WO2023106477A1 - Active material-conductive material-binder composite material for lithium secondary battery - Google Patents
Active material-conductive material-binder composite material for lithium secondary battery Download PDFInfo
- Publication number
- WO2023106477A1 WO2023106477A1 PCT/KR2021/018804 KR2021018804W WO2023106477A1 WO 2023106477 A1 WO2023106477 A1 WO 2023106477A1 KR 2021018804 W KR2021018804 W KR 2021018804W WO 2023106477 A1 WO2023106477 A1 WO 2023106477A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- conductive material
- lithium secondary
- binder
- secondary battery
- Prior art date
Links
- 239000011230 binding agent Substances 0.000 title claims abstract description 115
- 239000002131 composite material Substances 0.000 title claims abstract description 87
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 64
- 239000011149 active material Substances 0.000 claims abstract description 109
- 239000004020 conductor Substances 0.000 claims abstract description 74
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 34
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 23
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 claims description 25
- 239000002270 dispersing agent Substances 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 17
- 239000002109 single walled nanotube Substances 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 16
- -1 polysiloxane Polymers 0.000 claims description 16
- 229920001296 polysiloxane Polymers 0.000 claims description 16
- 239000006185 dispersion Substances 0.000 claims description 15
- 239000002048 multi walled nanotube Substances 0.000 claims description 13
- 229920006168 hydrated nitrile rubber Polymers 0.000 claims description 12
- 239000002033 PVDF binder Substances 0.000 claims description 10
- 125000003700 epoxy group Chemical group 0.000 claims description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 8
- 230000007774 longterm Effects 0.000 abstract description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 26
- 238000000034 method Methods 0.000 description 26
- 230000008569 process Effects 0.000 description 18
- 239000002904 solvent Substances 0.000 description 18
- 239000002002 slurry Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 13
- 238000007599 discharging Methods 0.000 description 11
- 239000006182 cathode active material Substances 0.000 description 8
- 238000007086 side reaction Methods 0.000 description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010828 elution Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229910052723 transition metal Inorganic materials 0.000 description 6
- 150000003624 transition metals Chemical class 0.000 description 6
- 238000009834 vaporization Methods 0.000 description 6
- 230000008016 vaporization Effects 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 3
- 229940093475 2-ethoxyethanol Drugs 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000000935 solvent evaporation Methods 0.000 description 3
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 description 2
- QTHKJEYUQSLYTH-UHFFFAOYSA-N [Co]=O.[Ni].[Li] Chemical compound [Co]=O.[Ni].[Li] QTHKJEYUQSLYTH-UHFFFAOYSA-N 0.000 description 2
- NDPGDHBNXZOBJS-UHFFFAOYSA-N aluminum lithium cobalt(2+) nickel(2+) oxygen(2-) Chemical compound [Li+].[O--].[O--].[O--].[O--].[Al+3].[Co++].[Ni++] NDPGDHBNXZOBJS-UHFFFAOYSA-N 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 2
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000009828 non-uniform distribution Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrode material for a lithium secondary battery, and more particularly, to a technique for solving the volume change problem of an active material containing a large amount of nickel in order to achieve high energy density and for solving the non-uniform problem that occurs during thick film formation. will be.
- Ni has shown excellent characteristics in increasing the capacity of a battery. Accordingly, various active materials with high Ni combinations have been tried, such as lithium-nickel oxide, lithium-nickel-cobalt oxide, lithium-nickel-cobalt-aluminum oxide (NCA), lithium-nickel-cobalt-manganese oxide (NCM), etc. this was developed
- the higher the Ni content the more severe the volume change of the active material due to charge and discharge, and the higher the probability of occurrence of micro-crack from the inside of the active material. There is a problem in that side reactions occur between active materials, thereby deteriorating the performance of the battery.
- thick film of the anode is another method to achieve the above object.
- the existing positive electrode manufacturing method had limitations in uniformly forming a thick film of the conductive material and the binder included in the positive electrode material, and accordingly, the positive electrode material loading was lowered to 20 mg/cm 2 or less.
- the thick film of the cathode does not simply form a thick cathode material, and the active material, the conductive material, and the binder must be uniformly distributed in the thickness direction along with the thick thickness to form an electrical network.
- the solvent evaporates during the solvent drying process, and the conductive material and binder are concentrated in the upper layer, and the non-uniform distribution of the conductive material and binder results in deterioration of battery performance.
- Korean Patent Publication No. 10-2015-0047098 (Name: Method for producing a surface-coated cathode active material and cathode active material produced thereby) mixes a cathode active material and ⁇ -Al 2 O 3 ,
- a method for producing a surface-coated cathode active material including the step of coating the surface of the cathode active material with Al 2 O 3 by heat treatment of the mixture, thereby minimizing the loss of the cathode active material and aiming at a cathode having a high capacity energy density,
- the bias of the conductive material and the binder that occurs in the wet process is still not resolved, which limits film thickness, and the particle-type Al 2 O 3 coating has limitations in suppressing cracking of the active material.
- an object of the present invention is to solve the above problems and provide a cathode material capable of increasing the efficiency of the process and capable of forming a thick film while containing a large amount of Ni.
- Patent Document Republic of Korea Patent Publication No. 10-2015-0047098
- An object of the present invention to solve the above problems is to provide a stable active material-conductive material-binder composite material for a lithium secondary battery, a method for manufacturing the same, and an electrode for a lithium secondary battery including the same even when a high proportion of Ni is contained. .
- Another object of the present invention is an active material-conductive material-binder composite material for lithium secondary batteries capable of removing or minimizing the drifting of the conductive material and binder that occurs during solvent evaporation in a wet process for thick film formation of the cathode, and manufacturing thereof is to provide a way
- Another object of the present invention is to provide an electrode for a lithium secondary battery having a high energy density, including the composite material.
- an active material-conductive material-binder composite material for a lithium secondary battery includes an active material; a conductive material coated on the surface of the active material and containing carbon nanotubes; and a thermosetting binder coated on the surface of the active material.
- the composite material may further include a dispersant coated on the surface of the active material.
- thermosetting binder may include polysiloxane.
- the polysiloxane may include an epoxy group and a hydroxyl group.
- thermosetting binder may be included in an amount of 0.01 wt% or more and 10 wt% or less based on the total weight of the composite material.
- the conductive material is selected from the group consisting of single wall carbon nanotubes (SWCNTs), multi wall carbon nanotubes (MWCNTs), and combinations thereof. Any one or more may be included.
- SWCNTs single wall carbon nanotubes
- MWCNTs multi wall carbon nanotubes
- the conductive material may be included in an amount of 0.01 wt% or more and 10 wt% or less based on the total weight of the composite material.
- the coverage of the active material by the conductive material may be 0.1% or more and 90% or less.
- the carbon nanotubes may have an average diameter of 1 nm or more and 10 nm or less, and an aspect ratio of 1:1000 or more.
- the dispersant is any one selected from the group consisting of hydrogenated acrylonitrile butadiene rubber (HNBR), polyvinylidene fluoride (PVDF), and combinations thereof may be ideal
- a method for manufacturing an active material-conductive material-binder composite material for a lithium secondary battery comprises the steps of (i) preparing a conductive material dispersion by mixing carbon nanotubes and a dispersant; and (ii) coating the surface of the active material with a coating solution obtained by mixing the conductive material dispersion, the active material, and the thermosetting binder solution.
- the carbon nanotubes are a group consisting of single wall carbon nanotubes (SWCNTs), multi wall carbon nanotubes (MWCNTs), and combinations thereof. It may include any one or more selected from.
- the dispersant is any one selected from the group consisting of hydrogenated acrylonitrile butadiene rubber (HNBR), polyvinylidene fluoride (PVDF), and combinations thereof may contain more than
- thermosetting binder may include polysiloxane.
- the polysiloxane may include an epoxy group and a hydroxyl group.
- the electrode for a lithium secondary battery is an electrode for a lithium secondary battery including the active material-conductive material-binder composite material for a lithium secondary battery.
- the electrode may have an energy density of 350 Wh/kg or more.
- the electrode is manufactured by containing Ni at a high rate, the probability of occurrence of cracks inside the active material during charging and discharging is suppressed, thereby providing an electrode material with long-term stability and an electrode including the same.
- anode thicker by resolving the biasing of the conductive material and the binder that occurs when a wet process is used in manufacturing the anode.
- the solid content is increased when preparing the slurry, so that problems caused by solvent vaporization during the wet process can be eliminated or minimized, thereby enabling thick film formation of the anode.
- the active material-conductive material-binder composite material proposed in the present invention has high utilization in that it can be used in a dry process.
- the electrode manufactured by including the active material-conductive material-binder composite material proposed in the present invention has a high energy density of 350 Wh/kg or more.
- the active material-conductive material-binder composite material and the electrode including the active material-conductive material-binder composite material proposed by the present invention have greatly improved electrical conductivity.
- FIG. 1 is a schematic image of an active material-conductive material-binder composite material for a lithium secondary battery according to an embodiment of the present invention.
- Figure 2 is an image showing the polymer structure of polysiloxane having an epoxy group.
- Figure 3 is data showing the relationship between the Ni content of the battery containing Ni and the battery life.
- FIG. 5 is an image showing a phenomenon in which a conductive material and a binder are concentrated due to vaporization of a solvent when an electrode is manufactured by a wet process method.
- FIG. 6 is a flowchart of a method for manufacturing an active material-conductive material-binder composite material for a lithium secondary battery according to an embodiment of the present invention.
- FIG. 7 is a SEM image of a surface confirmed by implementing an active material-conductive material-binder composite material for a lithium secondary battery, which is an embodiment of the present invention.
- FIG. 8 is a table summarizing experimental groups with different contents of binders in order to confirm the characteristics of an electrode for a lithium secondary battery including an active material-conductive material-binder composite material for a lithium secondary battery and a battery.
- FIG. 9 is an experimental result obtained by measuring the initial capacity and charge/discharge behavior of the experimental group summarized in FIG. 8 as batteries.
- FIG. 10 is an experimental result obtained by measuring the output characteristics of the experimental group summarized in FIG. 8 as a battery.
- FIG. 11 is an experimental result obtained by measuring the lifespan characteristics of the experimental group summarized in FIG. 8 as batteries.
- FIG. 13 is an SEM image of a cross section confirmed to compare the degree of micro-crack occurrence after charging and discharging for the electrode including Comparative Example 1 and the electrode including Example 1 summarized in FIG. 8.
- FIG. 14 is data obtained by analyzing the elution amount of the transition metal included in the active material after charging and discharging for the electrode including Comparative Example 1 and the electrode including Example 1 summarized in FIG. 8 .
- FIG. 1 is a schematic image of an active material-conductive material-binder composite material for a lithium secondary battery according to an embodiment of the present invention.
- the active material-conductive material-binder composite material for a lithium secondary battery includes an active material 100; a conductive material 200 coated on the surface of the active material 100 and containing carbon nanotubes; and a thermosetting binder 300 coated on the surface of the active material 100.
- the composite material may be coated by mixing the dispersant 400 with the conductive material 200 on the surface of the active material 100 .
- the present invention is intended to solve the problem of micro-crack caused by containing a high ratio of Ni in the active material as a first purpose.
- the cause of this trend is shown in FIG. 4 .
- the higher the Ni ratio the larger the change in the volume of the active material due to charging and discharging, thereby increasing the probability and degree of micro-crack occurrence in the active material.
- carbon nanotubes having a high aspect ratio are coated on the surface of the active material 100 to suppress the occurrence of micro-crack by suppressing the increase in volume change due to the high Ni content.
- the carbon nanotubes coated on the surface of the active material 100 cover the active material 100 as a whole and play a role in partially resolving the physical volume expansion, and also cover the active material 100 as a whole to form an electrical network so that the active material 100 is primary. It serves to block the isolation of particles.
- thermosetting binder 300 was coated on the surface of the active material 100 coated with carbon nanotubes. 100) from side reactions with the electrolyte.
- the active material-conductive material-binder composite material for a lithium secondary battery proposed by the present invention reduces volume expansion due to charge and discharge, reduces the possibility and degree of micro-crack, and reduces electrolyte and active material
- the side reaction of (100) is suppressed, and deterioration of the performance and lifetime of the electrode is remarkably improved even when a high proportion of Ni is contained.
- a second object of the present invention is to make electrodes thicker in order to achieve high energy density.
- the above problem (1) can be solved by reducing the amount of vaporized solvent by increasing the specific gravity of the solid content in the wet process or by increasing the bonding force between the active material, the conductive material and the binder to prevent separation between components.
- it is important to prevent separation between the conductive material and the active material, which lack adhesive strength.
- the present invention combines the active material 100, the conductive material 200, and the binder 300 to prepare a composite material prior to preparing the slurry for the wet process, and mixes the slurry using the manufactured composite material Suggest how to do it as a solution.
- the solid content of the slurry is increased to reduce the amount of vaporized solvent, and the conductive material 200 coated on the surface of the active material 100 is also in the solvent vaporization process. Since it is not separated, the bias phenomenon during electrode manufacturing is reduced, and for the same reason, it is possible to form an electrode in which components are uniformly distributed.
- the above problem (2) can also be solved through the composite material of the present invention.
- the conductive material 200 coated on the surface of the active material 100 is uniformly positioned between the active materials 100 during electrode manufacturing and forms an electrical network to increase the electrical conductivity of the electrode.
- carbon nanotubes are used as the material of the conductive material 200 .
- Carbon nanotubes are materials with very excellent electrical properties, such as electrical conductivity, and especially in the case of single-walled carbon nanotubes, since the aspect ratio is very high, electrical connection between the active material 100 and the conductive material 200 can be effectively made during electrode manufacturing.
- single-walled carbon nanotubes and multi-walled carbon nanotubes can be used together as the conductive material 200, and in this case, electrical properties and physical properties are further improved compared to the case of using only single-walled carbon nanotubes. It can be.
- the active material-conductive material-binder composite material for a lithium secondary battery presented in the present invention is prepared prior to slurry preparation and can be used in a dry process as well as a wet process.
- the active material 100 is an active material that can be used in a lithium secondary battery and can reversibly occlude and release lithium ions. Not particularly limited.
- lithium-cobalt oxide LCO
- lithium-nickel oxide lithium-nickel-cobalt oxide
- lithium-nickel-cobalt-aluminum oxide NCA
- lithium-nickel-cobalt-manganese oxide NCM
- lithium- manganese oxide LMO
- lithium iron phosphate LFP
- positive electrode active materials may be used alone or in combination of two or more.
- high-nickel NCM811 containing 80% or more of Ni among the cathode active materials was used to achieve high energy density.
- the content of the active material 100 may be 90 wt% or more and 99.99 wt% or less.
- the conductive material 200 in one embodiment of the present invention will be described with the following configuration.
- the conductive material 200 is coated on the surface of the active material 100 and includes carbon nanotubes.
- the conductive material 200 is located on the surface of the active material 100 .
- the coating is performed by injecting and attaching the active material 100 to the dispersion of the conductive material 200, the conductive material 200 including the conductive material 200 and the dispersant 400 The dispersion covers the surface of the active material 100 . Also, the particles of the active material 100 are connected.
- carbon nanotube is an allotrope of carbon having a cylindrical nanostructure, and sp 2 formed between carbon atoms. Due to the covalent bond, it has very excellent physical properties such as tensile strength and elastic modulus, and especially excellent electrical conductivity and low density, so when used in a battery, it is a material that very effectively reduces battery deterioration due to charging and discharging.
- the conductive material 200 is at least one selected from the group consisting of single wall carbon nano tubes (SWCNTs), multi wall carbon nano tubes (MWCNTs), and combinations thereof.
- SWCNTs single wall carbon nano tubes
- MWCNTs multi wall carbon nano tubes
- carbon nanotubes can be classified into single-walled carbon nanotubes and multi-walled carbon nanotubes.
- Single-walled carbon nanotubes are relatively flexible and have the advantage of being formed very long, but are relatively expensive and difficult to synthesize.
- multi-walled carbon nanotubes are relatively hard and short, but can be synthesized relatively inexpensively and easily.
- the present invention is characterized in that the carbon nanotubes have an average diameter of 1 nm or more and 10 nm or less, and an aspect ratio of 1:1000 or more to take advantage of the advantages of carbon nanotubes that are relatively flexible and very long compared to other carbon-based materials.
- the single-walled carbon nanotubes may have an average diameter of 1.5 nm or more and 10 nm or less and an aspect ratio of 1:1000. , There is an advantage in effectively suppressing isolation due to cracking of the active material 100 during the charging and discharging process.
- the present invention is characterized in that the conductive material 200 including the carbon nanotubes is included in an amount of 0.01 wt% or more and 10 wt% or less based on the total weight of the composite material, and accordingly, the active material by the conductive material 200 (100) is characterized in that the coverage is 0.1% or more and 50% or less.
- the conductive material 200 when the conductive material 200 is included in less than 0.01wt% of the total weight of the composite material, conductivity is not secured, and when it is included in more than 10wt%, the energy density is lowered, so the conductive material 200 is the composite material. It is preferably 0.01wt% or more and 10wt% or less based on the total weight.
- thermosetting binder 300 in one embodiment of the present invention will be described with the following configuration.
- the thermosetting binder 300 may be coated on the surface of the active material 100 including the conductive material 200 .
- the coating may cover the entire surface of the active material 100 or may be partially attached to the surface of the active material 100 .
- thermosetting binder 300 since the thermosetting binder 300 should have a high affinity with the active material 100 to suppress side reactions between the electrolyte and the active material 100, it is characterized in that it contains polysiloxane capable of performing this role. do.
- the polysiloxane may be functionalized to include an epoxy group and a hydroxyl group.
- the epoxy group and the hydroxyl group have very good affinity with lithium-based active materials including nickel.
- the polysiloxane having an epoxy group forms a cross-linking structure through cross-linking during the thermal curing process (drying), and accordingly, the volume expansion of the active material 100 is effectively suppressed.
- polysiloxane containing a hydroxyl group forms a covalent bond through condensation between the hydroxyl group and the active material 100, thereby forming a very strong bond between the binder 300 and the active material 100.
- thermosetting binder 300 preferably includes at least one selected from the group consisting of polysiloxane, polysiloxane functionalized to include an epoxy group and a hydroxyl group, and combinations thereof.
- thermosetting binder 300 is, compared to the total weight of the composite material It is characterized in that it is contained in 0.01wt% or more and 10wt% or less.
- thermosetting binder 300 when the thermosetting binder 300 is included in less than 0.01wt% of the total weight of the composite material, the surface coverage of the active material 100 decreases, and when it is included in more than 10wt%, diffusion of lithium ions due to excessive binder 300 And in that the energy density can be reduced, the thermosetting binder 300 is preferably included in an amount of 0.01 wt% or more and 10 wt% or less based on the total weight of the composite material in order to implement a battery having a high energy density.
- the dispersant 400 in one embodiment of the present invention will be described with the following configuration.
- the dispersant 400 is coated with the conductive material 200 on the surface of the active material 100 . Specifically, since the coating is performed by injecting the active material 100 into a dispersion of the conductive material 200 including the conductive material 200 and the dispersant 400, the conductive material 200 and the dispersant 400 are included. The dispersion of the conductive material 200 covers the surface of the active material 100.
- the dispersant 400 may be a rubber-based dispersant 400 .
- it may be at least one selected from the group consisting of hydrogenated acrylonitrile butadiene rubber (HNBR), polyvinylidene fluoride (PVDF), and combinations thereof.
- HNBR hydrogenated acrylonitrile butadiene rubber
- PVDF polyvinylidene fluoride
- HNBR hydrogenated acrylonitrile butadiene rubber
- the dispersant 400 is characterized in that it is included in 0.01wt% or more and 5wt% or less based on the total weight of the composite material.
- the method for manufacturing an active material-conductive material-binder composite material for a lithium secondary battery includes (i) preparing a conductive material dispersion by mixing carbon nanotubes and a dispersant (S100); and (ii) coating the surface of the active material with a coating solution obtained by mixing the conductive material dispersion, the active material, and the thermosetting binder solution (S200).
- the composite material is prepared separately.
- the slurry prepared according to the existing process and the slurry including the composite material prepared according to the present invention clearly show differences in characteristics and performance even if the included materials are the same.
- the conductive material and binder included in the slurry are separated from the active material according to the vaporization of the solvent, and There is a problem of being excessively focused on the upper part of the electrode.
- This biasing phenomenon means an imbalance in electrode performance and also makes it difficult for lithium ions and electrons to move through the thick film electrode, thereby seriously degrading battery performance.
- the slurry containing the composite material manufactured according to the present invention reduces separation between the active material 100, the conductive material 200, and the binder 300 included in the slurry even when a wet process is used, and in particular, the conductive material 200 excellently solves the problem of non-uniform distribution of
- the solid content in the slurry can be increased in that the addition of the conductive material 200 dispersion and the binder 300 solution is minimized, and the increase in the solid content increases the solvent content decrease, so the effect of vaporization of the solvent is reduced. That is, it is possible to manufacture electrodes with a remarkably uniform distribution.
- the conductive material 200 coated on the surface of the active material 100 and uniformly distributed in the electrode supplements electrical conductivity so that lithium ions and electrons can move smoothly even when the electrode becomes thick due to film thickness, and the surface of the active material 100
- the thermosetting binder 300 uniformly coated on the inside effectively suppresses a side reaction between the active material 100 and the electrolyte solution having a micro-crack.
- the step (i) (S100) is a step (S100) of preparing a conductive material dispersion by adding and mixing the carbon nanotubes and the dispersant 400 in a solvent.
- the solvent is methylpyrrolidone (N-Methyl-2-pyrrolidone, NMP), isopropanol (IPA), dimethylformamide (N,N-dimethylformamide, DMF) And it may be any one or more selected from the group consisting of combinations thereof.
- the conductive material 200 and the binder 300 are uniformly applied on the surface of the active material 100 with a coating solution in which the conductive material dispersion, the active material 100, and the thermosetting binder solution are mixed. This is the step of coating with one distribution.
- the coating solution containing the active material 100 is coated by performing filtering, or a solution in which a conductive material dispersion liquid and a thermosetting binder solution are mixed is applied through spraying equipment to the active material 100. ) can be coated by spraying on the surface.
- the active material-conductive material-binder composite material for a lithium secondary battery manufactured according to the manufacturing method includes the conductive material 200 in an amount of 0.01 wt% or more and 10 wt% or less based on the total weight of the composite material, and thus the conductive material ( The coverage of the active material 100 by 200) is 0.1% or more and 90% or less.
- thermosetting binder 300 is included in an amount of 0.01 wt% or more and 10 wt% or less based on the total weight of the composite material, and accordingly, the coverage of the active material 100 by the thermosetting binder 300 is 0.1% or more and 90%. Since it is characterized by the following and shows an even and uniform distribution, it can be expected that an excellent electrical network will be formed when manufactured as an electrode later.
- the electrode for a lithium secondary battery according to this embodiment is manufactured by including the active material-conductive material-binder composite material, the active material 100 and the conductive material 200 are uniformly distributed in the electrode, and thus lithium ions and electrons An electrical network that can move smoothly is formed, and the electrical conductivity is excellent.
- the film can be made thick, the specific gravity occupied by the electrode in the battery is greatly improved.
- the electrode for a lithium secondary battery solves the problem caused by the volume expansion of the active material 100 in the conductive material 200 and the binder 300, the performance and lifespan of the electrode even when a large amount of Ni showing high capacity is added. It does not cause degradation problems and shows long-term stability.
- the electrode for a lithium secondary battery proposed by the present invention can achieve a high energy density of 350 Wh/kg or more.
- NCM811 active material, mixed conductive material (SWCNT) dispersion and binder solution are mixed in a certain ratio.
- active material: conductive material: binder 97.74wt%: 0.1wt%: 0.8wt%)
- the stirred solution is filtered to remove the solvent, and the powder obtained on the filter is vacuum-dried to prepare a composite material in powder form.
- the initial capacity was measured at 0.1 C for the experimental group classified by varying the content of the thermosetting binder, and the output characteristics were confirmed while changing the C-Rate (0.1 to 2 C), and 0.33 Life characteristics were measured at C/0.5C charge/discharge rate.
- thermosetting binder 9 to 12 are the results of this experiment, and according to this, the composite material to which the thermosetting binder is applied in a high content showed high capacity and excellent output and lifespan characteristics.
- thermosetting binder uniformly and sufficiently covers the surface of the active material to effectively block direct contact between the surface of the active material and the surface of the electrolyte during charging and discharging, and to suppress metal elution.
- the active material-conductive material-binder composite material for lithium secondary batteries proposed in the present invention can significantly improve the lifespan characteristics of the high-capacity active material (NCM811).
- the active material-conductive material-binder composite material for lithium secondary battery which is the present invention, effectively suppresses the generation of micro-crack due to volume expansion with the conductive material and binder coating, and effectively suppresses side reactions between the active material and the electrolyte.
- the cross-sectional state of the active material was checked after charging and discharging by making it into an electrode, and the elution state of the transition metal according to the presence or absence of a thermosetting binder was analyzed.
- the battery was disassembled after 50 cycles, and the cross section of the electrode was observed, and the amount of transition metal generated from the positive electrode was measured through ICP analysis of the surface of the negative electrode.
- Figure 13 is a SEM image of the cross section of the active material after charging and discharging.
- the active material-conductive material-binder composite material proposed in the present invention is well coated with the conductive material and the binder on the outside of the active material. It can be confirmed, and the appearance of internal cracks was confirmed to be less. On the other hand, according to FIG. 13 (a), it was confirmed that internal cracks were severely generated in Comparison 1 to which the composite material was not applied.
- thermosetting binder suppresses transition metal elution through active material surface passivation.
- the composite material including the thermosetting binder proposed in the present invention is effective in improving the performance of a high energy density battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
An embodiment of the present invention provides an active material-conductive material-binder composite material for a lithium secondary battery, the composite material being characterized by comprising: an active material; a conductive material which is coated on the surface of the active material and comprises carbon nanotubes; and a thermosetting binder which is coated on the surface of the active material. According to the present invention, it is possible to provide a lithium secondary battery electrode that has long-term stability with respect to performance and lifespan, whilst having a high ratio of Ni, and to provide a thick film electrode having uniform and excellent electrical conductivity, thus making it possible to achieve a lithium secondary battery having a high energy density, for the expansion of electric vehicles.
Description
본 발명은 리튬 이차전지용 전극재에 관한 것으로, 더욱 상세하게는 고에너지 밀도를 달성하기 위해 니켈을 다량으로 함유하는 활물질의 부피 변화 문제를 해결하고 후막 형성 시 발생하는 불균일 문제를 해결하는 기술에 관한 것이다.The present invention relates to an electrode material for a lithium secondary battery, and more particularly, to a technique for solving the volume change problem of an active material containing a large amount of nickel in order to achieve high energy density and for solving the non-uniform problem that occurs during thick film formation. will be.
전기 자동차(Electric vehicles) 보급이 확대됨에 따라 500km 이상의 주행거리 확보를 위한 기술 개발이 필요한 실정이다. 또한 급속 충전 기술의 발전 속도 및 충전 인프라를 고려했을 때, 1회 충전에 장거리 운행이 가능한 350Wh/kg 이상의 고에너지 밀도를 갖는 리튬이차전지 개발이 필수적이다.As the supply of electric vehicles expands, it is necessary to develop technology to secure a mileage of more than 500 km. In addition, considering the development speed of rapid charging technology and charging infrastructure, it is essential to develop a lithium secondary battery with a high energy density of 350Wh/kg or more that can travel long distances on a single charge.
특히 이론 용량이 높은 음극(500mAh/g 이상)에 비해 상대적으로 용량이 작은 양극의 균형을 맞추기 위해서는 고용량 활물질을 사용하거나 양극의 전극 로딩을 높이는 것이 시급하다.In particular, in order to balance the positive electrode with relatively small capacity compared to the negative electrode with high theoretical capacity (500 mAh/g or more), it is urgent to use a high-capacity active material or increase the electrode loading of the positive electrode.
상기 문제점을 해결하고자 많은 양극 활물질이 연구, 개발되었으며 그 중에서 Ni은 전지의 용량 증가에 탁월한 특성을 나타냈다. 이에 따라 Ni을 고비율로 조합한 여러 활물질이 시도 되었으며 리튬-니켈 옥사이드, 리튬-니켈-코발트 옥사이드, 리튬-니켈-코발트-알루미늄 옥사이드(NCA), 리튬-니켈-코발트-망간 옥사이드(NCM) 등이 개발되었다.In order to solve the above problems, many cathode active materials have been researched and developed, and among them, Ni has shown excellent characteristics in increasing the capacity of a battery. Accordingly, various active materials with high Ni combinations have been tried, such as lithium-nickel oxide, lithium-nickel-cobalt oxide, lithium-nickel-cobalt-aluminum oxide (NCA), lithium-nickel-cobalt-manganese oxide (NCM), etc. this was developed
또한 우수한 효율을 보이는 조합에 그치지 않고 Ni 함량 자체를 더욱 늘리려는 시도가 있어왔는데 Ni이 다량으로 포함될수록 부작용이 발생하여 안정적인 전극을 형성하는데 한계가 있었다.In addition, there has been an attempt to further increase the Ni content itself rather than just a combination showing excellent efficiency, but the more Ni is included, the more side effects occur, and there is a limit to forming a stable electrode.
구체적으로 Ni 함량이 높을수록 충, 방전에 의한 활물질의 부피 변화가 심하여, 활물질 내부로부터 균열(Micro-crack)이 발생할 확률이 높아지며, 내부 균열은 활물질 전체로 전파되고, 균열을 통해 침투한 전해질과 활물질 간에 부반응이 발생하여 전지의 성능을 악화시키는 문제가 있었다.Specifically, the higher the Ni content, the more severe the volume change of the active material due to charge and discharge, and the higher the probability of occurrence of micro-crack from the inside of the active material. There is a problem in that side reactions occur between active materials, thereby deteriorating the performance of the battery.
따라서 Ni을 이용하여 고에너지 밀도를 달성하기 위해서는 선제적으로 활물질에 발생하는 균열(Micro-crack)을 억제하고 불안정한 표면 특성을 개선할 것이 요구된다.Therefore, in order to achieve high energy density using Ni, it is required to preemptively suppress micro-crack occurring in the active material and improve unstable surface properties.
다음으로 양극의 후막화는 상기 목적을 달성하기 위한 또 다른의 방법이다. 그러나 기존의 양극 제조방법은 양극재에 포함되는 도전재, 바인더를 균일하게 후막화 하는데 한계가 있었으며, 이에 따라 양극재 로딩이 20mg/cm2 이하로 저조하였다.Next, thick film of the anode is another method to achieve the above object. However, the existing positive electrode manufacturing method had limitations in uniformly forming a thick film of the conductive material and the binder included in the positive electrode material, and accordingly, the positive electrode material loading was lowered to 20 mg/cm 2 or less.
양극 후막화의 한계를 극복하기 위해 기존의 전지는 스택 수를 증가시켜 해결해왔으나, 스택 수를 증가시키면 수반되는 집전체, 분리막의 비율이 높아지고 결과적으로 에너지 밀도가 300Wh/kg 이하의 값을 보여 전기 자동차 보급 확대를 위한 업계의 요구에 부응하지 못했다. 따라서 양극의 후막화는 전기 자동차 보급 확대를 위해 필수적인 과제라 할 수 있다.In order to overcome the limitation of anode thick film, conventional batteries have been solved by increasing the number of stacks. However, as the number of stacks increases, the ratio of the accompanying current collector and separator increases, and as a result, the energy density shows a value of 300Wh/kg or less, which is less than 300Wh/kg. It failed to meet the demands of the industry to expand automobile supply. Therefore, it can be said that the thick film of the anode is an essential task to expand the spread of electric vehicles.
구체적으로 양극의 후막화는 단순히 양극재를 두껍게 형성하는 것이 아니며, 두터운 두께와 함께 두께 방향으로 활물질, 도전재 및 바인더가 균일하게 분포되어 전기적 네트워크를 형성해야 한다. 그러나 기존에 전극 제조에 사용되어온 습식 공정은 용매 건조 과정에서 용매가 기화되며 도전재 및 바인더가 상층부로 쏠리는 현상이 발생하였으며, 도전재 및 바인더의 불균일한 분포는 전지 성능의 악화로 귀결되었다.Specifically, the thick film of the cathode does not simply form a thick cathode material, and the active material, the conductive material, and the binder must be uniformly distributed in the thickness direction along with the thick thickness to form an electrical network. However, in the conventional wet process used for electrode manufacturing, the solvent evaporates during the solvent drying process, and the conductive material and binder are concentrated in the upper layer, and the non-uniform distribution of the conductive material and binder results in deterioration of battery performance.
따라서 양극의 후막화를 위해서는 용매의 기화가 매우 적거나, 용매의 기화에도 도전재 및 바인더의 쏠림 현상이 적거나 또는 용매를 필요로 하지 않는 건식 공정 등의 도입이 필요하다.Therefore, in order to make the film thicker on the anode, it is necessary to introduce a dry process that requires very little solvent evaporation, less concentration of the conductive material and binder even with solvent evaporation, or a dry process that does not require a solvent.
상기 문제점을 해결하기 위해 대한민국 공개특허 제10-2015-0047098호(명칭 : 표면 코팅된 양극 활물질의 제조방법 및 이에 의해 제조된 양극 활물질)는 양극 활물질과 δ-Al2O3를 혼합하고, 이 혼합물을 열처리하여 양극 활물질 표면을 Al2O3로 코팅하는 단계를 포함하여 제조하는 표면이 코팅된 양극 활물질의 제조방법을 개시하여 양극 활물질의 손실을 최소화 하고 고용량 에너지 밀도를 갖는 양극을 목적하나, 여전히 습식 공정에서 발생하는 도전재 및 바인더의 쏠림 현상은 해결하지 못하여 후막화에 한계를 보이며, 입자 형태의 Al2O3 코팅은 활물질의 균열 발생을 억제하기엔 한계가 있다.In order to solve the above problem, Korean Patent Publication No. 10-2015-0047098 (Name: Method for producing a surface-coated cathode active material and cathode active material produced thereby) mixes a cathode active material and δ-Al 2 O 3 , Disclosed is a method for producing a surface-coated cathode active material, including the step of coating the surface of the cathode active material with Al 2 O 3 by heat treatment of the mixture, thereby minimizing the loss of the cathode active material and aiming at a cathode having a high capacity energy density, The bias of the conductive material and the binder that occurs in the wet process is still not resolved, which limits film thickness, and the particle-type Al 2 O 3 coating has limitations in suppressing cracking of the active material.
따라서, 본 발명은 상기 문제를 해결하여 Ni을 다량으로 함유 하면서 후막화가 가능하고, 공정의 효율을 높일 수 있는 양극 소재를 제공하고자 한다.Accordingly, an object of the present invention is to solve the above problems and provide a cathode material capable of increasing the efficiency of the process and capable of forming a thick film while containing a large amount of Ni.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌) 대한민국 공개특허 제10-2015-0047098호(Patent Document) Republic of Korea Patent Publication No. 10-2015-0047098
상기와 같은 문제를 해결하기 위한 본 발명의 목적은, Ni을 고비율로 함유하여도 안정적인 리튬 이차전지용 활물질-도전재-바인더 복합소재, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 전극을 제공하는 것이다.An object of the present invention to solve the above problems is to provide a stable active material-conductive material-binder composite material for a lithium secondary battery, a method for manufacturing the same, and an electrode for a lithium secondary battery including the same even when a high proportion of Ni is contained. .
본 발명의 또 다른 목적은, 양극의 후막화를 위해 습식 공정의 용매 기화 시 발생하는 도전재 및 바인더의 쏠림 현상을 제거 또는 최소화 할 수 있는 리튬 이차전지용 활물질-도전재-바인더 복합소재 및 이의 제조방법을 제공하는 것이다.Another object of the present invention is an active material-conductive material-binder composite material for lithium secondary batteries capable of removing or minimizing the drifting of the conductive material and binder that occurs during solvent evaporation in a wet process for thick film formation of the cathode, and manufacturing thereof is to provide a way
본 발명의 또 다른 목적은, 상기 복합소재를 포함하여 고에너지 밀도를 갖는 리튬 이차전지용 전극을 제공하는 것이다.Another object of the present invention is to provide an electrode for a lithium secondary battery having a high energy density, including the composite material.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the above-mentioned technical problem, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description below. There will be.
상기 기술적 과제를 달성하기 위한 본 발명의 일 실시예로, 리튬 이차전지용 활물질-도전재-바인더 복합소재는 구성으로 활물질; 상기 활물질 표면에 코팅되며, 탄소 나노 튜브를 포함하는 도전재; 및 상기 활물질 표면에 코팅되는 열경화성 바인더;를 포함한다.In one embodiment of the present invention for achieving the above technical problem, an active material-conductive material-binder composite material for a lithium secondary battery includes an active material; a conductive material coated on the surface of the active material and containing carbon nanotubes; and a thermosetting binder coated on the surface of the active material.
본 발명의 실시예에 있어서, 상기 복합소재는, 상기 활물질 표면에 코팅된 분산제를 더 포함할 수 있다.In an embodiment of the present invention, the composite material may further include a dispersant coated on the surface of the active material.
본 발명의 실시예에 있어서, 상기 열경화성 바인더는, 폴리 실록산을 포함할 수 있다.In an embodiment of the present invention, the thermosetting binder may include polysiloxane.
본 발명의 실시예에 있어서, 상기 폴리 실록산은, 에폭시기 및 하이드록시기를 포함할 수 있다.In an embodiment of the present invention, the polysiloxane may include an epoxy group and a hydroxyl group.
본 발명의 실시예에 있어서, 상기 열경화성 바인더는, 상기 복합소재의 총 중량 대비 0.01wt% 이상 10wt% 이하로 포함될 수 있다.In an embodiment of the present invention, the thermosetting binder may be included in an amount of 0.01 wt% or more and 10 wt% or less based on the total weight of the composite material.
본 발명의 실시예에 있어서, 상기 도전재는, 단일벽 탄소 나노 튜브(single wall carbon nano tube, SWCNT), 다중벽 탄소 나노 튜브(multi wall carbon nano tube, MWCNT) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.In an embodiment of the present invention, the conductive material is selected from the group consisting of single wall carbon nanotubes (SWCNTs), multi wall carbon nanotubes (MWCNTs), and combinations thereof. Any one or more may be included.
본 발명의 실시예에 있어서, 상기 도전재는, 상기 복합소재의 총 중량 대비 0.01wt% 이상 10wt% 이하로 포함될 수 있다.In an embodiment of the present invention, the conductive material may be included in an amount of 0.01 wt% or more and 10 wt% or less based on the total weight of the composite material.
본 발명의 실시예에 있어서, 상기 도전재에 의한 상기 활물질의 피복률은 0.1% 이상 90% 이하일 수 있다.In an embodiment of the present invention, the coverage of the active material by the conductive material may be 0.1% or more and 90% or less.
본 발명의 실시예에 있어서, 상기 탄소 나노 튜브는, 평균 직경이 1nm 이상 10nm 이하이며, 종횡비가 1:1000 이상일 수 있다.In an embodiment of the present invention, the carbon nanotubes may have an average diameter of 1 nm or more and 10 nm or less, and an aspect ratio of 1:1000 or more.
본 발명의 실시예에 있어서, 상기 분산제는, 수소화된 아크릴로니트릴 부타디엔 고무(Hydrogenated acrylonitrile butadiene rubber, HNBR), 플루오르화 폴리비닐리덴( Polyvinylidene fluoride, PVDF) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.In an embodiment of the present invention, the dispersant is any one selected from the group consisting of hydrogenated acrylonitrile butadiene rubber (HNBR), polyvinylidene fluoride (PVDF), and combinations thereof may be ideal
상기 기술적 과제를 달성하기 위한 본 발명의 다른 실시예로, 리튬 이차전지용 활물질-도전재-바인더 복합소재 제조방법은 구성으로 (i) 탄소 나노 튜브 및 분산제를 혼합하여 도전재 분산액을 제조하는 단계; 및 (ii) 상기 도전재 분산액, 활물질 및 열경화성 바인더 용액을 혼합한 코팅 용액으로 활물질 표면을 코팅하는 단계;를 포함한다.As another embodiment of the present invention for achieving the above technical problem, a method for manufacturing an active material-conductive material-binder composite material for a lithium secondary battery comprises the steps of (i) preparing a conductive material dispersion by mixing carbon nanotubes and a dispersant; and (ii) coating the surface of the active material with a coating solution obtained by mixing the conductive material dispersion, the active material, and the thermosetting binder solution.
