WO2023106352A1 - Method for producing aromatic compounds - Google Patents

Method for producing aromatic compounds Download PDF

Info

Publication number
WO2023106352A1
WO2023106352A1 PCT/JP2022/045190 JP2022045190W WO2023106352A1 WO 2023106352 A1 WO2023106352 A1 WO 2023106352A1 JP 2022045190 W JP2022045190 W JP 2022045190W WO 2023106352 A1 WO2023106352 A1 WO 2023106352A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
gene
corynebacterium
salt
aromatic compound
Prior art date
Application number
PCT/JP2022/045190
Other languages
French (fr)
Japanese (ja)
Inventor
実郎 金田
史員 高橋
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2023106352A1 publication Critical patent/WO2023106352A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic

Definitions

  • the present invention relates to a method for producing aromatic compounds using transformed cells.
  • Non-Patent Document 1 aromatic amino acids
  • Non-Patent Document 2 4-hydroxybenzoic acid
  • Non-Patent Document 2 4-aminobenzoic acid
  • other aromatic compounds such as is available for production.
  • gallic acid has a strong reducing property, so it is used as a raw material for producing photographic developers and blue inks, and esters such as propyl gallate are used as antioxidants for oils and butters.
  • esters such as propyl gallate are used as antioxidants for oils and butters.
  • pyrogallol which is synthesized by decarboxylating gallic acid, is used as an electronic material, an organic synthesis reagent, a photographic developer, a mordant for woolen fabrics, etc. Therefore, efficient production of gallic acid is beneficial. .
  • the shikimate pathway is an important metabolic pathway for the biosynthesis of aromatic compounds by plants and microorganisms. That is, phosphoenolpyruvate produced in glycolysis combines with erythrose 4-phosphate supplied from the pentose phosphate pathway to form 3-deoxy-D-arabinopeptulosonic acid 7-phosphate (DAHP). , 3-dehydroquinic acid (DHQ) and 3-dehydroshikimic acid (DHS) to shikimic acid. Furthermore, shikimic acid undergoes transfer of the phosphate group from adenosine triphosphate to become 3-phosphoshikimic acid, and then to chorismic acid via 3-phosphoeno-lpyruvylshikimic acid.
  • DAHP 3-deoxy-D-arabinopeptulosonic acid 7-phosphate
  • DHQ 3-dehydroquinic acid
  • DHS 3-dehydroshikimic acid
  • shikimic acid undergoes transfer of the phosphate group from adenosine triphosphat
  • a 6-carbon ring is formed followed by double bond formation, and from protocatechuic acid derived from DHS, gallic acid, 2,4-pyridinedicarboxylic acid (2,4-PDCA) , 2,5-pyridinedicarboxylic acid (2,5-PDCA), catechol, L-DOPA and other aromatic compounds are produced (Fig. 1).
  • the present invention relates to the following.
  • a method for producing an aromatic compound or a salt thereof comprising the step of culturing a transformed cell in which the function of a monocarboxylic acid transporter shown in (a) or (b) below is suppressed or deleted.
  • a polypeptide consisting of the amino acid sequence shown by SEQ ID NO: 2 A polypeptide consisting of an amino acid sequence having at least 90% identity with the amino acid sequence shown by SEQ ID NO: 2 and having monocarboxylic acid transporter activity
  • aroG and aroF are 2-dehydro-3-deoxyarabinoheptonate aldolase
  • aroB is 3-dehydroquinate synthase
  • aroD and qsuC are dehydroquinate dehydratase
  • qsuD is quinate/shikimate dehydrogenase.
  • aroE3 is shikimate dehydrogenase and hfm145 is 3,4-dihydroxybenzoate hydroxylase
  • qsuB is dehydroshikimate dehydratase
  • aroA is 5-enolate pyruvylshikimate-3-phosphate synthase
  • aroC is chorismate synthase
  • aroK is shikimate kinase.
  • the present invention relates to providing a method for efficiently producing aromatic compounds using transformed cells.
  • the present inventors have investigated the productivity of aromatic compounds such as gallic acid in transformed cells in which the function of MctC, a transporter of monocarboxylic acids such as pyruvate, propionic acid and acetic acid, is suppressed or deleted. was found to improve.
  • the identity of amino acid sequences or nucleotide sequences is calculated by the Lipman-Pearson method (Science, 1985, 227: 1435-1441). Specifically, genetic information processing software GENETYX Ver. 12 homology analysis (Search homology) program is used, unit size to compare (ktup) is set to 2, and analysis is performed.
  • GENETYX Ver. 12 homology analysis (Search homology) program is used, unit size to compare (ktup) is set to 2, and analysis is performed.
  • amino acid sequence or nucleotide sequence is preferably 95% or more, more preferably 96% or more, more preferably 97% or more, more preferably 98% or more, more preferably means 99% or more identity.
  • an amino acid sequence in which one or several amino acids are deleted, substituted, added, or inserted means 1 or more and 10 or less, preferably 1 or more and 8 or less, more preferably 1 It refers to an amino acid sequence in which 5 or less, more preferably 1 or more and 3 or less amino acids are deleted, substituted, added, or inserted.
  • a nucleotide sequence in which one or several nucleotides are deleted, substituted, added, or inserted means 1 or more and 30 or less, preferably 1 or more and 24 or less, more preferably 1 or more and 15 It refers to a nucleotide sequence in which no more than 1, more preferably from 1 to 9 nucleotides have been deleted, substituted, added or inserted.
  • “addition" of amino acids or nucleotides includes addition of amino acids or nucleotides to one and both termini of a sequence.
  • the aromatic compound is an organic aromatic compound biosynthesized in the host cell, specifically an aromatic compound synthesized via the shikimic acid pathway, preferably 3-dehydroshikimic acid (DHS) and aromatic compounds derived from chorismate (Fig. 1). Specifically, protocatechuic acid, catechol, gallic acid, phenylalanine, L-DOPA, tyrosine, pretyrosine, tryptophan, 4-hydroxybenzoic acid, 4-aminobenzoic acid, 2,3-dihydroxybenzoic acid, 2,4- pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, 4-amino-3-hydroxybenzoic acid and the like.
  • DHS 3-dehydroshikimic acid
  • Fig. 1 aromatic compounds derived from chorismate
  • protocatechuic acid derived from DHS gallic acid derived from protocatechuic acid, 2,4-pyridinedicarboxylic acid (2,4-PDCA), 2,5-pyridinedicarboxylic acid (2,5-PDCA), Catechol, L-DOPA; 4-hydroxybenzoic acid, 4-aminobenzoic acid, 4-amino-3-hydroxybenzoic acid derived from chorismic acid, tyrosine, tryptophan, etc. are preferred, more preferably protocatechuic acid, protocatechuic acid They are derived aromatic compounds (preferably gallic acid, L-DOPA), 4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid, and more preferably gallic acid.
  • Examples of the salt of the aromatic compound include base addition salts and acid addition salts.
  • Examples of base addition salts include salts with alkali metals such as sodium and potassium, and salts with alkaline earth metals such as calcium and magnesium.
  • Examples of acid addition salts include hydrochlorides, sulfates, Mineral acid salts such as nitrates and phosphates are included.
  • a transformed cell in which the function of the monocarboxylic acid transporter shown in (a) or (b) below is suppressed or deleted is used.
  • (A) the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 refers to MctC, which is known as a monocarboxylic acid transporter derived from Corynebacterium glutamicum.
  • the MctC is a transporter involved in the transport of monocarboxylic acids such as pyruvate, propionic acid and acetic acid.
  • the identity with the amino acid sequence shown in SEQ ID NO: 2 is preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, still more preferably 98% or more, In addition, it is preferably 99% or more.
  • amino acid sequences having at least 90% identity with the amino acid sequence shown in SEQ ID NO: 2 include deletion, substitution, addition, or Inserted amino acid sequences are included.
  • Having monocarboxylic acid transporter activity means that, for example, when a target gene-disrupted strain or enhanced strain is grown in a medium containing monocarboxylic acid as a carbon source, the concentration of monocarboxylic acid in the cells or the growth rate of the cells increases. can be determined by measuring and comparing with the host strain.
  • Polypeptides consisting of an amino acid sequence having at least 90% identity with the amino acid sequence shown in SEQ ID NO: 2 of (B) and having monocarboxylic acid transporter activity include, for example, Corynebacterium crenatum, Corynebacterium crudilactis, Corynebacterium efficiens, Corynebacterium SP. Sa1YVA5 (Corynebacterium SP. Sa1YVA5), Corynebacterium hadale, Corynebacterium gottingense, Corynebacterium godavarianum, Corynebacterium senegalense-derived ActP (cation: acetic acid symporter) and the like.
  • Methods for introducing mutations such as deletion, substitution, addition, or insertion of amino acids into the amino acid sequence of the polypeptide include, for example, deletion, substitution, substitution, A method of introducing a mutation such as addition or insertion can be mentioned.
  • Techniques for introducing mutations into nucleotide sequences include, for example, chemical mutagens such as ethyl methanesulfonate, N-methyl-N-nitrosoguanidine and nitrous acid, or physical mutagens such as ultraviolet rays, X-rays, gamma rays and ion beams. mutagenesis, site-directed mutagenesis, the method described in Dieffenbach et al.
  • Techniques for site-directed mutagenesis include methods using Splicing overlap extension (SOE) PCR (Horton et al., Gene 77, 61-68, 1989), ODA method (Hashimoto-Gotoh et al., Gene, 152 , 271-276, 1995), Kunkel method (Kunkel, TA, Proc. Natl. Acad. Sci. USA, 1985, 82, 488).
  • SOE Splicing overlap extension
  • site-directed mutagenesis such as Site-Directed Mutagenesis System Mutan-Super Express Km kit (Takara Bio Inc.), Transformer TM Site-Directed Mutagenesis kit (Clonetech), KOD-Plus-Mutagenesis Kit (Toyobo) for Kits are also available.
  • the transformed cells in which the function of the monocarboxylic acid transporter is suppressed or deleted include the expression of the monocarboxylic acid transporter in the host cell is reduced or lost, and the protein as the monocarboxylic acid transporter is Cells in which the function is suppressed or deleted, preferably, the expression of the monocarboxylic acid transporter is reduced or lost compared to the parent cell by introducing a mutation, and the function of the protein as a monocarboxylic acid transporter is reduced. Reduced or lost cells (mutagenized cells) are included.
  • the term "expression" of a protein means that a translation product is produced from a gene encoding the protein and localized at its site of action in a functional state.
  • Reduction or loss of monocarboxylic acid transporter expression by introducing a mutation means that modification at the gene level, transcription level, post-transcriptional regulation level, translation level, or post-translational modification level results in transformed cells It means a state in which the amount of monocarboxylic acid transporter protein present in the cell is reduced or lost, preferably a state in which it is significantly reduced or lost compared to that in the parent cell.
  • the expression of the monocarboxylic acid transporter is decreased compared to the parent cell means that the expression level of the monocarboxylic acid transporter present in the transformed cell is decreased compared to the parent cell.
  • the expression level of the protein is usually reduced to 50% or less, preferably 20% or less, more preferably 10% or less compared to the parent cell, and the activity thereof is also similarly reduced. means Most preferred is 0% monocarboxylic acid transporter expression, ie, loss of monocarboxylic acid transporter expression.
  • the expression level of the monocarboxylic acid transporter is compared by measuring the expression level of the polypeptide by well-known immunological techniques such as Western blotting and immunohistochemical staining.
  • Transformed cells in which the expression of the monocarboxylic acid transporter is reduced or lost can be specifically obtained by suppressing the function of the gene encoding the monocarboxylic acid transporter on the chromosomal DNA of the host cell.
  • suppression of function may be either complete suppression (inhibition) or incomplete suppression of function.
  • a gene encoding a monocarboxylic acid transporter means a DNA comprising a transcriptional region containing an ORF and a transcriptional regulatory region such as the promoter of the gene.
  • the gene encoding the monocarboxylic acid transporter preferably includes the following polynucleotide (a) or (b).
  • a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 1 (b) A polynucleotide consisting of a nucleotide sequence having at least 90% identity to the nucleotide sequence shown in SEQ ID NO: 1 and encoding a polypeptide having monocarboxylic acid transporter activity.
  • the polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 1 refers to the mctC gene (cg0953) encoding a monocarboxylic acid transporter derived from Corynebacterium glutamicum.
  • nucleotide sequences having at least 90% identity with the nucleotide sequence shown in SEQ ID NO: 1 include deletions, substitutions, additions, or An inserted nucleotide sequence is included. Methods for introducing mutations such as deletion, substitution, addition, or insertion of nucleotides into the nucleotide sequence are as described above.
  • the polynucleotide may be in single- or double-stranded form, and may be DNA or RNA.
  • the DNA may be cDNA, artificial DNA such as chemically synthesized DNA.
  • Suppression of the function of a gene encoding such a monocarboxylic acid transporter is a mutation that deletes or inactivates the coding region, non-coding region, transcription or translation initiation region of the gene encoding the monocarboxylic acid transporter. (deletion or inactivation of a gene encoding a monocarboxylic acid transporter), or a polynucleotide having the activity of degrading a transcript of a gene encoding a monocarboxylic acid transporter, a protein from the transcript It can be carried out by suppressing transcription or translation by introducing a polynucleotide that suppresses translation into .
  • deletion or inactivation of a gene encoding a monocarboxylic acid transporter involves removing part or all of the nucleotide sequence of the gene encoding the monocarboxylic acid transporter from the genome, or removing other nucleotides from the genome. sequence replacement, inserting other polynucleotide fragments into the sequence of the gene encoding the monocarboxylic acid transporter, mutating the transcription or translation initiation region of the gene encoding the monocarboxylic acid transporter, etc. It can be realized by Preferably, part or all of the nucleotide sequence of the gene encoding the monocarboxylic acid transporter is deleted or inactivated.
  • More specific examples include a method for specifically deleting or inactivating a gene encoding a monocarboxylic acid transporter on the genome of cells, and random deletion or inactivation of the gene in cells. Examples include a method in which cells having desired mutations are selected by evaluating the expression level and activity of the monocarboxylic acid transporter, or conducting genetic analysis after giving mutation mutations.
  • genes encoding monocarboxylic acid transporters includes, for example, methods by homologous recombination. That is, a DNA fragment of a gene encoding a monocarboxylic acid transporter into which an inactivating mutation has been introduced by polynucleotide substitution, insertion, or the like, or a monocarboxylic acid transporter containing an outer region of a gene encoding a monocarboxylic acid transporter.
  • the genome Genes encoding the above monocarboxylic acid transporters can be deleted or inactivated.
  • a recombinant vector such as a plasmid having a DNA fragment containing a partial region of the gene encoding the monocarboxylic acid transporter is incorporated into the parent cell, and the gene encoding the monocarboxylic acid transporter in the genome of the parent cell.
  • a gene inactivating mutation means a mutation in which the original function of the target gene is lost due to silence mutation, missense mutation, nonsense mutation, frameshift mutation, or the like.
  • genes introduced with inactivating mutations either do not express proteins or express proteins with impaired native activity.
  • Site-directed mutagenesis is an example of a method for producing a DNA fragment containing a gene encoding a monocarboxylic acid transporter introduced with an inactivating mutation.
  • Site-directed mutagenesis can be performed using mutagenic primers containing the nucleotide mutation to be introduced. For example, by PCR with a gene encoding a monocarboxylic acid transporter as a template using two sets of primers containing nucleotide mutations to be introduced, the upstream and downstream regions of the region containing the gene encoding the monocarboxylic acid transporter are detected.
  • DNA fragments are amplified, respectively, and then these are ligated into one by SOE-PCR (splicing by overlap extension PCR) (Gene, 1989, 77(1): p61-68) to obtain the desired mutation.
  • a DNA fragment can be constructed that contains: Alternatively, for site-directed mutagenesis, the inverse PCR method, annealing method, etc. (edited by Muramatsu et al., "Revised 4th Edition New Genetic Engineering Handbook", Yodosha, p82-88), or Stratagene's QuickChange II Site- Commercially available kits for site-directed mutagenesis such as Directed Mutagenesis Kit and QuickChange Multi Site-Directed Mutagenesis Kit can also be used.
  • Mutation primers can be prepared by well-known oligonucleotide synthesis methods such as the phosphoramidite method (Nucleic Acids Research, 1989, 17:7059-7071).
  • a gene encoding a monocarboxylic acid transporter used as a template may be prepared from a host cell by a conventional method, or may be chemically synthesized.
  • methods applicable to coryneform bacteria include competent cell transformation method (J Bacteriol, 1967, 93: 1925-1937), electroporation method (FEMS Microbiol Lett, 1990, 55: 135-138), protoplast Transformation method (Mol Gen Genet, 1979, 168: 111-115), Tris-PEG method (J Bacteriol, 1983, 156: 1130-1134) and the like.
  • a gene encoding a monocarboxylic acid transporter As a polynucleotide having an activity to degrade a transcription product of a gene encoding a monocarboxylic acid transporter or a polynucleotide that suppresses translation of the transcription product into a protein, a gene encoding a monocarboxylic acid transporter Polynucleotides comprising a nucleotide sequence complementary or substantially complementary to the nucleotide sequence of mRNA, or portions thereof, are included.
  • antisense RNA against the mRNA of the gene encoding the monocarboxylic acid transporter siRNA against the mRNA of the gene encoding the monocarboxylic acid transporter, ribozyme against the mRNA of the gene encoding the monocarboxylic acid transporter, and the like. mentioned.
  • Cells in which the function of the gene encoding the monocarboxylic acid transporter is suppressed can be selected by confirming the genome sequence.
  • cells in which the function of the gene encoding the monocarboxylic acid transporter is suppressed can be selected using the expression level or activity of the monocarboxylic acid transporter as an index.
  • the host cells may be cells suitable for producing aromatic compounds or salts thereof, and may be any of microbial cells, plant cells and animal cells, preferably microbial cells. From the viewpoint of production efficiency of aromatic compounds or salts thereof, especially protocatechuic acid, gallic acid, shikimic acid, 2,4-pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, catechol, L-DOPA, chorismic acid, 4-hydroxy In terms of production efficiency of aromatic compounds derived from 3-dehydroshikimic acid such as benzoic acid, 4-aminobenzoic acid, and 4-amino-3-hydroxybenzoic acid, or salts thereof, host cells are capable of producing 3-dehydroshikimic acid. It is more preferable to use microbial cells with improved production activity.
  • microbial cells examples include Escherichia coli, Bacillus subtilis, actinomycetes, Pseudomonas bacteria, Streptococcus bacteria, Lactobacillus bacteria, fungi (Neurospora, Aspergillus, Trichoderma, etc.), yeasts (Saccharomyces, Kluyveromyces, Schizosaccharomyces, Yarrowia, Trichosporon, Rhodosporidium, Pichia, Candida, etc.) may be used. , actinomycetes are preferred.
  • coryneform bacteria As the actinomycete, a group of microorganisms defined as coryneform bacteria (Bergey's Manual of Determinative Bacteriology, Vol. 8, 599 (1974)) is preferable, specifically, the genus Corynebacterium and the genus Brevibacterium. bacteria, Arthrobacter, Mycobacterium, Rhodococcus, Streptomyces, Micrococcus, and the like.
  • Brevibacterium ammoniagenes etc. are mentioned as a Brevibacterium genus microbe.
  • Arthrobacter globiformis includes Arthrobacter globiformis.
  • Mycobacterium genus includes Mycobacterium bovis and the like, and Micrococcus genus includes Micrococcus freudenreichii, Micrococcus leuteus, Micrococcus ureae, Micrococcus Coccus roseus (Micrococcus roseus) etc. are mentioned.
  • the coryneform bacteria the genus Corynebacterium is preferred, and Corynebacterium glutamicum is more preferred.
  • the above microbial cells may be wild strains, mutant strains thereof, or artificial genetically modified strains thereof.
  • Examples of microbial cells with improved 3-dehydroshikimic acid-producing activity include microbial cells in which genes necessary for producing 3-dehydroshikimic acid are enhanced.
  • the following (i), ( ii), (iii) and (iv) genetically engineered microbial cells preferably any one of (i), (ii), (iii) and (iv) Two or more, more preferably three or more, and more preferably all of (i), (ii), (iii), and (iv) are genetically engineered microbial cells.
  • gene enhancement includes introduction of a predetermined gene in an expressible state, introduction of a mutation into a predetermined gene or the control region of the gene, and the like.
  • the method for producing an aromatic compound or a salt thereof of the present invention is carried out by culturing the above-described transformed cells, preferably in the presence of sugars, and recovering the desired aromatic compound or salt thereof.
  • Glucose is preferred as the sugar, but monosaccharides such as fructose, mannose, arabinose, xylose and galactose, as well as sugars capable of producing glucose by metabolism can also be used.
  • Such sugars include oligosaccharides or polysaccharides having glucose units, disaccharides such as cellobiose, sucrose, lactose, maltose, trehalose, cellobiose, xylobiose; polysaccharides such as dextrin or soluble starch; is mentioned.
  • Molasses can also be used, for example, as a raw material containing these raw material compounds.
  • Inedible agricultural waste such as straw (rice straw, barley straw, wheat straw, rye straw, oat straw, etc.), bagasse and corn stover, energy crops such as switchgrass, napier grass and miscanthus, and wood waste
  • a saccharified solution containing a plurality of sugars such as glucose, which is obtained by saccharifying waste paper or the like with a saccharifying enzyme or the like, can also be used.
  • the medium for culturing the transformed cells contains a carbon source, a nitrogen source, inorganic salts, etc., and can be either a natural medium or a synthetic medium as long as it is a medium capable of efficiently culturing the transformed cells of the present invention. may be used.
  • the carbon source the above sugars or molasses or saccharified solutions containing them are used.
  • sugar alcohols such as mannitol, sorbitol, xylitol and glycerin; , maleic acid, and gluconic acid; alcohols, such as ethanol and propanol; and hydrocarbons, such as normal paraffin.
  • a carbon source can be used individually by 1 type or in mixture of 2 or more types.
  • the concentration of the saccharide, which is the raw material compound, in the culture medium is preferably 1 to 20 w/v%, more preferably 2 to 10 w/v%, and even more preferably 2 to 5 w/v%.
  • Nitrogen sources include, for example, peptone, meat extract, yeast extract, casein hydrolyzate, soybean meal alkaline extract, alkylamines such as methylamine, nitrogen-containing organic compounds such as amino acids, ammonia or its salts (ammonium chloride, Inorganic or organic ammonium compounds such as ammonium sulfate, ammonium nitrate and ammonium acetate), urea, aqueous ammonia, sodium nitrate, potassium nitrate and the like can be used.
  • alkylamines such as methylamine
  • nitrogen-containing organic compounds such as amino acids, ammonia or its salts (ammonium chloride, Inorganic or organic ammonium compounds such as ammonium sulfate, ammonium nitrate and ammonium acetate), urea, aqueous ammonia, sodium nitrate, potassium nitrate and the like can be used.
  • inorganic salts include monopotassium phosphate, dipotassium phosphate, magnesium sulfate, sodium chloride, ferrous nitrate, manganese sulfate, zinc sulfate, cobalt sulfate, and calcium carbonate.
  • vitamins, antifoaming agents, etc. can be added as necessary.
  • vitamins include biotin, thiamine (vitamin B1), pyridoxine (vitamin B6), pantothenic acid, inositol, and nicotinic acid.
  • the transformants Prior to the reaction or culture containing sugars, it is preferable to grow the transformants by culturing them in the same medium under aerobic conditions at a temperature of about 25-38°C for about 12-48 hours.
  • the culture temperature or reaction temperature is preferably 15 to 45°C, more preferably 25 to 37°C.
  • the culture or reaction time is 24 hours to 168 hours, preferably 24 hours to 96 hours, more preferably 24 hours to 72 hours, and can be performed with stirring or shaking as necessary.
  • antibiotics such as ampicillin and kanamycin may be added to the medium during the culture, if necessary.
  • Cultivation may be of batch type, fed-batch type, or continuous type. Among them, a batch system is preferable. Cultivation or reaction may be carried out under aerobic conditions or reducing conditions, but is preferably carried out under aerobic conditions.
  • the reaction or culture When the reaction or culture is carried out under aerobic conditions, it is preferable to carry out under conditions that suppress excessive growth of the transformant from the viewpoint of the production efficiency of the aromatic compound or its salt.
  • the aromatic compound is susceptible to oxidation, the culture is preferably carried out under conditions of low dissolved oxygen concentration.
  • the dissolved oxygen concentration is preferably 0.1 to 3 ppm, more preferably 0.1 to 1 ppm.
  • the method of collecting and purifying the aromatic compound or its salt from the culture is not particularly limited. That is, it can be carried out by combining well-known ion exchange resin method, precipitation method, crystallization method, recrystallization method, concentration method and other methods. For example, after the cells are removed by centrifugation or the like, ionic substances are removed with a cation and anion exchange resin, and the mixture is concentrated to obtain an aromatic compound or a salt thereof. Aromatic compounds or salts thereof accumulated in the culture may be used as they are without isolation.
  • a method for producing an aromatic compound or a salt thereof comprising the step of culturing a transformed cell in which the function of the monocarboxylic acid transporter shown in (A) or (B) below is suppressed or deleted.
  • a transformed cell in which the function of the monocarboxylic acid transporter is suppressed or deleted is obtained by suppressing the function of the gene encoding the monocarboxylic acid transporter on the chromosomal DNA of the host cell.
  • the microbial cell with improved 3-dehydroshikimic acid-producing activity is a microbial cell genetically engineered by one or more of the following (i), (ii), (iii) and (iv) , ⁇ 3>.
  • the microbial cell with improved 3-dehydroshikimic acid-producing activity is a microbial cell genetically engineered with any two or more of (i), (ii), (iii), and (iv). , the method described in ⁇ 4>.
  • the microbial cell with improved 3-dehydroshikimic acid-producing activity is a microbial cell genetically engineered with any three or more of (i), (ii), (iii), and (iv). , the method described in ⁇ 4>.
  • the microbial cell with improved 3-dehydroshikimic acid-producing activity is the microbial cell genetically engineered in (i), (ii), (iii), and (iv), according to ⁇ 4>.
  • the method of. ⁇ 8> The method according to any one of ⁇ 3> to ⁇ 7>, wherein the microbial cells are coryneform bacteria.
  • the coryneform bacterium belongs to the genus Corynebacterium.
  • the Corynebacterium bacterium is Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium ammoniagenes, Corynebacterium halotolerance, Corynebacterium alkanolyticum, Corynebacterium carnae, Corynebacterium clenatum or Corynebacterium
  • ⁇ 12> The method according to any one of ⁇ 1> to ⁇ 11>, wherein the aromatic compound or its salt is derived from 3-dehydroshikimic acid or its salt.
  • the aromatic compound or its salt is gallic acid, protocatechuic acid, catechol, L-DOPA, 2,4-pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, 4-hydroxybenzoic acid, 4-aminobenzoic acid,
  • ⁇ 14> of ⁇ 1> to ⁇ 11>, wherein the aromatic compound or a salt thereof is gallic acid, protocatechuic acid, L-DOPA, 4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid, or a salt thereof. Any method described.
  • ⁇ 15> The method according to ⁇ 1> to ⁇ 11>, wherein the aromatic compound or a salt thereof is gallic acid, protocatechuic acid, or a salt thereof.
  • ⁇ 16> The method according to any one of ⁇ 1> to ⁇ 11>, wherein the aromatic compound or its salt is gallic acid or its salt.
  • ⁇ 17> The method according to any one of ⁇ 1> to ⁇ 16>, wherein the transformed cell is cultured in the presence of sugar.
  • genomic DNA was used as a template and amplified with primers OT23 and OT24 to obtain a DNA fragment on the 3' side of the cg0620 gene region.
  • a DNA fragment (OT25) containing the promoter (hereinafter referred to as tu promoter) of the tuf gene (cg0587) of Corynebacterium glutamicum ATCC13032 strain was produced by artificial gene synthesis.
  • DNA fragment of the promoter region was amplified with primers OT26 and OT27 to obtain a DNA fragment of the promoter region.
  • SEQ ID NOS: 3 and 4 Two types of DNA fragments (SEQ ID NOS: 3 and 4) containing a polypeptide gene (hereinafter abbreviated as hfm145VF) having 3,4-dihydroxybenzoate hydroxylase activity were prepared by artificial gene synthesis.
  • Each DNA fragment was used as a template and amplified with two kinds of DNA primers (OT30 and OT31 and OT32 and OT33) to obtain two kinds of DNA fragments.
  • pHKPsacB1 as a template, a vector fragment was amplified with primers OT34 and OT35.
  • the resulting PCR product was treated with DpnI (Takara Bio).
  • each DNA fragment was purified using NucleoSpin Gel and PCR Clean-up (Takara Bio) and ligated with the In-Fusion HD Cloning Kit (Takara Bio) to create the plasmid pHKPsacB_cg0620- Ptu-hfm145VF-hfm145VFopt was produced.
  • ECOS Competent E. Coli DH5 ⁇ strain (Nippon Gene) was transformed, and the cell solution was spread on an LB agar medium containing kanamycin and allowed to stand overnight at 37°C.
  • a transformant having the plasmid was inoculated into 2 mL of LB liquid medium containing kanamycin and cultured overnight at 37°C.
  • a plasmid was purified from this culture using NucleoSpin Plasmid EasyPure (TaKaRa) to obtain pHKPsacB_cg0620-Ptu-hfm145VF-hfm145VFopt.
  • KC148sr strain was obtained by introducing the strain into the spp. and selecting for kanamycin resistance.
  • the KC148sr strain was analyzed by the PCR method (Sapphire Amp (Takara Bio)) using primers OT20 and OT36, the expected results were obtained. It was confirmed to be a single-crossover homologous recombinant introduced into the gene region.
  • the KC148sr strain was cultured in 1 mL of LB liquid medium (10 g/L tryptone, 5 g/L yeast extract, 10 g/L sodium chloride) for 24 hours, and a portion of the culture was spread on 20% sucrose-containing LB agar medium.
  • KC148 strain was obtained by culturing.
  • the KC148 strain is a double-crossover homologous recombinant in which the Ptu-hfm145VF-hfm145VFop gene has been introduced into the cg0620 gene region as expected. It was confirmed.
  • a DNA fragment on the 5' side of the cg3219 gene amplified with primers 3219-up-F and 3219-up-R using the genomic DNA of the ATCC 13032 strain ( NBRC 12168 strain) as a template, and the genomic DNA as the template with the primer 3219- A DNA fragment on the 3' side of the cg3219 gene amplified by down-F and 3219-down-R was obtained.
  • the resulting PCR product was treated with DpnI (Takara Bio).
  • each DNA fragment was purified using NucleoSpin Gel and PCR Clean-up (Takara Bio), and then ligated with In-Fusion HD cloning kit (Clontech) to obtain pHKBsacB- ⁇ ldh. was made.
  • ECOS Competent E. coli strain DH5 ⁇ (Nippon Gene) was transformed, and the cell solution was spread on an LB agar medium containing kanamycin and allowed to stand overnight at 37°C.
  • colony PCR was performed using Sapphire Amp (TaKaRa) as an enzyme.
  • a transformant having a plasmid in which gene transfer was confirmed was inoculated into 2 mL of LB liquid medium containing kanamycin and cultured overnight at 37°C.
  • a plasmid was purified from this culture using NucleoSpin Plasmid EasyPure (TaKaRa) to obtain pHKBsacB- ⁇ ldh.
  • KC148 ⁇ ldh-sr was cultured in 1 mL of LB liquid medium for 24 hours, and a portion of the culture was smear cultured on 20% sucrose-containing LB agar medium to obtain KC148 ⁇ ldh strain.
  • Colony PCR (Sapphire Amp) using primers 3219-coloP-F and 3219-coloP-R confirmed that the ldh gene (cg3219) was deleted by double-crossover homologous recombination. In addition, deletion of kanamycin resistance gene and sacB gene was confirmed.
  • a DNA fragment on the 5' side of the cg0953 gene amplified with primers ocJK197 and ocJK198 using the genomic DNA of ATCC 13032 strain ( NBRC 12168 strain) as a template, and a cg0953 gene amplified with primers ocJK199 and ocJK200 using genomic DNA as a template.
  • a 3' DNA fragment was obtained.
  • the resulting PCR product was treated with DpnI (Takara Bio).
  • each DNA fragment was purified using NucleoSpin Gel and PCR Clean-up (Takara Bio), ligated with In-Fusion HD cloning kit (Clontech), and pHKBsacB- ⁇ mctC. was made.
  • ECOS Competent E. coli strain DH5 ⁇ (Nippon Gene) was transformed, and the cell solution was spread on an LB agar medium containing kanamycin and allowed to stand overnight at 37°C.
  • colony PCR was performed using Sapphire Amp (TaKaRa) as an enzyme.
  • ocJK216 and ocJK217 as primers, introduction of the target DNA fragment was confirmed.
  • a transformant having a plasmid in which gene transfer was confirmed was inoculated into 2 mL of LB liquid medium containing kanamycin and cultured overnight at 37°C.
  • a plasmid was purified from this culture using NucleoSpin Plasmid EasyPure (TaKaRa) to obtain pHKBsacB- ⁇ mctC.
  • KC148 ⁇ ldh ⁇ mctC-sr was cultured in 1 mL of LB liquid medium for 24 hours, and a part of the culture was smear cultured on 20% sucrose-containing LB agar medium to obtain the KC148 ⁇ ldh ⁇ mctC strain.
  • Colony PCR (Sapphire Amp) using primers ocJK491 and ocJK492 confirmed that the mctC gene (cg0953) was deleted by double-crossover homologous recombination. In addition, deletion of kanamycin resistance gene and sacB gene was confirmed.
  • the KC148 ⁇ ldh strain and the KC148 ⁇ ldh ⁇ mctC strain were streaked on an LB plate and cultured at 30°C for 3 days.
  • the cells grown on the plate were inoculated into a round-bottom spitz (Eiken Chemical Co., Ltd.) filled with 4 mL of LB medium, and subjected to shaking culture (preculture) at 30° C. and 200 rpm for 24 hours.
  • Sodium benzoate was added to the CGXII medium shown in Table 2 to a final concentration of 1 mM, and Bio Jr. 8 (ABLE Co., Ltd.) was charged with 100 mL.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Provided is a method for efficiently producing aromatic compounds by using transformed cells. This method for producing an aromatic compound or a salt thereof comprises a step for culturing a transformed cell in which the function of the monocarboxylate transporter indicated by (A) or (B) has been suppressed or deleted. (A) polypeptide comprising the amino acid sequence given by SEQ ID NO: 2; (B) polypeptide having a monocarboxylate transporter activity and comprising an amino acid sequence having at least 90% identity with the amino acid sequence given by SEQ ID NO: 2

Description

芳香族化合物の製造方法Method for producing aromatic compound
 本発明は、形質転換細胞を用いた芳香族化合物の製造方法に関する。 The present invention relates to a method for producing aromatic compounds using transformed cells.
 近年、安価な原料であるグルコースから、微生物を用いて没食子酸を始め、有用な芳香族化合物を生産することが所望されている。中でも、コリネ型細菌(Corynebacterium glutamicum)は各種アミノ酸や核酸生産に利用されてきた有用工業微生物であり、近年、コリネ型細菌を対象にした遺伝子組換え技術が確立されたこともあり、チロシンやトリプトファンのような芳香族アミノ酸(非特許文献1)や没食子酸、4-ヒドロキシ安息香酸(非特許文献1)、4-アミノ安息香酸(非特許文献2)等の芳香族化合物等、多様な有機化合物が生産可能となっている。中でも、没食子酸は、還元性が強いことから、写真の現像剤や青インクの製造原料等に使用され、また、没食子酸プロピル等のエステルは、油脂やバターの酸化防止剤として使用されている。さらに、没食子酸を脱炭酸して合成されるピロガロールは、電子材料、有機合成試薬、写真の現像液、毛織物の媒染剤等として使用されることから、没食子酸を効率よく生産させることは有益である。 In recent years, it has been desired to use microorganisms to produce useful aromatic compounds, including gallic acid, from glucose, which is an inexpensive raw material. Among them, corynebacterium glutamicum is a useful industrial microorganism that has been used for the production of various amino acids and nucleic acids. Various organic compounds such as aromatic amino acids (Non-Patent Document 1), gallic acid, 4-hydroxybenzoic acid (Non-Patent Document 1), 4-aminobenzoic acid (Non-Patent Document 2) and other aromatic compounds such as is available for production. Among them, gallic acid has a strong reducing property, so it is used as a raw material for producing photographic developers and blue inks, and esters such as propyl gallate are used as antioxidants for oils and butters. . Furthermore, pyrogallol, which is synthesized by decarboxylating gallic acid, is used as an electronic material, an organic synthesis reagent, a photographic developer, a mordant for woolen fabrics, etc. Therefore, efficient production of gallic acid is beneficial. .
 シキミ酸経路は、植物や微生物が芳香族化合物を生合成する重要な代謝経路である。すなわち、解糖系で作られるホスホエノールピルビン酸がペントースリン酸経路から供給されるエリスロース4-リン酸と結合して3-デオキシ-D-アラビノペプツロソン酸7-リン酸(DAHP)となり、3-デヒドロキナ酸(DHQ)、3-デヒドロシキミ酸(DHS)を経てシキミ酸となる。さらに、シキミ酸はアデノシン3リン酸からリン酸基が転移して、3-ホスホシキミ酸となり、3-ホスホエノ-ルピルビルシキミ酸を経てコリスミ酸となる。シキミ酸経路では炭素6員環が形成された後、二重結合の形成が行われ、DHSから誘導されるプロトカテク酸からは、没食子酸、2,4-ピリジンジカルボン酸(2,4-PDCA)、2,5-ピリジンジカルボン酸(2,5-PDCA)、カテコール、L-DOPA等の芳香族化合物が生産される(図1)。 The shikimate pathway is an important metabolic pathway for the biosynthesis of aromatic compounds by plants and microorganisms. That is, phosphoenolpyruvate produced in glycolysis combines with erythrose 4-phosphate supplied from the pentose phosphate pathway to form 3-deoxy-D-arabinopeptulosonic acid 7-phosphate (DAHP). , 3-dehydroquinic acid (DHQ) and 3-dehydroshikimic acid (DHS) to shikimic acid. Furthermore, shikimic acid undergoes transfer of the phosphate group from adenosine triphosphate to become 3-phosphoshikimic acid, and then to chorismic acid via 3-phosphoeno-lpyruvylshikimic acid. In the shikimate pathway, a 6-carbon ring is formed followed by double bond formation, and from protocatechuic acid derived from DHS, gallic acid, 2,4-pyridinedicarboxylic acid (2,4-PDCA) , 2,5-pyridinedicarboxylic acid (2,5-PDCA), catechol, L-DOPA and other aromatic compounds are produced (Fig. 1).
  〔非特許文献1〕Metab. Eng. 2018. 50:122-141.
  〔非特許文献2〕Metab. Eng. 2016. 38:322-330.
[Non-Patent Document 1] Metab. Eng. 2018. 50:122-141.
[Non-Patent Document 2] Metab. Eng. 2016. 38:322-330.
 本発明は、以下に係るものである。
 下記(a)又は(b)で示されるモノカルボン酸トランスポーターの機能が抑制又は欠失された形質転換細胞を培養する工程を含む、芳香族化合物又はその塩の製造方法。
 (A1)配列番号2で示されるアミノ酸配列からなるポリペプチド
 (A2)配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、モノカルボン酸トランスポーター活性を有するポリペプチド
The present invention relates to the following.
A method for producing an aromatic compound or a salt thereof, comprising the step of culturing a transformed cell in which the function of a monocarboxylic acid transporter shown in (a) or (b) below is suppressed or deleted.
(A1) A polypeptide consisting of the amino acid sequence shown by SEQ ID NO: 2 (A2) A polypeptide consisting of an amino acid sequence having at least 90% identity with the amino acid sequence shown by SEQ ID NO: 2 and having monocarboxylic acid transporter activity
宿主としてコリネ型細菌を用いた場合の各種芳香族化合物の生産経路を示す模式図。図中、aroG及びaroFは2-デヒドロ-3-デオキシアラビノヘプトン酸アルドラーゼであり、aroBは3-デヒドロキナ酸シンターゼであり、aroD及びqsuCはデヒドロキナ酸デヒドラターゼであり、qsuDはキナ酸/シキミ酸デヒドロゲナーゼであり、aroE3はシキミ酸デヒドロゲナーゼであり及びhfm145は3,4-ジヒドロキシ安息香酸ヒドロキシラーゼであり、qsuBはデヒドロシキミ酸デヒドラターゼであり、aroAは5-エノール酸ピルビルシキミ酸-3-リン酸シンターゼであり、aroCはコリスミ酸シンターゼであり、そしてaroKはシキミ酸キナーゼである。Schematic diagram showing production pathways of various aromatic compounds when coryneform bacteria are used as hosts. In the figure, aroG and aroF are 2-dehydro-3-deoxyarabinoheptonate aldolase, aroB is 3-dehydroquinate synthase, aroD and qsuC are dehydroquinate dehydratase, and qsuD is quinate/shikimate dehydrogenase. aroE3 is shikimate dehydrogenase and hfm145 is 3,4-dihydroxybenzoate hydroxylase, qsuB is dehydroshikimate dehydratase, aroA is 5-enolate pyruvylshikimate-3-phosphate synthase , aroC is chorismate synthase and aroK is shikimate kinase.
発明の詳細な説明Detailed description of the invention
 本発明は、形質転換細胞を用いて芳香族化合物を効率よく製造する方法を提供することに関する。 The present invention relates to providing a method for efficiently producing aromatic compounds using transformed cells.
 本発明者らは、ピルビン酸、プロピオン酸、酢酸等のモノカルボン酸のトランスポーターであるMctCの機能が抑制又は欠失された形質転換細胞において、没食子酸を始めとする芳香族化合物の生産性が向上することを見出した。 The present inventors have investigated the productivity of aromatic compounds such as gallic acid in transformed cells in which the function of MctC, a transporter of monocarboxylic acids such as pyruvate, propionic acid and acetic acid, is suppressed or deleted. was found to improve.
 本発明によれば、環境負荷の少ない発酵法によって、プロトカテク酸、没食子酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、カテコール、L-DOPA、4-ヒドロキシ安息香酸、4-アミノ安息香酸のような芳香族化合物又はその塩を効率よく製造することが可能になる。 According to the present invention, protocatechuic acid, gallic acid, 2,4-pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, catechol, L-DOPA, 4-hydroxybenzoic acid, 4- It becomes possible to efficiently produce an aromatic compound such as aminobenzoic acid or a salt thereof.
 本発明において、アミノ酸配列又はヌクレオチド配列の同一性は、Lipman-Pearson法(Science,1985,227:1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGENETYX Ver.12のホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。 In the present invention, the identity of amino acid sequences or nucleotide sequences is calculated by the Lipman-Pearson method (Science, 1985, 227: 1435-1441). Specifically, genetic information processing software GENETYX Ver. 12 homology analysis (Search homology) program is used, unit size to compare (ktup) is set to 2, and analysis is performed.
 本発明において、アミノ酸配列又はヌクレオチド配列に関する「少なくとも90%の同一性」とは、好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上の同一性をいう。 In the present invention, "at least 90% identity" with respect to amino acid sequence or nucleotide sequence is preferably 95% or more, more preferably 96% or more, more preferably 97% or more, more preferably 98% or more, more preferably means 99% or more identity.
 本発明において、「1又は数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列」とは、1個以上10個以下、好ましくは1個以上8個以下、より好ましくは1個以上5個以下、さらに好ましくは1個以上3個以下のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列をいう。また、「1又は数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列」とは、1個以上30個以下、好ましくは1個以上24個以下、より好ましくは1個以上15個以下、さらにより好ましくは1個以上9個以下のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列をいう。本発明において、アミノ酸又はヌクレオチドの「付加」には、配列の一末端及び両末端へのアミノ酸又はヌクレオチドの付加が含まれる。 In the present invention, "an amino acid sequence in which one or several amino acids are deleted, substituted, added, or inserted" means 1 or more and 10 or less, preferably 1 or more and 8 or less, more preferably 1 It refers to an amino acid sequence in which 5 or less, more preferably 1 or more and 3 or less amino acids are deleted, substituted, added, or inserted. In addition, "a nucleotide sequence in which one or several nucleotides are deleted, substituted, added, or inserted" means 1 or more and 30 or less, preferably 1 or more and 24 or less, more preferably 1 or more and 15 It refers to a nucleotide sequence in which no more than 1, more preferably from 1 to 9 nucleotides have been deleted, substituted, added or inserted. In the present invention, "addition" of amino acids or nucleotides includes addition of amino acids or nucleotides to one and both termini of a sequence.
 本発明において、芳香族化合物とは、宿主細胞内で生合成される有機芳香族化合物であり、具体的にはシキミ酸経路を介して合成される芳香族化合物、好ましくは、3-デヒドロシキミ酸(DHS)やコリスミ酸から誘導される芳香族化合物を指す(図1)。
 具体的には、プロトカテク酸、カテコール、没食子酸、フェニルアラニン、L-DOPA、チロシン、プレチロシン、トリプトファン、4-ヒドロキシ安息香酸、4-アミノ安息香酸、2,3-ジヒドロキシ安息香酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、4-アミノ3-ヒドロキシ安息香酸等が挙げられる。
 このうち、DHSから誘導されるプロトカテク酸;プロトカテク酸から誘導される没食子酸、2,4-ピリジンジカルボン酸(2,4-PDCA)、2,5-ピリジンジカルボン酸(2,5-PDCA)、カテコール、L-DOPA;コリスミ酸から誘導される4-ヒドロキシ安息香酸、4-アミノ安息香酸、4-アミノ3-ヒドロキシ安息香酸、チロシン、トリプトファン等が好ましく、より好ましくは、プロトカテク酸、プロトカテク酸から誘導される芳香族化合物(好ましくは、没食子酸、L-DOPA)、4-ヒドロキシ安息香酸、4-アミノ3-ヒドロキシ安息香酸であり、より好ましくは没食子酸である。
In the present invention, the aromatic compound is an organic aromatic compound biosynthesized in the host cell, specifically an aromatic compound synthesized via the shikimic acid pathway, preferably 3-dehydroshikimic acid (DHS) and aromatic compounds derived from chorismate (Fig. 1).
Specifically, protocatechuic acid, catechol, gallic acid, phenylalanine, L-DOPA, tyrosine, pretyrosine, tryptophan, 4-hydroxybenzoic acid, 4-aminobenzoic acid, 2,3-dihydroxybenzoic acid, 2,4- pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, 4-amino-3-hydroxybenzoic acid and the like.
Among them, protocatechuic acid derived from DHS; gallic acid derived from protocatechuic acid, 2,4-pyridinedicarboxylic acid (2,4-PDCA), 2,5-pyridinedicarboxylic acid (2,5-PDCA), Catechol, L-DOPA; 4-hydroxybenzoic acid, 4-aminobenzoic acid, 4-amino-3-hydroxybenzoic acid derived from chorismic acid, tyrosine, tryptophan, etc. are preferred, more preferably protocatechuic acid, protocatechuic acid They are derived aromatic compounds (preferably gallic acid, L-DOPA), 4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid, and more preferably gallic acid.
 当該芳香族化合物の塩としては、塩基付加塩、酸付加塩等を挙げることができる。塩基付加塩としては、例えば、ナトリウム、カリウム等のアルカリ金属との塩、カルシウム、マグネシウム等のアルカリ土類金属との塩等が挙げられ、酸付加塩としては、例えば、塩酸塩、硫酸塩、硝酸塩、リン酸塩等の鉱酸塩等が挙げられる。 Examples of the salt of the aromatic compound include base addition salts and acid addition salts. Examples of base addition salts include salts with alkali metals such as sodium and potassium, and salts with alkaline earth metals such as calcium and magnesium. Examples of acid addition salts include hydrochlorides, sulfates, Mineral acid salts such as nitrates and phosphates are included.
 本発明の芳香族化合物又はその塩の製造方法は、下記(a)又は(b)で示されるモノカルボン酸トランスポーターの機能が抑制又は欠失された形質転換細胞が用いられる。
 (A)配列番号2で示されるアミノ酸配列からなるポリペプチド
 (B)配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、モノカルボン酸トランスポーター活性を有するポリペプチド
 ここで、(A)配列番号2で示されるアミノ酸配列からなるポリペプチドは、コリネバクテリウム グルタミカム(Corynebacterium glutamicum)由来の、モノカルボン酸トランスポーターとして知られるMctCを指す。当該MctCは、ピルビン酸、プロピオン酸、酢酸などのモノカルボン酸の輸送に関与するトランスポーターである。
In the method for producing an aromatic compound or a salt thereof of the present invention, a transformed cell in which the function of the monocarboxylic acid transporter shown in (a) or (b) below is suppressed or deleted is used.
(A) a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2; (B) a polypeptide consisting of an amino acid sequence having at least 90% identity with the amino acid sequence shown in SEQ ID NO: 2 and having monocarboxylic acid transporter activity Here, (A) the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 refers to MctC, which is known as a monocarboxylic acid transporter derived from Corynebacterium glutamicum. The MctC is a transporter involved in the transport of monocarboxylic acids such as pyruvate, propionic acid and acetic acid.
 (A)のポリペプチドにおいて、配列番号2で示されるアミノ酸配列との同一性は、好ましくは95%以上、より好ましくは96%以上、さらに好ましくは97%以上、さらにより好ましくは98%以上、なお好ましくは99%以上である。
 配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列の例としては、配列番号2で示されるアミノ酸配列に対して1又は数個のアミノ酸が欠失、置換、付加、又は挿入されたアミノ酸配列が挙げられる。
In the polypeptide of (A), the identity with the amino acid sequence shown in SEQ ID NO: 2 is preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, still more preferably 98% or more, In addition, it is preferably 99% or more.
Examples of amino acid sequences having at least 90% identity with the amino acid sequence shown in SEQ ID NO: 2 include deletion, substitution, addition, or Inserted amino acid sequences are included.
 モノカルボン酸トランスポーター活性を有することは、例えば、目的遺伝子の破壊株もしくは強化株をモノカルボン酸を炭素源として含む培地で生育させた際に、菌体内のモノカルボン酸濃度もしくは菌体増殖速度を測定し、宿主株と比較することにより確認することができる。 Having monocarboxylic acid transporter activity means that, for example, when a target gene-disrupted strain or enhanced strain is grown in a medium containing monocarboxylic acid as a carbon source, the concentration of monocarboxylic acid in the cells or the growth rate of the cells increases. can be determined by measuring and comparing with the host strain.
 (B)の配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、且つモノカルボン酸トランスポーター活性を有するポリペプチドとしては、例えばコリネバクテリウム クレナタム(Corynebacterium crenatum)、コリネバクテリウム クルジラクチス(Corynebacterium crudilactis)、コリネバクテリウム エフィシェンス(Corynebacterium efficiens)、コリネバクテリウム SP.Sa1YVA5(Corynebacterium SP.Sa1YVA5)、Corynebacterium hadale、Corynebacterium gottingense、Corynebacterium godavarianum、Corynebacterium senegalense由来のActP(カチオン:酢酸シンポーター)等が挙げられる。 Polypeptides consisting of an amino acid sequence having at least 90% identity with the amino acid sequence shown in SEQ ID NO: 2 of (B) and having monocarboxylic acid transporter activity include, for example, Corynebacterium crenatum, Corynebacterium crudilactis, Corynebacterium efficiens, Corynebacterium SP. Sa1YVA5 (Corynebacterium SP. Sa1YVA5), Corynebacterium hadale, Corynebacterium gottingense, Corynebacterium godavarianum, Corynebacterium senegalense-derived ActP (cation: acetic acid symporter) and the like.
 上記ポリペプチドのアミノ酸配列に対してアミノ酸の欠失、置換、付加、又は挿入等の変異を導入する方法としては、例えば、該アミノ酸配列をコードするヌクレオチド配列に対してヌクレオチドの欠失、置換、付加、又は挿入等の変異を導入する方法が挙げられる。ヌクレオチド配列への変異導入の手法としては、例えば、エチルメタンスルホネート、N-メチル-N-ニトロソグアニジン、亜硝酸等の化学的変異原又は紫外線、X線、ガンマ線、イオンビーム等の物理的変異原による突然変異誘発、部位特異的変異導入法、Dieffenbachら(Cold Spring Harbar Laboratory Press,New York,581-621,1995)に記載の方法、等が挙げられる。部位特異的変異導入の手法としては、Splicing overlap extension(SOE)PCR(Horton et al.,Gene 77,61-68,1989)を利用した方法、ODA法(Hashimoto-Gotoh et al.,Gene,152,271-276,1995)、Kunkel法(Kunkel,T.A.,Proc.Natl.Acad.Sci.USA,1985,82,488)等が挙げられる。あるいは、Site-Directed Mutagenesis System Mutan-SuperExpress Kmキット(タカラバイオ社)、TransformerTM Site-Directed Mutagenesisキット(Clonetech社)、KOD-Plus-Mutagenesis Kit(東洋紡社)等の市販の部位特異的変異導入用キットを利用することもできる。 Methods for introducing mutations such as deletion, substitution, addition, or insertion of amino acids into the amino acid sequence of the polypeptide include, for example, deletion, substitution, substitution, A method of introducing a mutation such as addition or insertion can be mentioned. Techniques for introducing mutations into nucleotide sequences include, for example, chemical mutagens such as ethyl methanesulfonate, N-methyl-N-nitrosoguanidine and nitrous acid, or physical mutagens such as ultraviolet rays, X-rays, gamma rays and ion beams. mutagenesis, site-directed mutagenesis, the method described in Dieffenbach et al. (Cold Spring Harbor Laboratory Press, New York, 581-621, 1995), and the like. Techniques for site-directed mutagenesis include methods using Splicing overlap extension (SOE) PCR (Horton et al., Gene 77, 61-68, 1989), ODA method (Hashimoto-Gotoh et al., Gene, 152 , 271-276, 1995), Kunkel method (Kunkel, TA, Proc. Natl. Acad. Sci. USA, 1985, 82, 488). Alternatively, commercially available site-directed mutagenesis such as Site-Directed Mutagenesis System Mutan-Super Express Km kit (Takara Bio Inc.), Transformer TM Site-Directed Mutagenesis kit (Clonetech), KOD-Plus-Mutagenesis Kit (Toyobo) for Kits are also available.
 本発明において、モノカルボン酸トランスポーターの機能が抑制又は欠失された形質転換細胞としては、宿主細胞におけるモノカルボン酸トランスポーターの発現が低下又は喪失し、当該タンパク質のモノカルボン酸トランスポーターとしての機能が抑制又は欠失している細胞、好ましくは、変異を導入することによりモノカルボン酸トランスポーターの発現が親細胞に比べて低下又は喪失し、当該タンパク質のモノカルボン酸トランスポーターとしての機能が低下又は喪失された細胞(変異導入細胞)が挙げられる。
 本発明において、タンパク質の「発現」とは、当該タンパク質をコードする遺伝子から、翻訳産物が産生され、且つ機能的な状態でその作用部位に局在することをいう。変異を導入することによりモノカルボン酸トランスポーターの発現が低下又は喪失したとは、遺伝子レベル、転写レベル、転写後調節レベル、翻訳レベル、翻訳後修飾レベルでの改変により、結果として、形質転換細胞内に存在するモノカルボン酸トランスポータータンパク質量が低下又は喪失した状態、好ましくは親細胞におけるそれに比べて有意に低下又は喪失した状態を意味する。
In the present invention, the transformed cells in which the function of the monocarboxylic acid transporter is suppressed or deleted include the expression of the monocarboxylic acid transporter in the host cell is reduced or lost, and the protein as the monocarboxylic acid transporter is Cells in which the function is suppressed or deleted, preferably, the expression of the monocarboxylic acid transporter is reduced or lost compared to the parent cell by introducing a mutation, and the function of the protein as a monocarboxylic acid transporter is reduced. Reduced or lost cells (mutagenized cells) are included.
In the present invention, the term "expression" of a protein means that a translation product is produced from a gene encoding the protein and localized at its site of action in a functional state. Reduction or loss of monocarboxylic acid transporter expression by introducing a mutation means that modification at the gene level, transcription level, post-transcriptional regulation level, translation level, or post-translational modification level results in transformed cells It means a state in which the amount of monocarboxylic acid transporter protein present in the cell is reduced or lost, preferably a state in which it is significantly reduced or lost compared to that in the parent cell.
 「モノカルボン酸トランスポーターの発現が親細胞に比べて低下した」とは、形質転換細胞内に存在するモノカルボン酸トランスポーターの発現量が親細胞に比べて低下していること、より具体的には親細胞と比較して、当該タンパク質の発現量が、通常50%以下、好ましくは20%以下、より好ましくは10%以下に低下し、それによりその活性もまた同様に低下していることを意味する。最も好ましくは、モノカルボン酸トランスポーターの発現量が0%、すなわちモノカルボン酸トランスポーターの発現喪失である。
 尚、モノカルボン酸トランスポーターの発現量の比較は、ウェスタンブロッティングや免疫組織染色等の周知の免疫学的手法により当該ポリペプチドの発現量を測定することにより実施される。
"The expression of the monocarboxylic acid transporter is decreased compared to the parent cell" means that the expression level of the monocarboxylic acid transporter present in the transformed cell is decreased compared to the parent cell. The expression level of the protein is usually reduced to 50% or less, preferably 20% or less, more preferably 10% or less compared to the parent cell, and the activity thereof is also similarly reduced. means Most preferred is 0% monocarboxylic acid transporter expression, ie, loss of monocarboxylic acid transporter expression.
The expression level of the monocarboxylic acid transporter is compared by measuring the expression level of the polypeptide by well-known immunological techniques such as Western blotting and immunohistochemical staining.
 上記モノカルボン酸トランスポーターの発現が低下又は喪失した形質転換細胞は、具体的には、宿主細胞の染色体DNA上のモノカルボン酸トランスポーターをコードする遺伝子の機能を抑制することにより取得することができる。ここで、機能の抑制は、機能の完全抑制(阻害)及び不完全抑制のいずれでも良い。
 モノカルボン酸トランスポーターをコードする遺伝子とは、ORFを含む転写領域及び当該遺伝子のプロモーター等の転写調節領域からなるDNAを意味する。本発明において、モノカルボン酸トランスポーターをコードする遺伝子としては、好適には下記(a)又は(b)のポリヌクレオチド、が挙げられる。
Transformed cells in which the expression of the monocarboxylic acid transporter is reduced or lost can be specifically obtained by suppressing the function of the gene encoding the monocarboxylic acid transporter on the chromosomal DNA of the host cell. can. Here, suppression of function may be either complete suppression (inhibition) or incomplete suppression of function.
A gene encoding a monocarboxylic acid transporter means a DNA comprising a transcriptional region containing an ORF and a transcriptional regulatory region such as the promoter of the gene. In the present invention, the gene encoding the monocarboxylic acid transporter preferably includes the following polynucleotide (a) or (b).
 (a)配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド、
 (b)配列番号1で示されるヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなり、モノカルボン酸トランスポーター活性を有するポリペプチドをコードするポリヌクレオチド。
 ここで、(a)配列番号1で示されるヌクレオチド配列からなるポリヌクレオチドは、コリネバクテリウム グルタミカム(Corynebacterium glutamicum)由来の、モノカルボン酸トランスポーターをコードするmctC遺伝子(cg0953)を指す。
(a) a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 1;
(b) A polynucleotide consisting of a nucleotide sequence having at least 90% identity to the nucleotide sequence shown in SEQ ID NO: 1 and encoding a polypeptide having monocarboxylic acid transporter activity.
Here, (a) the polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 1 refers to the mctC gene (cg0953) encoding a monocarboxylic acid transporter derived from Corynebacterium glutamicum.
 配列番号1で示されるヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列の例としては、配列番号1で示されるヌクレオチド配列に対して1又は数個のヌクレオチドが欠失、置換、付加、又は挿入されたヌクレオチド配列が挙げられる。ヌクレオチド配列にヌクレオチドの欠失、置換、付加、又は挿入等の変異を導入する方法は、上述したとおりである。上記ポリヌクレオチドは、1本鎖若しくは2本鎖の形態であり得、又はDNAであってもRNAであってもよい。該DNAは、cDNA、化学合成DNA等の人工DNAであり得る。 Examples of nucleotide sequences having at least 90% identity with the nucleotide sequence shown in SEQ ID NO: 1 include deletions, substitutions, additions, or An inserted nucleotide sequence is included. Methods for introducing mutations such as deletion, substitution, addition, or insertion of nucleotides into the nucleotide sequence are as described above. The polynucleotide may be in single- or double-stranded form, and may be DNA or RNA. The DNA may be cDNA, artificial DNA such as chemically synthesized DNA.
 斯かるモノカルボン酸トランスポーターをコードする遺伝子の機能の抑制は、モノカルボン酸トランスポーターをコードする遺伝子のコード領域、非コード領域、転写又は翻訳開始領域に対して欠失又は不活性化する変異を導入すること(モノカルボン酸トランスポーターをコードする遺伝子の欠失又は不活性化)、或いはモノカルボン酸トランスポーターをコードする遺伝子の転写産物を分解する活性を有するポリヌクレオチド、当該転写産物からタンパク質への翻訳を抑制するポリヌクレオチドの導入により転写や翻訳を抑制することにより行なうことができる。 Suppression of the function of a gene encoding such a monocarboxylic acid transporter is a mutation that deletes or inactivates the coding region, non-coding region, transcription or translation initiation region of the gene encoding the monocarboxylic acid transporter. (deletion or inactivation of a gene encoding a monocarboxylic acid transporter), or a polynucleotide having the activity of degrading a transcript of a gene encoding a monocarboxylic acid transporter, a protein from the transcript It can be carried out by suppressing transcription or translation by introducing a polynucleotide that suppresses translation into .
 一態様として、モノカルボン酸トランスポーターをコードする遺伝子の欠失又は不活性化は、モノカルボン酸トランスポーターをコードする遺伝子のヌクレオチド配列の一部若しくは全部をゲノム中から除去するか又は他のヌクレオチド配列と置き換えること、モノカルボン酸トランスポーターをコードする遺伝子の配列中に他のポリヌクレオチド断片を挿入すること、モノカルボン酸トランスポーターをコードする遺伝子の転写又は翻訳開始領域に変異を与えること、等によって実現することができる。好適には、モノカルボン酸トランスポーターをコードする遺伝子のヌクレオチド配列の一部若しくは全部を欠失させるか又は不活性化させる。より具体的な例としては、細胞のゲノム上のモノカルボン酸トランスポーターをコードする遺伝子を特異的に欠失又は不活性化させる方法、及び、細胞中の当該遺伝子にランダムな欠失又は不活性化変異を与えた後、モノカルボン酸トランスポーターの発現量や活性評価、又は遺伝子解析を行って所望の変異を有する細胞を選択する方法が挙げられる。 In one aspect, deletion or inactivation of a gene encoding a monocarboxylic acid transporter involves removing part or all of the nucleotide sequence of the gene encoding the monocarboxylic acid transporter from the genome, or removing other nucleotides from the genome. sequence replacement, inserting other polynucleotide fragments into the sequence of the gene encoding the monocarboxylic acid transporter, mutating the transcription or translation initiation region of the gene encoding the monocarboxylic acid transporter, etc. It can be realized by Preferably, part or all of the nucleotide sequence of the gene encoding the monocarboxylic acid transporter is deleted or inactivated. More specific examples include a method for specifically deleting or inactivating a gene encoding a monocarboxylic acid transporter on the genome of cells, and random deletion or inactivation of the gene in cells. Examples include a method in which cells having desired mutations are selected by evaluating the expression level and activity of the monocarboxylic acid transporter, or conducting genetic analysis after giving mutation mutations.
 モノカルボン酸トランスポーターをコードする遺伝子の特異的な欠失又は不活性化には、例えば相同組換えによる方法が挙げられる。すなわち、ポリヌクレオチドの置換や挿入等によって不活性化変異を導入したモノカルボン酸トランスポーターをコードする遺伝子のDNA断片、又はモノカルボン酸トランスポーターをコードする遺伝子の外側領域を含むがモノカルボン酸トランスポーターをコードする遺伝子を含まないDNA断片を構築し、これを親細胞内に組み込んで親細胞のゲノムのモノカルボン酸トランスポーターをコードする遺伝子を含む領域に相同組換えを起こさせることにより、ゲノム上のモノカルボン酸トランスポーターをコードする遺伝子を欠失又は不活性化させることが可能である。
 或いは、モノカルボン酸トランスポーターをコードする遺伝子の一部領域を含むDNA断片を有する組換えベクター(プラスミド等)を親細胞内に組み込み、親細胞のゲノムのモノカルボン酸トランスポーターをコードする遺伝子の一部領域を相同組換えにより分断することによって、モノカルボン酸トランスポーターをコードする遺伝子を不活性化することも可能である。
 細胞中の遺伝子をランダムに欠失又は不活性化させる方法としては、不活性化変異を導入した遺伝子をランダムにクローニングしたDNA断片を細胞に導入し、該細胞のゲノム上の遺伝子との間に相同組換えを起こさせる方法、細胞に紫外線、γ線等を照射して突然変異を誘発する方法などが挙げられる。遺伝子の不活性化変異とは、サイレンス変異、ミスセンス変異、ナンセンス変異、フレームシフト変異等により、標的とする遺伝子が本来有する機能が失われる変異を意味する。例えば、不活性化変異を導入した遺伝子はタンパク質を発現しないか、又は本来の活性が損なわれたタンパク質を発現する。
Specific deletion or inactivation of genes encoding monocarboxylic acid transporters includes, for example, methods by homologous recombination. That is, a DNA fragment of a gene encoding a monocarboxylic acid transporter into which an inactivating mutation has been introduced by polynucleotide substitution, insertion, or the like, or a monocarboxylic acid transporter containing an outer region of a gene encoding a monocarboxylic acid transporter. By constructing a DNA fragment that does not contain a gene encoding a porter and incorporating it into the parent cell to cause homologous recombination in the region containing the gene encoding the monocarboxylic acid transporter in the genome of the parent cell, the genome Genes encoding the above monocarboxylic acid transporters can be deleted or inactivated.
Alternatively, a recombinant vector (such as a plasmid) having a DNA fragment containing a partial region of the gene encoding the monocarboxylic acid transporter is incorporated into the parent cell, and the gene encoding the monocarboxylic acid transporter in the genome of the parent cell. It is also possible to inactivate the gene encoding the monocarboxylic acid transporter by disrupting the partial region by homologous recombination.
As a method for randomly deleting or inactivating genes in cells, a DNA fragment obtained by randomly cloning a gene introduced with an inactivating mutation is introduced into a cell, and a gene on the genome of the cell Examples include a method of causing homologous recombination, a method of irradiating cells with ultraviolet rays, γ-rays, etc. to induce mutations, and the like. A gene inactivating mutation means a mutation in which the original function of the target gene is lost due to silence mutation, missense mutation, nonsense mutation, frameshift mutation, or the like. For example, genes introduced with inactivating mutations either do not express proteins or express proteins with impaired native activity.
 不活性化変異を導入したモノカルボン酸トランスポーターをコードする遺伝子を含むDNA断片を作製する方法としては、部位特異的変異導入が挙げられる。部位特異的変異導入は、導入すべきヌクレオチド変異を含む変異用プライマーを用いて行うことができる。例えば、導入すべきヌクレオチド変異を含む2組のプライマーを用いたモノカルボン酸トランスポーターをコードする遺伝子を鋳型とするPCRにより、モノカルボン酸トランスポーターをコードする遺伝子を含む領域の上流側及び下流側をそれぞれ増幅したDNA断片を作製し、次いでこれらをSOE-PCR(splicing by overlap extension PCR)(Gene,1989,77(1):p61-68)により1つに連結することにより、所望の変異を含むDNA断片を構築することができる。あるいは、部位特異的変異導入には、インバースPCR法やアニーリング法など(村松ら編、「改訂第4版 新遺伝子工学ハンドブック」、羊土社、p82-88)、又はStratagene社のQuickChange II Site-Directed Mutagenesis Kitや、QuickChange Multi Site-Directed Mutagenesis Kit等の市販の部位特異的変異導入用キットを使用することもできる。 Site-directed mutagenesis is an example of a method for producing a DNA fragment containing a gene encoding a monocarboxylic acid transporter introduced with an inactivating mutation. Site-directed mutagenesis can be performed using mutagenic primers containing the nucleotide mutation to be introduced. For example, by PCR with a gene encoding a monocarboxylic acid transporter as a template using two sets of primers containing nucleotide mutations to be introduced, the upstream and downstream regions of the region containing the gene encoding the monocarboxylic acid transporter are detected. DNA fragments are amplified, respectively, and then these are ligated into one by SOE-PCR (splicing by overlap extension PCR) (Gene, 1989, 77(1): p61-68) to obtain the desired mutation. A DNA fragment can be constructed that contains: Alternatively, for site-directed mutagenesis, the inverse PCR method, annealing method, etc. (edited by Muramatsu et al., "Revised 4th Edition New Genetic Engineering Handbook", Yodosha, p82-88), or Stratagene's QuickChange II Site- Commercially available kits for site-directed mutagenesis such as Directed Mutagenesis Kit and QuickChange Multi Site-Directed Mutagenesis Kit can also be used.
 変異用プライマーは、ホスホロアミダイト法(Nucleic Acids Research,1989,17:7059-7071)等の周知のオリゴヌクレオチド合成法により作製することができる。鋳型とするモノカルボン酸トランスポーターをコードする遺伝子は、宿主細胞から、常法により調製してもよく、又は化学合成してもよい。 Mutation primers can be prepared by well-known oligonucleotide synthesis methods such as the phosphoramidite method (Nucleic Acids Research, 1989, 17:7059-7071). A gene encoding a monocarboxylic acid transporter used as a template may be prepared from a host cell by a conventional method, or may be chemically synthesized.
 DNA断片やベクターを宿主細胞に導入するには、例えば、リン酸カルシウム法、エレクトロポレーション法、リポフェクション法、パーテイクルガン法、PEG法等の周知の技術を適用することができる。例えばコリネ型細菌に適用可能な方法としては、コンピテントセル形質転換法(J Bacteriol,1967,93:1925-1937)、エレクトロポレーション法(FEMS Microbiol Lett,1990,55:135-138)、プロトプラスト形質転換法(Mol Gen Genet,1979,168:111-115)、Tris-PEG法(J Bacteriol,1983,156:1130-1134)などが挙げられる。 For introducing DNA fragments and vectors into host cells, well-known techniques such as the calcium phosphate method, electroporation method, lipofection method, particle gun method, PEG method, etc. can be applied. For example, methods applicable to coryneform bacteria include competent cell transformation method (J Bacteriol, 1967, 93: 1925-1937), electroporation method (FEMS Microbiol Lett, 1990, 55: 135-138), protoplast Transformation method (Mol Gen Genet, 1979, 168: 111-115), Tris-PEG method (J Bacteriol, 1983, 156: 1130-1134) and the like.
 また、モノカルボン酸トランスポーターをコードする遺伝子の転写産物を分解する活性を有するポリヌクレオチド、或いは当該転写産物からタンパク質への翻訳を抑制するポリヌクレオチドとしては、モノカルボン酸トランスポーターをコードする遺伝子のmRNAのヌクレオチド配列と相補的又は実質的に相補的なヌクレオチド配列或いはその一部を含むポリヌクレオチドが挙げられる。具体的には、モノカルボン酸トランスポーターをコードする遺伝子のmRNAに対するアンチセンスRNA、モノカルボン酸トランスポーターをコードする遺伝子のmRNAに対するsiRNA、モノカルボン酸トランスポーターをコードする遺伝子のmRNAに対するリボザイム等が挙げられる。 Further, as a polynucleotide having an activity to degrade a transcription product of a gene encoding a monocarboxylic acid transporter or a polynucleotide that suppresses translation of the transcription product into a protein, a gene encoding a monocarboxylic acid transporter Polynucleotides comprising a nucleotide sequence complementary or substantially complementary to the nucleotide sequence of mRNA, or portions thereof, are included. Specifically, antisense RNA against the mRNA of the gene encoding the monocarboxylic acid transporter, siRNA against the mRNA of the gene encoding the monocarboxylic acid transporter, ribozyme against the mRNA of the gene encoding the monocarboxylic acid transporter, and the like. mentioned.
 モノカルボン酸トランスポーターをコードする遺伝子の機能が抑制された細胞は、そのゲノム配列を確認することにより選択することができる。あるいは、モノカルボン酸トランスポーターの発現量又は活性を指標に、モノカルボン酸トランスポーターをコードする遺伝子の機能が抑制された細胞を選択することができる。 Cells in which the function of the gene encoding the monocarboxylic acid transporter is suppressed can be selected by confirming the genome sequence. Alternatively, cells in which the function of the gene encoding the monocarboxylic acid transporter is suppressed can be selected using the expression level or activity of the monocarboxylic acid transporter as an index.
 本発明において、宿主細胞は、芳香族化合物又はその塩の生産に適する細胞であればよく、微生物細胞、植物細胞及び動物細胞のいずれを用いてもよいが、好ましくは微生物細胞である。
 芳香族化合物又はその塩の生産効率の観点、特にプロトカテク酸、没食子酸、シキミ酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、カテコール、L-DOPA、コリスミ酸、4-ヒドロキシ安息香酸、4-アミノ安息香酸、4―アミノ3-ヒドロキシ安息香酸等の3-デヒドロシキミ酸から誘導される芳香族化合物又はその塩の生産効率の点から、宿主細胞は、3-デヒドロシキミ酸生産活性が向上した微生物細胞を用いるのが更に好ましい。
In the present invention, the host cells may be cells suitable for producing aromatic compounds or salts thereof, and may be any of microbial cells, plant cells and animal cells, preferably microbial cells.
From the viewpoint of production efficiency of aromatic compounds or salts thereof, especially protocatechuic acid, gallic acid, shikimic acid, 2,4-pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, catechol, L-DOPA, chorismic acid, 4-hydroxy In terms of production efficiency of aromatic compounds derived from 3-dehydroshikimic acid such as benzoic acid, 4-aminobenzoic acid, and 4-amino-3-hydroxybenzoic acid, or salts thereof, host cells are capable of producing 3-dehydroshikimic acid. It is more preferable to use microbial cells with improved production activity.
 微生物細胞としては、大腸菌、枯草菌、放線菌、シュードモナス属細菌、ストレプトコッカス属細菌、ラクトバチルス属細菌、真菌(ノイロスポラ属、アスペルギルス属、トリコデルマ属等)、酵母(サッカロマイセス属、クライベロマイセス属、シゾサッカロマイセス属、ヤロウィア属、トリコスポロン属、ロドスポリジウム属、ピキア属、キャンディダ属等)等、いずれを用いてもよいが、好ましくは原核微生物細胞であり、より好ましくはグラム陽性細菌であり、放線菌が好ましい。 Examples of microbial cells include Escherichia coli, Bacillus subtilis, actinomycetes, Pseudomonas bacteria, Streptococcus bacteria, Lactobacillus bacteria, fungi (Neurospora, Aspergillus, Trichoderma, etc.), yeasts (Saccharomyces, Kluyveromyces, Schizosaccharomyces, Yarrowia, Trichosporon, Rhodosporidium, Pichia, Candida, etc.) may be used. , actinomycetes are preferred.
 放線菌としては、コリネ型細菌として定義されている一群の微生物(Bergey's Manual of Determinative Bacteriology、Vol. 8、599(1974))が好ましく、具体的には、コリネバクテリウム属菌、ブレビバクテリウム属菌、アースロバクター属菌、マイコバクテリウム属菌、ロドコッカス属菌、ストレプトマイセス属菌、マイクロコッカス属菌、等が挙げられる。
 コリネバクテリウム属菌としては、コリネバクテリウム グルタミカム(Corynebacterium glutamicum)、コリネバクテリウム エフィシェンス(Corynebacterium efficiens)、コリネバクテリウム アンモニアゲネス(Corynebacterium ammoniagenes)、コリネバクテリウム ハロトレランス(Corynebacterium halotolerance)、コリネバクテリウム アルカノリティカム(Corynebacterium alkanolyticum)、コリネバクテリウム クレナタム(Corynebacterium crenatum)、コリネバクテリウム クルジラクチス(Corynebacterium crudilactis)、コリネバクテリウム カルナエ(Corynebacterium callunae)等が挙げられる。
 ブレビバクテリウム属菌としては、ブレビバクテリウム アンモニアゲネス(Brevibacterium ammoniagenes)等が挙げられる。
 アースロバクター属菌としては、アースロバクター グロビフォルミス(Arthrobacter globiformis)等が挙げられる。
 マイコバクテリウム属菌としては、マイコバクテリウム ボビス等が挙げられ、マイクロコッカス属菌としては、マイクロコッカス フロイデンライヒ(Micrococcus freudenreichii)、マイクロコッカス ルテウス(Micrococcus leuteus)、マイクロコッカス ウレアエ(Micrococcus ureae)、マイクロコッカス ロゼウス(Micrococcus roseus)等が挙げられる。
 コリネ型細菌のうち、好ましくはコリネバクテリウム属菌であり、より好ましくはコリネバクテリウム グルタミカムである。
 上記微生物細胞は野生株であってもよいが、その変異株や人為的な遺伝子組換え体であってもよい。
As the actinomycete, a group of microorganisms defined as coryneform bacteria (Bergey's Manual of Determinative Bacteriology, Vol. 8, 599 (1974)) is preferable, specifically, the genus Corynebacterium and the genus Brevibacterium. bacteria, Arthrobacter, Mycobacterium, Rhodococcus, Streptomyces, Micrococcus, and the like.
Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium ammoniagenes, Corynebacterium halotolerance, Corynebacterium alcano Corynebacterium alkanolyticum, Corynebacterium crenatum, Corynebacterium crudilactis, Corynebacterium callunae and the like.
Brevibacterium ammoniagenes etc. are mentioned as a Brevibacterium genus microbe.
Arthrobacter globiformis includes Arthrobacter globiformis.
Mycobacterium genus includes Mycobacterium bovis and the like, and Micrococcus genus includes Micrococcus freudenreichii, Micrococcus leuteus, Micrococcus ureae, Micrococcus Coccus roseus (Micrococcus roseus) etc. are mentioned.
Among the coryneform bacteria, the genus Corynebacterium is preferred, and Corynebacterium glutamicum is more preferred.
The above microbial cells may be wild strains, mutant strains thereof, or artificial genetically modified strains thereof.
 3-デヒドロシキミ酸生産活性が向上した微生物細胞としては、3-デヒドロシキミ酸を生産するために必要な遺伝子が強化された微生物細胞が挙げられ、具体的には、下記の(i)、(ii)、(iii)、及び(iv)のいずれか1つ以上の遺伝子操作を施した微生物細胞が挙げられ、好ましくは(i)、(ii)、(iii)、及び(iv)のいずれか2つ以上、より好ましくは3つ以上、更に好ましくは(i)、(ii)、(iii)、及び(iv)の全ての遺伝子操作を施した微生物細胞が挙げられる。
 ここで、遺伝子の強化には、所定の遺伝子を発現可能な状態で導入すること、所定の遺伝子又は当該遺伝子の制御領域へ変異を導入すること等が包含される。
(i)デヒドロシキミ酸デヒドラターゼ遺伝子、デヒドロキナ酸デヒドラターゼ遺伝子、キナ酸デヒドロゲナーゼ遺伝子及びシキミ酸デヒドロゲナーゼ遺伝子から選ばれる1以上の遺伝子の強化。
(ii)2-デヒドロ-3-デオキシアラビノヘプトン酸アルドラーゼ遺伝子、3-デヒドロキナ酸シンターゼ遺伝子、シキミ酸デヒドロゲナーゼ遺伝子からなるシキミ酸合成経路に関わる遺伝子群から選ばれる1以上の遺伝子の強化。
(iii)グルコース-6-リン酸デヒドロゲナーゼ遺伝子、6-ホスホグルコノラクトナーゼ遺伝子、ホスホグルコン酸デヒドロゲナーゼ遺伝子、リボース-5-リン酸イソメラーゼ遺伝子、リブロース-5-リン酸-3-エピメラーゼ遺伝子、トランスケトラーゼ遺伝子及びトランスアルドラーゼ遺伝子からなるペントースリン酸経路に関わる遺伝子群から選ばれる1以上の遺伝子の強化。
(iv)3,4-ジヒドロキシ安息香酸ヒドロキシラーゼ活性を有するポリペプチドをコードする遺伝子の強化。
Examples of microbial cells with improved 3-dehydroshikimic acid-producing activity include microbial cells in which genes necessary for producing 3-dehydroshikimic acid are enhanced. Specifically, the following (i), ( ii), (iii) and (iv) genetically engineered microbial cells, preferably any one of (i), (ii), (iii) and (iv) Two or more, more preferably three or more, and more preferably all of (i), (ii), (iii), and (iv) are genetically engineered microbial cells.
Here, gene enhancement includes introduction of a predetermined gene in an expressible state, introduction of a mutation into a predetermined gene or the control region of the gene, and the like.
(i) enhancement of one or more genes selected from dehydroshikimate dehydratase gene, dehydroquinate dehydratase gene, quinate dehydrogenase gene and shikimate dehydrogenase gene;
(ii) enhancement of one or more genes selected from a group of genes related to the shikimate synthesis pathway consisting of 2-dehydro-3-deoxyarabinoheptonate aldolase gene, 3-dehydroquinate synthase gene, and shikimate dehydrogenase gene;
(iii) glucose-6-phosphate dehydrogenase gene, 6-phosphogluconolactonase gene, phosphogluconate dehydrogenase gene, ribose-5-phosphate isomerase gene, ribulose-5-phosphate-3-epimerase gene, transke Enhancement of one or more genes selected from the gene group involved in the pentose phosphate pathway consisting of the tolase gene and the transaldolase gene.
(iv) enhancement of genes encoding polypeptides with 3,4-dihydroxybenzoate hydroxylase activity;
 斯くして、作製された形質転換細胞を培養し、芳香族化合物又はその塩の生産性を評価し、適切な形質転換細胞を選択することにより、有用な芳香族化合物又はその塩の生産細胞を得ることができる。生産物の測定方法は、後記参考例に記載の方法にしたがって行うことができる。 By culturing the thus produced transformed cells, evaluating the productivity of aromatic compounds or salts thereof, and selecting suitable transformed cells, useful aromatic compound or salt-producing cells can be obtained. Obtainable. The product can be measured according to the method described in Reference Examples below.
 本発明の芳香族化合物又はその塩の製造方法は、上述した形質転換細胞を培養、好ましくは糖類の存在下で培養し、目的の芳香族化合物又はその塩を回収することにより実施される。
 糖類としては、グルコースが好適であるが、フルクトース、マンノース、アラビノース、キシロース、ガラクトース等の単糖類の他、代謝によりグルコースを生成し得る糖類も使用できる。このような糖類にはグルコース単位を有するオリゴ糖又は多糖類が含まれ、セロビオース、スクロース(ショ糖)、ラクトース、マルトース、トレハロース、セロビオース、キシロビオース等の二糖類;デキストリン又は可溶性澱粉等の多糖類等が挙げられる。
 また、例えばこれらの原料化合物を含む原料として、糖蜜も用いることができる。また、わら(稲わら、大麦わら、小麦わら、ライ麦わら、オート麦わら等)、バガス、コーンストーバー等の非可食農産廃棄物や、スイッチグラス、ネピアグラス、ミスキャンサス等のエネルギー作物や、木くず、古紙等を糖化酵素等で糖化した、グルコース等の複数の糖を含む糖化液を用いることもできる。
The method for producing an aromatic compound or a salt thereof of the present invention is carried out by culturing the above-described transformed cells, preferably in the presence of sugars, and recovering the desired aromatic compound or salt thereof.
Glucose is preferred as the sugar, but monosaccharides such as fructose, mannose, arabinose, xylose and galactose, as well as sugars capable of producing glucose by metabolism can also be used. Such sugars include oligosaccharides or polysaccharides having glucose units, disaccharides such as cellobiose, sucrose, lactose, maltose, trehalose, cellobiose, xylobiose; polysaccharides such as dextrin or soluble starch; is mentioned.
Molasses can also be used, for example, as a raw material containing these raw material compounds. Inedible agricultural waste such as straw (rice straw, barley straw, wheat straw, rye straw, oat straw, etc.), bagasse and corn stover, energy crops such as switchgrass, napier grass and miscanthus, and wood waste Alternatively, a saccharified solution containing a plurality of sugars such as glucose, which is obtained by saccharifying waste paper or the like with a saccharifying enzyme or the like, can also be used.
 形質転換細胞を培養する培地は、炭素源、窒素源、無機塩類等を含有し、本発明の形質転換細胞の培養を効率的に行うことができる培地であれば、天然培地、合成培地のいずれを用いてもよい。
 炭素源としては、上記の糖類又はそれを含む糖蜜や糖化液が用いられるが、上記の糖類の他に、マンニトール、ソルビトール、キシリトール、グリセリンのような糖アルコール;酢酸、クエン酸、乳酸、フマル酸、マレイン酸、グルコン酸のような有機酸;エタノール、プロパノールのようなアルコール;ノルマルパラフィンのような炭化水素等も用いることができる。炭素源は、1種を単独で、又は2種以上を混合して使用できる。
 培養液中の原料化合物である糖類の濃度は、1~20w/v%が好ましく、2~10w/v%がより好ましく、2~5w/v%がさらに好ましい。
The medium for culturing the transformed cells contains a carbon source, a nitrogen source, inorganic salts, etc., and can be either a natural medium or a synthetic medium as long as it is a medium capable of efficiently culturing the transformed cells of the present invention. may be used.
As the carbon source, the above sugars or molasses or saccharified solutions containing them are used. In addition to the above sugars, sugar alcohols such as mannitol, sorbitol, xylitol and glycerin; , maleic acid, and gluconic acid; alcohols, such as ethanol and propanol; and hydrocarbons, such as normal paraffin. A carbon source can be used individually by 1 type or in mixture of 2 or more types.
The concentration of the saccharide, which is the raw material compound, in the culture medium is preferably 1 to 20 w/v%, more preferably 2 to 10 w/v%, and even more preferably 2 to 5 w/v%.
 窒素源としては、例えば、ペプトン、肉エキス、酵母エキス、カゼイン加水分解物、大豆粕アルカリ抽出物、メチルアミン等のアルキルアミン類、アミノ酸等の含窒素有機化合物、アンモニアもしくはその塩(塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、酢酸アンモニウムのような無機又は有機アンモニウム化合物)、尿素、アンモニア水、硝酸ナトリウム、硝酸カリウム等を使用することができる。 Nitrogen sources include, for example, peptone, meat extract, yeast extract, casein hydrolyzate, soybean meal alkaline extract, alkylamines such as methylamine, nitrogen-containing organic compounds such as amino acids, ammonia or its salts (ammonium chloride, Inorganic or organic ammonium compounds such as ammonium sulfate, ammonium nitrate and ammonium acetate), urea, aqueous ammonia, sodium nitrate, potassium nitrate and the like can be used.
 無機塩類としては、リン酸第一カリウム、リン酸第二カリウム、硫酸マグネシウム、塩化ナトリウム、硝酸第一鉄、硫酸マンガン、硫酸亜鉛、硫酸コバルト、炭酸カルシウム等が挙げられる。
 さらに、必要に応じて、ビタミン類や消泡剤等を添加することもできる。ビタミン類としては、ビオチン、チアミン(ビタミンB1)、ピリドキシン(ビタミンB6)、パントテン酸、イノシトール、ニコチン酸等が挙げられる。
Examples of inorganic salts include monopotassium phosphate, dipotassium phosphate, magnesium sulfate, sodium chloride, ferrous nitrate, manganese sulfate, zinc sulfate, cobalt sulfate, and calcium carbonate.
Furthermore, vitamins, antifoaming agents, etc. can be added as necessary. Examples of vitamins include biotin, thiamine (vitamin B1), pyridoxine (vitamin B6), pantothenic acid, inositol, and nicotinic acid.
 コリネ型細菌用培地としては、A培地〔J. Mol. Microbiol. Biotechnol. 7:182-196 (2004)〕、BT培地〔J. Mol. Microbiol. Biotechnol. 8:91-103 (2004)〕、CGXII培地〔特許第6322576号〕等が挙げられ、これらの培地において、糖類濃度を上記範囲にして用いればよい。 As culture media for coryneform bacteria, A medium [J. Mol. Microbiol. Biotechnol. 7:182-196 (2004)], BT medium [J. Mol. Microbiol. Biotechnol. 8:91-103 (2004)], CGXII medium [Patent No. 6322576] and the like can be mentioned, and these media can be used with the saccharide concentration within the above range.
 なお、糖類を含む反応又は培養に先立ち、同様の培地で、形質転換体を好気条件下で、温度約25~38℃で、約12~48時間培養して増殖させることが好ましい。 Prior to the reaction or culture containing sugars, it is preferable to grow the transformants by culturing them in the same medium under aerobic conditions at a temperature of about 25-38°C for about 12-48 hours.
 培養温度又は反応温度は、15~45℃が好ましく、25~37℃がより好ましい。
 また、培養又は反応時間は、24時間~168時間、好ましくは24時間~96時間、より好ましくは24時間~72時間、必要に応じ撹拌又は振とうしながら行うことができる。また、培養中は必要に応じてアンピシリンやカナマイシン等の抗生物質を培地に添加してもよい。
 培養は、バッチ式、流加式、連続式の何れでもよい。中でも、バッチ式が好ましい。
 培養又は反応は、好気的条件で行ってもよく、還元条件で行ってもよいが、好気的条件下で行うのが好ましい。
 好気的条件下で反応又は培養を行う場合、芳香族化合物又又はその塩の生成効率の点から、形質転換体の過度の増殖を抑制する条件下で行うのが好ましい。
 芳香族化合物が酸化を受けやすい場合には、培養は溶存酸素濃度が低い条件で行うことが好ましい。例えば没食子酸の製造においては、具体的には溶存酸素濃度が0.1~3ppmが好ましく、0.1~1ppmがより好ましい。
The culture temperature or reaction temperature is preferably 15 to 45°C, more preferably 25 to 37°C.
The culture or reaction time is 24 hours to 168 hours, preferably 24 hours to 96 hours, more preferably 24 hours to 72 hours, and can be performed with stirring or shaking as necessary. In addition, antibiotics such as ampicillin and kanamycin may be added to the medium during the culture, if necessary.
Cultivation may be of batch type, fed-batch type, or continuous type. Among them, a batch system is preferable.
Cultivation or reaction may be carried out under aerobic conditions or reducing conditions, but is preferably carried out under aerobic conditions.
When the reaction or culture is carried out under aerobic conditions, it is preferable to carry out under conditions that suppress excessive growth of the transformant from the viewpoint of the production efficiency of the aromatic compound or its salt.
If the aromatic compound is susceptible to oxidation, the culture is preferably carried out under conditions of low dissolved oxygen concentration. For example, in the production of gallic acid, specifically, the dissolved oxygen concentration is preferably 0.1 to 3 ppm, more preferably 0.1 to 1 ppm.
 培養物からの芳香族化合物又はその塩の回収及び精製方法は特に制限されない。すなわち、周知のイオン交換樹脂法、沈澱法、晶析法、再結晶法、濃縮法その他の方法を組み合わせることにより実施できる。例えば、菌体を遠心分離等で除去した後、カチオン及びアニオン交換樹脂でイオン性の物質を除き、濃縮すれば芳香族化合物又はその塩を取得することができる。培養物中に蓄積された芳香族化合物又はその塩は、そのまま単離することなく用いてもよい。 The method of collecting and purifying the aromatic compound or its salt from the culture is not particularly limited. That is, it can be carried out by combining well-known ion exchange resin method, precipitation method, crystallization method, recrystallization method, concentration method and other methods. For example, after the cells are removed by centrifugation or the like, ionic substances are removed with a cation and anion exchange resin, and the mixture is concentrated to obtain an aromatic compound or a salt thereof. Aromatic compounds or salts thereof accumulated in the culture may be used as they are without isolation.
 上述した実施形態に関し、本発明においては更に以下の態様が開示される。
 <1>下記(A)又は(B)で示されるモノカルボン酸トランスポーターの機能が抑制又は欠失された形質転換細胞を培養する工程を含む、芳香族化合物又はその塩の製造方法。
 (A)配列番号2で示されるアミノ酸配列からなるポリペプチド
 (B)配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、モノカルボン酸トランスポーター活性を有するポリペプチド
 <2>モノカルボン酸トランスポーターの機能が抑制又は欠失された形質転換細胞が、宿主細胞の染色体DNA上のモノカルボン酸トランスポーターをコードする遺伝子の機能を抑制することにより取得されるものであって、当該モノカルボン酸トランスポーターをコードする遺伝子が、下記(a)又は(b)のポリヌクレオチドである、<1>に記載の方法方法。
 (a)配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド、
 (b)配列番号1で示されるヌクレオチド配列と少なくとも90%の同一性を有するヌクレオチド配列からなり、モノカルボン酸トランスポーター活性を有するポリペプチドをコードするポリヌクレオチド。
 <3>宿主として3-デヒドロシキミ酸生産活性が向上した微生物細胞を用いる、<1>又は<2>に記載の方法。
 <4>3-デヒドロシキミ酸生産活性が向上した微生物細胞が、下記の(i)、(ii)、(iii)及び(iv)のいずれか1つ以上の遺伝子操作を施した微生物細胞である、<3>に記載の方法。
(i)デヒドロシキミ酸デヒドラターゼ遺伝子、デヒドロキナ酸デヒドラターゼ遺伝子、キナ酸デヒドロゲナーゼ遺伝子及びシキミ酸デヒドロゲナーゼ遺伝子から選ばれる1以上の遺伝子の強化。
(ii)2-デヒドロ-3-デオキシアラビノヘプトン酸アルドラーゼ遺伝子、3-デヒドロキナ酸シンターゼ遺伝子、シキミ酸デヒドロゲナーゼ遺伝子からなるシキミ酸合成経路に関わる遺伝子群から選ばれる1以上の遺伝子の強化。
(iii)グルコース-6-リン酸デヒドロゲナーゼ遺伝子、6-ホスホグルコノラクトナーゼ遺伝子、ホスホグルコン酸デヒドロゲナーゼ遺伝子、リボース-5-リン酸イソメラーゼ遺伝子、リブロース-5-リン酸-3-エピメラーゼ遺伝子、トランスケトラーゼ遺伝子及びトランスアルドラーゼ遺伝子からなるペントースリン酸経路に関わる遺伝子群から選ばれる1以上の遺伝子の強化。
(iv)3,4-ジヒドロキシ安息香酸ヒドロキシラーゼ活性を有するポリペプチドをコードする遺伝子の強化。
 <5>3-デヒドロシキミ酸生産活性が向上した微生物細胞が、前記(i)、(ii)、(iii)、及び(iv)のいずれか2つ以上の遺伝子操作を施した微生物細胞である、<4>に記載の方法。
 <6>3-デヒドロシキミ酸生産活性が向上した微生物細胞が、前記(i)、(ii)、(iii)、及び(iv)のいずれか3つ以上の遺伝子操作を施した微生物細胞である、<4>に記載の方法。
 <7>3-デヒドロシキミ酸生産活性が向上した微生物細胞が、前記(i)、(ii)、(iii)、及び(iv)の遺伝子操作を施した微生物細胞である、<4>に記載の方法。
 <8>微生物細胞がコリネ型細菌である、<3>~<7>のいずれかに記載の方法。
 <9>コリネ型細菌がコリネバクテリウム属細菌である、<8>に記載の方法。
 <10>コリネバクテリウム属細菌がコリネバクテリウム グルタミカム、コリネバクテリウム エフィシェンス、コリネバクテリウム アンモニアゲネス、コリネバクテリウムハロトレランス、コリネバクテリウム アルカノリティカム、コリネバクテリウム カルナエ、コリネバクテリウム クレナタム又はコリネバクテリウム クルジラクチスである、<9>に記載の方法。
 <11>コリネバクテリウム属細菌がコリネバクテリウム グルタミカムである、<9>に記載の方法。
 <12>芳香族化合物又はその塩が3-デヒドロシキミ酸から誘導される芳香族化合物又はその塩である<1>~<11>のいずれかに記載の方法。
 <13>芳香族化合物又はその塩が没食子酸、プロトカテク酸、カテコール、L-DOPA、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、4-ヒドロキシ安息香酸、4-アミノ安息香酸、4―アミノ3-ヒドロキシ安息香酸、又はそれらの塩である、<1>~<11>のいずれかに記載の方法。
 <14>芳香族化合物又はその塩が没食子酸、プロトカテク酸、L-DOPA、4-ヒドロキシ安息香酸、4―アミノ3-ヒドロキシ安息香酸、又はそれらの塩である、<1>~<11>のいずれかに記載の方法。
 <15>芳香族化合物又はその塩が没食子酸、プロトカテク酸、又はそれらの塩である、<1>~<11>に記載の方法。
 <16>芳香族化合物又はその塩が没食子酸又はその塩である、<1>~<11>のいずれかに記載の方法。
 <17>糖類の存在下で前記形質転換細胞を培養する、<1>~<16>のいずれかに記載の方法。
The following aspects are further disclosed in this invention regarding embodiment mentioned above.
<1> A method for producing an aromatic compound or a salt thereof, comprising the step of culturing a transformed cell in which the function of the monocarboxylic acid transporter shown in (A) or (B) below is suppressed or deleted.
(A) a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2; (B) a polypeptide consisting of an amino acid sequence having at least 90% identity with the amino acid sequence shown in SEQ ID NO: 2 and having monocarboxylic acid transporter activity <2> A transformed cell in which the function of the monocarboxylic acid transporter is suppressed or deleted is obtained by suppressing the function of the gene encoding the monocarboxylic acid transporter on the chromosomal DNA of the host cell. The method according to <1>, wherein the gene encoding the monocarboxylic acid transporter is the polynucleotide of (a) or (b) below.
(a) a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 1;
(b) A polynucleotide consisting of a nucleotide sequence having at least 90% identity to the nucleotide sequence shown in SEQ ID NO: 1 and encoding a polypeptide having monocarboxylic acid transporter activity.
<3> The method according to <1> or <2>, wherein a microbial cell with improved 3-dehydroshikimic acid-producing activity is used as the host.
<4> The microbial cell with improved 3-dehydroshikimic acid-producing activity is a microbial cell genetically engineered by one or more of the following (i), (ii), (iii) and (iv) , <3>.
(i) enhancement of one or more genes selected from dehydroshikimate dehydratase gene, dehydroquinate dehydratase gene, quinate dehydrogenase gene and shikimate dehydrogenase gene;
(ii) enhancement of one or more genes selected from a group of genes related to the shikimate synthesis pathway consisting of 2-dehydro-3-deoxyarabinoheptonate aldolase gene, 3-dehydroquinate synthase gene, and shikimate dehydrogenase gene;
(iii) glucose-6-phosphate dehydrogenase gene, 6-phosphogluconolactonase gene, phosphogluconate dehydrogenase gene, ribose-5-phosphate isomerase gene, ribulose-5-phosphate-3-epimerase gene, transke Enhancement of one or more genes selected from the gene group involved in the pentose phosphate pathway consisting of the tolase gene and the transaldolase gene.
(iv) enhancement of genes encoding polypeptides with 3,4-dihydroxybenzoate hydroxylase activity;
<5> The microbial cell with improved 3-dehydroshikimic acid-producing activity is a microbial cell genetically engineered with any two or more of (i), (ii), (iii), and (iv). , the method described in <4>.
<6> The microbial cell with improved 3-dehydroshikimic acid-producing activity is a microbial cell genetically engineered with any three or more of (i), (ii), (iii), and (iv). , the method described in <4>.
<7> The microbial cell with improved 3-dehydroshikimic acid-producing activity is the microbial cell genetically engineered in (i), (ii), (iii), and (iv), according to <4>. the method of.
<8> The method according to any one of <3> to <7>, wherein the microbial cells are coryneform bacteria.
<9> The method according to <8>, wherein the coryneform bacterium belongs to the genus Corynebacterium.
<10> The Corynebacterium bacterium is Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium ammoniagenes, Corynebacterium halotolerance, Corynebacterium alkanolyticum, Corynebacterium carnae, Corynebacterium clenatum or Corynebacterium The method according to <9>, which is Umm cruzilactis.
<11> The method according to <9>, wherein the Corynebacterium bacterium is Corynebacterium glutamicum.
<12> The method according to any one of <1> to <11>, wherein the aromatic compound or its salt is derived from 3-dehydroshikimic acid or its salt.
<13> The aromatic compound or its salt is gallic acid, protocatechuic acid, catechol, L-DOPA, 2,4-pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, 4-hydroxybenzoic acid, 4-aminobenzoic acid, The method according to any one of <1> to <11>, which is 4-amino-3-hydroxybenzoic acid or a salt thereof.
<14> of <1> to <11>, wherein the aromatic compound or a salt thereof is gallic acid, protocatechuic acid, L-DOPA, 4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid, or a salt thereof. Any method described.
<15> The method according to <1> to <11>, wherein the aromatic compound or a salt thereof is gallic acid, protocatechuic acid, or a salt thereof.
<16> The method according to any one of <1> to <11>, wherein the aromatic compound or its salt is gallic acid or its salt.
<17> The method according to any one of <1> to <16>, wherein the transformed cell is cultured in the presence of sugar.
 以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。 Although the present invention will be described in more detail below using examples, the technical scope of the present invention is not limited to the following examples.
(1)没食子酸生産菌の作製
 1)cg0620遺伝子領域を3,4-ジヒドロキシ安息香酸ヒドロキシラーゼ活性を有するポリペプチド遺伝子と置換するためのプラスミドの構築
 下記の実施例で示す塩基番号は、ATCC13032株のゲノム配列の塩基番号であり、該ゲノム配列情報については、NCBIのGBデータベースから、アクセッション番号NC_006958として取得した。
 PCR用酵素はPrimeSTAR Max DNA Polymerase(TaKaRa社)を用いた。
(1) Preparation of gallic acid-producing bacteria 1) Construction of a plasmid for replacing the cg0620 gene region with a polypeptide gene having 3,4-dihydroxybenzoic acid hydroxylase activity The genome sequence information was obtained from the GB database of NCBI as accession number NC_006958.
PrimeSTAR Max DNA Polymerase (TaKaRa) was used as an enzyme for PCR.
 ATCC13032株(=NBRC 12168株)のゲノムDNAを鋳型にプライマーOT20及びOT21にて増幅し、cg0620遺伝子領域の5’側のDNA断片を得た。またゲノムDNAを鋳型にプライマーOT23及びOT24にて増幅し、cg0620遺伝子領域の3’側のDNA断片を得た。また、コリネバクテリウム・グルタミカムATCC13032株が有するtuf遺伝子(cg0587)のプロモーター(以下、tuプロモーターと称する)を含むDNA断片(OT25)を人工遺伝子合成にて作製した。これを鋳型にプライマーOT26及びOT27にて増幅して、プロモーター領域のDNA断片を得た。また、3,4-ジヒドロキシ安息香酸ヒドロキシラーゼ活性を有するポリペプチド遺伝子(以下、hfm145VFと略記する)を含むDNA断片を人工遺伝子合成にて2種類(配列番号3と4)作製した。それぞれのDNA断片を鋳型にし、それぞれ2種類のDNAプライマー(OT30とOT31及びOT32とOT33)にて増幅し、2種類のDNA断片を得た。また、pHKPsacB1を鋳型に、プライマーOT34及びOT35にて、ベクター断片を増幅した。得られたPCR産物に対してDpnI(タカラバイオ)による処理を行った。得られた6種類のPCR産物に対し、NucleoSpin Gel and PCR Clean-up(タカラバイオ)を用いて各DNA断片を精製し、In-Fusion HD Cloning Kit(タカラバイオ)により連結することでプラスミドpHKPsacB_cg0620-Ptu-hfm145VF-hfm145VFoptを作製した。得られたプラスミド溶液を用いてECOS Competent E. Coli DH5α株(ニッポンジーン社)に形質転換し、細胞液をカナマイシンを含有するLB寒天培地に塗布して、37℃で一晩静置した。プラスミドを持つ形質転換体をカナマイシンンを含むLB液体培地2mLに接種し、37℃で一晩培養した。この培養液よりNucleoSpin Plasmid EasyPure(TaKaRa社)と用いてプラスミドの精製を行い、pHKPsacB_cg0620-Ptu-hfm145VF-hfm145VFoptを得た。 The genomic DNA of the ATCC 13032 strain (= NBRC 12168 strain) was used as a template and amplified with primers OT20 and OT21 to obtain a DNA fragment on the 5' side of the cg0620 gene region. In addition, genomic DNA was used as a template and amplified with primers OT23 and OT24 to obtain a DNA fragment on the 3' side of the cg0620 gene region. In addition, a DNA fragment (OT25) containing the promoter (hereinafter referred to as tu promoter) of the tuf gene (cg0587) of Corynebacterium glutamicum ATCC13032 strain was produced by artificial gene synthesis. Using this as a template, it was amplified with primers OT26 and OT27 to obtain a DNA fragment of the promoter region. In addition, two types of DNA fragments (SEQ ID NOS: 3 and 4) containing a polypeptide gene (hereinafter abbreviated as hfm145VF) having 3,4-dihydroxybenzoate hydroxylase activity were prepared by artificial gene synthesis. Each DNA fragment was used as a template and amplified with two kinds of DNA primers (OT30 and OT31 and OT32 and OT33) to obtain two kinds of DNA fragments. Using pHKPsacB1 as a template, a vector fragment was amplified with primers OT34 and OT35. The resulting PCR product was treated with DpnI (Takara Bio). For the 6 types of PCR products obtained, each DNA fragment was purified using NucleoSpin Gel and PCR Clean-up (Takara Bio) and ligated with the In-Fusion HD Cloning Kit (Takara Bio) to create the plasmid pHKPsacB_cg0620- Ptu-hfm145VF-hfm145VFopt was produced. Using the obtained plasmid solution, ECOS Competent E. Coli DH5α strain (Nippon Gene) was transformed, and the cell solution was spread on an LB agar medium containing kanamycin and allowed to stand overnight at 37°C. A transformant having the plasmid was inoculated into 2 mL of LB liquid medium containing kanamycin and cultured overnight at 37°C. A plasmid was purified from this culture using NucleoSpin Plasmid EasyPure (TaKaRa) to obtain pHKPsacB_cg0620-Ptu-hfm145VF-hfm145VFopt.
 2)3,4-ジヒドロキシ安息香酸ヒドロキシラーゼ活性を有するポリペプチド遺伝子導入株の作製
 エレクトロポレーション(Bio-rad)による形質転換法を用いて、上述のプラスミドpHKPsacB_cg0620-Ptu-hfm145VF-hfm145VFoptをCY44株(CY44株は、特許6322576号公報の参考例14記載のtkt株であり、トランスケトラーゼ(tktという場合もある)遺伝子の転写をtuプロモーターによって制御することによって発現が強化されている。また、デヒドロシキミ酸デヒドラターゼ遺伝子(qsuBという場合もある)遺伝子とvanR(cg2615)遺伝子の転写を安息香酸の添加により誘導することができる。さらにシキミ酸デヒドロゲナーゼ(aroE3という場合もある)遺伝子がVanRリプレッサーにより制御される。)に導入し、カナマイシン耐性で選択することにより、KC148sr株を取得した。プライマーOT20及びOT36のプライマーを用いるPCR法(Sapphire Amp(タカラバイオ))によりKC148sr株を解析したところ、予想通りの結果が得られたことから、KC148sr株はプラスミドpHKPsacB_cg0620-Ptu-hfm145VF-hfm145VFoptがcg0620遺伝子領域に導入された1回交差型相同組換え体であることを確認した。
 KC148sr株を1mLのLB液体培地(10g/Lトリプトン、5g/L酵母エキス、10g/L塩化ナトリウム)の中で24時間培養し、培養液の一部を20%スクロース含有LB寒天培地上で塗抹培養することにより、KC148株を得た。プライマーOT36とOT37のプライマーを用いるPCR法(Sapphire Amp(タカラバイオ))により、KC148株が予想通りPtu-hfm145VF-hfm145VFop遺伝子がcg0620遺伝子領域に導入されている2回交差型相同組換え体であることを確認した。
2) Preparation of a polypeptide gene-introduced strain having 3,4-dihydroxybenzoate hydroxylase activity Using a transformation method by electroporation (Bio-rad), the above plasmid pHKPsacB_cg0620-Ptu-hfm145VF-hfm145VFopt was transformed into the CY44 strain. (The CY44 strain is a tkt strain described in Reference Example 14 of Japanese Patent No. 6322576, and its expression is enhanced by controlling transcription of the transketolase (sometimes referred to as tkt) gene by the tu promoter. Transcription of the dehydroshikimate dehydratase gene (sometimes called qsuB) and vanR (cg2615) gene can be induced by addition of benzoic acid, and the shikimate dehydrogenase (sometimes called aroE3) gene is induced by the VanR repressor. The KC148sr strain was obtained by introducing the strain into the spp. and selecting for kanamycin resistance. When the KC148sr strain was analyzed by the PCR method (Sapphire Amp (Takara Bio)) using primers OT20 and OT36, the expected results were obtained. It was confirmed to be a single-crossover homologous recombinant introduced into the gene region.
The KC148sr strain was cultured in 1 mL of LB liquid medium (10 g/L tryptone, 5 g/L yeast extract, 10 g/L sodium chloride) for 24 hours, and a portion of the culture was spread on 20% sucrose-containing LB agar medium. KC148 strain was obtained by culturing. By the PCR method (Sapphire Amp (Takara Bio)) using primers OT36 and OT37, the KC148 strain is a double-crossover homologous recombinant in which the Ptu-hfm145VF-hfm145VFop gene has been introduced into the cg0620 gene region as expected. It was confirmed.
(2)乳酸デヒドロゲナーゼ(ldhという場合もある)破壊株の作製
 1)ldh(cg3219)遺伝子を破壊するためのプラスミドの作製
 PCR用酵素はPrimeSTAR Max DNA Polymerase(TaKaRa社)を用いた。pHKPsacB1(特許6322576号公報に記載)を鋳型に、プライマーpHKPsacB-F2及びpHKPsacB-R2でベクター断片を増幅した。ATCC13032株(=NBRC 12168株)のゲノムDNAを鋳型に、プライマー3219-up-F及び3219-up-Rにて増幅したcg3219遺伝子の5’側のDNA断片、及びゲノムDNAを鋳型にプライマー3219-down-F及び3219-down-Rにて増幅したcg3219遺伝子の3’側のDNA断片を得た。
 得られたPCR産物に対してDpnI(タカラバイオ)による処理を行った。得られた3種類のPCR産物に対し、NucleoSpin Gel and PCR Clean-up(タカラバイオ)を用いて各DNA断片を精製後、In-Fusion HD cloning kit(clontech社)にて連結し、pHKBsacB-Δldhを作製した。得られたプラスミド溶液を用いてECOS Competent E. Coli DH5α株(ニッポンジーン社)に形質転換し、細胞液をカナマイシンを含有するLB寒天培地に塗布して、37℃で一晩静置した。得られたコロニーを鋳型にして、Sapphire Amp(TaKaRa社)を酵素として用い、コロニーPCRを行った。プライマーは3219-up-F及び3219-down-Rを用いて、目的DNA断片の導入を確認した。遺伝子の導入が確認されたプラスミドを持つ形質転換体をカナマイシンンを含むLB液体培地2mLに接種し、37℃で一晩培養した。この培養液よりNucleoSpin Plasmid EasyPure(TaKaRa社)と用いてプラスミドの精製を行い、pHKBsacB-Δldhを得た。
(2) Preparation of lactate dehydrogenase (sometimes referred to as ldh) disrupted strain 1) Preparation of plasmid for disrupting ldh (cg3219) gene PrimeSTAR Max DNA Polymerase (TaKaRa) was used as a PCR enzyme. Using pHKPsacB1 (described in Japanese Patent No. 6322576) as a template, the vector fragment was amplified with primers pHKPsacB-F2 and pHKPsacB-R2. A DNA fragment on the 5' side of the cg3219 gene amplified with primers 3219-up-F and 3219-up-R using the genomic DNA of the ATCC 13032 strain (= NBRC 12168 strain) as a template, and the genomic DNA as the template with the primer 3219- A DNA fragment on the 3' side of the cg3219 gene amplified by down-F and 3219-down-R was obtained.
The resulting PCR product was treated with DpnI (Takara Bio). For the three types of PCR products obtained, each DNA fragment was purified using NucleoSpin Gel and PCR Clean-up (Takara Bio), and then ligated with In-Fusion HD cloning kit (Clontech) to obtain pHKBsacB-Δldh. was made. Using the obtained plasmid solution, ECOS Competent E. coli strain DH5α (Nippon Gene) was transformed, and the cell solution was spread on an LB agar medium containing kanamycin and allowed to stand overnight at 37°C. Using the obtained colony as a template, colony PCR was performed using Sapphire Amp (TaKaRa) as an enzyme. Using primers 3219-up-F and 3219-down-R, introduction of the target DNA fragment was confirmed. A transformant having a plasmid in which gene transfer was confirmed was inoculated into 2 mL of LB liquid medium containing kanamycin and cultured overnight at 37°C. A plasmid was purified from this culture using NucleoSpin Plasmid EasyPure (TaKaRa) to obtain pHKBsacB-Δldh.
 2)ldh遺伝子(cg3219)の破壊株の取得
 上記で得られたプラスミドpHKBsacB-Δldhを用いて、KC148にエレクトロポレーション法(Bio-rad)により形質転換した。カナマイシン耐性で選択することにより、KC148Δldh―srを取得した。得られたコロニーを鋳型にして、プライマーsacB-1及び3219-up1500を用いてPCR(Sapphire Amp)を行ったところ予想通りの結果が得られたことから、プラスミドpHKBsacB-Δldhが1回交差型相同組換えによりcg3219遺伝子領域に導入されたことを確認した。KC148Δldh―srを1mLのLB液体培地中で24時間培養し、培養液の一部を20%スクロース含有LB寒天培地上で塗抹培養することにより、KC148Δldh株を得た。プライマー3219-coloP-F及び3219-coloP-Rを用いたコロニーPCR(Sapphire Amp)により、ldh遺伝子(cg3219)が2回交差型相同組換えにより欠失していることを確認した。合わせて、カナマイシン耐性遺伝子とsacB遺伝子も欠失していることを確認した。
2) Acquisition of ldh gene (cg3219) disrupted strain Using the plasmid pHKBsacB-Δldh obtained above, KC148 was transformed by electroporation (Bio-rad). KC148Δldh-sr was obtained by selecting for kanamycin resistance. Using the resulting colony as a template, PCR (Sapphire Amp) was performed using primers sacB-1 and 3219-up1500, and the expected results were obtained. It was confirmed that it was introduced into the cg3219 gene region by recombination. KC148Δldh-sr was cultured in 1 mL of LB liquid medium for 24 hours, and a portion of the culture was smear cultured on 20% sucrose-containing LB agar medium to obtain KC148Δldh strain. Colony PCR (Sapphire Amp) using primers 3219-coloP-F and 3219-coloP-R confirmed that the ldh gene (cg3219) was deleted by double-crossover homologous recombination. In addition, deletion of kanamycin resistance gene and sacB gene was confirmed.
(3)mctC破壊株の作製
 1)mctC(cg0953)遺伝子を破壊するためのプラスミドの作製
 PCR用酵素はPrimeSTAR Max DNA Polymerase(TaKaRa社)を用いた。pHKPsacB1(特許6322576号公報に記載)を鋳型に、プライマーpHKPsacB-F2及びpHKPsacB-R2でベクター断片を増幅した。ATCC13032株(=NBRC 12168株)のゲノムDNAを鋳型に、プライマーocJK197及びocJK198にて増幅したcg0953遺伝子の5’側のDNA断片、及びゲノムDNAを鋳型にプライマーocJK199及びocJK200にて増幅したcg0953遺伝子の3’側のDNA断片を得た。得られたPCR産物に対してDpnI(タカラバイオ)による処理を行った。得られた3種類のPCR産物に対し、NucleoSpin Gel and PCR Clean-up(タカラバイオ)を用いて各DNA断片を精製後、In-Fusion HD cloning kit(clontech社)にて連結し、pHKBsacB-ΔmctCを作製した。得られたプラスミド溶液を用いてECOS Competent E. Coli DH5α株(ニッポンジーン社)に形質転換し、細胞液をカナマイシンを含有するLB寒天培地に塗布して、37℃で一晩静置した。得られたコロニーを鋳型にして、Sapphire Amp(TaKaRa社)を酵素として用い、コロニーPCRを行った。プライマーはocJK216及びocJK217を用いて、目的DNA断片の導入を確認した。遺伝子の導入が確認されたプラスミドを持つ形質転換体をカナマイシンンを含むLB液体培地2mLに接種し、37℃で一晩培養した。この培養液よりNucleoSpin Plasmid EasyPure(TaKaRa社)と用いてプラスミドの精製を行い、pHKBsacB-ΔmctCを得た。
(3) Preparation of mctC-disrupted strain 1) Preparation of plasmid for disrupting mctC (cg0953) gene PrimeSTAR Max DNA Polymerase (TaKaRa) was used as an enzyme for PCR. Using pHKPsacB1 (described in Japanese Patent No. 6322576) as a template, the vector fragment was amplified with primers pHKPsacB-F2 and pHKPsacB-R2. A DNA fragment on the 5' side of the cg0953 gene amplified with primers ocJK197 and ocJK198 using the genomic DNA of ATCC 13032 strain (= NBRC 12168 strain) as a template, and a cg0953 gene amplified with primers ocJK199 and ocJK200 using genomic DNA as a template. A 3' DNA fragment was obtained. The resulting PCR product was treated with DpnI (Takara Bio). For the three types of PCR products obtained, each DNA fragment was purified using NucleoSpin Gel and PCR Clean-up (Takara Bio), ligated with In-Fusion HD cloning kit (Clontech), and pHKBsacB-ΔmctC. was made. Using the obtained plasmid solution, ECOS Competent E. coli strain DH5α (Nippon Gene) was transformed, and the cell solution was spread on an LB agar medium containing kanamycin and allowed to stand overnight at 37°C. Using the obtained colony as a template, colony PCR was performed using Sapphire Amp (TaKaRa) as an enzyme. Using ocJK216 and ocJK217 as primers, introduction of the target DNA fragment was confirmed. A transformant having a plasmid in which gene transfer was confirmed was inoculated into 2 mL of LB liquid medium containing kanamycin and cultured overnight at 37°C. A plasmid was purified from this culture using NucleoSpin Plasmid EasyPure (TaKaRa) to obtain pHKBsacB-ΔmctC.
 2)mctC破壊株の取得
 上記で得られたプラスミドpHKBsacB-ΔmctCを用いて、KC148Δldh株にエレクトロポレーション法(Bio-rad)により形質転換した。カナマイシン耐性で選択することにより、KC148ΔldhΔmctC―srを取得した。得られたコロニーを鋳型にして、プライマーocJK217及びocJK224を用いてPCR(Sapphire Amp)を行ったところ予想通りの結果が得られたことから、プラスミドpHKBsacB-ΔmctCが1回交差型相同組換えによりcg0953遺伝子領域に導入されたことを確認した。KC148ΔldhΔmctC―srを1mLのLB液体培地中で24時間培養し、培養液の一部を20%スクロース含有LB寒天培地上で塗抹培養することにより、KC148ΔldhΔmctC株を得た。プライマーocJK491及びocJK492を用いたコロニーPCR(Sapphire Amp)により、mctC遺伝子(cg0953)が2回交差型相同組換えにより欠失していることを確認した。合わせて、カナマイシン耐性遺伝子とsacB遺伝子も欠失していることを確認した。
2) Acquisition of mctC-disrupted strain Using the plasmid pHKBsacB-ΔmctC obtained above, KC148Δldh strain was transformed by electroporation (Bio-rad). KC148ΔldhΔmctC-sr was obtained by selecting for kanamycin resistance. Using the resulting colony as a template, PCR (Sapphire Amp) was performed using primers ocJK217 and ocJK224, and the expected results were obtained. It was confirmed that it was introduced into the gene region. KC148ΔldhΔmctC-sr was cultured in 1 mL of LB liquid medium for 24 hours, and a part of the culture was smear cultured on 20% sucrose-containing LB agar medium to obtain the KC148ΔldhΔmctC strain. Colony PCR (Sapphire Amp) using primers ocJK491 and ocJK492 confirmed that the mctC gene (cg0953) was deleted by double-crossover homologous recombination. In addition, deletion of kanamycin resistance gene and sacB gene was confirmed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(4)芳香族化合物生産性の評価
 KC148Δldh株及びKC148ΔldhΔmctC株をLBプレートに画線し、30℃で3日間培養した。プレート上に生育した菌体を、LB培地を4mL仕込んだ丸底スピッツ(栄研化学)に植菌し、30℃、200rpmで24時間振盪培養(前培養)を行った。表2に示すCGXII培地に終濃度1mMとなるよう安息香酸ナトリウムを添加し、Bio Jr.8(エイブル株式会社)の培養槽に100mL仕込んだ。前記前培養液を1mL植菌し、32℃、700rpm、100mL/minの通気量の条件で18時間振盪培養を行い、芳香族化合物の生産性を評価した。培養液を希硫酸で適宜希釈し、遠心にて菌体を除去した後、上清を回収した。上清中の没食子酸及びプロトカテク酸濃度を定量した。結果を表3に示した。KC148Δldh株と比較してKC148ΔldhΔmctC株では没食子酸濃度が2.3倍となり、芳香族化合物の生産性向上効果を確認した。
(4) Evaluation of aromatic compound productivity The KC148Δldh strain and the KC148ΔldhΔmctC strain were streaked on an LB plate and cultured at 30°C for 3 days. The cells grown on the plate were inoculated into a round-bottom spitz (Eiken Chemical Co., Ltd.) filled with 4 mL of LB medium, and subjected to shaking culture (preculture) at 30° C. and 200 rpm for 24 hours. Sodium benzoate was added to the CGXII medium shown in Table 2 to a final concentration of 1 mM, and Bio Jr. 8 (ABLE Co., Ltd.) was charged with 100 mL. 1 mL of the preculture solution was inoculated, and cultured with shaking for 18 hours under conditions of 32° C., 700 rpm, and 100 mL/min aeration rate to evaluate the productivity of aromatic compounds. The culture solution was appropriately diluted with dilute sulfuric acid, centrifuged to remove the cells, and then the supernatant was recovered. Gallic acid and protocatechuic acid concentrations in the supernatant were quantified. Table 3 shows the results. Compared to the KC148Δldh strain, the KC148ΔldhΔmctC strain had a gallic acid concentration of 2.3 times, confirming the productivity-enhancing effect of aromatic compounds.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
参考例1 没食子酸の定量
 回収した上清はアクロプレップ96フィルタープレート(0.2μmGHP膜、日本ポール)を用いて不溶物の除去を行ない、反応液をHPLCに供した。
 HPLCの装置はChromaster(日立ハイテクサイエンス)を用いた。L-カラム ODS(4.6mm I.D.×150mm、化学物質評価研究機構)を用い、溶離液Aを0.1M リン酸二水素カリウムの0.1%リン酸溶液、溶離液Bを70%メタノールとし、流速1.0mL/分、カラム温度40℃の条件にてグラジエント溶出を行なった。検出にはUV検出器(検出波長210)を用いた。
Reference Example 1 Quantification of Gallic Acid Insoluble matter was removed from the collected supernatant using an Acroprep 96 filter plate (0.2 μm GHP membrane, Nippon Pole), and the reaction solution was subjected to HPLC.
The HPLC apparatus used was Chromaster (Hitachi High-Tech Science). Using an L-column ODS (4.6 mm ID × 150 mm, Chemical Substances Evaluation and Research Organization), eluent A was a 0.1% phosphoric acid solution of 0.1 M potassium dihydrogen phosphate, and eluent B was 70%. % methanol, a flow rate of 1.0 mL/min, and a column temperature of 40° C., gradient elution was performed. A UV detector (detection wavelength 210) was used for detection.

Claims (13)

  1.  下記(A)又は(B)で示されるモノカルボン酸トランスポーターの機能が抑制又は欠失された形質転換細胞を培養する工程を含む、芳香族化合物又はその塩の製造方法。
     (A)配列番号2で示されるアミノ酸配列からなるポリペプチド
     (B)配列番号2で示されるアミノ酸配列と少なくとも90%の同一性を有するアミノ酸配列からなり、モノカルボン酸トランスポーター活性を有するポリペプチド
    A method for producing an aromatic compound or a salt thereof, comprising the step of culturing a transformed cell in which the function of a monocarboxylic acid transporter shown in (A) or (B) below is suppressed or deleted.
    (A) a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2; (B) a polypeptide consisting of an amino acid sequence having at least 90% identity with the amino acid sequence shown in SEQ ID NO: 2 and having monocarboxylic acid transporter activity
  2.  宿主として3-デヒドロシキミ酸生産活性が向上した微生物細胞を用いる、請求項1に記載の方法。 The method according to claim 1, wherein a microbial cell with improved 3-dehydroshikimic acid-producing activity is used as a host.
  3.  3-デヒドロシキミ酸生産活性が向上した微生物細胞が、下記の(i)、(ii)、(iii)及び(iv)のいずれか1つ以上の遺伝子操作を施した微生物細胞である、請求項2に記載の方法。
    (i)デヒドロシキミ酸デヒドラターゼ遺伝子、デヒドロキナ酸デヒドラターゼ遺伝子、キナ酸デヒドロゲナーゼ遺伝子及びシキミ酸デヒドロゲナーゼ遺伝子から選ばれる1以上の遺伝子の強化。
    (ii)2-デヒドロ-3-デオキシアラビノヘプトン酸アルドラーゼ遺伝子、3-デヒドロキナ酸シンターゼ遺伝子、シキミ酸デヒドロゲナーゼ遺伝子からなるシキミ酸合成経路に関わる遺伝子群から選ばれる1以上の遺伝子の強化。
    (iii)グルコース-6-リン酸デヒドロゲナーゼ遺伝子、6-ホスホグルコノラクトナーゼ遺伝子、ホスホグルコン酸デヒドロゲナーゼ遺伝子、リボース-5-リン酸イソメラーゼ遺伝子、リブロース-5-リン酸-3-エピメラーゼ遺伝子、トランスケトラーゼ遺伝子及びトランスアルドラーゼ遺伝子からなるペントースリン酸経路に関わる遺伝子群から選ばれる1以上の遺伝子の強化。
    (iv)3,4-ジヒドロキシ安息香酸ヒドロキシラーゼ活性を有するポリペプチドをコードする遺伝子の強化。
    The claim that the microbial cell with improved 3-dehydroshikimic acid-producing activity is a microbial cell genetically engineered by any one or more of the following (i), (ii), (iii) and (iv): 2. The method described in 2.
    (i) enhancement of one or more genes selected from dehydroshikimate dehydratase gene, dehydroquinate dehydratase gene, quinate dehydrogenase gene and shikimate dehydrogenase gene;
    (ii) enhancement of one or more genes selected from a group of genes related to the shikimate synthesis pathway consisting of 2-dehydro-3-deoxyarabinoheptonate aldolase gene, 3-dehydroquinate synthase gene, and shikimate dehydrogenase gene;
    (iii) glucose-6-phosphate dehydrogenase gene, 6-phosphogluconolactonase gene, phosphogluconate dehydrogenase gene, ribose-5-phosphate isomerase gene, ribulose-5-phosphate-3-epimerase gene, transke Enhancement of one or more genes selected from the gene group involved in the pentose phosphate pathway consisting of the tolase gene and the transaldolase gene.
    (iv) enhancement of genes encoding polypeptides with 3,4-dihydroxybenzoate hydroxylase activity;
  4.  微生物細胞がコリネ型細菌である、請求項2又は3に記載の方法。 The method according to claim 2 or 3, wherein the microbial cells are coryneform bacteria.
  5.  コリネ型細菌がコリネバクテリウム属細菌である、請求項4に記載の方法。 The method according to claim 4, wherein the coryneform bacterium is a bacterium of the genus Corynebacterium.
  6.  コリネバクテリウム属細菌がコリネバクテリウム グルタミカム、コリネバクテリウムエフィシェンス、コリネバクテリウム アンモニアゲネス、コリネバクテリウム ハロトレランス、コリネバクテリウム アルカノリティカム、コリネバクテリウム カルナエ、コリネバクテリウム クレナタム又はコリネバクテリウム クルジラクチスである、請求項5に記載の方法。 The Corynebacterium bacterium is Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium ammoniagenes, Corynebacterium halotolerance, Corynebacterium alkanolyticum, Corynebacterium carnae, Corynebacterium clenatum or Corynebacterium 6. The method of claim 5, which is Cruzilactis.
  7.  コリネバクテリウム属細菌がコリネバクテリウム グルタミカムである、請求項5に記載の方法。 The method according to claim 5, wherein the Corynebacterium bacterium is Corynebacterium glutamicum.
  8.  芳香族化合物又はその塩が3-デヒドロシキミ酸から誘導される芳香族化合物又はその塩である請求項1~7のいずれか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the aromatic compound or its salt is an aromatic compound or its salt derived from 3-dehydroshikimic acid.
  9.  芳香族化合物又はその塩が没食子酸、プロトカテク酸、カテコール、L-DOPA、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、4-ヒドロキシ安息香酸、4―アミノ3-ヒドロキシ安息香酸、又はそれらの塩である、請求項1~7のいずれか1項に記載の方法。 Aromatic compounds or their salts are gallic acid, protocatechuic acid, catechol, L-DOPA, 2,4-pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, 4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid, or a salt thereof, the method according to any one of claims 1 to 7.
  10.  芳香族化合物又はその塩が没食子酸、プロトカテク酸、L-DOPA、4-ヒドロキシ安息香酸、4-アミノ安息香酸、4-アミノ3-ヒドロキシ安息香酸、又はそれらの塩である、請求項1~7のいずれか1項に記載の方法。 Claims 1 to 7, wherein the aromatic compound or a salt thereof is gallic acid, protocatechuic acid, L-DOPA, 4-hydroxybenzoic acid, 4-aminobenzoic acid, 4-amino-3-hydroxybenzoic acid, or a salt thereof. A method according to any one of
  11.  芳香族化合物又はその塩が没食子酸、プロトカテク酸、又はそれらの塩である、請求項1~7に記載の方法。 The method according to claims 1 to 7, wherein the aromatic compound or its salt is gallic acid, protocatechuic acid, or a salt thereof.
  12.  芳香族化合物又はその塩が没食子酸又はその塩である、請求項1~7のいずれか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the aromatic compound or its salt is gallic acid or its salt.
  13.  糖類の存在下で前記形質転換細胞を培養する、請求項1~12のいずれか1項に記載の方法。 The method according to any one of claims 1 to 12, wherein the transformed cells are cultured in the presence of sugar.
PCT/JP2022/045190 2021-12-07 2022-12-07 Method for producing aromatic compounds WO2023106352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021198835 2021-12-07
JP2021-198835 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023106352A1 true WO2023106352A1 (en) 2023-06-15

Family

ID=86730472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045190 WO2023106352A1 (en) 2021-12-07 2022-12-07 Method for producing aromatic compounds

Country Status (1)

Country Link
WO (1) WO2023106352A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241508A1 (en) * 2020-05-29 2021-12-02 花王株式会社 Transformant having gallic acid-producing ability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241508A1 (en) * 2020-05-29 2021-12-02 花王株式会社 Transformant having gallic acid-producing ability

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ELENA JOLKVER, DENISE EMER, STEFAN BALLAN, REINHARD KRÄMER, BERNHARD J. EIKMANNS, KAY MARIN: "Identification and Characterization of a Bacterial Transport System for the Uptake of Pyruvate, Propionate, and Acetate in Corynebacterium glutamicum", JOURNAL OF BACTERIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 191, no. 3, 1 February 2009 (2009-02-01), US , pages 940 - 948, XP055314571, ISSN: 0021-9193, DOI: 10.1128/JB.01155-08 *
KAPPELMANN JANNICK, KLEIN BIANCA, PAPENFUSS MATHIAS, LANGE JULIAN, BLOMBACH BASTIAN, TAKORS RALF, WIECHERT WOLFGANG, POLEN TINO, N: "Comprehensive Analysis of C. glutamicum Anaplerotic Deletion Mutants Under Defined d-Glucose Conditions", FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, vol. 8, XP093070012, DOI: 10.3389/fbioe.2020.602936 *
WANG YU, FAN LIWEN, TUYISHIME PHILIBERT, LIU JIAO, ZHANG KUN, GAO NING, ZHANG ZHIHUI, NI XIAOMENG, FENG JINHUI, YUAN QIANQIAN, MA : "Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum", COMMUNICATIONS BIOLOGY, vol. 3, no. 1, XP093070008, DOI: 10.1038/s42003-020-0954-9 *

Similar Documents

Publication Publication Date Title
EP3165608B1 (en) Method for producing l-amino acid of glutamate family
US10047385B2 (en) Method for manufacturing useful substance
Yamamoto et al. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions
JP6302073B2 (en) Coryneform bacterium transformant and method for producing organic compound using the same
WO2021241508A1 (en) Transformant having gallic acid-producing ability
JP2022140514A (en) Method for producing aldehyde
DE10219714A1 (en) Process for the microbial production of aromatic amino acids and other metabolites of the aromatic amino acid biosynthetic pathway
WO2015005405A1 (en) Method for producing useful substance
EP3102675B1 (en) Improved microorganisms for succinic acid production
JP6668577B1 (en) Method for producing 1,3-propanediol
JP5602982B2 (en) Method for producing succinic acid
WO2023106352A1 (en) Method for producing aromatic compounds
JP2008067623A (en) Method for producing non-amino organic acids
WO2023106351A1 (en) Method for producing aromatic compound
US20200224227A1 (en) Putrescine-producing microorganism and method of producing putrescine using the same
WO2024005033A1 (en) Method for producing aromatic compound
US11459574B2 (en) Transformant having Entner-Doudoroff pathway and production method for organic compound using same
WO2023038066A1 (en) Method for producing aromatic compound
CN118355124A (en) Method for producing aromatic compound
US20150118720A1 (en) Process for producing amino acid
RU2727666C2 (en) Putrescine-producing microorganism and a method of producing putrescine using said microorganism
Chong Engineering cAMP Receptor Protein (CRP) for improved cell phenotypes during fermentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023566348

Country of ref document: JP

Kind code of ref document: A