WO2023106378A1 - Electronic appliance and analysis method - Google Patents
Electronic appliance and analysis method Download PDFInfo
- Publication number
- WO2023106378A1 WO2023106378A1 PCT/JP2022/045335 JP2022045335W WO2023106378A1 WO 2023106378 A1 WO2023106378 A1 WO 2023106378A1 JP 2022045335 W JP2022045335 W JP 2022045335W WO 2023106378 A1 WO2023106378 A1 WO 2023106378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- circuit constants
- analysis
- voltage
- circuit
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 52
- 238000005259 measurement Methods 0.000 claims abstract description 38
- 238000000491 multivariate analysis Methods 0.000 claims abstract description 35
- 238000007600 charging Methods 0.000 claims abstract description 30
- 238000003860 storage Methods 0.000 claims abstract description 30
- 238000009826 distribution Methods 0.000 claims abstract description 27
- 238000007599 discharging Methods 0.000 claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 29
- 238000012706 support-vector machine Methods 0.000 claims description 3
- 230000006866 deterioration Effects 0.000 description 23
- 230000002950 deficient Effects 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 11
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 9
- 230000005856 abnormality Effects 0.000 description 9
- 229910001416 lithium ion Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 206010000117 Abnormal behaviour Diseases 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000002847 impedance measurement Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/396—Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This technology relates to electronic devices and analysis methods.
- Patent Document 1 attention is paid to internal resistance as a circuit constant used for determining deterioration of a secondary battery.
- coulomb counting is performed during CV charging in CCCV charging, and the internal resistance is calculated with high accuracy based on the amount of charged electricity.
- An electronic device includes a measurement unit, a storage unit, a calculation unit, and an analysis unit.
- the measurement unit measures the voltage and current of the plurality of single cells included in the assembled battery during and after charging or discharging of the assembled battery configured including the plurality of single cells.
- the storage unit stores voltage values and current values obtained by measurement by the measurement unit.
- the calculator calculates two or more circuit constants of an equivalent circuit of the unit cell for each unit cell using the voltage value and the current value stored in the storage unit.
- the analysis unit performs multivariate analysis using distribution information of two or more circuit constants in a plurality of cells or distribution information of two or more circuit constants in a plurality of normal batteries.
- An electronic device includes a measurement unit, a storage unit, a calculation unit, and an analysis unit.
- the measuring unit measures the voltage and current of the single cell during and after the charging or discharging of the single cell.
- the storage unit stores voltage values and current values obtained by measurement by the measurement unit.
- the calculation unit calculates two or more circuit constants of the equivalent circuit of the cell using the voltage value and the current value stored in the storage unit.
- the analysis unit performs multivariate analysis using distribution information of two or more circuit constants in a plurality of normal batteries.
- An analysis method includes the following four steps.
- Calculation step of calculating (D) Solution step of performing multivariate analysis using distribution information of two or more circuit constants in a plurality of cells or distribution information of two or more circuit constants in a plurality of normal batteries
- An analysis method includes the following four steps.
- A) A measurement step of measuring the voltage and current of the single cell during and after the charging or discharging of the single cell
- B A storage step of storing the voltage and current values obtained in the measurement step
- C) A calculation step of calculating two or more circuit constants of the equivalent circuit of the unit cell using the voltage and current values stored in the storage step
- D Distribution information of the two or more circuit constants in a plurality of normal batteries
- distribution information of two or more circuit constants in a plurality of cells or two or more circuit constants in a plurality of normal batteries Since the multivariate analysis is performed using the distribution information of one or more circuit constants, it is possible to analyze the deterioration of the secondary battery due to various deterioration modes.
- multivariate analysis is performed using distribution information of two or more circuit constants in a plurality of normal batteries. Therefore, it is possible to analyze the deterioration of the secondary battery due to various deterioration modes.
- FIG. 2 is a diagram showing an equivalent circuit of a secondary battery that is the object of analysis of the analysis apparatus of FIG. 1; 3 is a diagram showing an example of an analysis procedure in the analysis device of FIG. 1; FIG. FIG. 2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1; FIG. 2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1; FIG. 2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1; FIG. 2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1; FIG. 2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1; FIG. 2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1; FIG. 2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1; FIG.
- FIG. 2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1;
- FIG. 2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1;
- FIG. 2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1;
- FIG. 2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1;
- It is a figure showing the example of a changed completely type of the functional block of the analysis device concerning one embodiment of this art.
- the analysis device 10 is a device that analyzes the state of deterioration of a secondary battery.
- the secondary battery to be analyzed by the analysis device 10 is the assembled battery 20 .
- the assembled battery 20 is, for example, a lithium ion secondary battery.
- the assembled battery 20 includes a plurality of single cells 21 .
- Each unit cell 21 may be a unit cell, or may be a battery block in which a plurality of unit cells are connected.
- a plurality of secondary batteries may be connected in series, or a plurality of secondary batteries may be connected in parallel.
- the analysis device 10 includes, for example, a charge/discharge unit 11, a voltage measurement unit 12, a current measurement unit 13, a temporary storage unit 14, a circuit constant calculation unit 15, and a multivariate analysis unit 16, as shown in FIG. .
- the charging/discharging unit 11 is a device that discharges and charges the assembled battery 20 installed in the analysis device 10 .
- the charging/discharging unit 11 can perform, for example, CCCV charging as charging.
- the charging/discharging section 11 has a charging circuit including, for example, a generator and a converter. This charging circuit controls the voltage for charging the assembled battery 20 .
- the voltage measurement unit 12 has a measurement circuit that measures the voltage of each cell 21 included in the assembled battery 20 .
- FIG. 1 illustrates a configuration in which wiring is connected to the positive and negative electrodes of each cell 21 and the voltage of each cell 21 is measured by measuring the voltage acquired through the wiring.
- the method of measuring the voltage of each cell 21 is not limited to this method.
- the voltage measurement unit 12 stores data (voltage value) on the voltage measured by the measurement circuit in the temporary storage unit 14 .
- the voltage measurement unit 12 measures the voltage of each unit cell 21 during and after charging or discharging of the assembled battery 20 (steps S102 and S106 in FIG. 3).
- the current measurement unit 13 has a measurement circuit that measures the current of each unit cell 21 included in the assembled battery 20 .
- FIG. 1 illustrates a configuration in which wiring is connected to the positive electrode and the negative electrode of the assembled battery 20, and the current of each unit cell 21 is measured by measuring the current acquired through the wiring.
- the method of measuring the current of each unit cell 21 is not limited to this method.
- the current measurement unit 13 stores data (current value) on the current measured by the measurement circuit in the temporary storage unit 14 .
- the current measurement unit 13 measures the current of each unit cell 21 (that is, the current of the assembled battery 20) during and after charging or discharging the assembled battery 20 (steps S102 and S106 in FIG. 3).
- the temporary storage unit 14 includes, for example, a volatile memory or a nonvolatile memory.
- the temporary storage unit 14 stores the voltage value of each cell 21 measured by the voltage measurement unit 12 and the current value of each cell 21 measured by the current measurement unit 13 .
- the temporary storage unit 14 stores voltage values and current values measured during and after charging or discharging of the assembled battery 20 (steps S103 and S107 in FIG. 3).
- the circuit constant calculator 15 calculates the equivalent circuit of the unit cell 21 using the voltage value and current value during and after charging or discharging for each unit cell 21 stored in the temporary storage unit 14. Two or more circuit constants are calculated for each cell 21 (step S109 in FIG. 3).
- FIG. 2 shows an equivalent circuit of each unit cell 21.
- Each single cell 21, as shown in FIG. 2 has an inductance L, a solution resistance Rs, a charge transfer resistance Rct, a Warburg impedance ⁇ , a constant phase element CPE associated with an electric double layer capacitance Cdl, and a differential capacitance C′. It is represented by an equivalent circuit consisting of elements. The following eight circuit constants possessed by these six elements are calculated by curve fitting.
- inductance L solution resistance Rs, charge transfer resistance Rct, Warburg impedance ⁇ , parameter CPE (p), parameter CPE (T) and differential capacitance C′, for example, as the output of analysis software EIS manufactured by Hokuto Denko Co., Ltd. can get.
- the electric double layer capacitance Cdl is calculated by the following formula described in "Electrochemical Impedance Method" by Masayuki Itagaki, Maruzen Publishing (p.84).
- Cdl CPE (T) (1/CPE (p)) Rct ((1-CPE (p))/CPE (p))
- the multivariate analysis unit 16 derives distribution information of two or more circuit constants in the plurality of cells 21, and performs multivariate analysis using the obtained distribution information (step S110 in FIG. 3).
- the multivariate analysis unit 16 uses, for example, the Mahalanobis-Taguchi method or the one-class support vector machine method as a method of multivariate analysis. Multivariate analysis using the Mahalanobis-Taguchi method will be described in detail below.
- the multivariate analysis unit 16 derives the degree of abnormality ai for each cell 21 by, for example, performing the following multivariate analysis.
- Two-step charging was performed in which constant-current charging was performed at a set current value until reaching the set voltage, and constant-voltage charging was performed when the set voltage was reached. This was stopped 2.5 hours after the start of charging.
- These 10 lithium-ion batteries were placed in thermostatic baths set to 10 levels of temperature (45°C, 50°C, ..., 90°C) while maintaining their fully charged state, and then placed 25 times each. Degraded by storage for days.
- the center voltage and the open circuit voltage were matched so that no bias current would flow during measurement.
- the frequency sweep range was from 10 kHz to 1 mHz, and a logarithmic sweep was performed with five measurement points per one digit of frequency. The measurement was performed twice for each frequency to reduce random noise.
- AC impedance was measured four times for each of the three lithium-ion batteries that had not undergone the above-described deterioration process, and the AC impedance was measured for the ten lithium-ion batteries that had undergone the above-mentioned deterioration process. Only one impedance measurement was performed.
- the degree of anomaly was also calculated using only one circuit constant instead of multivariate (Figs. 4 to 11). Further, for all results, a threshold value for determining whether or not there is an abnormality was calculated from the 95% quantile and the 99% quantile in the F distribution table.
- FIG. 12 shows the result of the degree of anomaly calculated using all eight circuit constants.
- “M” to “V” are data obtained from batteries stored at storage temperatures of 45°C, 50°C, ..., 90°C, respectively. data obtained from a battery of
- the multivariate analysis unit 16 includes at least a circuit constant related to the physical phenomenon that causes the transient response as the two or more circuit constants in the plurality of cells 21 to be selected in the multivariate analysis.
- a circuit constant corresponds to at least the electric double layer capacitance Cdl or the charge transfer resistance Rct.
- the two or more circuit constants in the plurality of cells 21 selected in the multivariate analysis include, for example, the electric double layer capacitance Cdl, the inductance L, the solution resistance Rs, the charge transfer resistance Rct, the Warburg impedance ⁇ , the parameter CPE (p), the parameter CPE(T) and at least one of the differential capacitance C'.
- Two or more circuit constants in the plurality of cells 21 selected in the multivariate analysis include, for example, charge transfer resistance Rct, inductance L, solution resistance Rs, Warburg impedance ⁇ , parameter CPE(p), At least one of the parameter CPE(T) and the differential capacitance C' is relevant.
- Patent Document 1 attention is paid to internal resistance as a circuit constant used for determining deterioration of a secondary battery.
- coulomb counting is performed during CV charging in CCCV charging, and the internal resistance is calculated with high accuracy based on the amount of charged electricity.
- the method described in Patent Literature 1 cannot express the transient response of the secondary battery, so it is not possible to analyze the deterioration from various aspects, and is insufficient as a method for determining the deterioration of the secondary battery.
- multivariate analysis is performed using distribution information of two or more circuit constants in a plurality of cells 21 or distribution information of two or more circuit constants in a plurality of normal batteries. Therefore, it is possible to perform a multifaceted analysis including deterioration modes caused by the transient response of the secondary battery.
- the multivariate analysis unit 16 for example, as shown in FIG. Multivariate analysis may be performed using distribution information.
- the distribution information stored in the storage unit 17 is distribution information of two or more circuit constants in a plurality of normal batteries.
- the two or more circuit constants in the plurality of normal batteries selected in the multivariate analysis include, for example, the electric double layer capacitance Cdl, the inductance L, the solution resistance Rs, the charge transfer resistance Rct, the Warburg impedance ⁇ , At least one of parameter CPE(p), parameter CPE(T) and differential capacitance C' is applicable.
- the two or more circuit constants in a plurality of normal batteries selected in the multivariate analysis include, for example, charge transfer resistance Rct, inductance L, solution resistance Rs, Warburg impedance ⁇ , parameter CPE (p), parameter At least one of CPE(T) and differential capacitance C' applies.
- the secondary battery to be analyzed by the analysis device 10 may be, for example, the cell 30 as shown in FIG.
- the unit cell 30 may be a unit cell, or may be a battery block in which a plurality of unit cells are connected.
- a plurality of secondary batteries may be connected in series, or a plurality of secondary batteries may be connected in parallel.
- the multivariate analysis unit 16, for example, as shown in FIG. Multivariate analysis may be performed using
- the distribution information stored in the storage unit 17 is distribution information of two or more circuit constants in a plurality of normal batteries.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
Abstract
An electronic appliance according to an embodiment of the present invention is provided with a measurement unit, a storage unit, a calculation unit, and an analysis unit. Both during and after charging or discharging of a battery pack configured to include a plurality of cells, the measurement unit measures the voltages and currents of the plurality of cells included in the battery pack. The storage unit stores the voltage values and current values obtained through the measurement by the measurement unit. The calculation unit calculates, for each of the cells, two or more circuit constants of an equivalent circuit of that cell by using the voltage values and current values stored in the storage unit. The analysis unit performs multivariate analysis by using distribution information concerning the two or more circuit constants of the plurality of cells or distribution information concerning the two or more circuit constants of a plurality of normally operating batteries.
Description
本技術は、電子機器および解析方法に関する。
This technology relates to electronic devices and analysis methods.
二次電池の使用用途は近年、電気自動車やエネルギー貯蔵システムなど、より規模の大きな機器へと拡がってきている。規模が大きくなるほど発火した際の被害も大きくなることから、安全性を高める技術開発の重要性が高まってきている。その上で、二次電池の異常な挙動や劣化を使用中に適切に把握することが重要となる。
In recent years, the use of secondary batteries has expanded to larger-scale equipment such as electric vehicles and energy storage systems. The larger the scale, the greater the damage when it catches fire, so the importance of technological development to improve safety is increasing. In addition, it is important to appropriately understand abnormal behavior and deterioration of secondary batteries during use.
特許文献1では、二次電池の劣化の判断に用いる回路定数として内部抵抗が着目されている。特許文献1では、CCCV充電におけるCV充電の際中にクーロンカウンティングが行われ、その充電電気量に基づいて内部抵抗が高精度に算出される。
In Patent Document 1, attention is paid to internal resistance as a circuit constant used for determining deterioration of a secondary battery. In Patent Literature 1, coulomb counting is performed during CV charging in CCCV charging, and the internal resistance is calculated with high accuracy based on the amount of charged electricity.
しかし、特許文献1に記載の方法では、求められる回路定数が内部抵抗1つのみであり、二次電池の劣化現象を多面的に表現することができないので、二次電池の劣化の判断法としては不十分である。従って、様々な劣化モードによる劣化の解析を行うことの可能な、複数の回路定数を取り扱うことのできる電子機器および解析方法を提供することが望ましい。
However, in the method described in Patent Document 1, the circuit constant required is only one internal resistance, and the deterioration phenomenon of the secondary battery cannot be expressed from various aspects. is insufficient. Therefore, it is desirable to provide an electronic device and an analysis method capable of handling a plurality of circuit constants and capable of analyzing deterioration due to various deterioration modes.
本技術の第1の側面に係る電子機器は、計測部と、記憶部と、算出部と、解析部とを備えている。計測部は、複数の単電池を含んで構成された組電池の充電もしくは放電の最中および実施後のそれぞれで、組電池に含まれる複数の単電池の電圧および電流を計測する。記憶部は、計測部での計測により得られた電圧値および電流値を記憶する。算出部は、記憶部に記憶された電圧値および電流値を用いて単電池の等価回路の2つ以上の回路定数を前記単電池ごとに算出する。解析部は、複数の単電池における2つ以上の回路定数の分布情報、または、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行う。
An electronic device according to a first aspect of the present technology includes a measurement unit, a storage unit, a calculation unit, and an analysis unit. The measurement unit measures the voltage and current of the plurality of single cells included in the assembled battery during and after charging or discharging of the assembled battery configured including the plurality of single cells. The storage unit stores voltage values and current values obtained by measurement by the measurement unit. The calculator calculates two or more circuit constants of an equivalent circuit of the unit cell for each unit cell using the voltage value and the current value stored in the storage unit. The analysis unit performs multivariate analysis using distribution information of two or more circuit constants in a plurality of cells or distribution information of two or more circuit constants in a plurality of normal batteries.
本技術の第2の側面に係る電子機器は、計測部と、記憶部と、算出部と、解析部とを備えている。計測部は、単電池の充電もしくは放電の最中および実施後のそれぞれで、単電池の電圧および電流を計測する。記憶部は、計測部での計測により得られた電圧値および電流値を記憶する。算出部は、記憶部に記憶された電圧値および電流値を用いて単電池の等価回路の2つ以上の回路定数を算出する。解析部は、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行う。
An electronic device according to a second aspect of the present technology includes a measurement unit, a storage unit, a calculation unit, and an analysis unit. The measuring unit measures the voltage and current of the single cell during and after the charging or discharging of the single cell. The storage unit stores voltage values and current values obtained by measurement by the measurement unit. The calculation unit calculates two or more circuit constants of the equivalent circuit of the cell using the voltage value and the current value stored in the storage unit. The analysis unit performs multivariate analysis using distribution information of two or more circuit constants in a plurality of normal batteries.
本技術の第3の側面に係る解析方法は、以下の4つの工程を含む。
(A)複数の単電池を含んで構成された組電池の充電もしくは放電の最中および実施後のそれぞれで、組電池に含まれる複数の単電池の電圧および電流を計測する計測工程
(B)計測工程で得られた電圧値および電流値を記憶する記憶工程
(C)記憶工程で記憶された電圧値および電流値を用いて単電池の等価回路の2つ以上の回路定数を単電池ごとに算出する算出工程
(D)複数の単電池における2つ以上の回路定数の分布情報、または、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行う解工程 An analysis method according to a third aspect of the present technology includes the following four steps.
(A) A measurement step (B) of measuring the voltage and current of a plurality of single cells included in the assembled battery during and after charging or discharging the assembled battery configured to include a plurality of single cells. a storage step (C) of storing the voltage and current values obtained in the measurement step; using the voltage and current values stored in the storage step to store two or more circuit constants of the equivalent circuit of the unit cell for each unit cell; Calculation step of calculating (D) Solution step of performing multivariate analysis using distribution information of two or more circuit constants in a plurality of cells or distribution information of two or more circuit constants in a plurality of normal batteries
(A)複数の単電池を含んで構成された組電池の充電もしくは放電の最中および実施後のそれぞれで、組電池に含まれる複数の単電池の電圧および電流を計測する計測工程
(B)計測工程で得られた電圧値および電流値を記憶する記憶工程
(C)記憶工程で記憶された電圧値および電流値を用いて単電池の等価回路の2つ以上の回路定数を単電池ごとに算出する算出工程
(D)複数の単電池における2つ以上の回路定数の分布情報、または、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行う解工程 An analysis method according to a third aspect of the present technology includes the following four steps.
(A) A measurement step (B) of measuring the voltage and current of a plurality of single cells included in the assembled battery during and after charging or discharging the assembled battery configured to include a plurality of single cells. a storage step (C) of storing the voltage and current values obtained in the measurement step; using the voltage and current values stored in the storage step to store two or more circuit constants of the equivalent circuit of the unit cell for each unit cell; Calculation step of calculating (D) Solution step of performing multivariate analysis using distribution information of two or more circuit constants in a plurality of cells or distribution information of two or more circuit constants in a plurality of normal batteries
本技術の第4の側面に係る解析方法は、以下の4つの工程を含む。
(A)単電池の充電もしくは放電の最中および実施後のそれぞれで、単電池の電圧および電流を計測する計測工程
(B)計測工程で得られた電圧値および電流値を記憶する記憶工程
(C)記憶工程で記憶された電圧値および電流値を用いて単電池の等価回路の2つ以上の回路定数を算出する算出工程
(D)複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行う解工程 An analysis method according to a fourth aspect of the present technology includes the following four steps.
(A) A measurement step of measuring the voltage and current of the single cell during and after the charging or discharging of the single cell (B) A storage step of storing the voltage and current values obtained in the measurement step ( C) A calculation step of calculating two or more circuit constants of the equivalent circuit of the unit cell using the voltage and current values stored in the storage step (D) Distribution information of the two or more circuit constants in a plurality of normal batteries A solution process that performs multivariate analysis using
(A)単電池の充電もしくは放電の最中および実施後のそれぞれで、単電池の電圧および電流を計測する計測工程
(B)計測工程で得られた電圧値および電流値を記憶する記憶工程
(C)記憶工程で記憶された電圧値および電流値を用いて単電池の等価回路の2つ以上の回路定数を算出する算出工程
(D)複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行う解工程 An analysis method according to a fourth aspect of the present technology includes the following four steps.
(A) A measurement step of measuring the voltage and current of the single cell during and after the charging or discharging of the single cell (B) A storage step of storing the voltage and current values obtained in the measurement step ( C) A calculation step of calculating two or more circuit constants of the equivalent circuit of the unit cell using the voltage and current values stored in the storage step (D) Distribution information of the two or more circuit constants in a plurality of normal batteries A solution process that performs multivariate analysis using
本技術の第1の側面に係る電子機器および本技術の第3の側面に係る解析方法によれば、複数の単電池における2つ以上の回路定数の分布情報、または、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行うようにしたので、様々な劣化モードによる二次電池の劣化の解析を行うことが可能である。
According to the electronic device according to the first aspect of the present technology and the analysis method according to the third aspect of the present technology, distribution information of two or more circuit constants in a plurality of cells or two or more circuit constants in a plurality of normal batteries Since the multivariate analysis is performed using the distribution information of one or more circuit constants, it is possible to analyze the deterioration of the secondary battery due to various deterioration modes.
本技術の第2の側面に係る電子機器および本技術の第4の側面に係る解析方法によれば、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行うようにしたので、様々な劣化モードによる二次電池の劣化の解析を行うことが可能である。
According to the electronic device according to the second aspect of the present technology and the analysis method according to the fourth aspect of the present technology, multivariate analysis is performed using distribution information of two or more circuit constants in a plurality of normal batteries. Therefore, it is possible to analyze the deterioration of the secondary battery due to various deterioration modes.
なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
It should be noted that the effects of the present technology are not necessarily limited to the effects described here, and may be any of a series of effects related to the present technology described below.
以下、本技術を実施するための形態について、図面を参照して詳細に説明する。
Hereinafter, the form for implementing the present technology will be described in detail with reference to the drawings.
<1.実施形態>
[構成]
本技術の一実施形態に係る解析装置10の構成について説明する。解析装置10は、二次電池の劣化状態を解析する装置である。本実施の形態では、解析装置10の解析対象である二次電池が組電池20となっている。組電池20は、例えば、リチウムイオン二次電池である。組電池20は、複数の単電池21を含んで構成されている。各単電池21は、単位セルであってもよく、単位セルが複数個接続された電池ブロックであってもよい。各単電池21において、複数の二次電池が直列に接続されていてもよいし、複数の二次電池が並列に接続されていてもよい。 <1. embodiment>
[composition]
A configuration of ananalysis device 10 according to an embodiment of the present technology will be described. The analysis device 10 is a device that analyzes the state of deterioration of a secondary battery. In the present embodiment, the secondary battery to be analyzed by the analysis device 10 is the assembled battery 20 . The assembled battery 20 is, for example, a lithium ion secondary battery. The assembled battery 20 includes a plurality of single cells 21 . Each unit cell 21 may be a unit cell, or may be a battery block in which a plurality of unit cells are connected. In each cell 21, a plurality of secondary batteries may be connected in series, or a plurality of secondary batteries may be connected in parallel.
[構成]
本技術の一実施形態に係る解析装置10の構成について説明する。解析装置10は、二次電池の劣化状態を解析する装置である。本実施の形態では、解析装置10の解析対象である二次電池が組電池20となっている。組電池20は、例えば、リチウムイオン二次電池である。組電池20は、複数の単電池21を含んで構成されている。各単電池21は、単位セルであってもよく、単位セルが複数個接続された電池ブロックであってもよい。各単電池21において、複数の二次電池が直列に接続されていてもよいし、複数の二次電池が並列に接続されていてもよい。 <1. embodiment>
[composition]
A configuration of an
解析装置10は、例えば、図1に示したように、充放電部11、電圧計測部12、電流計測部13、一時記憶部14、回路定数算出部15および多変量解析部16を備えている。
The analysis device 10 includes, for example, a charge/discharge unit 11, a voltage measurement unit 12, a current measurement unit 13, a temporary storage unit 14, a circuit constant calculation unit 15, and a multivariate analysis unit 16, as shown in FIG. .
充放電部11は、解析装置10に設置された組電池20を放電させたり、充電したりする装置である。充放電部11は、充電として、例えば、CCCV充電を行うことが可能となっている。充放電部11は、例えば発電機およびコンバータ等を含む充電回路を有している。この充電回路は、組電池20を充電するための電圧を制御する。
The charging/discharging unit 11 is a device that discharges and charges the assembled battery 20 installed in the analysis device 10 . The charging/discharging unit 11 can perform, for example, CCCV charging as charging. The charging/discharging section 11 has a charging circuit including, for example, a generator and a converter. This charging circuit controls the voltage for charging the assembled battery 20 .
電圧計測部12は、組電池20に含まれる各単電池21の電圧を計測する計測回路を有している。なお、図1には、各単電池21の正極および負極に配線が接続され、その配線を介して取得した電圧を計測することにより、各単電池21の電圧を計測する構成が例示されているが、各単電池21の電圧の計測方法は、この方法に限定されるものではない。電圧計測部12は、計測回路で計測した電圧についてのデータ(電圧値)を一時記憶部14に格納する。電圧計測部12は、組電池20の充電もしくは放電の最中および実施後のそれぞれで、各単電池21の電圧を計測する(図3ステップS102,S106)。
The voltage measurement unit 12 has a measurement circuit that measures the voltage of each cell 21 included in the assembled battery 20 . Note that FIG. 1 illustrates a configuration in which wiring is connected to the positive and negative electrodes of each cell 21 and the voltage of each cell 21 is measured by measuring the voltage acquired through the wiring. However, the method of measuring the voltage of each cell 21 is not limited to this method. The voltage measurement unit 12 stores data (voltage value) on the voltage measured by the measurement circuit in the temporary storage unit 14 . The voltage measurement unit 12 measures the voltage of each unit cell 21 during and after charging or discharging of the assembled battery 20 (steps S102 and S106 in FIG. 3).
電流計測部13は、組電池20に含まれる各単電池21の電流を計測する計測回路を有している。なお、図1には、組電池20の正極および負極に配線が接続され、その配線を介して取得した電流を計測することにより、各単電池21の電流を計測する構成が例示されているが、各単電池21の電流の計測方法は、この方法に限定されるものではない。電流計測部13は、計測回路で計測した電流についてのデータ(電流値)を一時記憶部14に格納する。電流計測部13は、組電池20の充電もしくは放電の最中および実施後のそれぞれで、各単電池21の電流(つまり、組電池20の電流)を計測する(図3ステップS102,S106)。
The current measurement unit 13 has a measurement circuit that measures the current of each unit cell 21 included in the assembled battery 20 . Note that FIG. 1 illustrates a configuration in which wiring is connected to the positive electrode and the negative electrode of the assembled battery 20, and the current of each unit cell 21 is measured by measuring the current acquired through the wiring. , the method of measuring the current of each unit cell 21 is not limited to this method. The current measurement unit 13 stores data (current value) on the current measured by the measurement circuit in the temporary storage unit 14 . The current measurement unit 13 measures the current of each unit cell 21 (that is, the current of the assembled battery 20) during and after charging or discharging the assembled battery 20 (steps S102 and S106 in FIG. 3).
一時記憶部14は、例えば、揮発性メモリもしくは不揮発性メモリを含んで構成されている。一時記憶部14には、電圧計測部12によって計測された単電池21ごとの電圧値や、電流計測部13によって計測された単電池21ごとの電流値が記憶される。一時記憶部14には、組電池20の充電もしくは放電の最中および実施後のそれぞれで計測された電圧値および電流値が記憶される(図3ステップS103,S107)。
The temporary storage unit 14 includes, for example, a volatile memory or a nonvolatile memory. The temporary storage unit 14 stores the voltage value of each cell 21 measured by the voltage measurement unit 12 and the current value of each cell 21 measured by the current measurement unit 13 . The temporary storage unit 14 stores voltage values and current values measured during and after charging or discharging of the assembled battery 20 (steps S103 and S107 in FIG. 3).
回路定数算出部15は、一時記憶部14に記憶された、単電池21ごとの、充電もしくは放電の最中および実施後のそれぞれの電圧値および電流値を用いて、単電池21の等価回路の2つ以上の回路定数を単電池21ごとに算出する(図3ステップS109)。
The circuit constant calculator 15 calculates the equivalent circuit of the unit cell 21 using the voltage value and current value during and after charging or discharging for each unit cell 21 stored in the temporary storage unit 14. Two or more circuit constants are calculated for each cell 21 (step S109 in FIG. 3).
図2は、各単電池21の等価回路を表したものである。各単電池21は、図2に示したように、インダクタンスL、溶液抵抗Rs、電荷移動抵抗Rct、ワールブルクインピーダンスσ、電気二重層容量Cdlに関連する定位相素子CPEおよび微分容量C’の6個の素子からなる等価回路によって表現される。この6個の素子が有する、以下の8個の回路定数が、カーブフィッティングによって算出される。
FIG. 2 shows an equivalent circuit of each unit cell 21. FIG. Each single cell 21, as shown in FIG. 2, has an inductance L, a solution resistance Rs, a charge transfer resistance Rct, a Warburg impedance σ, a constant phase element CPE associated with an electric double layer capacitance Cdl, and a differential capacitance C′. It is represented by an equivalent circuit consisting of elements. The following eight circuit constants possessed by these six elements are calculated by curve fitting.
(8個の回路定数)
・インダクタンスL
・溶液抵抗Rs
・電荷移動抵抗Rct
・ワールブルクインピーダンスσ
・定位相素子CPEを記述すためのパラメータpおよびT(以下、それぞれをCPE(p)、CPE(T)と記載する)
・微分容量C’
・電気二重層容量Cdl (8 circuit constants)
・Inductance L
・Solution resistance Rs
・Charge transfer resistance Rct
・Warburg impedance σ
・Parameters p and T for describing the constant phase element CPE (hereinafter referred to as CPE(p) and CPE(T), respectively)
・Differential capacitance C′
・Electric double layer capacitance Cdl
・インダクタンスL
・溶液抵抗Rs
・電荷移動抵抗Rct
・ワールブルクインピーダンスσ
・定位相素子CPEを記述すためのパラメータpおよびT(以下、それぞれをCPE(p)、CPE(T)と記載する)
・微分容量C’
・電気二重層容量Cdl (8 circuit constants)
・Inductance L
・Solution resistance Rs
・Charge transfer resistance Rct
・Warburg impedance σ
・Parameters p and T for describing the constant phase element CPE (hereinafter referred to as CPE(p) and CPE(T), respectively)
・Differential capacitance C′
・Electric double layer capacitance Cdl
インダクタンスL、溶液抵抗Rs、電荷移動抵抗Rct、ワールブルクインピーダンスσ、パラメータCPE(p)、パラメータCPE(T)および微分容量C’については、例えば、北斗電工社製の解析ソフトウエアEISの出力として得られる。電気二重層容量Cdlについては、板垣昌幸著「電気化学インピーダンス法」丸善出版(p.84)に記載の以下の式で算出される。
Cdl=CPE(T)(1/CPE(p))・Rct((1-CPE(p))/CPE(p)) For inductance L, solution resistance Rs, charge transfer resistance Rct, Warburg impedance σ, parameter CPE (p), parameter CPE (T) and differential capacitance C′, for example, as the output of analysis software EIS manufactured by Hokuto Denko Co., Ltd. can get. The electric double layer capacitance Cdl is calculated by the following formula described in "Electrochemical Impedance Method" by Masayuki Itagaki, Maruzen Publishing (p.84).
Cdl=CPE (T) (1/CPE (p)) Rct ((1-CPE (p))/CPE (p))
Cdl=CPE(T)(1/CPE(p))・Rct((1-CPE(p))/CPE(p)) For inductance L, solution resistance Rs, charge transfer resistance Rct, Warburg impedance σ, parameter CPE (p), parameter CPE (T) and differential capacitance C′, for example, as the output of analysis software EIS manufactured by Hokuto Denko Co., Ltd. can get. The electric double layer capacitance Cdl is calculated by the following formula described in "Electrochemical Impedance Method" by Masayuki Itagaki, Maruzen Publishing (p.84).
Cdl=CPE (T) (1/CPE (p)) Rct ((1-CPE (p))/CPE (p))
多変量解析部16は、複数の単電池21における2つ以上の回路定数の分布情報を導出し、それにより得られた分布情報を用いて多変量解析を行う(図3ステップS110)。多変量解析部16は、多変量解析の手法として、例えば、マハラノビス・タグチ法、または、ワンクラス・サポートベクターマシン法を用いる。以下に、マハラノビス・タグチ法を用いた多変量解析について詳細に説明する。多変量解析部16は、例えば、下記の多変量解析を行うことにより、各単電池21について異常度aiを導出する。
The multivariate analysis unit 16 derives distribution information of two or more circuit constants in the plurality of cells 21, and performs multivariate analysis using the obtained distribution information (step S110 in FIG. 3). The multivariate analysis unit 16 uses, for example, the Mahalanobis-Taguchi method or the one-class support vector machine method as a method of multivariate analysis. Multivariate analysis using the Mahalanobis-Taguchi method will be described in detail below. The multivariate analysis unit 16 derives the degree of abnormality ai for each cell 21 by, for example, performing the following multivariate analysis.
(試料とするリチウムイオン電池の調整)
主な正極活物質がリン酸鉄リチウム(LiFePO4, LFP)であり、また主な負極活物質が黒鉛である市販リチウムイオン電池US18650FTC1(定格容量1.05Ah)を13本用意した。これらは全て、同一製造ロットのものである。このうち10本について、まず電圧が2.0Vを下回るまで0.2時間率相当の電流値(定格容量が1.05Ahであり、1時間率の電流値Itが1.05Aであるため、0.2時間率の電流値Iは0.2I=210mAである)で定電流放電し、その後速やかに、設定電流1.05A(=1It)、設定電圧3.6VのCCCV充電(設定電圧に到達するまでは設定電流値での定電流充電を行い、設定電圧に到達したら定電圧充電を行う2ステップの充電)を行い、これを充電開始後2.5hに停止した。この10本のリチウムイオン電池は、満充電状態を維持したままそれぞれ45℃、50℃、…、90℃の計10水準の温度に設定された恒温槽の中に各1本ずつ入れ、そのまま25日間保存することによって劣化させた。 (Adjustment of lithium ion battery as sample)
Thirteen commercially available lithium ion batteries US18650FTC1 (rated capacity: 1.05 Ah) containing lithium iron phosphate (LiFePO4, LFP) as the main positive electrode active material and graphite as the main negative electrode active material were prepared. These are all from the same production lot. For 10 of them, the current value equivalent to 0.2 hour rate until the voltage drops below 2.0 V (the rated capacity is 1.05 Ah and the current value It of 1 hour rate is 1.05 A, so 0 The current value I at the .2 hour rate is 0.2I = 210mA), followed by rapid CCCV charging at a set current of 1.05A (= 1It) and a set voltage of 3.6V (reaching the set voltage). Two-step charging was performed in which constant-current charging was performed at a set current value until reaching the set voltage, and constant-voltage charging was performed when the set voltage was reached. This was stopped 2.5 hours after the start of charging. These 10 lithium-ion batteries were placed in thermostatic baths set to 10 levels of temperature (45°C, 50°C, …, 90°C) while maintaining their fully charged state, and then placed 25 times each. Degraded by storage for days.
主な正極活物質がリン酸鉄リチウム(LiFePO4, LFP)であり、また主な負極活物質が黒鉛である市販リチウムイオン電池US18650FTC1(定格容量1.05Ah)を13本用意した。これらは全て、同一製造ロットのものである。このうち10本について、まず電圧が2.0Vを下回るまで0.2時間率相当の電流値(定格容量が1.05Ahであり、1時間率の電流値Itが1.05Aであるため、0.2時間率の電流値Iは0.2I=210mAである)で定電流放電し、その後速やかに、設定電流1.05A(=1It)、設定電圧3.6VのCCCV充電(設定電圧に到達するまでは設定電流値での定電流充電を行い、設定電圧に到達したら定電圧充電を行う2ステップの充電)を行い、これを充電開始後2.5hに停止した。この10本のリチウムイオン電池は、満充電状態を維持したままそれぞれ45℃、50℃、…、90℃の計10水準の温度に設定された恒温槽の中に各1本ずつ入れ、そのまま25日間保存することによって劣化させた。 (Adjustment of lithium ion battery as sample)
Thirteen commercially available lithium ion batteries US18650FTC1 (rated capacity: 1.05 Ah) containing lithium iron phosphate (LiFePO4, LFP) as the main positive electrode active material and graphite as the main negative electrode active material were prepared. These are all from the same production lot. For 10 of them, the current value equivalent to 0.2 hour rate until the voltage drops below 2.0 V (the rated capacity is 1.05 Ah and the current value It of 1 hour rate is 1.05 A, so 0 The current value I at the .2 hour rate is 0.2I = 210mA), followed by rapid CCCV charging at a set current of 1.05A (= 1It) and a set voltage of 3.6V (reaching the set voltage). Two-step charging was performed in which constant-current charging was performed at a set current value until reaching the set voltage, and constant-voltage charging was performed when the set voltage was reached. This was stopped 2.5 hours after the start of charging. These 10 lithium-ion batteries were placed in thermostatic baths set to 10 levels of temperature (45°C, 50°C, …, 90°C) while maintaining their fully charged state, and then placed 25 times each. Degraded by storage for days.
(交流インピーダンスの測定)
電池の回路定数を測定するにあたり、まずは充電状態の調整を行った。23℃の恒温槽の中に入れ、設定電流1.05A(=1It)、設定電圧3.6VのCCCV充電を行った。このCCCV充電は、定電圧充電中の電流値が105mA(=0.1It)を下回った時点で停止した。その後、電池を開放状態にして1h静置し、交流インピーダンス測定を行った。交流インピーダンス測定には、Bio-Logic 社製のSP-240を使用した。測定条件について、まず、制御は電圧で規制されるポテンショスタティックモードとし、振幅の実効値は5mVに設定した。また、測定中にバイアス電流が流れないよう、中心電圧と開回路電圧とが一致するようにした。周波数掃引の範囲は10kHzから1mHzまでとし、周波数1桁あたり測定点が5点ずつとなるような対数掃引を行った。なお、各周波数について2 回ずつ測定を行い、ランダムノイズの低減を図った。用意した13本のリチウムイオン電池について、上述の劣化の工程を経ていない3本のリチウムイオン電池については交流インピーダンス測定を4回ずつ、上述の劣化の工程を経た10本のリチウムイオン電池については交流インピーダンス測定を1回のみ行った。 (Measurement of AC impedance)
Before measuring the circuit constants of the battery, the state of charge was adjusted. It was placed in a constant temperature bath at 23° C., and CCCV charging was performed with a set current of 1.05 A (=1 It) and a set voltage of 3.6 V. This CCCV charging stopped when the current value during constant voltage charging fell below 105 mA (=0.1 It). After that, the battery was left open for 1 hour, and the AC impedance was measured. Bio-Logic SP-240 was used for AC impedance measurement. As for the measurement conditions, first, control was set to a potentiostatic mode regulated by voltage, and the effective value of the amplitude was set to 5 mV. In addition, the center voltage and the open circuit voltage were matched so that no bias current would flow during measurement. The frequency sweep range was from 10 kHz to 1 mHz, and a logarithmic sweep was performed with five measurement points per one digit of frequency. The measurement was performed twice for each frequency to reduce random noise. Of the 13 lithium-ion batteries prepared, AC impedance was measured four times for each of the three lithium-ion batteries that had not undergone the above-described deterioration process, and the AC impedance was measured for the ten lithium-ion batteries that had undergone the above-mentioned deterioration process. Only one impedance measurement was performed.
電池の回路定数を測定するにあたり、まずは充電状態の調整を行った。23℃の恒温槽の中に入れ、設定電流1.05A(=1It)、設定電圧3.6VのCCCV充電を行った。このCCCV充電は、定電圧充電中の電流値が105mA(=0.1It)を下回った時点で停止した。その後、電池を開放状態にして1h静置し、交流インピーダンス測定を行った。交流インピーダンス測定には、Bio-Logic 社製のSP-240を使用した。測定条件について、まず、制御は電圧で規制されるポテンショスタティックモードとし、振幅の実効値は5mVに設定した。また、測定中にバイアス電流が流れないよう、中心電圧と開回路電圧とが一致するようにした。周波数掃引の範囲は10kHzから1mHzまでとし、周波数1桁あたり測定点が5点ずつとなるような対数掃引を行った。なお、各周波数について2 回ずつ測定を行い、ランダムノイズの低減を図った。用意した13本のリチウムイオン電池について、上述の劣化の工程を経ていない3本のリチウムイオン電池については交流インピーダンス測定を4回ずつ、上述の劣化の工程を経た10本のリチウムイオン電池については交流インピーダンス測定を1回のみ行った。 (Measurement of AC impedance)
Before measuring the circuit constants of the battery, the state of charge was adjusted. It was placed in a constant temperature bath at 23° C., and CCCV charging was performed with a set current of 1.05 A (=1 It) and a set voltage of 3.6 V. This CCCV charging stopped when the current value during constant voltage charging fell below 105 mA (=0.1 It). After that, the battery was left open for 1 hour, and the AC impedance was measured. Bio-Logic SP-240 was used for AC impedance measurement. As for the measurement conditions, first, control was set to a potentiostatic mode regulated by voltage, and the effective value of the amplitude was set to 5 mV. In addition, the center voltage and the open circuit voltage were matched so that no bias current would flow during measurement. The frequency sweep range was from 10 kHz to 1 mHz, and a logarithmic sweep was performed with five measurement points per one digit of frequency. The measurement was performed twice for each frequency to reduce random noise. Of the 13 lithium-ion batteries prepared, AC impedance was measured four times for each of the three lithium-ion batteries that had not undergone the above-described deterioration process, and the AC impedance was measured for the ten lithium-ion batteries that had undergone the above-mentioned deterioration process. Only one impedance measurement was performed.
(多変量解析)
上述の劣化の工程を経ていない3本のリチウムイオン電池について、それぞれ交流インピーダンス測定を4回ずつ実施することによって得られた12組のデータ(それぞれ8 個の回路定数を含む)を、以下の式(1)に示すように12個のベクトルxiとして定義した(iは1~12の整数)。
(Multivariate analysis)
12 sets of data (each containing 8 circuit constants) obtained by measuring AC impedance four times for each of the three lithium-ion batteries that have not undergone the above-described deterioration process are expressed by the following equation: It is defined as 12 vectors xi (i is an integer from 1 to 12) as shown in (1).
上述の劣化の工程を経ていない3本のリチウムイオン電池について、それぞれ交流インピーダンス測定を4回ずつ実施することによって得られた12組のデータ(それぞれ8 個の回路定数を含む)を、以下の式(1)に示すように12個のベクトルxiとして定義した(iは1~12の整数)。
12 sets of data (each containing 8 circuit constants) obtained by measuring AC impedance four times for each of the three lithium-ion batteries that have not undergone the above-described deterioration process are expressed by the following equation: It is defined as 12 vectors xi (i is an integer from 1 to 12) as shown in (1).
次に、各回路定数の12組のデータの平均値のベクトルμと、分散共分散行列Σを、それぞれ式(2)および式(3)により求めた。
Next, a vector μ of average values of 12 sets of data for each circuit constant and a variance-covariance matrix Σ were obtained by Equations (2) and (3), respectively.
次に、上述の劣化の工程を経た10本のリチウムイオン電池から得られた10組のデータ(こちらも、それぞれ8個の回路定数を含む)を、式(4) に示すように10個の追加のベクトルxiとして定義した(iは13~22の整数)。そして、計22個すべてのベクトルに対して、式(5)に従って異常度aiを求めた。
Next, 10 sets of data obtained from 10 lithium-ion batteries that have undergone the above-described deterioration process (again, each containing 8 circuit constants) are divided into 10 sets as shown in equation (4). defined as an additional vector xi (where i is an integer from 13 to 22). Then, the degree of anomaly ai was calculated according to the equation (5) for all 22 vectors.
比較のため、多変量ではなく1つの回路定数のみを用いた異常度の算出も行った(図4~図11)。また、すべての結果に対して、F分布表における95%分位点と99%分位点から、異常か否かを判定するための閾値の計算を行った。
For comparison, the degree of anomaly was also calculated using only one circuit constant instead of multivariate (Figs. 4 to 11). Further, for all results, a threshold value for determining whether or not there is an abnormality was calculated from the 95% quantile and the 99% quantile in the F distribution table.
また、8個のすべての回路定数を用いて計算した異常度の結果を図12に示す。いずれの図も、横軸の「A」~「L」は上述の劣化の工程を経ていない電池から得たデータとなっており、これは式(5)におけるi=1,2,…、12に対応している。また、横軸の「M」~「V」は上述の劣化の工程を経た電池から得たデータとなっており、これは式(5)における i=13,14,…、22にそれぞれ対応している。「A」~「L」は、上述の劣化の工程を経ていないため、以降の考察では、これらを良品の電池(正常電池)から得られたデータであると見なした。一方「M」~「V」は、それぞれ保存温度45℃、50℃、…、90℃で保存された電池から得られたデータであり、Zに近づくほど劣化の度合いが大きい、いずれも不良品の電池から得られたデータであると見なした。
Also, FIG. 12 shows the result of the degree of anomaly calculated using all eight circuit constants. In each figure, "A" to "L" on the horizontal axis are data obtained from a battery that has not undergone the above-described deterioration process, i = 1, 2, ..., 12 in equation (5). corresponds to Also, "M" to "V" on the horizontal axis are data obtained from the battery that has undergone the above-described deterioration process, which correspond to i = 13, 14, ..., 22 in Equation (5), respectively. ing. Since "A" to "L" did not undergo the above-described deterioration process, in the discussion below, these data were considered to be data obtained from non-defective batteries (normal batteries). On the other hand, "M" to "V" are data obtained from batteries stored at storage temperatures of 45°C, 50°C, ..., 90°C, respectively. data obtained from a battery of
図4および図5より、良品と見なした「A」~「L」の電池と、不良品と見なした「M」~「V」の電池との間に、明確な異常度の差異は見られなかった。すなわち、インピーダンスLおよび溶液抵抗Rsの1つのみ用いて良品・不良品の判定を行うことはできないことが判った。
From FIGS. 4 and 5, there is a clear difference in the degree of abnormality between the "A" to "L" batteries, which are regarded as non-defective products, and the "M" to "V" batteries, which are regarded as defective batteries. was not seen. In other words, it has been found that it is not possible to determine whether a product is good or bad using only one of the impedance L and the solution resistance Rs.
図6、図7、図10より、良品と見なした「A」~「L」の電池と、不良品と見なした「M」~「V」の電池との間に、不良品の方が高い異常度となるという傾向がみられた。しかしながら、両者に明確な差があるとは言えず、すなわち、パラメータCPE(p)、パラメータCPE(T)および微分容量C’のいずれか1つのみ用いて良品・不良品の判定を行うことは困難であることが判った。
From FIGS. 6, 7, and 10, between the batteries “A” to “L” regarded as non-defective and the batteries “M” to “V” regarded as defective, tended to have a high degree of anomaly. However, it cannot be said that there is a clear difference between the two. proved difficult.
図8および図9より、良品と見なした「A」~「L」の電池と、不良品と見なした「M」~「V」の電池との間に、不良品の方が高い異常度となるという、はっきりとした傾向がみられた。すなわち、電荷移動抵抗Rctおよびワールブルクインピーダンスσは、それぞれ1つの回路定数のみを使用した場合でも、良品・不良品の判定が可能であることが示唆された。一方で、どちらの回路定数を用いた場合でも、「M」「N」など劣化の度合いが小さい場合に異常度が95%の閾値を下回り、良品との有意な差異を見いだすことが難しく、よって、感度の点でやや問題があることが判った。
From FIGS. 8 and 9, it can be seen that between the batteries A to L, which are regarded as non-defective products, and the batteries M to V, which are regarded as defective batteries, there is a higher abnormality in the defective batteries. There was a clear trend towards increasing That is, it was suggested that even when only one circuit constant is used for each of the charge transfer resistance Rct and the Warburg impedance σ, it is possible to determine whether the product is good or bad. On the other hand, when using either circuit constant, when the degree of deterioration such as "M" or "N" is small, the degree of abnormality falls below the threshold of 95%, and it is difficult to find a significant difference from a non-defective product. , was found to have some problems in terms of sensitivity.
図11より、良品と見なした「A」~「L」の電池と、不良品と見なした「M」~「V」の電池との間に、不良品の異常が高くなるというはっきりとした傾向がみられた。「M」「N」でも99%閾値を超える異常度となっており、すなわち、電気二重層容量Cdlは、1つの回路定数のみを使用した場合でも、良品・不良品の判定を可能であることが判った。
From FIG. 11, it is clear that the abnormalities of the defective products are higher between the batteries of "A" to "L", which are regarded as non-defective products, and the batteries of "M" to "V", which are regarded as defective products. There was a tendency to Even with "M" and "N", the degree of abnormality exceeds the 99% threshold. found out.
図12より、良品と見なした「A」~「L」の電池と、不良品と見なした「M」~「V」の電池との間に、不良品の異常が高くなるというはっきりとした傾向がみられた。図11と図12とを見比べると、図11では、良品と見なした「A」~「L」においても、ものによっては95%の閾値に近い異常度となっているものが散見される。一方で、図12では、「A」~「L」の異常度はいずれも大変小さく、すなわち、マハラノビス・タグチ法を用いて8個すべての回路定数を用いると、より高感度に良品・不良品の判断が出来ることが判った。
From FIG. 12, it is clear that the abnormalities of the defective products are higher between the batteries of "A" to "L", which are regarded as non-defective products, and the batteries of "M" to "V", which are regarded as defective products. There was a tendency to Comparing FIG. 11 and FIG. 12, in FIG. 11, even in “A” to “L”, which are regarded as non-defective products, there are some cases where the degree of abnormality is close to the 95% threshold. On the other hand, in FIG. 12, the anomaly degrees of "A" to "L" are all very small. It turned out that it is possible to judge
以上のことから、多変量解析部16は、多変量解析において選択する、複数の単電池21における2つ以上の回路定数として、少なくとも、過渡応答の原因となる物理現象と関係する回路定数を含む。そのような回路定数としては、少なくとも、電気二重層容量Cdlまたは電荷移動抵抗Rctが該当する。
From the above, the multivariate analysis unit 16 includes at least a circuit constant related to the physical phenomenon that causes the transient response as the two or more circuit constants in the plurality of cells 21 to be selected in the multivariate analysis. . Such a circuit constant corresponds to at least the electric double layer capacitance Cdl or the charge transfer resistance Rct.
多変量解析において選択する、複数の単電池21における2つ以上の回路定数としては、例えば、電気二重層容量Cdlと、インダクタンスL、溶液抵抗Rs、電荷移動抵抗Rct、ワールブルクインピーダンスσ、パラメータCPE(p)、パラメータCPE(T)および微分容量C’のうちの少なくとも1つとが該当する。また、多変量解析において選択する、複数の単電池21における2つ以上の回路定数としては、例えば、電荷移動抵抗Rctと、インダクタンスL、溶液抵抗Rs、ワールブルクインピーダンスσ、パラメータCPE(p)、パラメータCPE(T)および微分容量C’のうちの少なくとも1つとが該当する。
The two or more circuit constants in the plurality of cells 21 selected in the multivariate analysis include, for example, the electric double layer capacitance Cdl, the inductance L, the solution resistance Rs, the charge transfer resistance Rct, the Warburg impedance σ, the parameter CPE (p), the parameter CPE(T) and at least one of the differential capacitance C'. Two or more circuit constants in the plurality of cells 21 selected in the multivariate analysis include, for example, charge transfer resistance Rct, inductance L, solution resistance Rs, Warburg impedance σ, parameter CPE(p), At least one of the parameter CPE(T) and the differential capacitance C' is relevant.
[効果]
次に、解析装置10の効果について説明する。 [effect]
Next, effects of theanalysis device 10 will be described.
次に、解析装置10の効果について説明する。 [effect]
Next, effects of the
二次電池の使用用途は近年、電気自動車やエネルギー貯蔵システムなど、より規模の大きな機器へと拡がってきている。規模が大きくなるほど発火した際の被害も大きくなることから、安全性を高める技術開発の重要性が高まってきている。その上で、二次電池の異常な挙動や劣化を使用中に適切に把握することが重要となる。
In recent years, the use of secondary batteries has expanded to larger-scale equipment such as electric vehicles and energy storage systems. The larger the scale, the greater the damage when it catches fire, so the importance of technological development to improve safety is increasing. In addition, it is important to appropriately understand abnormal behavior and deterioration of secondary batteries during use.
特許文献1では、二次電池の劣化の判断に用いる回路定数として内部抵抗が着目されている。特許文献1では、CCCV充電におけるCV充電の際中にクーロンカウンティングが行われ、その充電電気量に基づいて内部抵抗が高精度に算出される。しかし、特許文献1に記載の方法では、二次電池の過渡応答を表現することができないので、多面的な劣化の解析ができず、二次電池の劣化の判断法としては不十分である。
In Patent Document 1, attention is paid to internal resistance as a circuit constant used for determining deterioration of a secondary battery. In Patent Literature 1, coulomb counting is performed during CV charging in CCCV charging, and the internal resistance is calculated with high accuracy based on the amount of charged electricity. However, the method described in Patent Literature 1 cannot express the transient response of the secondary battery, so it is not possible to analyze the deterioration from various aspects, and is insufficient as a method for determining the deterioration of the secondary battery.
一方、本実施の形態では、複数の単電池21における2つ以上の回路定数の分布情報、または、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行うようにしたので、二次電池の過渡応答に起因するような劣化モードを含む、多面的な解析を行うことが可能である。
On the other hand, in the present embodiment, multivariate analysis is performed using distribution information of two or more circuit constants in a plurality of cells 21 or distribution information of two or more circuit constants in a plurality of normal batteries. Therefore, it is possible to perform a multifaceted analysis including deterioration modes caused by the transient response of the secondary battery.
なお、本実施の形態において、多変量解析部16は、例えば、図13に示したように、複数の単電池21における2つ以上の回路定数の分布情報の代わりに、記憶部17に記憶した分布情報を用いて多変量解析を行ってもよい。記憶部17に記憶した分布情報は、複数の正常電池における2つ以上の回路定数の分布情報である。
In the present embodiment, the multivariate analysis unit 16, for example, as shown in FIG. Multivariate analysis may be performed using distribution information. The distribution information stored in the storage unit 17 is distribution information of two or more circuit constants in a plurality of normal batteries.
このとき、多変量解析において選択する、複数の正常電池における2つ以上の回路定数としては、例えば、電気二重層容量Cdlと、インダクタンスL、溶液抵抗Rs、電荷移動抵抗Rct、ワールブルクインピーダンスσ、パラメータCPE(p)、パラメータCPE(T)および微分容量C’のうちの少なくとも1つとが該当する。また、多変量解析において選択する、複数の正常電池における2つ以上の回路定数としては、例えば、電荷移動抵抗Rctと、インダクタンスL、溶液抵抗Rs、ワールブルクインピーダンスσ、パラメータCPE(p)、パラメータCPE(T)および微分容量C’のうちの少なくとも1つとが該当する。
At this time, the two or more circuit constants in the plurality of normal batteries selected in the multivariate analysis include, for example, the electric double layer capacitance Cdl, the inductance L, the solution resistance Rs, the charge transfer resistance Rct, the Warburg impedance σ, At least one of parameter CPE(p), parameter CPE(T) and differential capacitance C' is applicable. In addition, the two or more circuit constants in a plurality of normal batteries selected in the multivariate analysis include, for example, charge transfer resistance Rct, inductance L, solution resistance Rs, Warburg impedance σ, parameter CPE (p), parameter At least one of CPE(T) and differential capacitance C' applies.
なお、本実施の形態において、解析装置10の解析対象である二次電池が、例えば、図14に示したように、単電池30であってもよい。このとき、単電池30は、単位セルであってもよく、単位セルが複数個接続された電池ブロックであってもよい。単電池30において、複数の二次電池が直列に接続されていてもよいし、複数の二次電池が並列に接続されていてもよい。また、このとき、多変量解析部16は、例えば、図14に示したように、複数の単電池21における2つ以上の回路定数の分布情報の代わりに、記憶部17に記憶した分布情報を用いて多変量解析を行ってもよい。記憶部17に記憶した分布情報は、複数の正常電池における2つ以上の回路定数の分布情報である。
Note that in the present embodiment, the secondary battery to be analyzed by the analysis device 10 may be, for example, the cell 30 as shown in FIG. At this time, the unit cell 30 may be a unit cell, or may be a battery block in which a plurality of unit cells are connected. In the unit cell 30, a plurality of secondary batteries may be connected in series, or a plurality of secondary batteries may be connected in parallel. Also, at this time, the multivariate analysis unit 16, for example, as shown in FIG. Multivariate analysis may be performed using The distribution information stored in the storage unit 17 is distribution information of two or more circuit constants in a plurality of normal batteries.
本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。
Since the effects described in this specification are merely examples, the effects of the present technology are not limited to the effects described in this specification. Accordingly, other advantages may be obtained with respect to the present technology.
Claims (12)
- 複数の単電池を含んで構成された組電池の充電もしくは放電の最中および実施後のそれぞれで、前記組電池に含まれる前記複数の単電池の電圧および電流を計測する計測部と、
前記計測部での計測により得られた電圧値および電流値を記憶する記憶部と、
前記記憶部に記憶された前記電圧値および前記電流値を用いて前記単電池の等価回路の2つ以上の回路定数を前記単電池ごとに算出する算出部と、
前記複数の単電池における前記2つ以上の回路定数の分布情報、または、複数の正常電池における前記2つ以上の回路定数の分布情報を用いて多変量解析を行う解析部と
を備えた
電子機器。 a measuring unit that measures the voltage and current of the plurality of single cells included in the assembled battery during and after charging or discharging of the assembled battery configured including the plurality of single cells;
a storage unit that stores the voltage value and the current value obtained by the measurement in the measurement unit;
a calculation unit that calculates two or more circuit constants of an equivalent circuit of the unit cell for each unit cell using the voltage value and the current value stored in the storage unit;
an analysis unit that performs multivariate analysis using the distribution information of the two or more circuit constants in the plurality of cells or the distribution information of the two or more circuit constants in the plurality of normal batteries. . - 単電池の充電もしくは放電の最中および実施後のそれぞれで、前記単電池の電圧および電流を計測する計測部と、
前記計測部での計測により得られた電圧値および電流値を記憶する記憶部と、
前記記憶部に記憶された前記電圧値および前記電流値を用いて前記単電池の等価回路の2つ以上の回路定数を算出する算出部と、
複数の正常電池における前記2つ以上の回路定数の分布情報を用いて多変量解析を行う解析部と
を備えた
電子機器。 a measuring unit that measures the voltage and current of the unit cell during and after charging or discharging the unit cell;
a storage unit that stores the voltage value and the current value obtained by the measurement in the measurement unit;
a calculation unit that calculates two or more circuit constants of an equivalent circuit of the cell using the voltage value and the current value stored in the storage unit;
An electronic device, comprising: an analysis unit that performs multivariate analysis using distribution information of the two or more circuit constants in a plurality of normal batteries. - 前記多変量解析の手法は、マハラノビス・タグチ法である
請求項1または請求項2に記載の電子機器。 3. The electronic device according to claim 1, wherein the method of multivariate analysis is the Mahalanobis-Taguchi method. - 前記多変量解析の手法は、ワンクラス・サポートベクターマシン法である
請求項1または請求項2に記載の電子機器。 The electronic device according to claim 1 or 2, wherein the multivariate analysis method is a one-class support vector machine method. - 前記2つ以上の回路定数には、電気二重層容量が含まれる
請求項1から請求項4のいずれか一項に記載の電子機器。 The electronic device according to any one of claims 1 to 4, wherein the two or more circuit constants include electric double layer capacitance. - 前記2つ以上の回路定数には、電荷移動抵抗が含まれる
請求項1から請求項4のいずれか一項に記載の電子機器。 The electronic device according to any one of claims 1 to 4, wherein the two or more circuit constants include charge transfer resistance. - 複数の単電池を含んで構成された組電池の充電もしくは放電の最中および実施後のそれぞれで、前記組電池に含まれる前記複数の単電池の電圧および電流を計測する計測工程と、
前記計測工程で得られた電圧値および電流値を記憶する記憶工程と、
前記記憶工程で記憶された前記電圧値および前記電流値を用いて前記単電池の等価回路の2つ以上の回路定数を前記単電池ごとに算出する算出工程と、
前記複数の単電池における前記2つ以上の回路定数の分布情報、または、複数の正常電池における前記2つ以上の回路定数の分布情報を用いて多変量解析を行う解析工程と
を含む
解析方法。 a measuring step of measuring the voltage and current of the plurality of single cells included in the assembled battery during and after charging or discharging of the assembled battery configured including the plurality of single cells;
a storage step of storing the voltage value and the current value obtained in the measuring step;
a calculating step of calculating two or more circuit constants of an equivalent circuit of the unit cell using the voltage value and the current value stored in the storing step;
an analyzing step of performing multivariate analysis using the distribution information of the two or more circuit constants in the plurality of cells or the distribution information of the two or more circuit constants in the plurality of normal batteries. - 単電池の充電もしくは放電の最中および実施後のそれぞれで、前記単電池の電圧および電流を計測する計測工程と、
前記計測工程で得られた電圧値および電流値を記憶する記憶工程と、
前記記憶工程で記憶された前記電圧値および前記電流値を用いて前記単電池の等価回路の2つ以上の回路定数を算出する算出工程と、
複数の正常電池における前記2つ以上の回路定数の分布情報を用いて多変量解析を行う解工程と
を含む
解析方法。 a measuring step of measuring the voltage and current of the single cell during and after the charging or discharging of the single cell;
a storage step of storing the voltage value and the current value obtained in the measuring step;
a calculating step of calculating two or more circuit constants of an equivalent circuit of the cell using the voltage value and the current value stored in the storing step;
and a solution step of performing multivariate analysis using the distribution information of the two or more circuit constants in a plurality of normal batteries. - 前記多変量解析の手法は、マハラノビス・タグチ法である
請求項7または請求項8に記載の解析方法。 9. The analysis method according to claim 7, wherein the method of multivariate analysis is the Mahalanobis-Taguchi method. - 前記多変量解析の手法は、ワンクラス・サポートベクターマシン法である
請求項7または請求項8に記載の解析方法。 9. The analysis method according to claim 7, wherein the multivariate analysis method is a one-class support vector machine method. - 前記2つ以上の回路定数には、電気二重層容量が含まれる
請求項7から請求項10のいずれか一項に記載の解析方法。 The analysis method according to any one of claims 7 to 10, wherein the two or more circuit constants include electric double layer capacitance. - 前記2つ以上の回路定数には、電荷移動抵抗が含まれる
請求項7から請求項10のいずれか一項に記載の解析方法。 The analysis method according to any one of claims 7 to 10, wherein the two or more circuit constants include charge transfer resistance.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021200780 | 2021-12-10 | ||
JP2021-200780 | 2021-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023106378A1 true WO2023106378A1 (en) | 2023-06-15 |
Family
ID=86730466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/045335 WO2023106378A1 (en) | 2021-12-10 | 2022-12-08 | Electronic appliance and analysis method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023106378A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013519893A (en) * | 2010-02-17 | 2013-05-30 | イエフペ エネルジ ヌヴェル | In-situ battery diagnostic method by electrochemical impedance spectroscopy |
WO2017126236A1 (en) * | 2016-01-20 | 2017-07-27 | 三菱電機株式会社 | Abnormality detection device and abnormality detection system |
JP2019200094A (en) * | 2018-05-15 | 2019-11-21 | 日新電機株式会社 | Device and method for extracting deterioration diagnosis data in storage battery |
JP2020106315A (en) * | 2018-12-26 | 2020-07-09 | トヨタ自動車株式会社 | Battery characteristic evaluation device and battery characteristic evaluation method |
JP2020125968A (en) * | 2019-02-04 | 2020-08-20 | 富士通株式会社 | Battery degradation diagnosing device, battery degradation analysis circuit, and battery degradation diagnosing program |
-
2022
- 2022-12-08 WO PCT/JP2022/045335 patent/WO2023106378A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013519893A (en) * | 2010-02-17 | 2013-05-30 | イエフペ エネルジ ヌヴェル | In-situ battery diagnostic method by electrochemical impedance spectroscopy |
WO2017126236A1 (en) * | 2016-01-20 | 2017-07-27 | 三菱電機株式会社 | Abnormality detection device and abnormality detection system |
JP2019200094A (en) * | 2018-05-15 | 2019-11-21 | 日新電機株式会社 | Device and method for extracting deterioration diagnosis data in storage battery |
JP2020106315A (en) * | 2018-12-26 | 2020-07-09 | トヨタ自動車株式会社 | Battery characteristic evaluation device and battery characteristic evaluation method |
JP2020125968A (en) * | 2019-02-04 | 2020-08-20 | 富士通株式会社 | Battery degradation diagnosing device, battery degradation analysis circuit, and battery degradation diagnosing program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cen et al. | Lithium‐ion battery SOC/SOH adaptive estimation via simplified single particle model | |
Shahriari et al. | Online state-of-health estimation of VRLA batteries using state of charge | |
CN111458642A (en) | Nondestructive testing method for lithium separation of lithium ion storage battery | |
Stroe et al. | Electrochemical impedance spectroscopy-based electric circuit modeling of lithium–sulfur batteries during a discharging state | |
Kalogiannis et al. | Incremental capacity analysis of a lithium-ion battery pack for different charging rates | |
CN111999666B (en) | Quantitative test method for diffusion impedance of lithium ion battery cell | |
Thingvad et al. | Characterization of nmc lithium-ion battery degradation for improved online state estimation | |
Banaei et al. | Real time condition monitoring in Li-Ion batteries via battery impulse response | |
Ahmed et al. | A scaling approach for improved open circuit voltage modeling in Li-ion batteries | |
Pérez et al. | Guidelines for the characterization of the internal impedance of lithium-ion batteries in PHM algorithms | |
Zhou et al. | Battery state of health estimation using the generalized regression neural network | |
Kaypmaz et al. | An advanced cell model for diagnosing faults in operation of Li-ion Polymer batteries | |
Oeser | From the production of the single cell to the end of life of the battery module: the development of parameter variation of lithium-ion cells | |
CN116203441B (en) | Method and device for testing temperature entropy coefficient of lithium ion battery | |
Sőrés et al. | Analysis of the relation between state of health and self-discharge of Li-ion batteries | |
WO2023106378A1 (en) | Electronic appliance and analysis method | |
Seo et al. | Capacity estimation of lithium-ion batteries under various temperatures using two aging indicators | |
Lyu et al. | Research on the performance evaluation of lithiumion battery cascade utilization based on impedance spectrum | |
Somakettarin et al. | A study on modeling of effective series resistance for lithium-ion batteries under life cycle consideration | |
Bodnár et al. | Temperature dependence of li-ion battery hysteresis for battery modeling purposes | |
Stroe et al. | Electric circuit modeling of lithium-sulfur batteries during discharging state | |
Bezha et al. | A Practical SoH Estimation using Adaptive ANN algorithm for the embedded EIS diagnosis in Industrial Applications | |
WO2023140277A1 (en) | Electronic apparatus, and measuring method | |
Nguyen et al. | A Fast OCV Characterization Approach for Battery Reuse Applications | |
Abbas et al. | Modeling of Lithium-ion battery open-circuit voltage using incremental and low current test |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22904305 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |