WO2023106374A1 - Optical element and method for manufacturing same - Google Patents

Optical element and method for manufacturing same Download PDF

Info

Publication number
WO2023106374A1
WO2023106374A1 PCT/JP2022/045311 JP2022045311W WO2023106374A1 WO 2023106374 A1 WO2023106374 A1 WO 2023106374A1 JP 2022045311 W JP2022045311 W JP 2022045311W WO 2023106374 A1 WO2023106374 A1 WO 2023106374A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
uneven layer
optical element
uneven
translucent substrate
Prior art date
Application number
PCT/JP2022/045311
Other languages
French (fr)
Japanese (ja)
Inventor
高宏 俣野
寛典 高瀬
隆史 西宮
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023106374A1 publication Critical patent/WO2023106374A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical element and its manufacturing method.
  • Optical devices such as goggles for cameras, AR (Augmented Reality), VR (Virtual Reality) and MR (Mixed Reality) use optical elements.
  • Patent Document 1 discloses a light-transmitting substrate and an inorganic material layer formed on the light-transmitting substrate and having a plurality of linear concave-convex structures parallel to each other.
  • An optical element is disclosed comprising: In this optical element, the inorganic material layer has a refractive index of 1.8 or more.
  • optical element having an uneven surface and an uneven layer formed of an inorganic material
  • the optical characteristics can be improved to some extent.
  • the performance of optical equipment has been improved, and further improvement in optical characteristics is required.
  • the uneven layer may be peeled off or damaged due to heat, impact, or the like.
  • An object of the present invention is to provide an optical element that has excellent optical properties and that can suppress damage to the uneven layer. Another object of the present invention is to provide a method for manufacturing the optical element.
  • optical properties refer to refractive index, light transmittance, and diffraction properties.
  • An optical element according to aspect 1 includes a light-transmitting substrate and an uneven layer disposed on a main surface of the light-transmitting substrate and having unevenness on the surface thereof, wherein the uneven layer comprises inorganic nanoparticles. and the absolute value of the difference between the refractive index of the translucent substrate and the refractive index of the uneven layer is 0.20 or less. When the absolute value of the difference in refractive index between the translucent substrate and the uneven layer is 0.20 or less, the reflection loss can be reduced and the viewing angle of optical equipment such as goggles can be widened.
  • the apexes of the projections of the uneven layer are horizontal or convex. With this configuration, the optical properties of the uneven layer can be enhanced.
  • the radius of curvature at the end of the convex portion of the uneven layer is smaller than the radius of curvature at the end of the concave portion of the uneven layer.
  • the uneven layer has a maximum peak intensity B of 2900 cm ⁇ 1 in the range of 100 cm ⁇ 1 to 1000 cm ⁇ 1 in Raman spectrum.
  • the ratio of maximum peak intensity A (maximum peak intensity A/maximum peak intensity B) within the range of up to 3000 cm ⁇ 1 is preferably 4.0 or less.
  • the ratio (maximum peak intensity A/maximum peak intensity B) is 4.0 or less, it is possible to reduce the content of the organic component in the uneven layer, further enhance the optical properties of the uneven layer, Moreover, damage to the uneven layer can be further suppressed.
  • the uneven layer has a refractive index of 1.60 or more.
  • the refractive index of the uneven layer is 1.60 or more, the reflection loss can be reduced, and the viewing angle of optical equipment such as goggles can be widened.
  • the uneven layer has an Abbe number of 5 or more and 35 or less.
  • the optical element of mode 7 in any one of modes 1 to 6, when x is the refractive index of the uneven layer and y is the Abbe number of the uneven layer, the optical element is represented by the formula: y+50x The value is preferably 100 or more and 125 or less.
  • the inorganic nanoparticles are ZrO 2 , BaTiO 3 , TiO 2 , Al 2 O 3 , Nb 2 O 5 , SiO 2 and KTaO 3 At least one inorganic nanoparticle selected from the group consisting of
  • the uneven layer includes inorganic nanoparticles A and inorganic nanoparticles having a smaller average particle diameter than the inorganic nanoparticles A as the inorganic nanoparticles.
  • the average particle diameter of the inorganic nanoparticles A is D A nm and the average particle diameter of the inorganic nanoparticles B is D B nm
  • the average particle diameter of the inorganic nanoparticles B is , the ratio (D A /D B ) to the average particle size of the inorganic nanoparticles A is preferably 1.5 or more and 20.0 or less.
  • the content of the inorganic nanoparticles is 10% by mass or more in 100% by mass of the uneven layer.
  • the optical transmittance at a wavelength of 500 nm is 55% or more.
  • the translucent substrate is preferably a glass substrate.
  • the optical element of Aspect 14 is preferably used as an optical diffraction element in any one of Aspects 1 to 13.
  • the translucent substrate and the uneven layer are in direct contact.
  • the translucent substrate and the uneven layer are in close contact with each other via an adhesive layer.
  • any one of Modes 1 to 16 it is preferable to have a thin film layer on the uneven layer.
  • the thin film layer comprises Y2O3 , Al2O3 , SiO2 , MgO , TiO2 , CeO2 , Bi2O3 , HfO2 , Al, Ag, Au , Pt and carbon.
  • a method for manufacturing an optical element according to aspect 19 comprises the steps of disposing a material for an uneven layer on the surface of a member having unevenness on the surface to form a material layer for the uneven layer; disposing a translucent substrate on the surface opposite to the member; drying a material layer of the uneven layer disposed between the member and the translucent substrate; and a step of removing the.
  • a method for manufacturing an optical element according to aspect 22 comprises the steps of disposing a material for an uneven layer on a main surface of a translucent substrate to form a material layer for the uneven layer; a step of disposing a member having an uneven surface on the surface opposite to the transparent substrate from the surface side; and a material layer of the uneven layer disposed between the member and the translucent substrate. It is characterized by comprising a step of drying and a step of removing the member.
  • a method for manufacturing an optical element according to aspect 23 includes the steps of: forming a material layer for an uneven layer on the surface of a member having unevenness on the surface; drying the material layer for the uneven layer to form an uneven layer; arranging a translucent substrate on the concavo-convex layer.
  • a method for manufacturing an optical element according to aspect 24 includes the steps of disposing a first material on the surface of a member having an uneven surface to form a material layer for a first uneven layer; drying the material layer to form a first uneven layer; disposing a second material on the first uneven layer to form a material layer for a second uneven layer; drying the material layer of the uneven layer 2 to form a second uneven layer; and placing a translucent substrate on the second uneven layer.
  • the material of the uneven layer is a material containing inorganic nanoparticles, or a composite of a material containing inorganic nanoparticles and a sol-gel material. Materials are preferred.
  • the material of the uneven layer contains a resin.
  • the material layer of the uneven layer is dried. It is preferable that the ratio of the amount of H shrinkage to the amount of Ha shrinkage is 0.5 or less.
  • any one of Aspects 19 to 28 it is preferable to further include a step of transferring the material layer of the uneven layer to a film.
  • an optical element that has excellent optical properties and can suppress damage to the uneven layer. Further, according to the present invention, it is possible to provide a method for manufacturing the above optical element.
  • FIG. 1 is a perspective view schematically showing an optical element according to a first embodiment of the invention.
  • FIG. 2 is a perspective view schematically showing an optical element according to a second embodiment of the invention.
  • FIG. 3 is a perspective view schematically showing an optical element according to a third embodiment of the invention.
  • 4A to 4D are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view for explaining the height Ha of the uneven layer and the height H of the convex portion in the optical element of the present invention.
  • 6A to 6D are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the second embodiment of the present invention.
  • 7A to 7D are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the first modified example of the present invention.
  • 8A to 8D are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the second modification of the invention.
  • 9(e) to 9(f) are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the second modification of the invention.
  • the refractive index of the light-transmitting substrate means the refractive index of the light-transmitting substrate at a wavelength of 530 nm
  • the refractive index of the uneven layer means the wavelength of the uneven layer of 530 nm. means the refractive index at a wavelength of 530 nm
  • FIG. 1 is a perspective view schematically showing an optical element according to a first embodiment of the invention.
  • the optical element 10 shown in FIG. 1 includes a translucent substrate 1 and an uneven layer 2 having unevenness on the surface.
  • the uneven layer 2 is arranged on the main surface of the translucent substrate 1 .
  • the uneven layer 2 is arranged on one main surface (on the first main surface) of the translucent substrate 1 .
  • the surface of the uneven layer 2 opposite to the translucent substrate 1 has unevenness.
  • the translucent substrate 1 is not particularly limited as long as it has practically sufficient light transmittance in the wavelength range used.
  • the internal transmittance at a wavelength of 500 nm at a thickness of 10 mm of the translucent substrate 1 is preferably 80% or more, more preferably 85% or more, even more preferably 90% or more, and particularly preferably 95% or more.
  • the upper limit of the internal transmittance at a wavelength of 500 nm in the light-transmitting substrate 1 having a thickness of 10 mm is not particularly limited, it may be, for example, 100% or less or 99% or less.
  • the translucent substrate 1 examples include glass substrates and resin substrates. From the viewpoint of further enhancing the weather resistance, the translucent substrate 1 is preferably a glass substrate.
  • the refractive index of the translucent substrate 1 is preferably 1.60 or higher, more preferably 1.70 or higher, even more preferably 1.80 or higher, still more preferably 1.90 or higher, and even more preferably 1.95 or higher. , particularly preferably 1.99 or more.
  • the refractive index of the translucent substrate 1 is preferably 2.30 or less, more preferably 2.20 or less, even more preferably 2.10 or less, and particularly preferably 2.00 or less.
  • the refractive index of the translucent substrate 1 is equal to or higher than the above lower limit, the amount of light incident on the translucent substrate 1 can be increased, and the viewing angle of optical equipment such as goggles can be widened.
  • the refractive index of the translucent substrate 1 may be 1.90 or less, 1.80 or less, 1.70 or less, or 1.65 or less. Well, it may be 1.60 or less.
  • the refractive index of the translucent substrate 1 is the refractive index at a wavelength of 530 nm, and can be measured with a V-block refractometer.
  • the Abbe number of the translucent substrate 1 is preferably 5 or more, more preferably 7 or more, still more preferably 9 or more, still more preferably 10 or more, still more preferably 12 or more, even more preferably 14 or more, and particularly preferably is 15 or more, preferably 40 or less, more preferably 36 or less, even more preferably 34 or less, still more preferably 32 or less, still more preferably 30 or less, even more preferably 28 or less, particularly preferably 26 or less be. If the Abbe number of the light-transmitting substrate 1 is equal to or higher than the above lower limit, SiO 2 , B 2 O 3 , Na 2 O, K 2 O, Li 2 O, etc. in the glass when the light-transmitting substrate 1 is a glass substrate.
  • the liquidus temperature can be kept low.
  • the Abbe number of the translucent substrate 1 is equal to or less than the above upper limit, when the translucent substrate 1 is a glass substrate, La 2 O 3 , Nb 2 O 5 , and TiO 2 , which are components that increase the refractive index in the glass, It is no longer necessary to reduce the content, and as a result, the refractive index of the translucent substrate 1 can be maintained high.
  • the refractive index nd, the refractive index nC, and the refractive index nF for determining the Abbe number of the translucent substrate 1 can be measured with a V-block refractometer.
  • the translucent substrate 1 is Si--B--La--Nb--Ti based glass, Bi--Te--B based glass, or Si--B--RO based glass (RO is MgO, CaO, BaO, SrO or ZnO).
  • the Si-B-La-Nb-Ti-based glass contains 1 to 21% SiO 2 , 5 to 30% B 2 O 3 , 0 to 5% ZnO, and 1 to 15% ZrO 2 in mass %.
  • the Bi--Te--B glass preferably contains 40 to 90% by mass of Bi 2 O 3 , 1 to 30% by mass of B 2 O 3 and 0.1 to 19% by mass of TeO 2 .
  • the Si-B-RO glass contains, in mass %, SiO 2 5 to 50%, B 2 O 3 1 to 30%, Al 2 O 3 0 to 10%, ZnO 0 to 20%, CaO 0 to 20%.
  • % MgO 0-20%, SrO 0-20%, MgO + CaO + BaO + SrO + ZnO (total content of MgO, CaO, BaO, SrO and ZnO) 1-30%, Na 2 O 1-20%, ZrO 0-10 % , La 2 O 3 0-20%, Sb 2 O 3 0-1%, and SnO 2 0-1%.
  • "not containing a lead component, an arsenic component, and an F component” means that the content of each of the lead component, the arsenic component, and the F component is 0.1% by mass or less.
  • the thickness of the translucent substrate 1 is preferably 0.01 mm or more, more preferably 0.50 mm or more, and preferably 10.0 mm or less, more preferably 2.0 mm or less. Mechanical strength can be improved as the thickness of the translucent board
  • the uneven layer is a layer having a plurality of protrusions or a plurality of recesses.
  • the uneven layer preferably has a periodic structure with a plurality of protrusions or a plurality of recesses on its surface.
  • the uneven layer has an uneven surface.
  • the surface of the uneven layer opposite to the light-transmitting substrate side is an uneven surface.
  • the uneven layer 2 contains inorganic nanoparticles. Therefore, the refractive index of the concavo-convex layer 2 can be increased, and therefore the optical properties of the optical element 10 can be increased. In addition, since the uneven layer 2 contains inorganic nanoparticles, the structure of the uneven layer 2 is densified. Furthermore, the adhesion between the translucent substrate 1 and the uneven layer 2 can be further enhanced. Only one kind of the inorganic nanoparticles may be used, or two or more kinds thereof may be used in combination.
  • the average particle size of the inorganic nanoparticles is preferably 200 nm or less, more preferably 100 nm or less, still more preferably 50 nm or less, even more preferably 30 nm or less, and particularly preferably 20 nm or less.
  • the average particle diameter is equal to or less than the upper limit, the optical properties of the uneven layer 2, specifically, the refractive index and the transmittance can be further improved, and the strength of the uneven layer 2 can be further increased. can be done. If the average particle size exceeds the upper limit, the optical properties of the uneven layer 2, specifically, the refractive index and the transmittance, are reduced.
  • the average particle size of the inorganic nanoparticles is preferably 0.01 nm or more, more preferably 0.1 nm or more, even more preferably 0.5 nm or more, still more preferably 1.0 nm or more, and even more preferably 1.0 nm or more. 5 nm or more, particularly preferably 2.0 nm or more. If the average particle diameter is less than the above lower limit, shrinkage during drying increases in the step of producing the uneven layer 2, which makes the uneven layer 2 more likely to crack or makes it difficult to form a dense uneven layer 2. There is a risk of
  • the average particle size of the inorganic nanoparticles means the volume average particle size (D50).
  • the average particle size of the inorganic nanoparticles can be measured by a dynamic light scattering method.
  • the inorganic nanoparticles are preferably inorganic oxide nanoparticles, selected from the group consisting of titanium compounds such as ZrO2 , TiO2 and BaTiO3 , Al2O3 , Nb2O5 , SiO2 and KTaO3 .
  • the content of the inorganic nanoparticles in the uneven layer 2 is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, and particularly preferably 50% by mass. % or more.
  • the content of the inorganic nanoparticles is at least the lower limit, the effects of the present invention can be exhibited more effectively.
  • the upper limit of the content of the inorganic nanoparticles in the uneven layer 2 may be 99% by mass or less, or 98% by mass. or less, or 95% by mass or less.
  • the content of the inorganic nanoparticles in the uneven layer 2 is preferably 50% by mass or more.
  • More preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 75% by mass or more, still more preferably 80% by mass or more, 90% by mass or more is more preferably 95% by mass or more, and particularly preferably 99% by mass or more.
  • the content of inorganic nanoparticles is large, the content of other components such as resin is relatively decreased, so that deformation (shrinkage) during drying can be easily suppressed.
  • the content of the inorganic nanoparticles in the uneven layer 2 (out of 100% by mass of the uneven layer) is 90% by mass. % or more, more preferably 95 mass % or more, still more preferably 99 mass % or more, and particularly preferably 100 mass %.
  • the uneven layer 2 preferably contains inorganic nanoparticles A and inorganic nanoparticles B having an average particle diameter smaller than that of the inorganic nanoparticles A as the inorganic nanoparticles.
  • the average particle diameter of the inorganic nanoparticles A is D A nm and the average particle diameter of the inorganic nanoparticles B is D B nm
  • the diameter ratio (D A /D B ) is preferably 1.5 or more, more preferably 2.0 or more, still more preferably 3.0 or more, preferably 20.0 or less, more preferably 10.0. 6.0 or less, more preferably 6.0 or less.
  • the inorganic nanoparticles in the uneven layer 2 can be highly filled, so that the optical properties of the optical element can be further improved. can be done. Moreover, aggregation of inorganic nanoparticles can be effectively suppressed when the ratio (D A /D B ) is equal to or less than the upper limit.
  • the uneven layer 2 has a plurality of protrusions 21 . Note that the uneven layer 2 can also be viewed as having a plurality of recesses 22 .
  • the projections 21 are linear projections.
  • a plurality of protrusions 21 are provided parallel to each other.
  • the uneven layer 2 is a lattice groove with a rectangular cross section.
  • the shape of the uneven layer 2 is not limited to the above.
  • the cross-sectional shape may be a sinusoidal or sawtooth lattice groove.
  • the height H of the protrusions 21 is preferably 10 nm or more, more preferably 25 nm or more, still more preferably 30 nm or more, still more preferably 50 nm or more, particularly preferably 75 nm or more, and preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less. , more preferably 1 ⁇ m or less, more preferably 800 nm or less, and particularly preferably 600 nm or less.
  • the height H of the convex portion 21 is equal to or more than the lower limit and equal to or less than the upper limit, the optical properties can be further improved. Further, if the height H of the projections 21 is equal to or less than the upper limit, damage to the uneven layer 2 can be effectively suppressed.
  • the height H of the protrusion 21 corresponds to the depth of the recess 22 .
  • the height H of the convex portion 21 means the height h1 at the end portion of the convex portion 21 and the height h2 at the central portion of the convex portion 21, which will be described later, whichever is larger.
  • the width W of the convex portion 21 is preferably 10 nm or more, more preferably 25 nm or more, still more preferably 50 nm or more, particularly preferably 75 nm or more, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, further preferably 800 nm or less. Particularly preferably, it is 600 nm or less.
  • the width W of the convex portion 21 is equal to or more than the lower limit and equal to or less than the upper limit, the optical characteristics can be further improved.
  • the period P in the periodic structure of the uneven layer 2 is preferably 10 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, particularly preferably 200 nm or more, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably. 800 nm or less, particularly preferably 600 nm or less.
  • the optical properties can be further improved.
  • the minimum thickness of the uneven layer 2 is preferably 10 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, particularly preferably 500 nm or more, preferably 10000 nm or less, more preferably 5000 nm or less, still more preferably 2500 nm or less, Especially preferably, it is 1000 nm or less.
  • the minimum thickness of the concavo-convex layer 2 is equal to or more than the lower limit and equal to or less than the upper limit, the optical properties can be further enhanced.
  • the convex portion 21 preferably has a horizontal or convex top. Thereby, the optical characteristics of the concavo-convex layer 2 can be further improved.
  • the convex portion 21 having a horizontal or convex top portion is produced by, for example, a method for manufacturing an optical element according to the first embodiment of the present invention and a method for manufacturing an optical element according to the first modified example of the present invention, which will be described later. It is easy to form by using the method or the method for manufacturing an optical element according to the second modification of the present invention.
  • the ratio h2/h1 of the height h1 at the end of the protrusion 21 of the uneven layer 2 and the height h2 at the center of the protrusion 21 is preferably 0.5 to 1.5, more preferably 0.9. ⁇ 1.3, more preferably 0.95 to 1.3, still more preferably 1 to 1.3, even more preferably greater than 1 to 1.3, particularly preferably 1.01 to 1.2.
  • h2/h1 is within the above range, it becomes easier to obtain the concavo-convex layer 2 having desired optical properties.
  • h2/h1 is preferably greater than 1 to 1.3, more preferably 1.01 to 1.21.
  • the height h1 at the ends of the projections 21 and the height h2 at the center of the projections 21 can be measured by observing the cross section of the uneven layer 2 using an electron microscope, for example.
  • the radius of curvature at the end of the projection 21 is preferably smaller than the radius of curvature at the end of the recess 22 . Thereby, the optical characteristics of the concavo-convex layer 2 can be further enhanced.
  • the absolute value of the difference between the refractive index of the translucent substrate 1 and the refractive index of the uneven layer 2 is 0.20 or less. More specifically, the absolute value of the difference between the refractive index of the translucent substrate 1 at a wavelength of 530 nm and the refractive index of the uneven layer 2 at a wavelength of 530 nm is 0.20 or less.
  • the absolute value of the difference between the refractive index of the light-transmitting substrate 1 and the refractive index of the uneven layer 2 is small, light loss due to light scattering at the interface between the light-transmitting substrate 1 and the uneven layer 2 is suppressed. and thus the optical properties of the optical element 10 can be enhanced.
  • the absolute value of the difference is 0.20 or less, the reflection loss can be reduced, and the viewing angle of optical equipment such as goggles can be widened.
  • the absolute value of the difference between the refractive index of the translucent substrate 1 and the refractive index of the uneven layer 2 is preferably 0.15 or less, more preferably 0.1 or less.
  • the absolute value of the difference is equal to or less than the upper limit, the optical properties of the optical element 10 can be further enhanced.
  • the lower limit of the absolute value of the difference is not particularly limited, it may be, for example, 0 or more, or 0.01 or more.
  • the refractive index of the uneven layer 2 may be larger or smaller than the refractive index of the translucent substrate 1 .
  • the refractive index of the uneven layer 2 may be the same as the refractive index of the translucent substrate 1 .
  • the refractive index of the uneven layer 2 is preferably 1.60 or higher, more preferably 1.70 or higher, still more preferably 1.80 or higher, and particularly preferably 1.90 or higher.
  • the refractive index of the uneven layer 2 is equal to or higher than the above lower limit, the viewing angle of optical equipment such as goggles can be widened.
  • the upper limit of the refractive index of the uneven layer 2 is not particularly limited, it may be, for example, 2.4 or less, or 2.3 or less.
  • the Abbe number of the uneven layer 2 is preferably 5 or more, more preferably 7 or more, still more preferably 9 or more, particularly preferably 10 or more, preferably 35 or less, more preferably 30 or less, and even more preferably 25 or less. , more preferably 20 or less, even more preferably 18 or less, particularly preferably 16 or less, most preferably 15 or less.
  • the Abbe number of the uneven layer 2 is equal to or more than the above lower limit and equal to or less than the above upper limit, the absolute value of the difference between the refractive index of the translucent substrate 1 and the refractive index of the uneven layer 2 can be easily reduced, and the optical properties of the optical element can be improved. can be further enhanced.
  • the refractive index of the uneven layer 2 tends to be higher than the refractive index of the translucent substrate 1 . Further, when the Abbe number of the uneven layer 2 exceeds the above upper limit, the refractive index of the uneven layer 2 tends to be smaller than the refractive index of the translucent substrate 1 .
  • the refractive index of the uneven layer 2 can be obtained by measuring the refractive index at a wavelength of 530 nm using a spectroscopic ellipsometer. Moreover, the Abbe number of the uneven layer 2 can be obtained using a spectroscopic ellipsometer.
  • x be the refractive index of the uneven layer 2 (refractive index at a wavelength of 530 nm), and y be the Abbe number of the uneven layer 2 .
  • the value represented by the formula: y+50x is preferably 100 or more, preferably 125 or less, more preferably 120 or less, and even more preferably 115 or less.
  • the refractive index curves of the translucent substrate 1 and the uneven layer 2 tend to intersect in the wavelength range of 400 nm to 800 nm. If the value represented by the above formula: y+50x is larger than 125, matching of the refractive index and Abbe number between the uneven layer 2 and the translucent substrate 1 tends to be difficult.
  • the refractive index curve of the translucent substrate 1 and the refractive index curve of the uneven layer 2 preferably intersect in the wavelength range of 400 nm to 780 nm.
  • the wavelength range at which the refractive index curve of the translucent substrate 1 and the refractive index curve of the concavo-convex layer 2 intersect is preferably 410 nm to 650 nm, more preferably 420 nm to 600 nm, still more preferably 430 nm to 550 nm, and particularly preferably 440 nm. ⁇ 500 nm.
  • the above refractive index curve is a curve showing the relationship between the wavelength and the refractive index, where the horizontal axis is the wavelength and the vertical axis is the refractive index.
  • the uneven layer 2 has a ratio of the maximum peak intensity A within the range of 2900 cm ⁇ 1 to 3000 cm ⁇ 1 to the maximum peak intensity B within the range of 100 cm ⁇ 1 to 1000 cm ⁇ 1 in the Raman spectrum (maximum peak intensity A /maximum peak intensity B) is preferably 4.0 or less, preferably 3.5 or less, more preferably 3.0 or less, and even more preferably 2.5 or less , is more preferably 2.0 or less, even more preferably 1.5 or less, and particularly preferably 1.0 or less. It means that the smaller the ratio (maximum peak intensity A/maximum peak intensity B), the smaller the content of the organic component in the uneven layer 2 .
  • the ratio (maximum peak intensity A/maximum peak intensity B) is equal to or less than the upper limit, the light incident on the uneven layer 2 is effectively prevented from being diffusely reflected in the uneven layer 2 by the organic component in the uneven layer 2. can be suppressed to As a result, the optical properties of the uneven layer 2 can be enhanced, and damage to the uneven layer 2 caused by a decrease in mechanical strength due to the organic component in the uneven layer 2 can be suppressed.
  • the ratio (maximum peak intensity A/maximum peak intensity B) is measured, for example, under the conditions described in Examples below.
  • the peak position of the maximum peak intensity B changes depending on the component.
  • the peak positions are ZrO 2 500 ⁇ 100 cm ⁇ 1 , TiO 2 200 ⁇ 100 cm ⁇ 1 , SiO 2 400 ⁇ 100 cm ⁇ 1 , Nb 2 O 5 700 ⁇ 100 cm ⁇ 1 , Al 2 O 3 600 ⁇ 100 cm ⁇ 1 , BaTiO 3 . 400 ⁇ 100 cm ⁇ 1 .
  • the average thermal expansion coefficient of the uneven layer 2 at 30° C. to 100° C. is preferably 50 ⁇ 10 ⁇ 7 /° C. or higher, more preferably 70 ⁇ 10 ⁇ 7 /° C. or higher, and preferably 150 ⁇ 10 ⁇ 7 /° C. or lower. More preferably, it is 120 ⁇ 10 ⁇ 7 /° C. or less.
  • the absolute value of the difference between the average thermal expansion coefficient of the translucent substrate 1 at 30° C. to 100° C. and the average thermal expansion coefficient of the uneven layer 2 at 30° C. to 100° C. is preferably 50 ⁇ 10 ⁇ 7 /° C. or less, More preferably, it is 25 ⁇ 10 ⁇ 7 /° C. or less.
  • the absolute value of the difference is equal to or less than the upper limit, the adhesion between the translucent substrate 1 and the uneven layer 2 can be further enhanced.
  • the lower limit of the absolute value of the difference is not particularly limited, it may be, for example, 1 ⁇ 10 ⁇ 7 /° C. or more.
  • the residual stress generated in the translucent substrate 1 is preferably 10 MPa or less, more preferably 5 MPa or less, even more preferably 3 MPa or less, and particularly preferably 1 MPa or less, regardless of tensile stress or compressive stress.
  • the lower limit of the residual stress is not particularly limited, it may be, for example, 0.01 MPa or more.
  • the translucent substrate 1 and the uneven layer 2 are preferably in direct contact. Thereby, the adhesion between the translucent substrate 1 and the concavo-convex layer 2 can be enhanced, and the optical characteristics of the optical element 10 can be further enhanced. Further, the translucent substrate 1 and the uneven layer 2 may be in close contact with each other via an adhesive layer (not shown). This configuration can be obtained, for example, by bonding the concavo-convex layer 2 and the translucent substrate 1 together with an adhesive.
  • the type of adhesive is not particularly limited, and organic adhesives and inorganic adhesives can be used.
  • the absolute value of the difference between the refractive index of the adhesive and the refractive index of the translucent substrate 1 is preferably 0.15 or less, particularly 0.10 or less. is preferred.
  • the lower limit of the absolute value of the difference is not particularly limited, it may be, for example, 0.001 or more.
  • the absolute value of the difference between the refractive index of the adhesive and the refractive index of the concavo-convex layer 2 is preferably 0.15 or less, more preferably 0.10 or less.
  • the optical properties of the optical element 10 can be further enhanced.
  • the lower limit of the absolute value of the difference is not particularly limited, it may be, for example, 0.001 or more.
  • the thickness of the adhesive layer is preferably 500 nm or less, more preferably 400 nm or less, and even more preferably 300 nm or less. If the thickness of the adhesive layer is too large, the light transmittance of the optical element 10 tends to decrease.
  • the lower limit of the thickness of the adhesive layer may be, for example, 10 nm or more.
  • the optical element 10 may have a thin film layer (not shown) on the uneven layer 2 .
  • the thin film layer may be a single layer film or a multilayer film.
  • the thin film layer may be, for example, a metal reflective film, an antireflection film, or a protective film.
  • a metal reflective film the reflection effect of the entire optical element 10 can be enhanced, and the light guide effect when the optical element 10 is used as a light guide plate can be enhanced.
  • an antireflection film the amount of light incident on the uneven layer 2 can be increased.
  • a protective film it becomes easier to suppress damage to the uneven layer 2 .
  • the thin film layer is for example selected from the group consisting of Y2O3 , Al2O3 , SiO2 , MgO , TiO2 , CeO2 , Bi2O3 , HfO2 , Al, Ag, Au, Pt and carbon. It is preferably made of at least one material that Also, the thin film layer may be formed from a resin material such as an olefin resin. Alternatively, diamond-like carbon (DLC) may be used as the carbon material.
  • DLC diamond-like carbon
  • each thin film layer is preferably 10 nm to 1000 nm, more preferably 10 nm to 800 nm, even more preferably 30 nm to 500 nm, and particularly preferably 50 nm to 400 nm. If the thickness per layer is too small, it may become difficult to obtain desired optical properties. On the other hand, if the thickness of each layer is too large, the stress applied to the interface between the thin film layer and the uneven layer 2 increases, and the adhesion of the thin film layer tends to decrease.
  • the thickness of each thin film layer is preferably 10 nm to 400 nm, more preferably 30 nm to 350 nm, even more preferably 50 nm to 300 nm. preferable.
  • Examples of film formation methods include vacuum deposition, ion plating, and sputtering.
  • the light transmittance of the optical element 10 at a wavelength of 300 nm to 800 nm is preferably 55% or higher, more preferably 60% or higher, and even more preferably 65% or higher. When the light transmittance is equal to or higher than the lower limit, the optical properties can be further improved.
  • the upper limit of the light transmittance of the optical element 10 at a wavelength of 300 nm to 800 nm is not particularly limited, it may be, for example, 100% or less, or 99% or less.
  • the light transmittance of the optical element 10 at a wavelength of 500 nm is preferably 55% or higher, more preferably 60% or higher, and even more preferably 65% or higher. When the light transmittance is equal to or higher than the lower limit, the optical properties can be further improved.
  • the upper limit of the light transmittance of the optical element 10 at a wavelength of 500 nm is not particularly limited, it may be, for example, 100% or less, or 99% or less.
  • the light transmittance of the optical element 10 at a wavelength of 450 nm is preferably 55% or higher, more preferably 60% or higher, and even more preferably 65% or higher. When the light transmittance is equal to or higher than the lower limit, the optical properties can be further improved.
  • the upper limit of the light transmittance of the optical element 10 at a wavelength of 450 nm is not particularly limited, it may be, for example, 100% or less, or 99% or less.
  • the light transmittance of the optical element 10 at wavelengths of 300 nm to 800 nm, 500 nm and 450 nm can be measured using a transmittance meter (eg, "V-670" manufactured by JASCO Corporation).
  • a transmittance meter eg, "V-670” manufactured by JASCO Corporation.
  • the above-described light transmittance can be measured by letting light enter the optical element 10 from the side of the transparent substrate 1 at an incident angle of 0°.
  • the optical element 10 is suitably used as an optical diffraction element.
  • the optical element 10 can be suitably used as a light guide plate provided with a diffraction structure.
  • the optical diffraction element and the light guide plate are components of wearable image display devices selected from glasses with a projector, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR) display devices, and virtual image display devices. It is particularly suitable as
  • FIG. 2 is a perspective view schematically showing an optical element according to a second embodiment of the invention.
  • the optical element 10A shown in FIG. 2 includes a translucent substrate 1 and an uneven layer 2A having unevenness on the surface.
  • the optical element 10 shown in FIG. 1 differs from the optical element 10A shown in FIG. 2 in the shape of the concavo-convex layer.
  • the uneven layer 2A has a plurality of columnar protrusions 21A.
  • a plurality of convex portions 21A are provided periodically.
  • the shape of the convex portion 21A is not particularly limited, and may be, for example, a polygonal columnar shape or a hemispherical shape.
  • the uneven layer 2A contains inorganic nanoparticles, and the absolute value of the difference between the refractive index of the translucent substrate 1 and the refractive index of the uneven layer 2A is 0.20 or less. It is excellent in optical properties and can suppress breakage of the uneven layer 2A.
  • the height H of the convex portion 21A is preferably 10 nm or more, more preferably 25 nm or more, still more preferably 30 nm or more, still more preferably 50 nm or more, particularly preferably 75 nm or more, and preferably 5 ⁇ m or less, more preferably 2 ⁇ m. Below, it is more preferably 1 ⁇ m or less, still more preferably 800 nm or less, and particularly preferably 600 nm or less.
  • the optical properties can be further improved. Further, when the height H of the convex portion 21A is equal to or less than the above upper limit, it is possible to effectively suppress damage to the uneven layer 2A.
  • FIG. 3 is a perspective view schematically showing an optical element according to a third embodiment of the invention.
  • the optical element 10B shown in FIG. 3 includes a translucent substrate 1 and an uneven layer 2B having unevenness on the surface.
  • the optical element 10 shown in FIG. 1 differs from the optical element 10B shown in FIG. 3 in the shape of the concavo-convex layer.
  • the uneven layer 2B has a plurality of cylindrical recesses 22B.
  • a plurality of recesses 22B are provided periodically.
  • the shape of the recess 22B is not particularly limited, and may be, for example, a polygonal columnar shape or a hemispherical shape.
  • the uneven layer 2B contains inorganic nanoparticles, and the absolute value of the difference between the refractive index of the translucent substrate 1 and the refractive index of the uneven layer 2B is 0.20 or less. It is excellent in optical characteristics and can suppress breakage of the uneven layer 2B.
  • the depth D of the concave portion 22B is preferably 10 nm or more, more preferably 25 nm or more, still more preferably 30 nm or more, even more preferably 50 nm or more, particularly preferably 75 nm or more, and preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less. , more preferably 1 ⁇ m or less, still more preferably 800 nm or less, and particularly preferably 600 nm or less.
  • the optical properties can be further improved.
  • the optical element of the present invention includes a light-transmitting substrate, an uneven layer (first uneven layer) disposed on a first main surface of the light-transmitting substrate, and a first uneven layer of the light-transmitting substrate. and an uneven layer (second uneven layer) disposed on the second main surface.
  • first uneven layer disposed on a first main surface of the light-transmitting substrate
  • second uneven layer disposed on the second main surface.
  • the type of inorganic nanoparticles contained in the first uneven layer and the type of inorganic nanoparticles contained in the second uneven layer may be the same or different.
  • the shape of the first uneven layer and the shape of the second uneven layer may be the same or different.
  • optical element according to the present invention can be suitably manufactured using, for example, nanoimprint technology.
  • (First embodiment) 4A to 4D are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the first embodiment of the present invention.
  • 4A to 4D are cross-sectional views for explaining each step of the method of manufacturing the optical element 10 shown in FIG.
  • the method for manufacturing an optical element according to the present embodiment includes steps of forming a material layer for the uneven layer by disposing a material for the uneven layer on the surface of a member having unevenness on the surface; placing a translucent substrate on the surface opposite the side; drying the material layer of the uneven layer disposed between the member and the translucent substrate; removing the member; Prepare.
  • a member 50 having an uneven surface is prepared.
  • the member 50 is a silicone resin member.
  • a material for the uneven layer is placed on the uneven surface of the member 50 .
  • the dispenser 60 is used to dispose the material of the uneven layer on the uneven surface of the member 50 .
  • the material layer 2X of the uneven layer can be formed on the uneven surface of the member 50 (FIG. 4A).
  • the member 50 is not limited to a silicone resin member, and for example, a UV curable resin film having unevenness on the surface may be used.
  • the material of the uneven layer is preferably a material containing inorganic nanoparticles or a composite material of a material containing inorganic nanoparticles and a sol-gel material.
  • the inorganic nanoparticles described above can be used as the inorganic nanoparticles.
  • metal alkoxides and non-metal alkoxides can be used as precursors.
  • metal alkoxides include alumina acid, titanate, zirconate, and niobic acid.
  • non-metal alkoxides include alkoxysilanes and alkoxyborates.
  • alkoxysilanes include tetramethoxysilane (TMOS) and tetraethoxysilane (TEOS).
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • alkoxy group of alkoxysilanes ethyl group, methoxy group, propoxy group, butoxy group or other long-chain hydrocarbon alkoxy groups are used.
  • the material of the uneven layer contains a resin.
  • the resin it is preferable to use a photocurable resin.
  • the material of the uneven layer contains a photocurable resin
  • a polymerization initiator it is preferable to add a thiol in order to obtain high curability. Curing by UV irradiation and drying by heating may be used in combination.
  • polymerization initiators examples include 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenylketone, acetophenone, benzophenone, xanthone, fluorenone, bezaldehyde, fluorene, anthraquinone, triphenylamine, carbazole, 3-methyl Acetophenone, Michler's ketone and the like can be mentioned.
  • These polymerization initiators can be used singly or in combination of two or more. Further, these polymerization initiators are preferably contained at 0.001% by mass to 5% by mass, respectively, in terms of mass% with respect to the monofunctional compound and the polyfunctional compound, and each is 0.01% by mass. More preferably, it is contained in an amount of up to 1% by mass.
  • a sensitizer such as an amine compound may be used in combination as necessary.
  • the material of the uneven layer preferably contains a solvent.
  • the solvent include organic solvents such as ethanol, butanol, ethoxylated bisphenol A diacrylate (PGMEA), and water.
  • this step it is preferable to form the material layer 2X of the uneven layer while degassing under reduced pressure after placing the material of the uneven layer on the uneven surface of the member 50 .
  • This makes it easier for the bubbles contained in the material of the uneven layer to disappear.
  • the voids between the inorganic nanoparticles in the resulting uneven layer 2 are reduced, and the inorganic nanoparticles in the uneven layer 2 can be highly packed, that is, the refractive index can be increased, and the strength of the uneven layer 2 can be improved.
  • the method of arranging the material of the uneven layer is not limited to the dispenser 60.
  • the material of the uneven layer may be arranged by spin coating. By using spin coating, it becomes easier to form the uneven layer material layer 2X having a uniform thickness.
  • the material of the uneven layer may be arranged by using a spray. Using a spray facilitates effective deposition of the inorganic nanoparticles. As a result, the inorganic nanoparticles in the material layer 2X of the concavo-convex layer adhere to each other, and the inorganic nanoparticles in the concavo-convex layer 2 can be highly packed.
  • the translucent substrate 1 is arranged on the surface of the material layer 2X of the concavo-convex layer opposite to the member 50 side (FIG. 4(b)). From the viewpoint of adjusting the thickness of the uneven layer 2 to be obtained, it is preferable to dispose the translucent substrate 1 on a spacer placed on the member 50 . As a result, it is possible to prevent the accuracy of the uneven shape from deteriorating due to shrinkage due to drying when the depth of the recesses of the uneven layer 2 is deep and when the width of the recesses is narrow. When the depth of the concave portion is shallow and the width of the concave portion is wide, it is possible to improve the accuracy of the concave-convex shape also by the method of the second embodiment described later.
  • the load is, for example, preferably 10 kgf or more, more preferably 20 kgf or more, even more preferably 30 kgf or more, still more preferably 40 kgf or more, and particularly preferably 50 kgf or more.
  • the upper limit of the load is not particularly limited, it may be 300 kgf or less, for example.
  • the uneven layer material layer 2X disposed between the member 50 and the translucent substrate 1 is dried, and the uneven layer material layer 2X is cured. More specifically, the material layer 2X for the uneven layer is dried by heating to harden the material layer 2X for the uneven layer. The drying evaporates the organic solvent and water contained in the material layer 2X of the uneven layer, forming the uneven layer 2 (FIG. 4(c)). Moreover, the drying of the material layer 2X of the concavo-convex layer may be performed in two stages, for example, drying or curing may be performed after pre-drying. The uneven layer 2 may be dried at room temperature.
  • the sol-gel material is easily filled in the gaps between the inorganic nanoparticles, and the gaps between the inorganic nanoparticles in the uneven layer 2 obtained can be reduced. Therefore, it is possible to increase the refractive index of the uneven layer 2 to be obtained, and to enhance the adhesion between the uneven layer 2 and the translucent substrate 1 .
  • the drying temperature is preferably 50°C or higher, more preferably 100°C or higher, preferably 800°C or lower, and more preferably 600°C or lower.
  • the drying temperature is preferably 50° C. or higher, more preferably 100° C. or higher, more preferably 200° C. or higher, still more preferably 200° C. or higher, and even more preferably 250° C. or higher. It is more preferably higher than 250°C, still more preferably 300°C or higher, even more preferably 350°C or higher, and particularly preferably 400°C or higher.
  • the drying time is preferably 1 minute or longer, more preferably 10 minutes or longer, preferably 300 minutes or shorter, and more preferably 120 minutes or shorter.
  • the material layer 2X of the uneven layer contains resin
  • the drying temperature for burning off is preferably 250° C. or higher, more preferably higher than 250° C., still more preferably 300° C. or higher, still more preferably 350° C. or higher, and particularly preferably 400° C. or higher. If the burn-off temperature is too low, the uneven layer 2 will be colored due to residual carbon components, and the light transmittance will tend to decrease.
  • the upper limit of the drying temperature is not particularly limited, it is preferably 600° C. or lower, for example.
  • the drying atmosphere is preferably an oxidizing atmosphere. This makes it easier to suppress the uneven layer 2 from being colored by the carbon component.
  • the resin contained in the material layer 2X of the uneven layer after drying (that is, the uneven layer 2) is preferably 10% by mass or less, particularly 5% by mass or less with respect to the weight of the uneven layer 2. This makes it easier to form the uneven layer 2 with a higher refractive index.
  • a load may also be applied when drying the material layer 2X of the uneven layer. This makes it easier to stabilize the shape of the uneven layer 2 . In addition, it becomes easier to improve the adhesion between the translucent substrate 1 and the concavo-convex layer 2 .
  • the load is, for example, preferably 10 kgf or more, more preferably 20 kgf or more, even more preferably 30 kgf or more, still more preferably 40 kgf or more, and particularly preferably 50 kgf or more.
  • the upper limit of the load is not particularly limited, it may be 300 kgf or less, for example.
  • decompression or pressurization may be performed.
  • air bubbles contained in the material layer 2X of the uneven layer can be removed, making it easier to form the uneven layer 2 with a high refractive index.
  • the material layer 2X of the uneven layer is deformed (shrinked) by volatilizing the solvent or the like or by burning off the resin. If the amount of shrinkage is too large, the uneven layer 2 to be obtained may be greatly deformed from the design structure, and desired optical characteristics may not be obtained. Therefore, as shown in FIG. 5, when the total height of the uneven layer 2 is Ha and the height of the convex portion 21 is H, the shrinkage amount of Ha when the material layer 2X of the uneven layer is dried is 70% or less. is preferably 65% or less, more preferably 60% or less, even more preferably 50% or less, even more preferably 40% or less, 30% The following are particularly preferred.
  • the H shrinkage amount when the material layer 2X of the uneven layer is dried is preferably 50% or less, more preferably 40% or less, and even more preferably 30% or less. % or less, and particularly preferably 10% or less.
  • the ratio of the amount of H shrinkage to the amount of Ha shrinkage is preferably 0.5 or less, more preferably 0.4 or less.
  • FIG. 6A to 6D are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the second embodiment of the present invention.
  • 6A to 6D are cross-sectional views for explaining each step of the method of manufacturing the optical element 10 shown in FIG.
  • the method for manufacturing an optical element according to the present embodiment comprises the steps of disposing a material for an uneven layer on a main surface of a translucent substrate to form a material layer for an uneven layer; a step of placing a member having an uneven surface on the surface opposite to the transparent substrate from the surface side; and a step of drying the material layer of the uneven layer placed between the member and the translucent substrate. and removing the member.
  • This embodiment differs from the first embodiment in that the material layer 2X of the uneven layer is arranged on the main surface of the translucent substrate 1.
  • the material for the uneven layer is arranged on the main surface of the translucent substrate 1 .
  • the dispenser 60 is used to dispose the material of the uneven layer on the main surface of the translucent substrate 1 .
  • the material layer 2X of the concavo-convex layer can be formed on the main surface of the translucent substrate 1 (FIG. 6A).
  • spin coating or spraying may be used to dispose the material of the uneven layer on the main surface of the translucent substrate 1. .
  • the material of the uneven layer is preferably a material containing inorganic nanoparticles or a composite material of a material containing inorganic nanoparticles and a sol-gel material.
  • the material of the uneven layer preferably contains a solvent.
  • the solvent include organic solvents such as ethanol, butanol, ethoxylated bisphenol A diacrylate (PGMEA), and water.
  • this step it is preferable to form the material layer 2X of the uneven layer while degassing under reduced pressure after disposing the material of the uneven layer on the main surface of the translucent substrate 1 .
  • This makes it easier for the bubbles contained in the material of the uneven layer to disappear.
  • the voids between the inorganic nanoparticles in the resulting uneven layer 2 are reduced, and the inorganic nanoparticles in the uneven layer 2 can be highly packed, that is, the refractive index can be increased, and the strength of the uneven layer 2 can be improved.
  • a member 50 having an uneven surface is placed on the surface of the material layer 2X of the uneven layer opposite to the translucent substrate 1 (FIG. 6B).
  • the member 50 is preferably a silicone resin member. Since the member 50 made of silicone resin has relatively high flexibility, it is easy to arrange the member 50 in close contact with the material layer 2X of the concavo-convex layer. That is, entrained bubbles are less likely to occur between the member 50 and the material layer 2X of the concavo-convex layer. If entrapment bubbles are generated, there is a possibility that the adhesion between the translucent substrate 1 and the material layer 2X of the uneven layer is lowered in the step of drying the material layer 2X of the uneven layer, which will be described later.
  • the method for manufacturing an optical element according to the present embodiment it is easy to suppress deterioration in adhesion between the translucent substrate 1 and the material layer 2X of the concavo-convex layer. That is, according to the method for manufacturing an optical element according to the present embodiment, it is possible to manufacture the optical element 10 having excellent adhesion between the light-transmitting substrate 1 and the concavo-convex layer 2 .
  • the load is, for example, preferably 10 kgf or more, more preferably 20 kgf or more, even more preferably 30 kgf or more, still more preferably 40 kgf or more, and particularly preferably 50 kgf or more.
  • the upper limit of the load is not particularly limited, it may be 300 kgf or less, for example.
  • the material layer 2X for the uneven layer disposed between the member 50 and the translucent substrate 1 is subjected to pressure reduction treatment, and then the material for the uneven layer is removed. It is preferred to dry layer 2X.
  • the material layer 2X for the uneven layer disposed between the member 50 and the translucent substrate 1 is subjected to pressure reduction treatment, and then the material for the uneven layer is removed. It is preferred to dry layer 2X.
  • the drying temperature is preferably 50°C or higher, more preferably 100°C or higher, preferably 800°C or lower, and more preferably 600°C or lower. Further, when an acrylic resin is added, the drying temperature is preferably 50° C. or higher, more preferably 100° C. or higher, still more preferably 200° C. or higher, still more preferably 200° C. or higher, and still more preferably 250° C. or higher. , more preferably above 250°C, more preferably above 300°C, even more preferably above 350°C, and particularly preferably above 400°C.
  • the drying time is preferably 1 minute or longer, more preferably 10 minutes or longer, preferably 300 minutes or shorter, and more preferably 120 minutes or shorter.
  • the laminate composed of the member 50, the material layer 2X for the concavo-convex layer, and the translucent substrate 1 may be turned upside down. That is, after the step of arranging a member having unevenness on the surface (FIG. 6B), the laminate is turned upside down to form a structure similar to that of FIG.
  • the material layer 2X of the uneven layer may be dried in a state in which the material layer 2X of the uneven layer is arranged and the translucent substrate 1 is arranged on the surface of the material layer 2X of the uneven layer opposite to the member 50 side. . This makes it easier to reduce the effect of shrinkage due to drying of the material layer 2X of the uneven layer, and makes it easier to manufacture the optical element 10 in which the tops of the convex portions 21 of the uneven layer 2 are horizontal or convex.
  • the optical elements 10A and 10B shown in FIGS. 2 and 3 can be manufactured by using the member 50 having a predetermined uneven surface shape.
  • a method for manufacturing an optical element according to a first modification of the present invention includes steps of forming a material layer for the uneven layer, drying the material layer for the uneven layer to form the uneven layer, and forming a transparent layer on the uneven layer. arranging an optical substrate.
  • This modification differs from the first embodiment in that it includes a step of placing the translucent substrate 1 on the uneven layer 2 after the uneven layer 2 is formed by drying the uneven layer material layer 2X.
  • FIG. 7(a) to (d) are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the first modified example of the present invention.
  • the details of the method for manufacturing the optical element according to the first modification are as follows. First, a member 50 having an uneven surface is prepared. In this modified example, the member 50 is a silicone resin member. A material for the uneven layer is placed on the uneven surface of the member 50 . In this modification, a dispenser (not shown) is used to dispose the material of the uneven layer on the uneven surface of the member 50 . In this manner, the material layer 2X of the uneven layer can be formed on the uneven surface of the member 50 (FIG. 7A). Instead of using a dispenser, spin coating or spraying may be used to dispose the material of the uneven layer on the uneven surface of the member 50 .
  • the material layer 2X of the uneven layer arranged on the uneven surface of the member 50 is dried (FIG. 7(b)). By drying, the organic solvent and water contained in the material layer 2X of the uneven layer evaporate, and the uneven layer 2 is formed.
  • the translucent substrate 1 is placed on the surface of the uneven layer 2 opposite to the member 50 side (FIG. 7(c)). At this time, the translucent substrate 1 and the uneven layer 2 can be brought into close contact with each other via an adhesive layer (not shown).
  • an optical element 10 including the translucent substrate 1 and the concavo-convex layer 2 can be obtained (FIG. 7(d)).
  • the resulting uneven layer 2 shrinks compared to the material layer 2X for the uneven layer. Therefore, the adhesion between the translucent substrate 1 and the uneven layer 2 may be lowered due to the contraction.
  • the translucent substrate 1 is arranged on the uneven layer 2 after the uneven layer 2 is formed, the influence of the contraction can be easily reduced.
  • the material layer 2X of the concavo-convex layer may be temporarily placed on a film or a transport substrate before placing the translucent substrate 1.
  • the method of manufacturing an optical element according to the present invention may include a step of transferring the material layer 2X of the concavo-convex layer to a film. As a result, the material layer 2X of the concavo-convex layer can be held and dried on the film, making it easier to reduce manufacturing costs.
  • a second modification of the present invention comprises a step of placing a first material on the surface of a member having unevenness on the surface to form a material layer of the first uneven layer; drying the layer to form a first textured layer; disposing a second material on the first textured layer to form a material layer for a second textured layer; drying the material layer of the layer to form a second textured layer; and placing a translucent substrate on the second textured layer.
  • the uneven layer 2 is composed of a first uneven layer and a second uneven layer, and includes a step of forming the first uneven layer and a step of forming the second uneven layer, It differs from the first embodiment.
  • FIGS. 8(a) to (d) and FIGS. 9(e) to (f) are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the second modified example of the present invention.
  • the details of the second modification are as follows. First, a member 50 having an uneven surface is prepared. In this modified example, the member 50 is a silicone resin member. Next, a first material is placed on the uneven surface of the member 50 to form the material layer 201X of the first uneven layer. In this modification, a dispenser (not shown) is used to dispose the material layer 201X of the first uneven layer on the uneven surface of the member 50 .
  • the material layer 201X of the first concavo-convex layer fills a part of the concave portion of the member 50 (FIG. 8A).
  • spin coating or spraying may be used to dispose the material of the uneven layer.
  • the material layer 201X for the first uneven layer is dried to form the first uneven layer 201.
  • the drying evaporates the organic solvent and water contained in the material layer 201X of the first uneven layer, forming the first uneven layer 201 (FIG. 8B).
  • a second material is placed on the first uneven layer to form a material layer 202X for the second uneven layer.
  • the material layer 202X for the second uneven layer can be placed using, for example, a dispenser (not shown), similarly to the material layer 201X for the first uneven layer.
  • the material layer 202X of the second uneven layer fills the concave portions of the member 50 that are not filled with the first uneven layer 201 (FIG. 8C).
  • spin coating or spraying may be used to dispose the material of the uneven layer.
  • the material layer 202X for the second uneven layer is dried to form the second uneven layer 202.
  • the drying evaporates the organic solvent and water contained in the material layer 202X for the second uneven layer, forming the second uneven layer 202 (FIG. 8D).
  • the translucent substrate 1 is placed on the surface of the second uneven layer 202 opposite to the member 50 side. At this time, the translucent substrate 1 and the second uneven layer 202 can be brought into close contact via an adhesive layer (not shown) (FIG. 9(e)).
  • an optical element 10C including the translucent substrate 1, the first uneven layer 201 and the second uneven layer 202 can be obtained (FIG. 9F).
  • the uneven layer separately into the first uneven layer 201 and the second uneven layer 202, the radius of curvature of the end portion is likely to be small, and the uneven layer with excellent optical properties can be easily obtained.
  • the translucent substrate 1 and the second uneven layer 202, and the first uneven layer 201 and the second uneven layer 202 may be adhered to each other via an adhesive layer (not shown).
  • the following translucent substrate was prepared.
  • Translucent substrate (a) has a glass composition of 5.0% by mass SiO 2 , 10.0% B 2 O 3 , 15.0% TiO 2 , 10.0% Nb 2 O 5 and ZrO. 2 5.0%, La 2 O 3 49.0%, Gd 2 O 3 5.0%, Y 2 O 3 1.0%. It had a refractive index (n) of 1.80 at a wavelength of 530 nm, an Abbe number ( ⁇ d) of 40.0, an average thermal expansion coefficient of 80 ⁇ 10 ⁇ 7 /° C. at 30° C. to 100° C., and a thickness of 1 mm.
  • the translucent substrate (b) has a glass composition of 70.0% by mass Bi2O3 , 8.0% B2O3 , 11.0 % TeO2, and 5.0 % P2O5 . , Nb 2 O 5 5.0%, ZnO 1.0%. It had a refractive index (n) of 2.20 at a wavelength of 530 nm, an Abbe number ( ⁇ d) of 18.0, an average thermal expansion coefficient of 120 ⁇ 10 ⁇ 7 /° C. at 30° C. to 100° C., and a thickness of 1 mm.
  • Translucent substrate (c) has a glass composition of 5.0% by mass of SiO 2 , 5.0% of B 2 O 3 , 15.0% of TiO 2 , 10.0% of Nb 2 O 5 and ZrO. 2 5.0%, La2O3 50.0 % , Gd2O3 5.0 %, Y2O3 5.0%.
  • the refractive index (n) at a wavelength of 530 nm was 2.00, the Abbe number ( ⁇ d) was 29.0, the average thermal expansion coefficient at 30°C to 100°C was 80 ⁇ 10 -7 /°C, and the thickness was 1 mm. .
  • Translucent substrate (d) has a glass composition of 65.9% by mass SiO2 , 11.0% B2O3 , 1.0 % Al2O3 , 5.0% ZnO, and MgO3. .0%, BaO 2.0%, CaO 3.0%, Na2O 5.0%, K2O 4.0%, Sb2O3 0.1 %.
  • the refractive index (n) at a wavelength of 530 nm was 1.55, the Abbe number ( ⁇ d) was 60.0, the average thermal expansion coefficient at 30°C to 100°C was 40 ⁇ 10 -7 /°C, and the thickness was 1 mm. .
  • the following composition was prepared as a material for forming the uneven layer.
  • composition A was prepared by mixing 30% by mass of ZrO 2 particles (average particle size: 5 nm) as inorganic nanoparticles and 70% by mass of butanol as a solvent.
  • compositions B to I were prepared in the same manner as composition A, except that the type of inorganic nanoparticles, the type of solvent, or the mixing ratio was changed as shown in Tables 1 and 2.
  • composition AA> A material based on MTES (methyltriethoxysilane) was used as the SiO2 sol-gel material.
  • composition AB> A titanate metal alkoxide solution was used as the TiO2 sol-gel material.
  • composition X was prepared by mixing 30% by mass of ZrO 2 particles (average particle size: 10 ⁇ m) as particles not corresponding to inorganic nanoparticles and 70% by mass of butanol as a solvent.
  • composition Y an acrylic resin was used.
  • compositions A to I, AA, AB, X and Y are shown in Tables 1 to 4 below.
  • Example 1 an optical element having the shape shown in FIG. 1 was produced according to the method shown in FIG. Specifically, an optical element was produced as follows.
  • a mold Si substrate (silicon substrate) having linear grooves with a depth of 500 nm, a width of 500 nm, and a groove interval of 500 nm in an area of 10 mm long ⁇ 10 mm wide was prepared. Also, a thermosetting silicone resin component and a curing agent were prepared. After setting the formwork in the mold, the thermosetting silicone resin component was poured into the mold and cured by heating at 150° C. for 1 hour. The mold and mold were removed to obtain a silicone resin member.
  • Step of forming the material layer of the uneven layer The above composition A was used as a material for the uneven layer. A spacer with a thickness of 1 ⁇ m was arranged on the uneven surface of the silicone resin member. Next, using a dispenser, the material for the uneven layer was placed on the uneven surface of the silicone resin member to form a material layer for the uneven layer.
  • the process of arranging the translucent substrate was used as a translucent substrate.
  • a translucent substrate was placed on the surface of the material layer of the uneven layer opposite to the side of the silicone resin member.
  • Drying the material layer of the uneven layer By heating from the side of the silicone resin member and the side of the translucent substrate, the material layer of the concavo-convex layer disposed between the silicone resin member and the translucent substrate was dried. Specifically, it was preheated at 30° C. for 12 hours and then dried at 120° C. for 1 hour.
  • Step of removing the silicone resin member By removing the silicone resin member, an optical element having a translucent substrate and an uneven layer was obtained.
  • the uneven layer in the obtained optical element has convex portions of the uneven layer such that the convex portions of the uneven layer are linear convex portions parallel to each other, and the height H of the convex portions of the uneven layer is 500 nm.
  • the uneven layer was formed so that the width W was 500 nm, the period P in the periodic structure of the uneven layer was 1000 nm, and the minimum thickness of the uneven layer (the thickness of the concave portion) was 500 nm.
  • Examples 2-11, Examples 15-17 and Comparative Examples 1-3 Shown in FIG. 1 in the same manner as in Example 1 except that the type of translucent substrate, the type of material for the uneven layer, and the drying temperature of the material for the uneven layer were changed as shown in Tables 5 to 7.
  • An optical element having a shape was produced.
  • Example 2 it means that a mixed material of 80% by mass of composition A and 20% by mass of composition B was used as the material of the uneven layer.
  • Example 12 The type of material for the uneven layer was changed as shown in Table 6.
  • step of drying the material layer of the uneven layer the laminate of the member, the material layer of the uneven layer, and the translucent substrate is placed in an acrylic container connected to a vacuum pump, and the pressure is reduced to 0.1 MPa. After treatment, the material layer of the relief layer was dried. Also, the drying temperature of the material of the concavo-convex layer was changed as shown in Table 6. An optical element having the shape shown in FIG. 1 was produced in the same manner as in Example 1 except for these.
  • Example 14 Instead of using a dispenser, a spray was used to form the material layer of the relief layer.
  • the composition shown in Table 7 was introduced into a sprayer to form a material layer of uneven layer having a thickness of 500 nm on a translucent substrate.
  • a silicone resin member was placed on the material layer of the formed concavo-convex layer and dried at room temperature for 12 hours. After that, the silicone resin member was removed and dried at the temperature shown in Table 7.
  • An optical element having the shape shown in FIG. 1 was produced in the same manner as in Example 1 except for these.
  • Example 18 instead of using a dispenser, the material layer of the uneven layer was formed by spin coating.
  • the composition shown in Table 8 was spin-coated at a rotation speed of 1000 rpm for 10 seconds to form a 500 nm-thick uneven layer material layer on a translucent substrate.
  • a silicone resin member was placed on the material layer of the formed concavo-convex layer and dried at room temperature for 12 hours. After that, the silicone resin member was removed and dried at the temperature shown in Table 8.
  • An optical element having the shape shown in FIG. 1 was produced in the same manner as in Example 1 except for these.
  • the material layer of the uneven layer was formed by spin coating.
  • 0.001% by mass of a polymerization initiator was added to the composition shown in Table 8.
  • spin coating was performed at a rotation speed of 1000 rpm for 10 seconds to form a 500 nm-thick uneven layer material layer on the translucent substrate.
  • a silicone resin member was placed on the formed material layer for the uneven layer, and UV light was applied to cure the material layer for the uneven layer.
  • the silicone resin member was removed and dried at the temperature shown in Table 8 for 1 hour.
  • An optical element having the shape shown in FIG. 1 was produced in the same manner as in Example 1 except for these.
  • the shape retention of the uneven layer is "O"
  • the height of the protrusion is 450 nm or less
  • the upper surface of the protrusion The shape retention property of the concavo-convex layer was determined to be "x" when the width of the concavo-convex layer was 450 nm or less.
  • Peel Test A 19 mm test adhesive tape defined by JIS Z 1522 was attached to the surface of the uneven layer of the obtained optical element, and then the tip of the test adhesive tape was peeled off from the surface of the uneven layer. After that, the uneven layer was observed using a laser microscope. A case where the uneven layer was not peeled was evaluated as "O”, and a case where the uneven layer was peeled was evaluated as "X".
  • Example 25 As shown in Table 9, Ha and H shrunk due to heat treatment. Moreover, in Example 25, the amounts of shrinkage of Ha and H were smaller than those of Example 26, and the amount of shrinkage of H relative to the amount of shrinkage of Ha was smaller. In other words, the contraction amount (deformation amount) of the protrusions was smaller than the contraction amount of the entire uneven layer.
  • the optical element of the present invention can be suitably used as an optical diffraction element or a light guide plate provided with a diffraction structure.

Abstract

Provided is an optical element which has excellent optical characteristics and which makes it possible to suppress damage to a relief layer. An optical element according to the present invention comprises a light-transmitting substrate and a relief layer that is disposed on a main surface of the light-transmitting substrate and that has projections and recesses on a surface thereof, wherein the relief layer contains inorganic nanoparticles, and an absolute value of the difference between the refractive index of the light-transmitting substrate and the refractive index of the relief layer is not more than 0.20.

Description

光学素子及びその製造方法Optical element and its manufacturing method
 本発明は、光学素子及びその製造方法に関する。 The present invention relates to an optical element and its manufacturing method.
 カメラ、AR(Augmented Reality)、VR(Virtual Reality)及びMR(Mixed Reality)等のゴーグル等の光学機器には、光学素子が用いられている。 Optical devices such as goggles for cameras, AR (Augmented Reality), VR (Virtual Reality) and MR (Mixed Reality) use optical elements.
 上記光学素子の一例として、下記の特許文献1には、透光性基板と、上記透光性基板上に形成されており、かつ互いに平行な複数の線状凹凸構造を有する無機材料層とを備える光学素子が開示されている。この光学素子では、上記無機材料層の屈折率が1.8以上である。 As an example of the above optical element, Patent Document 1 below discloses a light-transmitting substrate and an inorganic material layer formed on the light-transmitting substrate and having a plurality of linear concave-convex structures parallel to each other. An optical element is disclosed comprising: In this optical element, the inorganic material layer has a refractive index of 1.8 or more.
特開2015-210416号公報JP 2015-210416 A
 表面に凹凸を有しかつ無機物により形成された凹凸層を備える光学素子を用いることで、光学特性をある程度高めることができる。しかしながら、近年、光学機器の高性能化が進行しており、光学特性の更なる向上が求められている。 By using an optical element having an uneven surface and an uneven layer formed of an inorganic material, the optical characteristics can be improved to some extent. However, in recent years, the performance of optical equipment has been improved, and further improvement in optical characteristics is required.
 また、透光性基板と凹凸層とを備える従来の光学素子では、熱及び衝撃等によって、凹凸層が剥離したり、破損したりする可能性がある。 Further, in a conventional optical element including a translucent substrate and an uneven layer, the uneven layer may be peeled off or damaged due to heat, impact, or the like.
 本発明の目的は、光学特性に優れ、かつ凹凸層の破損を抑えることができる光学素子を提供することである。また、本発明は、上記光学素子の製造方法を提供することも目的とする。なお、本明細書において、光学特性とは、屈折率、光透過率及び回折特性を指す。 An object of the present invention is to provide an optical element that has excellent optical properties and that can suppress damage to the uneven layer. Another object of the present invention is to provide a method for manufacturing the optical element. In this specification, optical properties refer to refractive index, light transmittance, and diffraction properties.
 上記課題を解決する光学素子及びその製造方法の各態様について説明する。 Each aspect of the optical element and its manufacturing method for solving the above problems will be described.
 態様1の光学素子は、透光性基板と、前記透光性基板の主面上に配置されており、かつ表面に凹凸を有する、凹凸層と、を備え、前記凹凸層が、無機ナノ粒子を含み、前記透光性基板の屈折率と前記凹凸層の屈折率との差の絶対値が、0.20以下であることを特徴としている。透光性基板と凹凸層との屈折率の差の絶対値が0.20以下であると、反射損失を小さくでき、ゴーグル等の光学機器の視野角を広くすることができる。 An optical element according to aspect 1 includes a light-transmitting substrate and an uneven layer disposed on a main surface of the light-transmitting substrate and having unevenness on the surface thereof, wherein the uneven layer comprises inorganic nanoparticles. and the absolute value of the difference between the refractive index of the translucent substrate and the refractive index of the uneven layer is 0.20 or less. When the absolute value of the difference in refractive index between the translucent substrate and the uneven layer is 0.20 or less, the reflection loss can be reduced and the viewing angle of optical equipment such as goggles can be widened.
 態様2の光学素子では、態様1において、前記凹凸層の凸部の頂部が、水平状又は凸状であることが好ましい。当該構成により、凹凸層の光学特性を高めることができる。 In the optical element of mode 2, in mode 1, it is preferable that the apexes of the projections of the uneven layer are horizontal or convex. With this configuration, the optical properties of the uneven layer can be enhanced.
 態様3の光学素子では、態様1又は態様2において、前記凹凸層の凸部の端部における曲率半径が、前記凹凸層の凹部の端部における曲率半径よりも小さいことが好ましい。当該構成により、凹凸層の光学特性を高めることができる。 In the optical element of Aspect 3, in Aspect 1 or Aspect 2, it is preferable that the radius of curvature at the end of the convex portion of the uneven layer is smaller than the radius of curvature at the end of the concave portion of the uneven layer. With this configuration, the optical properties of the uneven layer can be enhanced.
 態様4の光学素子では、態様1から態様3のいずれか一つの態様において、前記凹凸層は、ラマンスペクトルにおいて、100cm-1~1000cm-1の範囲内での最大ピーク強度Bに対する、2900cm-1~3000cm-1の範囲内での最大ピーク強度Aの比(最大ピーク強度A/最大ピーク強度B)が、4.0以下であることが好ましい。上記比(最大ピーク強度A/最大ピーク強度B)が4.0以下であると、凹凸層中の有機成分の含有量を少なくすることが可能になり、凹凸層の光学特性をより一層高め、かつ凹凸層の破損をより一層抑えることができる。 In the optical element of Aspect 4, in any one of Aspects 1 to 3, the uneven layer has a maximum peak intensity B of 2900 cm −1 in the range of 100 cm −1 to 1000 cm −1 in Raman spectrum. The ratio of maximum peak intensity A (maximum peak intensity A/maximum peak intensity B) within the range of up to 3000 cm −1 is preferably 4.0 or less. When the ratio (maximum peak intensity A/maximum peak intensity B) is 4.0 or less, it is possible to reduce the content of the organic component in the uneven layer, further enhance the optical properties of the uneven layer, Moreover, damage to the uneven layer can be further suppressed.
 態様5の光学素子では、態様1から態様4のいずれか一つの態様において、前記凹凸層の屈折率が、1.60以上であることが好ましい。凹凸層の屈折率が1.60以上であると、反射損失を小さくでき、ゴーグル等の光学機器の視野角を広くすることができる。 In the optical element of Mode 5, in any one of Modes 1 to 4, it is preferable that the uneven layer has a refractive index of 1.60 or more. When the refractive index of the uneven layer is 1.60 or more, the reflection loss can be reduced, and the viewing angle of optical equipment such as goggles can be widened.
 態様6の光学素子では、態様1から態様5のいずれか一つの態様において、前記凹凸層のアッベ数が、5以上、35以下であることが好ましい。 In the optical element of Mode 6, in any one of Modes 1 to 5, it is preferable that the uneven layer has an Abbe number of 5 or more and 35 or less.
 態様7の光学素子では、態様1から態様6のいずれか一つの態様において、前記凹凸層の屈折率をxとし、前記凹凸層のアッベ数をyとしたときに、式:y+50xで表される値が、100以上、125以下であることが好ましい。 In the optical element of mode 7, in any one of modes 1 to 6, when x is the refractive index of the uneven layer and y is the Abbe number of the uneven layer, the optical element is represented by the formula: y+50x The value is preferably 100 or more and 125 or less.
 態様8の光学素子では、態様1から態様7のいずれか一つの態様において、前記無機ナノ粒子が、ZrO、BaTiO、TiO、Al、Nb、SiO及びKTaOからなる群から選択される少なくとも1種の無機ナノ粒子であることが好ましい。 In the optical element of Aspect 8, in any one of Aspects 1 to 7, the inorganic nanoparticles are ZrO 2 , BaTiO 3 , TiO 2 , Al 2 O 3 , Nb 2 O 5 , SiO 2 and KTaO 3 At least one inorganic nanoparticle selected from the group consisting of
 態様9の光学素子では、態様1から態様8のいずれか一つの態様において、前記凹凸層が、前記無機ナノ粒子として、無機ナノ粒子Aと、前記無機ナノ粒子Aよりも平均粒子径の小さい無機ナノ粒子Bとを含み、前記無機ナノ粒子Aの平均粒子径をDnmとし、前記無機ナノ粒子Bの平均粒子径をDnmとしたときに、前記無機ナノ粒子Bの平均粒子径に対する、前記無機ナノ粒子Aの平均粒子径に対する比(D/D)が、1.5以上、20.0以下であることが好ましい。 In the optical element of Aspect 9, in any one of Aspects 1 to 8, the uneven layer includes inorganic nanoparticles A and inorganic nanoparticles having a smaller average particle diameter than the inorganic nanoparticles A as the inorganic nanoparticles. When the average particle diameter of the inorganic nanoparticles A is D A nm and the average particle diameter of the inorganic nanoparticles B is D B nm, the average particle diameter of the inorganic nanoparticles B is , the ratio (D A /D B ) to the average particle size of the inorganic nanoparticles A is preferably 1.5 or more and 20.0 or less.
 態様10の光学素子では、態様1から態様9のいずれか一つの態様において、前記凹凸層100質量%中、前記無機ナノ粒子の含有量が、10質量%以上であることが好ましい。 In the optical element of aspect 10, in any one of aspects 1 to 9, it is preferable that the content of the inorganic nanoparticles is 10% by mass or more in 100% by mass of the uneven layer.
 態様11の光学素子では、態様1から態様10のいずれか一つの態様において、波長500nmでの光透過率が、55%以上であることが好ましい。 In the optical element of Mode 11, in any one of Modes 1 to 10, it is preferable that the optical transmittance at a wavelength of 500 nm is 55% or more.
 態様12の光学素子では、態様1から態様11のいずれか一つの態様において、前記凹凸層の凸部の端部における高さh1と、前記凸部の中央部における高さh2との比h2/h1が0.9~1.3であることが好ましい。 In the optical element of Aspect 12, in any one of Aspects 1 to 11, the ratio h2/ It is preferred that h1 is between 0.9 and 1.3.
 態様13の光学素子では、態様1から態様12のいずれか一つの態様において、前記透光性基板が、ガラス基板であることが好ましい。 In the optical element of Aspect 13, in any one of Aspects 1 to 12, the translucent substrate is preferably a glass substrate.
 態様14の光学素子は、態様1から態様13のいずれか一つの態様において、光学回折素子として用いられることが好ましい。 The optical element of Aspect 14 is preferably used as an optical diffraction element in any one of Aspects 1 to 13.
 態様15の光学素子では、態様1から態様14のいずれか一つの態様において、前記透光性基板と前記凹凸層とが直接密着していることが好ましい。 In the optical element of Mode 15, in any one of Modes 1 to 14, it is preferable that the translucent substrate and the uneven layer are in direct contact.
 態様16の光学素子では、態様1から態様15のいずれか一つの態様において、前記透光性基板と前記凹凸層とが接着層を介して密着していることが好ましい。 In the optical element of Mode 16, in any one of Modes 1 to 15, it is preferable that the translucent substrate and the uneven layer are in close contact with each other via an adhesive layer.
 態様17の光学素子では、態様1から態様16のいずれか一つの態様において、前記凹凸層上に薄膜層を有することが好ましい。 In the optical element of Mode 17, in any one of Modes 1 to 16, it is preferable to have a thin film layer on the uneven layer.
 態様18の光学素子では、態様17において、前記薄膜層が、Y、Al、SiO、MgO、TiO、CeO、Bi、HfO、Al、Ag、Au、Pt及びカーボンからなる群から選択される少なくとも1種の材料からなることが好ましい。 In the optical element of aspect 18, in aspect 17, the thin film layer comprises Y2O3 , Al2O3 , SiO2 , MgO , TiO2 , CeO2 , Bi2O3 , HfO2 , Al, Ag, Au , Pt and carbon.
 態様19の光学素子の製造方法は、表面に凹凸を有する部材の該表面上に、凹凸層の材料を配置して、凹凸層の材料層を形成する工程と、前記凹凸層の材料層の前記部材側とは反対側の表面上に、透光性基板を配置する工程と、前記部材と前記透光性基板との間に配置された前記凹凸層の材料層を乾燥する工程と、前記部材を取り外す工程と、を備えることを特徴としている。 A method for manufacturing an optical element according to aspect 19 comprises the steps of disposing a material for an uneven layer on the surface of a member having unevenness on the surface to form a material layer for the uneven layer; disposing a translucent substrate on the surface opposite to the member; drying a material layer of the uneven layer disposed between the member and the translucent substrate; and a step of removing the.
 態様20の光学素子の製造方法では、態様19において、前記凹凸層の材料層を形成する工程において、前記部材の前記表面上に、前記凹凸層の材料を配置した後、減圧脱泡しながら、前記凹凸層の材料層を形成することが好ましい。 In the method for manufacturing an optical element according to Aspect 20, in Aspect 19, in the step of forming the material layer of the uneven layer, after disposing the material of the uneven layer on the surface of the member, while degassing under reduced pressure, It is preferable to form a material layer for the uneven layer.
 態様21の光学素子の製造方法では、態様19又は態様20において、前記透光性基板を配置する工程において、前記部材上に設置されたスペーサー上に透光性基板を配置することが好ましい。 In the method of manufacturing an optical element of Aspect 21, in Aspect 19 or Aspect 20, in the step of disposing the translucent substrate, it is preferable to dispose the translucent substrate on a spacer placed on the member.
 態様22の光学素子の製造方法は、透光性基板の主面上に、凹凸層の材料を配置して、凹凸層の材料層を形成する工程と、前記凹凸層の材料層の前記透光性基板側とは反対側の表面上に、表面に凹凸を有する部材を該表面側から配置する工程と、前記部材と前記透光性基板との間に配置された前記凹凸層の材料層を乾燥する工程と、前記部材を取り外す工程と、を備えることを特徴としている。 A method for manufacturing an optical element according to aspect 22 comprises the steps of disposing a material for an uneven layer on a main surface of a translucent substrate to form a material layer for the uneven layer; a step of disposing a member having an uneven surface on the surface opposite to the transparent substrate from the surface side; and a material layer of the uneven layer disposed between the member and the translucent substrate. It is characterized by comprising a step of drying and a step of removing the member.
 態様23の光学素子の製造方法は、表面に凹凸を有する部材の該表面上に凹凸層の材料層を形成する工程と、前記凹凸層の材料層を乾燥させて凹凸層を形成する工程と、前記凹凸層上に透光性基板を配置する工程と、を備えることを特徴としている。 A method for manufacturing an optical element according to aspect 23 includes the steps of: forming a material layer for an uneven layer on the surface of a member having unevenness on the surface; drying the material layer for the uneven layer to form an uneven layer; arranging a translucent substrate on the concavo-convex layer.
 態様24の光学素子の製造方法は、表面に凹凸を有する部材の該表面上に第1材料を配置して、第1の凹凸層の材料層を形成する工程と、前記第1の凹凸層の材料層を乾燥し、第1の凹凸層を形成する工程と、前記第1の凹凸層上に、第2材料を配置して、第2の凹凸層の材料層を形成する工程と、前記第2の凹凸層の材料層を乾燥し、第2の凹凸層を形成する工程と、前記第2の凹凸層上に透光性基板を配置する工程と、を備えることを特徴としている。 A method for manufacturing an optical element according to aspect 24 includes the steps of disposing a first material on the surface of a member having an uneven surface to form a material layer for a first uneven layer; drying the material layer to form a first uneven layer; disposing a second material on the first uneven layer to form a material layer for a second uneven layer; drying the material layer of the uneven layer 2 to form a second uneven layer; and placing a translucent substrate on the second uneven layer.
 態様25の光学素子の製造方法では、態様19から態様24のいずれか一つの態様において、前記凹凸層の材料が、無機ナノ粒子を含む材料、又は無機ナノ粒子を含む材料とゾルゲル材料との複合材料であることが好ましい。 In the method for manufacturing an optical element according to Aspect 25, in any one of Aspects 19 to 24, the material of the uneven layer is a material containing inorganic nanoparticles, or a composite of a material containing inorganic nanoparticles and a sol-gel material. Materials are preferred.
 態様26の光学素子の製造方法では、態様25において、前記凹凸層の材料が樹脂を含むことが好ましい。 In the method of manufacturing an optical element according to Aspect 26, in Aspect 25, it is preferable that the material of the uneven layer contains a resin.
 態様27の光学素子の製造方法では、態様26において、前記凹凸層の材料層を250℃以上で乾燥させることにより前記樹脂を焼き飛ばすことが好ましい。 In the method for manufacturing an optical element according to Aspect 27, in Aspect 26, it is preferable to burn off the resin by drying the material layer of the uneven layer at 250°C or higher.
 態様28の光学素子の製造方法では、態様19から態様27のいずれか一つの態様において、前記凹凸層全体高さをHa、凸部の高さをHとするとき、凹凸層の材料層を乾燥させた際のHa収縮量に対するH収縮量の比が0.5以下であることが好ましい。 In the method for manufacturing an optical element according to Aspect 28, in any one of Aspects 19 to 27, when the total height of the uneven layer is Ha and the height of the convex portion is H, the material layer of the uneven layer is dried. It is preferable that the ratio of the amount of H shrinkage to the amount of Ha shrinkage is 0.5 or less.
 態様29の光学素子の製造方法では、態様19から態様28のいずれか一つの態様において、さらに、前記凹凸層の材料層をフィルムに転写する工程を備えることが好ましい。 In the method for manufacturing an optical element of Aspect 29, in any one of Aspects 19 to 28, it is preferable to further include a step of transferring the material layer of the uneven layer to a film.
 本発明によれば、光学特性に優れ、かつ凹凸層の破損を抑えることができる光学素子を提供することができる。また、本発明によれば、上記光学素子の製造方法を提供することができる。 According to the present invention, it is possible to provide an optical element that has excellent optical properties and can suppress damage to the uneven layer. Further, according to the present invention, it is possible to provide a method for manufacturing the above optical element.
図1は、本発明の第1の実施形態に係る光学素子を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an optical element according to a first embodiment of the invention. 図2は、本発明の第2の実施形態に係る光学素子を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an optical element according to a second embodiment of the invention. 図3は、本発明の第3の実施形態に係る光学素子を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing an optical element according to a third embodiment of the invention. 図4(a)~(d)は、本発明の第1の実施形態に係る光学素子の製造方法の各工程を説明するための断面図である。4A to 4D are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the first embodiment of the present invention. 図5は、本発明の光学素子における凹凸層の高さHa及び凸部の高さHを説明するための断面図である。FIG. 5 is a cross-sectional view for explaining the height Ha of the uneven layer and the height H of the convex portion in the optical element of the present invention. 図6(a)~(d)は、本発明の第2の実施形態に係る光学素子の製造方法の各工程を説明するための断面図である。6A to 6D are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the second embodiment of the present invention. 図7(a)~(d)は、本発明の第1の変形例に係る光学素子の製造方法の各工程を説明するための断面図である。7A to 7D are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the first modified example of the present invention. 図8(a)~(d)は、本発明の第2の変形例に係る光学素子の製造方法の各工程を説明するための断面図である。8A to 8D are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the second modification of the invention. 図9(e)~(f)は、本発明の第2の変形例に係る光学素子の製造方法の各工程を説明するための断面図である。9(e) to 9(f) are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the second modification of the invention.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 A preferred embodiment will be described below. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Also, in each drawing, members having substantially the same function may be referred to by the same reference numerals.
 なお、本明細書において、数値範囲の「~」とは、その両端に記載されている数値を上限値及び下限値として含む意味である。また、本明細書において、特に断りのない限り、透光性基板の屈折率とは、透光性基板の波長530nmにおける屈折率を意味し、凹凸層の屈折率とは、凹凸層の波長530nmにおける屈折率を意味する。 In this specification, "to" in a numerical range means that the numerical values described at both ends are included as upper and lower limits. In this specification, unless otherwise specified, the refractive index of the light-transmitting substrate means the refractive index of the light-transmitting substrate at a wavelength of 530 nm, and the refractive index of the uneven layer means the wavelength of the uneven layer of 530 nm. means the refractive index at
 [光学素子]
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る光学素子を模式的に示す斜視図である。
[Optical element]
(First embodiment)
FIG. 1 is a perspective view schematically showing an optical element according to a first embodiment of the invention.
 図1に示す光学素子10は、透光性基板1と、表面に凹凸を有する凹凸層2とを備える。凹凸層2は、透光性基板1の主面上に配置されている。凹凸層2は、透光性基板1の一方の主面上(第1の主面上)に配置されている。凹凸層2の透光性基板1とは反対側の表面は、凹凸を有する。 The optical element 10 shown in FIG. 1 includes a translucent substrate 1 and an uneven layer 2 having unevenness on the surface. The uneven layer 2 is arranged on the main surface of the translucent substrate 1 . The uneven layer 2 is arranged on one main surface (on the first main surface) of the translucent substrate 1 . The surface of the uneven layer 2 opposite to the translucent substrate 1 has unevenness.
 透光性基板1は、使用波長域において実用上十分な光透過率を有するものであれば特に限定されない。透光性基板1の厚み10mmにおける波長500nmでの内部透過率は、好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上、特に好ましくは95%以上である。透光性基板1の厚み10mmにおける波長500nmでの内部透過率の上限は特に限定されないが、例えば、100%以下であってもよく、99%以下であってもよい。 The translucent substrate 1 is not particularly limited as long as it has practically sufficient light transmittance in the wavelength range used. The internal transmittance at a wavelength of 500 nm at a thickness of 10 mm of the translucent substrate 1 is preferably 80% or more, more preferably 85% or more, even more preferably 90% or more, and particularly preferably 95% or more. Although the upper limit of the internal transmittance at a wavelength of 500 nm in the light-transmitting substrate 1 having a thickness of 10 mm is not particularly limited, it may be, for example, 100% or less or 99% or less.
 透光性基板1としては、ガラス基板及び樹脂基板等が挙げられる。耐候性をより一層高める観点からは、透光性基板1は、ガラス基板であることが好ましい。 Examples of the translucent substrate 1 include glass substrates and resin substrates. From the viewpoint of further enhancing the weather resistance, the translucent substrate 1 is preferably a glass substrate.
 透光性基板1の屈折率は、好ましくは1.60以上、より好ましくは1.70以上、より一層好ましくは1.80以上、更に好ましくは1.90以上、更に一層好ましくは1.95以上、特に好ましくは1.99以上である。なお、透光性基板1の屈折率は、好ましくは2.30以下、より好ましくは2.20以下、更に好ましくは2.10以下、特に好ましくは2.00以下である。透光性基板1の屈折率が上記下限以上であると、透光性基板1に入射する際の光量を多くでき、ゴーグル等の光学機器の視野角を広くすることができる。なお、透光性基板1の屈折率は、1.90以下であってもよく、1.80以下であってもよく、1.70以下であってもよく、1.65以下であってもよく、1.60以下であってもよい。 The refractive index of the translucent substrate 1 is preferably 1.60 or higher, more preferably 1.70 or higher, even more preferably 1.80 or higher, still more preferably 1.90 or higher, and even more preferably 1.95 or higher. , particularly preferably 1.99 or more. The refractive index of the translucent substrate 1 is preferably 2.30 or less, more preferably 2.20 or less, even more preferably 2.10 or less, and particularly preferably 2.00 or less. When the refractive index of the translucent substrate 1 is equal to or higher than the above lower limit, the amount of light incident on the translucent substrate 1 can be increased, and the viewing angle of optical equipment such as goggles can be widened. Note that the refractive index of the translucent substrate 1 may be 1.90 or less, 1.80 or less, 1.70 or less, or 1.65 or less. Well, it may be 1.60 or less.
 透光性基板1の屈折率は、波長530nmにおける屈折率であり、Vブロック型屈折率計により測定することができる。 The refractive index of the translucent substrate 1 is the refractive index at a wavelength of 530 nm, and can be measured with a V-block refractometer.
 透光性基板1のアッベ数は、好ましくは5以上、より好ましくは7以上、より一層好ましくは9以上、より一層好ましくは10以上、更に好ましくは12以上、更に一層好ましくは14以上、特に好ましくは15以上であり、好ましくは40以下、より好ましくは36以下、より一層好ましくは34以下、より一層好ましくは32以下、更に好ましくは30以下、更に一層好ましくは28以下、特に好ましくは26以下である。透光性基板1のアッベ数が上記下限以上であると、透光性基板1がガラス基板の場合、ガラス中のSiO、B、NaO、KO、LiO等の含有量を少なくする必要がなくなり、液相温度を低く抑えることができる。透光性基板1のアッベ数が上記上限以下であると、透光性基板1がガラス基板の場合、ガラス中の屈折率を高める成分であるLa、Nb、TiOの含有量を少なくする必要がなくなり、その結果、透光性基板1の屈折率を高く維持することができる。 The Abbe number of the translucent substrate 1 is preferably 5 or more, more preferably 7 or more, still more preferably 9 or more, still more preferably 10 or more, still more preferably 12 or more, even more preferably 14 or more, and particularly preferably is 15 or more, preferably 40 or less, more preferably 36 or less, even more preferably 34 or less, still more preferably 32 or less, still more preferably 30 or less, even more preferably 28 or less, particularly preferably 26 or less be. If the Abbe number of the light-transmitting substrate 1 is equal to or higher than the above lower limit, SiO 2 , B 2 O 3 , Na 2 O, K 2 O, Li 2 O, etc. in the glass when the light-transmitting substrate 1 is a glass substrate. It is no longer necessary to reduce the content of, and the liquidus temperature can be kept low. When the Abbe number of the translucent substrate 1 is equal to or less than the above upper limit, when the translucent substrate 1 is a glass substrate, La 2 O 3 , Nb 2 O 5 , and TiO 2 , which are components that increase the refractive index in the glass, It is no longer necessary to reduce the content, and as a result, the refractive index of the translucent substrate 1 can be maintained high.
 透光性基板1のアッベ数νdは、波長587.6nm(d線)における屈折率nd、波長656.3nm(C線)における屈折率nC、及び波長486nm(F線)における屈折率nFから、式:νd=(nd-1)/(nF-nC)により求められる。なお、透光性基板1のアッベ数を求めるための屈折率nd、屈折率nC及び屈折率nFは、Vブロック型屈折率計により測定することができる。 The Abbe number νd of the translucent substrate 1 is obtained from the refractive index nd at a wavelength of 587.6 nm (d-line), the refractive index nC at a wavelength of 656.3 nm (C-line), and the refractive index nF at a wavelength of 486 nm (F-line). It is obtained by the formula: νd=(nd−1)/(nF−nC). The refractive index nd, the refractive index nC, and the refractive index nF for determining the Abbe number of the translucent substrate 1 can be measured with a V-block refractometer.
 透光性基板1は、Si-B-La-Nb-Ti系ガラス、Bi-Te-B系ガラス、又はSi-B-RO系ガラス(ROは、MgO、CaO、BaO、SrO又はZnO)であることが好ましい。具体的には、Si-B-La-Nb-Ti系ガラスは、質量%で、SiO 1~21%、B 5~30%、ZnO 0~5%、ZrO 1~15%、La 20~50%、Gd 0~16%、Nb 3~40%、Ta 0~5%、TiO 5~25%を含有し、鉛成分、砒素成分、及びF成分を含有しないことが好ましい。また、Bi-Te-B系ガラスは、質量%で、Bi 40~90%、B 1~30%、TeO 0.1%~19%を含有することが好ましい。また、Si-B-RO系ガラスは、質量%で、SiO 5~50%、B 1~30%、Al 0~10%、ZnO 0~20%、CaO 0~20%、MgO 0~20%、SrO 0~20%、MgO+CaO+BaO+SrO+ZnO(MgO、CaO、BaO、SrO及びZnOの含有量の合計) 1~30%、NaO 1~20%、ZrO 0~10%、La 0~20%、Sb 0~1%、SnO 0~1%を含有することが好ましい。なお、「鉛成分、砒素成分、及びF成分を含有しない」とは、鉛成分、砒素成分、及びF成分のそれぞれの含有量が0.1質量%以下であることを意味する。 The translucent substrate 1 is Si--B--La--Nb--Ti based glass, Bi--Te--B based glass, or Si--B--RO based glass (RO is MgO, CaO, BaO, SrO or ZnO). Preferably. Specifically, the Si-B-La-Nb-Ti-based glass contains 1 to 21% SiO 2 , 5 to 30% B 2 O 3 , 0 to 5% ZnO, and 1 to 15% ZrO 2 in mass %. , La 2 O 3 20-50%, Gd 2 O 3 0-16%, Nb 2 O 5 3-40%, Ta 2 O 5 0-5%, TiO 2 5-25%, and a lead component, It is preferable not to contain an arsenic component and an F component. The Bi--Te--B glass preferably contains 40 to 90% by mass of Bi 2 O 3 , 1 to 30% by mass of B 2 O 3 and 0.1 to 19% by mass of TeO 2 . In addition, the Si-B-RO glass contains, in mass %, SiO 2 5 to 50%, B 2 O 3 1 to 30%, Al 2 O 3 0 to 10%, ZnO 0 to 20%, CaO 0 to 20%. %, MgO 0-20%, SrO 0-20%, MgO + CaO + BaO + SrO + ZnO (total content of MgO, CaO, BaO, SrO and ZnO) 1-30%, Na 2 O 1-20%, ZrO 0-10 % , La 2 O 3 0-20%, Sb 2 O 3 0-1%, and SnO 2 0-1%. In addition, "not containing a lead component, an arsenic component, and an F component" means that the content of each of the lead component, the arsenic component, and the F component is 0.1% by mass or less.
 透光性基板1の厚みは、好ましくは0.01mm以上、より好ましくは0.50mm以上であり、好ましくは10.0mm以下、より好ましくは2.0mm以下である。透光性基板1の厚みが上記下限以上であると、機械的強度を高めることができる。透光性基板1の厚みが上記上限以下であると、光透過性の低下を抑えることができ、光学特性をより一層高めることができる。 The thickness of the translucent substrate 1 is preferably 0.01 mm or more, more preferably 0.50 mm or more, and preferably 10.0 mm or less, more preferably 2.0 mm or less. Mechanical strength can be improved as the thickness of the translucent board|substrate 1 is more than the said minimum. When the thickness of the light-transmitting substrate 1 is equal to or less than the above upper limit, it is possible to suppress a decrease in light transmittance and further improve the optical properties.
 本明細書において、凹凸層は、複数の凸部又は複数の凹部を有する層である。凹凸層は、複数の凸部又は複数の凹部による周期構造を表面に有することが好ましい。凹凸層は、凹凸表面を有する。凹凸層の透光性基板側とは反対側の表面は、凹凸表面である。 In this specification, the uneven layer is a layer having a plurality of protrusions or a plurality of recesses. The uneven layer preferably has a periodic structure with a plurality of protrusions or a plurality of recesses on its surface. The uneven layer has an uneven surface. The surface of the uneven layer opposite to the light-transmitting substrate side is an uneven surface.
 凹凸層2は、無機ナノ粒子を含む。このため、凹凸層2の屈折率を高めることができ、従って、光学素子10の光学特性を高めることができる。また、凹凸層2が無機ナノ粒子を含むことにより、凹凸層2の構造が緻密化するため、凹凸層2の強度が高められ、凹凸層2の破損を抑えることができる。さらに、透光性基板1と凹凸層2との密着性をより一層高めることができる。上記無機ナノ粒子は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The uneven layer 2 contains inorganic nanoparticles. Therefore, the refractive index of the concavo-convex layer 2 can be increased, and therefore the optical properties of the optical element 10 can be increased. In addition, since the uneven layer 2 contains inorganic nanoparticles, the structure of the uneven layer 2 is densified. Furthermore, the adhesion between the translucent substrate 1 and the uneven layer 2 can be further enhanced. Only one kind of the inorganic nanoparticles may be used, or two or more kinds thereof may be used in combination.
 上記無機ナノ粒子の平均粒子径は、好ましくは200nm以下、より好ましくは100nm以下、更に好ましくは50nm以下、更に好ましくは30nm以下、特に好ましくは20nm以下である。上記平均粒子径が上記上限以下であると、凹凸層2の光学特性、具体的には、屈折率と透過率とをより一層高めることができ、また、凹凸層2の強度をより一層高めることができる。なお、上記平均粒子径が上記上限を超えると、凹凸層2の光学特性、具体的には、屈折率と透過率とが低下し、また、後述する凹凸層2の作製の工程において、溶剤中での分散が悪化することで沈降分離し易くなり、この結果、凹凸層2の形成が困難になる虞がある。なお、無機ナノ粒子の平均粒子径は、好ましくは0.01nm以上、より好ましくは0.1nm以上、より一層好ましくは0.5nm以上、更に好ましくは1.0nm以上、更により一層好ましくは1.5nm以上、特に好ましくは2.0nm以上である。上記平均粒子径が上記下限未満であると、凹凸層2の作製の工程において、乾燥時の収縮が大きくなることにより、凹凸層2が割れ易くなったり、緻密な凹凸層2が形成され難くなったりする虞がある。 The average particle size of the inorganic nanoparticles is preferably 200 nm or less, more preferably 100 nm or less, still more preferably 50 nm or less, even more preferably 30 nm or less, and particularly preferably 20 nm or less. When the average particle diameter is equal to or less than the upper limit, the optical properties of the uneven layer 2, specifically, the refractive index and the transmittance can be further improved, and the strength of the uneven layer 2 can be further increased. can be done. If the average particle size exceeds the upper limit, the optical properties of the uneven layer 2, specifically, the refractive index and the transmittance, are reduced. Deterioration of the dispersion in the water causes sedimentation and separation, and as a result, there is a possibility that the formation of the uneven layer 2 becomes difficult. The average particle size of the inorganic nanoparticles is preferably 0.01 nm or more, more preferably 0.1 nm or more, even more preferably 0.5 nm or more, still more preferably 1.0 nm or more, and even more preferably 1.0 nm or more. 5 nm or more, particularly preferably 2.0 nm or more. If the average particle diameter is less than the above lower limit, shrinkage during drying increases in the step of producing the uneven layer 2, which makes the uneven layer 2 more likely to crack or makes it difficult to form a dense uneven layer 2. There is a risk of
 上記無機ナノ粒子の平均粒子径は、体積平均粒子径(D50)を意味する。上記無機ナノ粒子の平均粒子径は、動的光散乱法により測定することができる。 The average particle size of the inorganic nanoparticles means the volume average particle size (D50). The average particle size of the inorganic nanoparticles can be measured by a dynamic light scattering method.
 上記無機ナノ粒子は、無機酸化物ナノ粒子であることが好ましく、ZrO、TiO及びBaTiO等のチタン化合物、Al、Nb、SiO及びKTaOからなる群から選択される少なくとも1種の無機ナノ粒子であることがより好ましく、ZrO、BaTiO、TiO、Al、Nb、SiO及びKTaOからなる群から選択される少なくとも1種の無機ナノ粒子であることがより一層好ましく、ZrO、BaTiO、TiO、Al、Nb及びSiOからなる群から選択される少なくとも1種の無機ナノ粒子であることが更に好ましく、ZrO、TiO、Al、及びSiOからなる群から選択される少なくとも1種の無機ナノ粒子であることが特に好ましい。この場合、本発明の効果をより一層効果的に発揮することができる。 The inorganic nanoparticles are preferably inorganic oxide nanoparticles, selected from the group consisting of titanium compounds such as ZrO2 , TiO2 and BaTiO3 , Al2O3 , Nb2O5 , SiO2 and KTaO3 . and at least one inorganic nanoparticle selected from the group consisting of ZrO 2 , BaTiO 3 , TiO 2 , Al 2 O 3 , Nb 2 O 5 , SiO 2 and KTaO 3 and at least one inorganic nanoparticle selected from the group consisting of ZrO 2 , BaTiO 3 , TiO 2 , Al 2 O 3 , Nb 2 O 5 and SiO 2 is more preferred, and at least one inorganic nanoparticle selected from the group consisting of ZrO 2 , TiO 2 , Al 2 O 3 and SiO 2 is particularly preferred. In this case, the effects of the present invention can be exhibited more effectively.
 凹凸層2中(凹凸層100質量%中)、上記無機ナノ粒子の含有量は、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、特に好ましくは50質量%以上である。上記無機ナノ粒子の含有量が上記下限以上であると、本発明の効果をより一層効果的に発揮することができる。なお、凹凸層2の成形性を向上させる観点からは、凹凸層2中(凹凸層100質量%中)、上記無機ナノ粒子の含有量の上限は、99質量%以下としてもよく、98質量%以下としてもよく、95質量%以下としてもよい。また、後述する凹凸層の材料層2Xの変形を抑制する観点からは、凹凸層2中(凹凸層100質量%中)、上記無機ナノ粒子の含有量が、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがより一層好ましく、75質量%以上であることが更に好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが更に好ましく、95質量%以上であることが更に好ましく、99質量%以上であることが特に好ましい。無機ナノ粒子の含有量が多いことにより、樹脂等の他成分の含有量が相対的に低下するため、乾燥時の変形(収縮)を抑制しやすくなる。また、後述する焼き飛ばしにより樹脂成分を除去し、凹凸層2の屈折率を特に高める観点からは、凹凸層2中(凹凸層100質量%中)、上記無機ナノ粒子の含有量は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、99質量%以上であることが更に好ましく、100質量%であることが特に好ましい。 The content of the inorganic nanoparticles in the uneven layer 2 (out of 100% by mass of the uneven layer) is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, and particularly preferably 50% by mass. % or more. When the content of the inorganic nanoparticles is at least the lower limit, the effects of the present invention can be exhibited more effectively. From the viewpoint of improving the moldability of the uneven layer 2, the upper limit of the content of the inorganic nanoparticles in the uneven layer 2 (out of 100% by mass of the uneven layer) may be 99% by mass or less, or 98% by mass. or less, or 95% by mass or less. In addition, from the viewpoint of suppressing deformation of the material layer 2X of the uneven layer, which will be described later, the content of the inorganic nanoparticles in the uneven layer 2 (out of 100% by mass of the uneven layer) is preferably 50% by mass or more. , More preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 75% by mass or more, still more preferably 80% by mass or more, 90% by mass or more is more preferably 95% by mass or more, and particularly preferably 99% by mass or more. When the content of inorganic nanoparticles is large, the content of other components such as resin is relatively decreased, so that deformation (shrinkage) during drying can be easily suppressed. In addition, from the viewpoint of particularly increasing the refractive index of the uneven layer 2 by removing the resin component by burning off, which will be described later, the content of the inorganic nanoparticles in the uneven layer 2 (out of 100% by mass of the uneven layer) is 90% by mass. % or more, more preferably 95 mass % or more, still more preferably 99 mass % or more, and particularly preferably 100 mass %.
 凹凸層2は、上記無機ナノ粒子として、無機ナノ粒子Aと、無機ナノ粒子Aよりも平均粒子径の小さい無機ナノ粒子Bとを含むことが好ましい。平均粒子径が互いに異なる無機ナノ粒子を組み合わせて用いることで、凹凸層2中の無機ナノ粒子間の空隙を少なくすることができ、無機ナノ粒子の高充填化を図ることができる。このため、凹凸層2の屈折率をより一層向上させることができ、光学素子の光学特性をより一層高めることができる。 The uneven layer 2 preferably contains inorganic nanoparticles A and inorganic nanoparticles B having an average particle diameter smaller than that of the inorganic nanoparticles A as the inorganic nanoparticles. By using a combination of inorganic nanoparticles having different average particle diameters, the voids between the inorganic nanoparticles in the uneven layer 2 can be reduced, and the inorganic nanoparticles can be highly packed. Therefore, the refractive index of the uneven layer 2 can be further improved, and the optical properties of the optical element can be further improved.
 上記無機ナノ粒子Aの平均粒子径をDnmとし、上記無機ナノ粒子Bの平均粒子径をDnmとしたときに、無機ナノ粒子Bの平均粒子径に対する、無機ナノ粒子Aの平均粒子径に対する比(D/D)は、好ましくは1.5以上、より好ましくは2.0以上、更に好ましくは3.0以上であり、好ましくは20.0以下、より好ましくは10.0以下、更に好ましくは6.0以下である。上記比(D/D)が上記下限以上及び上記上限以下であると、凹凸層2中の無機ナノ粒子の高充填化を図ることができるので、光学素子の光学特性をより一層高めることができる。また、上記比(D/D)が上記上限以下であると、無機ナノ粒子の凝集を効果的に抑制することができる。 When the average particle diameter of the inorganic nanoparticles A is D A nm and the average particle diameter of the inorganic nanoparticles B is D B nm, the average particle diameter of the inorganic nanoparticles A with respect to the average particle diameter of the inorganic nanoparticles B The diameter ratio (D A /D B ) is preferably 1.5 or more, more preferably 2.0 or more, still more preferably 3.0 or more, preferably 20.0 or less, more preferably 10.0. 6.0 or less, more preferably 6.0 or less. When the ratio (D A /D B ) is equal to or higher than the lower limit and equal to or lower than the upper limit, the inorganic nanoparticles in the uneven layer 2 can be highly filled, so that the optical properties of the optical element can be further improved. can be done. Moreover, aggregation of inorganic nanoparticles can be effectively suppressed when the ratio (D A /D B ) is equal to or less than the upper limit.
 凹凸層2は、複数の凸部21を有する。なお、凹凸層2は、複数の凹部22を有すると見ることもできる。 The uneven layer 2 has a plurality of protrusions 21 . Note that the uneven layer 2 can also be viewed as having a plurality of recesses 22 .
 本実施形態において、凸部21は、線状凸部である。凹凸層2では、複数の凸部21が互いに平行に設けられている。言い換えると、本実施形態において、凹凸層2は、断面形状が矩形状の格子溝である。なお、凹凸層2の形状は上記に限定されず、例えば、断面形状が正弦波状や鋸歯状の格子溝であってもよい。 In the present embodiment, the projections 21 are linear projections. In the uneven layer 2, a plurality of protrusions 21 are provided parallel to each other. In other words, in the present embodiment, the uneven layer 2 is a lattice groove with a rectangular cross section. The shape of the uneven layer 2 is not limited to the above. For example, the cross-sectional shape may be a sinusoidal or sawtooth lattice groove.
 凸部21の高さHは、好ましくは10nm以上、より好ましくは25nm以上、更に好ましくは30nm以上、更に好ましくは50nm以上、特に好ましくは75nm以上であり、好ましくは5μm以下、より好ましくは2μm以下、更に好ましくは1μm以下、更に好ましくは800nm以下、特に好ましくは600nm以下である。凸部21の高さHが上記下限以上及び上記上限以下であると、光学特性をより一層高めることができる。また、凸部21の高さHが上記上限以下であると、凹凸層2の破損を効果的に抑えることができる。なお、凸部21の高さHは、凹部22の深さに対応する。なお、凸部21の高さHとは、後述する凸部21の端部における高さh1と、凸部21の中央部における高さh2のうち、より値の大きいものを意味する。 The height H of the protrusions 21 is preferably 10 nm or more, more preferably 25 nm or more, still more preferably 30 nm or more, still more preferably 50 nm or more, particularly preferably 75 nm or more, and preferably 5 μm or less, more preferably 2 μm or less. , more preferably 1 μm or less, more preferably 800 nm or less, and particularly preferably 600 nm or less. When the height H of the convex portion 21 is equal to or more than the lower limit and equal to or less than the upper limit, the optical properties can be further improved. Further, if the height H of the projections 21 is equal to or less than the upper limit, damage to the uneven layer 2 can be effectively suppressed. Note that the height H of the protrusion 21 corresponds to the depth of the recess 22 . The height H of the convex portion 21 means the height h1 at the end portion of the convex portion 21 and the height h2 at the central portion of the convex portion 21, which will be described later, whichever is larger.
 凸部21の幅Wは、好ましくは10nm以上、より好ましくは25nm以上、更に好ましくは50nm以上、特に好ましくは75nm以上であり、好ましくは5μm以下、より好ましくは1μm以下、更に好ましくは800nm以下、特に好ましくは600nm以下である。凸部21の幅Wが上記下限以上及び上記上限以下であると、光学特性をより一層高めることができる。 The width W of the convex portion 21 is preferably 10 nm or more, more preferably 25 nm or more, still more preferably 50 nm or more, particularly preferably 75 nm or more, preferably 5 μm or less, more preferably 1 μm or less, further preferably 800 nm or less. Particularly preferably, it is 600 nm or less. When the width W of the convex portion 21 is equal to or more than the lower limit and equal to or less than the upper limit, the optical characteristics can be further improved.
 凹凸層2の周期構造における周期Pは、好ましくは10nm以上、より好ましくは50nm以上、更に好ましくは100nm以上、特に好ましくは200nm以上であり、好ましくは5μm以下、より好ましくは1μm以下、更に好ましくは800nm以下、特に好ましくは600nm以下である。凹凸層2の周期構造における周期Pが上記下限以上及び上記上限以下であると、光学特性をより一層高めることができる。 The period P in the periodic structure of the uneven layer 2 is preferably 10 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, particularly preferably 200 nm or more, preferably 5 μm or less, more preferably 1 μm or less, and even more preferably. 800 nm or less, particularly preferably 600 nm or less. When the period P in the periodic structure of the concavo-convex layer 2 is equal to or more than the lower limit and equal to or less than the upper limit, the optical properties can be further improved.
 凹凸層2の最小厚みは、好ましくは10nm以上、より好ましくは50nm以上、更に好ましくは100nm以上、特に好ましくは500nm以上であり、好ましくは10000nm以下、より好ましくは5000nm以下、更に好ましくは2500nm以下、特に好ましくは1000nm以下である。凹凸層2の最小厚みが上記下限以上及び上記上限以下であると、光学特性をより一層高めることができる。 The minimum thickness of the uneven layer 2 is preferably 10 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, particularly preferably 500 nm or more, preferably 10000 nm or less, more preferably 5000 nm or less, still more preferably 2500 nm or less, Especially preferably, it is 1000 nm or less. When the minimum thickness of the concavo-convex layer 2 is equal to or more than the lower limit and equal to or less than the upper limit, the optical properties can be further enhanced.
 凸部21は、頂部が水平状又は凸状であることが好ましい。これにより、凹凸層2の光学特性を一層高めることができる。なお、頂部が水平状又は凸状である凸部21は、例えば、後述する本発明の第1の実施形態に係る光学素子の製造方法、本発明の第1の変形例に係る光学素子の製造方法、又は本発明の第2の変形例に係る光学素子の製造方法を用いることにより形成しやすい。 The convex portion 21 preferably has a horizontal or convex top. Thereby, the optical characteristics of the concavo-convex layer 2 can be further improved. Note that the convex portion 21 having a horizontal or convex top portion is produced by, for example, a method for manufacturing an optical element according to the first embodiment of the present invention and a method for manufacturing an optical element according to the first modified example of the present invention, which will be described later. It is easy to form by using the method or the method for manufacturing an optical element according to the second modification of the present invention.
 凹凸層2の凸部21の端部における高さh1と、凸部21の中央部における高さh2との比h2/h1は、好ましくは0.5~1.5、より好ましくは0.9~1.3、より一層好ましくは0.95~1.3、更に好ましくは1~1.3、更に好ましくは1超~1.3、特に好ましくは1.01~1.2である。h2/h1が上記範囲内であることにより、所望の光学特性を有する凹凸層2を得やすくなる。なお、光学特性を一層高めるという観点からは、h2/h1は、1超~1.3であることが好ましく、1.01~1.21であることが更に好ましい。なお、凸部21の端部における高さh1と、凸部21の中央部における高さh2は、例えば、電子顕微鏡を用いて凹凸層2の断面を観察することにより測定することができる。 The ratio h2/h1 of the height h1 at the end of the protrusion 21 of the uneven layer 2 and the height h2 at the center of the protrusion 21 is preferably 0.5 to 1.5, more preferably 0.9. ~1.3, more preferably 0.95 to 1.3, still more preferably 1 to 1.3, even more preferably greater than 1 to 1.3, particularly preferably 1.01 to 1.2. When h2/h1 is within the above range, it becomes easier to obtain the concavo-convex layer 2 having desired optical properties. From the viewpoint of further enhancing optical properties, h2/h1 is preferably greater than 1 to 1.3, more preferably 1.01 to 1.21. The height h1 at the ends of the projections 21 and the height h2 at the center of the projections 21 can be measured by observing the cross section of the uneven layer 2 using an electron microscope, for example.
 凸部21の端部における曲率半径は、凹部22の端部における曲率半径よりも小さいことが好ましい。これにより、凹凸層2の光学特性を一層高めることができる。 The radius of curvature at the end of the projection 21 is preferably smaller than the radius of curvature at the end of the recess 22 . Thereby, the optical characteristics of the concavo-convex layer 2 can be further enhanced.
 透光性基板1の屈折率と凹凸層2の屈折率との差の絶対値は0.20以下である。より具体的には、透光性基板1の波長530nmにおける屈折率と凹凸層2の波長530nmにおける屈折率との差の絶対値が0.20以下である。本発明では、透光性基板1の屈折率と凹凸層2の屈折率との差の絶対値が小さいため、透光性基板1と凹凸層2との界面での光散乱による光損失を抑えることができ、従って、光学素子10の光学特性を高めることができる。また、上記差の絶対値が0.20以下であるため、反射損失を小さくでき、ゴーグル等の光学機器の視野角を広くすることができる。 The absolute value of the difference between the refractive index of the translucent substrate 1 and the refractive index of the uneven layer 2 is 0.20 or less. More specifically, the absolute value of the difference between the refractive index of the translucent substrate 1 at a wavelength of 530 nm and the refractive index of the uneven layer 2 at a wavelength of 530 nm is 0.20 or less. In the present invention, since the absolute value of the difference between the refractive index of the light-transmitting substrate 1 and the refractive index of the uneven layer 2 is small, light loss due to light scattering at the interface between the light-transmitting substrate 1 and the uneven layer 2 is suppressed. and thus the optical properties of the optical element 10 can be enhanced. Moreover, since the absolute value of the difference is 0.20 or less, the reflection loss can be reduced, and the viewing angle of optical equipment such as goggles can be widened.
 透光性基板1の屈折率と凹凸層2の屈折率との差の絶対値は、好ましくは0.15以下、より好ましくは0.1以下である。上記差の絶対値が上記上限以下であると、光学素子10の光学特性をより一層高めることができる。上記差の絶対値の下限は特に限定されないが、例えば、0以上であってもよく、0.01以上であってもよい。 The absolute value of the difference between the refractive index of the translucent substrate 1 and the refractive index of the uneven layer 2 is preferably 0.15 or less, more preferably 0.1 or less. When the absolute value of the difference is equal to or less than the upper limit, the optical properties of the optical element 10 can be further enhanced. Although the lower limit of the absolute value of the difference is not particularly limited, it may be, for example, 0 or more, or 0.01 or more.
 凹凸層2の屈折率は、透光性基板1の屈折率よりも、大きくてもよく、小さくてもよい。凹凸層2の屈折率は、透光性基板1の屈折率と同じであってもよい。 The refractive index of the uneven layer 2 may be larger or smaller than the refractive index of the translucent substrate 1 . The refractive index of the uneven layer 2 may be the same as the refractive index of the translucent substrate 1 .
 凹凸層2の屈折率は、好ましくは1.60以上、より好ましくは1.70以上、更に好ましくは1.80以上、特に好ましくは1.90以上である。凹凸層2の屈折率が上記下限以上であると、ゴーグル等の光学機器の視野角を広くすることができる。凹凸層2の屈折率の上限は特に限定されないが、例えば、2.4以下であってもよく、2.3以下であってもよい。 The refractive index of the uneven layer 2 is preferably 1.60 or higher, more preferably 1.70 or higher, still more preferably 1.80 or higher, and particularly preferably 1.90 or higher. When the refractive index of the uneven layer 2 is equal to or higher than the above lower limit, the viewing angle of optical equipment such as goggles can be widened. Although the upper limit of the refractive index of the uneven layer 2 is not particularly limited, it may be, for example, 2.4 or less, or 2.3 or less.
 凹凸層2のアッベ数は、好ましくは5以上、より好ましくは7以上、更に好ましくは9以上、特に好ましくは10以上であり、好ましくは35以下、より好ましくは30以下、より一層好ましくは25以下、更に好ましくは20以下、更により一層好ましくは18以下、特に好ましくは16以下、最も好ましくは15以下である。凹凸層2のアッベ数が上記下限以上及び上記上限以下であると、透光性基板1の屈折率と凹凸層2の屈折率との差の絶対値を小さくしやすくなり、光学素子の光学特性をより一層高めることができる。なお、凹凸層2のアッベ数が上記下限未満であると、凹凸層2の屈折率が透光性基板1の屈折率よりも大きくなりやすい。また、凹凸層2のアッベ数が上記上限を超えると、凹凸層2の屈折率が透光性基板1の屈折率よりも小さくなりやすい。 The Abbe number of the uneven layer 2 is preferably 5 or more, more preferably 7 or more, still more preferably 9 or more, particularly preferably 10 or more, preferably 35 or less, more preferably 30 or less, and even more preferably 25 or less. , more preferably 20 or less, even more preferably 18 or less, particularly preferably 16 or less, most preferably 15 or less. When the Abbe number of the uneven layer 2 is equal to or more than the above lower limit and equal to or less than the above upper limit, the absolute value of the difference between the refractive index of the translucent substrate 1 and the refractive index of the uneven layer 2 can be easily reduced, and the optical properties of the optical element can be improved. can be further enhanced. When the Abbe number of the uneven layer 2 is less than the above lower limit, the refractive index of the uneven layer 2 tends to be higher than the refractive index of the translucent substrate 1 . Further, when the Abbe number of the uneven layer 2 exceeds the above upper limit, the refractive index of the uneven layer 2 tends to be smaller than the refractive index of the translucent substrate 1 .
 凹凸層2の屈折率は、分光エリプソメータを用いて、波長530nmにおける屈折率を測定することにより求めることができる。また、凹凸層2のアッベ数は、分光エリプソメータを用いて求めることができる。 The refractive index of the uneven layer 2 can be obtained by measuring the refractive index at a wavelength of 530 nm using a spectroscopic ellipsometer. Moreover, the Abbe number of the uneven layer 2 can be obtained using a spectroscopic ellipsometer.
 凹凸層2の屈折率(波長530nmにおける屈折率)をxとし、凹凸層2のアッベ数をyとする。このとき、式:y+50xで表される値は、好ましくは100以上であり、好ましくは125以下、より好ましくは120以下、更に好ましくは115以下である。上記式:y+50xで表される値が上記下限以上及び上記上限以下であると、波長400nm~800nmの範囲において、透光性基板1と凹凸層2との屈折率曲線が交差しやすくなる。なお、上記式:y+50xで表される値が125より大きくなると、凹凸層2と透光性基板1との屈折率及びアッベ数の整合が困難となりやすい。 Let x be the refractive index of the uneven layer 2 (refractive index at a wavelength of 530 nm), and y be the Abbe number of the uneven layer 2 . At this time, the value represented by the formula: y+50x is preferably 100 or more, preferably 125 or less, more preferably 120 or less, and even more preferably 115 or less. When the value represented by the formula: y+50x is equal to or more than the lower limit and equal to or less than the upper limit, the refractive index curves of the translucent substrate 1 and the uneven layer 2 tend to intersect in the wavelength range of 400 nm to 800 nm. If the value represented by the above formula: y+50x is larger than 125, matching of the refractive index and Abbe number between the uneven layer 2 and the translucent substrate 1 tends to be difficult.
 透光性基板1の屈折率曲線と凹凸層2との屈折率曲線とは、波長400nm~780nmの範囲において、交差することが好ましい。透光性基板1の屈折率曲線と凹凸層2との屈折率曲線が交差する波長の範囲は、好ましくは410nm~650nm、より好ましくは420nm~600nm、更に好ましくは430nm~550nm、特に好ましくは440nm~500nmである。屈折率曲線が上記波長範囲において交差すると、屈折率の整合がしやすく、反射損失を効果的に抑制することができる。 The refractive index curve of the translucent substrate 1 and the refractive index curve of the uneven layer 2 preferably intersect in the wavelength range of 400 nm to 780 nm. The wavelength range at which the refractive index curve of the translucent substrate 1 and the refractive index curve of the concavo-convex layer 2 intersect is preferably 410 nm to 650 nm, more preferably 420 nm to 600 nm, still more preferably 430 nm to 550 nm, and particularly preferably 440 nm. ~500 nm. When the refractive index curves intersect in the above wavelength range, it is easy to match the refractive indices, and the reflection loss can be effectively suppressed.
 上記屈折率曲線は、横軸を波長、縦軸を屈折率としたときの、波長と屈折率との関係を示す曲線である。 The above refractive index curve is a curve showing the relationship between the wavelength and the refractive index, where the horizontal axis is the wavelength and the vertical axis is the refractive index.
 凹凸層2は、ラマンスペクトルにおいて、100cm-1~1000cm-1の範囲内での最大ピーク強度Bに対する、2900cm-1~3000cm-1の範囲内での最大ピーク強度Aの比(最大ピーク強度A/最大ピーク強度B)が、4.0以下であることが好ましく、3.5以下であることが好ましく、3.0以下であることがより好ましく、2.5以下であることがより一層好ましく、2.0以下であることが更に好ましく、1.5以下であることが更に一層好ましく、1.0以下であることが特に好ましい。上記比(最大ピーク強度A/最大ピーク強度B)が小さいほど、凹凸層2中の有機成分の含有量が少ないことを意味する。上記比(最大ピーク強度A/最大ピーク強度B)が上記上限以下であると、凹凸層2に入射した光が、凹凸層2中の有機成分により、凹凸層2中で乱反射することを効果的に抑制することができる。その結果、凹凸層2の光学特性を高め、かつ凹凸層2中の有機成分による機械強度の低下を原因とする凹凸層2の破損を抑えることができる。 The uneven layer 2 has a ratio of the maximum peak intensity A within the range of 2900 cm −1 to 3000 cm −1 to the maximum peak intensity B within the range of 100 cm −1 to 1000 cm −1 in the Raman spectrum (maximum peak intensity A /maximum peak intensity B) is preferably 4.0 or less, preferably 3.5 or less, more preferably 3.0 or less, and even more preferably 2.5 or less , is more preferably 2.0 or less, even more preferably 1.5 or less, and particularly preferably 1.0 or less. It means that the smaller the ratio (maximum peak intensity A/maximum peak intensity B), the smaller the content of the organic component in the uneven layer 2 . When the ratio (maximum peak intensity A/maximum peak intensity B) is equal to or less than the upper limit, the light incident on the uneven layer 2 is effectively prevented from being diffusely reflected in the uneven layer 2 by the organic component in the uneven layer 2. can be suppressed to As a result, the optical properties of the uneven layer 2 can be enhanced, and damage to the uneven layer 2 caused by a decrease in mechanical strength due to the organic component in the uneven layer 2 can be suppressed.
 上記比(最大ピーク強度A/最大ピーク強度B)は、例えば、後述の実施例に記載の条件で測定される。最大ピーク強度Bのピーク位置は、成分により変化する。ピーク位置は、ZrO 500±100cm-1、TiO 200±100cm-1、SiO 400±100cm-1、Nb 700±100cm-1、Al 600±100cm-1、BaTiO 400±100cm-1である。 The ratio (maximum peak intensity A/maximum peak intensity B) is measured, for example, under the conditions described in Examples below. The peak position of the maximum peak intensity B changes depending on the component. The peak positions are ZrO 2 500±100 cm −1 , TiO 2 200±100 cm −1 , SiO 2 400±100 cm −1 , Nb 2 O 5 700±100 cm −1 , Al 2 O 3 600±100 cm −1 , BaTiO 3 . 400±100 cm −1 .
 凹凸層2の30℃~100℃における平均熱膨張係数は、好ましくは50×10-7/℃以上、より好ましくは70×10-7/℃以上、好ましくは150×10-7/℃以下、より好ましくは120×10-7/℃以下である。 The average thermal expansion coefficient of the uneven layer 2 at 30° C. to 100° C. is preferably 50×10 −7 /° C. or higher, more preferably 70×10 −7 /° C. or higher, and preferably 150×10 −7 /° C. or lower. More preferably, it is 120×10 −7 /° C. or less.
 透光性基板1の30℃~100℃における平均熱膨張係数と凹凸層2の30℃~100℃における平均熱膨張係数との差の絶対値は、好ましくは50×10-7/℃以下、より好ましくは25×10-7/℃以下である。上記差の絶対値が上記上限以下であると、透光性基板1と凹凸層2との密着性をより一層高めることができる。上記差の絶対値の下限は特に限定されないが、例えば、1×10-7/℃以上であってもよい。なお、上記差の絶対値が上記上限を超えると、透光性基板1と凹凸層2との熱膨張係数の整合が取れず、相互に及ぼす残留応力により、凹凸層2が透光性基板1から剥離する虞がある。このため、透光性基板1に生じる残留応力は、引張応力、圧縮応力を問わず、好ましくは10MPa以下、より好ましくは5MPa以下、更に好ましくは3MPa以下、特に好ましくは1MPa以下である。上記残留応力の下限は特に限定されないが、例えば、0.01MPa以上であってもよい。 The absolute value of the difference between the average thermal expansion coefficient of the translucent substrate 1 at 30° C. to 100° C. and the average thermal expansion coefficient of the uneven layer 2 at 30° C. to 100° C. is preferably 50×10 −7 /° C. or less, More preferably, it is 25×10 −7 /° C. or less. When the absolute value of the difference is equal to or less than the upper limit, the adhesion between the translucent substrate 1 and the uneven layer 2 can be further enhanced. Although the lower limit of the absolute value of the difference is not particularly limited, it may be, for example, 1×10 −7 /° C. or more. If the absolute value of the difference exceeds the upper limit, the thermal expansion coefficients of the light-transmitting substrate 1 and the uneven layer 2 cannot be matched, and the residual stress exerted on the uneven layer 2 causes the light-transmitting substrate 1 There is a risk of peeling from. Therefore, the residual stress generated in the translucent substrate 1 is preferably 10 MPa or less, more preferably 5 MPa or less, even more preferably 3 MPa or less, and particularly preferably 1 MPa or less, regardless of tensile stress or compressive stress. Although the lower limit of the residual stress is not particularly limited, it may be, for example, 0.01 MPa or more.
 透光性基板1と凹凸層2とは、直接密着していることが好ましい。これにより、透光性基板1と凹凸層2との密着性を高め、光学素子10の光学特性をより一層高めることができる。また、透光性基板1と凹凸層2とが接着層(図示せず)を介して密着していてもよい。当該構成は、例えば、凹凸層2と透光性基板1とを接着剤で貼り合わせることにより得ることができる。 The translucent substrate 1 and the uneven layer 2 are preferably in direct contact. Thereby, the adhesion between the translucent substrate 1 and the concavo-convex layer 2 can be enhanced, and the optical characteristics of the optical element 10 can be further enhanced. Further, the translucent substrate 1 and the uneven layer 2 may be in close contact with each other via an adhesive layer (not shown). This configuration can be obtained, for example, by bonding the concavo-convex layer 2 and the translucent substrate 1 together with an adhesive.
 接着剤の種類は特に限定されず、有機接着剤、無機接着剤を用いることができる。なお、光学素子10の光学特性をより一層高める観点からは、接着剤の屈折率と透光性基板1の屈折率との差の絶対値は、好ましくは0.15以下、特に0.10以下であることが好ましい。上記差の絶対値の下限は特に限定されないが、例えば、0.001以上であってもよい。また、接着剤の屈折率と凹凸層2の屈折率との差の絶対値は、好ましくは0.15以下、より好ましくは0.10以下である。上記差の絶対値が上記上限以下であると、光学素子10の光学特性をより一層高めることができる。上記差の絶対値の下限は特に限定されないが、例えば、0.001以上であってもよい。 The type of adhesive is not particularly limited, and organic adhesives and inorganic adhesives can be used. From the viewpoint of further enhancing the optical properties of the optical element 10, the absolute value of the difference between the refractive index of the adhesive and the refractive index of the translucent substrate 1 is preferably 0.15 or less, particularly 0.10 or less. is preferred. Although the lower limit of the absolute value of the difference is not particularly limited, it may be, for example, 0.001 or more. The absolute value of the difference between the refractive index of the adhesive and the refractive index of the concavo-convex layer 2 is preferably 0.15 or less, more preferably 0.10 or less. When the absolute value of the difference is equal to or less than the upper limit, the optical properties of the optical element 10 can be further enhanced. Although the lower limit of the absolute value of the difference is not particularly limited, it may be, for example, 0.001 or more.
 接着層の厚みは、500nm以下であることが好ましく、400nm以下であることがより好ましく、300nm以下であることが更に好ましい。接着層の厚みが大きすぎると、光学素子10の光透過率が低下しやすくなる。接着層の厚みの下限は、例えば、10nm以上としてもよい。 The thickness of the adhesive layer is preferably 500 nm or less, more preferably 400 nm or less, and even more preferably 300 nm or less. If the thickness of the adhesive layer is too large, the light transmittance of the optical element 10 tends to decrease. The lower limit of the thickness of the adhesive layer may be, for example, 10 nm or more.
 光学素子10は、凹凸層2上に薄膜層(図示せず)を有していてもよい。薄膜層は単層膜であってもよく、多層膜であってもよい。薄膜層は、例えば、金属反射膜であってもよく、反射防止膜であってもよく、保護膜であってもよい。例えば、金属反射膜を設けることにより、光学素子10全体の反射効果を高めることができ、光学素子10を導光板として使用した際の導光効果を高めることができる。例えば、反射防止膜を設けることにより、凹凸層2に入射量を高めることができる。例えば、保護膜を設けることにより、凹凸層2の破損を抑制しやすくなる。 The optical element 10 may have a thin film layer (not shown) on the uneven layer 2 . The thin film layer may be a single layer film or a multilayer film. The thin film layer may be, for example, a metal reflective film, an antireflection film, or a protective film. For example, by providing a metal reflective film, the reflection effect of the entire optical element 10 can be enhanced, and the light guide effect when the optical element 10 is used as a light guide plate can be enhanced. For example, by providing an antireflection film, the amount of light incident on the uneven layer 2 can be increased. For example, by providing a protective film, it becomes easier to suppress damage to the uneven layer 2 .
 薄膜層は、例えば、Y、Al、SiO、MgO、TiO、CeO、Bi、HfO、Al、Ag、Au、Pt及びカーボンからなる群から選択される少なくとも1種の材料からなることが好ましい。また、薄膜層は、オレフィン系樹脂等の樹脂材料から形成されてもよい。また、カーボン材料として、ダイヤモンドライクカーボン(DLC)を用いてもよい。 The thin film layer is for example selected from the group consisting of Y2O3 , Al2O3 , SiO2 , MgO , TiO2 , CeO2 , Bi2O3 , HfO2 , Al, Ag, Au, Pt and carbon. It is preferably made of at least one material that Also, the thin film layer may be formed from a resin material such as an olefin resin. Alternatively, diamond-like carbon (DLC) may be used as the carbon material.
 薄膜層の1層あたりの厚みは、10nm~1000nmであることが好ましく、10nm~800nmであることがより好ましく、30nm~500nmであることが更に好ましく、50nm~400nmであることが特に好ましい。1層あたりの厚みが小さすぎると、所望の光学特性が得づらくなることがある。一方、1層あたりの厚みが大きすぎると、薄膜層と凹凸層2との界面に加わる応力が大きくなり、薄膜層の密着性が低下しやすくなる。なお、薄膜層が金属反射膜である場合は、薄膜層の1層あたりの厚みが、10nm~400nmであることが好ましく、30nm~350nmであることがより好ましく、50nm~300nmであることが更に好ましい。 The thickness of each thin film layer is preferably 10 nm to 1000 nm, more preferably 10 nm to 800 nm, even more preferably 30 nm to 500 nm, and particularly preferably 50 nm to 400 nm. If the thickness per layer is too small, it may become difficult to obtain desired optical properties. On the other hand, if the thickness of each layer is too large, the stress applied to the interface between the thin film layer and the uneven layer 2 increases, and the adhesion of the thin film layer tends to decrease. When the thin film layer is a metal reflective film, the thickness of each thin film layer is preferably 10 nm to 400 nm, more preferably 30 nm to 350 nm, even more preferably 50 nm to 300 nm. preferable.
 膜の形成方法としては、真空蒸着法、イオンプレーティング法、スパッタリング法等が挙げられる。 Examples of film formation methods include vacuum deposition, ion plating, and sputtering.
 光学素子10の波長300nm~800nmでの光透過率は、好ましくは55%以上、より好ましくは60%以上、更に好ましくは65%以上である。上記光透過率が上記下限以上であると、光学特性をより一層高めることができる。光学素子10の波長300nm~800nmでの光透過率の上限は特に限定されないが、例えば、100%以下であってもよく、99%以下であってもよい。 The light transmittance of the optical element 10 at a wavelength of 300 nm to 800 nm is preferably 55% or higher, more preferably 60% or higher, and even more preferably 65% or higher. When the light transmittance is equal to or higher than the lower limit, the optical properties can be further improved. Although the upper limit of the light transmittance of the optical element 10 at a wavelength of 300 nm to 800 nm is not particularly limited, it may be, for example, 100% or less, or 99% or less.
 光学素子10の波長500nmでの光透過率は、好ましくは55%以上、より好ましくは60%以上、更に好ましくは65%以上である。上記光透過率が上記下限以上であると、光学特性をより一層高めることができる。光学素子10の波長500nmでの光透過率の上限は特に限定されないが、例えば、100%以下であってもよく、99%以下であってもよい。 The light transmittance of the optical element 10 at a wavelength of 500 nm is preferably 55% or higher, more preferably 60% or higher, and even more preferably 65% or higher. When the light transmittance is equal to or higher than the lower limit, the optical properties can be further improved. Although the upper limit of the light transmittance of the optical element 10 at a wavelength of 500 nm is not particularly limited, it may be, for example, 100% or less, or 99% or less.
 光学素子10の波長450nmでの光透過率は、好ましくは55%以上、より好ましくは60%以上、更に好ましくは65%以上である。上記光透過率が上記下限以上であると、光学特性をより一層高めることができる。光学素子10の波長450nmでの光透過率の上限は特に限定されないが、例えば、100%以下であってもよく、99%以下であってもよい。 The light transmittance of the optical element 10 at a wavelength of 450 nm is preferably 55% or higher, more preferably 60% or higher, and even more preferably 65% or higher. When the light transmittance is equal to or higher than the lower limit, the optical properties can be further improved. Although the upper limit of the light transmittance of the optical element 10 at a wavelength of 450 nm is not particularly limited, it may be, for example, 100% or less, or 99% or less.
 光学素子10の波長300nm~800nm、波長500nm及び波長450nmにおける光透過率は、透過率計(例えば、日本分光社製「V-670」)を用いて測定することができる。例えば、上記光透過率は、光学素子10の透光性基板1側から入射角0°で光を入射することにより測定することができる。 The light transmittance of the optical element 10 at wavelengths of 300 nm to 800 nm, 500 nm and 450 nm can be measured using a transmittance meter (eg, "V-670" manufactured by JASCO Corporation). For example, the above-described light transmittance can be measured by letting light enter the optical element 10 from the side of the transparent substrate 1 at an incident angle of 0°.
 光学素子10は、光学回折素子として好適に用いられる。また、光学素子10は、回折構造が設けられた導光板として好適に用いることができる。上記光学回折素子や導光板は、プロジェクター付きメガネ、眼鏡型またはゴーグル型ディスプレイ、仮想現実(VR)または拡張現実(AR)表示装置、及び、虚像表示装置から選択されるウェアラブル画像表示機器の構成部材として特に好適である。 The optical element 10 is suitably used as an optical diffraction element. Also, the optical element 10 can be suitably used as a light guide plate provided with a diffraction structure. The optical diffraction element and the light guide plate are components of wearable image display devices selected from glasses with a projector, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR) display devices, and virtual image display devices. It is particularly suitable as
 (第2の実施形態)
 図2は、本発明の第2の実施形態に係る光学素子を模式的に示す斜視図である。
(Second embodiment)
FIG. 2 is a perspective view schematically showing an optical element according to a second embodiment of the invention.
 図2に示す光学素子10Aは、透光性基板1と、表面に凹凸を有する凹凸層2Aとを備える。図1に示す光学素子10と、図2に示す光学素子10Aとでは、凹凸層の形状が異なる。 The optical element 10A shown in FIG. 2 includes a translucent substrate 1 and an uneven layer 2A having unevenness on the surface. The optical element 10 shown in FIG. 1 differs from the optical element 10A shown in FIG. 2 in the shape of the concavo-convex layer.
 なお、特に断りのない限り、光学素子10Aの好ましい構成等のその他の点は、第1の実施形態の欄に記載した好ましい構成等のその他の点と同様である。 In addition, unless otherwise specified, other points such as the preferred configuration of the optical element 10A are the same as other points such as the preferred configuration described in the section of the first embodiment.
 光学素子10Aでは、凹凸層2Aが、円柱状の凸部21Aを複数有する。複数の凸部21Aは、周期的に設けられている。もっとも凸部21Aの形状は、特に限定されず、例えば、多角柱状や半球状であってもよい。 In the optical element 10A, the uneven layer 2A has a plurality of columnar protrusions 21A. A plurality of convex portions 21A are provided periodically. However, the shape of the convex portion 21A is not particularly limited, and may be, for example, a polygonal columnar shape or a hemispherical shape.
 第2の実施形態においても、凹凸層2Aが無機ナノ粒子を含み、かつ、透光性基板1の屈折率と凹凸層2Aの屈折率との差の絶対値が0.20以下であるので、光学特性に優れ、かつ凹凸層2Aの破損を抑えることができる。 Also in the second embodiment, the uneven layer 2A contains inorganic nanoparticles, and the absolute value of the difference between the refractive index of the translucent substrate 1 and the refractive index of the uneven layer 2A is 0.20 or less. It is excellent in optical properties and can suppress breakage of the uneven layer 2A.
 凸部21Aの高さHは、好ましくは10nm以上、より好ましくは25nm以上、より一層好ましくは30nm以上、更に好ましくは50nm以上、特に好ましくは75nm以上であり、好ましくは5μm以下、より好ましくは2μm以下、より一層好ましくは1μm以下、更に好ましくは800nm以下、特に好ましくは600nm以下である。凸部21Aの高さHが上記下限以上及び上記上限以下であると、光学特性をより一層高めることができる。また、凸部21Aの高さHが上記上限以下であると、凹凸層2Aの破損を効果的に抑えることができる。 The height H of the convex portion 21A is preferably 10 nm or more, more preferably 25 nm or more, still more preferably 30 nm or more, still more preferably 50 nm or more, particularly preferably 75 nm or more, and preferably 5 μm or less, more preferably 2 μm. Below, it is more preferably 1 μm or less, still more preferably 800 nm or less, and particularly preferably 600 nm or less. When the height H of the convex portion 21A is equal to or more than the lower limit and equal to or less than the upper limit, the optical properties can be further improved. Further, when the height H of the convex portion 21A is equal to or less than the above upper limit, it is possible to effectively suppress damage to the uneven layer 2A.
 (第3の実施形態)
 図3は、本発明の第3の実施形態に係る光学素子を模式的に示す斜視図である。
(Third embodiment)
FIG. 3 is a perspective view schematically showing an optical element according to a third embodiment of the invention.
 図3に示す光学素子10Bは、透光性基板1と、表面に凹凸を有する凹凸層2Bとを備える。図1に示す光学素子10と、図3に示す光学素子10Bとでは、凹凸層の形状が異なる。 The optical element 10B shown in FIG. 3 includes a translucent substrate 1 and an uneven layer 2B having unevenness on the surface. The optical element 10 shown in FIG. 1 differs from the optical element 10B shown in FIG. 3 in the shape of the concavo-convex layer.
 なお、特に断りのない限り、光学素子10Bの好ましい構成等のその他の点は、第1の実施形態の欄に記載した好ましい構成等のその他の点と同様である。 In addition, unless otherwise specified, other points such as the preferred configuration of the optical element 10B are the same as other points such as the preferred configuration described in the section of the first embodiment.
 光学素子10Bでは、凹凸層2Bが、円柱状の凹部22Bを複数有する。複数の凹部22Bは、周期的に設けられている。もっとも凹部22Bの形状は、特に限定されず、例えば、多角柱状や半球状であってもよい。 In the optical element 10B, the uneven layer 2B has a plurality of cylindrical recesses 22B. A plurality of recesses 22B are provided periodically. However, the shape of the recess 22B is not particularly limited, and may be, for example, a polygonal columnar shape or a hemispherical shape.
 第3の実施形態においても、凹凸層2Bが無機ナノ粒子を含み、かつ、透光性基板1の屈折率と凹凸層2Bの屈折率との差の絶対値が0.20以下であるので、光学特性に優れ、かつ凹凸層2Bの破損を抑えることができる。 Also in the third embodiment, the uneven layer 2B contains inorganic nanoparticles, and the absolute value of the difference between the refractive index of the translucent substrate 1 and the refractive index of the uneven layer 2B is 0.20 or less. It is excellent in optical characteristics and can suppress breakage of the uneven layer 2B.
 凹部22Bの深さDは、好ましくは10nm以上、より好ましくは25nm以上、より一層好ましくは30nm以上、更に好ましくは50nm以上、特に好ましくは75nm以上であり、好ましくは5μm以下、より好ましくは2μm以下、より一層好ましくは1μm以下、更に好ましくは800nm以下、特に好ましくは600nm以下である。凹部22Bの深さDが上記下限以上及び上記上限以下であると、光学特性をより一層高めることができる。 The depth D of the concave portion 22B is preferably 10 nm or more, more preferably 25 nm or more, still more preferably 30 nm or more, even more preferably 50 nm or more, particularly preferably 75 nm or more, and preferably 5 μm or less, more preferably 2 μm or less. , more preferably 1 μm or less, still more preferably 800 nm or less, and particularly preferably 600 nm or less. When the depth D of the concave portion 22B is equal to or more than the lower limit and equal to or less than the upper limit, the optical properties can be further improved.
 <光学素子のその他の詳細>
 第1~第3の実施形態では、透光性基板の一方の主面上に凹凸層が配置されている形態を説明したが、本発明の光学素子では、透光性基板の双方の主面上に凹凸層が配置されていてもよい。すなわち、本発明の光学素子は、透光性基板と、該透光性基板の第1の主面上に配置されている凹凸層(第1の凹凸層)と、該透光性基板の第2の主面上に配置されている凹凸層(第2の凹凸層)とを備えていてもよい。この場合に、上記第1の凹凸層に含まれる無機ナノ粒子の種類と、上記第2の凹凸層に含まれる無機ナノ粒子の種類とは、同一であってもよく、異なっていてもよい。また、上記第1の凹凸層の形状と、上記第2の凹凸層の形状とは、同一であってもよく、異なっていてもよい。
<Other details of the optical element>
In the first to third embodiments, the configuration in which the uneven layer is arranged on one main surface of the translucent substrate has been described. An uneven layer may be arranged thereon. That is, the optical element of the present invention includes a light-transmitting substrate, an uneven layer (first uneven layer) disposed on a first main surface of the light-transmitting substrate, and a first uneven layer of the light-transmitting substrate. and an uneven layer (second uneven layer) disposed on the second main surface. In this case, the type of inorganic nanoparticles contained in the first uneven layer and the type of inorganic nanoparticles contained in the second uneven layer may be the same or different. Further, the shape of the first uneven layer and the shape of the second uneven layer may be the same or different.
 [光学素子の製造方法]
 本発明に係る光学素子は、例えば、ナノインプリント技術を用いて好適に製造することができる。
[Method for manufacturing an optical element]
The optical element according to the present invention can be suitably manufactured using, for example, nanoimprint technology.
 以下、本発明に係る光学素子の製造方法の例について詳細に説明する。 An example of the method for manufacturing an optical element according to the present invention will be described in detail below.
 (第1の実施形態)
 図4(a)~(d)は、本発明の第1の実施形態に係る光学素子の製造方法の各工程を説明するための断面図である。図4(a)~(d)は、図1に示す光学素子10の製造方法の各工程を説明するための断面図である。本実施形態の光学素子の製造方法は、表面に凹凸を有する部材の該表面上に、凹凸層の材料を配置して、凹凸層の材料層を形成する工程と、凹凸層の材料層の部材側とは反対側の表面上に、透光性基板を配置する工程と、部材と透光性基板との間に配置された凹凸層の材料層を乾燥する工程と、部材を取り外す工程と、を備える。
(First embodiment)
4A to 4D are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the first embodiment of the present invention. 4A to 4D are cross-sectional views for explaining each step of the method of manufacturing the optical element 10 shown in FIG. The method for manufacturing an optical element according to the present embodiment includes steps of forming a material layer for the uneven layer by disposing a material for the uneven layer on the surface of a member having unevenness on the surface; placing a translucent substrate on the surface opposite the side; drying the material layer of the uneven layer disposed between the member and the translucent substrate; removing the member; Prepare.
 <凹凸層の材料層を形成する工程>
 まず、表面に凹凸を有する部材50を用意する。本実施形態では、部材50はシリコーン樹脂部材である。部材50の凹凸表面上に、凹凸層の材料を配置する。本実施形態では、ディスペンサー60を用いて、部材50の凹凸表面上に、凹凸層の材料を配置している。このようにして、部材50の凹凸表面上に、凹凸層の材料層2Xを形成することができる(図4(a))。なお、部材50は、シリコーン樹脂部材に限定されず、例えば、表面に凹凸を有するUV硬化樹脂フィルムを使用しても良い。
<Step of Forming Material Layer for Concavo-convex Layer>
First, a member 50 having an uneven surface is prepared. In this embodiment, the member 50 is a silicone resin member. A material for the uneven layer is placed on the uneven surface of the member 50 . In this embodiment, the dispenser 60 is used to dispose the material of the uneven layer on the uneven surface of the member 50 . In this manner, the material layer 2X of the uneven layer can be formed on the uneven surface of the member 50 (FIG. 4A). Note that the member 50 is not limited to a silicone resin member, and for example, a UV curable resin film having unevenness on the surface may be used.
 凹凸層を良好に形成する観点から、凹凸層の材料は、無機ナノ粒子を含む材料、又は無機ナノ粒子を含む材料とゾルゲル材料との複合材料であることが好ましい。上記無機ナノ粒子として、上述した無機ナノ粒子を用いることができる。 From the viewpoint of good formation of the uneven layer, the material of the uneven layer is preferably a material containing inorganic nanoparticles or a composite material of a material containing inorganic nanoparticles and a sol-gel material. The inorganic nanoparticles described above can be used as the inorganic nanoparticles.
 ゾルゲル材料としては、金属アルコキシドや非金属アルコキシドを先躯体として用いることができる。金属アルコキシドとしては、例えば、アルミン酸、チタン酸、ジルコン酸、及びニオブ酸等が挙げられる。非金属アルコキシドとしては、アルコキシシラン類及びアルコキシホウ酸塩等が挙げられる。アルコキシシラン類としては、例えば、テトラメトキシシラン(TMOS:Tetramethoxysilane)、テトラエトキシシラン(TEOS:Tetraethoxysilane)等が挙げられる。アルコキシシラン類のアルコキシ基としては、エチル基、メトキシ基、プロポキシ基、ブトキシ基またはその他の長鎖炭化水素アルコキシ基が用いられる。 As the sol-gel material, metal alkoxides and non-metal alkoxides can be used as precursors. Examples of metal alkoxides include alumina acid, titanate, zirconate, and niobic acid. Examples of non-metal alkoxides include alkoxysilanes and alkoxyborates. Examples of alkoxysilanes include tetramethoxysilane (TMOS) and tetraethoxysilane (TEOS). As the alkoxy group of alkoxysilanes, ethyl group, methoxy group, propoxy group, butoxy group or other long-chain hydrocarbon alkoxy groups are used.
 凹凸層の材料の取り扱いを容易にし、凹凸層の材料層2Xの成形性を高める観点からは、凹凸層の材料が樹脂を含むことが好ましい。樹脂としては、光硬化性樹脂を用いることが好ましい。例えば、アクリル系モノマーを用いることが好ましい。より詳細には、アクリル系のビスフェノールAグリセロラートジメタクリラート、アクリル酸とのエステル類(OPPEOA)、ビスフェノールAエトキシラートジアクリラート類、ビスフェノールAプロポキシラートジアクリラート、ビスフェノールFエトキシラート(2EO/フェノール)ジアクリラート、ビスフェノールAグリセロラートジアクリラート類、ビスフェノールAエトキシラートジメタクリラート、エトキシル化(4)ビスフェノールAジアクリラート(SR-601)、ビフェノールAエトキシラートジアクリラート(SR-349)、トリス(2-アクリロイルオキシ)エチル}イソシアヌラート、トリシクロデカンジメタノールジアクリラート、トリス(2-ヒドロキシエチル)イソシアヌラートトリアクリラート、クレゾールノボラックエポキシアクリラート(CN112C60)、ベンジルメタクリラート(BMA)、ベンジルアクリラート、トリメチロールプロパントリアクリラート(TMPTA)、トリメチロールプロパンエトキシラート(1EO/OH)メチルエーテルジアクリラート、1,6-ヘキサンジオールジアクリラート(HDDA、SR238B)、トリ(エチレングリコール)ジアクリラート、エチレングリコールジアクリラート、ポリ(エチレングリコール)ジアクリラート、グリセロール1,3-ジグリセロラートジアクリラート、ジ(エチレングリコール)ジアクリラート、及びそれらの組み合わせから選択されるアクリラートが好ましい。 From the viewpoint of facilitating the handling of the material of the uneven layer and improving the moldability of the material layer 2X of the uneven layer, it is preferable that the material of the uneven layer contains a resin. As the resin, it is preferable to use a photocurable resin. For example, it is preferable to use an acrylic monomer. More specifically, acrylic bisphenol A glycerolate dimethacrylate, esters with acrylic acid (OPPEOA), bisphenol A ethoxylate diacrylates, bisphenol A propoxylate diacrylate, bisphenol F ethoxylate (2EO/ phenol) diacrylate, bisphenol A glycerolate diacrylates, bisphenol A ethoxylate dimethacrylate, ethoxylated (4) bisphenol A diacrylate (SR-601), bisphenol A ethoxylate diacrylate (SR-349), tris ( 2-acryloyloxy)ethyl}isocyanurate, tricyclodecanedimethanol diacrylate, tris(2-hydroxyethyl)isocyanurate triacrylate, cresol novolac epoxy acrylate (CN112C60), benzyl methacrylate (BMA), Benzyl acrylate, trimethylolpropane triacrylate (TMPTA), trimethylolpropane ethoxylate (1EO/OH) methyl ether diacrylate, 1,6-hexanediol diacrylate (HDDA, SR238B), tri(ethylene glycol) Acrylates selected from diacrylates, ethylene glycol diacrylates, poly(ethylene glycol) diacrylates, glycerol 1,3-diglycerolate diacrylates, di(ethylene glycol) diacrylates, and combinations thereof are preferred.
 凹凸層の材料が光硬化性樹脂を含有する場合、凹凸層の材料に重合開始剤を添加することが好ましい。特に、高い硬化性を得るため、チオールを添加することが好ましい。なお、UV照射による硬化と加熱乾燥とを併用してもよい。 When the material of the uneven layer contains a photocurable resin, it is preferable to add a polymerization initiator to the material of the uneven layer. In particular, it is preferable to add a thiol in order to obtain high curability. Curing by UV irradiation and drying by heating may be used in combination.
 重合開始剤としては、例えば、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、アセトフェノン、ベンゾフェノン、キサントン、フルオレノン、ベズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、ミヒラーケトン等が挙げられる。これらの重合開始剤は、1種又は2種以上を組み合わせて使用することができる。また、これらの重合開始剤は、単官能性化合物及び多官能性化合物に対して、質量%で、それぞれ0.001質量%~5質量%で含有されることが好ましく、それぞれ0.01質量%~1質量%で含有されることがより好ましい。なお、必要に応じてアミン系化合物等の増感剤を併用してもよい。 Examples of polymerization initiators include 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenylketone, acetophenone, benzophenone, xanthone, fluorenone, bezaldehyde, fluorene, anthraquinone, triphenylamine, carbazole, 3-methyl Acetophenone, Michler's ketone and the like can be mentioned. These polymerization initiators can be used singly or in combination of two or more. Further, these polymerization initiators are preferably contained at 0.001% by mass to 5% by mass, respectively, in terms of mass% with respect to the monofunctional compound and the polyfunctional compound, and each is 0.01% by mass. More preferably, it is contained in an amount of up to 1% by mass. A sensitizer such as an amine compound may be used in combination as necessary.
 凹凸層の材料は、溶剤を含むことが好ましい。上記溶剤としては、エタノール及びブタノール、エトキシ化ビスフェノールAジアクリレート(PGMEA)等の有機溶剤、並びに水等が挙げられる。 The material of the uneven layer preferably contains a solvent. Examples of the solvent include organic solvents such as ethanol, butanol, ethoxylated bisphenol A diacrylate (PGMEA), and water.
 なお、本工程では、部材50の凹凸表面上に、凹凸層の材料を配置した後、減圧脱泡しながら凹凸層の材料層2Xを形成することが好ましい。これにより、凹凸層の材料中に含まれる泡が消滅し易くなる。この結果、得られる凹凸層2中の無機ナノ粒子間の空隙が低減し、凹凸層2中の無機ナノ粒子の高充填化、すなわち高屈折率化を図ることができるとともに、凹凸層2の強度を向上させることができる。 It should be noted that, in this step, it is preferable to form the material layer 2X of the uneven layer while degassing under reduced pressure after placing the material of the uneven layer on the uneven surface of the member 50 . This makes it easier for the bubbles contained in the material of the uneven layer to disappear. As a result, the voids between the inorganic nanoparticles in the resulting uneven layer 2 are reduced, and the inorganic nanoparticles in the uneven layer 2 can be highly packed, that is, the refractive index can be increased, and the strength of the uneven layer 2 can be improved.
 凹凸層の材料を配置する方法は、ディスペンサー60に限定されない。例えば、スピンコートにより凹凸層の材料を配置してもよい。スピンコートを用いることにより、均質な厚みを有する凹凸層の材料層2Xを形成しやすくなる。また、スプレーを用いることにより、凹凸層の材料を配置してもよい。スプレーを用いることにより、無機ナノ粒子を効果的に堆積させやすくなる。この結果、凹凸層の材料層2X中の無機ナノ粒子同士が密着し、凹凸層2中の無機ナノ粒子の高充填化を図ることができる。 The method of arranging the material of the uneven layer is not limited to the dispenser 60. For example, the material of the uneven layer may be arranged by spin coating. By using spin coating, it becomes easier to form the uneven layer material layer 2X having a uniform thickness. Alternatively, the material of the uneven layer may be arranged by using a spray. Using a spray facilitates effective deposition of the inorganic nanoparticles. As a result, the inorganic nanoparticles in the material layer 2X of the concavo-convex layer adhere to each other, and the inorganic nanoparticles in the concavo-convex layer 2 can be highly packed.
 <透光性基板を配置する工程>
 次に、凹凸層の材料層2Xの部材50側とは反対側の表面上に、透光性基板1を配置する(図4(b))。なお、得られる凹凸層2の厚みを調整する観点から、部材50上に設置されたスペーサー上に、透光性基板1を配置することが好ましい。これにより、凹凸層2の凹部の深さが深い場合及び凹部の幅が狭い場合などにおいて、乾燥による収縮により、凹凸形状の精度が悪くなることを回避することができる。なお、凹部の深さが浅い場合及び凹部の幅が広い場合には、後述の第2の実施形態の方法でも、凹凸形状の精度を高めることが可能である。
<Step of Arranging Translucent Substrate>
Next, the translucent substrate 1 is arranged on the surface of the material layer 2X of the concavo-convex layer opposite to the member 50 side (FIG. 4(b)). From the viewpoint of adjusting the thickness of the uneven layer 2 to be obtained, it is preferable to dispose the translucent substrate 1 on a spacer placed on the member 50 . As a result, it is possible to prevent the accuracy of the uneven shape from deteriorating due to shrinkage due to drying when the depth of the recesses of the uneven layer 2 is deep and when the width of the recesses is narrow. When the depth of the concave portion is shallow and the width of the concave portion is wide, it is possible to improve the accuracy of the concave-convex shape also by the method of the second embodiment described later.
 透光性基板1を配置した後、透光性基板1、凹凸層の材料層2X及び部材50に荷重を加えることが好ましい。これにより、凹凸層2の形状を安定させやすくなる。また、透光性基板1と凹凸層2との密着性を向上させやすくなる。荷重は、例えば、好ましくは10kgf以上、より好ましくは20kgf以上、より一層好ましくは30kgf以上、更に好ましくは40kgf以上、特に好ましくは50kgf以上である。荷重の上限は特に限定されないが、例えば、300kgf以下としてもよい。 After disposing the translucent substrate 1, it is preferable to apply a load to the translucent substrate 1, the material layer 2X of the concavo-convex layer, and the member 50. This makes it easier to stabilize the shape of the uneven layer 2 . In addition, it becomes easier to improve the adhesion between the translucent substrate 1 and the uneven layer 2 . The load is, for example, preferably 10 kgf or more, more preferably 20 kgf or more, even more preferably 30 kgf or more, still more preferably 40 kgf or more, and particularly preferably 50 kgf or more. Although the upper limit of the load is not particularly limited, it may be 300 kgf or less, for example.
 <凹凸層の材料層を乾燥する工程>
 次に、部材50と透光性基板1との間に配置された凹凸層の材料層2Xを乾燥し、凹凸層の材料層2Xを硬化させる。より詳細には、凹凸層の材料層2Xを加熱乾燥し、凹凸層の材料層2Xを硬化させる。乾燥により、凹凸層の材料層2Xに含まれる有機溶剤や水は蒸発し、凹凸層2が形成される(図4(c))。また、凹凸層の材料層2Xの乾燥は二段階で行ってもよく、例えば、予備乾燥後に乾燥又は硬化を行ってもよい。なお、凹凸層2は、室温で乾燥させてもよい。
<Step of drying the material layer of the concavo-convex layer>
Next, the uneven layer material layer 2X disposed between the member 50 and the translucent substrate 1 is dried, and the uneven layer material layer 2X is cured. More specifically, the material layer 2X for the uneven layer is dried by heating to harden the material layer 2X for the uneven layer. The drying evaporates the organic solvent and water contained in the material layer 2X of the uneven layer, forming the uneven layer 2 (FIG. 4(c)). Moreover, the drying of the material layer 2X of the concavo-convex layer may be performed in two stages, for example, drying or curing may be performed after pre-drying. The uneven layer 2 may be dried at room temperature.
 なお、本工程では、部材50と透光性基板1との間に配置された凹凸層の材料層2Xを減圧処理したのち、凹凸層の材料層2Xを乾燥することが好ましい。この場合には、ゾルゲル材料が無機ナノ粒子の隙間に充填されやすく、得られる凹凸層2中の無機ナノ粒子間の空隙を低減することができる。そのため、得られる凹凸層2の高屈折率化を図ることができ、また、凹凸層2と透光性基板1との密着性を高めることができる。 In this step, it is preferable to dry the material layer 2X of the uneven layer after the material layer 2X of the uneven layer disposed between the member 50 and the translucent substrate 1 is decompressed. In this case, the sol-gel material is easily filled in the gaps between the inorganic nanoparticles, and the gaps between the inorganic nanoparticles in the uneven layer 2 obtained can be reduced. Therefore, it is possible to increase the refractive index of the uneven layer 2 to be obtained, and to enhance the adhesion between the uneven layer 2 and the translucent substrate 1 .
 乾燥温度は、好ましくは50℃以上、より好ましくは100℃以上、好ましくは800℃以下、より好ましくは600℃以下である。また、アクリル系樹脂を添加した場合、乾燥温度は、好ましくは50℃以上、より好ましくは100℃以上、より好ましくは200℃以上、より一層好ましくは200℃超、より一層好ましくは250℃以上、より一層好ましくは250℃超、更に好ましくは300℃以上、更に一層好ましくは350℃以上、特に好ましくは400℃以上である。乾燥時間は、好ましくは1分以上、より好ましくは10分以上、好ましくは300分以下、より好ましくは120分以下である。 The drying temperature is preferably 50°C or higher, more preferably 100°C or higher, preferably 800°C or lower, and more preferably 600°C or lower. When an acrylic resin is added, the drying temperature is preferably 50° C. or higher, more preferably 100° C. or higher, more preferably 200° C. or higher, still more preferably 200° C. or higher, and even more preferably 250° C. or higher. It is more preferably higher than 250°C, still more preferably 300°C or higher, even more preferably 350°C or higher, and particularly preferably 400°C or higher. The drying time is preferably 1 minute or longer, more preferably 10 minutes or longer, preferably 300 minutes or shorter, and more preferably 120 minutes or shorter.
 凹凸層の材料層2Xが樹脂を含む場合、凹凸層の材料層2Xを250℃以上で乾燥させることにより樹脂を焼き飛ばすことが好ましい。これにより、凹凸層2を構成する材料に占める無機ナノ粒子の割合を増加させることができ、屈折率の高い凹凸層2を形成しやすくなる。焼き飛ばしを行う際の乾燥温度は、好ましくは250℃以上、より好ましくは250℃超、より一層好ましくは300℃以上、更に好ましくは350℃以上、特に好ましくは400℃以上である。焼き飛ばし温度が低すぎると炭素成分の残留により凹凸層2が着色し、光透過率が低下し易くなる。上記乾燥温度の上限は特に限定されないが、例えば、600℃以下とすることが好ましい。 When the material layer 2X of the uneven layer contains resin, it is preferable to burn off the resin by drying the material layer 2X of the uneven layer at 250°C or higher. This makes it possible to increase the proportion of the inorganic nanoparticles in the material constituting the uneven layer 2, and facilitates the formation of the uneven layer 2 with a high refractive index. The drying temperature for burning off is preferably 250° C. or higher, more preferably higher than 250° C., still more preferably 300° C. or higher, still more preferably 350° C. or higher, and particularly preferably 400° C. or higher. If the burn-off temperature is too low, the uneven layer 2 will be colored due to residual carbon components, and the light transmittance will tend to decrease. Although the upper limit of the drying temperature is not particularly limited, it is preferably 600° C. or lower, for example.
 凹凸層の材料層2Xを250℃以上で乾燥させる場合は、乾燥雰囲気が酸化雰囲気であることが好ましい。これにより、炭素成分による凹凸層2の着色を抑制しやすくなる。 When the material layer 2X of the uneven layer is dried at 250°C or higher, the drying atmosphere is preferably an oxidizing atmosphere. This makes it easier to suppress the uneven layer 2 from being colored by the carbon component.
 乾燥後の凹凸層の材料層2X(すなわち、凹凸層2)に含まれる樹脂は、凹凸層2の重量に対して10質量%以下、特に5質量%以下であることが好ましい。これにより、屈折率のより一層高い凹凸層2を形成しやすくなる。 The resin contained in the material layer 2X of the uneven layer after drying (that is, the uneven layer 2) is preferably 10% by mass or less, particularly 5% by mass or less with respect to the weight of the uneven layer 2. This makes it easier to form the uneven layer 2 with a higher refractive index.
 凹凸層の材料層2Xを乾燥する際にも荷重を加えてもよい。これにより、凹凸層2の形状を安定させやすくなる。また、透光性基板1と凹凸層2の密着性を向上させやすくなる。荷重は、例えば、好ましくは10kgf以上、より好ましくは20kgf以上、より一層好ましくは30kgf以上、更に好ましくは40kgf以上、特に好ましくは50kgf以上である。荷重の上限は特に限定されないが、例えば、300kgf以下としてもよい。 A load may also be applied when drying the material layer 2X of the uneven layer. This makes it easier to stabilize the shape of the uneven layer 2 . In addition, it becomes easier to improve the adhesion between the translucent substrate 1 and the concavo-convex layer 2 . The load is, for example, preferably 10 kgf or more, more preferably 20 kgf or more, even more preferably 30 kgf or more, still more preferably 40 kgf or more, and particularly preferably 50 kgf or more. Although the upper limit of the load is not particularly limited, it may be 300 kgf or less, for example.
 凹凸層の材料層2Xを硬化させる際に、減圧または加圧処理を行ってもよい。特に減圧処理を行うことが好ましい。これにより、凹凸層の材料層2X中に含まれる気泡を除去することができ、屈折率の高い凹凸層2を形成しやすくなる。 When curing the material layer 2X of the concavo-convex layer, decompression or pressurization may be performed. In particular, it is preferable to perform a decompression treatment. As a result, air bubbles contained in the material layer 2X of the uneven layer can be removed, making it easier to form the uneven layer 2 with a high refractive index.
 本工程により、凹凸層の材料層2Xは溶媒等が揮発する、又は樹脂が焼き飛ばされることにより変形(収縮)する。当該収縮量が大きすぎると、得られる凹凸層2が設計構造から大きく変形してしまい、所望の光学特性が得られない恐れがある。そのため、図5に示すように、凹凸層2全体高さをHa、凸部21の高さをHとするとき、凹凸層の材料層2Xを乾燥させた際のHa収縮量が、70%以下であることが好ましく、65%以下であることがより好ましく、60%以下であることがより一層好ましく、50%以下であることが更に好ましく、40%以下であることが更に一層好ましく、30%以下であることが特に好ましい。また、凹凸層の材料層2Xを乾燥させた際のH収縮量が、50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがより一層好ましく、20%以下であることが更に好ましく、10%以下であることが特に好ましい。特に、凸部21の高さHの収縮量を小さく抑えることにより、所望の光学特性を有する光学素子10を得やすくなる。そのため、Ha収縮量に対するH収縮量の比は、0.5以下であることが好ましく、0.4以下であることがより好ましい。 Through this process, the material layer 2X of the uneven layer is deformed (shrinked) by volatilizing the solvent or the like or by burning off the resin. If the amount of shrinkage is too large, the uneven layer 2 to be obtained may be greatly deformed from the design structure, and desired optical characteristics may not be obtained. Therefore, as shown in FIG. 5, when the total height of the uneven layer 2 is Ha and the height of the convex portion 21 is H, the shrinkage amount of Ha when the material layer 2X of the uneven layer is dried is 70% or less. is preferably 65% or less, more preferably 60% or less, even more preferably 50% or less, even more preferably 40% or less, 30% The following are particularly preferred. In addition, the H shrinkage amount when the material layer 2X of the uneven layer is dried is preferably 50% or less, more preferably 40% or less, and even more preferably 30% or less. % or less, and particularly preferably 10% or less. In particular, by suppressing the amount of contraction of the height H of the convex portion 21 to a small amount, it becomes easier to obtain the optical element 10 having desired optical characteristics. Therefore, the ratio of the amount of H shrinkage to the amount of Ha shrinkage is preferably 0.5 or less, more preferably 0.4 or less.
 <部材を取り外す工程>
 次に、部材50を取り外す。これにより、透光性基板1と凹凸層2とを備える光学素子10を得ることができる(図4(d))。
<Process of removing members>
The member 50 is then removed. As a result, an optical element 10 including the translucent substrate 1 and the concavo-convex layer 2 can be obtained (FIG. 4(d)).
 (第2の実施形態)
 図6(a)~(d)は、本発明の第2の実施形態に係る光学素子の製造方法の各工程を説明するための断面図である。図6(a)~(d)は、図1に示す光学素子10の製造方法の各工程を説明するための断面図である。本実施形態の光学素子の製造方法は、透光性基板の主面上に、凹凸層の材料を配置して、凹凸層の材料層を形成する工程と、凹凸層の材料層の前記透光性基板側とは反対側の表面上に、表面に凹凸を有する部材を該表面側から配置する工程と、部材と透光性基板との間に配置された凹凸層の材料層を乾燥する工程と、部材を取り外す工程と、を備える。本実施形態は、凹凸層の材料層2Xを透光性基板1の主面上に配置する点で、第1の実施形態と異なる。
(Second embodiment)
6A to 6D are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the second embodiment of the present invention. 6A to 6D are cross-sectional views for explaining each step of the method of manufacturing the optical element 10 shown in FIG. The method for manufacturing an optical element according to the present embodiment comprises the steps of disposing a material for an uneven layer on a main surface of a translucent substrate to form a material layer for an uneven layer; a step of placing a member having an uneven surface on the surface opposite to the transparent substrate from the surface side; and a step of drying the material layer of the uneven layer placed between the member and the translucent substrate. and removing the member. This embodiment differs from the first embodiment in that the material layer 2X of the uneven layer is arranged on the main surface of the translucent substrate 1. FIG.
 なお、特に断りのない限り、光学素子の製造方法の好ましい構成等のその他の点は、第1の実施形態の欄に記載した好ましい構成等のその他の点と同様である。 In addition, unless otherwise specified, other points such as the preferred configuration of the method for manufacturing an optical element are the same as other points such as the preferred configuration described in the section of the first embodiment.
 <凹凸層の材料層を形成する工程>
 まず、透光性基板1の主面上に、凹凸層の材料を配置する。本実施形態では、ディスペンサー60を用いて、透光性基板1の主面上に、凹凸層の材料を配置する。このようにして、透光性基板1の主面上に、凹凸層の材料層2Xを形成することができる(図6(a))。なお、第1の実施形態の欄に記載したように、ディスペンサー60の代わりに、スピンコートやスプレーを用いて、透光性基板1の主面上に、凹凸層の材料を配置してもよい。
<Step of Forming Material Layer for Concavo-convex Layer>
First, the material for the uneven layer is arranged on the main surface of the translucent substrate 1 . In this embodiment, the dispenser 60 is used to dispose the material of the uneven layer on the main surface of the translucent substrate 1 . In this manner, the material layer 2X of the concavo-convex layer can be formed on the main surface of the translucent substrate 1 (FIG. 6A). In addition, as described in the column of the first embodiment, instead of the dispenser 60, spin coating or spraying may be used to dispose the material of the uneven layer on the main surface of the translucent substrate 1. .
 凹凸層を良好に形成する観点から、凹凸層の材料は、無機ナノ粒子を含む材料、又は無機ナノ粒子を含む材料とゾルゲル材料との複合材料であることが好ましい。 From the viewpoint of good formation of the uneven layer, the material of the uneven layer is preferably a material containing inorganic nanoparticles or a composite material of a material containing inorganic nanoparticles and a sol-gel material.
 凹凸層の材料は、溶剤を含むことが好ましい。上記溶剤としては、エタノール及びブタノール、エトキシ化ビスフェノールAジアクリレート(PGMEA)等の有機溶剤、並びに水等が挙げられる。 The material of the uneven layer preferably contains a solvent. Examples of the solvent include organic solvents such as ethanol, butanol, ethoxylated bisphenol A diacrylate (PGMEA), and water.
 なお、本工程では、透光性基板1の主面上に、凹凸層の材料を配置した後、減圧脱泡しながら凹凸層の材料層2Xを形成することが好ましい。これにより、凹凸層の材料中に含まれる泡が消滅し易くなる。この結果、得られる凹凸層2中の無機ナノ粒子間の空隙が低減し、凹凸層2中の無機ナノ粒子の高充填化、すなわち高屈折率化を図ることができるとともに、凹凸層2の強度を向上させることができる。 It should be noted that, in this step, it is preferable to form the material layer 2X of the uneven layer while degassing under reduced pressure after disposing the material of the uneven layer on the main surface of the translucent substrate 1 . This makes it easier for the bubbles contained in the material of the uneven layer to disappear. As a result, the voids between the inorganic nanoparticles in the resulting uneven layer 2 are reduced, and the inorganic nanoparticles in the uneven layer 2 can be highly packed, that is, the refractive index can be increased, and the strength of the uneven layer 2 can be improved.
 <表面に凹凸を有する部材を配置する工程>
 次に、凹凸層の材料層2Xの透光性基板1側とは反対側の表面上に、表面に凹凸を有する部材50を該表面側から配置する(図6(b))。
<Step of arranging a member having unevenness on the surface>
Next, a member 50 having an uneven surface is placed on the surface of the material layer 2X of the uneven layer opposite to the translucent substrate 1 (FIG. 6B).
 本実施形態では、部材50はシリコーン樹脂部材であることが好ましい。シリコーン樹脂からなる部材50は比較的柔軟性が高いため、凹凸層の材料層2Xに密着させた状態で配置させやすい。すなわち、部材50と凹凸層の材料層2Xとの間に巻き込み泡が発生しにくい。巻き込み泡が発生すると、後述する凹凸層の材料層2Xを乾燥する工程において、透光性基板1と凹凸層の材料層2Xとの密着性が低下する恐れがある。よって、本実施形態に係る光学素子の製造方法によれば、透光性基板1と凹凸層の材料層2Xとの密着性の低下を抑制しやすい。すなわち、本実施形態に係る光学素子の製造方法によれば、透光性基板1と凹凸層2との密着性に優れた光学素子10を製造することができる。 In this embodiment, the member 50 is preferably a silicone resin member. Since the member 50 made of silicone resin has relatively high flexibility, it is easy to arrange the member 50 in close contact with the material layer 2X of the concavo-convex layer. That is, entrained bubbles are less likely to occur between the member 50 and the material layer 2X of the concavo-convex layer. If entrapment bubbles are generated, there is a possibility that the adhesion between the translucent substrate 1 and the material layer 2X of the uneven layer is lowered in the step of drying the material layer 2X of the uneven layer, which will be described later. Therefore, according to the method for manufacturing an optical element according to the present embodiment, it is easy to suppress deterioration in adhesion between the translucent substrate 1 and the material layer 2X of the concavo-convex layer. That is, according to the method for manufacturing an optical element according to the present embodiment, it is possible to manufacture the optical element 10 having excellent adhesion between the light-transmitting substrate 1 and the concavo-convex layer 2 .
 凹凸を有する部材50を配置した後、透光性基板1、凹凸層の材料層2X及び部材50に荷重を加えることが好ましい。これにより、凹凸層2の形状を安定させやすくなる。また、透光性基板1と凹凸層2の密着性を向上させやすくなる。荷重は、例えば、好ましくは10kgf以上、より好ましくは20kgf以上、より一層好ましくは30kgf以上、更に好ましくは40kgf以上、特に好ましくは50kgf以上である。荷重の上限は特に限定されないが、例えば、300kgf以下としてもよい。 It is preferable to apply a load to the translucent substrate 1, the material layer 2X of the uneven layer, and the member 50 after arranging the member 50 having unevenness. This makes it easier to stabilize the shape of the uneven layer 2 . In addition, it becomes easier to improve the adhesion between the translucent substrate 1 and the concavo-convex layer 2 . The load is, for example, preferably 10 kgf or more, more preferably 20 kgf or more, even more preferably 30 kgf or more, still more preferably 40 kgf or more, and particularly preferably 50 kgf or more. Although the upper limit of the load is not particularly limited, it may be 300 kgf or less, for example.
 なお、第1の実施形態の欄に記載したように、本工程では、部材50と透光性基板1との間に配置された凹凸層の材料層2Xを減圧処理したのち、凹凸層の材料層2Xを乾燥することが好ましい。 As described in the section of the first embodiment, in this step, the material layer 2X for the uneven layer disposed between the member 50 and the translucent substrate 1 is subjected to pressure reduction treatment, and then the material for the uneven layer is removed. It is preferred to dry layer 2X.
 <凹凸層の材料層を乾燥する工程>
 次に、部材50と透光性基板1との間に配置された凹凸層の材料層2Xを乾燥する。乾燥により、凹凸層の材料層2Xに含まれる溶剤や水は蒸発し、凹凸層2が形成される(図6(c))。
<Step of drying the material layer of the concavo-convex layer>
Next, the material layer 2X of the concavo-convex layer arranged between the member 50 and the translucent substrate 1 is dried. The drying evaporates the solvent and water contained in the material layer 2X of the uneven layer, forming the uneven layer 2 (FIG. 6(c)).
 なお、第1の実施形態の欄に記載したように、本工程では、部材50と透光性基板1との間に配置された凹凸層の材料層2Xを減圧処理したのち、凹凸層の材料層2Xを乾燥することが好ましい。 As described in the section of the first embodiment, in this step, the material layer 2X for the uneven layer disposed between the member 50 and the translucent substrate 1 is subjected to pressure reduction treatment, and then the material for the uneven layer is removed. It is preferred to dry layer 2X.
 乾燥温度は、好ましくは50℃以上、より好ましくは100℃以上、好ましくは800℃以下、より好ましくは600℃以下である。また、アクリル系樹脂を添加した場合、乾燥温度は、好ましくは50℃以上、より好ましくは100℃以上、より一層好ましくは200℃以上、より一層好ましくは200℃超、より一層好ましくは250℃以上、より一層好ましくは250℃超、更に好ましくは300℃以上、更に一層好ましくは350℃以上、特に好ましくは400℃以上である。乾燥時間は、好ましくは1分以上、より好ましくは10分以上、好ましくは300分以下、より好ましくは120分以下である。 The drying temperature is preferably 50°C or higher, more preferably 100°C or higher, preferably 800°C or lower, and more preferably 600°C or lower. Further, when an acrylic resin is added, the drying temperature is preferably 50° C. or higher, more preferably 100° C. or higher, still more preferably 200° C. or higher, still more preferably 200° C. or higher, and still more preferably 250° C. or higher. , more preferably above 250°C, more preferably above 300°C, even more preferably above 350°C, and particularly preferably above 400°C. The drying time is preferably 1 minute or longer, more preferably 10 minutes or longer, preferably 300 minutes or shorter, and more preferably 120 minutes or shorter.
 なお、凹凸層の材料層2Xを乾燥させる前に、部材50、凹凸層の材料層2X及び透光性基板1からなる積層体の上下を反転させてもよい。すなわち、表面に凹凸を有する部材を配置する工程(図6(b))の後、上記積層体の上下を反転させて、図1(c)に類する構造、すなわち部材50の主面上に凹凸層の材料層2Xが配置され、凹凸層の材料層2Xの部材50側とは反対側の表面上に透光性基板1が配置された状態で凹凸層の材料層2Xを乾燥させてもよい。このようにすれば、凹凸層の材料層2Xの乾燥による収縮の影響を低減しやすくなり、凹凸層2の凸部21の頂部が水平状又は凸状である光学素子10を製造しやすくなる。 Before drying the material layer 2X for the concavo-convex layer, the laminate composed of the member 50, the material layer 2X for the concavo-convex layer, and the translucent substrate 1 may be turned upside down. That is, after the step of arranging a member having unevenness on the surface (FIG. 6B), the laminate is turned upside down to form a structure similar to that of FIG. The material layer 2X of the uneven layer may be dried in a state in which the material layer 2X of the uneven layer is arranged and the translucent substrate 1 is arranged on the surface of the material layer 2X of the uneven layer opposite to the member 50 side. . This makes it easier to reduce the effect of shrinkage due to drying of the material layer 2X of the uneven layer, and makes it easier to manufacture the optical element 10 in which the tops of the convex portions 21 of the uneven layer 2 are horizontal or convex.
 <部材を取り外す工程>
 次に、部材50を取り外す。これにより、透光性基板1と凹凸層2とを備える光学素子10を得ることができる(図6(d))。
<Process of removing members>
The member 50 is then removed. As a result, an optical element 10 including the translucent substrate 1 and the concavo-convex layer 2 can be obtained (FIG. 6(d)).
 なお、例えば、所定の凹凸表面の形状を有する部材50を用いることにより、図2,3に示す光学素子10A,10Bを製造することができる。 It should be noted that, for example, the optical elements 10A and 10B shown in FIGS. 2 and 3 can be manufactured by using the member 50 having a predetermined uneven surface shape.
 (第1の変形例)
 本発明の第1の変形例に係る光学素子の製造方法は、凹凸層の材料層を形成する工程と、凹凸層の材料層を乾燥させて凹凸層を形成する工程と、凹凸層上に透光性基板を配置する工程と、を備える。本変形例は、凹凸層の材料層2Xを乾燥させて凹凸層2を作製した後に、凹凸層2上に透光性基板1を配置する工程を有する点で、第1の実施形態と異なる。
(First modification)
A method for manufacturing an optical element according to a first modification of the present invention includes steps of forming a material layer for the uneven layer, drying the material layer for the uneven layer to form the uneven layer, and forming a transparent layer on the uneven layer. arranging an optical substrate. This modification differs from the first embodiment in that it includes a step of placing the translucent substrate 1 on the uneven layer 2 after the uneven layer 2 is formed by drying the uneven layer material layer 2X.
 図7(a)~(d)は、本発明の第1の変形例に係る光学素子の製造方法の各工程を説明するための断面図である。第1の変形例に係る光学素子の製造方法について、詳細に述べると以下の通りである。まず、表面に凹凸を有する部材50を用意する。本変形例では、部材50はシリコーン樹脂部材である。部材50の凹凸表面上に、凹凸層の材料を配置する。本変形例では、ディスペンサー(図示せず)を用いて、部材50の凹凸表面上に、凹凸層の材料を配置している。このようにして、部材50の凹凸表面上に、凹凸層の材料層2Xを形成することができる(図7(a))。なお、ディスペンサーの代わりに、スピンコートやスプレーを用いて、部材50の凹凸表面上に、凹凸層の材料を配置してもよい。 7(a) to (d) are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the first modified example of the present invention. The details of the method for manufacturing the optical element according to the first modification are as follows. First, a member 50 having an uneven surface is prepared. In this modified example, the member 50 is a silicone resin member. A material for the uneven layer is placed on the uneven surface of the member 50 . In this modification, a dispenser (not shown) is used to dispose the material of the uneven layer on the uneven surface of the member 50 . In this manner, the material layer 2X of the uneven layer can be formed on the uneven surface of the member 50 (FIG. 7A). Instead of using a dispenser, spin coating or spraying may be used to dispose the material of the uneven layer on the uneven surface of the member 50 .
 次に、部材50の凹凸表面上に配置された凹凸層の材料層2Xを乾燥する(図7(b))。乾燥により、凹凸層の材料層2Xに含まれる有機溶剤や水は蒸発し、凹凸層2が形成される。 Next, the material layer 2X of the uneven layer arranged on the uneven surface of the member 50 is dried (FIG. 7(b)). By drying, the organic solvent and water contained in the material layer 2X of the uneven layer evaporate, and the uneven layer 2 is formed.
 次に、凹凸層2の部材50側とは反対側の表面上に、透光性基板1を配置する(図7(c))。このとき、透光性基板1と凹凸層2とは、接着層(図示せず)を介して密着させることができる。 Next, the translucent substrate 1 is placed on the surface of the uneven layer 2 opposite to the member 50 side (FIG. 7(c)). At this time, the translucent substrate 1 and the uneven layer 2 can be brought into close contact with each other via an adhesive layer (not shown).
 次に、部材50を取り外す。これにより、透光性基板1と凹凸層2とを備える光学素子10を得ることができる(図7(d))。 Next, the member 50 is removed. As a result, an optical element 10 including the translucent substrate 1 and the concavo-convex layer 2 can be obtained (FIG. 7(d)).
 一般に、凹凸層の材料層2Xに含まれる溶剤や水を蒸発させると、得られる凹凸層2は凹凸層の材料層2Xに比べて収縮する。そのため、当該収縮に起因して透光性基板1と凹凸層2の密着性が低下することがある。一方、本変形例では凹凸層2を作製した後に凹凸層2上に透光性基板1を配置するため、当該収縮による影響を低減しやすい。 In general, when the solvent and water contained in the material layer 2X for the uneven layer are evaporated, the resulting uneven layer 2 shrinks compared to the material layer 2X for the uneven layer. Therefore, the adhesion between the translucent substrate 1 and the uneven layer 2 may be lowered due to the contraction. On the other hand, in this modification, since the translucent substrate 1 is arranged on the uneven layer 2 after the uneven layer 2 is formed, the influence of the contraction can be easily reduced.
 なお、本変形例には、第1の実施形態の欄に記載した各種の好ましい構成を適宜適用することができる。 It should be noted that various preferable configurations described in the section of the first embodiment can be appropriately applied to this modified example.
 本発明の変形例において、凹凸層の材料層2Xは、透光性基板1を配置する前に、フィルムや輸送用基板上に一時的に配置されてもよい。例えば、本発明に係る光学素子の製造方法において、凹凸層の材料層2Xをフィルムに転写する工程を備えてもよい。これにより、凹凸層の材料層2Xをフィルム上で保持及び乾燥させることができ、製造コストを低減させやすくなる。 In a modified example of the present invention, the material layer 2X of the concavo-convex layer may be temporarily placed on a film or a transport substrate before placing the translucent substrate 1. For example, the method of manufacturing an optical element according to the present invention may include a step of transferring the material layer 2X of the concavo-convex layer to a film. As a result, the material layer 2X of the concavo-convex layer can be held and dried on the film, making it easier to reduce manufacturing costs.
 (第2の変形例)
 本発明の第2の変形例は、表面に凹凸を有する部材の該表面上に第1材料を配置して、第1の凹凸層の材料層を形成する工程と、第1の凹凸層の材料層を乾燥し、第1の凹凸層を形成する工程と、第1の凹凸層上に、第2材料を配置して、第2の凹凸層の材料層を形成する工程と、第2の凹凸層の材料層を乾燥し、第2の凹凸層を形成する工程と、第2の凹凸層上に透光性基板を配置する工程と、を備える。本変形例は、凹凸層2が、第1の凹凸層と第2の凹凸層とからなり、第1の凹凸層を形成する工程と、第2の凹凸層を形成する工程を備える点で、第1の実施形態と異なる。
(Second modification)
A second modification of the present invention comprises a step of placing a first material on the surface of a member having unevenness on the surface to form a material layer of the first uneven layer; drying the layer to form a first textured layer; disposing a second material on the first textured layer to form a material layer for a second textured layer; drying the material layer of the layer to form a second textured layer; and placing a translucent substrate on the second textured layer. In this modification, the uneven layer 2 is composed of a first uneven layer and a second uneven layer, and includes a step of forming the first uneven layer and a step of forming the second uneven layer, It differs from the first embodiment.
 図8(a)~(d)及び図9(e)~(f)は、本発明の第2の変形例に係る光学素子の製造方法の各工程を説明するための断面図である。以下、第2の変形例について詳細に述べると以下の通りである。まず、表面に凹凸を有する部材50を用意する。本変形例では、部材50はシリコーン樹脂部材である。次に、部材50の凹凸表面上に、第1材料を配置して、第1の凹凸層の材料層201Xを形成する。本変形例では、ディスペンサー(図示せず)を用いて、部材50の凹凸表面上に、第1の凹凸層の材料層201Xを配置している。本変形例において、第1の凹凸層の材料層201Xは、部材50の凹部の一部を充填する(図8(a))。なお、ディスペンサーの代わりに、スピンコートやスプレーを用いて、凹凸層の材料を配置してもよい。 FIGS. 8(a) to (d) and FIGS. 9(e) to (f) are cross-sectional views for explaining each step of the method for manufacturing an optical element according to the second modified example of the present invention. The details of the second modification are as follows. First, a member 50 having an uneven surface is prepared. In this modified example, the member 50 is a silicone resin member. Next, a first material is placed on the uneven surface of the member 50 to form the material layer 201X of the first uneven layer. In this modification, a dispenser (not shown) is used to dispose the material layer 201X of the first uneven layer on the uneven surface of the member 50 . In this modified example, the material layer 201X of the first concavo-convex layer fills a part of the concave portion of the member 50 (FIG. 8A). Instead of using a dispenser, spin coating or spraying may be used to dispose the material of the uneven layer.
 次に、第1の凹凸層の材料層201Xを乾燥し、第1の凹凸層201を形成する。乾燥により、第1の凹凸層の材料層201Xに含まれる有機溶剤や水は蒸発し、第1の凹凸層201が形成される(図8(b))。 Next, the material layer 201X for the first uneven layer is dried to form the first uneven layer 201. The drying evaporates the organic solvent and water contained in the material layer 201X of the first uneven layer, forming the first uneven layer 201 (FIG. 8B).
 次に、第1の凹凸層上に、第2材料を配置して、第2の凹凸層の材料層202Xを形成する。第2の凹凸層の材料層202Xは、第1の凹凸層の材料層201Xと同様に、例えばディスペンサー(図示せず)を用いて配置することができる。本変形例において、第2の凹凸層の材料層202Xは、第1の凹凸層201により充填されていない部材50の凹部を充填する(図8(c))。なお、ディスペンサーの代わりに、スピンコートやスプレーを用いて、凹凸層の材料を配置してもよい。 Next, a second material is placed on the first uneven layer to form a material layer 202X for the second uneven layer. The material layer 202X for the second uneven layer can be placed using, for example, a dispenser (not shown), similarly to the material layer 201X for the first uneven layer. In this modification, the material layer 202X of the second uneven layer fills the concave portions of the member 50 that are not filled with the first uneven layer 201 (FIG. 8C). Instead of using a dispenser, spin coating or spraying may be used to dispose the material of the uneven layer.
 次に、第2の凹凸層の材料層202Xを乾燥し、第2の凹凸層202を形成する。乾燥により、第2の凹凸層の材料層202Xに含まれる有機溶剤や水は蒸発し、第2の凹凸層202が形成される(図8(d))。 Next, the material layer 202X for the second uneven layer is dried to form the second uneven layer 202. The drying evaporates the organic solvent and water contained in the material layer 202X for the second uneven layer, forming the second uneven layer 202 (FIG. 8D).
 次に、第2の凹凸層202の部材50側とは反対側の表面上に、透光性基板1を配置する。このとき、透光性基板1と第2の凹凸層202は、接着層(図示せず)を介して密着させることができる(図9(e))。 Next, the translucent substrate 1 is placed on the surface of the second uneven layer 202 opposite to the member 50 side. At this time, the translucent substrate 1 and the second uneven layer 202 can be brought into close contact via an adhesive layer (not shown) (FIG. 9(e)).
 次に、部材50を取り外す。これにより、透光性基板1、第1の凹凸層201及び第2の凹凸層202を備える光学素子10Cを得ることができる(図9(f))。 Next, the member 50 is removed. As a result, an optical element 10C including the translucent substrate 1, the first uneven layer 201 and the second uneven layer 202 can be obtained (FIG. 9F).
 本変形例によれば、第1の変形例と同様に、凹凸層と透光性基板1との接着強度の低下を抑制しやすくなる。また、凹凸層を、第1の凹凸層201と第2の凹凸層202に分けて形成することにより、端部の曲率半径が小さくなりやすく、光学特性に優れた凹凸層を得やすくなる。なお、透光性基板1と第2の凹凸層202、及び第1の凹凸層201と第2の凹凸層202は、接着層(図示せず)を介してそれぞれ密着させてもよい。 According to this modified example, as in the first modified example, it becomes easier to suppress a decrease in the adhesive strength between the uneven layer and the translucent substrate 1 . In addition, by forming the uneven layer separately into the first uneven layer 201 and the second uneven layer 202, the radius of curvature of the end portion is likely to be small, and the uneven layer with excellent optical properties can be easily obtained. The translucent substrate 1 and the second uneven layer 202, and the first uneven layer 201 and the second uneven layer 202 may be adhered to each other via an adhesive layer (not shown).
 なお、本変形例には、第1の実施形態の欄に記載した各種の好ましい構成を適宜適用することができる。 It should be noted that various preferable configurations described in the section of the first embodiment can be appropriately applied to this modified example.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail based on specific examples. The present invention is by no means limited to the following examples, and can be modified as appropriate without changing the gist of the invention.
 以下の透光性基板を用意した。 The following translucent substrate was prepared.
 <透光性基板(a)>
 透光性基板(a)は、ガラス組成として、質量%で、SiO 5.0%、B 10.0%、TiO 15.0%、Nb 10.0%、ZrO 5.0%、La 49.0%、Gd 5.0%、Y 1.0%を含有する。波長530nmにおける屈折率(n)は1.80、アッベ数(νd)は40.0、30℃~100℃における平均熱膨張係数は80×10-7/℃、厚みは1mmであった。
<Translucent substrate (a)>
Translucent substrate (a) has a glass composition of 5.0% by mass SiO 2 , 10.0% B 2 O 3 , 15.0% TiO 2 , 10.0% Nb 2 O 5 and ZrO. 2 5.0%, La 2 O 3 49.0%, Gd 2 O 3 5.0%, Y 2 O 3 1.0%. It had a refractive index (n) of 1.80 at a wavelength of 530 nm, an Abbe number (νd) of 40.0, an average thermal expansion coefficient of 80×10 −7 /° C. at 30° C. to 100° C., and a thickness of 1 mm.
 <透光性基板(b)>
 透光性基板(b)は、ガラス組成として、質量%で、Bi 70.0%、B 8.0%、TeO 11.0%、P 5.0%、Nb 5.0%、ZnO 1.0%を含有する。波長530nmにおける屈折率(n)は2.20、アッベ数(νd)は18.0、30℃~100℃における平均熱膨張係数は120×10-7/℃、厚みは1mmであった。
<Translucent substrate (b)>
The translucent substrate (b) has a glass composition of 70.0% by mass Bi2O3 , 8.0% B2O3 , 11.0 % TeO2, and 5.0 % P2O5 . , Nb 2 O 5 5.0%, ZnO 1.0%. It had a refractive index (n) of 2.20 at a wavelength of 530 nm, an Abbe number (νd) of 18.0, an average thermal expansion coefficient of 120×10 −7 /° C. at 30° C. to 100° C., and a thickness of 1 mm.
 <透光性基板(c)>
 透光性基板(c)は、ガラス組成として、質量%で、SiO 5.0%、B 5.0%、TiO 15.0%、Nb 10.0%、ZrO 5.0%、La 50.0%、Gd 5.0%、Y 5.0%を含有する。なお、波長530nmにおける屈折率(n)は2.00、アッベ数(νd)は29.0、30℃~100℃における平均熱膨張係数は80×10-7/℃、厚みは1mmであった。
<Translucent substrate (c)>
Translucent substrate (c) has a glass composition of 5.0% by mass of SiO 2 , 5.0% of B 2 O 3 , 15.0% of TiO 2 , 10.0% of Nb 2 O 5 and ZrO. 2 5.0%, La2O3 50.0 % , Gd2O3 5.0 %, Y2O3 5.0%. The refractive index (n) at a wavelength of 530 nm was 2.00, the Abbe number (νd) was 29.0, the average thermal expansion coefficient at 30°C to 100°C was 80 × 10 -7 /°C, and the thickness was 1 mm. .
 <透光性基板(d)>
 透光性基板(d)は、ガラス組成として、質量%で、SiO 65.9%、B 11.0%、Al 1.0%、ZnO 5.0%、MgO 3.0%、BaO 2.0%、CaO 3.0%、NaO 5.0%、KO 4.0%、Sb 0.1%を含有する。なお、波長530nmにおける屈折率(n)は1.55、アッベ数(νd)は60.0、30℃~100℃における平均熱膨張係数は40×10-7/℃、厚みは1mmであった。
<Translucent substrate (d)>
Translucent substrate (d) has a glass composition of 65.9% by mass SiO2 , 11.0% B2O3 , 1.0 % Al2O3 , 5.0% ZnO, and MgO3. .0%, BaO 2.0%, CaO 3.0%, Na2O 5.0%, K2O 4.0%, Sb2O3 0.1 %. The refractive index (n) at a wavelength of 530 nm was 1.55, the Abbe number (νd) was 60.0, the average thermal expansion coefficient at 30°C to 100°C was 40 × 10 -7 /°C, and the thickness was 1 mm. .
 凹凸層を形成させるための材料として、以下の組成物を作製した。 The following composition was prepared as a material for forming the uneven layer.
 <組成物A>
 無機ナノ粒子としてZrO粒子(平均粒子径5nm)30質量%と、溶剤としてブタノール70質量%とを混合して、組成物Aを作製した。
<Composition A>
A composition A was prepared by mixing 30% by mass of ZrO 2 particles (average particle size: 5 nm) as inorganic nanoparticles and 70% by mass of butanol as a solvent.
 <組成物B~I>
 無機ナノ粒子の種類、溶剤の種類又は混合比を表1、2に示すように変更したこと以外は、組成物Aと同様にして、組成物B~Iを作製した。
<Compositions B to I>
Compositions B to I were prepared in the same manner as composition A, except that the type of inorganic nanoparticles, the type of solvent, or the mixing ratio was changed as shown in Tables 1 and 2.
 <組成物AA>
 SiOゾルゲル材料として、MTES(メチルトリエトキシシラン)を主成分とする材料を使用した。
<Composition AA>
A material based on MTES (methyltriethoxysilane) was used as the SiO2 sol-gel material.
 <組成物AB>
 TiOゾルゲル材料として、チタン酸金属アルコキシド溶液を使用した。
<Composition AB>
A titanate metal alkoxide solution was used as the TiO2 sol-gel material.
 <組成物X>
 無機ナノ粒子に相当しない粒子としてZrO粒子(平均粒子径10μm)30質量%と、溶剤としてブタノール70質量%とを混合して、組成物Xを作製した。
<Composition X>
A composition X was prepared by mixing 30% by mass of ZrO 2 particles (average particle size: 10 μm) as particles not corresponding to inorganic nanoparticles and 70% by mass of butanol as a solvent.
 <組成物Y>
 組成物Yとして、アクリル樹脂を使用した。
<Composition Y>
As composition Y, an acrylic resin was used.
 得られた組成物A~I、AA、AB、X、Yの詳細を下記の表1~4に示す。 The details of the obtained compositions A to I, AA, AB, X and Y are shown in Tables 1 to 4 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (実施例1)
 実施例1では、図4に示す方法に従って、図1に示す形状を有する光学素子を作製した。具体的には、以下のようにして、光学素子を作製した。
(Example 1)
In Example 1, an optical element having the shape shown in FIG. 1 was produced according to the method shown in FIG. Specifically, an optical element was produced as follows.
 表面に凹凸を有する部材(シリコーン樹脂部材)の作製:
 縦10mm×横10mmの領域に、深さ500nm、幅500nm及び溝間隔500nmとなる線状の溝を有する金型(Si基板(シリコン基板))を用意した。また、熱硬化性シリコーン樹脂成分及び硬化剤を用意した。金型に型枠を設置した後、金型上に上記熱硬化性シリコーン樹脂成分を流し込み、150℃で1時間加熱し、硬化させた。金型及び型枠を取り外して、シリコーン樹脂部材を得た。
Production of a member having unevenness on the surface (silicone resin member):
A mold (Si substrate (silicon substrate)) having linear grooves with a depth of 500 nm, a width of 500 nm, and a groove interval of 500 nm in an area of 10 mm long×10 mm wide was prepared. Also, a thermosetting silicone resin component and a curing agent were prepared. After setting the formwork in the mold, the thermosetting silicone resin component was poured into the mold and cured by heating at 150° C. for 1 hour. The mold and mold were removed to obtain a silicone resin member.
 凹凸層の材料層を形成する工程:
 上記組成物Aを凹凸層の材料として用いた。シリコーン樹脂部材の凹凸表面上に、厚み1μmのスペーサーを配置した。次いで、ディスペンサーを用いて、シリコーン樹脂部材の凹凸表面上に、凹凸層の材料を配置して、凹凸層の材料層を形成した。
Step of forming the material layer of the uneven layer:
The above composition A was used as a material for the uneven layer. A spacer with a thickness of 1 μm was arranged on the uneven surface of the silicone resin member. Next, using a dispenser, the material for the uneven layer was placed on the uneven surface of the silicone resin member to form a material layer for the uneven layer.
 透光性基板を配置する工程:
 上記透光性基板(a)を透光性基板として用いた。凹凸層の材料層のシリコーン樹脂部材側とは反対側の表面上に、透光性基板を配置した。
The process of arranging the translucent substrate:
The translucent substrate (a) was used as a translucent substrate. A translucent substrate was placed on the surface of the material layer of the uneven layer opposite to the side of the silicone resin member.
 凹凸層の材料層を乾燥する工程:
 シリコーン樹脂部材側及び透光性基板側から加熱することにより、シリコーン樹脂部材と透光性基板との間に配置された凹凸層の材料層を乾燥させた。具体的には、30℃で12時間予備加熱した後、120℃で1時間乾燥させた。
Drying the material layer of the uneven layer:
By heating from the side of the silicone resin member and the side of the translucent substrate, the material layer of the concavo-convex layer disposed between the silicone resin member and the translucent substrate was dried. Specifically, it was preheated at 30° C. for 12 hours and then dried at 120° C. for 1 hour.
 シリコーン樹脂部材を取り外す工程:
 シリコーン樹脂部材を取り外すことにより、透光性基板と凹凸層とを備える光学素子を得た。得られた光学素子における凹凸層は、凹凸層の凸部が互いに平行な線状凸部になるように、凹凸層の凸部の高さHが500nmになるように、凹凸層の凸部の幅Wが500nmになるように、凹凸層の周期構造における周期Pが1000nmになるように、凹凸層の最小厚み(凹部部分の厚み)が500nmになるように、形成した。
Step of removing the silicone resin member:
By removing the silicone resin member, an optical element having a translucent substrate and an uneven layer was obtained. The uneven layer in the obtained optical element has convex portions of the uneven layer such that the convex portions of the uneven layer are linear convex portions parallel to each other, and the height H of the convex portions of the uneven layer is 500 nm. The uneven layer was formed so that the width W was 500 nm, the period P in the periodic structure of the uneven layer was 1000 nm, and the minimum thickness of the uneven layer (the thickness of the concave portion) was 500 nm.
 (実施例2~11、実施例15~17及び比較例1~3)
 透光性基板の種類、凹凸層の材料の種類、及び凹凸層の材料の乾燥温度を表5~7に記載のように変更したこと以外は、実施例1と同様にして、図1に示す形状を有する光学素子を作製した。なお、例えば、実施例2では、凹凸層の材料として、80質量%の組成物Aと20質量%の組成物Bとの混合材料を用いたことを意味する。
(Examples 2-11, Examples 15-17 and Comparative Examples 1-3)
Shown in FIG. 1 in the same manner as in Example 1 except that the type of translucent substrate, the type of material for the uneven layer, and the drying temperature of the material for the uneven layer were changed as shown in Tables 5 to 7. An optical element having a shape was produced. For example, in Example 2, it means that a mixed material of 80% by mass of composition A and 20% by mass of composition B was used as the material of the uneven layer.
 (実施例12、13)
 凹凸層の材料の種類を表6に記載のように変更した。また、「凹凸層の材料層を乾燥する工程」において、部材と凹凸層の材料層と透光性基板との積層体を、真空ポンプに接続したアクリル容器内に設置して0.1MPaに減圧処理し、次いで、凹凸層の材料層を乾燥した。また、凹凸層の材料の乾燥温度を表6に記載のように変更した。これら以外は、実施例1と同様にして、図1に示す形状を有する光学素子を作製した。
(Examples 12 and 13)
The type of material for the uneven layer was changed as shown in Table 6. In addition, in the "step of drying the material layer of the uneven layer", the laminate of the member, the material layer of the uneven layer, and the translucent substrate is placed in an acrylic container connected to a vacuum pump, and the pressure is reduced to 0.1 MPa. After treatment, the material layer of the relief layer was dried. Also, the drying temperature of the material of the concavo-convex layer was changed as shown in Table 6. An optical element having the shape shown in FIG. 1 was produced in the same manner as in Example 1 except for these.
 (実施例14)
 ディスペンサーを用いる代わりにスプレーを用いて凹凸層の材料層を形成した。はじめに、表7に記載の組成物をスプレー機に導入し、透光性基板上に厚み500nmの凹凸層の材料層を形成した。次に、形成した凹凸層の材料層にシリコーン樹脂部材を配置し、室温で12時間乾燥させた。その後、シリコーン樹脂部材を取り外し、表7に示す温度で乾燥を行った。これら以外は、実施例1と同様にして、図1に示す形状を有する光学素子を作製した。
(Example 14)
Instead of using a dispenser, a spray was used to form the material layer of the relief layer. First, the composition shown in Table 7 was introduced into a sprayer to form a material layer of uneven layer having a thickness of 500 nm on a translucent substrate. Next, a silicone resin member was placed on the material layer of the formed concavo-convex layer and dried at room temperature for 12 hours. After that, the silicone resin member was removed and dried at the temperature shown in Table 7. An optical element having the shape shown in FIG. 1 was produced in the same manner as in Example 1 except for these.
 (実施例18、19)
 ディスペンサーを用いる代わりにスピンコートにより凹凸層の材料層を形成した。はじめに、表8に記載の組成物を回転数1000rpm、10秒間の条件でスピンコートし、透光性基板上に厚み500nmの凹凸層の材料層を形成した。次に、形成した凹凸層の材料層にシリコーン樹脂部材を配置し、室温で12時間乾燥させた。その後、シリコーン樹脂部材を取り外し、表8に示す温度で乾燥を行った。これら以外は、実施例1と同様にして、図1に示す形状を有する光学素子を作製した。
(Examples 18 and 19)
Instead of using a dispenser, the material layer of the uneven layer was formed by spin coating. First, the composition shown in Table 8 was spin-coated at a rotation speed of 1000 rpm for 10 seconds to form a 500 nm-thick uneven layer material layer on a translucent substrate. Next, a silicone resin member was placed on the material layer of the formed concavo-convex layer and dried at room temperature for 12 hours. After that, the silicone resin member was removed and dried at the temperature shown in Table 8. An optical element having the shape shown in FIG. 1 was produced in the same manner as in Example 1 except for these.
 (実施例20~24)
 ディスペンサーを用いる代わりにスピンコートにより凹凸層の材料層を形成した。はじめに、表8に記載の組成物に重合開始剤を0.001質量%添加した。次に、回転数1000rpm、10秒間の条件でスピンコートすることにより、透光性基板上に厚み500nmの凹凸層の材料層を形成した。次に、形成した凹凸層の材料層にシリコーン樹脂部材を配置し、UV光を照射することで凹凸層の材料層を硬化させた。このとき、実施例22、23はシリコーン樹脂部材を配置後、表8に記載の荷重を加えながら硬化させた。その後、シリコーン樹脂部材を取り外し、表8に示す温度で1時間乾燥を行った。これら以外は、実施例1と同様にして、図1に示す形状を有する光学素子を作製した。
(Examples 20-24)
Instead of using a dispenser, the material layer of the uneven layer was formed by spin coating. First, 0.001% by mass of a polymerization initiator was added to the composition shown in Table 8. Next, spin coating was performed at a rotation speed of 1000 rpm for 10 seconds to form a 500 nm-thick uneven layer material layer on the translucent substrate. Next, a silicone resin member was placed on the formed material layer for the uneven layer, and UV light was applied to cure the material layer for the uneven layer. At this time, in Examples 22 and 23, after placing the silicone resin member, it was cured while applying the load shown in Table 8. After that, the silicone resin member was removed and dried at the temperature shown in Table 8 for 1 hour. An optical element having the shape shown in FIG. 1 was produced in the same manner as in Example 1 except for these.
 [評価]
 (1)凹凸層の屈折率
 凹凸層と同一の材料を用い、スピンコーターで1μmの厚みに塗布したサンプルを別途作製し、分光エリプソメータ(株式会社堀場製作所製「UVISEL2」)を用いて、波長530nmの屈折率を測定した。また、得られた上記サンプルの屈折率と、透光性基板の屈折率とから、これらの差の絶対値を求めた。
[evaluation]
(1) Refractive index of uneven layer Using the same material as the uneven layer, a sample was separately prepared by applying it to a thickness of 1 μm with a spin coater. was measured. Also, the absolute value of the difference between the refractive index of the obtained sample and the refractive index of the translucent substrate was obtained.
 (2)凹凸層のアッベ数
 凹凸層と同一の材料を用い、スピンコーターで1μmの厚みに塗布したサンプルを別途作製し、分光エリプソメータ(株式会社堀場製作所製「UVISEL2」)を用いて、アッベ数を求めた。また、得られた凹凸層のアッベ数(y)と、上記「(1)凹凸層の屈折率」で求めた凹凸層の屈折率(x)とから、式:y+50xの値を算出した。
(2) Abbe number of the uneven layer Using the same material as the uneven layer, a sample was separately prepared by applying it to a thickness of 1 μm with a spin coater, and the Abbe number was measured using a spectroscopic ellipsometer ("UVISEL2" manufactured by Horiba, Ltd.). asked for Also, the value of the formula: y+50x was calculated from the Abbe's number (y) of the obtained uneven layer and the refractive index (x) of the uneven layer obtained in the above "(1) Refractive index of uneven layer".
 (3)凹凸層の平均熱膨張係数
 凹凸層と同一の材料を用いた円柱状のサンプルを別途作製し、TMA法により30℃~100℃における平均熱膨張係数を測定した。
(3) Average Thermal Expansion Coefficient of Concavo-convex Layer A cylindrical sample was separately prepared using the same material as the concavo-convex layer, and the average thermal expansion coefficient at 30° C. to 100° C. was measured by the TMA method.
 (4)凹凸層のラマンスペクトル測定
 凹凸層と同一の材料を用い、スピンコーターで1μmの厚みに塗布したサンプルを別途作製し、レーザーラマン顕微鏡により、ラマンスペクトルを測定した(測定条件:対物レンズはTU Plan Fluor 100X、分光器中心波数は2700.00cm-1、回折格子は300gr/mm、ピンホールサイズは50μm、暴露時間は10秒、平均化は5)。得られたスペクトルから、100cm-1~1000cm-1の範囲内での最大ピーク強度Bに対する2900cm-1~3000cm-1の範囲内での最大ピーク強度Aの比(最大ピーク強度A/最大ピーク強度B)を算出した。
(4) Raman spectrum measurement of the uneven layer Using the same material as the uneven layer, a sample was separately prepared by applying it to a thickness of 1 μm with a spin coater, and the Raman spectrum was measured with a laser Raman microscope (measurement conditions: the objective lens was TU Plan Fluor 100X, spectrometer center wavenumber 2700.00 cm −1 , diffraction grating 300 gr/mm, pinhole size 50 μm, exposure time 10 seconds, averaging 5). From the obtained spectrum, the ratio of the maximum peak intensity A within the range of 2900 cm -1 to 3000 cm -1 to the maximum peak intensity B within the range of 100 cm -1 to 1000 cm -1 (maximum peak intensity A / maximum peak intensity B) was calculated.
 (5)光学素子の光透過率(波長500nm)
 得られた光学素子において、透過率計(株式会社島津製作所製「V-670」)を用いて、波長300nm~800nmの光透過率を測定し、波長500nmの光透過率を求めた。光透過率が55%以上のものを「〇」、光透過率が55%未満のものを「×」と判定した。
(5) Light transmittance of optical element (wavelength 500 nm)
Using a transmittance meter ("V-670" manufactured by Shimadzu Corporation), the optical element obtained was measured for light transmittance at a wavelength of 300 nm to 800 nm, and the light transmittance at a wavelength of 500 nm was obtained. A sample with a light transmittance of 55% or more was rated as "◯", and a sample with a light transmittance of less than 55% was rated as "x".
 (6)凹凸層の形状維持性
 得られた光学素子において、線状凸部と直交するように透光性基板にスクライブを入れ、折割りした。電子顕微鏡を用いて、凹凸層の断面を倍率10000倍で観察した。凸部の高さが450nmを超え、かつ、凸部の上面の幅が450nmを超えるものを凹凸層の形状維持性が「〇」、凸部の高さが450nm以下、又は、凸部の上面の幅が450nm以下のものを凹凸層の形状維持性が「×」と判定した。
(6) Shape Maintainability of Concavo-convex Layer In the obtained optical element, the light-transmitting substrate was scribed so as to be perpendicular to the linear convex portions, and then broken. Using an electron microscope, the cross section of the concavo-convex layer was observed at a magnification of 10000 times. If the height of the protrusion exceeds 450 nm and the width of the upper surface of the protrusion exceeds 450 nm, the shape retention of the uneven layer is "O", the height of the protrusion is 450 nm or less, or the upper surface of the protrusion The shape retention property of the concavo-convex layer was determined to be "x" when the width of the concavo-convex layer was 450 nm or less.
 (7)ピール試験
 得られた光学素子の凹凸層の表面に、JIS Z 1522が定める試験用粘着テープ19mmを貼り付けた後、試験用粘着テープの先端を凹凸層の表面から引き剥がした。その後、レーザー顕微鏡を用いて凹凸層を観察した。凹凸層に剥がれがないものを「〇」、凹凸層に剥がれがあるものを「×」と判定した。
(7) Peel Test A 19 mm test adhesive tape defined by JIS Z 1522 was attached to the surface of the uneven layer of the obtained optical element, and then the tip of the test adhesive tape was peeled off from the surface of the uneven layer. After that, the uneven layer was observed using a laser microscope. A case where the uneven layer was not peeled was evaluated as "O", and a case where the uneven layer was peeled was evaluated as "X".
 (8)耐熱性試験(300℃及び1時間)
 得られた光学素子を300℃で1時間熱処理した。次いで、デジタルマイクロスコープを用いて、光学素子の断面を観察し、耐熱性を評価した。具体的には、凹凸層が透光性基板から剥離しないものを「〇」、凹凸層が透光性基板から剥離するものを「×」と判定した。
(8) Heat resistance test (300 ° C. and 1 hour)
The obtained optical element was heat-treated at 300° C. for 1 hour. Then, using a digital microscope, the cross section of the optical element was observed to evaluate the heat resistance. Specifically, when the concavo-convex layer did not separate from the light-transmitting substrate, it was evaluated as "O", and when the concavo-convex layer peeled off from the light-transmitting substrate, it was evaluated as "x".
 詳細及び結果を下記の表5~8に示す。 Details and results are shown in Tables 5 to 8 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (9)乾燥条件と凹凸層の収縮
 表9に記載の透光性基板上に、スピンコーターで500nmの厚みとなるよう塗布した後、凹凸を転写する金型を載置してUV硬化させたものを実施例25-1、実施例26-1とした。次に、これらの試料を350℃で5時間乾燥させ、実施例25-2、実施例26-2とした。乾燥前後の試料において、凹凸層全体高さHaと凸部の高さHとを測定した。また、乾燥前後におけるHa及びHの収縮量(%)と、Ha収縮量に対するH収縮量を求めた。
(9) Drying Conditions and Shrinkage of Concavo-convex Layer After coating on the translucent substrate shown in Table 9 with a spin coater to a thickness of 500 nm, a mold for transferring the concavo-convex pattern was placed and UV cured. Examples 25-1 and 26-1 were obtained. Next, these samples were dried at 350° C. for 5 hours to obtain Examples 25-2 and 26-2. The total height Ha of the uneven layer and the height H of the protrusions were measured for the samples before and after drying. Also, the shrinkage (%) of Ha and H before and after drying, and the shrinkage of H relative to the shrinkage of Ha were determined.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、Ha及びHは熱処理により収縮した。また、実施例25は実施例26に比べてHa及びHの収縮量が小さく、かつHa収縮量に対するH収縮量が小さかった。言い換えると、凹凸層全体の収縮量に対して凸部の収縮量(変形量)が小さかった。 As shown in Table 9, Ha and H shrunk due to heat treatment. Moreover, in Example 25, the amounts of shrinkage of Ha and H were smaller than those of Example 26, and the amount of shrinkage of H relative to the amount of shrinkage of Ha was smaller. In other words, the contraction amount (deformation amount) of the protrusions was smaller than the contraction amount of the entire uneven layer.
 (10)乾燥条件と光学素子の光透過率(波長450nm)
 実施例20と同一の材料を用いて光学素子を作成後、表10に記載の条件で乾燥させた。具体的には、UV硬化を行った後、表10に記載の温度及び雰囲気で3時間乾燥を行った。このとき、実施例27-2及び実施例27-4は0.1MPaに減圧処理した。乾燥後、透過率計(株式会社島津製作所製「V-670」)を用いて、波長300nm~800nmの光透過率を測定し、波長450nmの光透過率を求めた。
(10) Drying conditions and light transmittance of optical element (wavelength 450 nm)
After fabricating an optical element using the same material as in Example 20, it was dried under the conditions shown in Table 10. Specifically, after UV curing, drying was performed at the temperature and atmosphere shown in Table 10 for 3 hours. At this time, Examples 27-2 and 27-4 were subjected to pressure reduction treatment to 0.1 MPa. After drying, the light transmittance at a wavelength of 300 nm to 800 nm was measured using a transmittance meter ("V-670" manufactured by Shimadzu Corporation) to determine the light transmittance at a wavelength of 450 nm.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、乾燥温度が高いほど光学素子の光透過率が高くなった。 As shown in Table 10, the higher the drying temperature, the higher the light transmittance of the optical element.
 本発明の光学素子は、光学回折素子や、回折構造が設けられた導光板として好適に用いることができる。 The optical element of the present invention can be suitably used as an optical diffraction element or a light guide plate provided with a diffraction structure.
 1…透光性基板
 2,2A,2B,201,202…凹凸層
 2X,201X,202X…凹凸層の材料層
 10,10A,10B,10C…光学素子
 21,21A…凸部
 22,22B…凹部
 50…部材
 60…ディスペンサー
 D…深さ
 H…高さ
 P…周期
 W…幅
Reference Signs List 1 Translucent substrate 2, 2A, 2B, 201, 202 Uneven layer 2X, 201X, 202X Material layer of uneven layer 10, 10A, 10B, 10C Optical element 21, 21A Convex 22, 22B Concave 50... Member 60... Dispenser D... Depth H... Height P... Period W... Width

Claims (29)

  1.  透光性基板と、
     前記透光性基板の主面上に配置されており、かつ表面に凹凸を有する、凹凸層と、を備え、
     前記凹凸層が、無機ナノ粒子を含み、
     前記透光性基板の屈折率と前記凹凸層の屈折率との差の絶対値が、0.20以下である、光学素子。
    a translucent substrate;
    an uneven layer disposed on the main surface of the translucent substrate and having unevenness on the surface;
    The uneven layer contains inorganic nanoparticles,
    An optical element, wherein the absolute value of the difference between the refractive index of the translucent substrate and the refractive index of the uneven layer is 0.20 or less.
  2.  前記凹凸層の凸部の頂部が、水平状又は凸状である、請求項1に記載の光学素子。 The optical element according to claim 1, wherein the apexes of the projections of the uneven layer are horizontal or convex.
  3.  前記凹凸層の凸部の端部における曲率半径が、前記凹凸層の凹部の端部における曲率半径よりも小さい、請求項1又は2に記載の光学素子。 3. The optical element according to claim 1 or 2, wherein the radius of curvature at the end of the convex portion of the uneven layer is smaller than the radius of curvature at the end of the concave portion of the uneven layer.
  4.  前記凹凸層は、ラマンスペクトルにおいて、100cm-1~1000cm-1の範囲内での最大ピーク強度Bに対する、2900cm-1~3000cm-1の範囲内での最大ピーク強度Aの比(最大ピーク強度A/最大ピーク強度B)が、4.0以下である、請求項1又は2に記載の光学素子。 In the Raman spectrum, the uneven layer has a ratio of maximum peak intensity A within the range of 2900 cm -1 to 3000 cm -1 to maximum peak intensity B within the range of 100 cm -1 to 1000 cm -1 (maximum peak intensity A /maximum peak intensity B) is 4.0 or less, the optical element according to claim 1 or 2.
  5.  前記凹凸層の屈折率が、1.60以上である、請求項1又は2に記載の光学素子。 The optical element according to claim 1 or 2, wherein the uneven layer has a refractive index of 1.60 or more.
  6.  前記凹凸層のアッベ数が、5以上、35以下である、請求項1又は2に記載の光学素子。 The optical element according to claim 1 or 2, wherein the uneven layer has an Abbe number of 5 or more and 35 or less.
  7.  前記凹凸層の屈折率をxとし、前記凹凸層のアッベ数をyとしたときに、式:y+50xで表される値が、100以上、125以下である、請求項1又は2に記載の光学素子。 3. The optical system according to claim 1, wherein the value represented by the formula: y+50x is 100 or more and 125 or less, where x is the refractive index of the uneven layer and y is the Abbe number of the uneven layer. element.
  8.  前記無機ナノ粒子が、ZrO、BaTiO、TiO、Al、Nb、SiO及びKTaOからなる群から選択される少なくとも1種の無機ナノ粒子である、請求項1又は2に記載の光学素子。 2. The inorganic nanoparticles are at least one inorganic nanoparticle selected from the group consisting of ZrO2 , BaTiO3 , TiO2 , Al2O3 , Nb2O5 , SiO2 and KTaO3 . 3. or the optical element according to 2.
  9.  前記凹凸層が、前記無機ナノ粒子として、無機ナノ粒子Aと、前記無機ナノ粒子Aよりも平均粒子径の小さい無機ナノ粒子Bとを含み、
     前記無機ナノ粒子Aの平均粒子径をDnmとし、前記無機ナノ粒子Bの平均粒子径をDnmとしたときに、前記無機ナノ粒子Bの平均粒子径に対する、前記無機ナノ粒子Aの平均粒子径に対する比(D/D)が、1.5以上、20.0以下である、請求項1又は2に記載の光学素子。
    The uneven layer contains, as the inorganic nanoparticles, inorganic nanoparticles A and inorganic nanoparticles B having an average particle diameter smaller than that of the inorganic nanoparticles A,
    When the average particle diameter of the inorganic nanoparticles A is D A nm and the average particle diameter of the inorganic nanoparticles B is D B nm, the average particle diameter of the inorganic nanoparticles B is The optical element according to claim 1 or 2, wherein the ratio (D A /D B ) to the average particle size is 1.5 or more and 20.0 or less.
  10.  前記凹凸層100質量%中、前記無機ナノ粒子の含有量が、10質量%以上である、請求項1又は2に記載の光学素子。 The optical element according to claim 1 or 2, wherein the content of the inorganic nanoparticles is 10% by mass or more in 100% by mass of the uneven layer.
  11.  波長500nmでの光透過率が、55%以上である、請求項1又は2に記載の光学素子。 The optical element according to claim 1 or 2, which has a light transmittance of 55% or more at a wavelength of 500 nm.
  12.  前記凹凸層の凸部の端部における高さh1と、前記凸部の中央部における高さh2との比h2/h1が0.9~1.3である、請求項1又は2に記載の光学素子。 3. The method according to claim 1, wherein the ratio h2/h1 of the height h1 at the ends of the projections of the uneven layer and the height h2 at the center of the projections is 0.9 to 1.3. optical element.
  13.  前記透光性基板が、ガラス基板である、請求項1又は2に記載の光学素子。 The optical element according to claim 1 or 2, wherein the translucent substrate is a glass substrate.
  14.  光学回折素子として用いられる、請求項1又は2に記載の光学素子。 The optical element according to claim 1 or 2, which is used as an optical diffraction element.
  15.  前記透光性基板と前記凹凸層とが直接密着している、請求項1又は2に記載の光学素子。 The optical element according to claim 1 or 2, wherein the translucent substrate and the uneven layer are in direct contact.
  16.  前記透光性基板と前記凹凸層とが接着層を介して密着している、請求項1又は2に記載の光学素子。 The optical element according to claim 1 or 2, wherein the translucent substrate and the uneven layer are in close contact with each other via an adhesive layer.
  17.  前記凹凸層上に薄膜層を有する、請求項1又は2に記載の光学素子。 The optical element according to claim 1 or 2, having a thin film layer on the uneven layer.
  18.  前記薄膜層が、Y、Al、SiO、MgO、TiO、CeO、Bi、HfO、Al、Ag、Au、Pt及びカーボンからなる群から選択される少なくとも1種の材料からなる、請求項17に記載の光学素子。 The thin film layer is selected from the group consisting of Y2O3 , Al2O3 , SiO2 , MgO , TiO2 , CeO2 , Bi2O3 , HfO2 , Al, Ag, Au, Pt and carbon. 18. Optical element according to claim 17, consisting of at least one material.
  19.  光学素子の製造方法であって、
     表面に凹凸を有する部材の該表面上に、凹凸層の材料を配置して、凹凸層の材料層を形成する工程と、
     前記凹凸層の材料層の前記部材側とは反対側の表面上に、透光性基板を配置する工程と、
     前記部材と前記透光性基板との間に配置された前記凹凸層の材料層を乾燥する工程と、
     前記部材を取り外す工程と、を備える、光学素子の製造方法。
    A method for manufacturing an optical element,
    a step of disposing a material for the uneven layer on the surface of a member having unevenness on the surface to form a material layer for the uneven layer;
    disposing a translucent substrate on the surface of the material layer of the uneven layer opposite to the member;
    a step of drying a material layer of the concavo-convex layer disposed between the member and the translucent substrate;
    and removing the member.
  20.  前記凹凸層の材料層を形成する工程において、前記部材の前記表面上に、前記凹凸層の材料を配置した後、減圧脱泡しながら、前記凹凸層の材料層を形成する、請求項19に記載の光学素子の製造方法。 20. The method according to claim 19, wherein in the step of forming the material layer of the uneven layer, the material layer of the uneven layer is formed while degassing under reduced pressure after disposing the material of the uneven layer on the surface of the member. A method for manufacturing the optical element described.
  21.  前記透光性基板を配置する工程において、前記部材上に設置されたスペーサー上に透光性基板を配置する、請求項19に記載の光学素子の製造方法。 20. The method for manufacturing an optical element according to claim 19, wherein in the step of arranging the translucent substrate, the translucent substrate is arranged on a spacer placed on the member.
  22.  光学素子の製造方法であって、
     透光性基板の主面上に、凹凸層の材料を配置して、凹凸層の材料層を形成する工程と、
     前記凹凸層の材料層の前記透光性基板側とは反対側の表面上に、表面に凹凸を有する部材を該表面側から配置する工程と、
     前記部材と前記透光性基板との間に配置された前記凹凸層の材料層を乾燥する工程と、
     前記部材を取り外す工程と、を備える、光学素子の製造方法。
    A method for manufacturing an optical element,
    disposing a material for the uneven layer on the main surface of the translucent substrate to form a material layer for the uneven layer;
    a step of disposing a member having an uneven surface on the surface of the material layer of the uneven layer opposite to the light-transmitting substrate side from the surface side;
    a step of drying a material layer of the concavo-convex layer disposed between the member and the translucent substrate;
    and removing the member.
  23.  光学素子の製造方法であって、
     表面に凹凸を有する部材の該表面上に凹凸層の材料層を形成する工程と、
     前記凹凸層の材料層を乾燥させて凹凸層を形成する工程と、
     前記凹凸層上に透光性基板を配置する工程と、を備える、光学素子の製造方法。
    A method for manufacturing an optical element,
    A step of forming a material layer of an uneven layer on the surface of a member having unevenness on the surface;
    a step of drying the material layer of the uneven layer to form an uneven layer;
    and disposing a translucent substrate on the concavo-convex layer.
  24.  光学素子の製造方法であって、
     表面に凹凸を有する部材の該表面上に第1材料を配置して、第1の凹凸層の材料層を形成する工程と、
     前記第1の凹凸層の材料層を乾燥し、第1の凹凸層を形成する工程と、
     前記第1の凹凸層上に、第2材料を配置して、第2の凹凸層の材料層を形成する工程と、
     前記第2の凹凸層の材料層を乾燥し、第2の凹凸層を形成する工程と、
     前記第2の凹凸層上に透光性基板を配置する工程と、を備える、光学素子の製造方法。
    A method for manufacturing an optical element,
    disposing a first material on the surface of a member having an uneven surface to form a material layer of a first uneven layer;
    drying the material layer of the first uneven layer to form a first uneven layer;
    disposing a second material on the first uneven layer to form a material layer of the second uneven layer;
    drying the material layer of the second uneven layer to form a second uneven layer;
    and placing a translucent substrate on the second uneven layer.
  25.  前記凹凸層の材料が、無機ナノ粒子を含む材料、又は無機ナノ粒子を含む材料とゾルゲル材料との複合材料である、請求項19~24のいずれか一項に記載の光学素子の製造方法。 The method for manufacturing an optical element according to any one of claims 19 to 24, wherein the material of the uneven layer is a material containing inorganic nanoparticles or a composite material of a material containing inorganic nanoparticles and a sol-gel material.
  26.  前記凹凸層の材料が樹脂を含む、請求項25に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 25, wherein the material of the uneven layer contains resin.
  27.  前記凹凸層の材料層を250℃以上で乾燥させることにより前記樹脂を焼き飛ばす、請求項26に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 26, wherein the resin is burned off by drying the material layer of the uneven layer at 250°C or higher.
  28.  前記凹凸層全体高さをHa、凸部の高さをHとするとき、凹凸層の材料層を乾燥させた際のHa収縮量に対するH収縮量の比が0.5以下である、請求項19~24のいずれか一項に記載の光学素子の製造方法。 The ratio of the amount of shrinkage of H to the amount of shrinkage of Ha when the material layer of the uneven layer is dried is 0.5 or less, where Ha is the total height of the uneven layer and H is the height of the convex portion. 25. A method for manufacturing an optical element according to any one of 19 to 24.
  29.  さらに、前記凹凸層の材料層をフィルムに転写する工程を備える、請求項19~24のいずれか一項に記載の光学素子の製造方法。 The method for manufacturing an optical element according to any one of claims 19 to 24, further comprising the step of transferring the material layer of the uneven layer to a film.
PCT/JP2022/045311 2021-12-09 2022-12-08 Optical element and method for manufacturing same WO2023106374A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021200322 2021-12-09
JP2021-200322 2021-12-09
JP2022-056782 2022-03-30
JP2022056782 2022-03-30
JP2022094459 2022-06-10
JP2022-094459 2022-06-10
JP2022-104341 2022-06-29
JP2022104341 2022-06-29

Publications (1)

Publication Number Publication Date
WO2023106374A1 true WO2023106374A1 (en) 2023-06-15

Family

ID=86730492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045311 WO2023106374A1 (en) 2021-12-09 2022-12-08 Optical element and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2023106374A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011393A1 (en) * 1999-08-04 2001-02-15 Nippon Sheet Glass Co., Ltd. Echelon diffraction grating and optical waveguide element
JP2001281429A (en) * 2000-03-30 2001-10-10 Kansai Research Institute Diffraction optical element and its manufacturing method
JP2003161802A (en) * 2001-09-14 2003-06-06 Dainippon Printing Co Ltd Light-curing resin composite, sheet, transfer foil, minute project and recessed pattern forming method and optical component
JP2004126499A (en) * 2002-02-27 2004-04-22 Canon Inc Optical element, method for manufacturing optical element, laminated optical element, and method for manufacturing laminated optical element or optical material therefor
WO2009041646A1 (en) * 2007-09-28 2009-04-02 Asahi Glass Company, Limited Photocurable composition, method for producing fine patterned body, and optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011393A1 (en) * 1999-08-04 2001-02-15 Nippon Sheet Glass Co., Ltd. Echelon diffraction grating and optical waveguide element
JP2001281429A (en) * 2000-03-30 2001-10-10 Kansai Research Institute Diffraction optical element and its manufacturing method
JP2003161802A (en) * 2001-09-14 2003-06-06 Dainippon Printing Co Ltd Light-curing resin composite, sheet, transfer foil, minute project and recessed pattern forming method and optical component
JP2004126499A (en) * 2002-02-27 2004-04-22 Canon Inc Optical element, method for manufacturing optical element, laminated optical element, and method for manufacturing laminated optical element or optical material therefor
WO2009041646A1 (en) * 2007-09-28 2009-04-02 Asahi Glass Company, Limited Photocurable composition, method for producing fine patterned body, and optical device

Similar Documents

Publication Publication Date Title
US10723907B2 (en) High refractive index nanocomposites
JP2531173Y2 (en) Laminated optical components
JP3959803B2 (en) Method for producing multilayer coated substrate having a plurality of convex portions on outermost layer by sol-gel method
US10844231B2 (en) Nanocomposite formulations for optical applications
CN111183164B (en) Curable composition and cured product
US7348056B2 (en) Fine particle dispersion composition, optical component, optical film laminate, polarization splitting device, and method for manufacturing the optical component
JPWO2006121102A1 (en) Laminated optical element
TWI771562B (en) Glass substrate and optical member with antireflection film
JP2013004734A (en) Light-emitting device
WO2023106374A1 (en) Optical element and method for manufacturing same
JP2001249208A (en) Diffraction optical device and method of manufacturing the same
JP2010169708A (en) Composite optical element
JP7396019B2 (en) Curable composition, cured product and laminate
WO2023112703A1 (en) Liquid composition, hard coat layer, and spectacle lens
WO2023171780A1 (en) Optical element and method for producing same
US11851557B2 (en) Curable composition, cured product and laminate
WO2012053427A1 (en) Optical thin film, multilayer optical thin film, optical element, method for producing optical element, and coating liquid for forming optical thin film
JP2004211021A (en) Molding resin composition and optical element produced by using the same
JP2005062717A (en) Diffraction optical element and its manufacturing method
WO2020166533A1 (en) Curable composition, cured article, and laminate
JP2016070972A (en) Front plate for display device
JP2022117119A (en) Optical element and uv light-emitting device
WO2021157632A1 (en) Active energy ray-curable resin composition, cured product, multilayer body and lens
JP2024003763A (en) Method of manufacturing optical element, and optical element
JP2018091906A (en) Antireflection film, antireflection member, polarizer, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904301

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023566365

Country of ref document: JP