본 발명의 실시예에 있어서, 상기 탄소 나노 튜브는, 단일벽 탄소 나노 튜브(single wall carbon nano tube, SWCNT), 다중벽 탄소 나노 튜브(multi wall carbon nano tube, MWCNT) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.In an embodiment of the present invention, the carbon nanotubes are a group consisting of single wall carbon nanotubes (SWCNTs), multi wall carbon nanotubes (MWCNTs), and combinations thereof. It may include any one or more selected from.
본 발명의 실시예에 있어서, 상기 분산제는, 수소화된 아크릴로니트릴 부타디엔 고무(Hydrogenated acrylonitrile butadiene rubber, HNBR), 플루오르화 폴리비닐리덴(Polyvinylidene fluoride, PVDF) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.In an embodiment of the present invention, the dispersant is any one selected from the group consisting of hydrogenated acrylonitrile butadiene rubber (HNBR), polyvinylidene fluoride (PVDF), and combinations thereof may contain more than
본 발명의 실시예에 있어서, 상기 열경화성 바인더는, 폴리 실록산을 포함할 수 있다.In an embodiment of the present invention, the thermosetting binder may include polysiloxane.
본 발명의 실시예에 있어서, 상기 폴리 실록산은, 에폭시기 및 하이드록시기를 포함할 수 있다.In an embodiment of the present invention, the polysiloxane may include an epoxy group and a hydroxyl group.
상기 기술적 과제를 달성하기 위한 본 발명의 또 다른 실시예로, 리튬 이차전지용 전극은 상기 리튬 이차전지용 활물질-도전재-바인더 복합소재를 포함하는 리튬 이차전지용 전극이다.As another embodiment of the present invention for achieving the above technical problem, the electrode for a lithium secondary battery is an electrode for a lithium secondary battery including the active material-conductive material-binder composite material for a lithium secondary battery.
본 발명의 실시예에 있어서, 상기 전극은, 350Wh/kg 이상의 에너지 밀도를 가질 수 있다.In an embodiment of the present invention, the electrode may have an energy density of 350 Wh/kg or more.
상기와 같은 구성에 따른 본 발명의 효과는,The effect of the present invention according to the above configuration is,
Ni을 고비율로 함유하여 전극을 제조하여도 충, 방전 시 활물질 내부에 균열이 발생할 확률이 억제되고 이에 따라 장기 안정성을 갖춘 전극재 및 이를 포함하는 전극을 제공할 수 있다.Even if the electrode is manufactured by containing Ni at a high rate, the probability of occurrence of cracks inside the active material during charging and discharging is suppressed, thereby providing an electrode material with long-term stability and an electrode including the same.
또한 양극 제조에 있어서 습식 공정을 사용하는 경우 발생하는 도전재 및 바인더의 쏠림 현상을 해결하여 양극의 후막화를 가능하게 한다.In addition, it is possible to make the anode thicker by resolving the biasing of the conductive material and the binder that occurs when a wet process is used in manufacturing the anode.
또한 본 발명에서 제시하는 활물질-도전재-바인더 복합소재를 포함하여 슬러리 제조 시 고형분 함량이 높아져 습식 공정 시 용매 기화로 발생하는 문제를 제거 또는 최소화할 수 있으며 이에 따라 양극의 후막화가 가능하게 된다.In addition, by including the active material-conductive material-binder composite material presented in the present invention, the solid content is increased when preparing the slurry, so that problems caused by solvent vaporization during the wet process can be eliminated or minimized, thereby enabling thick film formation of the anode.
또한 본 발명에서 제시하는 활물질-도전재-바인더 복합소재는 건식 공정에도 사용될 수 있는 점에서 활용도가 높다.In addition, the active material-conductive material-binder composite material proposed in the present invention has high utilization in that it can be used in a dry process.
또한 본 발명이 제시하는 활물질-도전재-바인더 복합소재를 포함하여 제조한 전극은 350Wh/kg 이상의 고에너지 밀도를 갖는다.In addition, the electrode manufactured by including the active material-conductive material-binder composite material proposed in the present invention has a high energy density of 350 Wh/kg or more.
또한 본 발명이 제시하는 활물질-도전재-바인더 복합소재 및 이를 포함하는 전극은 전기 전도도가 매우 향상된다.In addition, the active material-conductive material-binder composite material and the electrode including the active material-conductive material-binder composite material proposed by the present invention have greatly improved electrical conductivity.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above effects, and should be understood to include all effects that can be inferred from the detailed description of the present invention or the configuration of the invention described in the claims.
도1은 본 발명의 일 실시예인 리튬 이차전지용 활물질-도전재-바인더 복합소재를 도식화한 이미지이다.1 is a schematic image of an active material-conductive material-binder composite material for a lithium secondary battery according to an embodiment of the present invention.
도2는 에폭시기를 갖는 폴리 실록산의 고분자 구조를 나타낸 이미지이다.Figure 2 is an image showing the polymer structure of polysiloxane having an epoxy group.
도3은 Ni을 포함하는 전지의 Ni 함량과 전지 수명의 관계를 나타낸 데이터이다.Figure 3 is data showing the relationship between the Ni content of the battery containing Ni and the battery life.
도4는 Ni 함량 비율에 따라 발생하는 균열(Micro-crack)의 정도를 비교하기 위해 활물질 단면을 나타낸 이미지이다.4 is an image showing a cross section of an active material to compare the degree of micro-crack generated according to the Ni content ratio.
도5는 습식 공정 방법으로 전극 제조 시 용매의 기화로 도전재 및 바인더가 쏠리는 현상을 나타낸 이미지이다.5 is an image showing a phenomenon in which a conductive material and a binder are concentrated due to vaporization of a solvent when an electrode is manufactured by a wet process method.
도6는 본 발명의 일 실시예인 리튬 이차전지용 활물질-도전재-바인더 복합소재 제조방법의 순서도이다.6 is a flowchart of a method for manufacturing an active material-conductive material-binder composite material for a lithium secondary battery according to an embodiment of the present invention.
도7은 본 발명의 일 실시예인 리튬 이차전지용 활물질-도전재-바인더 복합소재를 구현하여 표면을 확인한 SEM 이미지이다.7 is a SEM image of a surface confirmed by implementing an active material-conductive material-binder composite material for a lithium secondary battery, which is an embodiment of the present invention.
도8은 리튬 이차전지용 활물질-도전재-바인더 복합소재를 포함하는 리튬 이차전지용 전극 및 전지의 특성을 확인하고자 바인더의 함량을 달리한 실험군을 정리한 표이다.8 is a table summarizing experimental groups with different contents of binders in order to confirm the characteristics of an electrode for a lithium secondary battery including an active material-conductive material-binder composite material for a lithium secondary battery and a battery.
도9은 도8에서 정리한 실험군을 전지로 제조하여 초기용량 및 충방전 거동을 측정한 실험 결과이다.9 is an experimental result obtained by measuring the initial capacity and charge/discharge behavior of the experimental group summarized in FIG. 8 as batteries.
도10는 도8에서 정리한 실험군을 전지로 제조하여 출력 특성을 측정한 실험 결과이다.10 is an experimental result obtained by measuring the output characteristics of the experimental group summarized in FIG. 8 as a battery.
도11은 도8에서 정리한 실험군을 전지로 제조하여 수명 특성을 측정한 실험 결과이다.FIG. 11 is an experimental result obtained by measuring the lifespan characteristics of the experimental group summarized in FIG. 8 as batteries.
도12은 도9 내지 도11의 실험 결과를 정리한 표이다.12 is a table summarizing the experimental results of FIGS. 9 to 11.
도13는 도8에 정리된 비교예1을 포함하는 전극과 실시예1을 포함하는 전극을 대상으로 충, 방전 후 균열(Micro-crack) 발생 정도를 비교하고자 단면을 확인한 SEM 이미지이다.13 is an SEM image of a cross section confirmed to compare the degree of micro-crack occurrence after charging and discharging for the electrode including Comparative Example 1 and the electrode including Example 1 summarized in FIG. 8.
도14은 도8에 정리된 비교예1을 포함하는 전극과 실시예1을 포함하는 전극을 대상으로, 충, 방전 후 활물질에 포함된 전이금속의 용출량을 분석한 데이터이다.FIG. 14 is data obtained by analyzing the elution amount of the transition metal included in the active material after charging and discharging for the electrode including Comparative Example 1 and the electrode including Example 1 summarized in FIG. 8 .
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention may be embodied in many different forms and, therefore, is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, combined)" with another part, this is not only "directly connected", but also "indirectly connected" with another member in between. "Including cases where In addition, when a part "includes" a certain component, it means that it may further include other components without excluding other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in this specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as "include" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
이하 첨부된 도1 내지 도4를 참고하여 본 발명의 실시예인 리튬 이차전지용 활물질-도전재-바인더 복합소재를 상세히 설명하기로 한다.Hereinafter, an active material-conductive material-binder composite material for a lithium secondary battery according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 4 attached thereto.
도1은 본 발명의 일 실시예인 리튬 이차전지용 활물질-도전재-바인더 복합소재를 도식화한 이미지이다.1 is a schematic image of an active material-conductive material-binder composite material for a lithium secondary battery according to an embodiment of the present invention.
도1에 따르면 본 발명인 리튬 이차전지용 활물질-도전재-바인더 복합소재는 활물질(100); 상기 활물질(100) 표면에 코팅되며, 탄소 나노 튜브를 포함하는 도전재(200); 및 상기 활물질(100) 표면에 코팅되는 열경화성 바인더(300);를 포함하는 것을 특징으로 한다.According to FIG. 1, the active material-conductive material-binder composite material for a lithium secondary battery according to the present invention includes an active material 100; a conductive material 200 coated on the surface of the active material 100 and containing carbon nanotubes; and a thermosetting binder 300 coated on the surface of the active material 100.
또한 상기 복합소재는 상기 활물질(100) 표면에 분산제(400)가 상기 도전재(200)와 혼합되어 코팅될 수 있다.In addition, the composite material may be coated by mixing the dispersant 400 with the conductive material 200 on the surface of the active material 100 .
각 구성의 상세한 설명에 앞서서 본 발명이 상기 구성을 가지는 이유를 살피면, 본 발명은 제1목적으로 활물질에 Ni을 고비율로 함유함에 따라 발생하는 균열(Micro-crack) 문제를 해결하고자 한다. Prior to a detailed description of each configuration, looking at the reason why the present invention has the above configuration, the present invention is intended to solve the problem of micro-crack caused by containing a high ratio of Ni in the active material as a first purpose.
도3을 참조하면 Ni을 함유하는 활물질로 제조한 전극의 수명을 확인할 수 있다. 도3(a)에 따르면 Ni 비율이 높아질수록 에너지 용량이 증가하나 자가 방전에 따른 용량 유지율(capacity retention)이 감소하는 경향을 확인할 수 있으며 도3(b)에 따르면 Ni 비율이 높아질수록 지속되는 충, 방전에 의한 수명 특성이 급격하게 악화되는 것을 확인할 수 있다.Referring to Figure 3 it can be confirmed the life of the electrode made of the active material containing Ni. According to Figure 3 (a), as the Ni ratio increases, the energy capacity increases, but the capacity retention due to self-discharge tends to decrease. According to Figure 3 (b), as the Ni ratio increases, the continuous charge , it can be confirmed that the life characteristics due to discharge rapidly deteriorate.
이러한 경향의 원인은 도4에 나타나 있다. Ni 비율이 높을수록 충, 방전에 의한 활물질의 부피 변화가 크며, 이로 인해 활물질 내부에 균열(Micro-crack)이 발생할 확률과 정도가 높아진다.The cause of this trend is shown in FIG. 4 . The higher the Ni ratio, the larger the change in the volume of the active material due to charging and discharging, thereby increasing the probability and degree of micro-crack occurrence in the active material.
내부에서 발생한 균열은 활물질 전체로 전파되어 입자의 파괴가 발생하며, 파괴에 의한 비표면적의 증가 및 균열을 통한 전해액의 유입은 활물질과 전해액 간의 부반응을 가속화하고 활물질 일차 입자 고립을 유발하여 전극의 성능과 수명을 급속도로 악화시킨다.Cracks generated inside propagate throughout the active material and cause particle destruction, and the increase in the specific surface area caused by the destruction and the inflow of the electrolyte through the crack accelerate the side reaction between the active material and the electrolyte and cause the isolation of the primary particles of the active material, resulting in the performance of the electrode. and rapidly deteriorate life expectancy.
따라서 본 발명은 Ni을 고비율로 함유함에 따른 부피 변화의 증가를 억제하여 내부 균열(Micro-crack) 발생을 억제하고자 활물질(100) 표면에 고 종횡비를 갖는 탄소 나노 튜브를 코팅하였다.Therefore, in the present invention, carbon nanotubes having a high aspect ratio are coated on the surface of the active material 100 to suppress the occurrence of micro-crack by suppressing the increase in volume change due to the high Ni content.
활물질(100) 표면에 코팅된 탄소 나노 튜브는 활물질(100)을 전체적으로 감싸 물리적인 부피 팽창을 일정 부분 해소하는 역할을 하며, 또한 활물질(100)을 전체적으로 감싸며 전기적 네트워크를 형성하여 활물질(100) 일차 입자의 고립을 차단하는 역할을 한다.The carbon nanotubes coated on the surface of the active material 100 cover the active material 100 as a whole and play a role in partially resolving the physical volume expansion, and also cover the active material 100 as a whole to form an electrical network so that the active material 100 is primary. It serves to block the isolation of particles.
다음으로 탄소 나노 튜브가 코팅된 활물질(100) 표면에 열경화성 바인더(300)를 코팅하였는데, 상기 열경화성 바인더(300)는 에폭시기와 하이드록시기를 갖도록 개질된 것으로 활물질(100)과 친화도가 높아 활물질(100)을 전해액과의 부반응으로부터 부동태화(passivation) 시키는 역할을 한다.Next, a thermosetting binder 300 was coated on the surface of the active material 100 coated with carbon nanotubes. 100) from side reactions with the electrolyte.
상기 구성에 따라 본 발명이 제시하는 리튬 이차전지용 활물질-도전재-바인더 복합소재는 충, 방전에 따른 부피 팽창이 감소되며, 내부 균열(Micro-crack) 발생 가능성과 정도가 감소되며, 전해액과 활물질(100)의 부반응이 억제되어 고비율로 Ni을 함유함에도 전극의 성능 및 수명의 악화가 현저하게 개선된다.According to the above configuration, the active material-conductive material-binder composite material for a lithium secondary battery proposed by the present invention reduces volume expansion due to charge and discharge, reduces the possibility and degree of micro-crack, and reduces electrolyte and active material The side reaction of (100) is suppressed, and deterioration of the performance and lifetime of the electrode is remarkably improved even when a high proportion of Ni is contained.
다음으로 리튬 이차전지 전극의 후막화 측면에서 상기 구성의 이유를 살펴본다.Next, the reason for the above configuration in terms of the thick film of the lithium secondary battery electrode will be examined.
본 발명은 고에너지 밀도 달성을 위해 전극의 후막화를 제2목적으로 한다. 도5를 참조하여, 후막화를 위해서는 (1) 전극의 두터운 두께뿐만 아니라 전극을 구성하는 활물질, 도전재 및 바인더가 균일하게 분포되어야 하므로 습식 공정 중에 발생하는 쏠림 현상이 해결되어야 하며, (2) 후막화로 두꺼워진 전극은 전극을 통과하여 이동하는 리튬 이온 및 전자의 이동거리를 증가시키므로, 이를 보완할 수 있는 전기 전도성이 요구된다.A second object of the present invention is to make electrodes thicker in order to achieve high energy density. Referring to FIG. 5, in order to make the film thicker, (1) not only the thick thickness of the electrode, but also the active material, conductive material and binder constituting the electrode must be uniformly distributed, so the bias phenomenon that occurs during the wet process must be solved, (2) Since the thick electrode increases the moving distance of lithium ions and electrons passing through the electrode, electrical conductivity capable of compensating for this is required.
상기 (1) 문제는 습식 공정에 있어서 고형분의 비중을 늘려 기화되는 용매의 양을 줄이거나, 활물질, 도전재 및 바인더 간의 결합력을 증가시켜 구성 요소 간의 분리를 방지하는 방식으로 해결할 수 있다. 특히 접착력이 부족한 도전재와 활물질 간의 분리를 막는 것이 중요하다.The above problem (1) can be solved by reducing the amount of vaporized solvent by increasing the specific gravity of the solid content in the wet process or by increasing the bonding force between the active material, the conductive material and the binder to prevent separation between components. In particular, it is important to prevent separation between the conductive material and the active material, which lack adhesive strength.
이러한 점에 착안하여 본 발명은 습식 공정을 위한 슬러리 제조에 앞서서 활물질(100), 도전재(200) 및 바인더(300)를 결합하여 복합소재로 제조하고, 제조된 복합소재를 사용하여 슬러리를 혼합하는 방식을 해결법으로 제시한다.In view of this point, the present invention combines the active material 100, the conductive material 200, and the binder 300 to prepare a composite material prior to preparing the slurry for the wet process, and mixes the slurry using the manufactured composite material Suggest how to do it as a solution.
구체적으로 복합소재를 별도로 제조하고, 이를 투입하여 슬러리를 제조하는 경우, 슬러리의 고형분 비중이 높아져 기화되는 용매의 양이 줄어들며, 활물질(100) 표면에 코팅된 도전재(200)는 용매 기화 과정에서도 분리되지 않으므로 전극 제조 시 쏠림 현상이 저감되며, 또한 동일한 이유에서 구성요소가 균일하게 분포된 전극을 형성할 수 있게 된다.Specifically, when a composite material is separately manufactured and added to prepare a slurry, the solid content of the slurry is increased to reduce the amount of vaporized solvent, and the conductive material 200 coated on the surface of the active material 100 is also in the solvent vaporization process. Since it is not separated, the bias phenomenon during electrode manufacturing is reduced, and for the same reason, it is possible to form an electrode in which components are uniformly distributed.
상기 (2) 문제 또한 본 발명의 복합소재를 통해 해결할 수 있다. 활물질(100) 표면에 코팅된 도전재(200)는 전극 제조 시 활물질(100) 간에 균일하게 위치하며 전기적 네트워크를 형성하여 전극의 전기 전도성을 높인다.The above problem (2) can also be solved through the composite material of the present invention. The conductive material 200 coated on the surface of the active material 100 is uniformly positioned between the active materials 100 during electrode manufacturing and forms an electrical network to increase the electrical conductivity of the electrode.
특히 본 발명에서는 상기 도전재(200) 물질로 탄소 나노 튜브를 사용하였다. 탄소 나노 튜브는 전기 전도성 등 전기적 특성이 매우 뛰어난 물질이며 특히 단일벽 탄소 나노 튜브의 경우 종횡비가 매우 높으므로 전극 제조 시 활물질(100) 및 도전재(200) 간에 전기적 연결을 효과적으로 할 수 있다.In particular, in the present invention, carbon nanotubes are used as the material of the conductive material 200 . Carbon nanotubes are materials with very excellent electrical properties, such as electrical conductivity, and especially in the case of single-walled carbon nanotubes, since the aspect ratio is very high, electrical connection between the active material 100 and the conductive material 200 can be effectively made during electrode manufacturing.
또한 본 발명에서는 상기 도전재(200) 물질로 단일벽 탄소 나노 튜브와 다중벽 탄소 나노 튜브를 함께 사용할 수 있으며, 이 경우 단일벽 탄소 나노 튜브만을 사용한 경우와 비교하여 전기적 특성 및 물리적 특성이 더욱 개선될 수 있다.In addition, in the present invention, single-walled carbon nanotubes and multi-walled carbon nanotubes can be used together as the conductive material 200, and in this case, electrical properties and physical properties are further improved compared to the case of using only single-walled carbon nanotubes. It can be.
추가적으로 본 발명에서 제시한 리튬 이차전지용 활물질-도전재-바인더 복합소재는 슬러리 제조에 앞서서 제조되는 것으로 습식 공정뿐만 아니라 건식 공정에도 사용이 가능하다.Additionally, the active material-conductive material-binder composite material for a lithium secondary battery presented in the present invention is prepared prior to slurry preparation and can be used in a dry process as well as a wet process.
따라서 상기 복합소재를 사용하여 건식 공정으로 전극을 제조하는 경우 용매의 기화로 인한 문제가 완전하게 제거되며, 활물질(100) 표면에 균일하게 분포된 도전재(200)에 기인한 전기적 특성 및 물리적 특성이 개선된 리튬 이차전지용 전극을 제공할 수 있게 된다.Therefore, when the electrode is manufactured by a dry process using the composite material, the problem caused by the vaporization of the solvent is completely eliminated, and the electrical and physical properties due to the conductive material 200 uniformly distributed on the surface of the active material 100 This improved electrode for a lithium secondary battery can be provided.
이하 본 발명의 일 실시예인 리튬 이차전지용 활물질-도전재-바인더 복합소재의 각 구성을 상세히 설명하기로 한다.Hereinafter, each configuration of an active material-conductive material-binder composite material for a lithium secondary battery according to an embodiment of the present invention will be described in detail.
첫번째 구성으로 본 발명의 일 실시예인 리튬 이차전지용 활물질-도전재-바인더 복합소재에 있어서 상기 활물질(100)은 리튬 이차전지에 사용될 수 있는 활물질로 리튬 이온을 가역적으로 흡장 및 방출하는 것이 가능한 물질이라면 특별히 한정되지 않는다. In the first configuration, in the active material-conductive material-binder composite material for a lithium secondary battery according to an embodiment of the present invention, the active material 100 is an active material that can be used in a lithium secondary battery and can reversibly occlude and release lithium ions. Not particularly limited.
예를 들어, 리튬-코발트 옥사이드(LCO), 리튬-니켈 옥사이드, 리튬-니켈-코발트 옥사이드, 리튬-니켈-코발트-알루미늄 옥사이드(NCA), 리튬-니켈-코발트-망간 옥사이드(NCM), 리튬-망간 옥사이드(LMO), 인산-철 리튬(LFP) 등일 수 있다. 이들 양극 활물질은 단독으로 사용할 수도 있고, 2종 이상을 혼합하여 사용할 수도 있다.For example, lithium-cobalt oxide (LCO), lithium-nickel oxide, lithium-nickel-cobalt oxide, lithium-nickel-cobalt-aluminum oxide (NCA), lithium-nickel-cobalt-manganese oxide (NCM), lithium- manganese oxide (LMO), lithium iron phosphate (LFP), and the like. These positive electrode active materials may be used alone or in combination of two or more.
본 발명의 구현예에서는 고에너지 밀도를 달성하고자 상기 양극 활물질 중에서 Ni이 80% 이상 함유된 고-니켈 NCM811을 사용하였다.In an embodiment of the present invention, high-nickel NCM811 containing 80% or more of Ni among the cathode active materials was used to achieve high energy density.
상기 복합소재에 있어서 상기 활물질(100)의 함량은 90wt% 이상 99.99wt% 이하일 수 있다.In the composite material, the content of the active material 100 may be 90 wt% or more and 99.99 wt% or less.
다음 구성으로 본 발명의 일 실시예에서 상기 도전재(200)를 설명한다.The conductive material 200 in one embodiment of the present invention will be described with the following configuration.
상기 도전재(200)는 활물질(100) 표면에 코팅되며, 탄소 나노 튜브를 포함하는 것을 특징으로 한다.The conductive material 200 is coated on the surface of the active material 100 and includes carbon nanotubes.
도1을 참조하면 도전재(200)가 상기 활물질(100) 표면에 위치하는 모습을 확인할 수 있다. 이하 제조방법에서 설명할 것과 같이 도전재(200) 분산액에 활물질(100)을 투입하여 부착시키는 방법으로 코팅이 수행되므로 상기 도전재(200) 및 상기 분산제(400)를 포함하는 도전재(200) 분산액이 활물질(100)의 표면을 감싼다. 또한 활물질(100) 입자 간을 연결한다.Referring to FIG. 1 , it can be seen that the conductive material 200 is located on the surface of the active material 100 . As will be described in the manufacturing method below, since the coating is performed by injecting and attaching the active material 100 to the dispersion of the conductive material 200, the conductive material 200 including the conductive material 200 and the dispersant 400 The dispersion covers the surface of the active material 100 . Also, the particles of the active material 100 are connected.
다음으로 탄소 나노 튜브는 원기둥 모양의 나노 구조를 지니는 탄소의 동소체로 탄소 원자들 사이에 형성된 sp2
공유 결합에 기인하여 인장 강도, 탄성률 등 물리적 특성이 매우 우수하며, 특히 우수한 전기 전도성, 낮은 밀도를 가져 전지에 사용되는 경우 충, 방전에 의한 전지의 열화를 매우 효과적으로 경감시키는 물질이다.Next, carbon nanotube is an allotrope of carbon having a cylindrical nanostructure, and sp 2 formed between carbon atoms. Due to the covalent bond, it has very excellent physical properties such as tensile strength and elastic modulus, and especially excellent electrical conductivity and low density, so when used in a battery, it is a material that very effectively reduces battery deterioration due to charging and discharging.
이때 상기 도전재(200)는 단일벽 탄소 나노 튜브(single wall carbon nano tube, SWCNT), 다중벽 탄소 나노 튜브(multi wall carbon nano tube, MWCNT) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.At this time, the conductive material 200 is at least one selected from the group consisting of single wall carbon nano tubes (SWCNTs), multi wall carbon nano tubes (MWCNTs), and combinations thereof. can include
구체적으로 탄소 나노 튜브는 단일벽 탄소 나노 튜브와 다중벽 탄소 나노 튜브로 구분할 수 있다. 단일벽 탄소 나노 튜브는 상대적으로 유연하고 매우 길게 형성되는 장점을 가지나 상대적으로 비싸고 합성이 어렵다. 반면 다중벽 탄소 나노 튜브는 상대적으로 단단하고 짧게 형성되나 상대적으로 저렴하고 용이하게 합성이 가능하다.Specifically, carbon nanotubes can be classified into single-walled carbon nanotubes and multi-walled carbon nanotubes. Single-walled carbon nanotubes are relatively flexible and have the advantage of being formed very long, but are relatively expensive and difficult to synthesize. On the other hand, multi-walled carbon nanotubes are relatively hard and short, but can be synthesized relatively inexpensively and easily.
본 발명은 다른 탄소계 물질에 비해 상대적으로 유연하고 매우 길게 형성되는 탄소 나노 튜브의 이점을 살리고자 상기 탄소 나노 튜브는 평균 직경이 1nm 이상 10nm 이하이며, 종횡비가 1:1000 이상인 것을 특징으로 한다.The present invention is characterized in that the carbon nanotubes have an average diameter of 1 nm or more and 10 nm or less, and an aspect ratio of 1:1000 or more to take advantage of the advantages of carbon nanotubes that are relatively flexible and very long compared to other carbon-based materials.
바람직하게는 상기 단일벽 탄소 나노 튜브의 평균 직경이 1.5nm 이상 10nm 이하 및 종횡비가 1:1000인 것일 수 있으며, 이에 따라 적은 도전재(200) 함량으로 고용량 활물질(100)을 균일하게 연결할 수 있어, 충방전 과정 중 활물질(100) 균열에 따른 고립을 효과적으로 억제할 수 있는 장점이 있다.Preferably, the single-walled carbon nanotubes may have an average diameter of 1.5 nm or more and 10 nm or less and an aspect ratio of 1:1000. , There is an advantage in effectively suppressing isolation due to cracking of the active material 100 during the charging and discharging process.
또한 본 발명은 상기 탄소 나노 튜브를 포함하는 도전재(200)가 상기 복합소재의 총 중량 대비 0.01wt% 이상 10wt% 이하로 포함되는 것을 특징으로 하며, 이에 따라 도전재(200)에 의한 상기 활물질(100)의 피복률은 0.1% 이상 50% 이하인 것을 특징으로 한다.In addition, the present invention is characterized in that the conductive material 200 including the carbon nanotubes is included in an amount of 0.01 wt% or more and 10 wt% or less based on the total weight of the composite material, and accordingly, the active material by the conductive material 200 (100) is characterized in that the coverage is 0.1% or more and 50% or less.
구체적으로 도전재(200)가 상기 복합소재의 총 중량 대비 0.01wt% 미만으로 포함되면 전도성이 확보되지 않으며, 10wt% 초과로 포함되면 에너지 밀도가 저하 되므로 상기 도전재(200)는 상기 복합소재의 총 중량 대비 0.01wt% 이상 10wt% 이하인 것이 바람직하다.Specifically, when the conductive material 200 is included in less than 0.01wt% of the total weight of the composite material, conductivity is not secured, and when it is included in more than 10wt%, the energy density is lowered, so the conductive material 200 is the composite material. It is preferably 0.01wt% or more and 10wt% or less based on the total weight.
다음 구성으로 본 발명의 일 실시예에서 상기 열경화성 바인더(300)를 설명한다.The thermosetting binder 300 in one embodiment of the present invention will be described with the following configuration.
상기 열경화성 바인더(300)는 상기 도전재(200)를 포함하는 활물질(100) 표면에 코팅될 수 있다. 이때 상기 코팅은 상기 활물질(100) 표면 전체를 감싸는 형태이거나 상기 활물질(100) 표면에 부분적으로 부착된 형태일 수 있다.The thermosetting binder 300 may be coated on the surface of the active material 100 including the conductive material 200 . In this case, the coating may cover the entire surface of the active material 100 or may be partially attached to the surface of the active material 100 .
본 발명에서 상기 열경화성 바인더(300)는 상기 활물질(100)과 높은 친화도를 가져 전해액과 활물질(100) 간의 부반응을 억제할 수 있어야 하므로 이러한 역할을 수행할 수 있는 폴리 실록산을 포함하는 것을 특징으로 한다.In the present invention, since the thermosetting binder 300 should have a high affinity with the active material 100 to suppress side reactions between the electrolyte and the active material 100, it is characterized in that it contains polysiloxane capable of performing this role. do.
도2를 참조하면, 구체적으로 상기 폴리 실록산은 에폭시기 및 하이드록시기를 포함하도록 기능화된 것일 수 있다. 에폭시기와 하이드록시기는 니켈을 포함하는 리튬계 활물질과 친화성이 매우 좋다.Referring to FIG. 2, specifically, the polysiloxane may be functionalized to include an epoxy group and a hydroxyl group. The epoxy group and the hydroxyl group have very good affinity with lithium-based active materials including nickel.
또한 에폭시기를 갖는 폴리 실록산은 열 경화(Drying) 과정 중에 가교 결합으로 망상 구조(Cross-linking structure)를 형성하며 이에 따라 상기 활물질(100)의 부피 팽창을 유효하게 억제한다.In addition, the polysiloxane having an epoxy group forms a cross-linking structure through cross-linking during the thermal curing process (drying), and accordingly, the volume expansion of the active material 100 is effectively suppressed.
또한 하이드록시기를 포함하는 폴리 실록산은 하이드록시기와 활물질(100)의 축합을 통해 공유결합을 형성하여 바인더(300)와 활물질(100) 간에 매우 강한 결합을 형성한다.In addition, polysiloxane containing a hydroxyl group forms a covalent bond through condensation between the hydroxyl group and the active material 100, thereby forming a very strong bond between the binder 300 and the active material 100.
따라서 상기 열경화성 바인더(300)는 폴리 실록산, 에폭시기 및 하이드록시기를 포함하도록 기능화된 폴리 실록산 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것이 바람직하다.Therefore, the thermosetting binder 300 preferably includes at least one selected from the group consisting of polysiloxane, polysiloxane functionalized to include an epoxy group and a hydroxyl group, and combinations thereof.
이때, 상기 리튬 이차전지용 활물질-도전재-바인더 복합소재에서 상기 활물질(100)의 비중을 높이고자 바인더(300)의 함량은 제한되어야 하므로 상기 열경화성 바인더(300)는, 상기 복합소재의 총 중량 대비 0.01wt% 이상 10wt% 이하로 포함되는 것을 특징으로 한다.At this time, since the content of the binder 300 should be limited in order to increase the specific gravity of the active material 100 in the active material-conductive material-binder composite material for a lithium secondary battery, the thermosetting binder 300 is, compared to the total weight of the composite material It is characterized in that it is contained in 0.01wt% or more and 10wt% or less.
구체적으로 열경화성 바인더(300)가 상기 복합소재의 총 중량 대비 0.01wt% 미만으로 포함되면 활물질(100) 표면 피복률이 떨어지고, 10wt% 초과로 포함되면 과량의 바인더(300)로 인해 리튬 이온의 확산 및 에너지 밀도가 감소될 수 있는 점에서, 고 에너지 밀도를 갖는 전지 구현을 위해 상기 열경화성 바인더(300)는 상기 복합소재의 총 중량 대비 0.01wt% 이상 10wt% 이하로 포함되는 것이 바람직하다.Specifically, when the thermosetting binder 300 is included in less than 0.01wt% of the total weight of the composite material, the surface coverage of the active material 100 decreases, and when it is included in more than 10wt%, diffusion of lithium ions due to excessive binder 300 And in that the energy density can be reduced, the thermosetting binder 300 is preferably included in an amount of 0.01 wt% or more and 10 wt% or less based on the total weight of the composite material in order to implement a battery having a high energy density.
다음 구성으로 본 발명의 일 실시예에서 상기 분산제(400)를 설명한다.The dispersant 400 in one embodiment of the present invention will be described with the following configuration.
상기 분산제(400)는 활물질(100) 표면에 상기 도전재(200)와 함께 코팅된다. 구체적으로 도전재(200)와 분산제(400)를 포함하는 도전재(200) 분산액에 상기 활물질(100)을 투입하는 방식으로 코팅이 수행되므로 상기 도전재(200) 및 상기 분산제(400)를 포함하는 도전재(200) 분산액이 활물질(100)의 표면을 감싼다.The dispersant 400 is coated with the conductive material 200 on the surface of the active material 100 . Specifically, since the coating is performed by injecting the active material 100 into a dispersion of the conductive material 200 including the conductive material 200 and the dispersant 400, the conductive material 200 and the dispersant 400 are included. The dispersion of the conductive material 200 covers the surface of the active material 100.
다음으로 상기 분산제(400)는 고무계 분산제(400)일 수 있다. 예를 들어 수소화된 아크릴로니트릴 부타디엔 고무(Hydrogenated acrylonitrile butadiene rubber, HNBR), 플루오르화 폴리비닐리덴(Polyvinylidene fluoride, PVDF) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나 이상일 수 있다. 바람직하게는 수소화된 아크릴로니트릴 부타디엔 고무(HNBR)일 수 있다.Next, the dispersant 400 may be a rubber-based dispersant 400 . For example, it may be at least one selected from the group consisting of hydrogenated acrylonitrile butadiene rubber (HNBR), polyvinylidene fluoride (PVDF), and combinations thereof. Preferably, it may be hydrogenated acrylonitrile butadiene rubber (HNBR).
또한 상기 분산제(400)는 상기 복합소재의 총 중량 대비 0.01wt% 이상 5wt% 이하로 포함되는 것을 특징으로 한다.In addition, the dispersant 400 is characterized in that it is included in 0.01wt% or more and 5wt% or less based on the total weight of the composite material.
이하 첨부된 도6을 참고하여 본 발명의 다른 실시예인 리튬 이차전지용 활물질-도전재-바인더 복합소재 제조방법을 상세히 설명하기로 한다. 설명에 있어서 상기 리튬 이차전지용 활물질-도전재-바인더 복합소재와 중복되는 구성은 동일하게 해석되어야 하며 중복된 설명은 생략하기로 한다. Hereinafter, a method for manufacturing an active material-conductive material-binder composite material for a lithium secondary battery according to another embodiment of the present invention will be described in detail with reference to attached FIG. 6 . In the description, a configuration overlapping with the active material-conductive material-binder composite material for a lithium secondary battery should be interpreted in the same way, and overlapping descriptions will be omitted.
도6을 참조하면, 본 발명인 리튬 이차전지용 활물질-도전재-바인더 복합소재 제조방법은 (i) 탄소 나노 튜브 및 분산제를 혼합하여 도전재 분산액을 제조하는 단계(S100); 및 (ii) 상기 도전재 분산액, 활물질 및 열경화성 바인더 용액을 혼합한 코팅 용액으로 활물질 표면을 코팅하는 단계(S200);를 포함한다.Referring to FIG. 6, the method for manufacturing an active material-conductive material-binder composite material for a lithium secondary battery according to the present invention includes (i) preparing a conductive material dispersion by mixing carbon nanotubes and a dispersant (S100); and (ii) coating the surface of the active material with a coating solution obtained by mixing the conductive material dispersion, the active material, and the thermosetting binder solution (S200).
본 발명인 제조방법의 특징을 살피면, 기존의 슬러리 제조 공정이 활물질, 도전재 및 바인더를 동시에 투입 및 혼합하여 슬러리를 제조하는 것과 달리 상기 복합소재를 별도로 준비하는 점에 있다. Looking at the characteristics of the manufacturing method of the present invention, unlike the conventional slurry manufacturing process in which an active material, a conductive material and a binder are simultaneously added and mixed to prepare a slurry, the composite material is prepared separately.
이러한 단계상 차이에 기인하여 기존의 공정에 따라 제조된 슬러리와 본 발명에 따라 제조된 복합소재를 포함하는 슬러리는 포함된 물질이 동일하더라도 특성 및 성능의 차이가 확연하게 발생한다.Due to this step difference, the slurry prepared according to the existing process and the slurry including the composite material prepared according to the present invention clearly show differences in characteristics and performance even if the included materials are the same.
구체적으로 기존의 공정에 따라 제조된 슬러리를 사용하여 전극을 제조하면 특히 습식 공정으로 전극을 제조하는 경우 용매의 기화에 따라 슬러리에 포함된 도전재 및 바인더가 활물질과 분리되며 용매의 기화 방향을 따라 전극의 상부에 과도하게 쏠리는 문제가 발생한다.Specifically, when an electrode is manufactured using a slurry prepared according to an existing process, especially when an electrode is manufactured by a wet process, the conductive material and binder included in the slurry are separated from the active material according to the vaporization of the solvent, and There is a problem of being excessively focused on the upper part of the electrode.
이러한 쏠림 현상은 전극 성능의 불균형을 의미하며 또한 후막 전극을 통과하는 리튬 이온과 전자의 이동을 어렵게하여 전지의 성능을 심각하게 저하시키는 원인이 된다.This biasing phenomenon means an imbalance in electrode performance and also makes it difficult for lithium ions and electrons to move through the thick film electrode, thereby seriously degrading battery performance.
반면 본 발명에 따라 제조된 복합소재를 포함하는 슬러리는 습식 공정을 이용하는 경우에도 슬러리에 포함된 활물질(100)과 도전재(200) 및 바인더(300)의 분리가 줄어들며, 특히 도전재(200)의 불균일한 분포 문제를 탁월하게 해결한다.On the other hand, the slurry containing the composite material manufactured according to the present invention reduces separation between the active material 100, the conductive material 200, and the binder 300 included in the slurry even when a wet process is used, and in particular, the conductive material 200 excellently solves the problem of non-uniform distribution of
또한 상기 복합소재를 제조하여 슬러리에 투입할 경우 별도의 도전재(200) 분산액 및 바인더(300) 용액의 추가가 최소화 되는 점에서 슬러리 내에 고형분 함량을 높일 수 있으며, 고형분 함량의 증가는 용매 함량의 감소를 의미하므로 용매의 기화로 인한 영향이 적어진다. 즉 월등하게 균일한 분포를 갖는 전극을 제조할 수 있게 된다.In addition, when the composite material is manufactured and introduced into the slurry, the solid content in the slurry can be increased in that the addition of the conductive material 200 dispersion and the binder 300 solution is minimized, and the increase in the solid content increases the solvent content decrease, so the effect of vaporization of the solvent is reduced. That is, it is possible to manufacture electrodes with a remarkably uniform distribution.
이에 따라 활물질(100) 표면에 코팅되어 전극 내에 균일하게 분포하는 도전재(200)는 전극이 후막화로 두꺼워 짐에도 리튬 이온과 전자가 원활하게 이동할 수 있도록 전기 전도성을 보완하며, 활물질(100) 표면에 균일하게 코팅된 열경화성 바인더(300)는 내부 균열(Micro-crack)이 발생한 활물질(100)과 전해액 간의 부반응을 효과적으로 억제한다.Accordingly, the conductive material 200 coated on the surface of the active material 100 and uniformly distributed in the electrode supplements electrical conductivity so that lithium ions and electrons can move smoothly even when the electrode becomes thick due to film thickness, and the surface of the active material 100 The thermosetting binder 300 uniformly coated on the inside effectively suppresses a side reaction between the active material 100 and the electrolyte solution having a micro-crack.
이를 기반으로 각 단계를 살피면, 우선 상기 (i) 단계(S100)는 탄소 나노 튜브 및 분산제(400)를 용매에 첨가하고 혼합하여 도전재 분산액을 제조하는 단계(S100)이다. Looking at each step based on this, first, the step (i) (S100) is a step (S100) of preparing a conductive material dispersion by adding and mixing the carbon nanotubes and the dispersant 400 in a solvent.
상기 (i) 단계(S100)에 있어서, 상기 용매는 메틸피롤리돈(N-Methyl-2-pyrrolidone, NMP), 아이소프로판올(isopropanol, IPA), 디메틸포름아마이드(N,N-dimethylformamide, DMF) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.In step (i) (S100), the solvent is methylpyrrolidone (N-Methyl-2-pyrrolidone, NMP), isopropanol (IPA), dimethylformamide (N,N-dimethylformamide, DMF) And it may be any one or more selected from the group consisting of combinations thereof.
다음으로 상기 (ii) 단계(S200)를 살피면, 상기 도전재 분산액, 활물질(100) 및 열경화성 바인더 용액을 혼합한 코팅 용액으로 활물질(100) 표면에 도전재(200) 및 바인더(300)를 균일한 분포로 코팅하는 단계이다. Next, looking at the step (ii) (S200), the conductive material 200 and the binder 300 are uniformly applied on the surface of the active material 100 with a coating solution in which the conductive material dispersion, the active material 100, and the thermosetting binder solution are mixed. This is the step of coating with one distribution.
상기 코팅 방법으로는, 상기 활물질(100)이 포함된 코팅 용액에 필터링(Filtering)을 수행하여 코팅하거나, 스프레잉(Spraying) 장비를 통해 도전재 분산액과 열경화성 바인더 용액이 혼합된 용액을 활물질(100) 표면에 분사하여 코팅할 수 있다.In the coating method, the coating solution containing the active material 100 is coated by performing filtering, or a solution in which a conductive material dispersion liquid and a thermosetting binder solution are mixed is applied through spraying equipment to the active material 100. ) can be coated by spraying on the surface.
상기 제조방법에 따라 제조된 리튬 이차전지용 활물질-도전재-바인더 복합소재는 상기 도전재(200)를 상기 복합소재의 총 중량 대비 0.01wt% 이상 10wt% 이하로 포함하고, 이에 따라 상기 도전재(200)에 의한 상기 활물질(100)의 피복률은 0.1% 이상 90% 이하이다.The active material-conductive material-binder composite material for a lithium secondary battery manufactured according to the manufacturing method includes the conductive material 200 in an amount of 0.01 wt% or more and 10 wt% or less based on the total weight of the composite material, and thus the conductive material ( The coverage of the active material 100 by 200) is 0.1% or more and 90% or less.
또한 상기 열경화성 바인더(300)를 상기 복합소재의 총 중량 대비 0.01wt% 이상 10wt% 이하로 포함하고, 이에 따라 상기 열경화성 바인더(300)에 의한 상기 활물질(100)의 피복률은 0.1% 이상 90% 이하인 것을 특징으로 하여 고르고 균일한 분포를 보이므로 이후 전극으로 제조 시 우수한 전기적 네트워크가 형성될 것을 예상할 수 있다.In addition, the thermosetting binder 300 is included in an amount of 0.01 wt% or more and 10 wt% or less based on the total weight of the composite material, and accordingly, the coverage of the active material 100 by the thermosetting binder 300 is 0.1% or more and 90%. Since it is characterized by the following and shows an even and uniform distribution, it can be expected that an excellent electrical network will be formed when manufactured as an electrode later.
이하 본 발명의 또 다른 실시예인 상기 리튬 이차전지용 활물질-도전재-바인더 복합소재를 포함하는 리튬 이차전지용 전극을 설명하기로 한다.Hereinafter, an electrode for a lithium secondary battery including the active material-conductive material-binder composite material for a lithium secondary battery, which is another embodiment of the present invention, will be described.
본 실시예인 상기 리튬 이차전지용 전극은 상기 활물질-도전재-바인더 복합소재를 포함하여 제조된 점에서 전극 내에 활물질(100)과 도전재(200)의 분포가 균일하며, 이에 따라 리튬 이온과 전자가 원활히 이동할 수 있는 전기적 네트워크가 형성되어 전기 전도성이 우수하다.Since the electrode for a lithium secondary battery according to this embodiment is manufactured by including the active material-conductive material-binder composite material, the active material 100 and the conductive material 200 are uniformly distributed in the electrode, and thus lithium ions and electrons An electrical network that can move smoothly is formed, and the electrical conductivity is excellent.
이에 따라 후막화가 가능하므로 전지에서 전극이 차지하는 비중이 월등히 개선된다.Accordingly, since the film can be made thick, the specific gravity occupied by the electrode in the battery is greatly improved.
또한 본 실시예인 상기 리튬 이차전지용 전극은 도전재(200)와 바인더(300)가 활물질(100)의 부피 팽창으로 인한 문제점을 해결하므로 고용량 특성을 보이는 Ni을 다량으로 첨가하여도 전극의 성능 및 수명 저하 문제가 발생하지 않고 장기적으로 안정성을 보인다.In addition, since the electrode for a lithium secondary battery according to this embodiment solves the problem caused by the volume expansion of the active material 100 in the conductive material 200 and the binder 300, the performance and lifespan of the electrode even when a large amount of Ni showing high capacity is added. It does not cause degradation problems and shows long-term stability.
따라서 본 발명이 제시하는 리튬 이차전지용 전극은, 350Wh/kg 이상의 고에너지 밀도를 달성할 수 있다.Therefore, the electrode for a lithium secondary battery proposed by the present invention can achieve a high energy density of 350 Wh/kg or more.
제조예1Preparation Example 1
에폭시기 및 하이드록시기를 갖는 폴리 실록산 바인더의 제조Preparation of a polysiloxane binder having an epoxy group and a hydroxyl group
플라스크에 2-에톡시에탄올 용매 100중량부와, 2-에톡시에탄올 용매 100중량부에 대해 2-(3,4-에폭시사이클로헥실)에틸트리메톡시실란(2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilane) 30 중량부 및 테트라메톡시실란(Tetramethoxysilane) 20 중량부를 혼합하고, 2-에톡시에탄올(2-Ethoxyethanol) 용매 100중량부에 대해 0.1N 농도의 수산화암모늄 5 중량부를 첨가하여 60℃에서 24시간 동안 교반하여 50wt%의 고형분을 함유하는 지환식 에폭시-실록산 바인더를 합성하였다.In a flask, 100 parts by weight of 2-ethoxyethanol solvent and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (2-(3,4-Epoxycyclohexyl) based on 100 parts by weight of 2-ethoxyethanol solvent 30 parts by weight of ethyltrimethoxysilane and 20 parts by weight of tetramethoxysilane were mixed, and 5 parts by weight of ammonium hydroxide having a concentration of 0.1 N was added to 100 parts by weight of a 2-ethoxyethanol solvent, and the mixture was heated at 60° C. By stirring for a period of time, an alicyclic epoxy-siloxane binder containing 50 wt% of solid content was synthesized.
제조예2Preparation Example 2
리튬 이차전지용 활물질-도전재-바인더 복합소재의 제조Manufacture of active material-conductive material-binder composite material for lithium secondary battery
NCM811 활물질, 혼합 도전재(SWCNT) 분산액 및 바인더 용액을 일정 분율로 혼합한다. (예시, 활물질 : 도전재 : 바인더 = 97.74wt% : 0.1wt% : 0.8wt%)NCM811 active material, mixed conductive material (SWCNT) dispersion and binder solution are mixed in a certain ratio. (Example, active material: conductive material: binder = 97.74wt%: 0.1wt%: 0.8wt%)
혼합 시 일반 호모-믹서 (Homo mixer)로 3000rpm 에서 30분간 교반한다.When mixing, it is stirred for 30 minutes at 3000 rpm with a general homo-mixer.
교반한 용액을 필터링 (Filtering) 을 통해 용매를 제거하고 필터 위 수득된 파우더를 진공 건조하여 파우더 형태의 복합소재를 제조한다.The stirred solution is filtered to remove the solvent, and the powder obtained on the filter is vacuum-dried to prepare a composite material in powder form.
실험예1Experimental example 1
리튬 이차전지용 활물질-도전재-바인더 복합소재의 전지 성능 측정Battery performance measurement of active material-conductive material-binder composite material for lithium secondary battery
도8 내지 도12을 참조하여 설명한다.8 to 12 will be described.
본 실험은 본 발명의 실시예인 리튬 이차전지용 활물질-도전재-바인더 복합소재의 전기 화학적 특성을 확인하고자 이를 포함하는 전극 및 전지로 제조하여 전지 용량, 출력 특성 및 수명 특성을 측정하였다.In this experiment, in order to confirm the electrochemical characteristics of the active material-conductive material-binder composite material for lithium secondary batteries, which is an embodiment of the present invention, electrodes and batteries including the same were prepared, and battery capacity, output characteristics, and life characteristics were measured.
실험에 있어서 도8에 정리된 바와 같이 열경화성 바인더의 함량을 달리하여 구분한 실험군을 대상으로 0.1C에서 초기용량을 측정하였고, C-Rate(0.1~2C)를 변경하면서 출력 특성을 확인하였으며, 0.33C / 0.5C 충방전 속도에서 수명 특성을 측정하였다.In the experiment, as summarized in FIG. 8, the initial capacity was measured at 0.1 C for the experimental group classified by varying the content of the thermosetting binder, and the output characteristics were confirmed while changing the C-Rate (0.1 to 2 C), and 0.33 Life characteristics were measured at C/0.5C charge/discharge rate.
도9 내지 도12는 본 실험의 결과로 이에 따르면 열경화성 바인더가 높은 함량으로 적용된 복합소재가 높은 용량과 우수한 출력 및 수명 특성을 나타내었다.9 to 12 are the results of this experiment, and according to this, the composite material to which the thermosetting binder is applied in a high content showed high capacity and excellent output and lifespan characteristics.
이러한 결과는 열경화성 바인더가 활물질 표면을 균일하고 충분하게 감싸 충방전 중 활물질 표면과 전해질 표면의 직접적인 접촉이 유효하게 차단되고 금속의 용출이 억제됨에 따른 것이다.This result is due to the fact that the thermosetting binder uniformly and sufficiently covers the surface of the active material to effectively block direct contact between the surface of the active material and the surface of the electrolyte during charging and discharging, and to suppress metal elution.
따라서 본 비교 실험을 통해 본 발명이 제시하는 리튬 이차전지용 활물질-도전재-바인더 복합소재가 고용량 활물질(NCM811)의 수명 특성을 현저하게 개선시킬 수 있음 확인하였다.Therefore, through this comparative experiment, it was confirmed that the active material-conductive material-binder composite material for lithium secondary batteries proposed in the present invention can significantly improve the lifespan characteristics of the high-capacity active material (NCM811).
실험예2Experimental Example 2
리튬 이차전지용 활물질-도전재-바인더 복합소재의 충, 방전에 따른 내부 균열(Micro-crack) 상태 및 부반응 억제 효과 확인 실험Experiment to confirm micro-crack state and side reaction suppression effect according to charging and discharging of active material-conductive material-binder composite material for lithium secondary battery
도13 및 도14를 참조하여 설명한다.A description will be made with reference to FIGS. 13 and 14.
본 실험은 본 발명인 리튬 이차전지용 활물질-도전재-바인더 복합소재가 도전재 및 바인더 코팅으로 부피 팽창에 의한 내부 균열(Micro-crack) 발생을 효과적으로 억제하며, 활물질과 전해액 간의 부반응을 효과적을 억제함을 확인하고자 전극으로 제조하여 충, 방전 후 활물질의 단면 상태를 확인하고, 열경화성 바인더의 유무에 따른 전이금속의 용출 상태를 분석하였다.In this experiment, the active material-conductive material-binder composite material for lithium secondary battery, which is the present invention, effectively suppresses the generation of micro-crack due to volume expansion with the conductive material and binder coating, and effectively suppresses side reactions between the active material and the electrolyte. In order to confirm, the cross-sectional state of the active material was checked after charging and discharging by making it into an electrode, and the elution state of the transition metal according to the presence or absence of a thermosetting binder was analyzed.
구체적으로 도8에 정리된 실험군을 대상으로, 50 cylce 후 전지를 분해하여 전극 단면을 관찰하였으며, 음극 표면의 ICP 분석을 통해 양극으로부터 발생하는 전이금속 용출량을 측정하였다.Specifically, for the experimental group summarized in FIG. 8, the battery was disassembled after 50 cycles, and the cross section of the electrode was observed, and the amount of transition metal generated from the positive electrode was measured through ICP analysis of the surface of the negative electrode.
도13은 충, 방전 후 활물질의 단면에 대한 SEM 이미지로, 도13(b)에 따르면 본 발명이 제시하는 활물질-도전재-바인더 복합소재는 활물질 외부가 도전재 및 바인더로 잘 코팅되어 있음을 확인할 수 있으며, 내부 균열은 덜한 모습을 확인할 수 있었다. 반면, 도13(a)에 따르면 복합소재를 적용하지 않은 비교1은 내부 균열이 심하게 발생하였음을 확인할 수 있었다.Figure 13 is a SEM image of the cross section of the active material after charging and discharging. According to Figure 13 (b), the active material-conductive material-binder composite material proposed in the present invention is well coated with the conductive material and the binder on the outside of the active material. It can be confirmed, and the appearance of internal cracks was confirmed to be less. On the other hand, according to FIG. 13 (a), it was confirmed that internal cracks were severely generated in Comparison 1 to which the composite material was not applied.
이러한 결과 차이는 본 발명이 제시하는 활물질-도전재-바인더 복합소재가 도전재-바인더 코팅으로 활물질 표면이 직접적으로 전해액과 접촉하는 것을 차단하며, 이에 따라 내부 크랙 발생을 유효하게 억제한다는 것을 나타낸다.This difference in the results indicates that the active material-conductive material-binder composite material proposed in the present invention blocks direct contact of the surface of the active material with the electrolyte through the conductive material-binder coating, thereby effectively suppressing the occurrence of internal cracks.
도14는 충, 방전 후 열경화성 바인더 유무에 따른 전이금속의 용출량을 분석한 데이터로, 이에 따르면 복합소재를 적용한 결과 음극 쪽에서 상대적으로 적은 전이금속 용출이 확인되었다.14 is data analyzing the amount of transition metal elution according to the presence or absence of a thermosetting binder after charging and discharging. According to this, as a result of applying the composite material, relatively little transition metal elution was confirmed on the cathode side.
이는 열경화성 바인더가 활물질 표면 패시베이션(Passivation)을 통해 전이금속 용출을 억제함을 의미한다.This means that the thermosetting binder suppresses transition metal elution through active material surface passivation.
따라서 본 발명이 제시하는 열경화성 바인더를 포함하는 복합소재가 고에너지 밀도 전지 성능 개선에 효과적임을 확인 할 수 있었다.Therefore, it was confirmed that the composite material including the thermosetting binder proposed in the present invention is effective in improving the performance of a high energy density battery.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present invention is for illustrative purposes, and those skilled in the art can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be interpreted as being included in the scope of the present invention.
[부호의 설명][Description of code]
100 : 활물질100: active material
200 : 도전재200: conductive material
300 : 열경화성 바인더300: thermosetting binder
400 : 분산제400: Dispersant
Claims (17)
- 활물질;active material;상기 활물질 표면에 코팅되며, 탄소 나노 튜브를 포함하는 도전재; 및a conductive material coated on the surface of the active material and containing carbon nanotubes; and상기 활물질 표면에 코팅되는 열경화성 바인더;를 포함하는 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재.A thermosetting binder coated on the surface of the active material; characterized in that it comprises an active material-conductive material-binder composite material for a lithium secondary battery.
- 제1항에 있어서,According to claim 1,상기 복합소재는, 상기 활물질 표면에 코팅된 분산제를 더 포함하는 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재.The active material-conductive material-binder composite material for a lithium secondary battery, characterized in that the composite material further comprises a dispersant coated on the surface of the active material.
- 제1항에 있어서,According to claim 1,상기 열경화성 바인더는, 폴리 실록산을 포함하는 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재.The thermosetting binder is an active material-conductive material-binder composite material for a lithium secondary battery, characterized in that it comprises polysiloxane.
- 제3항에 있어서,According to claim 3,상기 폴리 실록산은, 에폭시기 및 하이드록시기를 포함하는 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재.The polysiloxane is an active material-conductive material-binder composite material for a lithium secondary battery, characterized in that it contains an epoxy group and a hydroxyl group.
- 제1항에 있어서,According to claim 1,상기 열경화성 바인더는, 상기 복합소재의 총 중량 대비 0.01wt% 이상 10wt% 이하로 포함되는 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재.The thermosetting binder is an active material-conductive material-binder composite material for a lithium secondary battery, characterized in that contained in 0.01wt% or more and 10wt% or less relative to the total weight of the composite material.
- 제1항에 있어서,According to claim 1,상기 도전재는, 단일벽 탄소 나노 튜브(single wall carbon nano tube, SWCNT), 다중벽 탄소 나노 튜브(multi wall carbon nano tube, MWCNT) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재.The conductive material includes at least one selected from the group consisting of single wall carbon nanotubes (SWCNTs), multi wall carbon nanotubes (MWCNTs), and combinations thereof. To, active material-conductive material-binder composite material for lithium secondary batteries.
- 제1항에 있어서,According to claim 1,상기 도전재는, 상기 복합소재의 총 중량 대비 0.01wt% 이상 10wt% 이하로 포함되는 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재.The conductive material is characterized in that it is included in 0.01wt% or more and 10wt% or less relative to the total weight of the composite material, active material for a lithium secondary battery-conductive material-binder composite material.
- 제1항에 있어서,According to claim 1,상기 도전재에 의한 상기 활물질의 피복률은 0.1% 이상 90% 이하인 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재.An active material-conductive material-binder composite material for a lithium secondary battery, characterized in that the coverage of the active material by the conductive material is 0.1% or more and 90% or less.
- 제1항에 있어서,According to claim 1,상기 탄소 나노 튜브는, 평균 직경이 1nm 이상 10nm 이하이며, 종횡비가 1:1000 이상인 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재.The carbon nanotubes have an average diameter of 1 nm or more and 10 nm or less, and an aspect ratio of 1:1000 or more, active material-conductive material-binder composite material for a lithium secondary battery.
- 제2항에 있어서,According to claim 2,상기 분산제는, 수소화된 아크릴로니트릴 부타디엔 고무(Hydrogenated acrylonitrile butadiene rubber, HNBR), 플루오르화 폴리비닐리덴( Polyvinylidene fluoride, PVDF) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나 이상인 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재 복합소재.The dispersant is lithium secondary, characterized in that at least one selected from the group consisting of hydrogenated acrylonitrile butadiene rubber (HNBR), polyvinylidene fluoride (PVDF), and combinations thereof. Active material-conductive material composite material for batteries.
- (i) 탄소 나노 튜브 및 분산제를 혼합하여 도전재 분산액을 제조하는 단계; 및(i) preparing a conductive material dispersion by mixing carbon nanotubes and a dispersant; and(ii) 상기 도전재 분산액, 활물질 및 열경화성 바인더 용액을 혼합한 코팅 용액으로 활물질 표면을 코팅하는 단계;를 포함하는 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재 제조방법.(ii) coating the surface of the active material with a coating solution in which the conductive material dispersion, the active material and the thermosetting binder solution are mixed; characterized in that it comprises a lithium secondary battery active material-conductive material-binder composite manufacturing method.
- 제11항에 있어서,According to claim 11,상기 탄소 나노 튜브는, 단일벽 탄소 나노 튜브(single wall carbon nano tube, SWCNT), 다중벽 탄소 나노 튜브(multi wall carbon nano tube, MWCNT) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재 제조방법.The carbon nanotubes include at least one selected from the group consisting of single wall carbon nanotubes (SWCNTs), multi-wall carbon nanotubes (MWCNTs), and combinations thereof Characterized in that, active material-conductive material-binder composite material manufacturing method for lithium secondary batteries.
- 제11항에 있어서,According to claim 11,상기 분산제는, 수소화된 아크릴로니트릴 부타디엔 고무(Hydrogenated acrylonitrile butadiene rubber, HNBR), 플루오르화 폴리비닐리덴(Polyvinylidene fluoride, PVDF) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나 이상인 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재 복합소재 제조방법.The dispersant is lithium secondary, characterized in that at least one selected from the group consisting of hydrogenated acrylonitrile butadiene rubber (HNBR), polyvinylidene fluoride (PVDF), and combinations thereof. Active material-conductive material composite material manufacturing method for batteries.
- 제11항에 있어서,According to claim 11,상기 열경화성 바인더는, 폴리 실록산을 포함하는 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재 제조방법.The thermosetting binder is characterized in that it comprises a polysiloxane, active material-conductive material-binder composite material manufacturing method for a lithium secondary battery.
- 제14항에 있어서,According to claim 14,상기 폴리 실록산은, 에폭시기 및 하이드록시기를 포함하는 것을 특징으로 하는, 리튬 이차전지용 활물질-도전재-바인더 복합소재 제조방법.The polysiloxane is an active material-conductive material-binder composite material manufacturing method for a lithium secondary battery, characterized in that it contains an epoxy group and a hydroxyl group.
- 제1항의 리튬 이차전지용 활물질-도전재-바인더 복합소재를 포함하는 리튬 이차전지용 전극.An electrode for a lithium secondary battery comprising the active material-conductive material-binder composite material of claim 1.
- 제16항에 있어서,According to claim 16,상기 전극은, 350Wh/kg 이상의 에너지 밀도를 가지는 것을 특징으로 하는 리튬 이차전지용 전극.The electrode is an electrode for a lithium secondary battery, characterized in that it has an energy density of 350 Wh / kg or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0175972 | 2021-12-09 | ||
KR1020210175972A KR20230087683A (en) | 2021-12-09 | 2021-12-09 | Active material-conductive material-binder composite material for lithium secondary batteries |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023106477A1 true WO2023106477A1 (en) | 2023-06-15 |
Family
ID=86730748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/018804 WO2023106477A1 (en) | 2021-12-09 | 2021-12-10 | Active material-conductive material-binder composite material for lithium secondary battery |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20230087683A (en) |
WO (1) | WO2023106477A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150017012A (en) * | 2013-07-31 | 2015-02-16 | 삼성전자주식회사 | Composite cathode active material, lithium battery comprising the same, and preparation method thereof |
JP5755400B2 (en) * | 2008-05-23 | 2015-07-29 | 出光興産株式会社 | Negative electrode mixture, negative electrode mixture mixture, negative electrode, all solid lithium battery and apparatus |
KR20160116968A (en) * | 2015-03-31 | 2016-10-10 | 삼성에스디아이 주식회사 | Separator for rechargeable lithium battery and rechargeable lithium battery including the same |
KR20200018328A (en) * | 2018-08-09 | 2020-02-19 | 주식회사 엘지화학 | Carbon nanotube despersion, electrode prepared by using the same, and lithium secondary battery comprising the electrode |
KR20210044384A (en) * | 2019-10-15 | 2021-04-23 | 현대자동차주식회사 | Lithium secondary battery |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101643819B1 (en) | 2013-10-23 | 2016-07-28 | 주식회사 엘지화학 | Methode of preparing surface coated cathode active material and cathode active material prepared thereby |
-
2021
- 2021-12-09 KR KR1020210175972A patent/KR20230087683A/en unknown
- 2021-12-10 WO PCT/KR2021/018804 patent/WO2023106477A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5755400B2 (en) * | 2008-05-23 | 2015-07-29 | 出光興産株式会社 | Negative electrode mixture, negative electrode mixture mixture, negative electrode, all solid lithium battery and apparatus |
KR20150017012A (en) * | 2013-07-31 | 2015-02-16 | 삼성전자주식회사 | Composite cathode active material, lithium battery comprising the same, and preparation method thereof |
KR20160116968A (en) * | 2015-03-31 | 2016-10-10 | 삼성에스디아이 주식회사 | Separator for rechargeable lithium battery and rechargeable lithium battery including the same |
KR20200018328A (en) * | 2018-08-09 | 2020-02-19 | 주식회사 엘지화학 | Carbon nanotube despersion, electrode prepared by using the same, and lithium secondary battery comprising the electrode |
KR20210044384A (en) * | 2019-10-15 | 2021-04-23 | 현대자동차주식회사 | Lithium secondary battery |
Also Published As
Publication number | Publication date |
---|---|
KR20230087683A (en) | 2023-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021020939A1 (en) | Negative electrode, secondary battery including negative electrode, and method for manufacturing negative electrode | |
WO2021029652A1 (en) | Positive electrode for lithium secondary battery, and lithium secondary battery comprising same | |
WO2017135794A1 (en) | Negative electrode active material and secondary battery comprising same | |
WO2021066458A1 (en) | Composite anode active material, preparation method therefor, and anode comprising same | |
WO2018208111A1 (en) | Negative electrode active material, negative electrode comprising negative electrode active material, and secondary battery comprising negative electrode | |
WO2020050661A1 (en) | Negative electrode and secondary battery comprising same | |
WO2018221827A1 (en) | Negative electrode active material, negative electrode comprising negative electrode active material, and secondary battery comprising negative electrode | |
WO2019103311A1 (en) | Positive electrode for all-solid state lithium-polymer secondary battery, method for manufacturing same, and secondary battery comprising same | |
WO2021025349A1 (en) | Anode, manufacturing method therefor, and secondary battery comprising same | |
WO2020122549A1 (en) | Anode active material, anode comprising same, and lithium secondary battery | |
WO2019088630A2 (en) | Sulfur-carbon composite and method for preparing same | |
WO2021020805A1 (en) | Composite anode active material, manufacturing method of same, anode comprising same, and secondary battery | |
WO2014129749A1 (en) | Si/c composite, method for manufacturing same, and cathode active material including same for lithium secondary battery | |
WO2022045852A1 (en) | Negative electrode and secondary battery comprising same | |
WO2021251663A1 (en) | Anode and secondary battery comprising same | |
WO2018236046A1 (en) | Lithium-sulfur battery | |
WO2023106477A1 (en) | Active material-conductive material-binder composite material for lithium secondary battery | |
WO2017074109A1 (en) | Cathode for secondary battery, method for preparing same, and lithium secondary battery comprising same | |
WO2016167591A1 (en) | Negative electrode active material and method for preparing same | |
WO2019093825A1 (en) | Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode | |
WO2024085297A1 (en) | Anode active material, and anode and lithium secondary battery comprising same | |
WO2019143214A1 (en) | Cathode and secondary battery comprising same cathode | |
WO2023038337A1 (en) | Silicon-based anode active material, method for preparing silicon-based anode active material, anode comprising silicon-based anode active material, and secondary battery comprising anode | |
WO2023106476A1 (en) | Active material-conductive material composite material for lithium secondary battery | |
WO2024049144A1 (en) | Secondary structure of carbon nanotube and sulfur-carbon composite comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21967350 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |