, 활성 산호 등의 증가를 활성화시켜, 다양한 신호 경로를 생성함으로써 통증을 치료할 수 있다. 다른 예로서, 통증치료부(110)는 초음파(Ultrasound), 고주파(Radiofrequency), 초단파, 체외충격파, 온열치료 등의 기술로서 상술한 통증 치료를 위한 시술을 수행할 수 있다.The pain treatment unit 100 may perform procedures for pain relief or pain treatment. Specifically, the pain treatment unit 100 may treat musculoskeletal pain diseases such as herniated disc pain, carpal tunnel syndrome, knee arthritis, knee joint pain, A variety of procedures can be performed to treat epicondylitis pain, turtleneck syndrome, and pain in various joint areas. As an example, the pain treatment unit 110 may perform pain treatment based on Low Level Laser Therapy (LLLT). Low-power laser therapy activates various signal pathways by absorbing photons into the mitochondrial chromophore of skin cells and consequently increasing electron transport, adenosine 3-phosphate (ATP), nitric oxide release, blood flow improvement, and active oxygen. Pain can be cured by creating As another example, the pain treatment unit 110 may perform the above-described treatment for pain using technologies such as ultrasound, radiofrequency, ultrashort waves, extracorporeal shock waves, and thermal therapy.
통증 측정부(200)는 통증 치료부(100)를 사용하는 사용자의 생체 신호 변화를 수집 및 분석하여, 사용자의 통증 정도 또는 시술 전후의 생체 신호 변화를 도출하여 사용자에게 제공할 수 있다. 이때, 생체 신호는 광용적맥파를 포함할 수 있으며, 다만 그에 한정되는 것은 아니되, 이하에서는 생체 신호가 광용적맥파인 경우를 주로 상정하여 설명하도록 한다.The pain measurer 200 may collect and analyze changes in biosignals of the user using the pain treatment unit 100 to derive the degree of pain of the user or changes in biosignals before and after the procedure, and provide the result to the user. In this case, the biosignal may include a photoplethysmogram wave, but is not limited thereto, and description will be made mainly on the assumption that the biosignal is a photoplethysmogram wave.
통증 측정부(200)는, 생체 신호를 수집하는 생체 신호 수집부(210), 및 생체 신호 수집부(210)에 의해 수집된 생체 신호를 분석하여 통증 정도 또는 시술 전후의 생체 신호 변화를 도출하는 분석부(220)를 포함할 수 있다.The pain measurer 200 analyzes the bio-signal collection unit 210 that collects bio-signals and the bio-signals collected by the bio-signal collector 210 to derive the degree of pain or changes in bio-signals before and after the procedure. An analysis unit 220 may be included.
여기서, 통증 측정부(200)는 일종의 서버로 이해될 수 있으며, 이때 생체 신호 수집부(210)는 서버에 포함된 일종의 데이터베이스로 이해될 수 있다.Here, the pain measurement unit 200 may be understood as a kind of server, and in this case, the biosignal collection unit 210 may be understood as a kind of database included in the server.
통증 측정부(200)는, 통증 치료부(100)와 양방향 통신 가능하도록 구비되어, 사용자의 통증 정도 또는 시술 전후의 생체 신호 변화를 인라인(inline)으로 사용자에게 제공할 수 있다.The pain measuring unit 200 is provided to enable bi-directional communication with the pain treatment unit 100, and can provide the user with the user's pain level or changes in biosignals before and after the procedure inline.
분석부(220)는, 생체 신호를 전처리하는 전처리부(230), 전처리부(230)에 의해 전처리된 생체 신호가 양호 신호인지 여부를 판별하는 판별부(240), 판별부(240)에 의해 양호 신호로 판별된 생체 신호로부터 설정 지표를 도출하는 지표 도출부(250), 및 지표 도출부(250)에 의해 도출된 설정 지표를 기준 데이터와 비교 분석하여 통증 정도 또는 시술 전후의 생체 신호 변화를 도출하는 비교 분석부(260)를 포함할 수 있으며, 이하 각 구성에 대해 상술하도록 한다.The analyzer 220 includes a preprocessor 230 that preprocesses the biosignal, a discriminator 240 that determines whether the biosignal preprocessed by the preprocessor 230 is a good signal, and the discriminator 240. An index derivation unit 250 that derives a set index from the biosignal determined as a good signal, and the index derivation unit 250 compares and analyzes the set index derived by the reference data to determine the degree of pain or changes in the biosignal before and after the procedure. It may include a comparison and analysis unit 260 to derive, and will be described in detail below for each configuration.
전처리부(230)는, 생체 신호 수집부(210)에 의해 수집된 광용적맥파에 비선형 필터 및 선형 필터를 순차 적용하여 신호 잡음을 제거하는 제1 처리부(232), 및 제1 처리부(232)에 의해 신호 잡음이 제거된 광용적맥파에서 이소성 박동을 제거하고 보간하는 제2 처리부(234)를 포함할 수 있다.The pre-processor 230 includes a first processor 232 that removes signal noise by sequentially applying a nonlinear filter and a linear filter to the optical pulse wave collected by the biosignal collector 210, and the first processor 232 It may include a second processing unit 234 for removing and interpolating ectopic beats from the optical pulse wave from which signal noise has been removed by .
제1 처리부(232)는, 광용적맥파에 1차적으로 비선형 필터를 적용하여 기저선 변동 잡음을 제거하고, 2차적으로 선형 필터를 적용하여 저주파 성분, 호흡 성분, 및 움직임 성분을 포함하는 저역 주파수 대역을 제외한 설정 주파수 대역의 신호를 통과시킬 수 있다.The first processing unit 232 firstly applies a nonlinear filter to the photoplethysmogram to remove baseline fluctuation noise, and secondarily applies a linear filter to a low-frequency band including a low-frequency component, a respiratory component, and a motion component. It is possible to pass the signal of the set frequency band except for .
여기서, 1차 필터로서의 비선형 필터는 광용적맥파에서 호흡 신호 등을 포함하는 기저선 변동 잡음(baseline wander)을 제거할 수 있으며, 무한 임펄스 응답 필터(infinite impulse response filter; IIR filter)로서, 구체적으로 y[n]-0.995y[n-1]=0.9975x[n]-0.9975x[n-1]에 따를 수 있다.Here, the nonlinear filter as a first-order filter can remove baseline wander including a respiration signal from the optical pulse wave, and is an infinite impulse response filter (IIR filter), specifically y [n]-0.995y[n-1]=0.9975x[n]-0.9975x[n-1].
또한, 2차 필터로서의 선형 필터는 신호 지연, 위상 왜곡을 최소화할 수 있으며, 유한 임펄스 응답 필터(finite impulse response filter; FIR filter)로서, 0.5 내지 10Hz 주파수 대역에 대한 대역 통과 필터(band pass filter; BPF)일 수 있고, 이에 따라 저주파 성분(0.5Hz 미만), 호흡 성분(0.15 내지 0.4Hz), 움직임 성분(0.1Hz 미만)을 포함하는 저역 주파수 대역이 필터링될 수 있다.In addition, a linear filter as a secondary filter can minimize signal delay and phase distortion, and as a finite impulse response filter (FIR filter), a band pass filter for a frequency band of 0.5 to 10 Hz; BPF), and accordingly, a low frequency band including a low frequency component (less than 0.5 Hz), a respiratory component (0.15 to 0.4 Hz), and a motion component (less than 0.1 Hz) can be filtered.
제2 처리부(234)는, 제1 처리부(232)에 의해 신호 잡음이 제거된 광용적맥파에서 극점을 추출하여 극점 간격을 검출하고, 극점 간격을 통해 이소성 박동의 간격을 판단하여 이소성 박동을 제거하고 보간할 수 있다.The second processing unit 234 extracts poles from the photoplethysmogram wave from which signal noise has been removed by the first processing unit 232, detects the pole intervals, determines the intervals of ectopic beats through the pole intervals, and removes the ectopic beats. and can interpolate.
한편, 제2 처리부(234)는, 극점(peak) 추출 이전, 데이터 정규화를 수행할 수 있으며, 구체적으로 0-1 Normalization에 의하되 (value-min(value))/(max(value)-min(value))를 따를 수 있다.Meanwhile, the second processing unit 234 may perform data normalization prior to peak extraction, and specifically, by 0-1 Normalization, (value-min(value))/(max(value)-min( value)) can be followed.
구체적으로, 도 11에 도시된 바와 같이, 제2 처리부(234)는 적응형 임계치(adaptive threshold) 탐색 과정을 통해 극점(peak)을 검출할 수 있고, 구체적으로 경험적으로 선택된 파형의 기울기를 통해 다음 맥동을 찾을 때까지 파형을 따라 추적(tracking)하고 다음 맥동을 감지하면 최대 임계치까지 이동하여 극점을 추출하며, 이후 전술한 과정을 반복적으로 수행함으로써 극점을 추출할 수 있다.Specifically, as shown in FIG. 11, the second processing unit 234 may detect a peak through an adaptive threshold search process, and specifically, through the slope of an empirically selected waveform, the next The waveform is tracked until a pulsation is found, and when the next pulsation is detected, a pole is extracted by moving to a maximum threshold, and then the pole can be extracted by repeatedly performing the above-described process.
또한, 제2 처리부(234)는, 추출된 극점의 보정을 수행할 수 있고, 구체적으로 극점의 보정은 local maxima/minima를 통해 이루어질 수 있으며, 이 때, 반사파가 있는 경우에 해당 부분이 제외(ignored)되도록 극점 이후 기설정된 불응 기간(refractory period; 0.5 내지 1초, 바람직하게는 0.6초)을 가질 수 있다.In addition, the second processing unit 234 may perform correction of the extracted pole point, and specifically, the correction of the pole point may be performed through local maxima / minima. At this time, when there is a reflected wave, the corresponding part is excluded ( may have a predetermined refractory period (0.5 to 1 sec, preferably 0.6 sec) after the pole to be ignored.
제2 처리부(234)는 peak locs[n]-peak locs[n-1]에 따라 극점 간격(peak to peak interval; PPI) 또는 심박 간격(R to R interval; RRI)를 검출할 수 있으며, 검출된 극점 간격을 통해 0.675*PPI[n-1]<PPI[n]<1.245*PPI[n-1]에 따라 이소성 박동 간격을 판단할 수 있다.The second processing unit 234 may detect a peak to peak interval (PPI) or a heart rate interval (R to R interval) according to peak locs[n]-peak locs[n-1], and detect The ectopic beat-to-beat interval can be determined according to 0.675*PPI[n-1]<PPI[n]<1.245*PPI[n-1] through the polar interval.
이후, 제2 처리부(234)는 이소성 박동을 제거하고, 제거된 이소성 박동의 위치를 선형, 최근접이웃, 3차 스플라인, 형태 보존 등을 통해 보간할 수 있다.Thereafter, the second processing unit 234 may remove the ectopic beat and interpolate the position of the removed ectopic beat through linear, nearest neighbor, cubic spline, shape preservation, and the like.
판별부(240)는, 전처리된 광용적맥파의 이소성 박동, 심박수, 연속 심박수 차이 및 극점 진폭을 포함하는 양호 신호 지표를 양호 신호 지표에 대한 설정 파라미터와 비교하여 광용적맥파가 양호 또는 불량 신호인지 여부를 판별할 수 있다.The determining unit 240 compares good signal indicators including ectopic beats, heart rate, continuous heart rate difference, and pole amplitude of the preprocessed photoplethysmogram wave with set parameters for the good signal indicator to determine whether the photoplethysmogram wave is a good or bad signal. It can be determined whether
보다 구체적으로, 판별부(240)는, 이소성 박동 확인의 경우에 있어서, 극점 간격 값을 정렬한 후 해당 값의 분포에서 25%(q1)-75%(q3) 구간의 길이를 계산하고, 심박 간격(RRI)이 q1-1.5*iqr 미만 또는 q3+1.5*iqr 초과인 극점 간격이 존재하는 경우 불량 신호로 판단할 수 있다.More specifically, in the case of ectopic beating confirmation, the determination unit 240 aligns the pole interval values, calculates the length of the 25% (q1)-75% (q3) section in the distribution of corresponding values, and calculates the heart rate. If there is an interval between poles whose interval (RRI) is less than q1-1.5*iqr or greater than q3+1.5*iqr, it can be determined as a bad signal.
또한, 판별부(240)는, 심박수의 경우에 있어서, 극점을 기반으로 측정된 bpm이 max(200)보다 크거나 min(30)보다 작은 경우 불량 신호로 판단할 수 있다.In addition, in the case of the heart rate, the determination unit 240 may determine that the signal is defective when the measured bpm based on the pole point is greater than max(200) or less than min(30).
판별부(240)는, 연속 심박수 차이의 경우에 있어서, 수축기 극점에서 측정된 bpm과 맥동 시작점에서 측정된 bpm의 차가 10을 초과하는 경우 불량 신호로 판단할 수 있다.In the case of the continuous heart rate difference, the determination unit 240 may determine that the difference between the bpm measured at the systolic extreme point and the bpm measured at the pulsation start point exceeds 10 as a bad signal.
판별부(240)는, 극점 진폭의 경우에 있어서, 수축기 극점의 진폭 미분 차이가 0.75 이상 또는 맥동 시작점의 미분 차이가 0.75 이상인 경우 불량 신호로 판단할 수 있다.In the case of pole amplitude, the determination unit 240 may determine that the signal is defective when the differential difference between the amplitudes of the systolic poles is 0.75 or more or the differential difference between the pulsation start points is 0.75 or more.
한편, 판별부(240)는, 생체 신호 판별 정확도를 향상 가능하도록, 생체 신호를 기설정된 머신 러닝 기반의 신호 품질 평가 모델을 통해 반복 학습함으로써 생체 신호가 양호 신호인지 여부를 판별할 수 있다.Meanwhile, the determination unit 240 may determine whether the biosignal is a good signal by iteratively learning the biosignal through a predetermined machine learning-based signal quality evaluation model so as to improve the biosignal discrimination accuracy.
다시 말해, 판별부(240)는, 양호 또는 불량 신호로 판별된 광용적맥파의 데이터를 학습하고, 학습 결과를 토대로 전처리된 광용적맥파의 1차원 신호 이미지를 분석해 광용적맥파가 양호 또는 불량 신호인지 여부를 판별 가능한 신호 품질 평가 모델을 이용할 수 있으며, 이에 따라, 광용적맥파 데이터의 처리 속도를 높여, 데이터의 실시간 처리 기능을 더욱 향상시킬 수 있다.In other words, the determination unit 240 learns the data of the photoplethysmogram, which is determined as a good or bad signal, and analyzes the preprocessed one-dimensional signal image of the photoplethysmogram based on the learning result to determine whether the photoplethysmogram is a good or bad signal. It is possible to use a signal quality evaluation model capable of discriminating whether or not it is recognized, and accordingly, the processing speed of photoplethysmogram data can be increased, thereby further improving the real-time processing function of data.
보다 구체적으로, 신호 품질 평가(signal quality assessment; SQR) 모델은 피시험자들(총 76명: 남자 29명, 여자 47명; 평균 연령 52.3+-10.8세)로부터 획득된 광용적맥파(왼쪽 손가락에서 측정)에서 숙련된 연구자에 의해 수동으로 평가된 검증 데이터 세트(양호(excellent): 14,644개, 보통(acceptable): 31,413개, 불량(unfit): 3,196개, 이상(unusual): 308개)를 토대로 학습을 수행할 수 있으며, 이후 전술한 방법에 따라 판별된 광용적맥파의 양호 또는 불량 신호에 대한 학습을 수행하여 평가 정확도를 보다 향상시킬 수 있다.More specifically, the signal quality assessment (SQR) model was obtained from photoplethysmograms (from the left finger to measurement) based on a validation data set (excellent: 14,644, acceptable: 31,413, unfit: 3,196, abnormal: 308) manually evaluated by an experienced researcher in Learning may be performed, and evaluation accuracy may be further improved by performing learning on good or bad signals of the photoplethysmogram determined according to the above-described method.
신호 품질 평가 모델은 머신 러닝 모델로서, 구체적으로 합성곱 신경망(convolution neural network; CNN)일 수 있고, 이 경우 사용 architecture는 activation function=ReLU, dropout rate=0.5 일 수 있다.The signal quality evaluation model is a machine learning model, and may specifically be a convolution neural network (CNN), and in this case, the used architecture may be activation function=ReLU, dropout rate=0.5.
신호 품질 평가 모델은, 생체 신호의 이미지를 행렬 변환하는 행렬 변환부(242), 행렬 변환부(242)에 의해 변환된 행렬을 합성곱 연산 처리하여 계층을 생성하는 계층 생성부(243), 계층 생성부(243)에 의해 생성된 계층을 정규화하는 정규화부(244), 제1 정규화부(244)에 의해 정규화된 계층을 비선형 활성화하는 활성화부(245), 활성화부(245)에 의해 비선형 활성화된 계층을 부표본화하는 부표본화부(246), 부표본화부(246)에 의해 부표본화된 계층을 통합 연결하여 통합 행렬을 생성하는 통합부(247), 통합부(247)에 의해 생성된 통합 행렬을 정규화 연결하는 연결부(248), 및 연결부(248)에 의해 정규화 연결된 통합 행렬에 확률 함수를 적용하여 도출된 확률에 따라 생체 신호가 양호 신호인지 여부를 판별하는 결정부(249)를 포함할 수 있다.The signal quality evaluation model includes a matrix conversion unit 242 that converts an image of a biosignal into a matrix, a layer generation unit 243 that generates a layer by performing a convolution operation on the matrix converted by the matrix conversion unit 242, and a layer A normalizer 244 that normalizes the layer generated by the generation unit 243, an activation unit 245 that nonlinearly activates the layer normalized by the first normalizer 244, and a nonlinear activation by the activation unit 245 A subsampling unit 246 subsampling the subsampled layer, an integrating unit 247 generating an integration matrix by integrating and connecting the layers subsampled by the subsampling unit 246, and the integration generated by the integrating unit 247. A connection unit 248 for normalizing and connecting the matrices, and a determination unit 249 for determining whether the biosignal is a good signal according to a probability derived by applying a probability function to the integration matrix normalized and connected by the connection unit 248. can
도 10 및 이하 도 12를 참조하여, 신호 품질 평가 모델의 신호 품질 평가 프로세스를 구체적으로 살펴보면 다음과 같다.Referring to FIG. 10 and FIG. 12, the signal quality evaluation process of the signal quality evaluation model is described in detail.
1) 행렬 변환부(242)에서 전처리된 광용적맥파의 신호 이미지를 행렬 변환하고, 2) 계층 생성부(243)에서 행렬을 합성곱(convolution) 연산 처리하여 계층((convolution) layers)을 생성하고, 3) 정규화부(244)에서 계층을 정규화(batch normalization)한 후, 4) 활성화부(245)에서 비선형 활성화(rectified linear unit activation; ReLU)하고, 5) 부표본화부(246)에서 비선형 활성화된 계층을 부표본화(subsampling; max pooling)한 후(이 때, 상기 단계 2) 내지 5)는 복수 회로 반복 수행 가능, 바람직하게는 2회 반복 수행), 6) 통합부(247)에서 통합 연결(dense; connection)하여 통합 행렬을 생성하고, 7) 연결부(248)에서 통합 행렬을 정규화 연결(dropout, dropout rate=0.5)한 후(단계 7) 이후 단계 6) 추가 수행 가능), 8) 결정부(249)에서 회귀 확률 함수(softmax)를 적용하여 도출된 확률에 따라 광용적맥파가 양호 또는 불량 신호인지 여부를 판별할 수 있다.1) The matrix conversion unit 242 converts the preprocessed signal image of the optical pulse wave into a matrix, and 2) the layer generation unit 243 performs convolution operation on the matrices to generate (convolution) layers. 3) After batch normalization in the normalization unit 244, 4) nonlinear activation (rectified linear unit activation; ReLU) in the activation unit 245, and 5) non-linear activation in the subsampling unit 246 After subsampling (max pooling) the activated layer (at this time, steps 2) to 5) can be repeated multiple times, preferably twice, and 6) merged in the integration unit 247. An integration matrix is generated by connection (dense; connection), 7) normalization connection (dropout, dropout rate=0.5) is performed on the integration matrix in the connection unit 248 (step 7), and then step 6) can be additionally performed), 8) Depending on the probability derived by applying the regression probability function (softmax) in the decision unit 249, it is possible to determine whether the photoplethysmogram is a good or bad signal.
이와 같은 신호 품질 평가 모델을 통해 신호 품질 평가 테스트를 실시한 결과, 훈련 데이터 세트와 검증 데이터 세트에 대한 학습 과정이 반복됨(epoch 증가)에 따라 정확도가 증가하는 것을 확인할 수 있었다.As a result of the signal quality evaluation test through this signal quality evaluation model, it was confirmed that the accuracy increased as the learning process for the training data set and the verification data set was repeated (epoch increase).
구체적으로, 도 13에 나타난 바와 같이, 훈련(training) 데이터 세트에서는 최대 AUC(area under curve)=0.998, 테스트(test) 데이터 세트에서는 최대 AUC=0.994의 높은 정확도로 불량 및 양호 신호를 판별하였으며, 테스트 데이터 세트에서 accuracy(양호 및 불량 신호 모두 맞출 확률)=0.975, sensitivity(양호 및 불량 신호 중 불량 신호를 맞출 확률)=0.964, specificity(양호 및 불량 신호 중 양호 신호를 맞출 확률)=0.987, PPV(positive predictivity value; 양성예측율)=0.848로 높은 예측 정확치를 보였다.Specifically, as shown in FIG. 13, bad and good signals were discriminated with high accuracy of maximum AUC (area under curve) = 0.998 in the training data set and maximum AUC = 0.994 in the test data set, On the test data set, accuracy (probability of hitting both good and bad signals)=0.975, sensitivity (probability of hitting a bad signal between good and bad signals)=0.964, specificity (probability of hitting a good signal between good and bad signals)=0.987, PPV (positive predictivity value; positive predictive value) = 0.848, showing high prediction accuracy.
또한, 이와 같은 신호 품질 평가 모델은, 도 14에 나타난 바와같이, 기존 연구 대비 보다 향상된 성능을 나타내는 것으로 확인되었다.In addition, it was confirmed that such a signal quality evaluation model exhibits improved performance compared to previous studies, as shown in FIG. 14 .
지표 도출부는, 판별부에 의해 양호 신호로 판별된 생체 신호로부터 설정 지표를 도출할 수 있다.The indicator derivation unit may derive a set indicator from the biosignal determined as a good signal by the determination unit.
이 때, 설정 지표는 광용적맥파 파형의 면적 관련 지표, 길이 관련지표, 시간 관련 지표, 진폭 관련 지표, 및 기울기 관련 지표를 포함할 수 있다.In this case, the setting index may include an index related to an area, an index related to a length, an index related to a time, an index related to an amplitude, and an index related to a slope of the photoplethysmogram waveform.
설정 지표는, 광용적맥파 파형을 통해 혈량 변화를 추정하고 이에 따라 자율 신경 활동을 예측 가능한 점을 토대로, 도 15와 같이, 광용적맥파의 파형 형태와 관련하여 도출된 것으로서, 이와 같은 설정 지표는 도 3의 표에서 정리된 세부 지표들을 포함할 수 있다.The set index is derived in relation to the waveform shape of the photoplethysmogram wave, as shown in FIG. 15, based on the fact that the blood volume change can be estimated through the photoplethysmogram waveform and the autonomic nerve activity can be predicted accordingly. Detailed indicators organized in the table of FIG. 3 may be included.
이와 같은 설정 지표와 관련하여 구체적으로 살펴보면 다음과 같다.In relation to these setting indicators, a detailed look is as follows.
광용적맥파는 피부색, 해부학적 요인, 주변광, 센서 감도, 측정 환경 등 여러 주변 요인에 영향을 받아 상대적 비교가 어려운 임의 단위를 가지는 바, 설정 지표를 통해 상대적 비교가 가능하도록, 도 16과 같이, 면적 관련 지표는 전체 파형 면적 내지 진폭으로, 길이 관련 지표는 PPI로 나누거나 비율 계산됨으로써 정규화(spatial/temporal normalization)될 수 있다.Photoplethysmography has an arbitrary unit that is difficult to compare relative to due to the influence of various factors such as skin color, anatomical factor, ambient light, sensor sensitivity, and measurement environment. , the area-related index can be normalized (spatial/temporal normalization) by dividing the entire waveform area or amplitude, and the length-related index by PPI or calculating a ratio.
또한, 설정 지표는, 도 17과 같이, 일차 미분된 광용적맥파 파형에서 예상 통증 연관성이 높은 시간 간격, 진폭 간격을 계산하여 도출한 시간 관련 지표와 진폭 관련 지표를 포함할 수 있고, 또한 박동 간격이나 진폭으로 무차원화하여 정규화한 지표를 포함할 수도 있다.In addition, as shown in FIG. 17 , the set index may include a time-related index and an amplitude-related index derived by calculating a time interval and an amplitude interval having a high expected pain correlation in the first-differentiated photoplethysmogram waveform, and may also include a beat-to-beat interval. Or, it may include non-dimensionalized and normalized indicators with amplitude.
비교 분석부는, 지표 도출부에 의해 도출된 설정 지표를 기준 데이터와 비교 분석하여 통증 정도 또는 시술 전후의 생체 신호 변화를 도출할 수 있다.The comparison and analysis unit may compare and analyze the set indicator derived by the indicator derivation unit with reference data to derive the degree of pain or change in biosignals before and after the procedure.
구체적으로, 기준 데이터는, 사용자의 시술 이전 광용적맥파에서 도출된 설정 지표값 또는 통증 정도의 지표 내지 기준이 되는 데이터를 포함할 수 있다.In detail, the reference data may include a set index value derived from the photoplethysmogram before the user's procedure or data serving as an index or standard of the degree of pain.
계속해서, 도 4 내지 도 7을 참조하여, 통증 치료부(100)에 대해 구체적으로 설명하도록 한다.Subsequently, with reference to FIGS. 4 to 7 , the pain treatment unit 100 will be described in detail.
통증 치료부(100)는, 광 투과가 가능하도록 복수의 투과홀(112)을 구비하는 바디부(110), 바디부(110)의 내부에 배치되어 전기 에너지를 공급하는 배터리(120), 배터리(120)와 전기적으로 연결되어 바디부(110)의 내부에 배치되는 회로 기판(130), 회로 기판(130)에 전기적으로 연결되어 투과홀(112)을 통해 시술 부위에 저출력 레이저를 조사하는 저출력 광조사부(140), 회로 기판(130)에 전기적으로 연결되어 시술 부위에 초음파를 전달하는 초음파 전달부(150), 및 회로 기판(130)에 전기적으로 연결되어 시술 부위의 통증 분석을 위해 광용적맥파를 감지하는 생세 신호 감지 센서(160)를 포함할 수 있으며, 이하 각 구성에 대해 구체적으로 설명하도록 한다.The pain treatment unit 100 includes a body portion 110 having a plurality of penetration holes 112 to allow light transmission, a battery 120 disposed inside the body portion 110 to supply electrical energy, and a battery A circuit board 130 electrically connected to the body 110 and disposed inside the body 110, and a low-power laser that is electrically connected to the circuit board 130 and irradiates a low-power laser to the treatment site through the penetration hole 112. The light irradiation unit 140, the ultrasonic transmission unit 150 electrically connected to the circuit board 130 to deliver ultrasonic waves to the treatment site, and the circuit board 130 electrically connected to the optical volume for pain analysis of the treatment site A life signal detection sensor 160 for detecting a pulse wave may be included, and each component will be described in detail below.
바디부(110)는 광 투과가 가능하도록 복수의 투과홀(112)을 구비할 수 있다.The body part 110 may have a plurality of transmission holes 112 to allow light transmission.
여기서, 투과홀(112)은 후술할 바와 같이 바디부(110)의 내부에 배치되는 저출력 광조사부(140)가 저출력 레이저를 시술 부위로 조사하기 위한 통로 역할을 할 수 있다.Here, the penetration hole 112 may serve as a passage through which the low-power light irradiation unit 140 disposed inside the body portion 110 irradiates a low-power laser beam to the treatment site, as will be described later.
바디부(110)에는 초음파 전달 및/또는 저출력 레이저 조사 정도를 사용자가 조절하기 위한 조절 버튼(114)이 배치될 수 있다.An adjustment button 114 may be disposed on the body 110 to allow a user to adjust the degree of ultrasound transmission and/or low-power laser irradiation.
조절 버튼(114)은 후술할 회로 기판(130)에 전기적으로 연결되며, 물리 버튼 형태로 바디부(110)에 설치되거나 터치 인식 방식으로 바디부(110)에 마련될 수 있다.The control button 114 is electrically connected to a circuit board 130 to be described later, and may be installed on the body 110 in the form of a physical button or provided on the body 110 in a touch recognition method.
한편, 바디부(110)와 결합하여 신체에 착용할 수 있는 밴드부(116)가 더 포함될 수 있다.Meanwhile, a band part 116 that can be worn on the body by being combined with the body part 110 may be further included.
밴드부(116)에는 바디부(110)를 결합 가능한 공간이 마련될 수 있고, 밴드부(116)는 손목시계에서와 같은 스트랩 형태는 물론, 보다 두꺼운 신체 부위에 결합 가능하도록 암밴드나 벨트 형태를 가질 수도 있다.A space capable of coupling the body portion 110 may be provided in the band portion 116, and the band portion 116 may have a strap shape as in a wrist watch, as well as an armband or belt shape so as to be coupled to a thicker body part. there is.
배터리(120)는 바디부(110)의 내부에 배치되어 전기 에너지를 공급할 수 있다.The battery 120 may be disposed inside the body 110 to supply electrical energy.
배터리(120)는 충전 가능한 것일 수 있고, 이 경우, 바디부(110)에는 외부에서 배터리(120)를 충전하기 위한 케이블을 연결 가능한 충전 단자(118)가 배치될 수 있다.The battery 120 may be rechargeable, and in this case, a charging terminal 118 capable of connecting a cable for externally charging the battery 120 may be disposed in the body 110 .
회로 기판(130)은 배터리(120)와 전기적으로 연결되어 바디부(110)의 내부에 배치될 수 있다.The circuit board 130 may be electrically connected to the battery 120 and disposed inside the body 110 .
즉, 회로 기판(130)은 배터리(120)와 전기적으로 연결되어 후술할 저출력 광조사부(140), 초음파 전달부(150) 기타 회로 기판(130)과 전기적으로 연결되는 다수의 구성들이 작동되도록 기능할 수 있으며, 보다 구체적으로 회로 기판(130)은 인쇄 회로 기판(printed circuit board; PCB)일 수 있다.That is, the circuit board 130 is electrically connected to the battery 120 to operate the low-power light irradiation unit 140, the ultrasonic transmission unit 150, and other components electrically connected to the circuit board 130 to be described later. And, more specifically, the circuit board 130 may be a printed circuit board (PCB).
저출력 광조사부(140)는 회로 기판(130)에 전기적으로 연결되어 투과홀(112)을 통해 시술 부위에 저출력 레이저를 조사할 수 있다.The low-power light irradiation unit 140 is electrically connected to the circuit board 130 and can irradiate a low-power laser beam to the treatment area through the transmission hole 112 .
저출력 광조사부(140)또한, 저출력 광조사부(140)는 저출력 레이저를 조사하는 동안 다량의 열을 발생시키므로, 이와 같은 열을 소산시키기 위하여 레이저 소자와 바디부(110) 사이에 방열판(heat sink)(146)이 개재될 수 있다.Low-power light irradiation unit 140 Also, since the low-power light irradiation unit 140 generates a large amount of heat while irradiating the low-power laser, a heat sink is provided between the laser element and the body 110 to dissipate this heat. (146) may be intervened.
저출력 레이저와 관련하여, 통증에 대한 저출력 레이저의 치료적 효과 평가를 위해 실시한 임상 실험의 결과는 다음과 같다.Regarding low-power laser, the results of clinical trials conducted to evaluate the therapeutic effect of low-power laser on pain are as follows.
(1) 수술 후 통증 모델 제작: Incisional model(도 8(a) 참조)(1) Production of postoperative pain model: Incisional model (see Fig. 8(a))
1) sevoflurane 마취 하에서 250-300g 수컷 Sprague-Dawley 쥐 발바닥을 절개하여 제작함1) 250-300g male Sprague-Dawley rat foot soles were incised under sevoflurane anesthesia.
2) 실험 쥐 발바닥의 족저근(plantaris muscle)을 찾아 그 기시부와 정지부를 남기고 근섬유 방향을 따라 세로로 절개하여 수술 후 통증을 유발함2) Find the plantaris muscle of the sole of the experimental rat, leave the origin and stop, and make a longitudinal incision along the muscle fiber direction to induce postoperative pain.
(2) 말초신경 손상에 의한 통증 모델 제작: Chung model(spinal nerve ligation)(2) Creation of pain model by peripheral nerve damage: Chung model (spinal nerve ligation)
- sevoflurane 마취 하에서 160-180g 수컷 Sprague-Dawley 쥐의 척수 신경(L5, 6)을 결찰하여 신경병성 통증을 유발함- Neuropathic pain was induced by ligating the spinal nerves (L5, 6) of 160-180 g male Sprague-Dawley rats under sevoflurane anesthesia.
(3) 수술 후 통증 유발 유무에 대한 행동학적 평가(도 8(b) 참조)(3) Behavioral evaluation of the presence or absence of pain after surgery (see Fig. 8(b))
1) 기계적 자극에 대한 회피 반응 평가1) Assessment of avoidance responses to mechanical stimuli
2) 기계적 자극은 von Frey filaments를 이용하여 회피반응을 평가함2) Evaluate avoidance responses to mechanical stimuli using von Frey filaments.
3) 실험에 사용할 쥐를 30분간 적응시킨 후 von Frey filaments(0.4, 0.7, 1.2, 2.0, 3.6, 5.5, 8.5, 15g)를 쥐의 발바닥에 자극을 가하여 발바닥을 움직이는 회피반응을 up-down법을 이용하여 평가함3) After adapting the rats to be used for the experiment for 30 minutes, von Frey filaments (0.4, 0.7, 1.2, 2.0, 3.6, 5.5, 8.5, 15g) were stimulated on the soles of the rats, and the avoidance response by moving the soles was up-down. evaluated using
4) 15g의 자극에도 반응이 없는 경우를 cut-off 값으로 정함4) The case where there is no response to 15g stimulation is set as the cut-off value
5) 절개측 부위에서 기계적 이질통이 통계적으로 유의하게 유발됨 (***P<0.001)(도 8(c) 참조)5) Statistically significant mechanical allodynia was induced at the site of the incision (***P<0.001) (see Fig. 8(c))
(4) 수술 후 통증에 대한 치료적 효과 평가(도 8(d) 참조)(4) Evaluation of therapeutic effect on pain after surgery (see Fig. 8(d))
1) 레이저 조사 후 통증 평가1) Assessment of pain after laser irradiation
2) Group 1: 통증 유발 쥐 발바닥에 레이저 30분 조사, 30분 휴식 후 평가2) Group 1: Evaluation after 30 minutes of laser irradiation on the soles of pain-induced rats and 30 minutes of rest
Group 2: 통증 유발 쥐 발바닥에 레이저 60분 조사, 30분 휴식 후 평가Group 2: Evaluation after 60 minutes of laser irradiation on the soles of pain-induced rats and 30 minutes of rest
3) 레이저 조사 시간에 따라 통증이 유의하게 감소됨(*P<0.05, **P<0.01, ***P<0.001)(도 8(e) 참조)3) Pain was significantly reduced according to the laser irradiation time (*P<0.05, **P<0.01, ***P<0.001) (see FIG. 8(e))
초음파 전달부(150)는 회로 기판(130)에 전기적으로 연결되어 시술 부위에 초음파를 전달할 수 있다.The ultrasonic transmitter 150 may be electrically connected to the circuit board 130 to deliver ultrasonic waves to the treatment site.
초음파 전달부(150)는, 바디부(110)와 결합되고 내부 공간을 구비하는 케이스(152), 및 케이스(152)의 내부 공간에 배치되고 회로 기판(130)과 전기적으로 연결되어 압전 효과에 따라 전기 에너지를 진동 에너지를 변환시켜 초음파를 발생시키는 압전 소자(154)를 포함할 수 있다.The ultrasonic transmitter 150 is coupled to the body 110 and disposed in the case 152 having an internal space, and disposed in the internal space of the case 152 and is electrically connected to the circuit board 130 to have a piezoelectric effect. Accordingly, a piezoelectric element 154 for generating ultrasonic waves by converting electrical energy into vibration energy may be included.
이 때, 압전 소자(154)는 수정, 전기석, 로셸염, 타이타늄산바륨, 인산이수소암모늄, 타타르산에틸렌다이아민, 및 인공세라믹 등으로 이루어질 수 있다.At this time, the piezoelectric element 154 may be made of quartz, tourmaline, Rochelle salt, barium titanate, ammonium dihydrogen phosphate, ethylenediamine tartrate, artificial ceramics, and the like.
케이스(152)는 일면이 피부와 접촉되어 내부 공간에 배치된 압전 소자(154)가 발생시킨 초음파를 피부로 전달할 수 있고, 이 경우 케이스(152)는 보다 효과적으로 초음파를 시술 부위로 전달 가능하도록, 바디부(110)보다 돌출될 수 있다.One surface of the case 152 is in contact with the skin to transmit ultrasonic waves generated by the piezoelectric element 154 disposed in the internal space to the skin. In this case, the case 152 can transmit ultrasonic waves to the treatment site more effectively It may protrude beyond the body portion 110 .
생체 신호 감지 센서(160)는 회로 기판(130)에 전기적으로 연결되어 시술 부위의 통증 분석을 위해 광용적맥파를 감지할 수 있다.The bio-signal detection sensor 160 is electrically connected to the circuit board 130 and can detect photoplethysmograms to analyze pain in the treatment site.
생체 신호 감지 센서(160)는 측정하고자 하는 부위에 광을 조사한 후 되돌아온 광을 수신함으로써 광용적맥파를 감지할 수 있다.The bio-signal detection sensor 160 may detect a photoplethysmogram by radiating light to an area to be measured and then receiving the returned light.
이에 따라, 생체 신호 감지 센서(160)는, 전술한 저출력 광조사부(140)와 달리, 되돌아온 광을 수신하기 위하여 바디부(110)와의 사이에 방열판(146)이 개재되지 않을 수 있다.Accordingly, unlike the aforementioned low-output light irradiation unit 140, the bio-signal detection sensor 160 may not have the heat sink 146 interposed between the body unit 110 and the body unit 110 in order to receive the returned light.
제어부(미도시)는 생체 신호 감지 센서(160)에 의해 감지된 광용적맥파를 이용하여 분석된 통증 정도 또는 시술 전후의 생체 신호 변화에 따라 저출력 광조사부(140) 및 초음파 전달부(150) 중 적어도 어느 하나의 작동을 제어할 수 있다.The control unit (not shown) selects one of the low-power light irradiation unit 140 and the ultrasonic transmission unit 150 according to the degree of pain analyzed using the optical pulse wave detected by the bio-signal detection sensor 160 or the change in the bio-signal before and after the procedure. At least one operation can be controlled.
이 경우, 제어부는 후술할 통신부로부터 통증 측정부(200)에서 분석된 통증 정도 또는 시술 전후의 생체 신호 변화에 대한 데이터를 제공받을 수 있으며, 통신부로부터 제공된 데이터에 따라 저출력 광조사부(140) 및/또는 초음파 전달부(150)를 제어하여 저출력 레이저 조사 및/또는 초음파 전달의 강도 등을 조절할 수 있다.In this case, the control unit may receive data on the degree of pain analyzed by the pain measurement unit 200 or changes in biological signals before and after the procedure from the communication unit, which will be described later, and the low-power light irradiation unit 140 and/or Alternatively, the intensity of low-power laser irradiation and/or ultrasonic transmission may be adjusted by controlling the ultrasonic transmission unit 150 .
저출력 광조사부(140)는 100mW 이하의 출력값을 가질 수 있다.The low power light irradiation unit 140 may have an output value of 100 mW or less.
저출력 광조사부(140)는 파장, 출력, 광각, 출력 시간 등의 세부 조건값이 서로 상이한 복수의 광 소자를 포함할 수 있다.The low power light emitter 140 may include a plurality of light devices having different detailed condition values such as wavelength, output, wide angle, and output time.
이 경우, 광 소자는 레이저 다이오드(laser diode) 또는 엘이디(LED)를 포함할 수 있으며, 그 밖에도 다양한 발광 소자를 포함할 수 있다.In this case, the optical element may include a laser diode or an LED, and may also include various other light emitting elements.
구체적으로, 저출력 광조사부(140)는, 630nm 내지 680nm 파장대의 저출력 레이저를 조사하는 제1 소자(142), 및 800nm 내지 850nm 파장대의 저출력 레이저를 조사하는 제2 소자(144)를 포함할 수 있다.Specifically, the low-power light irradiator 140 may include a first element 142 for irradiating a low-power laser in a wavelength range of 630 nm to 680 nm, and a second element 144 for irradiating a low-power laser in a wavelength range of 800 nm to 850 nm. .
또한, 저출력 광 조사부(140)는 900nm 내지 1000nm 파장대의 저출력 레이저를 조사하는 제3 소자(미도시)를 더 포함할 수도 있다.In addition, the low-power light emitter 140 may further include a third element (not shown) for irradiating a low-power laser in a wavelength range of 900 nm to 1000 nm.
제1 소자(142)에서 조사되는 630nm 내지 680nm 파장대의 저출력 레이저의 경우, 저출력 레이저의 세포 재생 원리에 따른 통증 완화 등의 효과를 발생시킬 수 있다.In the case of the low-power laser irradiated from the first element 142 in the wavelength range of 630 nm to 680 nm, effects such as pain relief according to the cell regeneration principle of the low-power laser can be generated.
또한, 제2 소자(144)에서 조사되는 800nm 내지 850nm 파장대의 저출력 레이저의 경우, 혈류 개선, 혈관 확장, 혈류 속도 향상 등의 효과를 발생시킬 수 있다.In addition, in the case of a low-power laser irradiated from the second element 144 in a wavelength range of 800 nm to 850 nm, effects such as blood flow improvement, blood vessel dilation, and blood flow speed improvement can be generated.
제3 소자에서 조사되는 900nm 내지 1000nm 파장대의 저출력 레이저의 경우, 신경 자극 및 교란 등에 따른 통증 완화 등의 효과를 발생시킬 수 있다.In the case of a low-power laser of a wavelength range of 900 nm to 1000 nm irradiated from the third element, effects such as pain relief due to nerve stimulation and disturbance may be generated.
이에 대해, 초음파 전달부(150)는, 표재근 및 심부근까지 도달 가능한 1 내지 5MHz 주파수 대역의 초음파를 시술 부위에 전달함으로써 통증 완화 등의 효과를 발생시킬 수 있다.In contrast, the ultrasound transmission unit 150 may generate effects such as pain relief by transmitting ultrasound in a frequency band of 1 to 5 MHz that can reach superficial and deep muscles to the treatment site.
제1 소자(142) 및 제2 소자(144)는 교차로 작동되거나 동시에 작동될 수 있다.The first element 142 and the second element 144 may be operated alternately or simultaneously.
이 경우, 서로 상이한 파장대의 저출력 레이저가 단독 또는 조합되어 조사됨으로써, 각 파장대에서의 전술한 효과가 발생 가능함은 물론, 이들의 결합에 의한 복합적인 치료 효과가 발생될 수 있다.In this case, by irradiating the low-power lasers of different wavelength bands alone or in combination, the above-described effects in each wavelength band can occur, as well as complex treatment effects by combining them.
제1 소자(142) 및 제2 소자(144)는 각각 복수로 형성되고, 초음파 전달부(150)는 바디부(110)의 중앙 영역에 배치되고, 제1 소자(142) 및 제2 소자(144)는 바디부(110)의 주변 영역을 따라 교대로 배치될 수 있다.The first element 142 and the second element 144 are formed in plurality, respectively, the ultrasonic transmission unit 150 is disposed in the central region of the body part 110, and the first element 142 and the second element ( 144 may be alternately disposed along the peripheral area of the body portion 110 .
이에 따라, 초음파 전달부(150)가 초음파를 시술 부위에 전달함과 더불어 복수의 제1 소자(142)가 배치되어 저출력 레이저를 조사함으로써 통증 완화 효과가 보다 증진될 수 있다.Accordingly, the ultrasonic transmission unit 150 transmits ultrasonic waves to the treatment site, and the plurality of first elements 142 are disposed to irradiate the low-power laser, so that the pain relief effect can be further enhanced.
또한 제1 소자(142) 사이에 복수의 제2 소자(144)가 배치되어 작동함으로써 시술 부위에 혈류 개선, 세포 재생 및/또는 세포 활성화 효과를 발생시키므로, 이에 따라 통증 치료 효과가 더욱 향상될 수 있다.In addition, since the plurality of second elements 144 are arranged and operated between the first elements 142, blood flow improvement, cell regeneration, and/or cell activation effects are generated in the treatment area, and thus the pain treatment effect can be further improved. there is.
생체 신호 감지 센서(160)는, 투과홀(112)을 통해 측정 부위에 광을 조사하는 발광부(162), 발광부(162)에 의해 조사된 후 투과되거나 반사된 광을 수신하는 수광부(164), 및 수광부(164)로 저출력 광조사부(140)에서 조사된 저출력 레이저 광의 유입을 방지하도록 수광부(164)와 저출력 광조사부(140) 사이에 개재되는 차광부(166)를 포함할 수 있다.The biological signal detection sensor 160 includes a light emitting unit 162 that radiates light to a measurement site through a transmission hole 112, and a light receiving unit 164 that receives light transmitted or reflected after being irradiated by the light emitting unit 162. ), and a light blocking unit 166 interposed between the light receiving unit 164 and the low power light irradiation unit 140 to prevent the low power laser light irradiated from the low power light irradiation unit 140 from entering the light receiving unit 164.
이 때, 차광부(166)는 암막으로서 형성되어 회로 기판(130)과 바디부(110) 사이에 개재됨에 따라 저출력 광조사부(140)와 수광부(164) 사이를 공간적으로 차단 구획할 수 있다.At this time, the light blocking portion 166 is formed as a dark film and is interposed between the circuit board 130 and the body portion 110 to spatially block and divide the low power light irradiation portion 140 and the light receiving portion 164 .
이와 같은 차광부(166)를 통해 저출력 레이저 광의 수신부로의 유입이 방지되어 광용적맥파 측정 정확도가 보다 높아지고, 이에 따라 광용적맥파를 이용한 통증 분석 결과의 정확도가 향상될 수 있다.The inflow of the low-power laser light into the receiving unit is prevented through the light-blocking unit 166, thereby increasing the accuracy of the PDP measurement, and accordingly, the accuracy of the pain analysis result using the PDP can be improved.
회로 기판(130)은, ALC(ambient light cancellation) 회로 모듈, 및 저잡음 전원 공급 회로 모듈을 포함할 수 있다.The circuit board 130 may include an ambient light cancellation (ALC) circuit module and a low noise power supply circuit module.
이 경우, ALC 회로 모듈은 생체 신호 감지 센서(160)로 수신되는 광과 주변 광의 간섭을 회피시킬 수 있다.In this case, the ALC circuit module may avoid interference between light received by the biosignal detection sensor 160 and ambient light.
또한, 저잡음 전원 공급 회로 모듈은 전원 스위칭에 의해 발생되는 노이즈가 생체 신호 감지 센서(160)의 광용적맥파 감지에 간섭되는 것을 방지할 수 있다.In addition, the low-noise power supply circuit module can prevent noise generated by power switching from interfering with the optical pulse wave detection of the biological signal detection sensor 160 .
따라서, ALC 회로 모듈 및 저잡음 전원 공급 회로 모듈을 통해 생체 신호 감지 센서(160)의 광용적맥파 감지 정확도가 향상되는 바, 보다 정확한 통증 분석 결과가 도출될 수 있다.Therefore, since the accuracy of photoplethysmogram detection of the bio-signal detection sensor 160 is improved through the ALC circuit module and the low-noise power supply circuit module, a more accurate pain analysis result can be derived.
회로 기판(130)에 전기적으로 연결되어 생체 신호 감지 센서(160)에 의해 감지된 광용적맥파를 사용자 단말(400)로 전송하는 통신부(미도시)가 더 포함될 수 있다.A communication unit (not shown) that is electrically connected to the circuit board 130 and transmits the photoplethysmogram detected by the biosignal detection sensor 160 to the user terminal 400 may be further included.
이 때, 통신부는 근거리 통신 모듈일 수 있고, 이 경우 블루투스(bluetooth)가 이용될 수 있다.In this case, the communication unit may be a short-distance communication module, and in this case, Bluetooth may be used.
사용자 단말(400)은 통신부로부터 수신된 광용적맥파를 통증 측정부(200)로 전송할 수 있고, 통증 측정부(200)는 광용적맥파를 이용하여 통증 정도 또는 시술 전후의 생체 신호 변화를 분석할 수 있다.The user terminal 400 may transmit the photoplethysmogram received from the communication unit to the pain measurement unit 200, and the pain measurement unit 200 may use the photoplethysmogram wave to analyze the degree of pain or changes in biosignals before and after the procedure. can
통증 측정부(200)로부터 분석된 결과 데이터는 다시 사용자 단말(400)로 전송되며, 통신부는 사용자 단말(400)로부터 해당 데이터를 수신할 수 있다.The resultant data analyzed by the pain measurer 200 is transmitted to the user terminal 400 again, and the communication unit may receive the corresponding data from the user terminal 400 .
도 9 및 도 10을 참조하여 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 프로세스에 대해 설명하도록 한다.Referring to FIGS. 9 and 10 , a body-wearable pain management process based on bio-signal collection and analysis will be described.
단계110에서는, 생체 신호 감지 센서(160)가 시술 부위의 통증 분석을 위해 광용적맥파를 감지할 수 있다.In step 110, the bio-signal detection sensor 160 may detect a photoplethysmogram to analyze pain in the treatment area.
단계120에서는, 통신부가 생체 신호 감지 센서(160)에 의해 감지된 광용적맥파를 사용자 단말(400)로 전송할 수 있다.In step 120, the communication unit may transmit the photoplethysmogram detected by the biological signal detection sensor 160 to the user terminal 400.
단계130에서는, 사용자 단말(400)이 통신부로부터 수신된 광용적맥파를 통증 측정부(200)로 전송할 수 있다.In step 130, the user terminal 400 may transmit the photoplethysmogram received from the communication unit to the pain measuring unit 200.
이 때, 구체적으로 통증 측정부(200)으로 전송된 광용적맥파는 생체 신호 수집부(210)에 수집 및 저장될 수 있다.In this case, in detail, the photoplethysmogram transmitted to the pain measurement unit 200 may be collected and stored in the biosignal collection unit 210 .
단계140에서는, 제1 처리부(232)가 광용적맥파에 비선형 필터 및 선형 필터를 순차 적용하여 신호 잡음을 제거할 수 있다.In step 140, the first processing unit 232 may remove signal noise by sequentially applying a nonlinear filter and a linear filter to the optical pulse wave.
구체적으로, 단계140은, 광용적맥파에 1차적으로 비선형 필터를 적용하여 기저선 변동 잡음을 제거하는 단계, 2차적으로 광용적맥파에 선형 필터를 적용하여 저주파 성분, 호흡 성분, 및 움직임 성분을 포함하는 저역 주파수 대역을 제외한 설정 주파수 대역의 신호를 통과시키는 단계를 포함할 수 있다.Specifically, step 140 includes removing baseline fluctuation noise by firstly applying a nonlinear filter to the photoplethysmogram wave, and secondarily applying a linear filter to the photoplethysmogram wave to include a low-frequency component, a respiratory component, and a motion component. It may include passing a signal of a set frequency band other than a low-band frequency band to be used.
단계150에서는, 제2 처리부(234)가 제1 처리부(232)에 의해 신호 잡음이 제거된 광용적맥파에서 이소성 박동을 제거하고 보간할 수 있다.In step 150, the second processing unit 234 may remove ectopic beats from the OPTIC wave from which signal noise has been removed by the first processing unit 232, and may perform interpolation.
단계150은, 구체적으로, 전처리된 광용적맥파에서 극점을 추출하여 극점 간격을 검출하는 단계, 검출된 극점 간격을 통해 이소성 박동의 간격을 판단하여 이소성 박동을 제거하는 단계, 및 제거된 이소성 박동의 위치를 보간하는 단계를 포함할 수 있다.Step 150 includes, in detail, steps of extracting poles from the preprocessed photoplethysmogram and detecting pole intervals, determining ectopic beat intervals through the detected pole intervals and removing ectopic beats, and determining the removed ectopic beats. It may include interpolating the position.
단계160에서는, 판별부(240)가 전처리된 광용적맥파가 양호 또는 불량 신호인지 여부를 판별할 수 있다.In step 160, the determining unit 240 may determine whether the preprocessed photoplethysmogram is a good or bad signal.
보다 구체적으로, 단계160에서는, 전처리된 광용적맥파의 이소성 박동, 심박수, 연속 심박수 차이 및 극점 진폭을 포함하는 양호 신호 지표를 양호 신호 지표에 대한 설정 파라미터와 비교하여 광용적맥파가 양호 또는 불량 신호인지 여부를 판별할 수 있다.More specifically, in step 160, good signal indices including ectopic beats, heart rate, continuous heart rate difference and pole amplitude of the preprocessed PPD are compared with set parameters for the good signal indices, so that the PPD is a good or bad signal. It can be determined whether or not
한편, 판별부(240)는, 생체 신호 판별 정확도를 향상 가능하도록, 생체 신호를 기설정된 머신 러닝 기반의 신호 품질 평가 모델을 통해 반복 학습함으로써 생체 신호가 양호 신호인지 여부를 판별할 수 있다.Meanwhile, the determination unit 240 may determine whether the biosignal is a good signal by iteratively learning the biosignal through a predetermined machine learning-based signal quality evaluation model so as to improve the biosignal discrimination accuracy.
다시 말해, 판별부(240)는, 양호 또는 불량 신호로 판별된 광용적맥파의 데이터를 학습하고, 해당 학습 결과를 토대로 전처리된 광용적맥파의 1차원 신호 이미지를 분석해 광용적맥파가 양호 또는 불량 신호인지 여부를 판별 가능한 신호 품질 평가 모델을 이용할 수 있다.In other words, the determination unit 240 learns the data of the photoplethysmogram, which is determined as a good or bad signal, and analyzes the preprocessed one-dimensional signal image of the photoplethysmogram based on the learning result to determine whether the photoplethysmogram is good or bad. A signal quality evaluation model capable of discriminating whether it is a signal may be used.
보다 구체적으로, 신호 품질 평가 모델의 신호 품질 평가 프로세스(S170)는, 도 10에 도시된 바와 같이, 행렬 변환부(242)가 전처리된 광용적맥파의 신호 이미지를 행렬 변환하는 단계(S171), 계층 생성부(243)가 행렬을 합성곱(convolution) 연산 처리하여 계층((convolution) layers)을 생성하는 단계(S172), 정규화부(244)가 계층을 정규화(batch normalization)하는 단계(S173), 활성화부(245)가 정규화된 계층을 비선형 활성화(rectified linear unit activation; ReLU)하는 단계(S174), 부표본화부(246)가 비선형 활성화된 계층을 부표본화(subsampling; max pooling)하는 단계(S175)(이 때, 단계 172 내지 175는 복수 회로 반복 수행 가능, 바람직하게는 2회 반복 수행), 통합부(247)가 부표본화된 계층을 통합 연결(dense; connection)하여 통합 행렬을 생성하는 단계(S176), 통합 행렬을 정규화 연결(dropout, dropout rate=05)하는 단계(S177)(단계177 이후 단계176 추가 수행 가능), 및 결정부(249)가 정규화 연결 결과값에 회귀 확률 함수(softmax)를 적용하여 도출된 확률에 따라 광용적맥파가 양호 또는 불량 신호인지 여부를 판별하는 단계(S178)를 포함할 수 있다.More specifically, in the signal quality evaluation process (S170) of the signal quality evaluation model, as shown in FIG. 10, the matrix conversion unit 242 performs matrix conversion of the preprocessed signal image of the optical pulse wave (S171); The layer generation unit 243 performs a convolution operation on the matrices to generate (convolution) layers (S172), and the normalization unit 244 performs batch normalization on the layers (S173) , the activation unit 245 nonlinearly activating the normalized layer (rectified linear unit activation; ReLU) (S174), the subsampling unit 246 subsampling the nonlinearly activated layer (subsampling; max pooling) ( S175) (At this time, steps 172 to 175 may be repeated multiple times, preferably performed twice), the integrator 247 generates an integration matrix by integrating and connecting the subsampled layers. Step S176, step S177 of normalizing the integration matrix (dropout, dropout rate = 05) (step 176 can be additionally performed after step 177), and the decision unit 249 adds a regression probability function ( It may include determining whether the photoplethysmogram is a good or bad signal according to the probability derived by applying softmax (S178).
단계180에서는, 지표 도출부(250)가 양호 신호로 판별된 광용적맥파로부터 설정 지표를 도출할 수 있다.In step 180, the index derivation unit 250 may derive a setting index from the photoplethysmogram determined as a good signal.
단계185에서는, 비교 분석부(260)가 설정 지표를 기준 데이터와 비교 분석하여 통증 정도 또는 시술 전후의 생체 신호 변화를 도출할 수 있다.In step 185, the comparison and analysis unit 260 compares and analyzes the set index with reference data to derive the degree of pain or changes in biosignals before and after the procedure.
구체적으로, 기준 데이터는, 시술 이전의 광용적맥파의 설정 지표값 또는 통증 정도의 지표 내지 기준이 되는 데이터를 포함할 수 있다.Specifically, the reference data may include set index values of photoplethysmograms before the procedure or index or reference data of the degree of pain.
또한, 비교 분석부(260)에 의한 분석 결과는 사용자 단말(400)로 전송될 수 있으며, 여기서 통증 정도 또는 시술 전후의 생체 신호 변화에는 통증 개선 정도가 포함될 수 있다.In addition, the analysis result by the comparison and analysis unit 260 may be transmitted to the user terminal 400 , where the degree of pain improvement or the change in biosignals before and after the procedure may be included.
단계190에서는, 통신부가 사용자 단말(400)로부터 통증 측정부(200)에서 분석된 통증 정도 또는 시술 전후의 생체 신호 변화를 수신할 수 있다.In step 190, the communication unit may receive the level of pain analyzed by the pain measurement unit 200 or changes in bio signals before and after the procedure from the user terminal 400.
단계200에서는, 제어부가 통신부로 수신된 통증 측정부(200)에서 분석된 통증 정도 또는 시술 전후의 생체 신호 변화에 따라 저출력 광조사부(140) 및 초음파 전달부(150) 중 적어도 어느 하나의 작동을 제어할 수 있다.In step 200, the control unit controls the operation of at least one of the low-power light irradiation unit 140 and the ultrasonic transmission unit 150 according to the degree of pain analyzed by the pain measurer 200 received by the communication unit or changes in bio signals before and after the procedure. You can control it.
단계210에서는, 사용자 단말(400)이 사용자로부터 초음파 및/또는 저출력 레이저 시술에 대한 만족 지수를 입력받을 수 있다.In step 210, the user terminal 400 may receive a satisfaction index for ultrasound and/or low-power laser treatment from the user.
단계220에서는, 제어부가 통증 측정부(200)에서 분석된 통증 개선 정도가 기준값 이상인지 여부를 판단하여 개선 지수를 산출할 수 있다.In step 220, the control unit may calculate an improvement index by determining whether the degree of pain improvement analyzed by the pain measurer 200 is equal to or greater than a reference value.
단계220은, 통증 측정부(200)에서 분석된 통증 개선 정도가 기준값 이상인 경우, 만족 지수에 가산 지수를 더하여 개선 지수를 산출하는 단계, 및 통증 측정부(200)에서 분석된 통증 개선 정도가 기준값 미만인 경우, 만족 지수를 개선 지수로 산출(만족 지수=개선 지수)하는 단계를 포함할 수 있다.In step 220, if the degree of pain improvement analyzed by the pain measurer 200 is greater than or equal to the reference value, calculating an improvement index by adding an addition index to the satisfaction index, and the degree of pain improvement analyzed by the pain measurer 200 is the reference value or less, calculating the satisfaction index as an improvement index (satisfaction index = improvement index).
단계230에서는, 제어부가 개선 지수를 기준 지수와 비교하여, 개선 지수가 기준 지수 미만인 경우, 저출력 광조사부(140) 및 초음파 전달부(150) 중 적어도 어느 하나의 작동을 제어할 수 있고, 또한 개선 지수가 기준 지수 이상인 경우, 통증 개선 정도, 만족 지수 및 개선 지수를 포함하는 제1 사용자 데이터를 사용자 단말(400)로 전송할 수 있다.In step 230, the control unit compares the improvement index with the reference index, and when the improvement index is less than the reference index, the control unit may control the operation of at least one of the low-power light irradiation unit 140 and the ultrasonic transmission unit 150, and also improve When the index is equal to or greater than the reference index, first user data including the degree of pain improvement, the satisfaction index, and the improvement index may be transmitted to the user terminal 400 .
단계250에서는, 통증 측정부(200)가 사용자 단말(400)로부터 제1 사용자 데이터를 수신하여 데이터베이스에 저장할 수 있다.In step 250, the pain measurer 200 may receive first user data from the user terminal 400 and store it in a database.
단계260에서는, 통증 측정부(200)가 데이터베이스에 저장된 제1 사용자 데이터를 학습하여 저출력 레이저 및/또는 초음파에 대한 추천 시술 모드를 생성 및 제공할 수 있으며, 이에 따라 개인 맞춤형 시술을 사용자에게 제공할 수 있게 된다.In step 260, the pain measurer 200 may learn the first user data stored in the database to generate and provide a recommended treatment mode for low-power laser and/or ultrasound, thereby providing a personalized treatment to the user. be able to
한편, 단계270에서는, 통증 측정부(200)가 신체 정보 및 적응증을 포함하는 제2 사용자 데이터를 사용자 단말(400)로부터 수신하여 데이터베이스에 저장할 수 있다.Meanwhile, in step 270, the pain measurer 200 may receive second user data including body information and indications from the user terminal 400 and store them in a database.
또한, 단계280에서는, 통증 측정부(200)가 복수의 사용자의 사용자 단말(400)로부터 제1 사용자 데이터 및 제2 사용자 데이터를 수신 및 분석하여 모집단 통계 정보를 생성 및 갱신할 수 있다.Also, in step 280, the pain measurer 200 may generate and update population statistical information by receiving and analyzing first user data and second user data from the user terminals 400 of a plurality of users.
단계290에서는, 통증 측정부(200)가 사용자의 제2 사용자 정보에 대응되는 모집단 통계 정보의 제1 사용자 데이터에 따라 저출력 레이저 및/또는 초음파에 대한 추천 시술 모드를 생성하여 제공할 수 있으며, 이에 따라 사용자는 자신이 포함되는 모집단에서의 효과적인 시술 모드를 추천받아 사용할 수 있게 된다.In step 290, the pain measurer 200 may generate and provide a recommended treatment mode for low-power laser and/or ultrasound according to the first user data of the population statistical information corresponding to the user's second user information. Accordingly, the user can receive and use an effective treatment mode in the population included in the user.
단계300에서는, 통증 측정부(200)가 사용자의 내원 시 초진 자료로 이용 가능하도록, 분석된 통증 정도 또는 시술 전후의 생체 신호 변화를 의료 기관 정보 서버로 전송할 수 있다.In step 300, the pain measurer 200 may transmit the analyzed degree of pain or changes in biosignals before and after the procedure to a medical institution information server so that the pain measurer 200 can use it as first-diagnosis data when the user visits the hospital.
여기서, 의료 기관 정보 서버는 EMR(electronic medical record), PHR(personal health record) 등을 포함할 수 있다.Here, the medical institution information server may include an electronic medical record (EMR), a personal health record (PHR), and the like.
단계310에서는, 통증 측정부(200)가 분석된 통증 정도 또는 시술 전후의 생체 신호 변화를 기준치와 비교하여, 기준치 이상인 경우, 사용자 단말(400)로 내원 권유 메시지를 발송할 수 있다.In step 310, the pain measuring unit 200 compares the analyzed pain level or biosignal change before and after the procedure with a reference value, and if the value is greater than or equal to the reference value, a visit recommendation message may be sent to the user terminal 400.
앞서 살펴본, 본 발명에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템(300)에 의하면, 사용자 개인의 생체 신호 수집과 분석을 기반으로 한 개인 맞춤형의 정확한 통증 평가가 가능하다.As described above, according to the wearable pain management system 300 based on biosignal collection and analysis according to the present invention, personalized and accurate pain evaluation based on user's individual biosignal collection and analysis is possible.
본 발명에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템(300)에 의하면, 인공 지능 모델을 통한 생체 신호의 반복 학습을 통해 통증 평가의 정확도를 향상시킬 수 있다.According to the body-wearable pain management system 300 based on bio-signal collection and analysis according to the present invention, the accuracy of pain evaluation can be improved through repetitive learning of bio-signals through an artificial intelligence model.
본 발명에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템(300)에 의하면, 사용자가 내원하지 않고도 일상 생활 속에서 비대면으로 자가 통증 평가, 진단, 및 관리 가능하다.According to the body-wearable pain management system 300 based on bio-signal collection and analysis according to the present invention, it is possible to evaluate, diagnose, and manage self-pain in a non-face-to-face manner in daily life without a user visiting a hospital.
본 발명에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템(300)에 의하면, 사용자의 자가 통증 진단 결과에 따른 맞춤형 통증 치료가 가능하다.According to the body-wearable pain management system 300 based on bio-signal collection and analysis according to the present invention, customized pain treatment according to the result of a user's self-diagnosis of pain is possible.
본 발명에 따른 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템(300)에 의하면, 통증 진단과 그에 따른 통증 치료가 인라인(in-line)으로 진행될 수 있다.According to the body-wearable pain management system 300 based on bio-signal collection and analysis according to the present invention, pain diagnosis and corresponding pain treatment can be performed in-line.
한편, 전술된 실시예의 구성 요소는 프로세스적인 관점에서 용이하게 파악될 수 있다. 즉 각각의 구성 요소는 각각의 프로세스로 파악될 수 있다. 또한 전술된 실시예의 프로세스는 장치의 구성 요소 관점에서 용이하게 파악될 수 있다.On the other hand, the components of the above-described embodiment can be easily grasped from a process point of view. That is, each component can be identified as each process. In addition, the process of the above-described embodiment can be easily grasped from the viewpoint of components of the device.
또한 앞서 설명한 기술적 내용들은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예들을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 하드웨어 장치는 실시예들의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.In addition, the technical contents described above may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer readable medium. The computer readable medium may include program instructions, data files, data structures, etc. alone or in combination. Program commands recorded on the medium may be specially designed and configured for the embodiments or may be known and usable to those skilled in computer software. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks. - includes hardware devices specially configured to store and execute program instructions, such as magneto-optical media, and ROM, RAM, flash memory, and the like. Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter, as well as machine language codes such as those produced by a compiler. A hardware device may be configured to act as one or more software modules to perform the operations of the embodiments and vice versa.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.Although one embodiment of the present invention has been described above, those skilled in the art can add, change, delete, or add components within the scope not departing from the spirit of the present invention described in the claims. The present invention can be variously modified and changed by the like, and this will also be said to be included within the scope of the present invention.

Claims (7)

  1. 통증 완화 또는 통증 치료를 위한 시술을 수행하는 통증 치료부; 및Pain treatment unit that performs a procedure for pain relief or pain treatment; and
    상기 통증 치료부를 사용하는 사용자의 생체 신호 변화를 수집 및 분석하여, 상기 사용자의 통증 정도 또는 시술 전후의 상기 생체 신호 변화를 도출하여 상기 사용자에게 제공하는 통증 측정부를 포함하고,A pain measurement unit that collects and analyzes changes in biosignals of a user using the pain treatment unit, derives the degree of pain of the user or changes in biosignals before and after the procedure, and provides the result to the user;
    상기 통증 측정부는,The pain measuring unit,
    상기 생체 신호를 수집하는 생체 신호 수집부; 및a biosignal collecting unit collecting the biosignal; and
    상기 생체 신호 수집부에 의해 수집된 상기 생체 신호를 분석하여 상기 통증 정도 또는 시술 전후의 상기 생체 신호 변화를 도출하는 분석부를 포함하고,An analyzer configured to analyze the biosignal collected by the biosignal collection unit to derive the degree of pain or a change in the biosignal before and after the procedure;
    상기 분석부는,The analysis unit,
    상기 생체 신호를 전처리하는 전처리부;a pre-processing unit that pre-processes the bio-signal;
    상기 전처리부에 의해 전처리된 상기 생체 신호가 양호 신호인지 여부를 판별하는 판별부;a determining unit determining whether the biosignal preprocessed by the preprocessing unit is a good signal;
    상기 판별부에 의해 양호 신호로 판별된 상기 생체 신호로부터 설정 지표를 도출하는 지표 도출부; 및an indicator derivation unit for deriving a set indicator from the biosignal determined as a good signal by the determination unit; and
    상기 지표 도출부에 의해 도출된 상기 설정 지표를 기준 데이터와 비교 분석하여 상기 통증 정도 또는 시술 전후의 상기 생체 신호 변화를 도출하는 비교 분석부를 포함하는, 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템.Body wearable pain management based on biosignal collection and analysis, including a comparison and analysis unit that compares and analyzes the set index derived by the indicator derivation unit with reference data to derive the degree of pain or the biosignal change before and after the procedure. system.
  2. 제1항에 있어서,According to claim 1,
    상기 판별부는,The determination unit,
    상기 생체 신호 판별 정확도를 향상 가능하도록, 상기 생체 신호를 기설정된 머신 러닝 기반의 신호 품질 평가 모델을 통해 반복 학습함으로써 상기 생체 신호가 양호 신호인지 여부를 판별 가능한, 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템.Body wear based on biosignal collection and analysis capable of determining whether the biosignal is a good signal by iteratively learning the biosignal through a predetermined machine learning-based signal quality evaluation model to improve the biosignal discrimination accuracy. type pain management system.
  3. 제1항에 있어서,According to claim 1,
    상기 판별부는,The determination unit,
    상기 생체 신호의 이미지를 행렬 변환하는 행렬 변환부;a matrix conversion unit for matrix conversion of the bio-signal image;
    상기 행렬 변환부에 의해 변환된 상기 행렬을 합성곱 연산 처리하여 계층을 생성하는 계층 생성부;a layer generator for generating a layer by performing a convolution operation on the matrix converted by the matrix converter;
    상기 계층 생성부에 의해 생성된 상기 계층을 정규화하는 정규화부;a normalization unit normalizing the layer created by the layer creation unit;
    상기 제1 정규화부에 의해 정규화된 상기 계층을 비선형 활성화하는 활성화부;an activation unit for non-linearly activating the layer normalized by the first normalization unit;
    상기 활성화부에 의해 비선형 활성화된 상기 계층을 부표본화하는 부표본화부;a subsampling unit for subsampling the layer nonlinearly activated by the activation unit;
    상기 부표본화부에 의해 부표본화된 상기 계층을 통합 연결하여 통합 행렬을 생성하는 통합부;an integration unit generating an integration matrix by integrating and connecting the layers subsampled by the subsampling unit;
    상기 통합부에 의해 생성된 상기 통합 행렬을 정규화 연결하는 연결부; 및a connection unit normalizing and connecting the integration matrix generated by the integration unit; and
    상기 연결부에 의해 정규화 연결된 상기 통합 행렬에 확률 함수를 적용하여 도출된 확률에 따라 상기 생체 신호가 양호 신호인지 여부를 판별하는 결정부를 포함하는, 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템.A body-wearable pain management system based on biosignal collection and analysis, including a determination unit determining whether the biosignal is a good signal according to a probability derived by applying a probability function to the integration matrix normalized and connected by the connection unit.
  4. 제1항에 있어서,According to claim 1,
    상기 통증 측정부는,The pain measuring unit,
    상기 통증 치료부와 양방향 통신 가능하도록 구비되어, 상기 사용자의 상기 통증 정도 또는 시술 전후의 상기 생체 신호 변화를 인라인(in-line)으로 상기 사용자에게 제공 가능한, 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템.Body wearable type based on collection and analysis of biosignals provided to enable bi-directional communication with the pain treatment unit and providing the user with the degree of pain or changes in the biosignals before and after the procedure in-line to the user. pain management system.
  5. 제1항에 있어서,According to claim 1,
    상기 생체 신호는 광용적맥파를 포함하고,The biosignal includes a photoplethysmogram,
    상기 전처리부는,The pre-processing unit,
    상기 생체 신호 수집부에 의해 수집된 상기 광용적맥파에 비선형 필터 및 선형 필터를 순차 적용하여 신호 잡음을 제거하는 제1 처리부; 및a first processor removing signal noise by sequentially applying a nonlinear filter and a linear filter to the photoplethysmogram collected by the biosignal collector; and
    상기 제1 처리부에 의해 상기 신호 잡음이 제거된 상기 광용적맥파에서 이소성 박동을 제거하고 보간하는 제2 처리부를 포함하는, 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템.A body-wearable pain management system based on biological signal collection and analysis, comprising a second processing unit for removing and interpolating ectopic beats from the photoplethysmogram wave from which the signal noise has been removed by the first processing unit.
  6. 제1항에 있어서,According to claim 1,
    상기 생체 신호는 광용적맥파를 포함하고,The biosignal includes a photoplethysmogram,
    상기 전처리부는 상기 생체 신호 수집부에 의해 수집된 상기 광용적맥파에 비선형 필터 및 선형 필터를 순차 적용하여 신호 잡음을 제거하는 제1 처리부를 포함하되,The pre-processing unit includes a first processing unit that removes signal noise by sequentially applying a non-linear filter and a linear filter to the photoplethysmogram collected by the bio-signal collection unit;
    상기 제1 처리부는,The first processing unit,
    상기 광용적맥파에 1차적으로 상기 비선형 필터를 적용하여 기저선 변동 잡음을 제거하고, 2차적으로 상기 선형 필터를 적용하여 저주파 성분, 호흡 성분, 및 움직임 성분을 포함하는 저역 주파수 대역을 제외한 설정 주파수 대역의 신호를 통과시키는, 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템.First, the nonlinear filter is applied to the optical pulse wave to remove baseline fluctuation noise, and secondarily, the linear filter is applied to a set frequency band excluding a low-pass frequency band including a low-frequency component, a respiratory component, and a motion component. A body-wearable pain management system based on bio-signal collection and analysis that passes the signal of
  7. 제1항에 있어서,According to claim 1,
    상기 생체 신호는 광용적맥파를 포함하고,The biosignal includes a photoplethysmogram,
    상기 전처리부는,The pre-processing unit,
    상기 생체 신호 수집부에 의해 수집된 상기 광용적맥파에 비선형 필터 및 선형 필터를 순차 적용하여 신호 잡음을 제거하는 제1 처리부; 및a first processor removing signal noise by sequentially applying a nonlinear filter and a linear filter to the photoplethysmogram collected by the biosignal collector; and
    상기 제1 처리부에 의해 상기 신호 잡음이 제거된 상기 광용적맥파에서 극점을 추출하여 상기 극점 간격을 검출하고, 상기 극점 간격을 통해 상기 이소성 박동의 간격을 판단하여 상기 이소성 박동을 제거하고 보간하는 제2 처리부를 포함하는, 생체 신호 수집과 분석 기반의 신체 착용형 통증 관리 시스템.A method for extracting poles from the optical pulse wave from which the signal noise has been removed by the first processing unit, detecting the pole intervals, determining the ectopic beat intervals through the pole intervals, removing the ectopic beats, and performing interpolation. A body-wearable pain management system based on bio-signal collection and analysis, including two processing units.
PCT/KR2022/015170 2021-12-06 2022-10-07 Body-wearable pain management system based on bio-signal collection and analysis WO2023106588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0173307 2021-12-06
KR1020210173307A KR20230085020A (en) 2021-12-06 2021-12-06 Wearable pain management system based on bio-signal collection and analysis

Publications (1)

Publication Number Publication Date
WO2023106588A1 true WO2023106588A1 (en) 2023-06-15

Family

ID=86730608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015170 WO2023106588A1 (en) 2021-12-06 2022-10-07 Body-wearable pain management system based on bio-signal collection and analysis

Country Status (2)

Country Link
KR (1) KR20230085020A (en)
WO (1) WO2023106588A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140296655A1 (en) * 2013-03-11 2014-10-02 ROPAMedics LLC Real-time tracking of cerebral hemodynamic response (rtchr) of a subject based on hemodynamic parameters
KR20170102004A (en) * 2015-01-10 2017-09-06 드보라 둘렌 Method and apparatus for diagnosing and validating patient care and measuring autonomic function for results
KR20190049430A (en) * 2017-10-31 2019-05-09 연세대학교 산학협력단 Pain depth classification apparatus and method using PPG and heart rate variability
KR102035731B1 (en) * 2018-04-06 2019-10-23 재단법인 아산사회복지재단 Method and apparatus for measuring pain depth using photoplethysmograph
KR102267640B1 (en) * 2019-02-21 2021-06-22 박세영 Medical Laser Irradiation Apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210133424A (en) 2020-04-29 2021-11-08 길민철 System and method for irradiating uv for reducing pain for dental procedures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140296655A1 (en) * 2013-03-11 2014-10-02 ROPAMedics LLC Real-time tracking of cerebral hemodynamic response (rtchr) of a subject based on hemodynamic parameters
KR20170102004A (en) * 2015-01-10 2017-09-06 드보라 둘렌 Method and apparatus for diagnosing and validating patient care and measuring autonomic function for results
KR20190049430A (en) * 2017-10-31 2019-05-09 연세대학교 산학협력단 Pain depth classification apparatus and method using PPG and heart rate variability
KR102035731B1 (en) * 2018-04-06 2019-10-23 재단법인 아산사회복지재단 Method and apparatus for measuring pain depth using photoplethysmograph
KR102267640B1 (en) * 2019-02-21 2021-06-22 박세영 Medical Laser Irradiation Apparatus

Also Published As

Publication number Publication date
KR20230085020A (en) 2023-06-13

Similar Documents

Publication Publication Date Title
Singh et al. Bioelectrical signals as emerging biometrics: Issues and challenges
US20210257078A1 (en) Method and system for brain activity signal-based treatment and/or control of user devices
Carmon et al. Single trial analysis of evoked potentials to noxious thermal stimulation in man
US8232866B2 (en) Systems and methods for remote long standoff biometric identification using microwave cardiac signals
US20030135097A1 (en) Identification by analysis of physiometric variation
Pal et al. Evaluation of bioelectric signals for human recognition
Dai et al. Extracting and classifying spatial muscle activation patterns in forearm flexor muscles using high-density electromyogram recordings
Ravish et al. Heart function monitoring, prediction and prevention of heart attacks: Using artificial neural networks
CN107072538A (en) Pulse transit time (PTT) measuring system is conductively coupled to heart for blood pressure measurement
WO2022231132A1 (en) Artificial intelligence smart remote control device and self-test method using same
Prashant et al. Brain computer interface: A review
WO2019182258A1 (en) Human body wearable body information measuring device and medical support system using same
WO2023106588A1 (en) Body-wearable pain management system based on bio-signal collection and analysis
NL2032409A (en) Method and system for artificial intelligence-based radiofrequency ablation parameter optimization and information synthesis
KR101349748B1 (en) Brain meridian activity measurement device and measuring method thereof
Staffa et al. Enhancing affective robotics via human internal state monitoring
WO2022067125A1 (en) Systems, devices, and methods for developing a fetal oximetry model for use to determine a fetal oximetry value
CN110997066B (en) Apparatus and method for ultrasonic spinal cord stimulation
JP2022538905A (en) Devices, systems and methods for non-invasive chronic pain treatment
WO2006013585A1 (en) Method and equipment for monitoring the functionality of the spinal cord
Moqadam et al. A novel hybrid approach to pattern recognition of finger movements and grasping gestures in upper limb amputees
Hinatsu et al. Basic study on presentation attacks against biometric authentication using photoplethysmogram
WO2022158629A1 (en) Wearable pain treatment device based on principle of complex photobiochemical action
WO2024096391A1 (en) Device and method for acquiring biosignal
Tseng et al. ECG sensor verification system with mean-interval algorithm for handling sport issue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904422

Country of ref document: EP

Kind code of ref document: A1