WO2023106387A1 - 情報処理システム、プログラム及び情報処理方法 - Google Patents
情報処理システム、プログラム及び情報処理方法 Download PDFInfo
- Publication number
- WO2023106387A1 WO2023106387A1 PCT/JP2022/045402 JP2022045402W WO2023106387A1 WO 2023106387 A1 WO2023106387 A1 WO 2023106387A1 JP 2022045402 W JP2022045402 W JP 2022045402W WO 2023106387 A1 WO2023106387 A1 WO 2023106387A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information processing
- image sequence
- processing system
- unit
- derivation
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 112
- 238000003672 processing method Methods 0.000 title claims description 9
- 230000005284 excitation Effects 0.000 claims abstract description 83
- 238000009795 derivation Methods 0.000 claims abstract description 58
- 238000001514 detection method Methods 0.000 claims abstract description 45
- 239000012528 membrane Substances 0.000 claims abstract description 42
- 230000008859 change Effects 0.000 claims abstract description 7
- 125000004122 cyclic group Chemical group 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 12
- 210000005036 nerve Anatomy 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 33
- 210000001519 tissue Anatomy 0.000 description 28
- 238000004891 communication Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 23
- 238000002372 labelling Methods 0.000 description 20
- 230000006870 function Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- RGPUSZZTRKTMNA-UHFFFAOYSA-N 1-benzofuran-7-carbaldehyde Chemical compound O=CC1=CC=CC2=C1OC=C2 RGPUSZZTRKTMNA-UHFFFAOYSA-N 0.000 description 1
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 206010003671 Atrioventricular Block Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- APTZNLHMIGJTEW-UHFFFAOYSA-N pyraflufen-ethyl Chemical compound C1=C(Cl)C(OCC(=O)OCC)=CC(C=2C(=C(OC(F)F)N(C)N=2)Cl)=C1F APTZNLHMIGJTEW-UHFFFAOYSA-N 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
Definitions
- the present invention relates to an information processing system, a program, and an information processing method.
- Patent Document 1 discloses an analysis map creation device.
- This analysis map generating device is based on the phase of the excitation wave at each position of the biological tissue, which is activated by the excitation as the excitation wave propagates through the tissue, and the phase dispersion indicating the degree of dispersion of the surrounding phase at each position. values and create an analysis map based on the time series of at least a portion of the phase variance values at each location. Since the phase dispersion value indicates the degree of dispersion of the surrounding phase, the position where the degree of dispersion of the surrounding phase is large can be recognized as the turning center of the turning excitation wave. Also, it is possible to find out the possibility that the degree of dispersion of the surrounding phase was the turning center before that time or could become the turning center after that time. As a result, it is possible to create an analysis map for analyzing the swirl excitation wave.
- the mechanism of abnormal excitation is known to be a swirling excitation wave and a gushing excitation wave.
- the device disclosed in Patent Literature 1 does not deal with effervescent excitation waves.
- the present invention provides an information processing system capable of detecting the position where the excitation wave is generated.
- an information processing system includes an acquisition unit, a derivation unit, a detection unit, and a generation unit.
- the acquisition unit acquires a first image sequence representing changes in membrane potential in living tissue.
- the derivation unit derives a second image sequence representing changes in membrane potential using a cyclic variable based on the first image sequence and the first derivation formula.
- the detection unit detects the position at which the gushing excitation wave is generated in the biological tissue based on the second image sequence and the first detection formula.
- the generation unit generates position information regarding the generation position.
- FIG. 1 is a configuration diagram showing an information processing system 100;
- FIG. 2 is a block diagram showing the hardware configuration of the information processing device 200;
- FIG. 3 is a block diagram showing the hardware configuration of terminal 300.
- FIG. 3 is a block diagram showing functions realized by the information processing apparatus 200 (control unit 210);
- FIG. 4 is an activity diagram showing the flow of information processing executed by the information processing apparatus 200.
- FIG. FIG. 4 is a diagram showing an example of an image (membrane potential image 410) included in a first image sequence;
- FIG. 10 is a diagram showing an example of an image (phase map image 420) included in a second image sequence;
- FIG. 4 shows an example (phase gradient 430) representing the gradient of a cyclic variable in a phase map image 420;
- FIG. 4 shows an example image (divergence image 440) representing the divergence of the gradient of a cyclic variable.
- FIG. 10 is a diagram showing an example of an image (coefficient-applied image 450) in which changes in membrane potential in the phase map image 420 are processed;
- FIG. 10 is a diagram showing a coefficient-applied image sequence 460 composed of an image sequence of coefficient-applied images 450;
- FIG. 10 is a diagram showing a binarized image sequence 470 obtained by binarizing changes in membrane potential in a coefficient-applied image sequence 460;
- FIG. 10 is a diagram showing the result of labeling position information regarding the generation position of a welling excitation wave and time information regarding the generation time of the welling excitation wave in a living tissue.
- the program for realizing the software appearing in this embodiment may be provided as a computer-readable non-temporary recording medium, or may be provided as downloadable from an external server, It may be provided so that the program is started by an external computer and the function is realized by the client terminal (so-called cloud computing).
- the term “unit” may include, for example, a combination of hardware resources implemented by circuits in a broad sense and software information processing that can be specifically realized by these hardware resources.
- various information is handled in the present embodiment, and these information are, for example, physical values of signal values representing voltage and current, and signal values as binary bit aggregates composed of 0 or 1. It is represented by high and low, or quantum superposition (so-called quantum bit), and communication and operation can be performed on a circuit in a broad sense.
- a circuit in a broad sense is a circuit realized by at least appropriately combining circuits, circuits, processors, memories, and the like. That is, Application Specific Integrated Circuit (ASIC), programmable logic device (for example, Simple Programmable Logic Device (SPLD), Complex Programmable Logic Device (CPLD), and field It includes a programmable gate array (Field Programmable Gate Array: FPGA)).
- ASIC Application Specific Integrated Circuit
- SPLD Simple Programmable Logic Device
- CPLD Complex Programmable Logic Device
- FPGA Field Programmable Gate Array
- Hardware Configuration Section 1 describes the hardware configuration of this embodiment.
- FIG. 1 is a configuration diagram showing an information processing system 100. As shown in FIG. The information processing system 100 includes an information processing device 200 and a terminal 300, which are connected via a network. These components are further described. Here, the system exemplified by information processing system 100 consists of one or more devices or components. Therefore, for example, even the information processing apparatus 200 alone can be a system exemplified by the information processing system 100 .
- FIG. 2 is a block diagram showing the hardware configuration of the information processing device 200. As shown in FIG. The information processing device 200 has a control unit 210 , a storage unit 220 , and a communication unit 250 , and these components are electrically connected via a communication bus 260 inside the information processing device 200 . Note that the information processing apparatus 200 can function as a server. Each component will be further described.
- the control unit 210 processes and controls overall operations related to the information processing device 200 .
- the control unit 210 is, for example, a central processing unit (CPU) (not shown).
- Control unit 210 implements various functions related to information processing apparatus 200 by reading a predetermined program stored in storage unit 220 . That is, information processing by software stored in the storage unit 220 can be specifically realized by the control unit 210 which is an example of hardware, and can be executed as each functional unit included in the control unit 210 . These are further detailed in Section 2. Note that the control unit 210 is not limited to a single unit, and may be implemented to have a plurality of control units 210 for each function. A combination thereof may also be used.
- the storage unit 220 stores various information necessary for information processing of the information processing device 200 .
- This may be, for example, a storage device such as a solid state drive (SSD) for storing various programs related to the information processing apparatus 200 executed by the control unit 210, or a temporary storage device related to program calculation. It can be implemented as a memory such as a random access memory (RAM) that stores information (arguments, arrays, etc.) required for . A combination of these may also be used.
- SSD solid state drive
- RAM random access memory
- the communication unit 250 is preferably a wired communication means such as USB, IEEE1394, Thunderbolt (registered trademark), wired LAN network communication, etc., but wireless LAN network communication, mobile communication such as 5G/LTE/3G, Bluetooth (registered trademark), etc. Communication and the like may be included as desired. That is, it is more preferable to implement as a set of these communication means. That is, the information processing device 200 communicates various information with the terminal 300 via the network via the communication unit 250 .
- wired communication means such as USB, IEEE1394, Thunderbolt (registered trademark), wired LAN network communication, etc.
- wireless LAN network communication mobile communication
- mobile communication such as 5G/LTE/3G, Bluetooth (registered trademark), etc. Communication and the like may be included as desired. That is, it is more preferable to implement as a set of these communication means. That is, the information processing device 200 communicates various information with the terminal 300 via the network via the communication unit 250 .
- FIG. 3 is a block diagram showing the hardware configuration of terminal 300.
- Terminal 300 has control unit 310 , storage unit 320 , display unit 330 , input unit 340 , and communication unit 350 , and these components are electrically connected inside terminal 300 via communication bus 360 . It is connected to the. Descriptions of the control unit 310, the storage unit 320, and the communication unit 350 are omitted because they are substantially the same as those of the control unit 210, the storage unit 220, and the communication unit 250 in the information processing apparatus 200.
- FIG. 1 is a block diagram showing the hardware configuration of terminal 300.
- Terminal 300 has control unit 310 , storage unit 320 , display unit 330 , input unit 340 , and communication unit 350 , and these components are electrically connected inside terminal 300 via communication bus 360 . It is connected to the. Descriptions of the control unit 310, the storage unit 320, and the communication unit 350 are omitted because they are substantially the same as those of the control unit 210, the storage unit 220, and the communication unit
- the display unit 330 may be included in the housing of the terminal 300, or may be externally attached.
- the display unit 330 displays a screen of a graphical user interface (GUI) that can be operated by the user.
- GUI graphical user interface
- Display unit 330 will be described below as being included in the housing of terminal 300 .
- the input unit 340 may be included in the housing of the terminal 300, or may be externally attached.
- the input unit 340 may be integrated with the display unit 330 and implemented as a touch panel. With a touch panel, the user can input a tap operation, a swipe operation, or the like.
- a switch button, a mouse, a QWERT keyboard, or the like may be employed instead of the touch panel. That is, the input unit 340 accepts an operation input made by the user.
- the input is transferred to control unit 310 via communication bus 360 as a command signal. Then, the control unit 310 can execute predetermined control and calculation as necessary.
- Functional Configuration Section 2 describes the functional configuration of this embodiment. As described above, information processing by software stored in the storage unit 220 is specifically realized by the control unit 210 which is an example of hardware, and can be executed as each functional unit included in the control unit 210 .
- FIG. 4 is a block diagram showing functions realized by the information processing device 200 (control unit 210).
- the information processing apparatus 200 includes an acquisition unit 211 , a derivation unit 212 , a detection unit 213 and a generation unit 214 .
- the acquisition unit 211 is configured to acquire various information. For example, the acquisition unit 211 acquires from the terminal 300 a first image sequence representing changes in membrane potential in living tissue.
- the derivation unit 212 is configured to derive various information. For example, the deriving unit 212 derives a second image sequence representing changes in membrane potential using cyclic variables based on the obtained first image sequence and the first calculation formula.
- the detection unit 213 is configured to detect various information. For example, the detection unit 213 detects the generation position of the gushing excitation wave in the biological tissue based on the derived second image sequence and the first detection formula.
- the generation unit 214 is configured to generate various information. For example, the generation unit 214 generates position information regarding the position where the detected gushing excitation wave is generated.
- Information Processing Method Section 3 describes an information processing method of the information processing apparatus 200 described above. This information processing method is executed by a computer using each unit of the information processing apparatus 200 (control unit 210) as each process. Specifically, this information processing method includes an acquisition process, a derivation process, a detection process, and a generation process.
- the acquisition step acquires a first image sequence representing changes in membrane potential in the biological tissue.
- a second image sequence representing changes in membrane potential is derived using a cyclic variable based on the acquired first image sequence and the first derivation formula.
- the detection step based on the derived second image sequence and the first detection formula, the position where the gushing excitation wave is generated in the living tissue is detected.
- position information regarding the position of the detected gushing excitation wave is generated.
- FIG. 5 is an activity diagram showing the flow of information processing executed by the information processing device 200.
- FIG. 6 is a diagram showing an example of an image (membrane potential image 410) included in the first image sequence.
- FIG. 7 is a diagram showing an example of an image (phase map image 420) included in the second image sequence.
- FIG. 8 shows an example (phase gradient 430) representing the gradient of a cyclic variable in the phase map image 420.
- FIG. 9 shows an example image (divergence image 440) representing the divergence of the gradient of a cyclic variable.
- FIG. 6 is a diagram showing an example of an image (membrane potential image 410) included in the first image sequence.
- FIG. 7 is a diagram showing an example of an image (phase map image 420) included in the second image sequence.
- FIG. 8 shows an example (phase gradient 430) representing the gradient of a cyclic variable in the phase map image 420.
- FIG. 9 shows an example image (divergence image
- FIG. 10 is a diagram showing an example of an image (coefficient-applied image 450) in which changes in membrane potential in the phase map image 420 have been processed.
- FIG. 11 is a diagram showing a coefficient-applied image sequence 460 composed of image sequences of the coefficient-applied images 450.
- FIG. 12 is a diagram showing a binarized image sequence 470 in which changes in membrane potential in the coefficient applied image sequence 460 are binarized.
- FIG. 13 is a diagram showing the result of labeling the position information regarding the generation position of the gushing excitation wave in the biological tissue and the time information regarding the generation time of the gushing excitation wave.
- the terminal 300 stores a first image sequence (an image sequence composed of a plurality of membrane potential images 410) obtained from a high-speed camera (not shown).
- the first image sequence is an image sequence representing changes in membrane potential in living tissue.
- the biological tissue will be described as being the heart.
- the cyclic variable is described as being phase.
- the control unit 310 in the terminal 300 transmits an image sequence (hereinafter also referred to as "membrane potential image sequence") composed of a plurality of membrane potential images 410 representing changes in membrane potential in the heart (activity A110).
- the membrane potential image sequence corresponds to the first image sequence in the claims.
- activity A110 for example, the following two stages of information processing are executed. (1)
- the control unit 310 reads the membrane potential image sequence stored in the storage unit 320 .
- the control unit 310 transmits the membrane potential image sequence to the information processing device 200 via the communication unit 350 .
- the control unit 210 in the information processing device 200 acquires the membrane potential image sequence from the terminal 300 (activity A120).
- the acquiring unit 211 acquires the first image sequence representing changes in membrane potential in living tissue.
- activity A120 for example, the following two stages of information processing are executed.
- the communication unit 250 receives the membrane potential image sequence transmitted from the terminal 300 .
- the control unit 210 causes the storage unit 220 to store the received membrane potential image sequence.
- phase map image sequence composed of a plurality of phase map images 420 representing changes in membrane potential in the heart using phase. derive (activity A130).
- the phase map image sequence corresponds to the second image sequence in the claims.
- the phase map image sequence is derived, for example, by subjecting the membrane potential image sequence to Hilbert transform (corresponding to the first derivation formula in claims).
- the deriving unit 212 derives the second image sequence representing changes in membrane potential in living tissue using cyclic variables based on the first image sequence and the first derivation formula.
- activity A130 for example, the following three stages of information processing are executed.
- the control unit 210 reads out a program related to the membrane potential image sequence and the Hilbert transform stored in the storage unit 220 .
- the control unit 210 executes a derivation process to derive a sequence of phase map images.
- the control unit 210 causes the storage unit 220 to store the derived phase map image sequence.
- the control unit 210 in the information processing device 200 derives the phase gradient 430 for each phase map image 420 (activity A140).
- the phase gradient 430 is derived, for example, by partially differentiating each phase map image 420 and vectorizing it (corresponding to the second derivation formula in claims).
- derivation unit 212 derives the gradient of the cyclic variable based on the second image sequence and the second derivation formula.
- activity A140 for example, the following three stages of information processing are executed. (1) The control unit 210 reads out a program (for example, a program for partial differentiation and vectorization) relating to the second image sequence and the gradient stored in the storage unit 220 . (2) The control unit 210 performs derivation processing to derive the phase gradient 430 for each phase map image 420 . (3) The control unit 210 causes the storage unit 220 to store the derived phase gradient 430 .
- the control unit 210 in the information processing device 200 normalizes each phase gradient 430 (activity A150). Normalization is performed, for example, by multiplying the phase gradient 430 by the reciprocal of the phase gradient 430 (corresponding to the third derivation formula of the claims). In other words, the derivation unit 212 normalizes the slope of the cyclic variable based on the slope of the cyclic variable and the third derivation formula.
- activity A150 for example, the following three stages of information processing are executed. (1) The control unit 210 reads the phase gradient 430 stored in the storage unit 220 and a normalization program (for example, a program for obtaining the reciprocal of the phase gradient 430 and processing the phase gradient 430 using the reciprocal). (2) The controller 210 performs a normalization process to normalize each phase gradient 430 . (3) The control unit 210 causes the storage unit 220 to store each normalized phase gradient 430 .
- the control unit 210 in the information processing device 200 derives the divergence image 440 for each normalized phase gradient 430 (activity A160).
- the divergence image 440 is derived, for example, by adding (corresponding to the fourth derivation formula in the claims) the partial differentiation of each component of the vector field in each normalized phase gradient 430 in the axial direction.
- derivation unit 212 derives the divergence of the gradient of the cyclic variable based on the gradient of the cyclic variable and the fourth derivation formula.
- activity A160 for example, the following three stages of information processing are executed.
- the control unit 210 stores the normalized phase gradient 430 and a divergence program (for example, a program for adding partial differentiation of each component of the vector field in the axial direction) stored in the storage unit 220. read out.
- the controller 210 performs a derivation process to derive a divergence image 440 for the normalized phase gradient 430;
- the control unit 210 causes the storage unit 220 to store each derived divergence image 440 .
- equation (2) regarding divergence which is an example of the fourth derivation equation, is shown.
- control unit 210 in information processing apparatus 200 derives an image sequence (hereinafter also referred to as “coefficient-applied image sequence 460”) composed of a plurality of coefficient-applied images 450 for each divergent image 440 (activity A170).
- the coefficient-applied image sequence 460 is an image sequence obtained by processing changes in membrane potential in the phase map image sequence.
- the coefficient-applied image sequence 460 corresponds to the third image sequence in the claims.
- the derivation unit 212 derives the third image sequence in which the change in membrane potential in the second image sequence is processed based on the divergence of the gradient of the cyclic variable and the predetermined coefficient.
- the coefficient is a coefficient focusing only on the front surface of the gushing excitation wave.
- the control unit 210 reads out a plurality of divergence images 440 and predetermined coefficients stored in the storage unit 220 .
- the control unit 210 executes derivation processing to derive the coefficient-applied image sequence 460 .
- the control unit 210 causes the storage unit 220 to store the derived coefficient-applied image sequence 460 .
- the control unit 210 in the information processing device 200 derives the binarized image sequence 470 from the coefficient-applied image sequence 460 (activity A180).
- the binarized image sequence 470 is obtained by, for example, setting a threshold to an arbitrary value (for example, 0.8) and performing binarization processing based on the threshold (corresponding to the fifth derivation formula in claims). derived.
- the binarized image sequence 470 corresponds to the fourth image sequence in the claims.
- the derivation unit 212 derives the fourth image sequence obtained by binarizing the change in membrane potential in the third image sequence based on the third image sequence and the fifth derivation formula.
- the threshold values are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. , within a range between any two of the numerical values exemplified herein.
- activity A180 for example, the following three stages of information processing are executed. (1) The control unit 210 reads out the coefficient-applied image sequence 460 and the binarization processing program stored in the storage unit 220 . (2) The control unit 210 executes derivation processing to derive the binarized image sequence 470 . (3) The control unit 210 causes the storage unit 220 to store the derived binary image sequence 470 .
- the control unit 210 in the information processing device 200 detects the position and time of occurrence of the gushing excitation wave in the heart (activity A190).
- the position and time of occurrence of the gushing excitation wave are detected, for example, by labeling the portion corresponding to the front of the excitation wave in the binarized image sequence 470 and based on the center of gravity of the labeled portion in the spatiotemporal direction. (equivalent to the third detection formula of the term).
- the detection unit 213 detects the generation position and generation time of the welling excitation wave in the biological tissue based on the fourth image sequence and the third detection formula.
- activity A190 for example, the following three stages of information processing are executed.
- the control unit 210 reads out the binarized image sequence 470 and the third detection formula stored in the storage unit 220 .
- the control unit 210 executes detection processing to detect the position and time of occurrence of the gushing excitation wave.
- the control unit 210 causes the storage unit 220 to store information about the position and time of occurrence of the detected gushing excitation wave.
- the control unit 210 in the information processing device 200 generates a labeling image 480 indicating position information regarding the position of occurrence of the gushing excitation wave in the heart and time information regarding the time of occurrence (activity A200).
- the generation unit 214 generates position information regarding the generation position of the gushing excitation wave in the living tissue and time information regarding the generation time of the gushing excitation wave in the living tissue.
- activity A200 for example, the following three stages of information processing are executed. (1) The control unit 210 reads out information about the position and time of occurrence of the gushing excitation wave stored in the storage unit 220 . (2) The control section 210 executes a generation process to generate the labeling image 480 . (3) Control unit 210 causes storage unit 220 to store labeling image 480 .
- control unit 210 in the information processing device 200 transmits the labeling image 480 to the terminal 300 (activity A210).
- activity A210 for example, the following two stages of information processing are executed. (1) Control unit 210 reads labeling image 480 stored in storage unit 220 . (2) Control unit 210 transmits labeling image 480 to terminal 300 via communication unit 250 .
- control unit 310 in the terminal 300 receives the labeling image 480 from the information processing device 200 (activity A220).
- activity A220 for example, the following two stages of information processing are executed.
- the communication unit 350 receives the labeling image 480 transmitted from the information processing device 200 .
- Control unit 310 causes storage unit 320 to store received labeling image 480 .
- control unit 310 of the terminal 300 causes the display unit 330 to display the labeling image 480 (activity A230).
- activity A230 for example, the following two stages of information processing are executed. (1) Control unit 310 reads labeling image 480 stored in storage unit 320 . (2) The control unit 310 executes display processing and causes the display unit 330 to display the labeling image 480 .
- a label 481, a label 482, a label 483, and a label 484 are drawn in the labeling image 480.
- a label 481, a label 482, a label 483, and a label 484 correspond to the generation position and generation time of the eruption excitation wave in the heart. That is, when an arbitrary position is set as the origin and counted from 0 second, it can be recognized that the gushing excitation wave is generated in the following order (1) to (4).
- an atrioventricular block was prepared from an isolated porcine heart, and a Langendorff perfused heart preparation was prepared. Perfused heart preparations were subsequently stained with a voltage-sensitive dye (Di-4-ANNEPS from Thermo Fisher Scientific) and muscle contraction inhibitor (2,3-butanedionemonoxime from Sigma-Aldrich) to remove motion artifacts. was added to the perfusate. Subsequently, in order to induce atrial fibrillation in the perfused heart specimen, water column pressure was applied to the atrium of the perfused heart specimen, and then electrical stimulation was applied to the perfused heart specimen with a stimulator (SEC-5104 manufactured by Nihon Kohden). applied.
- a stimulator SEC-5104 manufactured by Nihon Kohden
- the perfused heart sample was irradiated with excitation light of 520 nm from a ring light in which 200 high-brightness blue-green LEDs (Xeom 3 Power Pure Green LEDs manufactured by Opto Supply) were arranged in a ring shape.
- the emitted fluorescence light was photographed from the peephole in the center of the ring light through a long-pass filter with a cutoff wavelength of 600 nm with a high-speed camera (Mini-AX50 manufactured by Photron) under the conditions of 1000 fps and 512 pixels x 512 pixels.
- the captured image sequence was loaded into the terminal 300 .
- the aspect of this embodiment may be a program.
- This program causes a computer to function as each part of the information processing apparatus 200 .
- the control unit 210 performs write processing (storage processing) and read processing on the storage unit 220 for various data and various types of information, but is not limited to this. information processing for each activity.
- the detection unit 213 has been described as detecting the generation position and generation time of the gushing excitation wave based on the fourth image sequence and the third detection formula, the detection unit 213 is not limited to this, for example, the detection unit 213 may detect the generation position and generation time of the gushing excitation wave based on the third image sequence and the second detection formula.
- the second detection formula may be, for example, a formula for labeling a portion corresponding to the excitation wave front in the coefficient-applied image sequence 460 and detecting based on the center of gravity of the labeled portion in the spatio-temporal direction.
- the detection unit 213 has been described as detecting the generation position and generation time of the gushing excitation wave, it is not limited to this, and may detect the generation position of the gushing excitation wave. Therefore, for example, the detection unit 213 may detect the generation position of the gushing excitation wave in the biological tissue based on the second image sequence and the first detection formula.
- the first detection formula may be, for example, a formula for labeling a portion corresponding to the excitation wave front in the phase map image sequence and detecting based on the center of gravity of the labeled portion in the spatial direction.
- the generation unit 214 has been described as generating position information regarding the generation position and time information regarding the generation time, the generation unit 214 is not limited to this. Just do it. Therefore, for example, the generation unit 214 may generate position information regarding the position at which the gushing excitation wave is generated.
- biological tissue has been described as being the heart, it is not limited to this and may be, for example, nerves.
- An information processing system comprising an acquisition unit, a derivation unit, a detection unit, and a generation unit, wherein the acquisition unit acquires a first image sequence representing changes in membrane potential in living tissue, The derivation unit derives a second image sequence representing changes in the membrane potential using a cyclic variable based on the first image sequence and a first derivation formula, and the detection unit extracts the second image sequence
- An information processing system wherein a position of occurrence of a welling excitation wave in the biological tissue is detected based on the sequence and the first detection formula, and the generating unit generates position information regarding the position of generation.
- this aspect it is possible to suppress false positives, which has been a problem in existing methods for detecting gushing excitation waves.
- a high number of false positives increases the likelihood of ablating normal tissue. That is, according to this aspect, it is possible to quantitatively detect the erupting excitation wave while suppressing false positives, and it is possible to prevent damage to normal tissues.
- the derivation unit derives the gradient of the cyclic variable based on the second image sequence and a second derivation formula.
- the gushing excitation wave can be detected quantitatively.
- the derivation unit normalizes the gradient based on the gradient and a third derivation formula.
- the data on the gradient can be arranged in a format that is easy to handle for quantitative detection of the efferent excitation wave.
- the derivation unit derives the divergence of the gradient based on the gradient and a fourth derivation formula.
- the derivation unit may generate a third image obtained by processing the change in the membrane potential in the second image sequence based on the divergence and a predetermined coefficient.
- the coefficient is a coefficient focusing on the front surface of the gushing excitation wave
- the detection unit detects the gushing excitation wave based on the third image string and a second detection formula.
- the derivation unit determines that the change in the membrane potential in the third image sequence is binary based on the third image sequence and a fifth derivation formula. and the detection unit detects the position and time of occurrence of the gushing excitation wave based on the fourth image sequence and the third detection formula, and the generation unit is an information processing system that generates position information about the location of occurrence and time information about the time of occurrence;
- this aspect it is possible to suppress false positives, which has been a problem in existing methods for detecting gushing excitation waves.
- a high number of false positives increases the likelihood of ablating normal tissue. That is, according to this aspect, it is possible to quantitatively detect the erupting excitation wave while suppressing false positives, and it is possible to prevent damage to normal tissues.
- information processing system 200 information processing device 210 : control unit 211 : acquisition unit 212 : derivation unit 213 : detection unit 214 : generation unit 220 : storage unit 250 : communication unit 260 : communication bus 300 : terminal 310 : control unit 320 : storage unit 330 : display unit 340 : input unit 350 : communication unit 360 : communication bus 410 : membrane potential image 420 : phase map image 430 : phase gradient 440 : divergence image 450 : coefficient applied image 460 : coefficient applied image sequence 470 : Binary image sequence 480 : labeling image 481 : label 482 : label 483 : label 484 : label
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Image Processing (AREA)
Abstract
【課題】湧き出し興奮波の発生位置を検出可能な情報処理システムを提供すること。 【解決手段】本発明の一態様によれば、情報処理システムが提供される。この情報処理システムは、取得部と、導出部と、検出部と、生成部とを備える。取得部は、生体組織における膜電位の変化を表す第1画像列を取得する。導出部は、第1画像列と、第1導出式とに基づいて、循環変数を用いて膜電位の変化を表す第2画像列を導出する。検出部は、第2画像列と、第1検出式とに基づいて、生体組織における湧き出し興奮波の発生位置を検出する。生成部は、発生位置に関する位置情報を生成する。
Description
本発明は、情報処理システム、プログラム及び情報処理方法に関する。
特許文献1には、解析マップ作成装置が開示されている。
この解析マップ作成装置は、興奮波が組織内を伝播することにより興奮に伴って活動する生体組織の各位置における興奮波の位相に基づいて各位置における周囲の位相の分散の程度を示す位相分散値を演算し、各位置における位相分散値の少なくとも一部の時系列に基づいて解析マップを作成する。位相分散値は、周囲の位相の分散の程度を示すから、周囲の位相の分散の程度が大きい位置を旋回興奮波の旋回中心として認定することができる。また、周囲の位相の分散の程度はその時刻より前に旋回中心であったか、或いは、その時刻より後に旋回中心になり得るか、の可能性を見いだすことができる。これらの結果、旋回興奮波に関する解析を行なうための解析マップを作成することができる。
ところで、異常興奮の発生機序として、旋回興奮波と湧き出し興奮波とが知られている。しかしながら、特許文献1に開示された装置は、湧き出し興奮波に対応するものではなかった。
本発明では上記事情を鑑み、湧き出し興奮波の発生位置を検出可能な情報処理システムを提供することとした。
本発明の一態様によれば、情報処理システムが提供される。この情報処理システムは、取得部と、導出部と、検出部と、生成部とを備える。取得部は、生体組織における膜電位の変化を表す第1画像列を取得する。導出部は、第1画像列と、第1導出式とに基づいて、循環変数を用いて膜電位の変化を表す第2画像列を導出する。検出部は、第2画像列と、第1検出式とに基づいて、生体組織における湧き出し興奮波の発生位置を検出する。生成部は、発生位置に関する位置情報を生成する。
このような態様によれば、湧き出し興奮波の発生位置を検出することができる。
以下、図面を用いて本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。
ところで、本実施形態に登場するソフトウェアを実現するためのプログラムは、コンピュータが読み取り可能な非一時的な記録媒体として提供されてもよいし、外部のサーバからダウンロード可能に提供されてもよいし、外部のコンピュータで当該プログラムを起動させてクライアント端末でその機能を実現(いわゆるクラウドコンピューティング)するように提供されてもよい。
また、本実施形態において「部」とは、例えば、広義の回路によって実施されるハードウェア資源と、これらのハードウェア資源によって具体的に実現されうるソフトウェアの情報処理とを合わせたものも含みうる。また、本実施形態においては様々な情報を取り扱うが、これら情報は、例えば電圧・電流を表す信号値の物理的な値、0又は1で構成される2進数のビット集合体としての信号値の高低、又は量子的な重ね合わせ(いわゆる量子ビット)によって表され、広義の回路上で通信・演算が実行されうる。
また、広義の回路とは、回路(Circuit)、回路類(Circuitry)、プロセッサ(Processor)、及びメモリ(Memory)等を少なくとも適当に組み合わせることによって実現される回路である。すなわち、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等を含むものである。
1.ハードウェア構成
第1節では、本実施形態のハードウェア構成について説明する。
第1節では、本実施形態のハードウェア構成について説明する。
1-1.情報処理システム100
図1は、情報処理システム100を表す構成図である。情報処理システム100は、情報処理装置200と、端末300とを備え、これらがネットワークを通じて接続されている。これらの構成要素についてさらに説明する。ここで、情報処理システム100に例示されるシステムとは、1つ又はそれ以上の装置又は構成要素からなるものである。したがって、例えば、情報処理装置200単体であっても情報処理システム100に例示されるシステムになりうる。
図1は、情報処理システム100を表す構成図である。情報処理システム100は、情報処理装置200と、端末300とを備え、これらがネットワークを通じて接続されている。これらの構成要素についてさらに説明する。ここで、情報処理システム100に例示されるシステムとは、1つ又はそれ以上の装置又は構成要素からなるものである。したがって、例えば、情報処理装置200単体であっても情報処理システム100に例示されるシステムになりうる。
1-2.情報処理装置200
図2は、情報処理装置200のハードウェア構成を示すブロック図である。情報処理装置200は、制御部210と、記憶部220と、通信部250とを有し、これらの構成要素が情報処理装置200の内部において通信バス260を介して電気的に接続されている。なお、情報処理装置200は、サーバとして機能しうる。各構成要素についてさらに説明する。
図2は、情報処理装置200のハードウェア構成を示すブロック図である。情報処理装置200は、制御部210と、記憶部220と、通信部250とを有し、これらの構成要素が情報処理装置200の内部において通信バス260を介して電気的に接続されている。なお、情報処理装置200は、サーバとして機能しうる。各構成要素についてさらに説明する。
制御部210は、情報処理装置200に関連する全体動作の処理・制御を行う。制御部210は、例えば、不図示の中央処理装置(Central Processing Unit:CPU)である。制御部210は、記憶部220に記憶された所定のプログラムを読み出すことによって、情報処理装置200に係る種々の機能を実現する。すなわち、記憶部220に記憶されているソフトウェアによる情報処理が、ハードウェアの一例である制御部210によって具体的に実現されることで、制御部210に含まれる各機能部として実行されうる。これらについては、第2節においてさらに詳述する。なお、制御部210は単一であることに限定されず、機能ごとに複数の制御部210を有するように実施してもよい。またそれらの組み合わせであってもよい。
記憶部220は、情報処理装置200の情報処理に必要な様々な情報を記憶する。これは、例えば、制御部210によって実行される情報処理装置200に係る種々のプログラム等を記憶するソリッドステートドライブ(Solid State Drive:SSD)等のストレージデバイスとして、あるいは、プログラムの演算に係る一時的に必要な情報(引数、配列等)を記憶するランダムアクセスメモリ(Random Access Memory:RAM)等のメモリとして実施されうる。また、これらの組み合わせであってもよい。
通信部250は、USB、IEEE1394、Thunderbolt(登録商標)、有線LANネットワーク通信等といった有線型の通信手段が好ましいものの、無線LANネットワーク通信、5G/LTE/3G等のモバイル通信、Bluetooth(登録商標)通信等を必要に応じて含めてもよい。すなわち、これら複数の通信手段の集合として実施することがより好ましい。すなわち、情報処理装置200は、通信部250を介して、端末300とネットワークを介して種々の情報を通信する。
1-3.端末300
図3は、端末300のハードウェア構成を示すブロック図である。端末300は、制御部310と、記憶部320と、表示部330と、入力部340と、通信部350とを有し、これらの構成要素が端末300の内部において通信バス360を介して電気的に接続されている。制御部310、記憶部320及び通信部350の説明は、情報処理装置200における制御部210、記憶部220及び通信部250の説明と略同様のため省略する。
図3は、端末300のハードウェア構成を示すブロック図である。端末300は、制御部310と、記憶部320と、表示部330と、入力部340と、通信部350とを有し、これらの構成要素が端末300の内部において通信バス360を介して電気的に接続されている。制御部310、記憶部320及び通信部350の説明は、情報処理装置200における制御部210、記憶部220及び通信部250の説明と略同様のため省略する。
表示部330は、端末300の筐体に含まれるものであってもよいし、外付けされるものであってもよい。表示部330は、ユーザが操作可能なグラフィカルユーザインターフェース(Graphical User Interface:GUI)の画面を表示する。これは例えば、CRTディスプレイ、液晶ディスプレイ、有機ELディスプレイ及びプラズマディスプレイ等の表示デバイスを、端末300の種類に応じて使い分けて実施することが好ましい。以下では、表示部330は、端末300の筐体に含まれるものとして説明する。
入力部340は、端末300の筐体に含まれるものであってもよいし、外付けされるものであってもよい。例えば、入力部340は、表示部330と一体となってタッチパネルとして実施されてもよい。タッチパネルであれば、ユーザは、タップ操作、スワイプ操作等を入力することができる。もちろん、タッチパネルに代えて、スイッチボタン、マウス、QWERTキーボード等を採用してもよい。すなわち、入力部340は、ユーザによってなされた操作入力を受け付ける。当該入力は、命令信号として、通信バス360を介して制御部310に転送される。そして、制御部310は、必要に応じて所定の制御や演算を実行しうる。
2.機能構成
第2節では、本実施形態の機能構成について説明する。前述の通り、記憶部220に記憶されているソフトウェアによる情報処理がハードウェアの一例である制御部210によって具体的に実現されることで、制御部210に含まれる各機能部として実行されうる。
第2節では、本実施形態の機能構成について説明する。前述の通り、記憶部220に記憶されているソフトウェアによる情報処理がハードウェアの一例である制御部210によって具体的に実現されることで、制御部210に含まれる各機能部として実行されうる。
図4は、情報処理装置200(制御部210)によって実現される機能を示すブロック図である。具体的には、情報処理装置200(制御部210)は、取得部211と、導出部212と、検出部213と、生成部214とを備える。
取得部211は、種々の情報を取得するように構成される。例えば、取得部211は、生体組織における膜電位の変化を表す第1画像列を端末300から取得する。
導出部212は、種々の情報を導出するように構成される。例えば、導出部212は、取得された第1画像列と、第1算出式とに基づいて、循環変数を用いて膜電位の変化を表す第2画像列を導出する。
検出部213は、種々の情報を検出するように構成される。例えば、検出部213は、導出された第2画像列と、第1検出式とに基づいて、生体組織における湧き出し興奮波の発生位置を検出する。
生成部214は、種々の情報を生成するように構成される。例えば、生成部214は、検出された湧き出し興奮波の発生位置に関する位置情報を生成する。
3.情報処理方法
第3節では、前述した情報処理装置200の情報処理方法について説明する。この情報処理方法は、情報処理装置200(制御部210)の各部を各工程として、コンピュータにより実行される。具体的には、この情報処理方法は、取得工程と、導出工程と、検出工程と、生成工程とを備える。取得工程では、生体組織における膜電位の変化を表す第1画像列を取得する。導出工程では、取得された第1画像列と、第1導出式とに基づいて、循環変数を用いて膜電位の変化を表す第2画像列を導出する。検出工程では、導出された第2画像列と、第1検出式とに基づいて、生体組織における湧き出し興奮波の発生位置を検出する。生成工程では、検出された湧き出し興奮波の発生位置に関する位置情報を生成する。
第3節では、前述した情報処理装置200の情報処理方法について説明する。この情報処理方法は、情報処理装置200(制御部210)の各部を各工程として、コンピュータにより実行される。具体的には、この情報処理方法は、取得工程と、導出工程と、検出工程と、生成工程とを備える。取得工程では、生体組織における膜電位の変化を表す第1画像列を取得する。導出工程では、取得された第1画像列と、第1導出式とに基づいて、循環変数を用いて膜電位の変化を表す第2画像列を導出する。検出工程では、導出された第2画像列と、第1検出式とに基づいて、生体組織における湧き出し興奮波の発生位置を検出する。生成工程では、検出された湧き出し興奮波の発生位置に関する位置情報を生成する。
図5は、情報処理装置200によって実行される情報処理の流れを示すアクティビティ図である。以下、このアクティビティ図の各アクティビティに沿って、説明するものとする。図6は、第1画像列に含まれる画像の一例(膜電位画像410)を示す図である。図7は、第2画像列に含まれる画像の一例(位相マップ画像420)を示す図である。図8は、位相マップ画像420において循環変数の勾配を表す一例(位相勾配430)を示す図である。図9は、循環変数の勾配の発散を表す画像の一例(発散画像440)を示す図である。図10は、位相マップ画像420における膜電位の変化が加工された画像の一例(係数適用画像450)を示す図である。図11は、係数適用画像450の画像列から構成される係数適用画像列460を示す図である。図12は、係数適用画像列460における膜電位の変化が二値化された二値化画像列470を示す図である。図13は、生体組織における湧き出し興奮波の発生位置に関する位置情報及び湧き出し興奮波の発生時刻に関する時刻情報をラベリングした結果を示す図である。
ここで、端末300は、不図示の高速度カメラから取得した第1画像列(複数の膜電位画像410から構成される画像列)を記憶しているものとする。第1画像列は、生体組織における膜電位の変化を表す画像列のことである。また、生体組織は、心臓であるものとして説明する。さらに、循環変数は、位相であるものとして説明する。
端末300における制御部310は、心臓における膜電位の変化を表す複数の膜電位画像410から構成される画像列(以下「膜電位画像列」ともいう。)を送信する(アクティビティA110)。膜電位画像列は、請求項の第1画像列に相当する。アクティビティA110では、例えば、次の2段階の情報処理が実行される。(1)制御部310は、記憶部320に記憶された膜電位画像列を読み出す。(2)制御部310は、通信部350を介して、膜電位画像列を情報処理装置200に送信する。
続いて、情報処理装置200における制御部210は、端末300から、膜電位画像列を取得する(アクティビティA120)。換言すると、取得部211は、生体組織における膜電位の変化を表す第1画像列を取得する。アクティビティA120では、例えば、次の2段階の情報処理が実行される。(1)通信部250は、端末300から送信された膜電位画像列を受信する。(2)制御部210は、受信された膜電位画像列を記憶部220に記憶させる。
続いて、情報処理装置200における制御部210は、位相を用いて心臓における膜電位の変化を表す複数の位相マップ画像420から構成される画像列(以下「位相マップ画像列」ともいう。)を導出する(アクティビティA130)。位相マップ画像列は、請求項の第2画像列に相当する。位相マップ画像列は、例えば、膜電位画像列をヒルベルト変換(請求項の第1導出式に相当)することにより導出される。換言すると、導出部212は、第1画像列と、第1導出式とに基づいて、循環変数を用いて生体組織における膜電位の変化を表す第2画像列を導出する。アクティビティA130では、例えば、次の3段階の情報処理が実行される。(1)制御部210は、記憶部220に記憶された膜電位画像列及びヒルベルト変換に係るプログラムを読み出す。(2)制御部210は、導出処理を実行し、位相マップ画像列を導出する。(3)制御部210は、導出された位相マップ画像列を記憶部220に記憶させる。
ここで、第1導出式の一例であるヒルベルト変換に関する(1)式を示す。
続いて、情報処理装置200における制御部210は、各位相マップ画像420について位相勾配430を導出する(アクティビティA140)。位相勾配430は、例えば、各位相マップ画像420を偏微分してベクトル化する(請求項の第2導出式に相当)ことにより導出される。換言すると、導出部212は、第2画像列と、第2導出式とに基づいて、循環変数の勾配を導出する。アクティビティA140では、例えば、次の3段階の情報処理が実行される。(1)制御部210は、記憶部220に記憶された第2画像列及び勾配に関するプログラム(例えば、偏微分をしてベクトル化をするプログラム)を読み出す。(2)制御部210は、導出処理を実行し、各位相マップ画像420について位相勾配430を導出する。(3)制御部210は、導出された位相勾配430を記憶部220に記憶させる。
続いて、情報処理装置200における制御部210は、各位相勾配430を正規化する(アクティビティA150)。正規化は、例えば、位相勾配430に対して、位相勾配430の逆数を掛ける(請求項の第3導出式に相当)ことにより実行される。換言すると、導出部212は、循環変数の勾配と、第3導出式とに基づいて、循環変数の勾配を正規化する。アクティビティA150では、例えば、次の3段階の情報処理が実行される。(1)制御部210は、記憶部220に記憶された位相勾配430及び正規化に関するプログラム(例えば、位相勾配430の逆数を求めて当該逆数にて位相勾配430を処理するプログラム)を読み出す。(2)制御部210は、正規化処理を実行し、各位相勾配430を正規化する。(3)制御部210は、正規化された各位相勾配430を記憶部220に記憶させる。
続いて、情報処理装置200における制御部210は、正規化された各位相勾配430について発散画像440を導出する(アクティビティA160)。発散画像440は、例えば、正規化された各位相勾配430におけるベクトル場の各成分をその軸方向に偏微分したものを加算する(請求項の第4導出式に相当)ことにより導出される。換言すると、導出部212は、循環変数の勾配と、第4導出式とに基づいて、循環変数の勾配の発散を導出する。アクティビティA160では、例えば、次の3段階の情報処理が実行される。(1)制御部210は、記憶部220に記憶された、正規化された位相勾配430及び発散に関するプログラム(例えば、ベクトル場の各成分をその軸方向に偏微分したものを加算するプログラム)を読み出す。(2)制御部210は、導出処理を実行し、正規化された位相勾配430について発散画像440を導出する。(3)制御部210は、導出された各発散画像440を記憶部220に記憶させる。
ここで、第4導出式の一例である発散に関する(2)式を示す。
続いて、情報処理装置200における制御部210は、各発散画像440について複数の係数適用画像450から構成される画像列(以下「係数適用画像列460」ともいう。)を導出する(アクティビティA170)。係数適用画像列460は、位相マップ画像列における膜電位の変化が加工された画像列である。係数適用画像列460は、請求項の第3画像列に相当する。換言すると、導出部212は、循環変数の勾配の発散と、所定の係数とに基づいて、第2画像列における膜電位の変化が加工された第3画像列を導出する。当該係数は、湧き出し興奮波の前面にのみ着目する係数である。アクティビティA170では、例えば、次の3段階の情報処理が実行される。(1)制御部210は、記憶部220に記憶された複数の発散画像440及び所定の係数を読み出す。(2)制御部210は、導出処理を実行し、係数適用画像列460を導出する。(4)制御部210は、導出された係数適用画像列460を記憶部220に記憶させる。
ここで、所定の係数に関する(3)式及び(4)式を示す。
続いて、情報処理装置200における制御部210は、係数適用画像列460から二値化画像列470を導出する(アクティビティA180)。二値化画像列470は、例えば、閾値を任意の値(例えば、0.8)に設定し、当該閾値に基づいて二値化処理をする(請求項の第5導出式に相当)ことにより導出される。二値化画像列470は、請求項の第4画像列に相当する。換言すると、導出部212は、第3画像列と、第5導出式とに基づいて、第3画像列における膜電位の変化が二値化された第4画像列を導出する。閾値は、具体的には例えば、0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。アクティビティA180では、例えば、次の3段階の情報処理が実行される。(1)制御部210は、記憶部220に記憶された係数適用画像列460及び二値化処理に関するプログラムを読み出す。(2)制御部210は、導出処理を実行し、二値化画像列470を導出する。(3)制御部210は、導出された二値化画像列470を記憶部220に記憶させる。
続いて、情報処理装置200における制御部210は、心臓における湧き出し興奮波の発生位置及び発生時刻を検出する(アクティビティA190)。湧き出し興奮波の発生位置及び発生時刻は、例えば、二値化画像列470における興奮波前面に対応する部分をラベリングし、このラベリングした部分の時空間方向の重心に基づいて検出される(請求項の第3検出式に相当)。換言すると、検出部213は、第4画像列と、第3検出式とに基づいて、生体組織における湧き出し興奮波の発生位置及び発生時刻を検出する。アクティビティA190では、例えば、次の3段階の情報処理が実行される。(1)制御部210は、記憶部220に記憶された二値化画像列470及び第3検出式を読み出す。(2)制御部210は、検出処理を実行し、湧き出し興奮波の発生位置及び発生時刻を検出する。(3)制御部210は、検出された湧き出し興奮波の発生位置及び発生時刻に関する情報を記憶部220に記憶させる。
続いて、情報処理装置200における制御部210は、心臓における湧き出し興奮波の発生位置に関する位置情報、及び、発生時刻に関する時刻情報を示す、ラベリング画像480を生成する(アクティビティA200)。換言すると、生成部214は、生体組織における湧き出し興奮波の発生位置に関する位置情報、及び、生体組織における湧き出し興奮波の発生時刻に関する時刻情報を生成する。アクティビティA200では、例えば、次の3段階の情報処理が実行される。(1)制御部210は、記憶部220に記憶された湧き出し興奮波の発生位置及び発生時刻に関する情報を読み出す。(2)制御部210は、生成処理を実行し、ラベリング画像480を生成する。(3)制御部210は、ラベリング画像480を記憶部220に記憶させる。
続いて、情報処理装置200における制御部210は、ラベリング画像480を端末300に送信する(アクティビティA210)。アクティビティA210では、例えば、次の2段階の情報処理が実行される。(1)制御部210は、記憶部220に記憶されたラベリング画像480を読み出す。(2)制御部210は、通信部250を介して、ラベリング画像480を端末300に送信する。
続いて、端末300における制御部310は、情報処理装置200からラベリング画像480を受信する(アクティビティA220)。アクティビティA220では、例えば、次の2段階の情報処理が実行される。(1)通信部350は、情報処理装置200から送信されたラベリング画像480を受信する。(2)制御部310は、受信されたラベリング画像480を記憶部320に記憶させる。
続いて、端末300における制御部310は、ラベリング画像480を表示部330に表示させる(アクティビティA230)。アクティビティA230では、例えば、次の2段階の情報処理が実行される。(1)制御部310は、記憶部320に記憶されたラベリング画像480を読み出す。(2)制御部310は、表示処理を実行し、ラベリング画像480を表示部330に表示させる。
ラベリング画像480には、ラベル481、ラベル482、ラベル483及びラベル484が描画されている。ラベル481、ラベル482、ラベル483及びラベル484は、心臓における湧き出し興奮波の発生位置及び発生時刻に対応する。すなわち、任意の位置を原点とし、0秒からカウントしたとき、次の(1)~(4)の順で、湧き出し興奮波が発生したことを認識することができる。(1)まず、32ピクセル×12ピクセルの位置において湧き出し興奮波が発生した(ラベル481)。(2)続いて、(1)の100ミリ秒後に、33ピクセル×3ピクセルの位置において湧き出し興奮波が発生した(ラベル482)。(3)続いて、(2)の10ミリ秒後に、34ピクセル×13ピクセルの位置において湧き出し興奮波が発生した(ラベル483)。(4)続いて、(3)の80ミリ秒後に、35ピクセル×2ピクセルの位置において湧き出し興奮波が発生した(ラベル484)。
4.実験例
第4節では、本実施形態の実験例について説明する。
第4節では、本実施形態の実験例について説明する。
4-1.実験条件
まず、ブタ摘出心から房室ブロックを作成し、ブタランゲンドルフ灌流心標本を作成した。続いて、灌流心標本を膜電位感受性色素(Thermo Fisher Scientific製のDi-4-ANNEPS)で染色し、モーションアーティファクトを除去するために筋収縮抑制剤(Sigma-Aldrich製の2,3-butanedionemonoxime)を灌流液に添加した。続いて、灌流心標本に心房細動を誘発させるために、灌流心標本の心房内に水柱圧を加え、その後、刺激装置(Nihon Kohden製のSEC-5104)にて灌流心標本に通電刺激を印加した。
まず、ブタ摘出心から房室ブロックを作成し、ブタランゲンドルフ灌流心標本を作成した。続いて、灌流心標本を膜電位感受性色素(Thermo Fisher Scientific製のDi-4-ANNEPS)で染色し、モーションアーティファクトを除去するために筋収縮抑制剤(Sigma-Aldrich製の2,3-butanedionemonoxime)を灌流液に添加した。続いて、灌流心標本に心房細動を誘発させるために、灌流心標本の心房内に水柱圧を加え、その後、刺激装置(Nihon Kohden製のSEC-5104)にて灌流心標本に通電刺激を印加した。
続いて、高輝度青緑色LED(Opto Supply製のXeom 3 Power Pure Green LED)をリング状に200個配置したリングライトから520nmの励起光を灌流心標本に照射した。続いて、生じた放射蛍光をリングライト中心の覗き穴から、カットオフ波長600nmのロングパスフィルタを介して高速度カメラ(Photron製のMini-AX50)で、1000fps、512ピクセル×512ピクセルの条件で撮影した。続いて、撮影した画像列を端末300に取り込んだ。
4-2.実施例
実施例では、本実施形態における処理を実行した。すなわち、端末300に取り込んだ画像列を情報処理装置200で処理し(アクティビティA120からA210)、生成されたラベリング画像480を端末300で表示し、湧き出し興奮波の発生位置及び発生時刻を確認した。
実施例では、本実施形態における処理を実行した。すなわち、端末300に取り込んだ画像列を情報処理装置200で処理し(アクティビティA120からA210)、生成されたラベリング画像480を端末300で表示し、湧き出し興奮波の発生位置及び発生時刻を確認した。
4-3.比較例
比較例では、既存手法における処理を実行した。すなわち、端末300に取り込んだ画像列を次のように処理した。まず、湧き出し興奮波の通過時刻を算出し、次の興奮までの時間をマッピングして、アクティベーションマップを作成した。続いて、作成したアクティベーションマップに基づいて、(5)式及び(6)式から勾配をそれぞれ求めた。続いて、(5)式及び(6)式を(7)式に代入して、興奮波の伝導速度を算出した。続いて、(7)式を(8)式に代入して、アクティベーションマップの発散を導出した。続いて、当該発散の高い領域を湧き出し興奮波として検出し、湧き出し興奮波の発生位置及び発生時刻を確認した。
比較例では、既存手法における処理を実行した。すなわち、端末300に取り込んだ画像列を次のように処理した。まず、湧き出し興奮波の通過時刻を算出し、次の興奮までの時間をマッピングして、アクティベーションマップを作成した。続いて、作成したアクティベーションマップに基づいて、(5)式及び(6)式から勾配をそれぞれ求めた。続いて、(5)式及び(6)式を(7)式に代入して、興奮波の伝導速度を算出した。続いて、(7)式を(8)式に代入して、アクティベーションマップの発散を導出した。続いて、当該発散の高い領域を湧き出し興奮波として検出し、湧き出し興奮波の発生位置及び発生時刻を確認した。
4-4.評価方法
端末300に取り込んだ画像列から目視で湧き出し興奮波の発生位置を決定し、興奮波前面の通過時刻を湧き出し興奮波の発生時刻として決定したものを正解とした。そして、正解の発生位置と実施例及び比較例の発生位置とを比較し、距離の相違が4ピクセル以内であることを第1条件とした。また、正解の発生時刻と実施例の発生時刻とを比較し、間隔の相違が10ミリ秒以内であることを第2条件とした。そして、実施例及び比較例のそれぞれにおいて、第1条件と第2条件とを満たした場合に、湧き出し興奮波の検出成功とした。
端末300に取り込んだ画像列から目視で湧き出し興奮波の発生位置を決定し、興奮波前面の通過時刻を湧き出し興奮波の発生時刻として決定したものを正解とした。そして、正解の発生位置と実施例及び比較例の発生位置とを比較し、距離の相違が4ピクセル以内であることを第1条件とした。また、正解の発生時刻と実施例の発生時刻とを比較し、間隔の相違が10ミリ秒以内であることを第2条件とした。そして、実施例及び比較例のそれぞれにおいて、第1条件と第2条件とを満たした場合に、湧き出し興奮波の検出成功とした。
4-5.評価結果
表1及び表2において、Positiveは湧き出し興奮波の発生あり、Negativeは湧き出し興奮波の発生なしとした。
表1及び表2において、Positiveは湧き出し興奮波の発生あり、Negativeは湧き出し興奮波の発生なしとした。
4-6.結論
実施例では、比較例における偽陽性(正解値がNegativeの場合に、Positiveと検出されたこと)を抑制できていることが示された。すなわち、実施例は、既存手法である比較例に対して優位であることが示された。
実施例では、比較例における偽陽性(正解値がNegativeの場合に、Positiveと検出されたこと)を抑制できていることが示された。すなわち、実施例は、既存手法である比較例に対して優位であることが示された。
以上、本発明の実施形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
5.変形例
第5節では、本実施形態の変形例について説明する。
第5節では、本実施形態の変形例について説明する。
本実施形態の態様は、プログラムであってもよい。このプログラムは、情報処理装置200の各部としてコンピュータを機能させる。
制御部210は、各種データ及び各種情報について記憶部220に書き出し処理(記憶処理)及び読み出し処理をしているが、これに限られず、例えば、制御部210内のレジスタやキャッシュメモリ等を使用して、各アクティビティの情報処理を実行してもよい。
検出部213は、第4画像列と、第3検出式とに基づいて、湧き出し興奮波の発生位置及び発生時刻を検出するものとして説明したが、これに限られることなく、例えば、検出部213は、第3画像列と、第2検出式とに基づいて、湧き出し興奮波の発生位置及び発生時刻を検出してもよい。このとき、第2検出式は、例えば、係数適用画像列460における興奮波前面に対応する部分をラベリングし、このラベリングした部分の時空間方向の重心に基づいて検出する式であってもよい。
検出部213は、湧き出し興奮波の発生位置及び発生時刻を検出するものとして説明したが、これに限られることなく、湧き出し興奮波の発生位置を検出するものであればよい。したがって、例えば、検出部213は、第2画像列と、第1検出式とに基づいて、生体組織における湧き出し興奮波の発生位置を検出してもよい。このとき、第1検出式は、例えば、位相マップ画像列における興奮波前面に対応する部分をラベリングし、このラベリングした部分の空間方向の重心に基づいて検出する式であってもよい。
生成部214は、発生位置に関する位置情報、及び、発生時刻に関する時刻情報を生成するものとして説明したが、これに限られることなく、湧き出し興奮波の発生位置に関する位置情報を生成するものであればよい。したがって、例えば、生成部214は、湧き出し興奮波の発生位置に関する位置情報を生成してもよい。
生体組織は、心臓であるものとして説明したが、これに限られることなく、例えば、神経であってもよい。
6.その他
次に記載の各態様で提供されてもよい。
次に記載の各態様で提供されてもよい。
(1)情報処理システムであって、取得部と、導出部と、検出部と、生成部とを備え、前記取得部は、生体組織における膜電位の変化を表す第1画像列を取得し、前記導出部は、前記第1画像列と、第1導出式とに基づいて、循環変数を用いて前記膜電位の変化を表す第2画像列を導出し、前記検出部は、前記第2画像列と、第1検出式とに基づいて、前記生体組織における湧き出し興奮波の発生位置を検出し、前記生成部は、前記発生位置に関する位置情報を生成する、情報処理システム。
このような態様によれば、湧き出し興奮波を検出するための既存手法において問題となっていた偽陽性を抑制することができる。偽陽性の数が多い場合、正常な組織をアブレーションしてしまう可能性が高くなる。すなわち、このような態様によれば、偽陽性を抑制しつつ湧き出し興奮波の定量的検出が可能であり、正常な組織の損傷を防止することができる。
(2)上記(1)に記載の情報処理システムにおいて、前記導出部は、前記第2画像列と、第2導出式とに基づいて、前記循環変数の勾配を導出する、情報処理システム。
このような態様によれば、湧き出し興奮波を検出するための既存手法において問題となっていた勾配の時間的恒常性の影響を抑制することができる。したがって、湧き出し興奮波を定量的に検出することができる。
(3)上記(2)に記載の情報処理システムにおいて、前記導出部は、前記勾配と、第3導出式とに基づいて、前記勾配を正規化する、情報処理システム。
このような態様によれば、湧き出し興奮波の定量的検出のために、勾配に関するデータを扱いやすい形式に整えることができる。
(4)上記(2)又は(3)に記載の情報処理システムにおいて、前記導出部は、前記勾配と、第4導出式とに基づいて、前記勾配の発散を導出する、情報処理システム。
このような態様によれば、湧き出し興奮波の定量的検出のために必要なデータを導出することができる。
(5)上記(4)に記載の情報処理システムにおいて、前記導出部は、前記発散と、所定の係数とに基づいて、前記第2画像列における前記膜電位の変化が加工された第3画像列を導出し、前記係数は、前記湧き出し興奮波の前面に着目する係数であり、前記検出部は、前記第3画像列と、第2検出式とに基づいて、前記湧き出し興奮波の発生位置及び発生時刻を検出し、前記生成部は、前記発生位置に関する位置情報、及び、前記発生時刻に関する時刻情報を生成する、情報処理システム。
このような態様によれば、湧き出し興奮波が発生した時間帯のみに反応させることにより、勾配の恒常性の影響を受けずに湧き出し興奮波の発生時刻をさらに検出することができる。
(6)上記(5)に記載の情報処理システムにおいて、前記導出部は、前記第3画像列と、第5導出式とに基づいて、前記第3画像列における前記膜電位の変化が二値化された第4画像列を導出し、前記検出部は、前記第4画像列と、第3検出式とに基づいて、前記湧き出し興奮波の発生位置及び発生時刻を検出し、前記生成部は、前記発生位置に関する位置情報、及び、前記発生時刻に関する時刻情報を生成する、情報処理システム。
このような態様によれば、湧き出し興奮波の発生位置及び発生時刻を高精度に検出することができる。
(7)上記(1)から(6)までの何れか1つに記載の情報処理システムにおいて、前記生体組織は、心臓又は神経である、情報処理システム。
このような態様によれば、心臓又は神経において、湧き出し興奮波を定量的に検出することができる。
(8)上記(1)から(7)までの何れか1つに記載の情報処理システムにおいて、前記循環変数は、位相である、情報処理システム。
このような態様によれば、簡易な構成で、湧き出し興奮波を定量的に検出することができる。
(9)プログラムであって、上記(1)から(8)までの何れか1つに記載の情報処理システムの各部としてコンピュータを機能させる、プログラム。
このような態様によれば、湧き出し興奮波を検出するための既存手法において問題となっていた偽陽性を抑制することができる。偽陽性の数が多い場合、正常な組織をアブレーションしてしまう可能性が高くなる。すなわち、このような態様によれば、偽陽性を抑制しつつ湧き出し興奮波の定量的検出が可能であり、正常な組織の損傷を防止することができる。
(10)情報処理方法であって、上記(1)から(8)までの何れか1つに記載の情報処理システムの各部を各工程として、コンピュータにより実行される、情報処理方法。
このような態様によれば、湧き出し興奮波を検出するための既存手法において問題となっていた偽陽性を抑制することができる。偽陽性の数が多い場合、正常な組織をアブレーションしてしまう可能性が高くなる。すなわち、このような態様によれば、偽陽性を抑制しつつ湧き出し興奮波の定量的検出が可能であり、正常な組織の損傷を防止することができる。
もちろん、この限りではない。
もちろん、この限りではない。
100 :情報処理システム
200 :情報処理装置
210 :制御部
211 :取得部
212 :導出部
213 :検出部
214 :生成部
220 :記憶部
250 :通信部
260 :通信バス
300 :端末
310 :制御部
320 :記憶部
330 :表示部
340 :入力部
350 :通信部
360 :通信バス
410 :膜電位画像
420 :位相マップ画像
430 :位相勾配
440 :発散画像
450 :係数適用画像
460 :係数適用画像列
470 :二値化画像列
480 :ラベリング画像
481 :ラベル
482 :ラベル
483 :ラベル
484 :ラベル
200 :情報処理装置
210 :制御部
211 :取得部
212 :導出部
213 :検出部
214 :生成部
220 :記憶部
250 :通信部
260 :通信バス
300 :端末
310 :制御部
320 :記憶部
330 :表示部
340 :入力部
350 :通信部
360 :通信バス
410 :膜電位画像
420 :位相マップ画像
430 :位相勾配
440 :発散画像
450 :係数適用画像
460 :係数適用画像列
470 :二値化画像列
480 :ラベリング画像
481 :ラベル
482 :ラベル
483 :ラベル
484 :ラベル
Claims (10)
- 情報処理システムであって、
取得部と、導出部と、検出部と、生成部とを備え、
前記取得部は、生体組織における膜電位の変化を表す第1画像列を取得し、
前記導出部は、前記第1画像列と、第1導出式とに基づいて、循環変数を用いて前記膜電位の変化を表す第2画像列を導出し、
前記検出部は、前記第2画像列と、第1検出式とに基づいて、前記生体組織における湧き出し興奮波の発生位置を検出し、
前記生成部は、前記発生位置に関する位置情報を生成する、
情報処理システム。 - 請求項1に記載の情報処理システムにおいて、
前記導出部は、前記第2画像列と、第2導出式とに基づいて、前記循環変数の勾配を導出する、
情報処理システム。 - 請求項2に記載の情報処理システムにおいて、
前記導出部は、前記勾配と、第3導出式とに基づいて、前記勾配を正規化する、
情報処理システム。 - 請求項2又は3に記載の情報処理システムにおいて、
前記導出部は、前記勾配と、第4導出式とに基づいて、前記勾配の発散を導出する、
情報処理システム。 - 請求項4に記載の情報処理システムにおいて、
前記導出部は、前記発散と、所定の係数とに基づいて、前記第2画像列における前記膜電位の変化が加工された第3画像列を導出し、
前記係数は、前記湧き出し興奮波の前面に着目する係数であり、
前記検出部は、前記第3画像列と、第2検出式とに基づいて、前記湧き出し興奮波の発生位置及び発生時刻を検出し、
前記生成部は、前記発生位置に関する位置情報、及び、前記発生時刻に関する時刻情報を生成する、
情報処理システム。 - 請求項5に記載の情報処理システムにおいて、
前記導出部は、前記第3画像列と、第5導出式とに基づいて、前記第3画像列における前記膜電位の変化が二値化された第4画像列を導出し、
前記検出部は、前記第4画像列と、第3検出式とに基づいて、前記湧き出し興奮波の発生位置及び発生時刻を検出し、
前記生成部は、前記発生位置に関する位置情報、及び、前記発生時刻に関する時刻情報を生成する、
情報処理システム。 - 請求項1から6までの何れか1項に記載の情報処理システムにおいて、
前記生体組織は、心臓又は神経である、
情報処理システム。 - 請求項1から7までの何れか1項に記載の情報処理システムにおいて、
前記循環変数は、位相である、
情報処理システム。 - プログラムであって、
請求項1から8までの何れか1項に記載の情報処理システムの各部としてコンピュータを機能させる、
プログラム。 - 情報処理方法であって、
請求項1から8までの何れか1項に記載の情報処理システムの各部を各工程として、コンピュータにより実行される、
情報処理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023566376A JPWO2023106387A1 (ja) | 2021-12-10 | 2022-12-09 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163288009P | 2021-12-10 | 2021-12-10 | |
US63/288,009 | 2021-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023106387A1 true WO2023106387A1 (ja) | 2023-06-15 |
Family
ID=86730631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/045402 WO2023106387A1 (ja) | 2021-12-10 | 2022-12-09 | 情報処理システム、プログラム及び情報処理方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023106387A1 (ja) |
WO (1) | WO2023106387A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180796A1 (ja) * | 2017-03-31 | 2018-10-04 | 国立大学法人東京大学 | 解析マップ作成装置およびプログラム |
JP2020062403A (ja) * | 2018-10-15 | 2020-04-23 | バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. | 興奮波面のマッピング |
WO2020153468A1 (ja) * | 2019-01-25 | 2020-07-30 | 国立大学法人東京大学 | 生体組織の電極配置推定方法 |
-
2022
- 2022-12-09 JP JP2023566376A patent/JPWO2023106387A1/ja active Pending
- 2022-12-09 WO PCT/JP2022/045402 patent/WO2023106387A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180796A1 (ja) * | 2017-03-31 | 2018-10-04 | 国立大学法人東京大学 | 解析マップ作成装置およびプログラム |
JP2020062403A (ja) * | 2018-10-15 | 2020-04-23 | バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. | 興奮波面のマッピング |
WO2020153468A1 (ja) * | 2019-01-25 | 2020-07-30 | 国立大学法人東京大学 | 生体組織の電極配置推定方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023106387A1 (ja) | 2023-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gupta et al. | Modified support vector machine for detecting stress level using EEG signals | |
Gao et al. | Classification of EEG signals on VEP-based BCI systems with broad learning | |
US10824225B2 (en) | Methods and apparatuses for determining head movement | |
Freeman et al. | Suppression without inhibition in visual cortex | |
Li et al. | Contour saliency in primary visual cortex | |
Chauvin et al. | Accurate statistical tests for smooth classification images | |
Tu et al. | Category-selective attention modulates unconscious processes in the middle occipital gyrus | |
Meyen et al. | Advancing research on unconscious priming: When can scientists claim an indirect task advantage? | |
Partovi et al. | Automatic detection of retinal exudates in fundus images of diabetic retinopathy patients | |
US11087877B1 (en) | Identifying anomalous brain data | |
US11514578B2 (en) | Deriving target data from selected brain data | |
Shukla et al. | Performance improvement of P300-based home appliances control classification using convolution neural network | |
Arunachalam et al. | Improved multiscale entropy technique with nearest‐neighbor moving‐average kernel for nonlinear and nonstationary short‐time biomedical signal analysis | |
Zafar et al. | Initial-dip-based classification for fNIRS-BCI | |
Maher et al. | Greater perceptual sensitivity to happy facial expression | |
WO2023106387A1 (ja) | 情報処理システム、プログラム及び情報処理方法 | |
Tapia et al. | Semantic segmentation of periocular near-infra-red eye images under alcohol effects | |
Jones et al. | Faces, locations, and tools: a proposed two-stimulus P300 brain computer interface | |
Gao et al. | Multivariate weighted recurrence network analysis of EEG signals from ERP-based smart home system | |
Hag et al. | A wearable single EEG channel analysis for mental stress state detection | |
Al-Rasheed et al. | An Ensemble of Transfer Learning Models for the Prediction of Skin Lesions with Conditional Generative Adversarial Networks | |
Lee et al. | An improved P300 extraction using ICA-R for P300-BCI speller | |
Cervantes-Sanchez et al. | Segmentation of coronary angiograms using Gabor filters and Boltzmann univariate marginal distribution algorithm | |
US20210082111A1 (en) | Information processing device, information processing method, and program | |
Uran et al. | Predictability in natural images determines V1 firing rates and synchronization: A deep neural network approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22904314 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023566376 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |