WO2023106342A1 - Method and apparatus for detection, identification, and quantification of fine particles - Google Patents

Method and apparatus for detection, identification, and quantification of fine particles Download PDF

Info

Publication number
WO2023106342A1
WO2023106342A1 PCT/JP2022/045152 JP2022045152W WO2023106342A1 WO 2023106342 A1 WO2023106342 A1 WO 2023106342A1 JP 2022045152 W JP2022045152 W JP 2022045152W WO 2023106342 A1 WO2023106342 A1 WO 2023106342A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
pulse
program
bead
mixed
Prior art date
Application number
PCT/JP2022/045152
Other languages
French (fr)
Japanese (ja)
Inventor
典彦 直野
弘泰 武居
Original Assignee
アイポア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイポア株式会社 filed Critical アイポア株式会社
Publication of WO2023106342A1 publication Critical patent/WO2023106342A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/12Coulter-counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to devices and methods for detecting, identifying and quantifying microparticles in samples.
  • microparticles flowing in a line in a capillary are irradiated with excitation light, fluorescence and scattered light emitted from the microparticles are detected by multiple detectors, and based on the output data of the detectors Detect and classify microparticles.
  • Patent Document 1 a method of acquiring spatial distribution information of signals emitted by microparticles (Patent Document 1), labeling an object with a plurality of fluorescent dyes, and simultaneously detecting fluorescence of different wavelengths
  • Patent Document 2 A method of detecting and analyzing
  • the scattered light intensity of microparticles varies depending on the size and internal state of the particles, and the fluorescence intensity depends on the amount of the antigen to be labeled held by the particles.
  • the peak value of scattered light or fluorescence obtained from one particle is plotted on a two-dimensional scatter diagram, and based on that information, the types of microparticles are classified one by one. Therefore, for accurate sample analysis, it is necessary to define appropriate discrimination boundaries for scattered light and fluorescence intensity (Patent Document 3).
  • discrimination boundaries are first set based on the scattering properties of the cells.
  • Forward and side scatter can provide approximate cell size and granularity information. Since red blood cells are smaller than white blood cells, both forward and side scattering intensities are low. Among white blood cells, monocytes and lymphocytes clearly differ in forward scattering light intensity, while granulocytes have high side scattering intensity. .
  • the flow cytometry method is a technique that enables various analyzes by combining excitation light, scattered light emitted from microparticles, and fluorescence intensity, wavelength, and angle.
  • Non-Patent Document 1 As another technique for detecting, identifying, and quantifying biological microparticles such as cells, microorganisms, viruses, or exosomes, target microparticles are suspended in an electrolytic solution, and particles are generated by electrophoresis.
  • a pore electrical resistance method the so-called Coulter method, which detects a transient change in ion current accompanying passage through a pore is sometimes used.
  • Non-Patent Document 1 A pore electrical resistance method, the so-called Coulter method, which detects a transient change in ion current accompanying passage through a pore is sometimes used.
  • Non-Patent Document 2 In recent years, high-precision thin-film pores using semiconductor photolithography have significantly improved the accuracy of particle identification, and it has become possible to identify clinical specimens containing bioparticles as small as 100 nm with high accuracy.
  • the particle size coefficient and size are estimated from the signal intensity associated with the passage of cells through pores (Patent Document 4).
  • Patent Document 4 the signal intensity associated with the passage of cells through pores.
  • the flow cytometry method and the Coulter method are useful methods for detecting and classifying a large amount of microparticles and analyzing the amount of particles present, regardless of the purity of the object.
  • a common feature of these measuring means is that each time one particle passes through the measuring section, one pulse-like signal is observed, and the distribution of the pulses is the object of analysis.
  • the Coulter method which measures transient changes in electrical resistance due to passage of fine particles through pores, and the scattered light of fine particles that pass through a narrow tube in a single line, are irradiated with a laser beam.
  • Flow cytometric methods are used to measure transient changes in Each of these methods is a technique of acquiring transient changes in electrical resistance or scattered light intensity as a pulse signal, and detecting, identifying, and quantifying fine particles by analyzing the pulse signal.
  • the height and width of each pulse generated by measuring each particle are expressed in a scatter diagram. Identify and quantify.
  • detection refers to confirming the presence or absence of particles to be detected (cells, microorganisms, and proteins) in the sample
  • identification refers to distinguishing between a plurality of particles to be detected in the sample
  • Estimating the concentration of is called quantification, respectively.
  • the first is the overlap of widths and heights between different grain types
  • the second is the cluster shift caused by variations in each measurement value
  • the third is the presence of contaminant particles other than the particles to be measured
  • the fourth is the presence of contaminant particles in the biological sample.
  • FIG. 1 shows a conceptual diagram of measurement results of a sample in which three types of particles to be measured, ie, first, second, and third particle types are mixed.
  • FIG. 1 represents the first grain type 110, the second grain type 120 and the third grain type 130, each with a differently shaped plot.
  • One plot represents one pulse.
  • a first axis 101 and a second axis 102 are quantities representing characteristics of each pulse obtained as a measurement result.
  • the first axis may be pulse width (duration) and the second axis may be pulse height (peak power value).
  • the first axis may be the pulse height of the first sensor, and the second axis may be the pulse height of each second sensor.
  • leukocytes neutrils, lymphocytes, monocytes, eosinophils, and basophils
  • the scatter plots of the scattered light or fluorescence peak intensities are well separated. It is easy to distinguish between
  • different types of particles having similar particle sizes generally have unclear clusters, as shown in FIG. Therefore, it is difficult to distinguish between grain types, and it is also difficult to detect, identify, and quantify the grains.
  • FIG. 2 shows a conceptual diagram of measurement results of a sample in which three types of particles to be measured, ie, first, second, and third particle types are mixed.
  • a first axis 201 and a second axis 202 are each a quantity that characterizes each pulse obtained as a result of the measurement.
  • FIG. 2(a) shows the result of preliminary measurement for determination of the identification boundary, and the first grain type 210, the second grain type 220 and the third grain type 230 are plotted in different forms. On this scatterplot, the measurements for each particle form clusters and are relatively well separated.
  • FIGS. 2(b) and 2(c) schematically show measurement results of measurement target samples of unknown grain types. After determining the identification boundary 200 of the three grain types in FIG. They can each be classified as a second particle and, if within the third region 239, a third particle.
  • the plot for each grain type shifts greatly on the scatter plot.
  • misidentifications 221 in which particles belonging to the cluster of the first grain type are classified as the second grain type.
  • misidentification 231 often occurs in which the particles belonging to the cluster of the third grain type are classified as the second grain type.
  • the accuracy of detection and identification deteriorates due to inter-measurement variations in measurement results.
  • the accuracy is greatly impaired.
  • the third problem is that it is difficult to separate the pulses derived from the particles to be measured and the pulses derived from particles other than the particles to be measured, that is, contaminants.
  • the measurement in FIG. 1 assumes the measurement result of a sample consisting of only the first to third grain types, but in the measurement of an actual biological sample, it is common that some particles to be measured are present in contaminants. . In general, contaminants are composed of many kinds of particles, and their origins are unknown.
  • FIG. 3 is a conceptual diagram of such measurement results.
  • a first axis 301 and a second axis 302 are quantities that characterize each pulse obtained as a measurement result.
  • FIG. 3(a) shows measurement results of a sample containing particles to be measured, and FIG.
  • 3(b) shows measurement results of a sample not containing particles to be measured.
  • Contaminant particles are distributed in a region 311 in FIG. 3A, and particles to be measured are distributed in a region 312, respectively.
  • the contaminant particles are unknown particles and consist of a mixture of particles of various sizes and properties. Therefore, with conventional techniques, it is difficult to extract and quantify only particles to be measured from the measurement results of such samples, or to detect the presence or absence of particles to be measured for each sample.
  • the former corresponds to the case of quantifying a trace amount of viruses, bacteria, or proteins from a specimen sample
  • the latter corresponds to the case of detecting whether or not a specific virus, bacteria, or protein is contained in a specimen sample. Both of these technologies are highly demanded for practical use, but conventional technologies have not been able to exhibit sufficient performance.
  • the fourth problem is that in the case of a sample containing only a few particles to be measured in contaminants, it is difficult to detect, identify, and quantify the particles.
  • the schematic diagram of FIG. Have difficulty.
  • the most important performance index in practical examination of biological samples is the sensitivity of particles to be measured, and the solution of the fourth problem is strongly desired.
  • a fifth problem is that the Coulter method and flow cytometry cannot detect, identify, and quantify small particles of 10 nm or less, such as proteins. Since flow cytometry uses light scattering, it is difficult to measure scattered light pulses from such small particles. In the case of the Coulter principle, it is theoretically possible to measure by using a device with pores of about 10 nm.
  • ELISA Enzyme-Linked Immuno Sorbent Assay
  • ELISA Enzyme-Linked Immuno Sorbent Assay
  • the present invention has been made in view of such circumstances, and can provide the following aspects.
  • a coulter measuring device that a feature quantity extraction unit that calculates a feature quantity of a pulse waveform associated with passage of the particles through the pore; an incidental measurement condition storage unit that stores incidental measurement conditions of the pores; An AI program that learns the pulse waveform, A first attachment containing one or more selected from the group consisting of the hole diameter, shape, and thickness of the first pore of the first pore of the first Coulter measurement device used for measuring known particles of known type storing measurement conditions in the incidental measurement condition storage unit; The feature amount extraction unit calculates a first feature amount from a first pulse waveform obtained from the first Coulter measurement device as the known particles pass through the first pore, creating a learned AI program by learning the AI program using the first feature quantity and the first incidental measurement condition as teacher data and the type of the
  • a laser beam is irradiated to a measurement part including a transparent flow path through which particles in a sample pass in a row, and a pulse signal from scattered light or fluorescence from particles passing through the measurement part each time one particle passes through the measurement part.
  • a flow cytometry instrument configured to obtain a a feature amount extraction unit that calculates a feature amount of a pulse waveform obtained from a pulse signal obtained as the particles pass through the measurement unit; an incidental measurement condition storage unit for storing incidental measurement conditions of flow cytometry measurement means;
  • An AI program that learns the pulse waveform, First light source characteristic information, first light receiver angle information, first flow velocity information, and first fluorescent label characteristics representing the characteristics of the first flow cytometry measurement means used for measuring known particles of known types storing a first incidental measurement condition including one or more selected from the group consisting of information and first sheath liquid physical property information in the incidental measurement condition storage unit; calculating a first feature quantity from a first pulse waveform obtained from the first flow cytometry measurement means as the known
  • An AI program for identifying first type particles and second type particles mixed in a sample The instructions in the AI program, when executed by a processor, include: A transient change in ionic current between two electrodes in contact with the electrolyte on both sides of the pore when one particle dispersed in the electrolyte passes through the pore is detected as one pulse signal.
  • a pore device comprising: A feature quantity extraction unit that calculates N feature quantity groups for each pulse waveform; Using a Coulter measuring device equipped with an AI program that learns pulse waveforms, The first pulse waveform obtained by measuring the first sample with the Coulter measuring device is clustered in an N-dimensional feature amount space based on the feature amount vector having the feature amount group calculated for each of the first pulse waveforms.
  • the second pulse waveform obtained by measuring the second sample with the Coulter measurement device is clustered in an N-dimensional feature amount space based on the feature amount vector having the feature amount group calculated for each of them as an element. classifying into the first estimated pulse waveform group and the second estimated pulse waveform group,
  • Each of the feature quantity groups calculated from the first estimated pulse waveform group is used as teacher data
  • the first type is used as a teacher label
  • the feature quantity group calculated from the second estimated pulse waveform group is An AI program characterized by being configured to learn the AI program using each as teacher data and the second type as a teacher label, and to create a learned AI discriminator.
  • An AI program for estimating the presence or absence of a protein to be detected in a sample is By mixing anti-protein beads modified with an antibody that specifically binds to the detection target protein into a sample known to contain the detection target protein and contaminants, the detection target protein is bound therein. a first mixed sample prepared containing bound beads; using a second mixed sample prepared by mixing the anti-protein beads with a sample known to contain the contaminants but not the protein to be detected; configured to detect transient changes in ionic current between two electrodes in contact with the electrolyte on both sides of the pore as a pulse waveform when particles dispersed in the electrolyte pass through the pore.
  • the instructions in the AI program when executed by a processor, include: calculating a contamination pulse probability that the first pulse measurement result is not the bound bead by calculating the first pulse measurement result and the second pulse measurement result; Learning the AI program using the pulse measurement result of the pulse whose probability of contamination is below the threshold as teacher data and positive as a correct label, An AI program that is configured to learn the AI program using the second pulse measurement result as teacher data and negative as a correct label to create a trained AI detector.
  • a method using an AI program for detecting whether or not a microorganism to be detected is contained in a sample
  • a bead-mixed negative sample is prepared by mixing antimicrobial beads modified with an antibody that specifically binds to the microorganism to be detected to a known negative sample that does not contain the microorganism to be detected, Mixing the antimicrobial beads with a known positive sample containing the microorganism to be detected to prepare a bead-mixed positive sample containing microorganism-bound beads to which the microorganism to be detected and the antimicrobial beads are bound,
  • a Coulter device configured to detect, as a pulse signal, a transient change in electrical resistance between both sides of a pore when fine particles of the bead-mixed negative sample dispersed in an electrolytic solution pass through the pore.
  • a negative pulse measurement result is obtained by measuring the bead-mixed positive sample with the Coulter device, Using an AI program, AI learning is performed using the negative pulse measurement result as teacher data and the negative label as the correct answer, A method comprising using the AI program to perform AI learning using the positive pulse measurement result as teacher data and the positive label as a correct answer to create a trained AI detector.
  • a method using an AI program for detecting whether the sample contains exosomes to be detected Create a bead-mixed negative sample by mixing anti-exosome beads modified with an antibody that specifically binds to the exosomes to be detected in a known negative sample that does not contain exosomes to be detected, The anti-exosome beads are mixed with the known positive sample containing the exosomes to be detected, and the exosomes to be detected and the anti-exosome beads are bound to create a bead mixed positive sample containing exosome-bound beads,
  • a Coulter device configured to detect, as a pulse signal, a transient change in electrical resistance between both sides of a pore when fine particles of the bead-mixed negative sample dispersed in an electrolytic solution pass through the pore.
  • a negative pulse measurement result is obtained by measuring the bead-mixed positive sample with the Coulter device, Using an AI program, AI learning is performed using the negative pulse measurement result as teacher data and the negative label as the correct answer, A method comprising using the AI program to perform AI learning using the positive pulse measurement result as teacher data and the positive label as a correct answer to create a trained AI detector.
  • a method for detecting whether a target protein is contained in a sample comprising: Configured to detect a transient change in electrical resistance between both sides of the pore as a pulse signal only when detectable particles having a size equal to or larger than the detection limit size dispersed in the electrolytic solution pass through the pore.
  • a Coulter device that preparing a first sample by mixing anti-protein beads that specifically bind to the protein to be detected with a negative sample that does not contain a protein having a size less than the detection limit size; Mixing the anti-protein beads with the positive sample containing the protein to create a second sample containing bound beads in which the anti-protein beads are bound to each other; A first pulse number of the first pulse measurement result obtained by measuring the first sample with the Coulter device, and a second pulse measurement result of the second pulse measurement result obtained by measuring the second sample with the Coulter device Determine the positive pulse number threshold from the number of pulses, For the unknown sample in which the third pulse number in the third pulse measurement result obtained by measuring the unknown sample in which it is unknown whether or not the protein to be detected is contained is above the positive pulse number threshold, A method comprising determining that the protein to be detected is included.
  • a method using an AI program for detecting whether or not a microorganism to be detected is contained in a sample
  • a bead-mixed negative sample is prepared by mixing labeled beads modified with an antibody that specifically binds to the microorganism to be detected to a known negative sample that does not contain the microorganism to be detected, Centrifuging the negative sample container containing the bead-mixed negative sample, The sediment in the lower part of the negative sample container is configured to detect, as a pulse signal, a transient change in electrical resistance between both sides of the pore when fine particles dispersed in the electrolytic solution pass through the pore.
  • a concentrated negative pulse measurement result is obtained, Mixing the labeled beads with a known positive sample containing the microorganism to be detected to prepare a bead-mixed positive sample containing microorganism-bound beads to which the microorganism to be detected and the labeled beads are bound, Centrifuging the positive sample container containing the bead-mixed positive sample, By measuring the sediment at the bottom of the positive sample container with the Coulter device, a concentrated positive pulse measurement result is obtained, Using an AI program, AI learning is performed using the concentrated negative pulse measurement result as teacher data and negative as a correct label, using the AI program to create a trained AI detector by performing AI learning using the enriched positive pulse measurement results as teacher data and using positive as a correct label.
  • a method using an AI program for identifying which of two types of microorganisms are present in a sample comprising: A first sample known to contain a first microorganism, a first antimicrobial bead modified with an antibody that specifically binds to said first microorganism and an antibody that specifically binds to a second microorganism
  • a second sample known to contain a second microorganism is mixed with the two-species mixed beads to form a second microorganism-bound bead in which the second microorganism and the second antimicrobial bead are bound.
  • the first bead mixture sample is configured to detect a transient change in electrical resistance between both sides of the pore as a pulse signal when the fine particles dispersed in the electrolyte pass through the pore.
  • a first pulse measurement result is obtained by measuring with a Coulter device, obtaining a second pulse measurement result by measuring the second bead-mixed sample with the Coulter device;
  • AI learning is performed using the first pulse measurement result as teacher data and the first microorganism as a teacher label
  • a method comprising using the AI program to perform AI learning using the second pulse measurement result as teacher data and the second microorganism as a teacher label to create a learned AI discriminator.
  • a method using an AI program for quantifying the concentration of protein contained in a sample comprising: A first sample known to contain the protein at a first concentration is mixed with labeled beads modified with an antibody that specifically binds to the protein to form a first sample containing a conjugate of the protein and the labeled beads. Create a bead mixture sample, mixing the labeled beads with a second sample known to contain a second concentration of the protein to form a second bead mixture sample containing a conjugate of the protein and the labeled beads; The first bead mixture sample is configured to detect a transient change in electrical resistance between both sides of the pore as a pulse signal when the fine particles dispersed in the electrolyte pass through the pore.
  • cells such as blood cells, microorganisms such as viruses and bacteria, or microparticles such as proteins in a biological sample are detected and detected using measurement means that generate pulses as a result, such as the Coulter method and flow cytometry. Identification and quantification can be achieved with higher precision than in the prior art.
  • FIG. 2 is a diagram for explaining measurement results of a sample containing contaminant particles and problems in the prior art.
  • 1 shows an example of a measuring device that constitutes a fine particle measuring apparatus using the Coulter method used in an embodiment of the present invention.
  • FIG. 7 shows an example of a pulse waveform obtained by the apparatus of FIG. 4 or FIG.
  • FIG. 1 shows an example of a measurement device that constitutes a flow cytometry particle measurement apparatus used in an embodiment of the present invention.
  • 1 shows an example configuration of a detection, identification or quantification device according to an embodiment of the invention.
  • 4 is a flow chart showing an example of AI program learning according to an embodiment of the present invention, and an unknown sample detection/discrimination/quantitation process using the same. It is a figure explaining the process of extracting the feature-value of a pulse from a pulse waveform. An example of padding after the end of a pulse as AI data preprocessing for a deep neural network is shown. An example of a feature value obtained from a pulse and an example of expressing it in p-dimensional space are shown.
  • FIG. 10 is a conceptual diagram of the result of calculating each discriminant boundary for each measurement; Another example of supervised labeling for identifying microorganisms is shown.
  • 1 is a diagram schematically showing a deep neural network;
  • FIG. 4 shows an example of result output by the AI program according to the embodiment of the present invention.
  • Fig. 3 shows an example configuration of a detection, identification or quantification device according to another embodiment of the invention;
  • Fig. 3 shows an example configuration of a detection, identification or quantification device according to yet another embodiment of the present invention;
  • FIG. 4 is a diagram schematically showing the pulse number ratio in the measurement results of a biological sample containing particles to be measured and a biological sample not containing particles to be measured.
  • the mixing ratio a2000 of the 220 nm beads, which are the particles to be measured shown in FIG.
  • the results of performance evaluation are shown.
  • the concept of specimen pretreatment in detecting whether or not a microorganism to be detected exists in a sample is shown.
  • the concept of sample pretreatment for identifying the types of viruses present in the sample is shown.
  • FIG. 3 shows the pulse height (transient change in ion current) when measuring polystyrene beads of various diameters with a Coulter apparatus having pores with a hole diameter of 300 nm and a thickness of 50 nm.
  • 1 shows an example of a sample that is a target of a detection method according to an embodiment of the present invention.
  • FIG. 10 is a diagram expressing 6 measurements performed for each pulse by selecting two of the feature amounts extracted by the feature amount extraction means from the pulses extracted by the pulse extraction means and performing them in a scatter diagram.
  • a confusion matrix that compares a teacher label and an AI detector output on a pulse-by-pulse basis and its AI detection result are shown.
  • the fine particles to be detected, identified, or quantified in the present invention are not limited, and can be arbitrarily selected according to the type and performance of the measuring device.
  • Suitable examples of microparticles include protein molecules, microorganisms (fungi, bacteria, viruses, etc.), exosomes, and the like.
  • the program according to the present invention has a function of performing the method according to the present invention by storing it in an arbitrary storage medium (RAM, storage, etc.) as containing software instructions and executing the instructions on the processor.
  • the type of computer device having such a processor is not particularly limited, and may be any computing device such as a personal computer, smart phone, or server.
  • hardware for measuring fine particles, hardware for learning an AI program (executing software), and analysis (detection, identification, or quantification) of fine particles using the learned AI program may each be separate physical devices or they may be the same device. If they are separate devices, they may be connected to each other via a network, or some of them may operate standalone (eg for security reasons).
  • FIG. 4 shows an example of a measuring device that constitutes a fine particle measuring apparatus based on the Coulter method used in an embodiment of the present invention.
  • Device 400 has a cross-sectional structure in which two chambers 410 and 420 are connected via pore 440 . Electrodes 412 and 422 are installed in the two chambers, respectively. A sample containing the particles to be measured suspended in the electrolytic solution is introduced into the chamber 410 through the introduction port 411 , and the electrolytic solution is introduced into the chamber 420 through the introduction port 421 , and a voltage is applied to the two electrodes by the voltage source 452 .
  • the negatively charged particles in the sample move downward from the top of the drawing due to the Coulomb force. Therefore, every time one particle in the sample passes through the pore 440, the ion current between the electrodes 412 and 422 decreases transiently, and the ammeter 451 produces a signal as schematically shown in FIG. is output.
  • the horizontal axis 601 is time and the vertical axis 602 is the output having a positive correlation with the resistance value between the electrodes 412 and 422. This is the time change of the resistance value when passing through FIG. 6 is an example in which 10 particle passing pulses were observed.
  • width 621 is the duration of example pulse 615 .
  • the output of the ammeter 451 in FIG. 4 is a downward pulse that decreases when a particle passes through. , the pulse can be either upward (increase as the particle passes) or downward (decrease as the particle passes).
  • FIG. 5 shows an example of a measuring section of a flow cytometry device used in an embodiment according to the present invention.
  • a sample containing bioparticles such as cells is introduced from an injection port 512, and a sheath liquid is introduced from a sheath liquid introduction port 511 into a sample introduction tube 515 and a sheath liquid introduction tube 516, respectively.
  • the sample and the sheath liquid pass through the mixing section 513 and are introduced into the measuring tubule 510 .
  • Particles in the sample pass through the measurement unit 500 .
  • Incident light 506 generated by the light source 502 passes through the measurement tubule 510 and reaches the measurement section 500 . When the particles contained in the sample pass through the measurement unit 500 , they scatter and radiate around the measurement unit 500 .
  • the particles to be measured may be subjected to fluorescence dyeing processing in which the particles are excited by light of a specific wavelength and emit light.
  • the light source 502 emits light containing the specific wavelength
  • the dyed particles are excited by the incident light and emit fluorescence, and the fluorescence is emitted around the measurement capillary.
  • a light receiver (detector) for detecting a transient change in intensity of emitted scattered light or fluorescence is installed around the measurement unit 500 .
  • a photodetector A503, a photodetector B504, and a photodetector C505 are installed.
  • the particles in the sample move downward from the top of the drawing. Therefore, every time one particle in the sample passes through the measurement unit 500, scattered light or fluorescence increases transiently, and a signal as schematically shown in FIG. 6 is output from the light receiver.
  • the horizontal axis 601 is time
  • the vertical axis 602 is the current output having a positive correlation with the received light intensity of the detector. It is the time variation of scattered light or fluorescence intensity received by one receiver.
  • FIG. 6 is an example in which 10 particle passing pulses were observed.
  • width 621 is the duration of example pulse 615 .
  • the output of the photodetector may be current or voltage.
  • FIG. 7 is an example configuration of a detection, identification or quantification device according to an embodiment of the invention.
  • the sensors X703 to Z705 may be those capable of outputting a signal in response to an external stimulus, and may be, for example, the ammeter 451 in FIG. 4 according to the Coulter method, or the photodetectors A503 to C505 in FIG. 5 for flow cytometry.
  • the number of sensors may be any number as long as it is one or more.
  • the output from the sensor is amplified and A/D converted by the input signal processing means 710 and then sent to the information processing means 730 via the input/output means 720 .
  • the digitizing sampling interval is preferably 1/5 or less of the pulse duration, but in the present invention, the shorter the sampling interval, the higher the identification performance.
  • the information processing method of the present invention consists of two stages.
  • the first is learning and the second is detection, identification or quantification.
  • the first learning is a process of optimizing the AI parameters of the AI program using samples with known types and concentrations of particles contained in the samples.
  • an optimized AI program is called a learned AI program.
  • the second detection, identification, or quantification is a process of inputting pulses of unknown particles to the learned AI program and estimating the presence, type, or concentration of the particles estimated by the learned AI program as its output.
  • AI parameters differ depending on the AI program used.
  • the coefficient vector and bias term for each discriminant class in the case of deep learning, the structure of the neural network, the coefficients of each node, the activation function, and the coupling coefficient , a convolutional layer filter of a convolutional neural network, etc., which are parameters to be optimized in the AI program used in the implementation of the present invention, and may be anything.
  • any type of algorithm may be implemented in the AI program.
  • the k-nearest neighbor method, linear discriminant method, various deep learning methods, support vector machines, decision trees, Boltzmann machines, or an ensemble method combining various algorithms may be used.
  • FIG. 8(a) shows an example of AI program learning according to an embodiment of the present invention.
  • learning AI programs an example of learning using the apparatus of FIG. 7 is shown.
  • the output from the photodetector in a Coulter method ammeter or flow cytometry results in a noisy peak as shown in FIG.
  • the start and end times of the pulse edge 902 are estimated (step S812), and the extracted pulse Intra-pulse data 903 is extracted (step S813).
  • the example pulse width 621 in FIG. 6 is the time difference of the pulse edge 902 .
  • Intra-pulse data refers to all data sets of times and current values between the extracted pulse ends as starting and ending points.
  • the time interval of intra-pulse data is determined by the A/D conversion sampling interval in the input/output processing means (A/D converter) 450 or 710 .
  • the intra-pulse data is extracted using the baseline estimation, but the present invention may extract the intra-pulse data by any method.
  • Intra-pulse data may be extracted by using a portion exceeding .
  • AI data preprocessing of intra-pulse data is performed for AI program learning (step S814).
  • Examples of AI data preprocessing according to the present invention include the generation of smoothed pulse data by applying a low-pass filter to the intra-pulse data to reduce high-frequency fluctuations, and the standardization of the maximum voltage of each intra-pulse data as 1. generation of normalized pulse data, moving average of measured values before and after each measurement time, etc.
  • the AI data preprocessing in the present invention is not limited to smoothing or normalization, and any calculation may be performed on part or all of the intra-pulse data or incidental measurement conditions. These preprocessings are used to optimize the AI program by allowing the AI model to better represent the intra-pulse data and finding the best solution among the many extreme values of the evaluation function using limited computational resources. Any pre-learning data processing for guidance may be used.
  • AI performance in learning does not necessarily improve as the sampling frequency of the A/D converter 450 or 710 increases.
  • the optimal frequency at which the AI program can express the correlation with the pulse shape and measurement conditions well depends on the AI algorithm used. Optimal sampling can be found experimentally. The lower the sampling frequency, the lower the cost of amplifiers and digitizers.
  • FIG. 10 is an example in which padding 1000 is applied after the end of pulse 1 as AI data preprocessing of the deep neural network.
  • the first pulse 1001 has a shorter duration than the second pulse 1002 .
  • the value after the end of pulse 1001 cannot be input to the input layer, and some of the input nodes of deep learning become indefinite.
  • an output voltage of 0 is added after the pulse 1001 ends.
  • the preprocessing for aligning short duration pulses to long pulses is not limited to this, and can be anything.
  • the feature quantity extraction means 732 extracts a feature quantity representing the feature of each pulse (step S815).
  • the feature quantity a is the width
  • b is the height
  • c is the asymmetry of the pulse time (0 ⁇ c ⁇ 1)
  • d is the asymmetry of the pulse area (0 ⁇ d ⁇ 1)
  • e is the angle between the two ends of the pulse and the straight line connecting the pulse peak
  • f is the pulse area
  • g is the moment of the pulse with respect to the time axis
  • h is the moment of the pulse with respect to the voltage axis.
  • One pulse is represented by a vector having such feature quantities as elements. As shown in FIG. 11(b), if the number of feature quantities used for AI learning is p (p ⁇ 1), one pulse is represented by one point on the p-dimensional space. For example, the width of the pulse and the peak value within the pulse have been used to analyze the measurement results of the Coulter method. In addition, for analysis of measurement results of conventional flow cytometry, for example, intra-pulse peak values of forward scattering (light receiver 503 in FIG. 5) and side scattering (light receiver 505 in FIG. 5) are used, and two-dimensional analysis is performed. was often done.
  • AI learning searches for a discrimination boundary in a p ⁇ q-dimensional space.
  • the pulse feature amount of the present invention is not limited to those illustrated in FIG. 11(a), and any amount that expresses the pulse waveform feature may be used. Moreover, the number of feature amounts may be any number as long as it is one or more. In another embodiment, pulse data extraction may not be performed for feature amount calculation. For example, a method of estimating a peak value directly from comparison with data around a certain time without extracting intra-pulse data may be used.
  • additional measurement conditions that differ for each measurement are used as feature amounts for AI learning, thereby enabling more accurate identification and quantification.
  • the incidental measurement conditions are, for example, the hole diameter and shape of the pore 440 in FIG. may be used as In reality, manufacturing variations for each sensor are unavoidable, and this causes the cluster shift shown in FIG. Therefore, the analysis device 740 acquires the characteristics of the sensor device such as the hole diameter and the partition wall thickness for each sensor device (Coulter device) 400 used at the time of measurement from the input means 722, and stores them in the incidental measurement condition storage means 442. Then, it is learned as a feature in AI learning (step S818). Supplementary measurement conditions to be learned are not limited to hole diameter and partition wall thickness, but may be anything that affects the pulse waveform, such as channel structure, surface treatment of channels and pores, and electrical characteristics. . In addition, the conditions may be different for each measurement, such as the result of measuring the hole diameter of the device 400 one by one, may vary for each manufacturing lot, or may be uniformly determined by the design specifications. .
  • additional measurement conditions include conditions that affect the pulse waveform, such as the turbidity of the specimen, based on the light source characteristic information, the receiver angle information, the flow velocity information, the fluorescent label characteristic information, and the sheath fluid physical property information.
  • These incidental measurement conditions include unavoidable variations between measurements or production lots, which causes the cluster shift shown in FIG. Therefore, the analyzer 740 acquires these incidental measurement conditions from the input means 722 for each measurement, stores them in the incidental measurement condition storage means 442, and makes them learned as features in AI learning (step S818). Any incidental measurement condition to be learned can be used as long as it affects the pulse waveform.
  • uniformity can be achieved even under conditions that differ for each measurement, such as sample turbidity and the number of measurements after cleaning the measurement capillaries, or conditions that vary from production lot to production lot, or even under conditions such as light source characteristics, receiver angle, flow velocity, fluorescent labels, and other design specifications. It may be a condition that is determined by
  • the additional measurement conditions may be measurable physical properties, or discontinuous numbers or symbols such as manufacturing lot numbers and serial numbers of devices and reagents.
  • the additional measurement conditions may be measurable physical properties, or discontinuous numbers or symbols such as manufacturing lot numbers and serial numbers of devices and reagents.
  • convolutional and pooling layers in neural networks can also be used as preprocessing to extract pulse features.
  • each output from multiple sensors may be used as a channel in the convolution.
  • Equation (1) below represents the convolution process from the L-1th layer to the Lth layer.
  • k is the channel number
  • K is the number of channels
  • H is the filter size
  • p is the coordinate in the filter (0 ⁇ p ⁇ H ⁇ 1)
  • h pkm is the convolution coefficient in the filter
  • S is the stride.
  • the convolution coefficient h pkm may be uniquely determined, and the convolution processing corresponds to AI data preprocessing (step S814).
  • the convolution coefficient h pkm may be included in the optimization parameters for learning, in which case the convolution process can be regarded as AI data preprocessing (step S814) or AI learning (step S818).
  • the present invention may or may not perform feature extraction.
  • a teacher label is assigned to data on which AI data preprocessing (step S814) or pulse feature quantity extraction (step S815) has been performed.
  • Teacher label assignment for AI learning will be described using the schematic diagrams of FIGS. 12 to 14.
  • FIG. 12 A teacher label assignment for AI learning will be described using the schematic diagrams of FIGS. 12 to 14.
  • FIG. 12 shows an example of teacher label assignment to measurement results using the Coulter device for learning the feature values illustrated in FIG. 11(a).
  • FIG. 12(a) is an example of teacher labeling for AI learning to discriminate using the measurement result of a sample in which the presence or absence of microorganisms, proteins, exosomes, etc. to be detected in the sample is known.
  • the teacher label 1205 is a binary value of "Positive” indicating that the microorganism to be detected is included and "Negative" indicating that it is not included.
  • FIG. 12(b) is an example of teacher labeling for quantifying AI learning using measurement results of samples with known concentrations of microorganisms, proteins, exosomes, etc. in the sample.
  • the teacher label 1225 may be the concentration or amount of detection target microorganisms, proteins, exosomes, or the like.
  • one line represents one measurement pulse, and for each measurement pulse, the pore hole diameter and pore thickness are set as incidental measurement conditions 1203, and the feature amounts a to A teacher label is assigned in association with p teacher data.
  • incidental measurement conditions and feature amounts may be of any kind, and the incidental measurement conditions may be absent.
  • the sample with sample number 1 is measured by two different devices.
  • a pulse feature amount result 1211 is measured by the first device, and a pulse feature amount result 1212 is measured by the second device.
  • the measurement of the sample number 2 is performed by the third device, and the result is 1213.
  • One row represents one pulse, and results 1211 and 1212 are the results of measuring a plurality of pulses from each one device.
  • the pore diameters and pore thicknesses of these first to third devices vary due to manufacturing variations. Such variations in incidental measurement conditions affect the pulse waveform, causing cluster shift as shown in FIG. 2, for example, which causes the second problem.
  • FIG. 12 As shown in FIG.
  • incidental measurement conditions 1203 that cause variations are targeted for AI learning together with pulse waveform feature amounts 1204 . Since the AI program also learns the effect of incidental measurement conditions on the pulse waveform, it is possible to perform detection, identification, or quantification in consideration of the causes of variations due to incidental measurement conditions.
  • a sample to be learned is one whose presence (in case of detection), type (in case of identification), or concentration (in case of quantification) of microorganisms, proteins, etc. to be measured is known.
  • the correct answer for sample number 1 is known as "Positive”. Therefore, the accompanying measurement conditions and the pulse feature quantities 1211 and 1212 are all given a teacher label of “Positive”. Since the correct answer for sample number 2 is known to be "Negative", the incidental measurement conditions and the pulse feature quantity 1213 are all labeled "Negative". Similarly, in FIG.
  • the results of detection, identification or quantification of samples used for AI learning must be known.
  • the results of measuring and analyzing the sample to be learned by another detection, identification, or quantification method may be used as teacher labels for AI learning.
  • the results of existing detection, identification or quantification means such as PCR, ELISA, immunochromatography and turbidimetric methods may be used.
  • the biological reaction, chemical reaction, and physical characteristics of the microorganisms and cell types to be measured are used to determine the learning target. It may be possible to prepare a sample of known grain type that is generally free of all but one type of grain. In such cases, known grain types may be learned as teacher labels for all pulses obtained from such samples.
  • FIG. 13(a) shows an example in which a sample containing generally only one type of leukocyte was measured by flow cytometry and assigned a teacher label by the method of the present invention.
  • the light source wavelength, the light receiver angle, the flow velocity and the fluorescence wavelength when blood cells are measured by flow cytometry are used as incidental measurement conditions 1303, and the pulse waveform feature quantity 1304 in FIG. 11 is used as teacher data.
  • a teacher label 1305 is given.
  • Measurement results 1311 and 1312 are the measurement results of the light receiver 503 and the light receiver 505, respectively.
  • the AI is learned with the light receiver angles of 179 degrees and 90 degrees, respectively.
  • the teacher data is the result of measuring a plurality of samples that do not generally contain particles other than "LYMPH", which is the learning target particle, and the teacher labels 1305 are all "LYMPH". is given.
  • a teacher label may be assigned for each grain type as shown in FIG. 13(b).
  • teacher labeling step S816) can also be performed.
  • FIG. 14 is a conceptual diagram of the result of calculating the identification boundary 1410 for measurement 1 and the identification boundary 1420 for measurement 2, respectively.
  • teacher labels in step S816 for example, pulses in regions 1418 and 1419 are labeled with grain type "A”, pulses in regions 1428 and 1429 with grain type "B", and pulses in regions 1438 and 1439 with grain type "B".
  • "C" is given as a teacher label to each.
  • clustering can be limited to preprocessing in learning, and at the time of detection, identification or quantification, identification is possible by inputting measurement data to one function called a trained AI program. is. Therefore, identification can be performed with practical hardware and speed.
  • the AI absorbs the variations in each measurement that caused erroneous identification in the conventional method, enabling high-precision identification. It can be carried out.
  • FIG. 15 is another example of supervised labeling for identifying microorganisms.
  • each of the voltage output groups 1514 for each time 1513 of the intra-pulse data 1501 of the pulse number and the incidental measurement conditions 1511 and 1512 are combined to give one teacher label "N1H1".
  • FIGS. 12 and 13 assign teacher labels to a set of incidental measurement conditions and a set of pulse feature values for each pulse, in the example of FIG. , one teacher label is assigned to all sensor outputs (intra-pulse data) at each time.
  • Such attachment of teacher labels to data to be learned is repeated for all pulses given to the AI program (step S817).
  • learning refers to the process of optimizing the parameters to be optimized included in the AI program, for example, the process of finding the extreme value of the evaluation function in the AI program.
  • the optimized AI program parameters are stored in the AI parameter storage means 747 (step S819).
  • the optimized parameters optimized in step S818 are stored in the AI parameter storage means 747 and used for subsequent identification.
  • FIG. 16 schematically shows a deep neural network, and some nodes and connections between nodes are omitted. Taking pulse number 1 1501 in FIG. Each value of the data 1514 of the voltage output group of the sensor output is input to the input node 1614 .
  • a teacher label 1515 is given to such a neural network as a correct answer, and the coefficients of each node and connection are optimized by, for example, the back propagation method.
  • the example in FIG. 16 has two output nodes and performs binary classification of the types of microorganisms contained in the sample.
  • the output layer may output multiple values or some continuous quantity.
  • the structure of the AI program shown in FIG. 16 is merely an example. For example, there may be an arbitrary number of output amounts, or a continuous amount may be output.
  • the output is binary classification, and in the case of identification in which a plurality of types of particles to be measured are included, it is multi-value classification.
  • an AI program that outputs a continuous quantity can be used.
  • the incidental measurement conditions have been described using an example in which the AI program is learned for each pulse as a feature amount.
  • the present invention is not limited to this, and it is sufficient that the incidental measurement conditions are input in some form for learning of the AI program.
  • an AI program may be independently trained using pulse feature amounts or intra-pulse data for each incidental measurement condition, and the results may be ensembled after the training.
  • a learned AI program is created by the learning process shown in FIG. 8(a), and optimized AI parameters are stored in the AI parameter storage means 747 (step S819). Unknown analytes to be detected, identified or quantified are then measured with a Coulter device or flow cytometry device. In the measurement for this identification, it is desirable that the configuration of the measuring device and the incidental measurement conditions are the same as those at the time of learning.
  • one AI program is trained with measurement results under various measurement conditions to create an AI program that can identify even if the configuration of the measurement device and the incidental measurement conditions are not constant. can also
  • FIG. 17 shows an example of result output by an AI program according to an embodiment of the invention.
  • FIG. 17(a) shows a case where the output 1713 of the AI program is binary "Positive” and "Negative”
  • FIG. 17(b) shows a case where the output 1723 of the AI program is a continuous quantity.
  • FIG. 17(b) can be used for detection, identification, and quantification of fine particles. Using an AI program that outputs a continuous quantity as shown in FIG.
  • classification is performed by setting a boundary value for the output value. For example, in the binary classification of "Positive” and “Negative”, if the probability that the result output 1723 is positive is 0.5 or more is classified as “Positive”, and less than 0.5 is classified as “Negative”.
  • the threshold at this time may also be a learning target in the AI program.
  • AI server 1930 connected via network 1900 may perform part of the processing according to the present invention, as shown in FIG. 19, for example. Any partitioning of each element constituting the present invention may be used.
  • the AI program learn various characteristics of waveforms and measurement conditions, for example, when the scatter diagram of feature values is greatly superimposed as in FIG.
  • the AI program was able to detect, discriminate and quantify with high accuracy even when the clusters for each species shift. This makes it possible to solve or reduce the first and second problems.
  • FIG. 20(a) 2010 schematically represents the pulse number ratio in the measurement results of the biological sample containing the measurement target particles to be detected, identified or quantified, and FIG. 20(b) 2020 the biological sample not containing the measurement target particles. It is what I did. For example, in a measurement intended to detect microorganisms, FIG. 20(a) is positive and FIG. 20(b) is negative.
  • FIGS. 21(a) and 21(b) schematically represent the measurement results of the samples shown in FIGS. 20(a) and 20(b), respectively. The measurement result of FIG.
  • 21(a) is a mixture of pulses 2112 originating from particles to be measured and pulses 2111 originating from contaminants. Therefore, when performing AI learning, it is not possible to assign teacher labels as described with reference to FIGS.
  • the measurement result in which contaminants and particles to be measured are mixed in the sample to be measured and the discrimination boundary cannot be determined as shown in FIG.
  • Pulses derived from contaminants are separated by using the measurement result of a sample containing only contaminants. In this way, the present invention provides a method for identifying and quantifying particles to be measured with higher accuracy than in the prior art.
  • x be a feature vector obtained from one pulse for the measurement results of the particles to be measured as shown in FIGS. R is the feature space.
  • AI learning can be performed by calculating the probability that a certain pulse is a contaminant and excluding the pulse exceeding the threshold, without being limited to the formula (5). Learning of the contaminant sorting AI of the present invention may be learning of pulse feature values as shown in FIGS. 12 and 13 in some embodiments. In another embodiment, the sensor output value for each time may be learned as shown in FIG.
  • FIG. 22 shows a 200 nm single sample 2020 of FIG. This is the result of evaluating the binary discrimination performance between and.
  • the vertical axis 2202 is the accuracy rate when the learning result by deep learning as shown in FIG. 16 is evaluated on a sample-by-sample basis, where 1.0 is all questions correct and 0 is all questions incorrect.
  • the contaminant sorting AI according to the present invention can solve or reduce the third problem by stochastically eliminating pulses derived from indefinite contaminants.
  • a fourth problem to be solved by the present invention is the problem that the performance of detection, identification or quantification deteriorates when the number of particles to be measured is extremely small, for example a ⁇ 0.1 in FIG.
  • sample pretreatment using an antibody enables detection, identification, and quantification of even low-concentration particles to be measured.
  • the sample pretreatment for sensitization in the first step, the sample is mixed with beads modified with antibodies that specifically bind to the protein to be detected, microorganisms, exosomes, etc. , concentration is performed in the second step, and then the measurement, AI learning, and AI detection/discrimination/quantification described above are performed.
  • FIG. 23 is a conceptual diagram of specimen pretreatment in detecting whether or not a microorganism to be detected exists in a sample.
  • the AI learning 2310 of the positive sample 2311 consisting of the virus 2301 and contaminants 2302 shown in FIG. AI learning to remove objects was explained.
  • beads 2303 modified with an antibody that specifically binds to the virus 2301 to be detected are mixed in both the positive sample and the negative sample, resulting in the state shown in FIG. 23(b).
  • Virus-bound bound beads 2304 are produced in the bead-mixed positive sample 2321 but not in the bead-mixed negative sample 2322 .
  • the pulse of contaminants is too small to be measured by a Coulter or flow cytometry device, or if in feature space If the pulses from the contaminants and the bound beads can be clearly separated (hereafter, these three are collectively referred to as "AI unnecessary requirements"), the presence or absence of pulses from the bound beads can be measured without AI learning. Detection of microorganisms is possible. In the former two cases, the detected pulses are mostly bound beads, so the presence or absence of the detected pulses can be used to determine the presence or absence of the microorganisms to be detected.
  • the presence or absence of the microorganisms to be detected can be detected. can be determined. This is the same even if the detection target is protein or exosome. However, many samples do not meet the AI-free requirement, in which case the following AI learning and detection process according to another embodiment of the invention is performed.
  • AI learning 2320 is performed by assigning teacher labels of "positive” and “negative” to the bead-mixed positive sample and the bead-mixed negative sample, respectively (step S818 in FIG. 8). Create an AI program. Since the size and shape of these bound beads are different from those of contaminants, when a bead-mixed sample is measured by a Coulter apparatus or flow cytometry, the pulses obtained from bound beads are different from those of viruses and contaminants. Therefore, higher performance than AI learning 2310 is realized. Furthermore, in AI learning 2320, a method using foreign matter sorting AI according to formula (5) may be used.
  • This allows AI programs to learn the characteristics of negative samples that contain unbound beads, so that sorting of unbound beads 2323 contained in bead-mixed positive samples can be expected to perform well even for dilute samples.
  • the preparation of the sample mixed with such beads may be performed by the same device as the device that operates the AI program, or may be performed by another device. The same applies to other samples exemplified in this specification.
  • Bound beads 2304 in FIG. 23(b) are larger in size and mass than contaminants and unbound beads. Bound beads can be concentrated as follows. In addition, for example, if a magnetic substrate is used for the antibody-modified beads 2303, the bound beads can be concentrated by applying a magnetic field to the bead-mixed sample.
  • FIG. 23(c) is more sensitive than the case where FIG. can confirm the presence or absence of microorganisms and proteins to be detected.
  • AI learning 2330 is performed by assigning "positive” and “negative” labels to the bead-mixed positive enriched sample 2331 and the bead-mixed negative enriched sample 2332, respectively (step S818 in FIG. 8). , create a trained AI program. Since the number of bound beads in the bead mixture positive enrichment sample 2331 is larger than that in the bead mixture positive sample 2321, even if the concentration of cells, microorganisms, proteins, exosomes, etc. to be measured is low, AI learning The learned AI program created in 2330 has higher performance than those in AI learning 2310 and 2320. Furthermore, in AI learning 2330, a method using foreign matter sorting AI according to formula (5) may be used.
  • This allows the AI program to learn the characteristics of negative samples that have undergone the enrichment process, so that selection of contaminants, unbound beads or unbound virus that remain in the bead-mixed positive enrichment sample can lead to more dilute samples. Good performance can also be expected for
  • the labeling 2329 shown in FIG. Detection may be performed by inputting into a trained AI program.
  • detection is possible by using beads modified with antibodies that specifically bind to the protein to be detected or exosomes to be detected instead of the virus 2301. becomes. Also note that this method is applicable to both the Coulter apparatus and flow cytometry.
  • FIG. 24 is a conceptual diagram of sample pretreatment for identifying virus types present in a sample.
  • FIG. 24( a ) shows a corona-positive sample 2411 consisting of coronavirus 2401 and contaminants 2403 and an influenza-positive sample 2412 consisting of influenza virus 2402 and contaminants 2403 .
  • corona positive sample 2411, influenza positive sample 2412 and negative sample 2413 are combined with anti-corona beads 2404 modified with anti-corona antibodies that specifically bind to coronavirus and anti-influenza beads that specifically bind to influenza virus.
  • Both of the antibody-modified anti-influenza beads 2405 are mixed to obtain the state shown in FIG. 24(b).
  • Corona-positive bead mixture sample 2421 produces corona-bound beads 2406 but not flu-bound beads 2407 .
  • Influenza-positive bead-mix sample 2422 produces influenza-bound beads 2407 but not corona-bound beads 2406 .
  • No bound beads are produced in the negative bead mixture sample 2423 .
  • anti-corona beads 2404 and anti-influenza beads 2405 are preferably different in shape, size or material.
  • the bead-mixed corona sample, the bead-mixed influenza sample, and the bead-mixed negative sample are labeled as “corona positive,” “influenza positive,” and “negative,” respectively, and AI learning 2420 is performed (step S818).
  • Create an AI program Since corona-bound beads, influenza-bound beads, and contaminants have different shapes, sizes, and materials, the pulse waveform obtained from the bound beads is Since it is different, generation of a trained AI program with higher performance than AI learning 2410 is expected. Furthermore, in AI learning 2420, a method using foreign matter sorting AI according to formula (5) may be used.
  • the first contaminant selection is performed using equation (5).
  • Corona-bound beads 2306 and influenza-bound beads 2307 in an example of FIG. 24(b) are larger in size and mass than contaminants and unbound beads.
  • Bound beads can be concentrated as in 24(c). Further, for example, if a magnetic substrate is used for the anti-corona beads 2404 and anti-influenza beads 2405, which are antibody-modified beads, the bound beads can be concentrated by applying a magnetic field to the bead-mixed sample.
  • the presence or absence of the pulse of the bound beads will result in a higher figure than the case of analyzing FIG. 24(c) can identify microorganisms and proteins to be identified with higher sensitivity.
  • bead-mixed enriched corona sample 2431 was labeled "corona positive”
  • bead-mixed enriched influenza sample 2432 was labeled "influenza positive”
  • enriched sample was labeled "negative” to generate a ternary AI.
  • Learning 2430 is performed (step S818) to create a trained AI program. Since the number of bound beads in the positive sample in FIG. The AI program created in is expected to have higher performance than those of AI learning 2410 and 2420.
  • the sample in FIG. 24(c) may also be processed by the contaminant sorting AI in the same manner as described in FIG. 24(b).
  • virus detection was explained as an example, but multiple types of detection target proteins, exosomes, etc. were modified with antibodies that specifically bind to each of these proteins instead of coronavirus 2401 and influenza virus 2402. With protein beads, similarly sensitized AI learning and discrimination are possible. This method is applicable to both the Coulter apparatus and flow cytometry.
  • FIG. 25 is a conceptual diagram of sample pretreatment for quantifying the target protein concentration in the sample.
  • the concentrations of proteins to be quantified contained in samples 2512 and 2513 are set to a% and b%, respectively (b>a).
  • Bead aggregates 2504 and 2505 having a size corresponding to the concentration of the protein to be quantified are generated in the sample mixed with the beads. No bead aggregates are generated in the bead-mixed sample 2511 containing no protein to be detected.
  • the present invention for a sample that satisfies the AI-unnecessary requirement, it is possible to quantify target proteins and microorganisms using feature amounts that are influenced by the number of pulses of bead aggregates and the size of bead aggregates. This is because there is a positive correlation between the amount of the target protein or microorganism contained in the sample and the number of bead aggregates and the size of the bead aggregates.
  • AI learning 2520 is performed by assigning teacher labels of “0”, “a” and “b” to the bead mixed samples 2521 to 2523 (step S818).
  • create a program For quantitation AI algorithms may be employed where the inputs and outputs are continuous quantities. Since bead aggregates differ in size and shape from contaminants, their pulse waveforms are clearly different. Therefore, higher quantitative performance than AI learning 2510 is realized.
  • the mass can be concentrated.
  • bead aggregates can be concentrated by applying a magnetic field to the bead-mixed sample.
  • the measurement results of each sample in FIG. AI learning 2530 for learning quantities is executed (step S818) to create a learned AI program. For those containing the protein to be quantified in FIG. 25(c), the number of aggregated bead clusters is greater than that of the positive sample in FIG. 25(b). Also, the AI program created by AI learning 2430 is expected to have higher performance than those of AI learning 2410 and 2420 .
  • the sample in FIG. 25(c) may also be processed by the contaminant sorting AI as in the case of FIGS. 22 and 23 .
  • proteins and exosomes can be identified with higher sensitivity than FIG. 25(b) without concentration.
  • protein quantification was explained as an example, but instead of the quantification target microorganisms, exosomes, etc. as the quantification target protein 2501, beads modified with antibodies that specifically bind to those microorganisms can be used. It is possible to learn and quantify AI by feeling. This method is also applicable to both the Coulter apparatus and flow cytometry.
  • FIG. 26 shows pulse heights (transient changes in ion current) when measuring polystyrene beads with various diameters using a Coulter apparatus having pores with a hole diameter of 300 nm and a thickness of 50 nm.
  • the smaller the bead diameter 2601 the smaller the ion current drop (pulse height) 2602 when the beads pass through the pores.
  • the pulses of particles of 100 nm or less are buried in baseline noise, and thus pulse data extraction in steps S813 and S823 in FIG. 8 cannot be performed.
  • a pore Coulter device with a smaller hole diameter of 100 nm is utilized.
  • the object of measurement is bound beads, and contaminants and pulses from antibody-modified beads are noise that should be removed.
  • the size of contaminants and antibody-modified beads is adjusted to the region 2610 in FIG. can be selected appropriately.
  • the pulses from the antibody-modified beads that are not bound to the particles to be measured are AI learning. Because they are excluded from target or AI detection, identification or quantification of target pulses, a trained AI program with higher performance can be created.
  • the methods according to the present invention can be applied to antibodies that specifically bind to any microorganism, any protein, exosome, or the like. Anything that can produce modified beads can be used. Thereby, the fourth and fifth problems can be solved or reduced.
  • FIG. 27(a) shows Au particles 2700 with a diameter of 50 nm modified with an anti-IgG antibody using steptavidin and biotin dispersed in 1 ⁇ PBS (phosphate buffered saline).
  • FIG. 27(b) shows the same Au particles dispersed in a sample containing 0.1 mg/mL anti-IgG antibody 2701 in 1 ⁇ PBS. Since the Au particles in FIG. 27(a) have a negative charge, they repel each other and are well dispersed. Some of the Au particles in the sample in FIG. 27(b) bind to streptavidin 2712, biotin 2714 and anti-IgG antibody 2701 coated on the Au particles, forming aggregates 2710, as shown in the enlarged view of FIG.
  • FIGS. 27(a) and (b) were filled into the channel (chamber) 410 of the Coulter device as shown in FIG. A voltage of 0.1 V was applied and the pulse signal accompanying the passage of the particles was measured by the ammeter 451 .
  • 3 measurements each were performed using different Coulter devices for a total of 6 measurements.
  • the pore 440 was circular with a diameter of 300 nm.
  • FIG. 28 expresses six measurements performed in a scatter diagram for each pulse by selecting two of the feature quantities extracted by the feature quantity extraction means from the pulses extracted by the pulse extraction means 731 . Other features are omitted.
  • the horizontal axis 2801 is the feature amount a in FIG.
  • the detection limit particle size for the Coulter device of FIG. 4 is 90 nm. Therefore, a pulse through unagglomerated 50 nm Au particles is not detected by the Coulter device 400 used here. As can be seen from FIG. 28, few pulses are observed from the sample in FIG. 27(a), but many pulses are observed from the sample in FIG. 27(b). This result indicated that the anti-IgG antibody was detected by pulse measurement using the Coulter device 400 .
  • FIG. 29(a) is a confusion matrix for comparing the teacher label 2910 and the AI detector output 2920 on a pulse-by-pulse basis, and the pulse F value was about 0.71. Since no particles of 90 nm or less were detected in this experiment, the pulses observed from the sample in FIG. Even for Au particle agglomerates of similar size, the AI detector according to the present invention was shown to distinguish between agglomerated agglomerates and non-agglomerated agglomerates by the enlarged view of FIG. 27(b). Furthermore, FIG.
  • 29(b) shows the results of AI detection for each sample by aggregating the results of FIG. 29(a).
  • the F-value for correctness of detection was 1.0, demonstrating that the use of the trained AI detector according to the present invention exhibits high performance in anti-IgG antibody detection on a sample-by-sample basis.

Abstract

This apparatus is characterized by comprising a Coulter measuring device configured to detect as a pulse signal a transient change in an ionic current between two electrodes that are in contact with an electrolytic solution on both sides of a fine hole, said transient change occurring when detection target particles dispersed in the electrolytic solution pass through the fine hole, a feature quantity extracting unit for calculating a feature quantity of a pulse waveform that accompanies the passage of the particle through the fine hole, an incidental measurement condition storage unit for storing an incidental measurement condition of the fine hole, and an AI program which learns the pulse waveform, the apparatus being configured such that: a first incidental measurement condition including at least one selected from the group comprising a hole diameter, shape, and fine hole thickness of a first fine hole of a first Coulter measuring device used to measure a known particle of a known type is stored in the incidental measurement condition storage unit; the feature quantity extracting unit calculates a first feature quantity from a first pulse waveform obtained from the first Coulter measuring device in conjunction with the passage of the known particle through the first fine hole; a trained AI program is created by training the AI program using the first feature quantity and the first incidental measurement condition as teacher data, and using the type of the known particle as a teacher label; a second incidental measurement condition including at least one selected from the group comprising a hole diameter, shape, and fine hole thickness of a second fine hole of a second Coulter measuring device used to measure an unknown particle is stored in the incidental measurement condition storage unit; and detection, identification, or quantification of the detection target particle is performed by inputting into the trained AI program the second incidental measurement condition and an unknown feature quantity calculated by the feature quantity extracting unit from an unknown pulse waveform obtained from an output of the second Coulter measuring device in conjunction with the passage of the unknown particle through the second fine hole.

Description

微粒子の検出、識別、および定量のための方法、装置Method, device for detection, identification and quantification of microparticles
本発明は、試料中に含まれる微粒子の検出、識別、および定量を行うための装置及び方法に関する。 The present invention relates to devices and methods for detecting, identifying and quantifying microparticles in samples.
病気の診断、治療、および予防において、近年では溶液中に分散する細胞、微生物、ウイルス又はエクソソーム等の生体微小粒子を検出・識別・定量する技術が必要不可欠となっている。臨床現場で最も広く使われている技術の一つがフローサイトメトリー法である。
フローサイトメトリー法では、細管内を一列に流れる微小粒子に励起光を照射し、微小粒子から発せられた蛍光や散乱光等を複数の検出器で検出し、検出器の出力データをもとに微小粒子を検出・分類する。近年では、微小粒子をより詳細に分析するために、微小粒子の発する信号の空間分布情報を取得する方法(特許文献1)や、複数の蛍光色素で対象物を標識し、同時に異なる波長の蛍光を検出して分析する方法(特許文献2)が用いられている。
In the diagnosis, treatment, and prevention of diseases, techniques for detecting, identifying, and quantifying biological microparticles such as cells, microorganisms, viruses, or exosomes dispersed in solutions have become essential in recent years. One of the most widely used techniques in clinical practice is flow cytometry.
In the flow cytometry method, microparticles flowing in a line in a capillary are irradiated with excitation light, fluorescence and scattered light emitted from the microparticles are detected by multiple detectors, and based on the output data of the detectors Detect and classify microparticles. In recent years, in order to analyze microparticles in more detail, a method of acquiring spatial distribution information of signals emitted by microparticles (Patent Document 1), labeling an object with a plurality of fluorescent dyes, and simultaneously detecting fluorescence of different wavelengths A method of detecting and analyzing (Patent Document 2) is used.
微小粒子の散乱光強度は、粒子の大きさと内部状態によって変化し、また蛍光強度は粒子が保持する標識対象抗原の量によって決まる。一つの粒子から得られる散乱光または蛍光のピーク値を二次元の散布図にプロットし、その情報を基に微小粒子の種類を一つずつ分類する。従って、正確な試料分析のためには、散乱光・蛍光強度の適切な識別境界を定める必要がある(特許文献3)。 The scattered light intensity of microparticles varies depending on the size and internal state of the particles, and the fluorescence intensity depends on the amount of the antigen to be labeled held by the particles. The peak value of scattered light or fluorescence obtained from one particle is plotted on a two-dimensional scatter diagram, and based on that information, the types of microparticles are classified one by one. Therefore, for accurate sample analysis, it is necessary to define appropriate discrimination boundaries for scattered light and fluorescence intensity (Patent Document 3).
例えば、血液細胞集団の解析においては、まず細胞の散乱特性を基にして識別境界を設定する。前方散乱及び側方散乱により、おおよその細胞の大きさと粒度の情報を得ることができる。赤血球は白血球に比べサイズが小さいことから前方散乱と側方散乱強度はともに低く、また白血球の中では単球とリンパ球では前方散乱光強度が明確に異なり、顆粒球は側方散乱強度が高い。さらに、リンパ球の集団を抽出し、それらの蛍光強度を分析することによって、表面マーカーを基準にさらに亜集団へと分類していくことができる。このように、フローサイトメトリー法は、励起光、また微小粒子から発せられる散乱光、蛍光の強度・波長・角度を組み合わせ、多彩な解析が可能な技術である。 For example, in the analysis of blood cell populations, discrimination boundaries are first set based on the scattering properties of the cells. Forward and side scatter can provide approximate cell size and granularity information. Since red blood cells are smaller than white blood cells, both forward and side scattering intensities are low. Among white blood cells, monocytes and lymphocytes clearly differ in forward scattering light intensity, while granulocytes have high side scattering intensity. . Furthermore, by extracting a population of lymphocytes and analyzing their fluorescence intensity, it is possible to further classify them into subpopulations based on surface markers. As described above, the flow cytometry method is a technique that enables various analyzes by combining excitation light, scattered light emitted from microparticles, and fluorescence intensity, wavelength, and angle.
一方、細胞、微生物、ウイルス又はエクソソーム等の生体微小粒子を検出・識別・定量するための他の技術として、標的となる微小粒子を電界液中に懸濁した上、電気泳動で駆動した粒子の細孔通過に伴うイオン電流の過渡変化を検出する細孔電気抵抗法、所謂コールター法が用いられることもある(非特許文献1)。近年は、半導体フォトリソグラフィを利用した高精度かつ薄膜化した細孔によって、粒子識別精度が著しく向上しており、100nm程度の小径生体粒子を含む臨床検体の高精度識別もできるようになってきた(非特許文献2)。血液細胞集団の解析において、フローサイトメトリー法と同様に、細胞の細孔通過にともなう信号強度から粒径の係数やサイズの推定などが行われる(特許文献4)。フローサイトメトリー法に比べ、光の波長よりも小さな対象物の分析も可能であり、また装置構成がシンプルなため装置の小型化・低コスト化が容易である。 On the other hand, as another technique for detecting, identifying, and quantifying biological microparticles such as cells, microorganisms, viruses, or exosomes, target microparticles are suspended in an electrolytic solution, and particles are generated by electrophoresis. A pore electrical resistance method, the so-called Coulter method, which detects a transient change in ion current accompanying passage through a pore is sometimes used (Non-Patent Document 1). In recent years, high-precision thin-film pores using semiconductor photolithography have significantly improved the accuracy of particle identification, and it has become possible to identify clinical specimens containing bioparticles as small as 100 nm with high accuracy. (Non-Patent Document 2). In the analysis of a blood cell population, as in the flow cytometry method, the particle size coefficient and size are estimated from the signal intensity associated with the passage of cells through pores (Patent Document 4). Compared to the flow cytometry method, it is possible to analyze objects smaller than the wavelength of light, and the simple configuration of the device facilitates miniaturization and cost reduction of the device.
上記のように、フローサイトメトリー法や、コールター法は対象物の純度を問題とせず、微小粒子を大量に検出・分類し、粒子の存在量を分析する有用な方法である。これらの計測手段の共通点は、粒子1個が計測部を通過する毎に1つのパルス状の信号が観測され、そのパルスの分布を分析対象とする点である。これらの方法は、血球カウントや血液中の粒子サイズの測定に広く使われている。 As described above, the flow cytometry method and the Coulter method are useful methods for detecting and classifying a large amount of microparticles and analyzing the amount of particles present, regardless of the purity of the object. A common feature of these measuring means is that each time one particle passes through the measuring section, one pulse-like signal is observed, and the distribution of the pulses is the object of analysis. These methods are widely used for blood cell counting and particle size measurement in blood.
国際公開第2017/073737号WO2017/073737 特開2021-143988号公報Japanese Patent Application Laid-Open No. 2021-143988 特開2009-236798号公報JP-A-2009-236798 特表2000-503772号公報Japanese translation of PCT publication No. 2000-503772
生体試料中に存在する微粒子の計数を行う手段として、微粒子の細孔通過による電気抵抗の過渡変化を計測するコールター法や、一列で細管内を通過する微粒子にレーザ光を照射してその散乱光の過渡変化を計測するフローサイトメトリー法が使われている。これらの方法は各々、電気抵抗または散乱光強度の過渡変化をパルス信号として取得し、パルス信号の解析によって微粒子の検出、識別や定量を行う技術である。従来の方法による解析では、各粒子の計測によって生じる各パルスの高さおよび幅を散布図で表現し、その分布から各パルスの粒子が各々何であるかを分類することで、対象粒子の検出、識別や定量を行う。なお以下では、試料中の検出対象粒子(細胞、微生物およびタンパク質)の存在の有無を確認することを検出、試料中の複数の検出対象粒子を区別することを識別、そして試料中の検出対象粒子の濃度を推定することを定量、と各々呼ぶ。 As a means of counting fine particles present in a biological sample, the Coulter method, which measures transient changes in electrical resistance due to passage of fine particles through pores, and the scattered light of fine particles that pass through a narrow tube in a single line, are irradiated with a laser beam. Flow cytometric methods are used to measure transient changes in Each of these methods is a technique of acquiring transient changes in electrical resistance or scattered light intensity as a pulse signal, and detecting, identifying, and quantifying fine particles by analyzing the pulse signal. In analysis by conventional methods, the height and width of each pulse generated by measuring each particle are expressed in a scatter diagram. Identify and quantify. In the following, detection refers to confirming the presence or absence of particles to be detected (cells, microorganisms, and proteins) in the sample, identification refers to distinguishing between a plurality of particles to be detected in the sample, and Estimating the concentration of is called quantification, respectively.
従来のコールター法やフローサイトメトリーにおける、パルス解析に係る課題は5つある。第1が異なる粒種間の幅や高さの重畳、第2が計測値毎のバラツキに起因するクラスタシフト、第3が計測対象粒子以外の夾雑粒子の存在、第4がそもそも生体試料中の計測対象粒子数が少ない場合の困難、そして第5がタンパク質などの小さな粒子が対象にならないという点である。 There are five problems related to pulse analysis in the conventional Coulter method and flow cytometry. The first is the overlap of widths and heights between different grain types, the second is the cluster shift caused by variations in each measurement value, the third is the presence of contaminant particles other than the particles to be measured, and the fourth is the presence of contaminant particles in the biological sample. There are difficulties when the number of particles to be measured is small, and the fifth point is that small particles such as proteins cannot be measured.
第1の課題は、計測結果を散布図にプロットしても、重畳が大きい場合には識別境界を確定できず、識別や定量ができないという問題である。図1は、第1、第2および第3粒種の3種類の計測対象粒子が混合している試料の、計測結果の概念図を示す。図1は、第1粒種110、第2粒種120および第3粒種130を各々異なる形のプロットで表す。1プロットが1パルスを表す。第1軸101および第2軸102は計測結果として得られる各パルスの特徴を表す量である。たとえば、コールター法やフローサイトメトリーにおいて、第1軸はパルス幅(持続時間)、第2軸はパルス高さ(ピーク出力値)でよい。またセンサを2つ使うフローサイトメトリーの場合、第1軸は第1センサの、第2軸は第2センサ各々のパルス高さでよい。たとえばフローサイトメトリーによる白血球5分類(好中球、リンパ球、単球、好酸球、好塩基球)のような場合、散乱光または蛍光のピーク強度の散布図はよく分離するため、粒種の区別が容易である。しかし従来技術に係るコールター法、フローサイトメトリーともに、一般に粒径の近い異なる種類の粒子同士は、図1のように、各々のクラスタが不明確になってしまう。このため、粒種毎の区別が難しく、粒子の検出、識別や定量をすることも難しい。 The first problem is that even if the measurement results are plotted on a scatter diagram, if the overlap is large, the identification boundaries cannot be determined, and identification and quantification cannot be performed. FIG. 1 shows a conceptual diagram of measurement results of a sample in which three types of particles to be measured, ie, first, second, and third particle types are mixed. FIG. 1 represents the first grain type 110, the second grain type 120 and the third grain type 130, each with a differently shaped plot. One plot represents one pulse. A first axis 101 and a second axis 102 are quantities representing characteristics of each pulse obtained as a measurement result. For example, in the Coulter method or flow cytometry, the first axis may be pulse width (duration) and the second axis may be pulse height (peak power value). In the case of flow cytometry using two sensors, the first axis may be the pulse height of the first sensor, and the second axis may be the pulse height of each second sensor. For example, in the case of five types of leukocytes (neutrophils, lymphocytes, monocytes, eosinophils, and basophils) by flow cytometry, the scatter plots of the scattered light or fluorescence peak intensities are well separated. It is easy to distinguish between However, in both the Coulter method and flow cytometry according to the prior art, different types of particles having similar particle sizes generally have unclear clusters, as shown in FIG. Therefore, it is difficult to distinguish between grain types, and it is also difficult to detect, identify, and quantify the grains.
第2の課題は、たとえクラスタによって分類できたとしても、計測間のバラツキが大きい場合はパルスの誤識別が生じ、定量の場合はそのため大きな誤差が生じる問題である。図2は、第1、第2および第3粒種の3種類の計測対象粒子が混合している試料の、計測結果の概念図を示す。第1軸201および第2軸202は各々、計測結果として得られる各パルスの特徴を表す量である。図2(a)は、識別境界決定のための事前計測の結果であり、第1粒種210、第2粒種220および第3粒種230を各々異なる形のプロットで表している。この散布図上で、各粒子の計測値はクラスタを形成しかつ比較的よく分離している。図2(b)および(c)に各々、粒種が未知な計測対象試料の計測結果を模式的に表した。図2(a)で上記3粒種の識別境界200を定めた後、未知試料の計測結果のプロットが第1の領域219内にあれば第1の粒子、第2の領域229内にあれば第2の粒子、そして第3の領域239内にあれば第3の粒子に各々分類することができる。しかし現実には、粒種ごとのプロットは散布図上で大きくシフトする。たとえば、未知試料の計測結果図2(b)で第1の粒種のクラスタに属する粒子が第2の粒種に分類される誤識別221が多く発生する。また、未知試料の計測結果図2(c)で第3の粒種のクラスタに属する粒子が第2の粒種に分類される誤識別231が多く発生する。このように、従来技術では計測結果の計測間のばらつきによって検出や識別の精度が低下する。またこのデータをもとに上記3粒種の定量を行う場合にはその正確性が大きく損なわれる。 The second problem is that even if the clusters can be classified, if the variation between measurements is large, the pulses are erroneously identified, resulting in large errors in the case of quantification. FIG. 2 shows a conceptual diagram of measurement results of a sample in which three types of particles to be measured, ie, first, second, and third particle types are mixed. A first axis 201 and a second axis 202 are each a quantity that characterizes each pulse obtained as a result of the measurement. FIG. 2(a) shows the result of preliminary measurement for determination of the identification boundary, and the first grain type 210, the second grain type 220 and the third grain type 230 are plotted in different forms. On this scatterplot, the measurements for each particle form clusters and are relatively well separated. FIGS. 2(b) and 2(c) schematically show measurement results of measurement target samples of unknown grain types. After determining the identification boundary 200 of the three grain types in FIG. They can each be classified as a second particle and, if within the third region 239, a third particle. However, in reality, the plot for each grain type shifts greatly on the scatter plot. For example, in the measurement result of an unknown sample in FIG. 2B, there are many misidentifications 221 in which particles belonging to the cluster of the first grain type are classified as the second grain type. Further, in the measurement result of the unknown sample in FIG. 2(c), misidentification 231 often occurs in which the particles belonging to the cluster of the third grain type are classified as the second grain type. As described above, in the conventional technology, the accuracy of detection and identification deteriorates due to inter-measurement variations in measurement results. Moreover, when the above three grain types are quantified based on this data, the accuracy is greatly impaired.
第3の課題は、計測対象粒子由来のパルスと計測対象粒子以外、すなわち夾雑物由来のパルスの分離が難しいという問題である。図1の計測は第1乃至第3粒種のみからなる試料の計測結果を想定したが、現実の生体試料の計測は、夾雑物中に一部計測対象粒子が存在するのが一般的である。一般に、夾雑物は数多くの種類の粒子より構成されており、その素性は不明である。図3は、このような計測結果の概念図である。第1軸301および第2軸302は計測結果として得られる各パルスの特徴を表す量である。図3(a)は、計測対象粒子を含む試料、図3(b)は計測対象粒子を含まない試料の計測結果である。夾雑粒子は図3(a)領域311に、計測対象粒子は領域312に各々分布している。この場合、夾雑粒子は不明の粒子であって、様々な大きさや性質の粒子の混合から成る。したがって、従来の技術ではこのような試料の計測結果から、計測対象粒子のみを抽出して定量したり、試料ごとに計測対象粒子の有無を検出したりすることは困難であった。たとえば前者は検体試料より、微量のウイルス、細菌やタンパク質の定量を行う場合、また後者は検体試料に特定のウイルス、細菌やタンパク質が含まれているか否かを検出するような場合に相当し、いずれも実用的な要請が大きい技術であるが、従来の技術では十分な性能を発揮できなかった。 The third problem is that it is difficult to separate the pulses derived from the particles to be measured and the pulses derived from particles other than the particles to be measured, that is, contaminants. The measurement in FIG. 1 assumes the measurement result of a sample consisting of only the first to third grain types, but in the measurement of an actual biological sample, it is common that some particles to be measured are present in contaminants. . In general, contaminants are composed of many kinds of particles, and their origins are unknown. FIG. 3 is a conceptual diagram of such measurement results. A first axis 301 and a second axis 302 are quantities that characterize each pulse obtained as a measurement result. FIG. 3(a) shows measurement results of a sample containing particles to be measured, and FIG. 3(b) shows measurement results of a sample not containing particles to be measured. Contaminant particles are distributed in a region 311 in FIG. 3A, and particles to be measured are distributed in a region 312, respectively. In this case, the contaminant particles are unknown particles and consist of a mixture of particles of various sizes and properties. Therefore, with conventional techniques, it is difficult to extract and quantify only particles to be measured from the measurement results of such samples, or to detect the presence or absence of particles to be measured for each sample. For example, the former corresponds to the case of quantifying a trace amount of viruses, bacteria, or proteins from a specimen sample, and the latter corresponds to the case of detecting whether or not a specific virus, bacteria, or protein is contained in a specimen sample. Both of these technologies are highly demanded for practical use, but conventional technologies have not been able to exhibit sufficient performance.
第4の課題は、夾雑物中に計測対象の粒子が少ない試料の場合は、その検出、識別や定量が困難な問題である。たとえば、図3の概念図において、領域312の計測対象粒子が著しく少ない場合は、試料中に計測対象粒子が存在するか否かを実用的な正確性で推定することは難しく、その定量は更に困難である。コールター法やフローサイトメトリーに限らず一般に、実用的な生体試料の検査における最も重要な性能指標は、計測対象粒子の感度であり、この第4の課題の解決が強く望まれている。 The fourth problem is that in the case of a sample containing only a few particles to be measured in contaminants, it is difficult to detect, identify, and quantify the particles. For example, in the schematic diagram of FIG. Have difficulty. Not only in the Coulter method and flow cytometry, but in general, the most important performance index in practical examination of biological samples is the sensitivity of particles to be measured, and the solution of the fourth problem is strongly desired.
第5の課題は、コールター法やフローサイトメトリーではタンパク質のような10nm以下といった小さな粒子の検出、識別や定量ができない問題である。フローサイトメトリーの場合、光散乱を用いるため、このような小さな粒子からの散乱光パルスの計測は困難である。コールター原理の場合、10nm程度の細孔を有するデバイスを用いれば原理的には計測可能であるが、現実にはパルスがノイズに埋もれるためやはりパルス計測は難しい。タンパク質定量で用いられるELISA(Enzyme-Linked Immuno Sorbent Assay)は、計測に長い時間を要し装置も高額である。迅速かつ低コストでタンパク質の検出、識別や定量が可能な技術が求められている。 A fifth problem is that the Coulter method and flow cytometry cannot detect, identify, and quantify small particles of 10 nm or less, such as proteins. Since flow cytometry uses light scattering, it is difficult to measure scattered light pulses from such small particles. In the case of the Coulter principle, it is theoretically possible to measure by using a device with pores of about 10 nm. ELISA (Enzyme-Linked Immuno Sorbent Assay), which is used for protein quantification, requires a long measurement time and an expensive apparatus. There is a demand for a technology that enables fast, low-cost detection, identification, and quantification of proteins.
本発明はこのような状況に鑑みてなされたものであり、すなわち下記の態様を提供できる。 The present invention has been made in view of such circumstances, and can provide the following aspects.
電解液中に分散させた検出対象粒子が細孔を通過する際の、前記細孔の両側で前記電解液と接する2つの電極の間のイオン電流の過渡変化をパルス信号として検出するように構成されるコールター計測デバイスと、
粒子の前記細孔通過にともなうパルス波形の特徴量を計算する特徴量抽出部と、
前記細孔の付帯計測条件を記憶する付帯計測条件記憶部と、
前記パルス波形を学習するAIプログラムを備え、
種類が既知である既知粒子の計測に用いる第1のコールター計測デバイスの第1の細孔の穴径、形状、および細孔の厚みからなる群から選択される1つ以上を含む第1の付帯計測条件を、前記付帯計測条件記憶部に記憶し、
前記特徴量抽出部が、前記既知粒子の第1の細孔の通過にともなって前記第1のコールター計測デバイスから得られる第1のパルス波形から第1の特徴量を計算し、
前記第1の特徴量および前記第1の付帯計測条件を教師データ、前記既知粒子の種類を教師ラベルとして前記AIプログラムを学習して学習済AIプログラムを作成し、
未知粒子の計測に用いる第2のコールター計測デバイスの第2の細孔の穴径、形状、および細孔の厚みからなる群から選択される1つ以上を含む第2の付帯計測条件を、前記付帯計測条件記憶部に記憶し、
前記未知粒子の前記第2の細孔の通過に伴って前記第2のコールター計測デバイスの出力から得られる未知パルス波形より前記特徴量抽出部によって計算された未知特徴量および前記第2の付帯計測条件を前記学習済AIプログラムに入力して前記検出対象粒子の検出、識別、または定量を行うように構成されることを特徴とする装置。
configured to detect, as a pulse signal, a transient change in ionic current between two electrodes in contact with the electrolytic solution on both sides of the pore when particles to be detected dispersed in the electrolytic solution pass through the pore. a coulter measuring device that
a feature quantity extraction unit that calculates a feature quantity of a pulse waveform associated with passage of the particles through the pore;
an incidental measurement condition storage unit that stores incidental measurement conditions of the pores;
An AI program that learns the pulse waveform,
A first attachment containing one or more selected from the group consisting of the hole diameter, shape, and thickness of the first pore of the first pore of the first Coulter measurement device used for measuring known particles of known type storing measurement conditions in the incidental measurement condition storage unit;
The feature amount extraction unit calculates a first feature amount from a first pulse waveform obtained from the first Coulter measurement device as the known particles pass through the first pore,
creating a learned AI program by learning the AI program using the first feature quantity and the first incidental measurement condition as teacher data and the type of the known particle as a teacher label;
A second incidental measurement condition including one or more selected from the group consisting of the hole diameter, shape, and pore thickness of the second pore of the second Coulter measurement device used for measuring unknown particles, stored in the incidental measurement condition storage unit,
The unknown feature value calculated by the feature value extractor from the unknown pulse waveform obtained from the output of the second Coulter measuring device as the unknown particle passes through the second pore and the second incidental measurement. A device characterized by being configured to input conditions into the learned AI program to detect, identify, or quantify the particles to be detected.
試料中の粒子が1列に通過する透明な流路を含む計測部にレーザ光を照射し、前記計測部を粒子1個が通過する毎に通過した粒子からの散乱光または蛍光からのパルス信号1つを取得するように構成されるフローサイトメトリー計測手段と、
粒子の前記計測部通過にともなって得られるパルス信号から得られるパルス波形の特徴量を計算する特徴量抽出部と、
フローサイトメトリー計測手段の付帯計測条件を記憶する付帯計測条件記憶部と、
前記パルス波形を学習するAIプログラムを備え、
種類が既知である既知粒子の計測に用いる第1のフローサイトメトリー計測手段の特性を表す第1の光源特性情報、第1の受光器角度情報、第1の流速情報、第1の蛍光標識特性情報および第1のシース液物性情報からなる群から選択される1つ以上を含む第1の付帯計測条件を、前記付帯計測条件記憶部に記憶し、
前記既知粒子が第1のフローサイトメトリー計測手段の第1の計測部を通過することにともなって前記第1のフローサイトメトリー計測手段から得られる第1のパルス波形から第1の特徴量を計算し、
前記第1の特徴量と前記第1の付帯計測条件を教師データ、前記既知粒子の種類を教師ラベルとして前記AIプログラムを学習して学習済AIプログラムを作成し、
未知粒子の計測に用いる第2の計測に用いる第2のフローサイトメトリー計測手段の特性を表す第2の光源特性情報、第2の受光器角度情報、第2の流速情報、第2の蛍光標識特性情報および第2のシース液物性情報からなる群から選択される1つ以上を含む第2の付帯計測条件を、前記付帯計測条件記憶部に記憶し、
前記未知粒子が前記第2のフローサイトメトリー計測手段の第2の計測部を通過することにより得られる第2のパルス波形に基づいて、前記特徴量抽出部によって計算された第2の特徴量および前記第2の付帯計測条件を前記学習済AIプログラムに入力して前記粒子を検出、識別、または定量を行うように構成されることを特徴とする装置。
A laser beam is irradiated to a measurement part including a transparent flow path through which particles in a sample pass in a row, and a pulse signal from scattered light or fluorescence from particles passing through the measurement part each time one particle passes through the measurement part. a flow cytometry instrument configured to obtain a
a feature amount extraction unit that calculates a feature amount of a pulse waveform obtained from a pulse signal obtained as the particles pass through the measurement unit;
an incidental measurement condition storage unit for storing incidental measurement conditions of flow cytometry measurement means;
An AI program that learns the pulse waveform,
First light source characteristic information, first light receiver angle information, first flow velocity information, and first fluorescent label characteristics representing the characteristics of the first flow cytometry measurement means used for measuring known particles of known types storing a first incidental measurement condition including one or more selected from the group consisting of information and first sheath liquid physical property information in the incidental measurement condition storage unit;
calculating a first feature quantity from a first pulse waveform obtained from the first flow cytometry measurement means as the known particles pass through the first measurement unit of the first flow cytometry measurement means; death,
creating a learned AI program by learning the AI program using the first feature amount and the first incidental measurement condition as teacher data and the type of the known particle as a teacher label;
Second light source characteristic information, second light receiver angle information, second flow velocity information, and second fluorescent label representing the characteristics of the second flow cytometry measuring means used in the second measurement used to measure unknown particles storing second incidental measurement conditions including one or more selected from the group consisting of characteristic information and second sheath liquid physical property information in the incidental measurement condition storage unit;
a second feature amount calculated by the feature amount extraction unit based on a second pulse waveform obtained by the unknown particle passing through the second measurement unit of the second flow cytometry measurement means; An apparatus configured to input the second contingent measurement condition into the learned AI program to detect, identify, or quantify the particles.
試料中に混在する第1の種類の粒子と第2の種類の粒子を識別するためのAIプログラムであって、
前記AIプログラムが含む命令は、プロセッサにより実行された際に、
電解液中に分散させた粒子1つが細孔を通過する際の、前記細孔の両側で前記電解液と接する2つの電極の間のイオン電流の過渡変化を1つのパルス信号として検出するように構成される細孔デバイスと、
1つのパルス波形毎にN個の特徴量群を計算する特徴量抽出部と、
パルス波形を学習するAIプログラムとを備えたコールター計測装置を用い、
第1の試料を前記コールター計測装置で計測した第1のパルス波形を、その各々について計算された前記特徴量群を要素とする特徴量ベクトルに基づいて、N次元の特徴量空間内でクラスタリングして、前記第1の種類の粒子と推定される第1の推定パルス波形群と前記第2の種類の粒子と推定される第2の推定パルス波形群に分類し、
第2の試料を前記コールター計測装置で計測した第2のパルス波形を、その各々について計算された前記特徴量群を要素とする特徴量ベクトルに基づいて、N次元の特徴量空間内でクラスタリングして、前記第1の推定パルス波形群と前記第2の推定パルス波形群に分類し、
前記第1の推定パルス波形群から計算される前記特徴量群の各々を教師データ、前記第1の種類を教師ラベルとして、また前記第2の推定パルス波形群から計算される前記特徴量群の各々を教師データ、前記第2の種類を教師ラベルとして前記AIプログラムを学習し、学習済AI識別器を作成すること
を行うように構成されることを特徴とするAIプログラム。
An AI program for identifying first type particles and second type particles mixed in a sample,
The instructions in the AI program, when executed by a processor, include:
A transient change in ionic current between two electrodes in contact with the electrolyte on both sides of the pore when one particle dispersed in the electrolyte passes through the pore is detected as one pulse signal. a pore device comprising:
A feature quantity extraction unit that calculates N feature quantity groups for each pulse waveform;
Using a Coulter measuring device equipped with an AI program that learns pulse waveforms,
The first pulse waveform obtained by measuring the first sample with the Coulter measuring device is clustered in an N-dimensional feature amount space based on the feature amount vector having the feature amount group calculated for each of the first pulse waveforms. classifying into a first estimated pulse waveform group estimated to be particles of the first type and a second estimated pulse waveform group estimated to be particles of the second type;
The second pulse waveform obtained by measuring the second sample with the Coulter measurement device is clustered in an N-dimensional feature amount space based on the feature amount vector having the feature amount group calculated for each of them as an element. classifying into the first estimated pulse waveform group and the second estimated pulse waveform group,
Each of the feature quantity groups calculated from the first estimated pulse waveform group is used as teacher data, the first type is used as a teacher label, and the feature quantity group calculated from the second estimated pulse waveform group is An AI program characterized by being configured to learn the AI program using each as teacher data and the second type as a teacher label, and to create a learned AI discriminator.
試料中における検出対象タンパク質の有無を推定するためのAIプログラムであって、
前記AIプログラムは、
前記検出対象タンパク質と夾雑物を含むことが既知である試料に、前記検出対象タンパク質と特異的に結合する抗体で修飾した抗タンパク質ビーズを混入することで、その中に前記検出対象タンパク質と結合した結合済ビーズを含むようにして作成した第1の混合試料と、
前記夾雑物は含むが前記検出対象タンパク質を含まないことが既知である試料に、前記抗タンパク質ビーズを混入して作成した第2の混合試料と
を使用するところの、
電解液中に分散させた粒子が細孔を通過する際の、前記細孔の両側で前記電解液と接する2つの電極の間のイオン電流の過渡変化をパルス波形として検出するように構成されるコールター計測デバイスによる計測において使用されるものであり、
前記計測においては、
前記第1の混合試料を前記コールター計測デバイスで計測し第1のパルス計測結果が得られ、かつ
前記第2の混合試料を前記コールター計測デバイスで計測し第2のパルス計測結果が得られるものであり、
前記AIプログラムが含む命令は、プロセッサにより実行された際に、
前記第1のパルス計測結果と前記第2のパルス計測結果を演算することで、前記第1のパルス計測結果が前記結合済ビーズでない夾雑パルス確率を計算し、
前記夾雑パルス確率が閾値を下回るパルスのパルス計測結果を教師データ、陽性を正解ラベルとして前記AIプログラムを学習させ、
前記第2のパルス計測結果を教師データ、陰性を正解ラベルとして前記AIプログラムを学習して、学習済AI検出器を作成すること
を行うように構成されることを特徴とするAIプログラム。
An AI program for estimating the presence or absence of a protein to be detected in a sample,
The AI program is
By mixing anti-protein beads modified with an antibody that specifically binds to the detection target protein into a sample known to contain the detection target protein and contaminants, the detection target protein is bound therein. a first mixed sample prepared containing bound beads;
using a second mixed sample prepared by mixing the anti-protein beads with a sample known to contain the contaminants but not the protein to be detected;
configured to detect transient changes in ionic current between two electrodes in contact with the electrolyte on both sides of the pore as a pulse waveform when particles dispersed in the electrolyte pass through the pore. used in measurements by Coulter measuring devices,
In the measurement,
The first mixed sample is measured by the Coulter measuring device to obtain a first pulse measurement result, and the second mixed sample is measured by the Coulter measuring device to obtain a second pulse measurement result. can be,
The instructions in the AI program, when executed by a processor, include:
calculating a contamination pulse probability that the first pulse measurement result is not the bound bead by calculating the first pulse measurement result and the second pulse measurement result;
Learning the AI program using the pulse measurement result of the pulse whose probability of contamination is below the threshold as teacher data and positive as a correct label,
An AI program that is configured to learn the AI program using the second pulse measurement result as teacher data and negative as a correct label to create a trained AI detector.
試料中に検出対象微生物が含まれるか否かを検出するための、AIプログラムを用いた方法であって、
検出対象微生物を含まない既知陰性試料に、前記検出対象微生物に特異的に結合する抗体で修飾した抗微生物ビーズを混合してビーズ混合陰性試料を作成し、
前記検出対象微生物を含む既知陽性試料に前記抗微生物ビーズを混合して、前記検出対象微生物と前記抗微生物ビーズが結合した微生物結合ビーズを含むビーズ混合陽性試料を作成し、
前記ビーズ混合陰性試料を、電界液中に分散させた微細な粒子が細孔を通過する際の細孔の両側の間の電気抵抗の過渡変化をパルス信号として検出するように構成されるコールター装置で計測することで、陰性パルス計測結果を得、
前記ビーズ混合陽性試料を前記コールター装置で計測することで陽性パルス計測結果を得、
AIプログラムを用いて、前記陰性パルス計測結果を教師データ、陰性ラベルを正解としてAI学習を行い、
前記AIプログラムを用いて、前記陽性パルス計測結果を教師データ、陽性ラベルを正解としてAI学習を行うことで学習済AI検出器を作成する
ことを含む、方法。
A method using an AI program for detecting whether or not a microorganism to be detected is contained in a sample,
A bead-mixed negative sample is prepared by mixing antimicrobial beads modified with an antibody that specifically binds to the microorganism to be detected to a known negative sample that does not contain the microorganism to be detected,
Mixing the antimicrobial beads with a known positive sample containing the microorganism to be detected to prepare a bead-mixed positive sample containing microorganism-bound beads to which the microorganism to be detected and the antimicrobial beads are bound,
A Coulter device configured to detect, as a pulse signal, a transient change in electrical resistance between both sides of a pore when fine particles of the bead-mixed negative sample dispersed in an electrolytic solution pass through the pore. By measuring with, a negative pulse measurement result is obtained,
A positive pulse measurement result is obtained by measuring the bead-mixed positive sample with the Coulter device,
Using an AI program, AI learning is performed using the negative pulse measurement result as teacher data and the negative label as the correct answer,
A method comprising using the AI program to perform AI learning using the positive pulse measurement result as teacher data and the positive label as a correct answer to create a trained AI detector.
試料中に検出対象エクソソームが含まれるか否かを検出するための、AIプログラムを用いた方法であって、
検出対象エクソソームを含まない既知陰性試料に前記検出対象エクソソームに特異的に結合する抗体で修飾した抗エクソソームビーズを混合してビーズ混合陰性試料を作成し、
前記検出対象エクソソームを含む既知陽性試料に前記抗エクソソームビーズを混合して、前記検出対象エクソソームと前記抗エクソソームビーズが結合したエクソソーム結合ビーズを含むビーズ混合陽性試料を作成し、
前記ビーズ混合陰性試料を、電界液中に分散させた微細な粒子が細孔を通過する際の細孔の両側の間の電気抵抗の過渡変化をパルス信号として検出するように構成されるコールター装置で計測することで、陰性パルス計測結果を得、
前記ビーズ混合陽性試料を前記コールター装置で計測することで陽性パルス計測結果を得、
AIプログラムを用いて、前記陰性パルス計測結果を教師データ、陰性ラベルを正解としてAI学習を行い、
前記AIプログラムを用いて、前記陽性パルス計測結果を教師データ、陽性ラベルを正解としてAI学習を行うことで学習済AI検出器を作成する
ことを含む、方法。
A method using an AI program for detecting whether the sample contains exosomes to be detected,
Create a bead-mixed negative sample by mixing anti-exosome beads modified with an antibody that specifically binds to the exosomes to be detected in a known negative sample that does not contain exosomes to be detected,
The anti-exosome beads are mixed with the known positive sample containing the exosomes to be detected, and the exosomes to be detected and the anti-exosome beads are bound to create a bead mixed positive sample containing exosome-bound beads,
A Coulter device configured to detect, as a pulse signal, a transient change in electrical resistance between both sides of a pore when fine particles of the bead-mixed negative sample dispersed in an electrolytic solution pass through the pore. By measuring with, a negative pulse measurement result is obtained,
A positive pulse measurement result is obtained by measuring the bead-mixed positive sample with the Coulter device,
Using an AI program, AI learning is performed using the negative pulse measurement result as teacher data and the negative label as the correct answer,
A method comprising using the AI program to perform AI learning using the positive pulse measurement result as teacher data and the positive label as a correct answer to create a trained AI detector.
試料中に検出対象タンパク質が含まれるか否かを検出するための方法であって、
電界液中に分散させた、検出限界サイズ以上の大きさを有する検出可能粒子が細孔を通過する際にのみ細孔の両側の間の電気抵抗の過渡変化をパルス信号として検出するように構成されるコールター装置を用いて、
前記検出限界サイズ未満の大きさを有するタンパク質を含まない陰性試料に前記検出対象タンパク質と特異的に結合する抗タンパク質ビーズを混合した第1試料を作成し、
前記タンパク質を含む陽性試料に、前記抗タンパク質ビーズを混合して、前記抗タンパク質ビーズ同士が結合した結合済ビーズを含むようにした第2試料を作成し、
前記第1試料を前記コールター装置で計測して得た第1のパルス計測結果の第1パルス数と、前記第2試料を前記コールター装置で計測して得た第2のパルス計測結果の第2パルス数より、陽性パルス数閾値を定め、
前記検出対象タンパク質が含まれるか否かが未知である未知試料を前記コールター装置で計測して得た第3のパルス計測結果の第3パルス数が前記陽性パルス数閾値を上回った前記未知試料には、前記検出対象タンパク質が含まれると判断する
ことを含む、方法。
A method for detecting whether a target protein is contained in a sample, comprising:
Configured to detect a transient change in electrical resistance between both sides of the pore as a pulse signal only when detectable particles having a size equal to or larger than the detection limit size dispersed in the electrolytic solution pass through the pore. with a Coulter device that
preparing a first sample by mixing anti-protein beads that specifically bind to the protein to be detected with a negative sample that does not contain a protein having a size less than the detection limit size;
Mixing the anti-protein beads with the positive sample containing the protein to create a second sample containing bound beads in which the anti-protein beads are bound to each other;
A first pulse number of the first pulse measurement result obtained by measuring the first sample with the Coulter device, and a second pulse measurement result of the second pulse measurement result obtained by measuring the second sample with the Coulter device Determine the positive pulse number threshold from the number of pulses,
For the unknown sample in which the third pulse number in the third pulse measurement result obtained by measuring the unknown sample in which it is unknown whether or not the protein to be detected is contained is above the positive pulse number threshold, A method comprising determining that the protein to be detected is included.
試料中に検出対象微生物が含まれるか否かを検出するための、AIプログラムを用いた方法であって、
検出対象微生物を含まない既知陰性試料に前記検出対象微生物に特異的に結合する抗体で修飾した標識ビーズを混合してビーズ混合陰性試料を作成し、
前記ビーズ混合陰性試料が入っている陰性試料用容器に遠心処理を施し、
前記陰性試料用容器下部の沈降物を、電界液中に分散させた微細な粒子が細孔を通過する際の細孔の両側の間の電気抵抗の過渡変化をパルス信号として検出するように構成されるコールター装置で計測することで、濃縮陰性パルス計測結果を得、
前記検出対象微生物を含む既知陽性試料に前記標識ビーズを混合して、前記検出対象微生物と前記標識ビーズが結合した微生物結合ビーズを含むビーズ混合陽性試料を作成し、
前記ビーズ混合陽性試料が入っている陽性試料用容器に遠心処理を施し、
前記陽性試料用容器の下部の沈降物を前記コールター装置で計測することで、濃縮陽性パルス計測結果を得、
AIプログラムを用いて、前記濃縮陰性パルス計測結果を教師データとし、陰性を正解ラベルとしてAI学習を行い、
前記AIプログラムを用いて、前記濃縮陽性パルス計測結果を教師データとし、陽性を正解ラベルとしてAI学習を行うことで学習済AI検出器を作成する
ことを含む、方法。
A method using an AI program for detecting whether or not a microorganism to be detected is contained in a sample,
A bead-mixed negative sample is prepared by mixing labeled beads modified with an antibody that specifically binds to the microorganism to be detected to a known negative sample that does not contain the microorganism to be detected,
Centrifuging the negative sample container containing the bead-mixed negative sample,
The sediment in the lower part of the negative sample container is configured to detect, as a pulse signal, a transient change in electrical resistance between both sides of the pore when fine particles dispersed in the electrolytic solution pass through the pore. By measuring with the Coulter device that is used, a concentrated negative pulse measurement result is obtained,
Mixing the labeled beads with a known positive sample containing the microorganism to be detected to prepare a bead-mixed positive sample containing microorganism-bound beads to which the microorganism to be detected and the labeled beads are bound,
Centrifuging the positive sample container containing the bead-mixed positive sample,
By measuring the sediment at the bottom of the positive sample container with the Coulter device, a concentrated positive pulse measurement result is obtained,
Using an AI program, AI learning is performed using the concentrated negative pulse measurement result as teacher data and negative as a correct label,
using the AI program to create a trained AI detector by performing AI learning using the enriched positive pulse measurement results as teacher data and using positive as a correct label.
試料中に2種類の微生物のうちのいずれが含まれるかを識別するための、AIプログラムを用いた方法であって、
第1の微生物を含むことが既知である第1の試料に、前記第1の微生物と特異的に結合する抗体で修飾した第1の抗微生物ビーズおよび第2の微生物と特異的に結合する抗体で修飾した第2の抗微生物ビーズから成る2種混合ビーズを混入して、前記第1の微生物と前記第1の抗微生物ビーズが結合した第1の微生物結合ビーズを含む第1のビーズ混合試料を作成し、
第2の微生物を含むことが既知である第2の試料に、前記2種混合ビーズを混入して、前記第2の微生物と前記第2の抗微生物ビーズが結合した第2の微生物結合ビーズを含む第2のビーズ混合試料を作成し、
前記第1のビーズ混合試料を、電界液中に分散させた微細な粒子が細孔を通過する際の細孔の両側の間の電気抵抗の過渡変化をパルス信号として検出するように構成されるコールター装置で計測することで、第1のパルス計測結果を得、
前記第2のビーズ混合試料を前記コールター装置で計測することで第2のパルス計測結果を得、
AIプログラムを用いて、前記第1のパルス計測結果を教師データ、第1の微生物を教師ラベルとしてAI学習を行い、
前記AIプログラムを用いて、前記第2のパルス計測結果を教師データ、第2の微生物を教師ラベルとしてAI学習を行うことで学習済AI識別器を作成する
ことを含む、方法。
A method using an AI program for identifying which of two types of microorganisms are present in a sample, comprising:
A first sample known to contain a first microorganism, a first antimicrobial bead modified with an antibody that specifically binds to said first microorganism and an antibody that specifically binds to a second microorganism A first mixed bead sample containing the first microorganism-bound beads bound to the first microorganism and the first anti-microbial bead by mixing two kinds of mixed beads consisting of the second anti-microbial beads modified with and create
A second sample known to contain a second microorganism is mixed with the two-species mixed beads to form a second microorganism-bound bead in which the second microorganism and the second antimicrobial bead are bound. creating a second bead mixture sample comprising
The first bead mixture sample is configured to detect a transient change in electrical resistance between both sides of the pore as a pulse signal when the fine particles dispersed in the electrolyte pass through the pore. A first pulse measurement result is obtained by measuring with a Coulter device,
obtaining a second pulse measurement result by measuring the second bead-mixed sample with the Coulter device;
Using an AI program, AI learning is performed using the first pulse measurement result as teacher data and the first microorganism as a teacher label,
A method comprising using the AI program to perform AI learning using the second pulse measurement result as teacher data and the second microorganism as a teacher label to create a learned AI discriminator.
試料中に含まれるタンパク質の濃度を定量するための、AIプログラムを用いた方法であって、
第1濃度の前記タンパク質を含むことが既知である第1の試料に前記タンパク質に特異的に結合する抗体で修飾した標識ビーズを混合して前記タンパク質と前記標識ビーズの結合体を含む第1のビーズ混合試料を作成し、
第2濃度の前記タンパク質を含むことが既知である第2の試料に前記標識ビーズを混合して前記タンパク質と前記標識ビーズの結合体を含む第2のビーズ混合試料を作成し、
前記第1のビーズ混合試料を、電界液中に分散させた微細な粒子が細孔を通過する際の細孔の両側の間の電気抵抗の過渡変化をパルス信号として検出するように構成されるコールター装置による計測結果から、パルス抽出手段によって抽出された計測第1の教師パルス計測結果を得、
前記第2のビーズ混合試料の前記コールター装置による計測結果から、前記パルス抽出手段によって抽出された第2の教師パルス計測結果を得、
AIプログラムを用いて、前記第1の教師パルス計測結果を教師データ、第1濃度を正解ラベルとしてAI学習を行い、
前記AIプログラムを用いて、前記第2の教師パルス計測結果を教師データ、第2濃度を正解ラベルとしてAI学習を行うことで学習済AI定量器を作成する
ことを含む、方法。
A method using an AI program for quantifying the concentration of protein contained in a sample, comprising:
A first sample known to contain the protein at a first concentration is mixed with labeled beads modified with an antibody that specifically binds to the protein to form a first sample containing a conjugate of the protein and the labeled beads. Create a bead mixture sample,
mixing the labeled beads with a second sample known to contain a second concentration of the protein to form a second bead mixture sample containing a conjugate of the protein and the labeled beads;
The first bead mixture sample is configured to detect a transient change in electrical resistance between both sides of the pore as a pulse signal when the fine particles dispersed in the electrolyte pass through the pore. Obtaining a measurement first teacher pulse measurement result extracted by the pulse extraction means from the measurement result by the Coulter device,
Obtaining a second teacher pulse measurement result extracted by the pulse extraction means from the measurement result of the second bead mixed sample by the Coulter device,
Using an AI program, AI learning is performed using the first teacher pulse measurement result as teacher data and the first concentration as a correct label,
and creating a learned AI quantifier by performing AI learning using the AI program with the second teacher pulse measurement result as teacher data and the second concentration as a correct label.
本発明により、コールター法やフローサイトメトリーなどの、パルスを結果として生成する計測手段を用い、生体試料中における血球等の細胞、ウイルスや細菌などの微生物、もしくはタンパク質などといった微粒子に対し、検出、識別、および定量を、従来技術に比べて高い精度で実現できる。 According to the present invention, cells such as blood cells, microorganisms such as viruses and bacteria, or microparticles such as proteins in a biological sample are detected and detected using measurement means that generate pulses as a result, such as the Coulter method and flow cytometry. Identification and quantification can be achieved with higher precision than in the prior art.
第1、第2および第3粒種の3種類の計測対象粒子が混合している試料の場合の計測結果と、その従来技術における問題点を説明する図である。It is a figure explaining the measurement result in the case of the sample in which three types of measurement object particle|grains of the 1st, 2nd, and 3rd particle types are mixed, and the problem in the prior art. 第1、第2および第3粒種の3種類の計測対象粒子が混合している試料の場合の計測結果と、その従来技術における問題点を説明する図である。It is a figure explaining the measurement result in the case of the sample in which three types of measurement object particle|grains of the 1st, 2nd, and 3rd particle types are mixed, and the problem in the prior art. 夾雑粒子を含む試料の計測結果と、その従来技術における問題点を説明する図である。FIG. 2 is a diagram for explaining measurement results of a sample containing contaminant particles and problems in the prior art. 本発明に係る或る実施形態で用いるコールター法による微粒子計測装置を構成する計測デバイスの一例を示す。1 shows an example of a measuring device that constitutes a fine particle measuring apparatus using the Coulter method used in an embodiment of the present invention. 図4または図6の装置等で得られるパルス波形の例を示す。FIG. 7 shows an example of a pulse waveform obtained by the apparatus of FIG. 4 or FIG. 6, etc. FIG. 本発明に係る或る実施形態で用いるフローサイトメトリーによる微粒子計測装置を構成する計測デバイスの一例を示す。1 shows an example of a measurement device that constitutes a flow cytometry particle measurement apparatus used in an embodiment of the present invention. 本発明の或る実施形態に係る検出、識別または定量装置の構成の一例を示す。1 shows an example configuration of a detection, identification or quantification device according to an embodiment of the invention. 本発明の或る実施形態に係るAIプログラムの学習と、それを用いた未知試料の検出/識別/定量処理の例をそれぞれ示すフローチャートである。4 is a flow chart showing an example of AI program learning according to an embodiment of the present invention, and an unknown sample detection/discrimination/quantitation process using the same. パルス波形からパルスの特徴量を抽出する工程を説明する図である。It is a figure explaining the process of extracting the feature-value of a pulse from a pulse waveform. 深層ニューラルネットワークのAIデータ前処理としてパルスの終了後にパディングを施す例を示す。An example of padding after the end of a pulse as AI data preprocessing for a deep neural network is shown. パルスから得られる特徴量の例と、それをp次元空間で表現した例を示す。An example of a feature value obtained from a pulse and an example of expressing it in p-dimensional space are shown. 特徴量を学習させるための、コールター装置を用いた計測結果に対する教師ラベル付与の一例を示す。An example of teacher label assignment to measurement results using a Coulter device for learning feature values is shown. 特徴量を学習させるための、フローサイトメトリーを用いた計測結果に対する教師ラベル付与の一例を示す。An example of supervised label assignment to measurement results using flow cytometry for learning feature values is shown. 各計測について識別境界を各々計算した結果の概念図である。FIG. 10 is a conceptual diagram of the result of calculating each discriminant boundary for each measurement; 微生物を識別するための教師ラベル付与の別の一例を示す。Another example of supervised labeling for identifying microorganisms is shown. 深層ニューラルネットワークを模式的に表した図である。1 is a diagram schematically showing a deep neural network; FIG. 本発明の実施形態に係るAIプログラムによる結果出力の一例を示す。4 shows an example of result output by the AI program according to the embodiment of the present invention. 本発明の別の実施形態に係る検出、識別または定量装置の構成の例を示す。Fig. 3 shows an example configuration of a detection, identification or quantification device according to another embodiment of the invention; 本発明のさらに別の実施形態に係る検出、識別または定量装置の構成の例を示す。Fig. 3 shows an example configuration of a detection, identification or quantification device according to yet another embodiment of the present invention; 計測対象粒子を含む生体試料、および計測対象試料を含まない生体試料の計測結果における、パルス数比率を模式的に表した図である。FIG. 4 is a diagram schematically showing the pulse number ratio in the measurement results of a biological sample containing particles to be measured and a biological sample not containing particles to be measured. 計測対象試料に夾雑物および計測対象粒子が混在しかつ識別境界が確定できない計測結果と、計測対象粒子が含まれない夾雑物のみの試料の計測結果との例を示す。An example of a measurement result in which contaminants and particles to be measured are mixed in a sample to be measured and a discrimination boundary cannot be determined, and a measurement result of a sample containing only contaminants without particles to be measured will be shown. 図20(a)に示す計測対象粒子である220nmビーズの混合比率a2000を100%から1%まで変化させたときに、コントロールとなる図20(b)の200nm単体の試料2020との2値識別性能を評価した結果を示す。When the mixing ratio a2000 of the 220 nm beads, which are the particles to be measured shown in FIG. The results of performance evaluation are shown. 検出対象微生物が試料中に存在するか否かの検出における検体前処理の概念を示す。The concept of specimen pretreatment in detecting whether or not a microorganism to be detected exists in a sample is shown. 試料中に存在するウイルスの種類を識別するための検体前処理の概念を示す。The concept of sample pretreatment for identifying the types of viruses present in the sample is shown. 試料中の対象タンパク質濃度を定量するための検体前処理の概念を示す。A sample pretreatment concept for quantifying the target protein concentration in a sample is shown. 穴径300nm、厚さ50nmの細孔を持つコールター装置で、様々な直径のポリスチレンビーズを計測した時の、パルス高さ(イオン電流の過渡変化)を示す。Fig. 3 shows the pulse height (transient change in ion current) when measuring polystyrene beads of various diameters with a Coulter apparatus having pores with a hole diameter of 300 nm and a thickness of 50 nm. 本発明の実施形態に係る検出方法の対象となる試料の例を示す。1 shows an example of a sample that is a target of a detection method according to an embodiment of the present invention. パルス抽出手段で抽出したパルスから、特徴量抽出手段で抽出した特徴量のうち2つを選んでパルス毎に散布図で実施した6計測について表現した図である。FIG. 10 is a diagram expressing 6 measurements performed for each pulse by selecting two of the feature amounts extracted by the feature amount extraction means from the pulses extracted by the pulse extraction means and performing them in a scatter diagram. パルス単位で教師ラベルとAI検出器出力の比較をする混同行列と、そのAI検出結果を示す。A confusion matrix that compares a teacher label and an AI detector output on a pulse-by-pulse basis and its AI detection result are shown.
本発明において検出、識別、または定量の対象となる微粒子は限定されず、測定装置の種類・性能に応じて任意に選択できる。微粒子の好適な例としては、タンパク質分子、微生物(真菌、バクテリア、ウイルス等)、エクソソームといったものが挙げられる。 The fine particles to be detected, identified, or quantified in the present invention are not limited, and can be arbitrarily selected according to the type and performance of the measuring device. Suitable examples of microparticles include protein molecules, microorganisms (fungi, bacteria, viruses, etc.), exosomes, and the like.
本発明に係るプログラムは、ソフトウェア命令群を含むものとして任意の記憶媒体(RAM、ストレージ等)に格納し、その命令をプロセッサ上で実行することで本発明に係る方法を行う機能を有する。そうしたプロセッサを有するコンピュータ装置の種類は特に限定されず、パーソナルコンピュータ、スマートフォン、サーバ等の任意の演算装置であってよい。また、微粒子の測定を行うハードウェアと、AIプログラムの学習を行う(ソフトウェアを実行する)ハードウェアと、当該学習済みのAIプログラムを用いて微粒子の解析(検出、識別、または定量)を行う(ソフトウェアを実行する)ハードウェアとは、それぞれ物として別個の装置であってもよく、あるいは同じ装置であってもよい。別個の装置である場合は、ネットワークを介して互いに接続されていてもよく、あるいはその一部が(セキュリティ上の理由などにより)スタンドアローン運用であってもよい。 The program according to the present invention has a function of performing the method according to the present invention by storing it in an arbitrary storage medium (RAM, storage, etc.) as containing software instructions and executing the instructions on the processor. The type of computer device having such a processor is not particularly limited, and may be any computing device such as a personal computer, smart phone, or server. In addition, hardware for measuring fine particles, hardware for learning an AI program (executing software), and analysis (detection, identification, or quantification) of fine particles using the learned AI program ( The hardware (which executes the software) may each be separate physical devices or they may be the same device. If they are separate devices, they may be connected to each other via a network, or some of them may operate standalone (eg for security reasons).
図4に、本発明に係る或る実施形態で用いるコールター法による微粒子計測装置を構成する計測デバイスの一例を示す。デバイス400は2つのチャンバ410および420が細孔440を経由して接続される断面構造を有している。2つのチャンバには各々電極412および422が設置される。導入口411より電解液に懸濁した計測対象粒子を含む試料を、チャンバ410に、導入口421より電解液をチャンバ420に導入し、電圧源452によって前記2つの電極に電圧を印加する。たとえば、電極412を負極、電極422を正極となるように電圧を印加すると、細孔を経由してイオン電流が流れる。すると、チャンバ410中にある負に帯電した粒子は電気泳動により細孔440を経由してチャンバ420に移動する。 FIG. 4 shows an example of a measuring device that constitutes a fine particle measuring apparatus based on the Coulter method used in an embodiment of the present invention. Device 400 has a cross-sectional structure in which two chambers 410 and 420 are connected via pore 440 . Electrodes 412 and 422 are installed in the two chambers, respectively. A sample containing the particles to be measured suspended in the electrolytic solution is introduced into the chamber 410 through the introduction port 411 , and the electrolytic solution is introduced into the chamber 420 through the introduction port 421 , and a voltage is applied to the two electrodes by the voltage source 452 . For example, when a voltage is applied so that the electrode 412 becomes a negative electrode and the electrode 422 becomes a positive electrode, an ion current flows through the pores. Then, the negatively charged particles in chamber 410 move to chamber 420 through pores 440 by electrophoresis.
図4の一例では、試料中の負帯電粒子はクーロン力によって図面上から下方向に移動する。このため、試料中の粒子1個が細孔440を通過する度に、電極412と電極422の間のイオン電流が過渡的に減少し、電流計451より図6に模式的に示すような信号が出力される。図6の一例で横軸601は時間、縦軸602は電極412と電極422との間の抵抗値に対して正の相関を持つ出力であり、たとえばパルス例615が1つの粒子が細孔440を通過した時の抵抗値の時間変化である。図6は、10個の粒子通過のパルスが観測された一例である。たとえば幅621は、パルス例615の継続時間である。図4の電流計451の出力は、粒子通過時に減少する下向きのパルスになるが、以下図9で示すとおり本発明による解析対象は切り出した各々のパルス形状であり、計測手段やその出力方法によって、パルスは上向き(粒子通過時に増大)であっても下向き(粒子通過時に減少)であってもよい。 In the example of FIG. 4, the negatively charged particles in the sample move downward from the top of the drawing due to the Coulomb force. Therefore, every time one particle in the sample passes through the pore 440, the ion current between the electrodes 412 and 422 decreases transiently, and the ammeter 451 produces a signal as schematically shown in FIG. is output. In one example of FIG. 6, the horizontal axis 601 is time and the vertical axis 602 is the output having a positive correlation with the resistance value between the electrodes 412 and 422. This is the time change of the resistance value when passing through FIG. 6 is an example in which 10 particle passing pulses were observed. For example, width 621 is the duration of example pulse 615 . The output of the ammeter 451 in FIG. 4 is a downward pulse that decreases when a particle passes through. , the pulse can be either upward (increase as the particle passes) or downward (decrease as the particle passes).
図5に、本発明に係る或る実施形態で用いるフローサイトメトリー装置の計測部の一例を示す。細胞等生体粒子を含む試料が注入口512より、またシース液がシース液導入口511よりそれぞれ試料導入管515、シース液導入管516に各々導入される。試料とシース液は混合部513を通過して計測細管510内に導入される。試料中の粒子は計測部500を通過する。光源502で発生した入射光506は、計測細管510を透過して計測部500に到達する。計測部500を試料に含まれる粒子が通過する際に散乱し、計測部500の周囲に放射される。試料を注入口512に注入する前の処理として、計測対象粒子に対して特定の波長の光で励起され発光する蛍光染色処理を施してもよい。光源502が前記特定の波長を含む光を射出する場合、粒子が計測部500を通過する際、染色された粒子が入射光で励起され蛍光を発し、その蛍光が計測細管の周囲に放射される。フローサイトメトリーでは、放射された散乱光または蛍光の強度の過渡変化を検出するための受光器(検出器)を、計測部500の周囲に設置する。図5の一例では、受光器A503、受光器B504、および受光器C505が設置されている。 FIG. 5 shows an example of a measuring section of a flow cytometry device used in an embodiment according to the present invention. A sample containing bioparticles such as cells is introduced from an injection port 512, and a sheath liquid is introduced from a sheath liquid introduction port 511 into a sample introduction tube 515 and a sheath liquid introduction tube 516, respectively. The sample and the sheath liquid pass through the mixing section 513 and are introduced into the measuring tubule 510 . Particles in the sample pass through the measurement unit 500 . Incident light 506 generated by the light source 502 passes through the measurement tubule 510 and reaches the measurement section 500 . When the particles contained in the sample pass through the measurement unit 500 , they scatter and radiate around the measurement unit 500 . As processing before injecting the sample into the injection port 512, the particles to be measured may be subjected to fluorescence dyeing processing in which the particles are excited by light of a specific wavelength and emit light. When the light source 502 emits light containing the specific wavelength, when the particles pass through the measurement unit 500, the dyed particles are excited by the incident light and emit fluorescence, and the fluorescence is emitted around the measurement capillary. . In flow cytometry, a light receiver (detector) for detecting a transient change in intensity of emitted scattered light or fluorescence is installed around the measurement unit 500 . In one example of FIG. 5, a photodetector A503, a photodetector B504, and a photodetector C505 are installed.
図5の一例では、試料中の粒子は図面上から下方向に移動する。このため、試料中の粒子1個が計測部500を通過する度に、散乱光または蛍光が過渡的に増大し、受光器より図6に模式的に示すような信号が出力される。図6の一例で横軸601は時間、縦軸602は検出器の受光強度に対して正の相関を持つ電流出力であり、たとえばパルス例615が1つの粒子が計測部500を通過した時に1つの受光器が受光した散乱光または蛍光強度の時間変化である。図6は、10個の粒子通過のパルスが観測された一例である。たとえば幅621は、パルス例615の継続時間である。受光器の出力は電流でも電圧でも良い。 In the example of FIG. 5, the particles in the sample move downward from the top of the drawing. Therefore, every time one particle in the sample passes through the measurement unit 500, scattered light or fluorescence increases transiently, and a signal as schematically shown in FIG. 6 is output from the light receiver. In an example of FIG. 6, the horizontal axis 601 is time, and the vertical axis 602 is the current output having a positive correlation with the received light intensity of the detector. It is the time variation of scattered light or fluorescence intensity received by one receiver. FIG. 6 is an example in which 10 particle passing pulses were observed. For example, width 621 is the duration of example pulse 615 . The output of the photodetector may be current or voltage.
図7は、本発明の或る実施形態に係る検出、識別または定量装置の構成の一例である。センサX703乃至Z705は外部刺激に対応して信号を出力できるものであればよく、例えばコールター法による図4の電流計451、またはフローサイトメトリーにおける図5の受光器A503乃至C505であってよい。センサの個数は1つ以上であれば、いくつであってもよい。センサからの出力は、入力信号処理手段710で増幅およびA/D変換を行った後、入出力手段720を経由して情報処理手段730に送られる。デジタイズのサンプリング間隔は、パルス継続時間の1/5以下であることが望ましいが、本発明においては、サンプリング間隔が短いほど識別性能が高いとは限らない。 FIG. 7 is an example configuration of a detection, identification or quantification device according to an embodiment of the invention. The sensors X703 to Z705 may be those capable of outputting a signal in response to an external stimulus, and may be, for example, the ammeter 451 in FIG. 4 according to the Coulter method, or the photodetectors A503 to C505 in FIG. 5 for flow cytometry. The number of sensors may be any number as long as it is one or more. The output from the sensor is amplified and A/D converted by the input signal processing means 710 and then sent to the information processing means 730 via the input/output means 720 . The digitizing sampling interval is preferably 1/5 or less of the pulse duration, but in the present invention, the shorter the sampling interval, the higher the identification performance.
本発明の情報処理方法は、2つの段階から成る。第1が学習、第2が検出、識別または定量である。第1の学習は試料中に含まれる粒子の種類や濃度が既知である試料を用いて、AIプログラムの有するAIパラメタを最適化する処理である。また最適化済のAIプログラムを学習済AIプログラムと呼ぶ。また、第2の検出、識別または定量は、学習済AIプログラムに未知粒子のパルスを入力し、その出力として学習済AIプログラムが推定した粒子の有無、種類または濃度を推定する処理である。 The information processing method of the present invention consists of two stages. The first is learning and the second is detection, identification or quantification. The first learning is a process of optimizing the AI parameters of the AI program using samples with known types and concentrations of particles contained in the samples. Also, an optimized AI program is called a learned AI program. The second detection, identification, or quantification is a process of inputting pulses of unknown particles to the learned AI program and estimating the presence, type, or concentration of the particles estimated by the learned AI program as its output.
AIパラメタは用いるAIプログラムによって異なるが、たとえば線形識別変換であれば、識別クラス毎の係数ベクトルやバイアス項、深層学習であれば、ニューラルネットワークの構造、各ノードの係数や活性化関数や結合係数、畳み込みニューラルネットワークの畳み込み層フィルタ等、本発明の実装で利用するAIプログラムにおける最適化対象パラメタであり、どのようなものであってもよい。本発明では、AIプログラムに実装されるアルゴリズムの種類はどのようなものでもよい。たとえば、k近傍法、線形識別法、各種深層学習、サポートベクトルマシン、決定木、ボルツマンマシンなどの他、あるいは様々なアルゴリズムを組み合わせたアンサンブル法などであってよい。 AI parameters differ depending on the AI program used. For example, in the case of linear discriminative transformation, the coefficient vector and bias term for each discriminant class, in the case of deep learning, the structure of the neural network, the coefficients of each node, the activation function, and the coupling coefficient , a convolutional layer filter of a convolutional neural network, etc., which are parameters to be optimized in the AI program used in the implementation of the present invention, and may be anything. In the present invention, any type of algorithm may be implemented in the AI program. For example, the k-nearest neighbor method, linear discriminant method, various deep learning methods, support vector machines, decision trees, Boltzmann machines, or an ensemble method combining various algorithms may be used.
(AIプログラムの学習)
図8(a)に、本発明の或る実施形態に係るAIプログラムの学習の一例を示す。以下の説明では、図7の装置を用いて学習を行う例として示す。例えばコールター法による電流計またはフローサイトメトリーにおける受光器からの出力は図9に示すようにノイズが含まれたピークとなる。このため、この実施形態ではまず図9に例示するように、パルスのベースライン901を推定(ステップS811)した後、パルス端902の開始および終了の時刻を推定(ステップS812)、その抽出したパルス903のパルス内データを抽出(ステップS813)する。たとえば、図6のパルス幅例621は、パルス端902の時刻の差である。また、パルス内データとは、抽出されたパルス端を始点および終点とした、その間の時刻と電流値のデータセットすべてである。パルス内データの時刻の間隔は、入出力処理手段(A/D変換器)450又は710におけるA/D変換のサンプリング間隔によって決まる。ここではベースライン推定した後これを利用してパルス内データを抽出しているが、本発明ではどのような方法でパルス内データを抽出してもよく、たとえば電流値の閾値を決めて、それを超えた部分をパルスとしてパルス内データを抽出してもよい。
(Learning AI programs)
FIG. 8(a) shows an example of AI program learning according to an embodiment of the present invention. In the following description, an example of learning using the apparatus of FIG. 7 is shown. For example, the output from the photodetector in a Coulter method ammeter or flow cytometry results in a noisy peak as shown in FIG. For this reason, in this embodiment, first, as illustrated in FIG. 9, after estimating the baseline 901 of the pulse (step S811), the start and end times of the pulse edge 902 are estimated (step S812), and the extracted pulse Intra-pulse data 903 is extracted (step S813). For example, the example pulse width 621 in FIG. 6 is the time difference of the pulse edge 902 . Intra-pulse data refers to all data sets of times and current values between the extracted pulse ends as starting and ending points. The time interval of intra-pulse data is determined by the A/D conversion sampling interval in the input/output processing means (A/D converter) 450 or 710 . In this example, the intra-pulse data is extracted using the baseline estimation, but the present invention may extract the intra-pulse data by any method. Intra-pulse data may be extracted by using a portion exceeding .
次に、AIプログラムを学習させるための、パルス内データのAIデータ前処理を行う(ステップS814)。本発明によるAIデータの前処理の例としては、パルス内データにローパスフィルタをかけて高い周波数の変動を減らした円滑化パルスデータの生成、各パルス内データの最大電圧を1として規格化した規格化パルスデータの生成、各計測時刻の前後の計測値の移動平均などがある。また、本発明におけるAIデータ前処理は、円滑化や規格化に限定されず、パルス内データあるいは付帯計測条件の一部または全部についてどのような演算を行ってもよい。これらの前処理は、AIプログラムの最適化処理において、パルス内データをAIモデルがより良く表現し、数多くある評価関数の極値の中で、限られた計算資源を利用して最良の解を導くための学習前のデータ処理であれば何でもよい。 Next, AI data preprocessing of intra-pulse data is performed for AI program learning (step S814). Examples of AI data preprocessing according to the present invention include the generation of smoothed pulse data by applying a low-pass filter to the intra-pulse data to reduce high-frequency fluctuations, and the standardization of the maximum voltage of each intra-pulse data as 1. generation of normalized pulse data, moving average of measured values before and after each measurement time, etc. Also, the AI data preprocessing in the present invention is not limited to smoothing or normalization, and any calculation may be performed on part or all of the intra-pulse data or incidental measurement conditions. These preprocessings are used to optimize the AI program by allowing the AI model to better represent the intra-pulse data and finding the best solution among the many extreme values of the evaluation function using limited computational resources. Any pre-learning data processing for guidance may be used.
なお、A/D変換器450又は710のサンプリング周波数は高いほど学習におけるAI性能が向上するとは限らない。AIプログラムがパルス形状や計測条件との相関をよく表現できる最適な周波数は、利用するAIアルゴリズムに依存する。最適なサンプリングは実験的に最適解を求めることができる。サンプリング周波数が低いほど増幅器やデジタイザのコストを低減できる。 Note that AI performance in learning does not necessarily improve as the sampling frequency of the A/ D converter 450 or 710 increases. The optimal frequency at which the AI program can express the correlation with the pulse shape and measurement conditions well depends on the AI algorithm used. Optimal sampling can be found experimentally. The lower the sampling frequency, the lower the cost of amplifiers and digitizers.
深層ニューラルネットワークのように多数の入力ノードを持つAIプログラム使う場合は、すべてのパルス内データをそのまま、あるいはAIデータ前処理(S814)後のデータをAI入力層に直接入力することができる。ただし、本発明による一実施形態として例示した、センサX703乃至Z705が出力するパルス波形は、コールター法、フローサイトメトリーともにパルス幅が一定ではない。したがって、深層ニューラルネットワークの入力層に直接パルス波形を入力する場合であっても、たとえば時間方向の規格化やパディングといったAIデータ前処理を実行して入力層への入力することができる。図10は、深層ニューラルネットワークのAIデータ前処理としてパルス1の終了後にパディング1000を施した一例である。図10の例では第2のパルス1002に比べて第1のパルス1001の持続時間が短い。AIデータ前処理を施さないと、パルス1001の終了後値を入力層に入力することができず、深層学習の入力ノードの一部が不定になる。図10の例ではこれを防ぐために、パルス1001の終了後の出力電圧0を追加している。別の実施形態では、持続時間の短いパルスを長いパルスに揃える前処理はこれに限定されず、どのようなものであってもよい。 When using an AI program with a large number of input nodes such as a deep neural network, all intra-pulse data can be directly input to the AI input layer, or data after AI data preprocessing (S814) can be directly input to the AI input layer. However, the pulse waveforms output from the sensors X703 to Z705 exemplified as an embodiment according to the present invention are not constant in pulse width in both the Coulter method and flow cytometry. Therefore, even when a pulse waveform is directly input to the input layer of the deep neural network, AI data preprocessing such as normalization and padding in the time direction can be performed before input to the input layer. FIG. 10 is an example in which padding 1000 is applied after the end of pulse 1 as AI data preprocessing of the deep neural network. In the example of FIG. 10, the first pulse 1001 has a shorter duration than the second pulse 1002 . Without AI data preprocessing, the value after the end of pulse 1001 cannot be input to the input layer, and some of the input nodes of deep learning become indefinite. In order to prevent this in the example of FIG. 10, an output voltage of 0 is added after the pulse 1001 ends. In another embodiment, the preprocessing for aligning short duration pulses to long pulses is not limited to this, and can be anything.
次に、特徴量抽出手段732が、各パルスの特徴を表現する特徴量抽出を行う(ステップS815)。本実施形態では、パルス毎にたとえば図11(a)に示すような様々な特徴量を抽出することで、パルス波形から各粒子に関するより多くの情報を抽出できる。図11(a)における例示は、特徴量aは幅、bは高さ、cはパルス時間の非対称性(0≦c≦1)、dはパルス面積の非対称性(0≦d≦1)、eはパルス両端とパルスピークを結ぶ直線のなす角度、fはパルス面積、gはパルスの時間軸に関するモーメント、hはパルスの電圧軸に関するモーメントである。1つのパルスは、このような特徴量を要素として持つベクトルで表現される。図11(b)のとおり、AI学習に利用する特徴量の個数をp(p≧1)とすると、1つのパルスはp次元空間上の1点で表現される。コールター法の計測結果の解析にはたとえば、パルスの幅とパルス内ピーク値が利用されてきた。また従来のフローサイトメトリーの計測結果の解析にはたとえば、前方散乱(図5の受光器503)と側方散乱(図5の受光器505)のパルス内ピーク値が利用され、2次元の解析が行われることが多かった。一方で本発明では、センサの数をqとすると、AI学習によってp×q次元空間における識別境界の探索を行う。このことによって、従来の方法では識別境界が確定できなかった図1のような状況であっても、精度の良い識別境界を求めることができ、主として前記第1の課題を解決することができる。 Next, the feature quantity extraction means 732 extracts a feature quantity representing the feature of each pulse (step S815). In this embodiment, by extracting various feature amounts as shown in FIG. 11A for each pulse, more information about each particle can be extracted from the pulse waveform. The example in FIG. 11(a) is that the feature quantity a is the width, b is the height, c is the asymmetry of the pulse time (0≦c≦1), d is the asymmetry of the pulse area (0≦d≦1), e is the angle between the two ends of the pulse and the straight line connecting the pulse peak, f is the pulse area, g is the moment of the pulse with respect to the time axis, and h is the moment of the pulse with respect to the voltage axis. One pulse is represented by a vector having such feature quantities as elements. As shown in FIG. 11(b), if the number of feature quantities used for AI learning is p (p≧1), one pulse is represented by one point on the p-dimensional space. For example, the width of the pulse and the peak value within the pulse have been used to analyze the measurement results of the Coulter method. In addition, for analysis of measurement results of conventional flow cytometry, for example, intra-pulse peak values of forward scattering (light receiver 503 in FIG. 5) and side scattering (light receiver 505 in FIG. 5) are used, and two-dimensional analysis is performed. was often done. On the other hand, in the present invention, when the number of sensors is q, AI learning searches for a discrimination boundary in a p×q-dimensional space. As a result, even in the situation shown in FIG. 1, where the conventional method cannot determine the identification boundary, it is possible to obtain the identification boundary with high accuracy, thereby mainly solving the first problem.
本発明のパルス特徴量は、図11(a)に例示したものには限定されず、パルス波形の特徴を表現する量であれば何でもよい。また特徴量の数は1以上であればいくつでもよい。また別の実施形態では、特徴量の計算にパルスデータ抽出を行わなくてもよい。たとえば、パルス内データ抽出を行わず、ある時刻の周辺のデータとの比較から直接ピーク値を推定するなどの方法であってもよい。 The pulse feature amount of the present invention is not limited to those illustrated in FIG. 11(a), and any amount that expresses the pulse waveform feature may be used. Moreover, the number of feature amounts may be any number as long as it is one or more. In another embodiment, pulse data extraction may not be performed for feature amount calculation. For example, a method of estimating a peak value directly from comparison with data around a certain time without extracting intra-pulse data may be used.
さらに本発明の或る実施形態では、計測毎に異なる付帯計測条件をAI学習対象の特徴量とすることで、さらに精度の高い識別や定量を可能にする。 Furthermore, in an embodiment of the present invention, additional measurement conditions that differ for each measurement are used as feature amounts for AI learning, thereby enabling more accurate identification and quantification.
コールター法の場合、付帯計測条件としてはたとえば、図4の細孔440の穴径や形状、あるいは細孔近傍の隔壁441の厚さなど、パルス波形に影響を与える条件をAI学習対象の特徴量として利用してもよい。現実的にはセンサ1個ずつの製造ばらつきは避けられず、このことが図2に示したクラスタシフトの原因となっている。そこで、計測時に利用するセンサデバイス(コールターデバイス)400ごとに穴径や隔壁厚さなどのセンサデバイスの特徴を分析装置740が入力手段722より取得して、付帯計測条件記憶手段442に記憶した上で、AI学習(ステップS818)における特徴として学習させる。学習対象の付帯計測条件は、穴径や隔壁厚さに限らず、流路構造、流路や細孔の表面処理、電気特性など、パルス波形に影響を与えるものであれば何であってもよい。またデバイス400の穴径を1個ずつ測定した結果のように、計測毎に異なる条件でも、製造ロット毎にばらつくような条件でも、あるいは設計仕様によって一様に決まるような条件であってもよい。 In the case of the Coulter method, the incidental measurement conditions are, for example, the hole diameter and shape of the pore 440 in FIG. may be used as In reality, manufacturing variations for each sensor are unavoidable, and this causes the cluster shift shown in FIG. Therefore, the analysis device 740 acquires the characteristics of the sensor device such as the hole diameter and the partition wall thickness for each sensor device (Coulter device) 400 used at the time of measurement from the input means 722, and stores them in the incidental measurement condition storage means 442. Then, it is learned as a feature in AI learning (step S818). Supplementary measurement conditions to be learned are not limited to hole diameter and partition wall thickness, but may be anything that affects the pulse waveform, such as channel structure, surface treatment of channels and pores, and electrical characteristics. . In addition, the conditions may be different for each measurement, such as the result of measuring the hole diameter of the device 400 one by one, may vary for each manufacturing lot, or may be uniformly determined by the design specifications. .
フローサイトメトリーの場合、付帯計測条件としてはたとえば、光源特性情報、受光器角度情報、流速情報、蛍光標識特性情報、シース液物性情報から、検体の濁度など、パルス波形に影響を与える条件を利用することができる。これらの付帯計測条件には、計測または製造ロット毎のばらつきが避けられないものがあり、このことが図2に示したクラスタシフトの原因となる。そこで計測ごとにこれらの付帯計測条件を分析装置740が入力手段722より取得して、付帯計測条件記憶手段442に記憶した上で、AI学習(ステップS818)における特徴として学習させる。学習対象の付帯計測条件は、パルス波形に影響を与えるものであれば何であってもよい。また、検体濁度や計測細管のクリーニング後の計測回数など計測毎に異なる条件でも、製造ロット毎にばらつくような条件でも、あるいは光源特性、受光器角度、流速、蛍光標識など設計仕様によって一様に決まるような条件であってもよい。 In the case of flow cytometry, additional measurement conditions include conditions that affect the pulse waveform, such as the turbidity of the specimen, based on the light source characteristic information, the receiver angle information, the flow velocity information, the fluorescent label characteristic information, and the sheath fluid physical property information. can be used. These incidental measurement conditions include unavoidable variations between measurements or production lots, which causes the cluster shift shown in FIG. Therefore, the analyzer 740 acquires these incidental measurement conditions from the input means 722 for each measurement, stores them in the incidental measurement condition storage means 442, and makes them learned as features in AI learning (step S818). Any incidental measurement condition to be learned can be used as long as it affects the pulse waveform. In addition, even under conditions that differ for each measurement, such as sample turbidity and the number of measurements after cleaning the measurement capillaries, or conditions that vary from production lot to production lot, or even under conditions such as light source characteristics, receiver angle, flow velocity, fluorescent labels, and other design specifications, uniformity can be achieved. It may be a condition that is determined by
コールター法、フローサイトメトリーともに、付帯計測条件は、計測可能な物性等でよく、またデバイスや試薬の製造ロット番号やシリアル番号といった、連続性のない番号や記号であってもよい。このように、付帯計測条件を教師データに含めてAI学習を行うことによって、計測毎のバラツキを内包したAIプログラムを作ることができ、前記第2の課題を解決または軽減することができる。この方法は、検出、識別および定量のいずれの場合においても有効である。 In both the Coulter method and flow cytometry, the additional measurement conditions may be measurable physical properties, or discontinuous numbers or symbols such as manufacturing lot numbers and serial numbers of devices and reagents. In this way, by performing AI learning with incidental measurement conditions included in teacher data, it is possible to create an AI program that includes variations for each measurement, and solve or alleviate the second problem. This method is effective in all cases of detection, identification and quantification.
たとえば、ニューラルネットワークにおける畳み込み層やプーリング層も、パルスの特徴を抽出する前処理として使用できる。たとえば図5のように、センサが複数ある計測装置の場合、複数のセンサからの出力各々を、畳み込みにおけるチャネルとしてもよい。下記の式(1)は第L-1層から第L層への畳み込み処理を表す。kはチャネル番号、Kはチャネル数、Hがフィルタサイズ、pはフィルタ内の座標(0<p<H-1)、hpkmはフィルタ内の畳み込み係数、Sがストライドである。 For example, convolutional and pooling layers in neural networks can also be used as preprocessing to extract pulse features. For example, as shown in FIG. 5, in the case of a measuring device having multiple sensors, each output from multiple sensors may be used as a channel in the convolution. Equation (1) below represents the convolution process from the L-1th layer to the Lth layer. k is the channel number, K is the number of channels, H is the filter size, p is the coordinate in the filter (0<p<H−1), h pkm is the convolution coefficient in the filter, and S is the stride.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
図5の一例では受光器A、BおよびCが各々k=0、1および2に相当する。畳み込み係数hpkmは一意に決めてもよく、畳み込み処理はAIデータ前処理(ステップS814)に相当する。または、畳み込み係数hpkmを学習の際の最適化パラメタに含めてもよく、この場合畳み込み処理はAIデータ前処理(ステップS814)とみなすこともAI学習(ステップS818)と見なすこともできる。また、図8(a)に示すとおり、本発明では特徴量抽出を行っても、行わなくてもよい。 In the example of FIG. 5, receivers A, B and C correspond to k=0, 1 and 2, respectively. The convolution coefficient h pkm may be uniquely determined, and the convolution processing corresponds to AI data preprocessing (step S814). Alternatively, the convolution coefficient h pkm may be included in the optimization parameters for learning, in which case the convolution process can be regarded as AI data preprocessing (step S814) or AI learning (step S818). Further, as shown in FIG. 8A, the present invention may or may not perform feature extraction.
AIデータ前処理(ステップS814)あるいはパルス特徴量抽出(ステップS815)を実行したデータに、教師ラベルを付与する。図12乃至図14の模式図を用いてAI学習のための教師ラベル付与を説明する。 A teacher label is assigned to data on which AI data preprocessing (step S814) or pulse feature quantity extraction (step S815) has been performed. Teacher label assignment for AI learning will be described using the schematic diagrams of FIGS. 12 to 14. FIG.
図12は、図11(a)に例示したような特徴量を学習させるための、コールター装置を用いた計測結果に対する教師ラベル付与の一例である。図12(a)は、試料中に検出対象である微生物、タンパク質やエクソソーム等の有無が既知である試料の計測結果を用いた、識別するAI学習のための教師ラベル付与の一例である。この一例では、教師ラベル1205は検出対象微生物が含まれることを示す「Positive」と含まれないことを示す「Negative」の2値である。図12(b)は試料中の微生物、タンパク質やエクソソーム等の濃度が既知である試料の計測結果を用いた、定量するAI学習のための教師ラベル付与の一例である。教師ラベル1225は検出対象微生物、タンパク質やエクソソーム等の濃度や量であってよい。図12(a)の一例では、1行が計測パルス1個を表し、計測パルス毎に付帯計測条件1203として細孔穴径、細孔厚さを、またパルス特徴量1204として特徴量a乃至特徴量pの教師データと関連付けて教師ラベルを付与している。これは一例であって、付帯計測条件や特徴量はどのようなものでもよく、付帯計測条件がなくてもよい。 FIG. 12 shows an example of teacher label assignment to measurement results using the Coulter device for learning the feature values illustrated in FIG. 11(a). FIG. 12(a) is an example of teacher labeling for AI learning to discriminate using the measurement result of a sample in which the presence or absence of microorganisms, proteins, exosomes, etc. to be detected in the sample is known. In this example, the teacher label 1205 is a binary value of "Positive" indicating that the microorganism to be detected is included and "Negative" indicating that it is not included. FIG. 12(b) is an example of teacher labeling for quantifying AI learning using measurement results of samples with known concentrations of microorganisms, proteins, exosomes, etc. in the sample. The teacher label 1225 may be the concentration or amount of detection target microorganisms, proteins, exosomes, or the like. In an example of FIG. 12(a), one line represents one measurement pulse, and for each measurement pulse, the pore hole diameter and pore thickness are set as incidental measurement conditions 1203, and the feature amounts a to A teacher label is assigned in association with p teacher data. This is just an example, and the incidental measurement conditions and feature amounts may be of any kind, and the incidental measurement conditions may be absent.
図12(a)の一例では試料番号1番の試料について、2つの異なるデバイスで計測を行っている。第1のデバイスによる計測がパルス特徴量の結果1211、第2のデバイスによる計測がパルス特徴量の結果1212である。また、試料番号2番の計測は第3のデバイスによって計測を行っており、結果が1213である。1行が1パルスを表し、結果1211、1212は各1つのデバイスから複数のパルスが計測された結果である。これら第1乃至第3のデバイスの細孔穴径や細孔厚さは、製造ばらつきによってばらついている。このような付帯計測条件のばらつきは、パルス波形に影響を与えるため、たとえば図2のようなクラスタシフトを生じ、前記第2の課題の原因となる。本発明によれば、図12のように、ばらつきの原因となる付帯計測条件1203を、パルス波形の特徴量1204とともにAI学習の対象とする。AIプログラムは付帯計測条件のパルス波形に与える影響についても学習するため、付帯計測条件によるばらつきの原因を考慮した検出、識別あるいは定量が可能となる。 In the example of FIG. 12(a), the sample with sample number 1 is measured by two different devices. A pulse feature amount result 1211 is measured by the first device, and a pulse feature amount result 1212 is measured by the second device. Also, the measurement of the sample number 2 is performed by the third device, and the result is 1213. One row represents one pulse, and results 1211 and 1212 are the results of measuring a plurality of pulses from each one device. The pore diameters and pore thicknesses of these first to third devices vary due to manufacturing variations. Such variations in incidental measurement conditions affect the pulse waveform, causing cluster shift as shown in FIG. 2, for example, which causes the second problem. According to the present invention, as shown in FIG. 12, incidental measurement conditions 1203 that cause variations are targeted for AI learning together with pulse waveform feature amounts 1204 . Since the AI program also learns the effect of incidental measurement conditions on the pulse waveform, it is possible to perform detection, identification, or quantification in consideration of the causes of variations due to incidental measurement conditions.
学習させる試料は、計測対象とする微生物、タンパク質等が含まれるか否か(検出の場合)、それらの種類(識別の場合)、あるいは濃度(定量の場合)が既知であるものを使う。図12(a)の例では、試料番号1番の正解は「Positive」と既知である。このため、付帯計測条件およびパルス特徴量1211および1212にすべて「Positive」の教師ラベルが付与されている。試料番号2番の正解は「Negative」と既知であるため、付帯計測条件およびパルス特徴量1213にすべて「Negative」のラベルが付与されている。同様に図12(b)においては、試料番号1番の計測対象微生物またはタンパク質の濃度は「2.32」と既知であるため、その計測結果にはすべて教師ラベル「2.32」が付与されている。試料番号2番も同様に、計測結果にはすべて教師ラベル「0.856」が付与されている。図12では、コールター装置を用いて説明したが、フローサイトメトリーの計測結果についても同様に教師ラベルの付与を行うことができる。 A sample to be learned is one whose presence (in case of detection), type (in case of identification), or concentration (in case of quantification) of microorganisms, proteins, etc. to be measured is known. In the example of FIG. 12(a), the correct answer for sample number 1 is known as "Positive". Therefore, the accompanying measurement conditions and the pulse feature quantities 1211 and 1212 are all given a teacher label of “Positive”. Since the correct answer for sample number 2 is known to be "Negative", the incidental measurement conditions and the pulse feature quantity 1213 are all labeled "Negative". Similarly, in FIG. 12(b), since the concentration of the microorganism or protein to be measured for sample number 1 is known to be "2.32", all the measurement results are given the teacher label "2.32". ing. Similarly, all the measurement results of sample number 2 are given the teacher label "0.856". In FIG. 12, the Coulter apparatus was used for the description, but the measurement results of flow cytometry can also be assigned teacher labels in the same manner.
AI学習に用いる試料において、検出、識別または定量の結果は既知である必要がある。学習対象の試料について別の検出、識別あるいは定量法で計測および解析した結果をAI学習の教師ラベルとして使ってよい。たとえば、PCR、ELISA、イムノクロマト、比濁法など既存の検出、識別あるいは定量手段の結果を用いてよい。 The results of detection, identification or quantification of samples used for AI learning must be known. The results of measuring and analyzing the sample to be learned by another detection, identification, or quantification method may be used as teacher labels for AI learning. For example, the results of existing detection, identification or quantification means such as PCR, ELISA, immunochromatography and turbidimetric methods may be used.
また学習のための計測において、密度勾配遠心、免疫沈降、クロマトグラフィ、塩析、SDS-PAGEあるいはセルソータなど、計測対象の微生物や細胞種の生体反応・化学反応、物理特性を利用して、学習対象の1種類の粒子以外がおおむね含まれない、粒種が既知である試料を作成することができる場合がある。このような場合には、既知粒種をかかる試料から得られるパルスすべてに教師ラベルとして学習してよい。図13(a)は、概ね1種の白血球のみが含まれる試料を、フローサイトメトリーで計測し、本発明の方法によって教師ラベルを付与した一例である。 In addition, in the measurement for learning, the biological reaction, chemical reaction, and physical characteristics of the microorganisms and cell types to be measured, such as density gradient centrifugation, immunoprecipitation, chromatography, salting out, SDS-PAGE, and cell sorter, are used to determine the learning target. It may be possible to prepare a sample of known grain type that is generally free of all but one type of grain. In such cases, known grain types may be learned as teacher labels for all pulses obtained from such samples. FIG. 13(a) shows an example in which a sample containing generally only one type of leukocyte was measured by flow cytometry and assigned a teacher label by the method of the present invention.
図13(a)の一例では、フローサイトメトリーで血球を計測した際の光源波長、受光器角度、流速および蛍光波長を付帯計測条件1303として、また図11のパルス波形特徴量1304を教師データとして、教師ラベル1305を付与している。各々、計測結果1311は図5の受光器503、計測結果1312は受光器505の計測結果であり、図13(a)では受光器角度が各々179度および90度としてAIを学習している。また、図13(a)の一例ではたとえば、学習対象の粒子である「LYMPH」以外が概ね含まれない試料を複数計測した結果を教師データとしている場合であり、教師ラベル1305はすべて「LYMPH」が付与されている。 In an example of FIG. 13(a), the light source wavelength, the light receiver angle, the flow velocity and the fluorescence wavelength when blood cells are measured by flow cytometry are used as incidental measurement conditions 1303, and the pulse waveform feature quantity 1304 in FIG. 11 is used as teacher data. , a teacher label 1305 is given. Measurement results 1311 and 1312 are the measurement results of the light receiver 503 and the light receiver 505, respectively. In FIG. 13A, the AI is learned with the light receiver angles of 179 degrees and 90 degrees, respectively. In the example of FIG. 13A, for example, the teacher data is the result of measuring a plurality of samples that do not generally contain particles other than "LYMPH", which is the learning target particle, and the teacher labels 1305 are all "LYMPH". is given.
また、このように学習対象の粒子のみを含む試料を精製できない場合もある。教師ラベルを確定する従来の計測方法によって試料毎ではなく、粒子すなわちパルス毎に粒種を推定できる場合は、図13(b)に例示するように粒種ごとに教師ラベルを付与してもよい。ただし、図13(b)のように別対象粒子が混合した試料を計測し、従来の方法による装置が出力する粒子毎の識別結果を教師ラベルとして付与してAIプログラムを学習させる場合、AIは従来の方法による教師ラベルを正しいものとして最適化を行うため、従来の方法による装置を超える識別精度を達成できない。しかし、図2に示すような計測ごとのクラスタシフトに関しては、AIデータ前処理(ステップS814)において、たとえば図11(b)に示すp次元空間内でのクラスタリングによって粒種識別を行ない、その出力もって教師ラベル付与(ステップS816)を行うこともできる。 In addition, it may not be possible to purify a sample containing only particles to be learned in this way. If the grain type can be estimated for each particle, that is, for each pulse, instead of for each sample, by a conventional measurement method that determines teacher labels, a teacher label may be assigned for each grain type as shown in FIG. 13(b). . However, when measuring a sample mixed with different target particles as shown in FIG. Since optimization is performed by assuming that the teacher label of the conventional method is correct, it is not possible to achieve identification accuracy exceeding that of the apparatus of the conventional method. However, with respect to cluster shift for each measurement as shown in FIG. Thus, teacher labeling (step S816) can also be performed.
たとえば、A乃至Cの3種類の粒子が混合している試料をコールター装置またはフローサイトメトリーを用いて計測した結果が図14のようであったとする。本発明による方法では、AI学習に用いる教師ラベルを、複数の計測結果を混合したデータのクラスタリングによって一意に決定するのではなく、計測毎のクラスタリングによって計算した識別境界をもとに決定する。図14は、計測1について識別境界1410を、計測2について識別境界1420を各々計算した結果の概念図である。ステップS816の教師ラベル付与にあたって、たとえば領域1418および1419内のパルスに粒種「A」、領域1428および1429内のパルスに粒種「B」を、そして領域1438および領域1439内のパルスに粒種「C」を、各々教師ラベルとして付与する。 For example, it is assumed that the results of measuring a sample in which three types of particles A to C are mixed using a Coulter apparatus or flow cytometry are as shown in FIG. In the method according to the present invention, the teacher label used for AI learning is not uniquely determined by clustering data obtained by mixing multiple measurement results, but is determined based on the discrimination boundary calculated by clustering for each measurement. FIG. 14 is a conceptual diagram of the result of calculating the identification boundary 1410 for measurement 1 and the identification boundary 1420 for measurement 2, respectively. In assigning teacher labels in step S816, for example, pulses in regions 1418 and 1419 are labeled with grain type "A", pulses in regions 1428 and 1429 with grain type "B", and pulses in regions 1438 and 1439 with grain type "B". "C" is given as a teacher label to each.
この際のクラスタリングには、単連結法、完全連結法、群平均法、ウォード法などの階層的手法、k-means法などの非階層的手法、確率変数モデルによるクラスタリング等、どのようなアルゴリズムを用いてもよい。一般に、多数のデータのクラスタリングの計算量は大きい。このため従来技術では、大量の計測データをリアルタイムでクラスタリングの計算を実行し、計測ごとのバラツキを超えた検出、識別または定量を行うことは不可能、あるいは高いコストのハードウェアを必要とした。これに対して本発明による方法では、クラスタリングは学習における前処理に限定することができ、検出、識別または定量時は学習済AIプログラムというひとつの関数に対して計測データを入力すれば識別が可能である。このため、実用的なハードウェアおよびスピードで識別を行うことができる。これにより本発明では、教師データ取得のために従来の方法による計測装置を用いても、従来の方法で誤識別の原因になっていた計測ごとのバラツキをAIが吸収し、高い精度で識別を行うことができる。 For clustering at this time, what kind of algorithm is used, such as simple linkage method, complete linkage method, group average method, hierarchical method such as Ward's method, non-hierarchical method such as k-means method, clustering by random variable model, etc. may be used. In general, the computational complexity of clustering a large amount of data is large. For this reason, in the prior art, performing clustering calculations on a large amount of measurement data in real time and detecting, discriminating, or quantifying beyond measurement-to-measurement variability was impossible or required high-cost hardware. On the other hand, in the method according to the present invention, clustering can be limited to preprocessing in learning, and at the time of detection, identification or quantification, identification is possible by inputting measurement data to one function called a trained AI program. is. Therefore, identification can be performed with practical hardware and speed. As a result, in the present invention, even if a conventional measuring device is used to acquire training data, the AI absorbs the variations in each measurement that caused erroneous identification in the conventional method, enabling high-precision identification. It can be carried out.
図15は微生物を識別するための教師ラベル付与の他の一例である。図15では、パルス番号のパルス内データ1501の時刻1513ごとの電圧出力群1514の中の各々と、付帯計測条件1511および1512をあわせて、1つの教師ラベル「N1H1」が付与されている。図12および図13が、1つのパルス毎に、1組の付帯計測条件および1組のパルス特徴量に対して教師ラベルを付与しているのに対し、図15の一例では1つのパルス毎に、時刻毎のセンサ出力(パルス内データ)のすべてに対して、1つの教師ラベルを付与している。 FIG. 15 is another example of supervised labeling for identifying microorganisms. In FIG. 15, each of the voltage output groups 1514 for each time 1513 of the intra-pulse data 1501 of the pulse number and the incidental measurement conditions 1511 and 1512 are combined to give one teacher label "N1H1". While FIGS. 12 and 13 assign teacher labels to a set of incidental measurement conditions and a set of pulse feature values for each pulse, in the example of FIG. , one teacher label is assigned to all sensor outputs (intra-pulse data) at each time.
このような、学習対象のデータに対する教師ラベルの付与を、AIプログラムに与えるすべてのパルスについて繰り返す(ステップS817)。これが終わると、AIプログラム733に入力し、パラメタ最適化手段734が学習を実行する(ステップS818)。ここで学習とは、AIプログラムに含まれる最適化対象のパラメタを最適化する処理を指し、たとえばAIプログラム中の評価関数の極値を求めるような処理である。最適化されたAIプログラムのパラメタは、AIパラメタ記憶手段747に記憶する(ステップS819)。ステップS818で最適化された最適化済パラメタは、AIパラメタ記憶手段747に記憶し、後の識別に利用される。 Such attachment of teacher labels to data to be learned is repeated for all pulses given to the AI program (step S817). When this is completed, it is input to the AI program 733, and the parameter optimization means 734 executes learning (step S818). Here, learning refers to the process of optimizing the parameters to be optimized included in the AI program, for example, the process of finding the extreme value of the evaluation function in the AI program. The optimized AI program parameters are stored in the AI parameter storage means 747 (step S819). The optimized parameters optimized in step S818 are stored in the AI parameter storage means 747 and used for subsequent identification.
たとえば、図15のように教師ラベルを付与した場合の学習の一例として、たとえば深層ニューラルネットワークのように入力層に複数のノードを持つAIモデルの利用を示す。図16は深層ニューラルネットワークを模式的に表したものであり、ノードやノード間の結合の一部が省略されている。図15のパルス番号1番1501を例として説明すると、付帯計測条件としての細孔穴径1511、および細孔厚さ1512を、各々ノード1611、および1612に入力し、またパルス番号1内における時刻毎のセンサ出力の電圧出力群のデータ1514の各値を入力ノード1614に入力する。このようなニューラルネットワークに、正解として教師ラベル1515を与え、各ノードや結合の係数を、たとえば逆誤差伝搬法などで最適化する。図16の一例では2つの出力ノードを持ち、検体に含まれる微生物の種類を2値分類する。出力層は、多値を出力しても、何らかの連続量を出力してもよい。図16に示すAIプログラムの構造は一例に過ぎず、たとえば出力量は任意の数あってもよく、また連続量を出力するものであってもよい。試料中に計測対象粒子が含まれるか否かを調べる検出であれば出力は2値分類となり、複数種類の計測対象粒子が含まれる識別であれば多値分類になる。また、図12(b)のように連続量を教師ラベルとして与えるような定量を行う場合であれば、連続量を出力するようなAIプログラムを使用できる。 For example, as an example of learning when teacher labels are assigned as shown in FIG. 15, use of an AI model having a plurality of nodes in an input layer such as a deep neural network is shown. FIG. 16 schematically shows a deep neural network, and some nodes and connections between nodes are omitted. Taking pulse number 1 1501 in FIG. Each value of the data 1514 of the voltage output group of the sensor output is input to the input node 1614 . A teacher label 1515 is given to such a neural network as a correct answer, and the coefficients of each node and connection are optimized by, for example, the back propagation method. The example in FIG. 16 has two output nodes and performs binary classification of the types of microorganisms contained in the sample. The output layer may output multiple values or some continuous quantity. The structure of the AI program shown in FIG. 16 is merely an example. For example, there may be an arbitrary number of output amounts, or a continuous amount may be output. In the case of detection to check whether or not particles to be measured are included in a sample, the output is binary classification, and in the case of identification in which a plurality of types of particles to be measured are included, it is multi-value classification. Also, in the case of performing quantification in which a continuous quantity is given as a teacher label as shown in FIG. 12(b), an AI program that outputs a continuous quantity can be used.
図12、図13および図15における本発明の実施形態の説明では、付帯計測条件は特徴量としてパルス毎にAIプログラムの学習の対象とする例を用いて説明した。本発明はこれに限定されず、付帯計測条件が何らかの形でAIプログラムの学習のために入力されていればよい。別の実施形態ではたとえば、付帯計測条件ごとにパルス特徴量またはパルス内データによってAIプログラムを独立して学習させ、学習後にその結果をアンサンブルすることを行ってもよい。 In the description of the embodiment of the present invention with reference to FIGS. 12, 13, and 15, the incidental measurement conditions have been described using an example in which the AI program is learned for each pulse as a feature amount. The present invention is not limited to this, and it is sufficient that the incidental measurement conditions are input in some form for learning of the AI program. In another embodiment, for example, an AI program may be independently trained using pulse feature amounts or intra-pulse data for each incidental measurement condition, and the results may be ensembled after the training.
(AIによる検出、識別または定量)
次に、図8(b)に示す検出、識別または定量の処理を説明する。或る実施形態では、図8(a)に示す学習処理によって、学習済AIプログラムを作成し、AIパラメタ記憶手段747に最適化したAIパラメタが記憶(ステップS819)される。その後、検出、識別または定量対象の未知検体を、コールター装置またはフローサイトメトリー装置で計測する。この識別のための計測においては、計測装置の構成や付帯計測条件は学習時のそれらと同じであることが望ましい。本発明の別の実施形態においては、様々な計測条件による計測結果で1つのAIプログラムを学習させることで、計測装置の構成や付帯計測条件が一定でなくとも識別が可能なAIプログラムを作ることもできる。
(Detection, identification or quantification by AI)
Next, the detection, identification or quantification process shown in FIG. 8(b) will be described. In one embodiment, a learned AI program is created by the learning process shown in FIG. 8(a), and optimized AI parameters are stored in the AI parameter storage means 747 (step S819). Unknown analytes to be detected, identified or quantified are then measured with a Coulter device or flow cytometry device. In the measurement for this identification, it is desirable that the configuration of the measuring device and the incidental measurement conditions are the same as those at the time of learning. In another embodiment of the present invention, one AI program is trained with measurement results under various measurement conditions to create an AI program that can identify even if the configuration of the measurement device and the incidental measurement conditions are not constant. can also
図8(b)に示す識別処理において、ベースライン推定(ステップS821)乃至パルス特徴量抽出(ステップS825)は、学習時のステップS811乃至S815と同じなので、詳細説明を省く。図17には、本発明の或る実施形態に係るAIプログラムによる結果出力の一例を示す。図17(a)はAIプログラムの出力1713が「Positive」、「Negative」の2値である場合、(b)はAIプログラムの出力1723が連続量である場合である。図17(b)は微粒子の検出、識別にも、また定量にも使える。図17(b)に示すような連続量を出力するAIプログラムを用いて、求める結果が検出または識別である場合には、出力値に境界値を設定して分類を行う。たとえば「Positive」および「Negative」の2値分類において、結果出力1723がPositiveである確率である場合は0.5以上を「Positive」、0.5未満を「Negative」に分類するなどである。このときの閾値もAIプログラムにおける学習対象としてもよい。 In the identification process shown in FIG. 8B, baseline estimation (step S821) to pulse feature quantity extraction (step S825) are the same as steps S811 to S815 at the time of learning, so detailed description thereof will be omitted. FIG. 17 shows an example of result output by an AI program according to an embodiment of the invention. FIG. 17(a) shows a case where the output 1713 of the AI program is binary "Positive" and "Negative", and FIG. 17(b) shows a case where the output 1723 of the AI program is a continuous quantity. FIG. 17(b) can be used for detection, identification, and quantification of fine particles. Using an AI program that outputs a continuous quantity as shown in FIG. 17(b), when the desired result is detection or identification, classification is performed by setting a boundary value for the output value. For example, in the binary classification of "Positive" and "Negative", if the probability that the result output 1723 is positive is 0.5 or more is classified as "Positive", and less than 0.5 is classified as "Negative". The threshold at this time may also be a learning target in the AI program.
また、本発明を実現する構成は、図7に限定されず、別の実施形態ではたとえば図18のように増幅器やA/D変換などの機能が分析装置1800と独立した信号処理装置1810であってよい。さらに別の実施形態ではたとえば図19のように、本発明による処理の一部を、ネットワーク1900を経由して接続されたAIサーバ1930が担ってもよい。本発明を構成する各要素のパーティショニングはどのようなものでもよい。 Also, the configuration for realizing the present invention is not limited to FIG. 7, and in another embodiment, for example, as shown in FIG. you can In still another embodiment, AI server 1930 connected via network 1900 may perform part of the processing according to the present invention, as shown in FIG. 19, for example. Any partitioning of each element constituting the present invention may be used.
このように本発明では、波形のさまざまな特徴や計測条件でAIプログラムを学習させることで、たとえば図1のように特徴量の散布図が大きく重畳するような場合や、図2のように粒種ごとのクラスタがシフトする場合においても、AIプログラムが高い精度で検出、識別および定量が可能となった。このことで、前記第1および第2の課題の解決または低減が可能となる。 In this way, in the present invention, by having the AI program learn various characteristics of waveforms and measurement conditions, for example, when the scatter diagram of feature values is greatly superimposed as in FIG. The AI program was able to detect, discriminate and quantify with high accuracy even when the clusters for each species shift. This makes it possible to solve or reduce the first and second problems.
(夾雑物選別AI)
本発明が解決しようとする第3の課題は、生体試料には計測対象以外の粒子(夾雑物)が含まれており、かつその素性が不明な点である。図20(a)2010は検出、識別または定量対象となる計測対象粒子を含む生体試料、図20(b)2020は計測対象粒子を含まない生体試料の計測結果におけるパルス数比率を模式的に表したものである。たとえば、微生物の検出を目的とした計測においては、図20(a)が陽性、図20(b)が陰性である。図21(a)および図21(b)は各々、図20(a)および図20(b)のような試料の計測結果を模式的に表したものである。図21(a)の計測結果は、計測対象粒子由来のパルス2112と夾雑物由来のパルス2111の混合となるが、各パルスがどちらの由来かを特定する方法はない。したがって、AI学習を行う際、図12、図13および図15で説明したような教師ラベルの付与ができない。本発明では、図21(a)のように計測対象試料に夾雑物および計測対象粒子が混在しかつ識別境界が確定できない計測結果を、図21(b)のような計測対象粒子が含まれない夾雑物のみの試料の計測結果を利用することで、夾雑物由来のパルスを分離する。このようにして、計測対象粒子の識別や定量を、従来技術より高い精度で実現する方法を提供する。
(Contaminant sorting AI)
A third problem to be solved by the present invention is that biological samples contain particles (contaminants) other than those to be measured, and their identities are unknown. FIG. 20(a) 2010 schematically represents the pulse number ratio in the measurement results of the biological sample containing the measurement target particles to be detected, identified or quantified, and FIG. 20(b) 2020 the biological sample not containing the measurement target particles. It is what I did. For example, in a measurement intended to detect microorganisms, FIG. 20(a) is positive and FIG. 20(b) is negative. FIGS. 21(a) and 21(b) schematically represent the measurement results of the samples shown in FIGS. 20(a) and 20(b), respectively. The measurement result of FIG. 21(a) is a mixture of pulses 2112 originating from particles to be measured and pulses 2111 originating from contaminants. Therefore, when performing AI learning, it is not possible to assign teacher labels as described with reference to FIGS. In the present invention, the measurement result in which contaminants and particles to be measured are mixed in the sample to be measured and the discrimination boundary cannot be determined as shown in FIG. Pulses derived from contaminants are separated by using the measurement result of a sample containing only contaminants. In this way, the present invention provides a method for identifying and quantifying particles to be measured with higher accuracy than in the prior art.
いま、図21(a)および(b)に示すような計測対象粒子の計測結果につき、xを1つのパルスより得られた特徴量ベクトルとする。Rは特徴量空間である。 Let x be a feature vector obtained from one pulse for the measurement results of the particles to be measured as shown in FIGS. R is the feature space.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
そして、1つのパルスが真に夾雑物由来である場合をy=1、真に計測対象粒子由来である場合をy=-1とする。 Then, y=1 when one pulse is truly derived from impurities, and y=-1 when it is truly derived from the particles to be measured.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
本来は、このy=-1のパルスのみに教師ラベルを付与してAIを学習させるべきであるが、図21(a)のような、夾雑物が混合した計測結果ではこれができない。そこで、本発明の実施形態では、図21(b)のような対象粒子を含まない夾雑物だけの計測結果を学習に援用する。これは、多くの生体粒子計測において、対象粒子のみの検体は作れないが、夾雑物のみの検体は作れることを利用した技術である。 Originally, AI should be learned by assigning a teacher label only to the pulse of y=-1, but this cannot be done with the measurement result mixed with contaminants as shown in FIG. 21(a). Therefore, in the embodiment of the present invention, the measurement result of only impurities not containing the target particles as shown in FIG. 21(b) is used for learning. This is a technique that utilizes the fact that, in many biological particle measurements, it is not possible to make a sample of only target particles, but it is possible to make a sample of contaminants only.
ここで、観測の結果1つのパルスが夾雑物か計測対象粒子のどちらであるかを確定できるパルスをs=1、夾雑物か計測対象粒子かを確定できないパルスをs=0とする。図21(b)のパルスはすべてs=1であり、図21(a)のパルスはすべてs=0である。 Here, let s=1 be a pulse that can determine whether one pulse is a contaminant or a particle to be measured as a result of observation, and s=0 for a pulse that cannot be determined to be a contaminant or a particle to be measured. All pulses in FIG. 21(b) have s=1 and all pulses in FIG. 21(a) have s=0.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
このとき、計測対象粒子と夾雑物の混合試料結果の1つのパルスの観測値xが本当に夾雑物である確率は次のように表される。 At this time, the probability that the observed value x of one pulse of the mixed sample result of the particles to be measured and contaminants is really contaminants is expressed as follows.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
この(5)式によってパルスごとに図21(a)の個々のパルスについてy=1である確率を推定する。そして、(5)式左辺が、夾雑物除去の閾値を超えるパルスを除去し、残るパルスのみでAI学習を行う。これにより本発明に係る手法では、図21(a)のような計測対象粒子と夾雑物が混合した計測データについて、従来の技術では識別境界が設定できなかった計測対象粒子と夾雑物の確率的な分離が可能になった。本発明の実施形態では、(5)式に限らずあるパルスが夾雑物である確率を計算して閾値を超えるパルスを除いてAI学習を行うことができる。本発明の夾雑物選別AIの学習は、或る実施形態においては図12や図13のようにパルスの特徴量を学習させるものであってよい。別の実施形態では、図15のように時刻毎のセンサ出力値を学習させるものであってもよい。 This equation (5) estimates the probability that y=1 for each pulse in FIG. 21(a) for each pulse. Then, the left side of the equation (5) removes pulses exceeding the threshold value for removing impurities, and AI learning is performed only with the remaining pulses. As a result, in the method according to the present invention, for measurement data in which particles to be measured and contaminants are mixed as shown in FIG. separation became possible. In the embodiment of the present invention, AI learning can be performed by calculating the probability that a certain pulse is a contaminant and excluding the pulse exceeding the threshold, without being limited to the formula (5). Learning of the contaminant sorting AI of the present invention may be learning of pulse feature values as shown in FIGS. 12 and 13 in some embodiments. In another embodiment, the sensor output value for each time may be learned as shown in FIG.
本発明の効果を検証するために、COOH基修飾を施した200nmと220nmという粒径の近い2種類のポリスチレンビーズを用い、図20(a)に示す夾雑物2011を200nmビーズに、計測対象粒子2012を220nmビーズに各々模擬し、直径300nmの円形、穴厚50nmの細孔を有する図4に示すデバイスを有するコールター装置で、粒子通過パルスを計測することで、(5)式に示す方法の効果を検証した。図22は、図20(a)に示す計測対象粒子2012である220nmビーズの混合比率a2000を100%から1%まで変化させたときに、コントロールとなる図20(b)の200nm単体の試料2020との2値識別性能を評価した結果である。縦軸2202は図16のような深層学習による学習結果を試料単位で評価したときの正解率であり、1.0が全問正解、0が全問不正解である。したがって、0.5が全く識別できていない(AIが図20(a)と(b)の識別の結果を全くランダムに出力した場合の成績)ことを表す。図22によれば、(5)式の技法を用いた場合の成績2220は、用いない場合の成績2210よりも、特に粒子混合比率が低い場合において、顕著に高い識別性能を実現できることがわかる。 In order to verify the effect of the present invention, two types of polystyrene beads having similar particle sizes of 200 nm and 220 nm modified with COOH groups were used. 2012 are simulated as 220 nm beads, and the particle passing pulse is measured with a Coulter apparatus having the device shown in FIG. We verified the effect. FIG. 22 shows a 200 nm single sample 2020 of FIG. This is the result of evaluating the binary discrimination performance between and. The vertical axis 2202 is the accuracy rate when the learning result by deep learning as shown in FIG. 16 is evaluated on a sample-by-sample basis, where 1.0 is all questions correct and 0 is all questions incorrect. Therefore, 0.5 indicates that no discrimination is possible (score when AI randomly outputs the discrimination results of FIGS. 20(a) and (b)). According to FIG. 22, it can be seen that the result 2220 when the technique of formula (5) is used achieves significantly higher discrimination performance than the result 2210 when the technique of formula (5) is not used, especially when the particle mixture ratio is low.
以上のとおり、本発明による夾雑物選別AIでは、不定の夾雑物由来のパルスを確率的に排除することで、前記第3の課題の解決または低減が可能となる。 As described above, the contaminant sorting AI according to the present invention can solve or reduce the third problem by stochastically eliminating pulses derived from indefinite contaminants.
(増感)
本発明が解決しようとする第4の課題は、たとえば図22でa<0.1というように計測対象粒子が極端に少ない場合には、検出、識別または定量の性能が低下する問題である。現実の生体試料では、低濃度の細胞、微生物、タンパク質やエクソソームの検出、識別および定量に対する要求が多い。本発明では、上記本発明の方法に加えて抗体を用いた検体前処理によって、低濃度の計測対象粒子であっても、検出、識別および定量を可能とする。
(sensitization)
A fourth problem to be solved by the present invention is the problem that the performance of detection, identification or quantification deteriorates when the number of particles to be measured is extremely small, for example a<0.1 in FIG. In real biological samples there are many demands for the detection, identification and quantification of low concentrations of cells, microorganisms, proteins and exosomes. In the present invention, in addition to the method of the present invention, sample pretreatment using an antibody enables detection, identification, and quantification of even low-concentration particles to be measured.
本発明の或る実施形態に係る、増感のための検体前処理では、第1段階で試料に検出対象のタンパク質、微生物やエクソソーム等に特異的に結合する抗体で修飾したビーズを試料に混合、第2段階で濃縮を行った上で、これまで述べた計測、AI学習およびAI検出/識別/定量を行う。 According to an embodiment of the present invention, in the sample pretreatment for sensitization, in the first step, the sample is mixed with beads modified with antibodies that specifically bind to the protein to be detected, microorganisms, exosomes, etc. , concentration is performed in the second step, and then the measurement, AI learning, and AI detection/discrimination/quantification described above are performed.
本発明による微生物、タンパク質やエクソソーム等の検出前処理とAI学習について述べる。図23は、検出対象微生物が試料中に存在するか否かの検出における検体前処理の概念図である。図20および図21に示した実施形態では、図23(a)に示すウイルス2301と夾雑物2302からなる陽性試料2311とウイルスは存在せず夾雑物のみの陰性試料2312のAI学習2310において、夾雑物を除去するAI学習について説明した。一方、この実施形態では、陽性試料、陰性試料ともに検出対象ウイルス2301に特異的に結合する抗体で修飾した、ビーズ2303を混入し、図23(b)の状態とする。ビーズ混合陽性試料2321中には、ウイルスと結合した結合済ビーズ2304が生成されるが、ビーズ混合陰性試料2322中には生成されない。 The pretreatment for detection of microorganisms, proteins, exosomes, etc. and AI learning according to the present invention are described. FIG. 23 is a conceptual diagram of specimen pretreatment in detecting whether or not a microorganism to be detected exists in a sample. In the embodiment shown in FIGS. 20 and 21, in the AI learning 2310 of the positive sample 2311 consisting of the virus 2301 and contaminants 2302 shown in FIG. AI learning to remove objects was explained. On the other hand, in this embodiment, beads 2303 modified with an antibody that specifically binds to the virus 2301 to be detected are mixed in both the positive sample and the negative sample, resulting in the state shown in FIG. 23(b). Virus-bound bound beads 2304 are produced in the bead-mixed positive sample 2321 but not in the bead-mixed negative sample 2322 .
本発明の或る実施形態では、試料中の夾雑物が結合済ビーズより極端に少ない場合、夾雑物のパルスがコールター装置やフローサイトメトリー装置によって計測できない程度に小さい場合、または特徴量空間上で夾雑物と結合済ビーズのパルスが明確に分離できる場合(以下この3つを総称して「AI不要要件」という)には、AI学習を行うことなく結合済ビーズからのパルスの有無で計測対象微生物の検出が可能である。前者2つの場合は、検出されるパルスは概ね結合済ビーズなので、観測されるパルスの有無によって検出対象微生物の有無を決定できる。また、夾雑物パルスや未結合の抗体修飾ビーズのパルスがあっても、結合済ビーズと特徴量空間上で分離できる場合は、クラスタリング等で結合済ビーズを特定することで、検出対象微生物の有無を決定できる。これは検出対象がタンパク質やエクソソームであっても同じである。しかし、多くの試料はAI不要要件を満たさないため、その場合は本発明の別の実施形態による以下のAI学習および検出処理を行う。 In some embodiments of the present invention, if there are significantly fewer contaminants in the sample than the bound beads, if the pulse of contaminants is too small to be measured by a Coulter or flow cytometry device, or if in feature space If the pulses from the contaminants and the bound beads can be clearly separated (hereafter, these three are collectively referred to as "AI unnecessary requirements"), the presence or absence of pulses from the bound beads can be measured without AI learning. Detection of microorganisms is possible. In the former two cases, the detected pulses are mostly bound beads, so the presence or absence of the detected pulses can be used to determine the presence or absence of the microorganisms to be detected. In addition, even if there are contaminant pulses or pulses of unbound antibody-modified beads, if they can be separated from the bound beads in the feature value space, by specifying the bound beads by clustering, etc., the presence or absence of the microorganisms to be detected can be detected. can be determined. This is the same even if the detection target is protein or exosome. However, many samples do not meet the AI-free requirement, in which case the following AI learning and detection process according to another embodiment of the invention is performed.
AI不要要件を満たさない試料については、ビーズ混合陽性試料とビーズ混合陰性試料に各々「陽性」、「陰性」の教師ラベルを付与してAI学習2320を行い(図8のステップS818)、学習済AIプログラムを作成する。これら結合済ビーズの大きさや形態は、夾雑物と異なることから、ビーズ混合試料をコールター装置やフローサイトメトリーで計測した場合、結合済ビーズから得られるパルスはウイルスや夾雑物と異なる。このため、AI学習2310に比べて高い性能が実現する。さらに、AI学習2320においては(5)式による夾雑物選別AIによる方法を用いてもよい。この場合、(4)式のs=1とするのは、陰性試料2312の計測結果でもよいが、ビーズ混合陰性試料2322の計測結果としてもよい。このことでAIプログラムに未結合ビーズを含む陰性試料の特徴を学習させることができ、それによりビーズ混合陽性試料中に含まれる未結合ビーズ2323の選別によって、希薄な試料についても良い性能が期待できる。なお、このようなビーズを混合した試料の調製は、AIプログラムの動作を行う装置と同じ装置が行うものであってもよいし、別の装置で行ってもよい。本明細書で他に例示している試料についても同様である。 For samples that do not satisfy the AI unnecessary requirement, AI learning 2320 is performed by assigning teacher labels of "positive" and "negative" to the bead-mixed positive sample and the bead-mixed negative sample, respectively (step S818 in FIG. 8). Create an AI program. Since the size and shape of these bound beads are different from those of contaminants, when a bead-mixed sample is measured by a Coulter apparatus or flow cytometry, the pulses obtained from bound beads are different from those of viruses and contaminants. Therefore, higher performance than AI learning 2310 is realized. Furthermore, in AI learning 2320, a method using foreign matter sorting AI according to formula (5) may be used. In this case, setting s=1 in the formula (4) may be the measurement result of the negative sample 2312 or the measurement result of the bead-mixed negative sample 2322 . This allows AI programs to learn the characteristics of negative samples that contain unbound beads, so that sorting of unbound beads 2323 contained in bead-mixed positive samples can be expected to perform well even for dilute samples. . The preparation of the sample mixed with such beads may be performed by the same device as the device that operates the AI program, or may be performed by another device. The same applies to other samples exemplified in this specification.
図23(b)における結合済ビーズ2304は、その大きさや質量が夾雑物や未結合ビーズより大きいので、たとえば遠心処理により沈降させてその上清を除去することとで、図23(c)のように結合済ビーズを濃縮することができる。また、たとえば抗体修飾ビーズ2303に磁性体による基材を用いれば、ビーズ混合試料に磁場を加えることで結合済ビーズを濃縮することもできる。 Bound beads 2304 in FIG. 23(b) are larger in size and mass than contaminants and unbound beads. Bound beads can be concentrated as follows. In addition, for example, if a magnetic substrate is used for the antibody-modified beads 2303, the bound beads can be concentrated by applying a magnetic field to the bead-mixed sample.
本発明において、このように濃縮した試料がAI不要要件を満たす場合は、濃縮を行わない図23(b)をAIを使わずに解析した場合よりも、図23(c)の方が高い感度で検出対象の微生物やタンパク質の有無を確定できる。 In the present invention, if the sample concentrated in this way satisfies the requirement that AI is not required, then FIG. 23(c) is more sensitive than the case where FIG. can confirm the presence or absence of microorganisms and proteins to be detected.
AI不要要件を満たさない試料については、ビーズ混合陽性濃縮試料2331とビーズ混合陰性濃縮試料2332に各々「陽性」、「陰性」のラベルを付与してAI学習2330を行い(図8のステップS818)、学習済AIプログラムを作成する。ビーズ混合陽性濃縮試料2331の結合済ビーズの数は、ビーズ混合陽性試料2321のそれよりも多いことから、計測対象の細胞、微生物、タンパク質やエクソソーム等の濃度が低い試料であっても、AI学習2330で作成する学習済AIプログラムは、AI学習2310や2320のそれに比べて性能が高くなる。さらに、AI学習2330においては(5)式による夾雑物選別AIによる方法を用いてもよい。この場合、(4)式のs=1とするのは、陰性試料2312やビーズ混合陰性試料2322の計測結果でもよいが、ビーズ混合陰性濃縮試料2332の計測結果することが望ましい。このことでAIプログラムに濃縮処理を施した陰性試料の特徴を学習させることができ、それによりビーズ混合陽性濃縮試料中に残る夾雑物、未結合ビーズあるいは未結合ウイルスの選別によって、より希薄な試料についても良い性能が期待できる。 For samples that do not satisfy the AI unnecessary requirement, AI learning 2330 is performed by assigning "positive" and "negative" labels to the bead-mixed positive enriched sample 2331 and the bead-mixed negative enriched sample 2332, respectively (step S818 in FIG. 8). , create a trained AI program. Since the number of bound beads in the bead mixture positive enrichment sample 2331 is larger than that in the bead mixture positive sample 2321, even if the concentration of cells, microorganisms, proteins, exosomes, etc. to be measured is low, AI learning The learned AI program created in 2330 has higher performance than those in AI learning 2310 and 2320. Furthermore, in AI learning 2330, a method using foreign matter sorting AI according to formula (5) may be used. In this case, the measurement result of the negative sample 2312 or the bead-mixed negative sample 2322 may be used to set s=1 in the formula (4), but it is preferable to set the measurement result of the bead-mixed negative concentrated sample 2332 . This allows the AI program to learn the characteristics of negative samples that have undergone the enrichment process, so that selection of contaminants, unbound beads or unbound virus that remain in the bead-mixed positive enrichment sample can lead to more dilute samples. Good performance can also be expected for
上記した前処理と図8(b)の検出においても、図23(b)に示す標識2329、または標識後の濃縮2339を行った上で、各々標識後または標識及び濃縮後の試料を学習した学習済AIプログラムに入力して検出を行ってよい。 In the above-described pretreatment and the detection of FIG. 8(b), the labeling 2329 shown in FIG. Detection may be performed by inputting into a trained AI program.
なお図23では微生物の検出を例に説明したが、検出対象タンパク質や検出対象エクソソーム等をウイルス2301の代わりとして、そのタンパク質に特異的に結合する抗体で修飾したビーズを用いれば、その検出が可能となる。またこの方法は、コールター装置、フローサイトメトリーいずれにも適用可能であることにも留意されたい。 Although the detection of microorganisms was described as an example in FIG. 23, detection is possible by using beads modified with antibodies that specifically bind to the protein to be detected or exosomes to be detected instead of the virus 2301. becomes. Also note that this method is applicable to both the Coulter apparatus and flow cytometry.
次に、本発明による微生物、タンパク質やエクソソーム等の識別前処理とAI学習について述べる。図24は、試料中に存在するウイルスの種類を識別するための検体前処理の概念図である。図24(a)は、コロナウイルス2401と夾雑物2403から成るコロナ陽性試料2411と、インフルエンザウイルス2402と夾雑物2403から成るインフルエンザ陽性試料2412である。この実施形態では、コロナ陽性試料2411、インフルエンザ陽性試料2412および陰性試料2413に、コロナウイルスに特異的に結合する抗コロナ抗体で修飾した抗コロナビーズ2404と、インフルエンザウイルスに特異的に結合する抗インフルエンザ抗体で修飾した抗インフルエンザビーズ2405の両方を混入し、図24(b)の状態とする。コロナ陽性のビーズ混合試料2421では、コロナ結合済ビーズ2406は生成されるが、インフルエンザ結合済ビーズ2407は生成されない。インフルエンザ陽性のビーズ混合試料2422では、インフルエンザ結合済ビーズ2407は生成されるが、コロナ結合済ビーズ2406は生成されない。陰性のビーズ混合試料2423に結合済ビーズは生成されない。この実施形態において、抗コロナビーズ2404と抗インフルエンザビーズ2405はその形状、大きさまたは素材が異なることが望ましい。 Next, the pretreatment for identification of microorganisms, proteins, exosomes, etc. and AI learning according to the present invention will be described. FIG. 24 is a conceptual diagram of sample pretreatment for identifying virus types present in a sample. FIG. 24( a ) shows a corona-positive sample 2411 consisting of coronavirus 2401 and contaminants 2403 and an influenza-positive sample 2412 consisting of influenza virus 2402 and contaminants 2403 . In this embodiment, corona positive sample 2411, influenza positive sample 2412 and negative sample 2413 are combined with anti-corona beads 2404 modified with anti-corona antibodies that specifically bind to coronavirus and anti-influenza beads that specifically bind to influenza virus. Both of the antibody-modified anti-influenza beads 2405 are mixed to obtain the state shown in FIG. 24(b). Corona-positive bead mixture sample 2421 produces corona-bound beads 2406 but not flu-bound beads 2407 . Influenza-positive bead-mix sample 2422 produces influenza-bound beads 2407 but not corona-bound beads 2406 . No bound beads are produced in the negative bead mixture sample 2423 . In this embodiment, anti-corona beads 2404 and anti-influenza beads 2405 are preferably different in shape, size or material.
本発明において、AI不要要件を満たす試料については、図24の一例ではパルス特徴量空間上でコロナ結合済ビーズとインフルエンザ結合済ビーズが分離可能であれば、クラスタリング等によって、識別対象微生物の識別を行える。しかし、多くの試料はAI不要要件を満たさないため、その場合は本発明による以下のAI学習および識別処理を行う。 In the present invention, for a sample that satisfies the requirement that AI is not required, if corona-bound beads and influenza-bound beads can be separated in the pulse feature space in an example of FIG. can do However, since many samples do not satisfy the AI-free requirement, the following AI learning and discrimination processing according to the present invention is performed in that case.
次に、ビーズ混合コロナ試料、ビーズ混合インフルエンザ試料およびビーズ混合陰性試料に各々「コロナ陽性」、「インフルエンザ陽性」および「陰性」のラベルを付与してAI学習2420を行い(ステップS818)、学習済AIプログラムを作成する。コロナ結合済ビーズ、インフルエンザ結合済ビーズ、および夾雑物の形状、大きさや素材が異なることから、上記ビーズ混合試料をコールター装置やフローサイトメトリーで計測した場合、結合済ビーズから取得されるパルス波形は異なるため、AI学習2410に比べて高い性能を持つ学習済AIプログラムの生成が期待される。さらに、AI学習2420においては(5)式による夾雑物選別AIによる方法を用いてもよい。この場合、(4)式のs=1とするのは、ビーズ混合陰性試料2423の計測結果であってよい。たとえば、ビーズ混合コロナ試料2421をs=0、ビーズ混合陰性試料2423をs=1として(5)式を利用した第1の夾雑物選別を行い、ビーズ混合インフルエンザ試料2422をs=0、ビーズ混合陰性試料2423をs=1として第2の夾雑物選別を行った上で、第1の夾雑物選別済のデータ、第2の夾雑物選別済のデータおよび陰性試料との間で3値分類のAI学習を行うことで、コロナ陽性試料、インフルエンザ陽性試料および陰性試料をより高い性能で識別できる。 Next, the bead-mixed corona sample, the bead-mixed influenza sample, and the bead-mixed negative sample are labeled as “corona positive,” “influenza positive,” and “negative,” respectively, and AI learning 2420 is performed (step S818). Create an AI program. Since corona-bound beads, influenza-bound beads, and contaminants have different shapes, sizes, and materials, the pulse waveform obtained from the bound beads is Since it is different, generation of a trained AI program with higher performance than AI learning 2410 is expected. Furthermore, in AI learning 2420, a method using foreign matter sorting AI according to formula (5) may be used. In this case, s=1 in formula (4) may be the measurement result of the bead-mixed negative sample 2423 . For example, the bead-mixed corona sample 2421 is s = 0, the bead-mixed negative sample 2423 is s = 1, and the first contaminant selection is performed using equation (5). After performing the second contaminant selection with the negative sample 2423 as s = 1, ternary classification between the first contaminant-selected data, the second contaminant-selected data and the negative sample By performing AI learning, corona-positive samples, influenza-positive samples, and negative samples can be distinguished with higher performance.
図24(b)の一例におけるコロナ結合済ビーズ2306およびインフルエンザ結合済ビーズ2307は、その大きさや質量が夾雑物や未結合ビーズより大きいので、たとえば遠心処理の後上清を除去することで、図24(c)のように結合済ビーズを濃縮することができる。またたとえば、抗体修飾ビーズである抗コロナビーズ2404や抗インフルエンザビーズ2405に磁性体による基材を用いれば、ビーズ混合試料に磁場を加えることで結合済ビーズを濃縮することもできる。 Corona-bound beads 2306 and influenza-bound beads 2307 in an example of FIG. 24(b) are larger in size and mass than contaminants and unbound beads. Bound beads can be concentrated as in 24(c). Further, for example, if a magnetic substrate is used for the anti-corona beads 2404 and anti-influenza beads 2405, which are antibody-modified beads, the bound beads can be concentrated by applying a magnetic field to the bead-mixed sample.
本発明では、このように濃縮した試料がAI不要要件を満たす場合は、結合済ビーズのパルスの有無によって、濃縮を行わない図24(b)をAIを使わずに解析した場合よりも、図24(c)の方が高い感度で識別対象の微生物やタンパク質を識別できる。 In the present invention, if the sample concentrated in this way satisfies the requirement that AI is not required, the presence or absence of the pulse of the bound beads will result in a higher figure than the case of analyzing FIG. 24(c) can identify microorganisms and proteins to be identified with higher sensitivity.
AI不要要件を満たさない試料については、ビーズ混合濃縮コロナ試料2431に「コロナ陽性」、ビーズ混合濃縮インフルエンザ試料2432に「インフルエンザ陽性」、そして濃縮試料に「陰性」とラベルして、3値のAI学習2430を行い(ステップS818)、学習済AIプログラムを作成する。図24(c)の陽性試料における結合済ビーズの数は(b)の陽性試料のそれよりも多いことから、計測対象の細胞、微生物やタンパク質の濃度が低い試料であっても、AI学習2430で作成するAIプログラムは、AI学習2410や2420のそれに比べて性能が高いことが期待される。図24(c)の試料についても、図24(b)での説明と同様に、夾雑物選別AIの処理を行ってもよい。 For samples that do not meet the no-AI requirement, bead-mixed enriched corona sample 2431 was labeled "corona positive", bead-mixed enriched influenza sample 2432 was labeled "influenza positive", and enriched sample was labeled "negative" to generate a ternary AI. Learning 2430 is performed (step S818) to create a trained AI program. Since the number of bound beads in the positive sample in FIG. The AI program created in is expected to have higher performance than those of AI learning 2410 and 2420. The sample in FIG. 24(c) may also be processed by the contaminant sorting AI in the same manner as described in FIG. 24(b).
上記の前処理と図8(b)の識別においても、図24(b)に示す標識2429、または標識後の濃縮2439を行った上で、各々標識後または標識及び濃縮後の試料を学習した学習済AIプログラムに入力して識別を行ってよい。 In the above preprocessing and the identification of FIG. 8(b), after performing the labeling 2429 shown in FIG. It may be input into a trained AI program for identification.
なお図24ではウイルスの検出を例に説明したが、複数種類の検出対象タンパク質やエクソソーム等をコロナウイルス2401およびインフルエンザウイルス2402の代わりとして、それらのタンパク質に各々特異的に結合する抗体で修飾した抗タンパク質ビーズを用いれば、同様に増感したAI学習と識別が可能である。この方法は、コールター装置、フローサイトメトリーいずれにも適用可能である。 In FIG. 24, virus detection was explained as an example, but multiple types of detection target proteins, exosomes, etc. were modified with antibodies that specifically bind to each of these proteins instead of coronavirus 2401 and influenza virus 2402. With protein beads, similarly sensitized AI learning and discrimination are possible. This method is applicable to both the Coulter apparatus and flow cytometry.
続いて、本発明による微生物、タンパク質やエクソソーム等の定量前処理とAI学習について述べる。図25は、試料中の対象タンパク質濃度を定量するための検体前処理の概念図である。定量対象タンパク質の含有濃度が既知である試料2511、試料2512および試料2513に、定量対象タンパク質2501と特異的に結合する抗体で修飾した抗タンパク質ビーズ2503と混合し、図25(b)の状態とする。たとえば、試料2512、試料2513に含まれる定量対象タンパク質の濃度は各々a%、b%とする(b>a)。ビーズを混合した試料中には、定量対象タンパク質の濃度に応じた大きさのビーズ凝集塊2504や2505が生成される。検出対象タンパク質を含まないビーズ混合試料2511にはビーズ凝集塊が生成されない。 Subsequently, pre-quantification of microorganisms, proteins, exosomes, etc. and AI learning according to the present invention will be described. FIG. 25 is a conceptual diagram of sample pretreatment for quantifying the target protein concentration in the sample. Samples 2511, 2512, and 2513, in which the concentration of the protein to be quantified is known, are mixed with anti-protein beads 2503 modified with an antibody that specifically binds to the protein 2501 to be quantified, and the state shown in FIG. 25(b) is obtained. do. For example, the concentrations of proteins to be quantified contained in samples 2512 and 2513 are set to a% and b%, respectively (b>a). Bead aggregates 2504 and 2505 having a size corresponding to the concentration of the protein to be quantified are generated in the sample mixed with the beads. No bead aggregates are generated in the bead-mixed sample 2511 containing no protein to be detected.
本発明において、AI不要要件を満たす試料については、ビーズ凝集塊のパルス数やビーズ凝集塊のサイズによって影響をうける特徴量によって利用対象のタンパク質や微生物を定量することができる。これは、試料中に含まれる定量対象タンパク質や微生物の量と、ビーズ凝集塊の数やビーズ凝集塊のサイズには正の相関があるためである。 In the present invention, for a sample that satisfies the AI-unnecessary requirement, it is possible to quantify target proteins and microorganisms using feature amounts that are influenced by the number of pulses of bead aggregates and the size of bead aggregates. This is because there is a positive correlation between the amount of the target protein or microorganism contained in the sample and the number of bead aggregates and the size of the bead aggregates.
AI不要要件を満たさない試料については、ビーズ混合試料2521乃至2523に各々、「0」、「a」および「b」の教師ラベルを付与してAI学習2520を行い(ステップS818)、学習済AIプログラムを作成する。定量の場合は、入力および出力が連続量であるAIアルゴリズムを採用してもよい。ビーズ凝集塊は、夾雑物とは大きさや形態が異なるため、パルス波形が明確に異なる。このため、AI学習2510より高い定量性能が実現する。さらにAI学習2520においては(5)式による夾雑物選別AIによる方法を用いてもよい。この場合、(4)式のs=1とするのは定量タンパク質を含まないビーズ混合試料2521であってよい。たとえば、試料2511の計測結果をs=1とし、ビーズ混合試料2521、2522および2523をすべてs=0として夾雑物選別AIを用いてもよい。すなわち、試料2521、試料2522および試料2523の各々より夾雑物2502をできるだけ取り除いた上で、AI学習2520を行うことでより良い性能のAI定量が可能となる。 For samples that do not satisfy the AI unnecessary requirement, AI learning 2520 is performed by assigning teacher labels of “0”, “a” and “b” to the bead mixed samples 2521 to 2523 (step S818). create a program For quantitation, AI algorithms may be employed where the inputs and outputs are continuous quantities. Since bead aggregates differ in size and shape from contaminants, their pulse waveforms are clearly different. Therefore, higher quantitative performance than AI learning 2510 is realized. Furthermore, in AI learning 2520, a method using foreign matter sorting AI according to formula (5) may be used. In this case, s=1 in formula (4) may be the bead-mixed sample 2521 containing no quantitative protein. For example, the measurement result of the sample 2511 may be set to s=1, and the mixed bead samples 2521, 2522 and 2523 may all be set to s=0 and the contaminant sorting AI may be used. That is, AI quantification with better performance can be achieved by performing AI learning 2520 after removing the contaminants 2502 from each of the samples 2521, 2522, and 2523 as much as possible.
たとえば、図25(b)の一例では、凝集ビーズ塊の大きさや質量は夾雑物より大きいので、たとえば遠心処理を施してその上清を除去することで、図25(c)のようにビーズ凝集塊を濃縮することができる。また、抗タンパク質ビーズ2503に磁性体による基材を用いれば、ビーズ混合試料に磁場を加えることで、ビーズ凝集塊を濃縮することもできる。このようにして生成した図25(c)の各試料の計測結果に各々、「0%」、「a%」および「b%」の教師ラベル(0<a<b)を付与して、連続量を学習させるAI学習2530を実行し(ステップS818)、学習済AIプログラムを作成する。図25(c)のうち定量対象タンパク質を含むものについては、凝集ビーズ塊の数は図25(b)の陽性試料のそれよりも多いことから、計測対象のタンパク質の濃度が低い試料であっても、AI学習2430で作成するAIプログラムは、AI学習2410や2420のそれに比べて性能が高いことが期待される。図25(c)の試料についても、図22や図23の場合と同様に、夾雑物選別AIの処理を行ってもよい。 For example, in an example of FIG. 25(b), since the size and mass of the aggregated bead clusters are larger than the contaminants, for example, by centrifuging and removing the supernatant, the beads aggregate as shown in FIG. 25(c). The mass can be concentrated. In addition, if a magnetic base material is used for the anti-protein beads 2503, bead aggregates can be concentrated by applying a magnetic field to the bead-mixed sample. The measurement results of each sample in FIG. AI learning 2530 for learning quantities is executed (step S818) to create a learned AI program. For those containing the protein to be quantified in FIG. 25(c), the number of aggregated bead clusters is greater than that of the positive sample in FIG. 25(b). Also, the AI program created by AI learning 2430 is expected to have higher performance than those of AI learning 2410 and 2420 . The sample in FIG. 25(c) may also be processed by the contaminant sorting AI as in the case of FIGS. 22 and 23 .
本発明の或る実施形態では、図25(c)のように濃縮した試料がAI不要要件を満たす場合は、ビーズ凝集塊のパルスの数やビーズ凝集塊のサイズによって変化するパルス特徴量によって、濃縮を行わない図25(b)よりも高い感度で識別対象の微生物、タンパク質やエクソソームを識別できる。 In an embodiment of the present invention, if the concentrated sample satisfies the AI-free requirement as shown in FIG. Microorganisms to be identified, proteins and exosomes can be identified with higher sensitivity than FIG. 25(b) without concentration.
上記の前処理と図8(b)の識別においても、図25(b)に示す標識2529、または標識後の濃縮2539を行った上で、各々標識後または標識及び濃縮後の試料を学習した学習済AI定量器に入力して検出を行ってよい。 In the above preprocessing and the identification of FIG. 8(b), after performing the labeling 2529 shown in FIG. Detection may be performed by inputting into a trained AI quantifier.
なお図25ではタンパク質の定量を例に説明したが、定量対象微生物やエクソソーム等を定量対象タンパク質2501の代わりとして、それらの微生物に特異的に結合する抗体で修飾したビーズを用いれば、同様に増感したAI学習と定量が可能となる。またこの方法は、コールター装置、フローサイトメトリーいずれにも適用可能である。 In FIG. 25, protein quantification was explained as an example, but instead of the quantification target microorganisms, exosomes, etc. as the quantification target protein 2501, beads modified with antibodies that specifically bind to those microorganisms can be used. It is possible to learn and quantify AI by feeling. This method is also applicable to both the Coulter apparatus and flow cytometry.
一般にコールター装置、フローサイトメトリーともに、パルス波形として計測可能な粒径は下限が存在する。図26は、穴径300nm、厚さ50nmの細孔を持つコールター装置で、様々な直径のポリスチレンビーズを計測した時の、パルス高さ(イオン電流の過渡変化)である。図26よりビーズ径2601が小さいほど、ビーズの細孔通過時のイオン電流低下(パルス高さ)2602が小さくなる。穴径300nmの細孔を使った場合100nm以下の粒子は、パルスがベースラインノイズに埋もれるため、図8のステップS813およびS823のパルスデータ抽出ができない。100nm以下の粒子をこのコールター装置で計測するためには、100nmといったさらに小さな穴径を持つ細孔のコールターデバイスを利用する。 In general, both the Coulter apparatus and flow cytometry have a lower limit to the particle size that can be measured as a pulse waveform. FIG. 26 shows pulse heights (transient changes in ion current) when measuring polystyrene beads with various diameters using a Coulter apparatus having pores with a hole diameter of 300 nm and a thickness of 50 nm. As shown in FIG. 26, the smaller the bead diameter 2601, the smaller the ion current drop (pulse height) 2602 when the beads pass through the pores. When a pore with a hole diameter of 300 nm is used, the pulses of particles of 100 nm or less are buried in baseline noise, and thus pulse data extraction in steps S813 and S823 in FIG. 8 cannot be performed. In order to measure particles below 100 nm with this Coulter device, a pore Coulter device with a smaller hole diameter of 100 nm is utilized.
図23乃至図25で説明した本発明における標識および濃縮においては、計測の対象は結合済ビーズであり、夾雑物や抗体修飾ビーズからのパルスは、除去することが望ましいノイズである。本発明の或る実施形態においては、夾雑物や抗体修飾ビーズの大きさを図26におけるパルス抽出困難な領域2610、結合済ビーズをパルス抽出できる領域2620になるよう、細孔穴径と抗体修飾ビーズの大きさを適当に選択することができる。たとえば図26において、抗体修飾ビーズの大きさを80nm程度、細孔穴径を300nmとすれば、計測対象粒子と結合していない抗体修飾ビーズ(たとえば図25の2524や2534)からのパルスはAI学習対象やAI検出、識別または定量の対象パルスから除外されるため、より高い性能の学習済AIプログラムを作成することができる。 In the labeling and concentration according to the present invention described in FIGS. 23 to 25, the object of measurement is bound beads, and contaminants and pulses from antibody-modified beads are noise that should be removed. In one embodiment of the present invention, the size of contaminants and antibody-modified beads is adjusted to the region 2610 in FIG. can be selected appropriately. For example, in FIG. 26, if the size of the antibody-modified beads is about 80 nm and the pore diameter is 300 nm, the pulses from the antibody-modified beads that are not bound to the particles to be measured (for example, 2524 and 2534 in FIG. 25) are AI learning. Because they are excluded from target or AI detection, identification or quantification of target pulses, a trained AI program with higher performance can be created.
なお図23および図24ではウイルスを、また図25ではタンパク質を例として説明したが、これら本発明による方法は、いかなる微生物、いかなるタンパク質、エクソソーム等あっても、それらと特異的に結合する抗体で修飾したビーズが生成できるものであれば何でも利用できる。これにより、前記第4および第5の課題を、解決または低減できる。 23 and 24 and proteins in FIG. 25, the methods according to the present invention can be applied to antibodies that specifically bind to any microorganism, any protein, exosome, or the like. Anything that can produce modified beads can be used. Thereby, the fourth and fifth problems can be solved or reduced.
本発明の効果を実証するため、図27(a)および(b)に示す2種類の試料について、試料中に抗IgG抗体が含まれるか否かの検出を、本発明による検出方法を用いて行った。図27(a)は、1xPBS(リン酸緩衝食塩水)中に、SteptavidinとBiotinを使い抗IgG抗体を修飾した50nm径のAu粒子2700を分散させたものである。図27(b)は、1xPBS中に0.1mg/mLの抗IgG抗体2701を含む試料に、同じAu粒子を分散させたものである。図27(a)中のAu粒子は負電荷を持つため互いに反発してよく分散する。図27(b)の試料中のAu粒子の一部は図27の拡大図のとおり、Au粒子にコーティングされたStreptavidin2712、Biotin2714および抗IgG抗体2701と結合する結果、凝集塊2710を形成する。 In order to demonstrate the effect of the present invention, the two types of samples shown in FIGS. gone. FIG. 27(a) shows Au particles 2700 with a diameter of 50 nm modified with an anti-IgG antibody using steptavidin and biotin dispersed in 1×PBS (phosphate buffered saline). FIG. 27(b) shows the same Au particles dispersed in a sample containing 0.1 mg/mL anti-IgG antibody 2701 in 1×PBS. Since the Au particles in FIG. 27(a) have a negative charge, they repel each other and are well dispersed. Some of the Au particles in the sample in FIG. 27(b) bind to streptavidin 2712, biotin 2714 and anti-IgG antibody 2701 coated on the Au particles, forming aggregates 2710, as shown in the enlarged view of FIG.
図27(a)および(b)を、図4に示すようなコールターデバイスの流路(チャンバ)410に、また1xPBSを流路(チャンバ)420に各々充填して、電極412と電極422間に0.1Vの電圧を印加して粒子通過に伴うパルス信号を電流計451で計測した。図27(a)、(b)の各試料について各3計測ずつを異なるコールターデバイスを用いて計6計測実施した。細孔440は直径300nmの円形であった。図28は、パルス抽出手段731で抽出したパルスから、特徴量抽出手段で抽出した特徴量のうち2つを選んでパルス毎に散布図で実施した6計測について表現したものである。他の特徴量は省略した。横軸2801が図11における特徴量a、縦軸2802が特徴量bである。図4のコールターデバイスにおける検出限界の粒径は90nmである。したがって、凝集していない50nmのAu粒子通過によるパルスは、ここで用いたコールターデバイス400では検出されない。図28からわかるように、図27(a)の試料からはほとんどパルスが観測されないのに、図27(b)の試料からはパルスが多数観測されている。この結果より、コールターデバイス400を用いたパルス計測によって抗IgG抗体の検出が実現されていることが示された。 FIGS. 27(a) and (b) were filled into the channel (chamber) 410 of the Coulter device as shown in FIG. A voltage of 0.1 V was applied and the pulse signal accompanying the passage of the particles was measured by the ammeter 451 . For each sample in FIGS. 27(a) and 27(b), 3 measurements each were performed using different Coulter devices for a total of 6 measurements. The pore 440 was circular with a diameter of 300 nm. FIG. 28 expresses six measurements performed in a scatter diagram for each pulse by selecting two of the feature quantities extracted by the feature quantity extraction means from the pulses extracted by the pulse extraction means 731 . Other features are omitted. The horizontal axis 2801 is the feature amount a in FIG. 11, and the vertical axis 2802 is the feature amount b. The detection limit particle size for the Coulter device of FIG. 4 is 90 nm. Therefore, a pulse through unagglomerated 50 nm Au particles is not detected by the Coulter device 400 used here. As can be seen from FIG. 28, few pulses are observed from the sample in FIG. 27(a), but many pulses are observed from the sample in FIG. 27(b). This result indicated that the anti-IgG antibody was detected by pulse measurement using the Coulter device 400 .
さらに、図28に示したデータについて、図27(a)の試料で計測されたパルスの特徴量に「IgG_0mg」の、また図27(b)の試料からのパルス特徴量には「IgG_0.1mg」の教師ラベルを正解として付してAI検出器の学習を行い、その結果について交差検定を行った結果を図29に示す。図29(a)はパルス単位で教師ラベル2910とAI検出器出力2920の比較をする混同行列であり、パルスF値は約0.71であった。この実験では、90nm以下の粒子は検出されないので、図27(a)の試料から観察されるパルスは、Au粒子が何らかの理由で凝集したものと考えられる。同じようなサイズのAu粒子凝集塊であっても、本発明によるAI検出器は、図27(b)拡大図によって凝集した塊とそうでないものを区別していることが示された。さらに、図29(a)の結果を集計することで試料単位のAI検出を行った結果を図29(b)に示す。この結果検出正否のF値は1.0となり、本発明による学習済AI検出器を用いることで、試料単位の抗IgG抗体検出は高い性能を示すことが実証できた。 Furthermore, regarding the data shown in FIG. 28, the feature amount of the pulse measured with the sample in FIG. ” as the correct answers, the AI detector was trained, and the results were cross-validated, and the results are shown in FIG. FIG. 29(a) is a confusion matrix for comparing the teacher label 2910 and the AI detector output 2920 on a pulse-by-pulse basis, and the pulse F value was about 0.71. Since no particles of 90 nm or less were detected in this experiment, the pulses observed from the sample in FIG. Even for Au particle agglomerates of similar size, the AI detector according to the present invention was shown to distinguish between agglomerated agglomerates and non-agglomerated agglomerates by the enlarged view of FIG. 27(b). Furthermore, FIG. 29(b) shows the results of AI detection for each sample by aggregating the results of FIG. 29(a). As a result, the F-value for correctness of detection was 1.0, demonstrating that the use of the trained AI detector according to the present invention exhibits high performance in anti-IgG antibody detection on a sample-by-sample basis.
図27乃至図29では、抗IgG抗体について本発明の有効性を検証したが、図23乃至図25で説明した本発明の方法は、微生物、タンパク質、エクソソーム、抗体等、特異的に結合する抗体を有するあらゆる粒子について、また各々計測手段はコールター法、フローサイトメトリーを問わず適用可能である。 27 to 29, the effectiveness of the present invention was verified for anti-IgG antibodies, but the method of the present invention described in FIGS. and each measurement means can be applied regardless of the Coulter method or flow cytometry.

Claims (22)

  1. 電解液中に分散させた検出対象粒子が細孔を通過する際の、前記細孔の両側で前記電解液と接する2つの電極の間のイオン電流の過渡変化をパルス信号として検出するように構成されるコールター計測デバイスと、
    粒子の前記細孔通過にともなうパルス波形の特徴量を計算する特徴量抽出部と、
    前記細孔の付帯計測条件を記憶する付帯計測条件記憶部と、
    前記パルス波形を学習するAIプログラムを備え、
    種類が既知である既知粒子の計測に用いる第1のコールター計測デバイスの第1の細孔の穴径、形状、および細孔の厚みからなる群から選択される1つ以上を含む第1の付帯計測条件を、前記付帯計測条件記憶部に記憶し、
    前記特徴量抽出部が、前記既知粒子の第1の細孔の通過にともなって前記第1のコールター計測デバイスから得られる第1のパルス波形から第1の特徴量を計算し、
    前記第1の特徴量および前記第1の付帯計測条件を教師データ、前記既知粒子の種類を教師ラベルとして前記AIプログラムを学習して学習済AIプログラムを作成し、
    未知粒子の計測に用いる第2のコールター計測デバイスの第2の細孔の穴径、形状、および細孔の厚みからなる群から選択される1つ以上を含む第2の付帯計測条件を、前記付帯計測条件記憶部に記憶し、
    前記未知粒子の前記第2の細孔の通過に伴って前記第2のコールター計測デバイスの出力から得られる未知パルス波形より前記特徴量抽出部によって計算された未知特徴量および前記第2の付帯計測条件を前記学習済AIプログラムに入力して前記検出対象粒子の検出、識別、または定量を行うように構成されることを特徴とする装置。
    configured to detect, as a pulse signal, a transient change in ionic current between two electrodes in contact with the electrolytic solution on both sides of the pore when particles to be detected dispersed in the electrolytic solution pass through the pore. a coulter measuring device that
    a feature quantity extraction unit that calculates a feature quantity of a pulse waveform associated with passage of the particles through the pore;
    an incidental measurement condition storage unit that stores incidental measurement conditions of the pores;
    An AI program that learns the pulse waveform,
    A first attachment containing one or more selected from the group consisting of the hole diameter, shape, and thickness of the first pore of the first pore of the first Coulter measurement device used for measuring known particles of known type storing measurement conditions in the incidental measurement condition storage unit;
    The feature amount extraction unit calculates a first feature amount from a first pulse waveform obtained from the first Coulter measurement device as the known particles pass through the first pore,
    creating a learned AI program by learning the AI program using the first feature quantity and the first incidental measurement condition as teacher data and the type of the known particle as a teacher label;
    A second incidental measurement condition including one or more selected from the group consisting of the hole diameter, shape, and pore thickness of the second pore of the second Coulter measurement device used for measuring unknown particles, stored in the incidental measurement condition storage unit,
    The unknown feature value calculated by the feature value extractor from the unknown pulse waveform obtained from the output of the second Coulter measuring device as the unknown particle passes through the second pore and the second incidental measurement. A device characterized by being configured to input conditions into the learned AI program to detect, identify, or quantify the particles to be detected.
  2. 試料中の粒子が1列に通過する透明な流路を含む計測部にレーザ光を照射し、前記計測部を粒子1個が通過する毎に通過した粒子からの散乱光または蛍光からのパルス信号1つを取得するように構成されるフローサイトメトリー計測手段と、
    粒子の前記計測部通過にともなって得られるパルス信号から得られるパルス波形の特徴量を計算する特徴量抽出部と、
    フローサイトメトリー計測手段の付帯計測条件を記憶する付帯計測条件記憶部と、
    前記パルス波形を学習するAIプログラムを備え、
    種類が既知である既知粒子の計測に用いる第1のフローサイトメトリー計測手段の特性を表す第1の光源特性情報、第1の受光器角度情報、第1の流速情報、第1の蛍光標識特性情報および第1のシース液物性情報からなる群から選択される1つ以上を含む第1の付帯計測条件を、前記付帯計測条件記憶部に記憶し、
    前記既知粒子が第1のフローサイトメトリー計測手段の第1の計測部を通過することにともなって前記第1のフローサイトメトリー計測手段から得られる第1のパルス波形から第1の特徴量を計算し、
    前記第1の特徴量と前記第1の付帯計測条件を教師データ、前記既知粒子の種類を教師ラベルとして前記AIプログラムを学習して学習済AIプログラムを作成し、
    未知粒子の計測に用いる第2の計測に用いる第2のフローサイトメトリー計測手段の特性を表す第2の光源特性情報、第2の受光器角度情報、第2の流速情報、第2の蛍光標識特性情報および第2のシース液物性情報からなる群から選択される1つ以上を含む第2の付帯計測条件を、前記付帯計測条件記憶部に記憶し、
    前記未知粒子が前記第2のフローサイトメトリー計測手段の第2の計測部を通過することにより得られる第2のパルス波形に基づいて、前記特徴量抽出部によって計算された第2の特徴量および前記第2の付帯計測条件を前記学習済AIプログラムに入力して前記粒子を検出、識別、または定量を行うように構成されることを特徴とする装置。
    A laser beam is irradiated to a measurement part including a transparent flow path through which particles in a sample pass in a row, and a pulse signal from scattered light or fluorescence from particles passing through the measurement part each time one particle passes through the measurement part. a flow cytometry instrument configured to obtain a
    a feature amount extraction unit that calculates a feature amount of a pulse waveform obtained from a pulse signal obtained as the particles pass through the measurement unit;
    an incidental measurement condition storage unit for storing incidental measurement conditions of flow cytometry measurement means;
    An AI program that learns the pulse waveform,
    First light source characteristic information, first light receiver angle information, first flow velocity information, and first fluorescent label characteristics representing the characteristics of the first flow cytometry measurement means used for measuring known particles of known types storing a first incidental measurement condition including one or more selected from the group consisting of information and first sheath liquid physical property information in the incidental measurement condition storage unit;
    calculating a first feature quantity from a first pulse waveform obtained from the first flow cytometry measurement means as the known particles pass through the first measurement unit of the first flow cytometry measurement means; death,
    creating a learned AI program by learning the AI program using the first feature amount and the first incidental measurement condition as teacher data and the type of the known particle as a teacher label;
    Second light source characteristic information, second light receiver angle information, second flow velocity information, and second fluorescent label representing the characteristics of the second flow cytometry measuring means used in the second measurement used to measure unknown particles storing second incidental measurement conditions including one or more selected from the group consisting of characteristic information and second sheath liquid physical property information in the incidental measurement condition storage unit;
    a second feature amount calculated by the feature amount extraction unit based on a second pulse waveform obtained by the unknown particle passing through the second measurement unit of the second flow cytometry measurement means; An apparatus configured to input the second contingent measurement condition into the learned AI program to detect, identify, or quantify the particles.
  3. 試料中に混在する第1の種類の粒子と第2の種類の粒子を識別するためのAIプログラムであって、
    前記AIプログラムが含む命令は、プロセッサにより実行された際に、
    電解液中に分散させた粒子1つが細孔を通過する際の、前記細孔の両側で前記電解液と接する2つの電極の間のイオン電流の過渡変化を1つのパルス信号として検出するように構成される細孔デバイスと、
    1つのパルス波形毎にN個の特徴量群を計算する特徴量抽出部と、
    パルス波形を学習するAIプログラムとを備えたコールター計測装置を用い、
    第1の試料を前記コールター計測装置で計測した第1のパルス波形を、その各々について計算された前記特徴量群を要素とする特徴量ベクトルに基づいて、N次元の特徴量空間内でクラスタリングして、前記第1の種類の粒子と推定される第1の推定パルス波形群と前記第2の種類の粒子と推定される第2の推定パルス波形群に分類し、
    第2の試料を前記コールター計測装置で計測した第2のパルス波形を、その各々について計算された前記特徴量群を要素とする特徴量ベクトルに基づいて、N次元の特徴量空間内でクラスタリングして、前記第1の推定パルス波形群と前記第2の推定パルス波形群に分類し、
    前記第1の推定パルス波形群から計算される前記特徴量群の各々を教師データ、前記第1の種類を教師ラベルとして、また前記第2の推定パルス波形群から計算される前記特徴量群の各々を教師データ、前記第2の種類を教師ラベルとして前記AIプログラムを学習し、学習済AI識別器を作成すること
    を行うように構成されることを特徴とするAIプログラム。
    An AI program for identifying first type particles and second type particles mixed in a sample,
    The instructions in the AI program, when executed by a processor, include:
    A transient change in ionic current between two electrodes in contact with the electrolyte on both sides of the pore when one particle dispersed in the electrolyte passes through the pore is detected as one pulse signal. a pore device comprising:
    A feature quantity extraction unit that calculates N feature quantity groups for each pulse waveform;
    Using a Coulter measuring device equipped with an AI program that learns pulse waveforms,
    The first pulse waveform obtained by measuring the first sample with the Coulter measuring device is clustered in an N-dimensional feature amount space based on the feature amount vector having the feature amount group calculated for each of the first pulse waveforms. classifying into a first estimated pulse waveform group estimated to be particles of the first type and a second estimated pulse waveform group estimated to be particles of the second type;
    The second pulse waveform obtained by measuring the second sample with the Coulter measurement device is clustered in an N-dimensional feature amount space based on the feature amount vector having the feature amount group calculated for each of them as an element. classifying into the first estimated pulse waveform group and the second estimated pulse waveform group,
    Each of the feature quantity groups calculated from the first estimated pulse waveform group is used as teacher data, the first type is used as a teacher label, and the feature quantity group calculated from the second estimated pulse waveform group is An AI program characterized by being configured to learn the AI program using each as teacher data and the second type as a teacher label, and to create a learned AI discriminator.
  4. 前記AIプログラムが含む命令はプロセッサにより実行された際にさらに、
    第3の試料を第3のコールター計測装置で計測した第3のパルス波形群の各々より計算された前記特徴量群を各々前記学習済AI識別器に入力して、前記第3のパルス波形群の各々が、前記第1の種類または前記第2の種類のいずれに帰属するものであるかを識別することを行うように構成されることを特徴とする請求項3記載のAIプログラム。
    When executed by a processor, the instructions contained in the AI program further:
    The feature quantity group calculated from each of the third pulse waveform group obtained by measuring the third sample with the third Coulter measuring device is input to the learned AI discriminator, and the third pulse waveform group is obtained. 4. The AI program according to claim 3, wherein each of the AI programs is configured to identify whether it belongs to the first type or the second type.
  5. N>3であることを特徴とする請求項3乃至請求項4記載のAIプログラム。 5. The AI program according to claim 3, wherein N>3.
  6. 試料中における検出対象タンパク質の有無を推定するためのAIプログラムであって、
    前記AIプログラムは、
    前記検出対象タンパク質と夾雑物を含むことが既知である試料に、前記検出対象タンパク質と特異的に結合する抗体で修飾した抗タンパク質ビーズを混入することで、その中に前記検出対象タンパク質と結合した結合済ビーズを含むようにして作成した第1の混合試料と、
    前記夾雑物は含むが前記検出対象タンパク質を含まないことが既知である試料に、前記抗タンパク質ビーズを混入して作成した第2の混合試料と
    を使用するところの、
    電解液中に分散させた粒子が細孔を通過する際の、前記細孔の両側で前記電解液と接する2つの電極の間のイオン電流の過渡変化をパルス波形として検出するように構成されるコールター計測デバイスによる計測において使用されるものであり、
    前記計測においては、
    前記第1の混合試料を前記コールター計測デバイスで計測し第1のパルス計測結果が得られ、かつ
    前記第2の混合試料を前記コールター計測デバイスで計測し第2のパルス計測結果が得られるものであり、
    前記AIプログラムが含む命令は、プロセッサにより実行された際に、
    前記第1のパルス計測結果と前記第2のパルス計測結果を演算することで、前記第1のパルス計測結果が前記結合済ビーズでない夾雑パルス確率を計算し、
    前記夾雑パルス確率が閾値を下回るパルスのパルス計測結果を教師データ、陽性を正解ラベルとして前記AIプログラムを学習させ、
    前記第2のパルス計測結果を教師データ、陰性を正解ラベルとして前記AIプログラムを学習して、学習済AI検出器を作成すること
    を行うように構成されることを特徴とするAIプログラム。
    An AI program for estimating the presence or absence of a protein to be detected in a sample,
    The AI program is
    By mixing anti-protein beads modified with an antibody that specifically binds to the detection target protein into a sample known to contain the detection target protein and contaminants, the detection target protein is bound therein. a first mixed sample prepared containing bound beads;
    using a second mixed sample prepared by mixing the anti-protein beads with a sample known to contain the contaminants but not the protein to be detected;
    configured to detect, as a pulse waveform, transient changes in ionic current between two electrodes in contact with the electrolyte on both sides of the pore when particles dispersed in the electrolyte pass through the pore. used in measurements by Coulter measuring devices,
    In the measurement,
    The first mixed sample is measured by the Coulter measuring device to obtain a first pulse measurement result, and the second mixed sample is measured by the Coulter measuring device to obtain a second pulse measurement result. can be,
    The instructions in the AI program, when executed by a processor, include:
    calculating a contamination pulse probability that the first pulse measurement result is not the bound bead by calculating the first pulse measurement result and the second pulse measurement result;
    Learning the AI program using the pulse measurement result of the pulse whose probability of the mixed pulse is lower than the threshold as teacher data and positive as a correct label,
    An AI program, wherein the AI program is learned using the second pulse measurement result as teacher data and negative as a correct label to create a learned AI detector.
  7. 前記計測はさらに、
    前記検出対象タンパク質の有無が未知である未知試料に、前記抗タンパク質ビーズを混入して作成した第3の混合試料も用いるものであり、
    前記計測においては、
    前記第3の混合試料を前記コールター計測デバイスで計測し第3のパルス計測結果を得ることも行われるものであって、
    前記AIプログラムが含む命令は、プロセッサにより実行された際にさらに、
    前記第3のパルス計測結果を前記学習済AI検出器に入力して前記未知試料に前記検出対象タンパク質が含まれているか否かを出力すること
    を行うように構成されることを特徴とする請求項6記載のAIプログラム。
    Said measurement further comprises:
    A third mixed sample prepared by mixing the anti-protein beads with the unknown sample in which the presence or absence of the protein to be detected is unknown is also used,
    In the measurement,
    A third pulse measurement result is obtained by measuring the third mixed sample with the Coulter measurement device,
    The instructions contained in the AI program, when executed by a processor, further:
    The third pulse measurement result is input to the learned AI detector, and whether or not the unknown sample contains the protein to be detected is output. 7. The AI program according to item 6.
  8. 試料中に検出対象微生物が含まれるか否かを検出するための、AIプログラムを用いた方法であって、
    検出対象微生物を含まない既知陰性試料に、前記検出対象微生物に特異的に結合する抗体で修飾した抗微生物ビーズを混合してビーズ混合陰性試料を作成し、
    前記検出対象微生物を含む既知陽性試料に前記抗微生物ビーズを混合して、前記検出対象微生物と前記抗微生物ビーズが結合した微生物結合ビーズを含むビーズ混合陽性試料を作成し、
    前記ビーズ混合陰性試料を、電界液中に分散させた微細な粒子が細孔を通過する際の細孔の両側の間の電気抵抗の過渡変化をパルス信号として検出するように構成されるコールター装置で計測することで、陰性パルス計測結果を得、
    前記ビーズ混合陽性試料を前記コールター装置で計測することで陽性パルス計測結果を得、
    AIプログラムを用いて、前記陰性パルス計測結果を教師データ、陰性ラベルを正解としてAI学習を行い、
    前記AIプログラムを用いて、前記陽性パルス計測結果を教師データ、陽性ラベルを正解としてAI学習を行うことで学習済AI検出器を作成する
    ことを含む、方法。
    A method using an AI program for detecting whether or not a microorganism to be detected is contained in a sample,
    A bead-mixed negative sample is prepared by mixing antimicrobial beads modified with an antibody that specifically binds to the microorganism to be detected to a known negative sample that does not contain the microorganism to be detected,
    Mixing the antimicrobial beads with a known positive sample containing the microorganism to be detected to prepare a bead-mixed positive sample containing microorganism-bound beads to which the microorganism to be detected and the antimicrobial beads are bound,
    A Coulter device configured to detect, as a pulse signal, a transient change in electrical resistance between both sides of a pore when fine particles of the bead-mixed negative sample dispersed in an electrolytic solution pass through the pore. By measuring with, a negative pulse measurement result is obtained,
    A positive pulse measurement result is obtained by measuring the bead-mixed positive sample with the Coulter device,
    Using an AI program, AI learning is performed using the negative pulse measurement result as teacher data and the negative label as the correct answer,
    A method comprising using the AI program to perform AI learning using the positive pulse measurement result as teacher data and the positive label as a correct answer to create a trained AI detector.
  9. 前記検出対象微生物を含むか否かが不明な未知試料に前記抗微生物ビーズを混合してビーズ混合未知試料を作成し、
    前記AIプログラムを用いて、前記コールター装置で前記ビーズ混合未知試料を計測することで得た未知パルス計測結果を前記学習済AI検出器に入力して、前記未知試料中に前記検出対象微生物が存在するか否かを検出する
    ことをさらに含む、請求項8記載の方法。
    creating a bead-mixed unknown sample by mixing the antimicrobial beads with an unknown sample in which it is unknown whether or not the microorganism to be detected is included;
    Using the AI program, the unknown pulse measurement result obtained by measuring the bead-mixed unknown sample with the Coulter device is input to the learned AI detector, and the detection target microorganism is present in the unknown sample. 9. The method of claim 8, further comprising detecting whether to do so.
  10. 試料中に検出対象エクソソームが含まれるか否かを検出するための、AIプログラムを用いた方法であって、
    検出対象エクソソームを含まない既知陰性試料に前記検出対象エクソソームに特異的に結合する抗体で修飾した抗エクソソームビーズを混合してビーズ混合陰性試料を作成し、
    前記検出対象エクソソームを含む既知陽性試料に前記抗エクソソームビーズを混合して、前記検出対象エクソソームと前記抗エクソソームビーズが結合したエクソソーム結合ビーズを含むビーズ混合陽性試料を作成し、
    前記ビーズ混合陰性試料を、電界液中に分散させた微細な粒子が細孔を通過する際の細孔の両側の間の電気抵抗の過渡変化をパルス信号として検出するように構成されるコールター装置で計測することで、陰性パルス計測結果を得、
    前記ビーズ混合陽性試料を前記コールター装置で計測することで陽性パルス計測結果を得、
    AIプログラムを用いて、前記陰性パルス計測結果を教師データ、陰性ラベルを正解としてAI学習を行い、
    前記AIプログラムを用いて、前記陽性パルス計測結果を教師データ、陽性ラベルを正解としてAI学習を行うことで学習済AI検出器を作成する
    ことを含む、方法。
    A method using an AI program for detecting whether the sample contains exosomes to be detected,
    Create a bead-mixed negative sample by mixing anti-exosome beads modified with an antibody that specifically binds to the exosomes to be detected in a known negative sample that does not contain exosomes to be detected,
    The anti-exosome beads are mixed with the known positive sample containing the exosomes to be detected, and the exosomes to be detected and the anti-exosome beads are bound to create a bead mixed positive sample containing exosome-bound beads,
    A Coulter device configured to detect, as a pulse signal, a transient change in electrical resistance between both sides of a pore when fine particles of the bead-mixed negative sample dispersed in an electrolytic solution pass through the pore. By measuring with, a negative pulse measurement result is obtained,
    A positive pulse measurement result is obtained by measuring the bead-mixed positive sample with the Coulter device,
    Using an AI program, AI learning is performed using the negative pulse measurement result as teacher data and the negative label as the correct answer,
    A method comprising using the AI program to perform AI learning using the positive pulse measurement result as teacher data and the positive label as a correct answer to create a trained AI detector.
  11. 前記検出対象エクソソームを含むか否かが不明な未知試料に前記抗エクソソームビーズを混合してビーズ混合未知試料を作成し、
    前記AIプログラムを用いて、前記コールター装置で前記ビーズ混合未知試料を計測することで得た未知パルス計測結果を前記学習済AI検出器に入力して、前記未知試料中に前記検出対象エクソソームが存在するか否かを検出する
    ことをさらに含む、請求項10記載の方法。
    Create a bead-mixed unknown sample by mixing the anti-exosome beads with an unknown sample that is unknown whether or not it contains the exosomes to be detected,
    Using the AI program, the unknown pulse measurement results obtained by measuring the bead-mixed unknown sample with the Coulter device are input to the learned AI detector, and the detection target exosomes are present in the unknown sample. 11. The method of claim 10, further comprising detecting whether to do so.
  12. 試料中に検出対象タンパク質が含まれるか否かを検出するための方法であって、
    電界液中に分散させた、検出限界サイズ以上の大きさを有する検出可能粒子が細孔を通過する際にのみ細孔の両側の間の電気抵抗の過渡変化をパルス信号として検出するように構成されるコールター装置を用いて、
    前記検出限界サイズ未満の大きさを有するタンパク質を含まない陰性試料に前記検出対象タンパク質と特異的に結合する抗タンパク質ビーズを混合した第1試料を作成し、
    前記タンパク質を含む陽性試料に、前記抗タンパク質ビーズを混合して、前記抗タンパク質ビーズ同士が結合した結合済ビーズを含むようにした第2試料を作成し、
    前記第1試料を前記コールター装置で計測して得た第1のパルス計測結果の第1パルス数と、前記第2試料を前記コールター装置で計測して得た第2のパルス計測結果の第2パルス数より、陽性パルス数閾値を定め、
    前記検出対象タンパク質が含まれるか否かが未知である未知試料を前記コールター装置で計測して得た第3のパルス計測結果の第3パルス数が前記陽性パルス数閾値を上回った前記未知試料には、前記検出対象タンパク質が含まれると判断する
    ことを含む、方法。
    A method for detecting whether a target protein is contained in a sample, comprising:
    Configured to detect a transient change in electrical resistance between both sides of the pore as a pulse signal only when detectable particles having a size equal to or larger than the detection limit size dispersed in the electrolytic solution pass through the pore. with a Coulter device that
    preparing a first sample by mixing anti-protein beads that specifically bind to the protein to be detected with a negative sample that does not contain a protein having a size less than the detection limit size;
    Mixing the anti-protein beads with the positive sample containing the protein to create a second sample containing bound beads in which the anti-protein beads are bound to each other;
    A first pulse number of the first pulse measurement result obtained by measuring the first sample with the Coulter device, and a second pulse measurement result of the second pulse measurement result obtained by measuring the second sample with the Coulter device Determine the positive pulse number threshold from the number of pulses,
    For the unknown sample in which the third pulse number in the third pulse measurement result obtained by measuring the unknown sample in which it is unknown whether or not the protein to be detected is contained is above the positive pulse number threshold, A method comprising determining that the protein to be detected is included.
  13. 前記抗タンパク質ビーズの大きさは前記検出限界サイズより小さく、前記結合済ビーズの大きさは前記検出限界サイズより大きいことを特徴とする請求項12記載の方法。 13. The method of claim 12, wherein said anti-protein bead size is less than said detection limit size and said bound bead size is greater than said detection limit size.
  14. 前記陽性パルス数閾値は、前記第1パルス数の1/5以下であることを特徴とする請求項12又は13記載の方法。 14. The method of claim 12 or 13, wherein the positive pulse number threshold is less than or equal to 1/5 of the first pulse number.
  15. 試料中に検出対象微生物が含まれるか否かを検出するための、AIプログラムを用いた方法であって、
    検出対象微生物を含まない既知陰性試料に前記検出対象微生物に特異的に結合する抗体で修飾した標識ビーズを混合してビーズ混合陰性試料を作成し、
    前記ビーズ混合陰性試料が入っている陰性試料用容器に遠心処理を施し、
    前記陰性試料用容器下部の沈降物を、電界液中に分散させた微細な粒子が細孔を通過する際の細孔の両側の間の電気抵抗の過渡変化をパルス信号として検出するように構成されるコールター装置で計測することで、濃縮陰性パルス計測結果を得、
    前記検出対象微生物を含む既知陽性試料に前記標識ビーズを混合して、前記検出対象微生物と前記標識ビーズが結合した微生物結合ビーズを含むビーズ混合陽性試料を作成し、
    前記ビーズ混合陽性試料が入っている陽性試料用容器に遠心処理を施し、
    前記陽性試料用容器の下部の沈降物を前記コールター装置で計測することで、濃縮陽性パルス計測結果を得、
    AIプログラムを用いて、前記濃縮陰性パルス計測結果を教師データとし、陰性を正解ラベルとしてAI学習を行い、
    前記AIプログラムを用いて、前記濃縮陽性パルス計測結果を教師データとし、陽性を正解ラベルとしてAI学習を行うことで学習済AI検出器を作成する
    ことを含む、方法。
    A method using an AI program for detecting whether or not a microorganism to be detected is contained in a sample,
    A bead-mixed negative sample is prepared by mixing labeled beads modified with an antibody that specifically binds to the microorganism to be detected to a known negative sample that does not contain the microorganism to be detected,
    Centrifuging the negative sample container containing the bead-mixed negative sample,
    The sediment in the lower part of the negative sample container is configured to detect, as a pulse signal, a transient change in electrical resistance between both sides of the pore when fine particles dispersed in the electrolytic solution pass through the pore. By measuring with the Coulter device that is used, a concentrated negative pulse measurement result is obtained,
    Mixing the labeled beads with a known positive sample containing the microorganism to be detected to prepare a bead-mixed positive sample containing microorganism-bound beads to which the microorganism to be detected and the labeled beads are bound,
    Centrifuging the positive sample container containing the bead-mixed positive sample,
    By measuring the sediment at the bottom of the positive sample container with the Coulter device, a concentrated positive pulse measurement result is obtained,
    Using an AI program, AI learning is performed using the concentrated negative pulse measurement result as teacher data and negative as a correct label,
    using the AI program to create a trained AI detector by performing AI learning using the enriched positive pulse measurement results as teacher data and using positive as a correct label.
  16. 前記検出対象微生物を含むか否か不明な未知試料に前記標識ビーズを混合してビーズ混合未知試料を作成し、
    前記AIプログラムを用いて、前記コールター装置で前記ビーズ混合未知試料を計測することで得た未知パルス計測結果を前記学習済AI検出器に入力して、前記未知試料中に前記検出対象微生物が存在するか否かを検出する
    ことをさらに含む、請求項15記載の方法。
    mixing the labeled beads with an unknown sample in which it is unknown whether or not it contains the microorganism to be detected to prepare a bead-mixed unknown sample;
    Using the AI program, the unknown pulse measurement result obtained by measuring the bead-mixed unknown sample with the Coulter device is input to the learned AI detector, and the detection target microorganism is present in the unknown sample. 16. The method of claim 15, further comprising detecting whether to do so.
  17. 試料中に2種類の微生物のうちのいずれが含まれるかを識別するための、AIプログラムを用いた方法であって、
    第1の微生物を含むことが既知である第1の試料に、前記第1の微生物と特異的に結合する抗体で修飾した第1の抗微生物ビーズおよび第2の微生物と特異的に結合する抗体で修飾した第2の抗微生物ビーズから成る2種混合ビーズを混入して、前記第1の微生物と前記第1の抗微生物ビーズが結合した第1の微生物結合ビーズを含む第1のビーズ混合試料を作成し、
    第2の微生物を含むことが既知である第2の試料に、前記2種混合ビーズを混入して、前記第2の微生物と前記第2の抗微生物ビーズが結合した第2の微生物結合ビーズを含む第2のビーズ混合試料を作成し、
    前記第1のビーズ混合試料を、電界液中に分散させた微細な粒子が細孔を通過する際の細孔の両側の間の電気抵抗の過渡変化をパルス信号として検出するように構成されるコールター装置で計測することで、第1のパルス計測結果を得、
    前記第2のビーズ混合試料を前記コールター装置で計測することで第2のパルス計測結果を得、
    AIプログラムを用いて、前記第1のパルス計測結果を教師データ、第1の微生物を教師ラベルとしてAI学習を行い、
    前記AIプログラムを用いて、前記第2のパルス計測結果を教師データ、第2の微生物を教師ラベルとしてAI学習を行うことで学習済AI識別器を作成する
    ことを含む、方法。
    A method using an AI program for identifying which of two types of microorganisms are present in a sample, comprising:
    A first sample known to contain a first microorganism, a first antimicrobial bead modified with an antibody that specifically binds to said first microorganism and an antibody that specifically binds to a second microorganism A first mixed bead sample containing the first microorganism-bound beads bound to the first microorganism and the first anti-microbial bead by mixing two kinds of mixed beads consisting of the second anti-microbial beads modified with and create
    A second sample known to contain a second microorganism is mixed with the two-species mixed beads to form a second microorganism-bound bead in which the second microorganism and the second antimicrobial bead are bound. creating a second bead mixture sample comprising
    The first bead mixture sample is configured to detect a transient change in electrical resistance between both sides of the pore as a pulse signal when the fine particles dispersed in the electrolyte pass through the pore. A first pulse measurement result is obtained by measuring with a Coulter device,
    obtaining a second pulse measurement result by measuring the second bead-mixed sample with the Coulter device;
    Using an AI program, AI learning is performed using the first pulse measurement result as teacher data and the first microorganism as a teacher label,
    A method comprising using the AI program to perform AI learning using the second pulse measurement result as teacher data and the second microorganism as a teacher label to create a learned AI discriminator.
  18. 前記第1の微生物と前記第2の微生物のいずれを含むか不明な未知試料に前記2種混合ビーズ混入してビーズ混合未知試料を作成し、
    前記AIプログラムを用いて、前記コールター装置で前記ビーズ混合未知試料を計測することで得た未知パルス計測結果を前記学習済AI識別器に入力して、前記未知試料中に前記第1の微生物と前記第2の微生物のどちらが存在するかを識別する
    ことをさらに含む、請求項17記載の方法。
    creating a bead-mixed unknown sample by mixing the two kinds of mixed beads into an unknown sample in which it is unknown which of the first microorganism and the second microorganism is included;
    Using the AI program, the unknown pulse measurement result obtained by measuring the bead-mixed unknown sample with the Coulter device is input to the learned AI classifier, and the first microorganism and the unknown sample are included in the unknown sample. 18. The method of claim 17, further comprising identifying which of said second microorganisms are present.
  19. 前記第1の抗微生物ビーズと前記第2の抗微生物ビーズとは、形状、材料または大きさのうちの少なくともいずれか1つが異なることを特徴とする請求項17乃至請求項18記載の方法。 19. The method of claims 17-18, wherein the first antimicrobial beads and the second antimicrobial beads differ in at least one of shape, material and/or size.
  20. 試料中に含まれるタンパク質の濃度を定量するための、AIプログラムを用いた方法であって、
    第1濃度の前記タンパク質を含むことが既知である第1の試料に前記タンパク質に特異的に結合する抗体で修飾した標識ビーズを混合して前記タンパク質と前記標識ビーズの結合体を含む第1のビーズ混合試料を作成し、
    第2濃度の前記タンパク質を含むことが既知である第2の試料に前記標識ビーズを混合して前記タンパク質と前記標識ビーズの結合体を含む第2のビーズ混合試料を作成し、
    前記第1のビーズ混合試料を、電界液中に分散させた微細な粒子が細孔を通過する際の細孔の両側の間の電気抵抗の過渡変化をパルス信号として検出するように構成されるコールター装置による計測結果から、パルス抽出手段によって抽出された第1の教師パルス計測結果を得、
    前記第2のビーズ混合試料の前記コールター装置による計測結果から、前記パルス抽出手段によって抽出された第2の教師パルス計測結果を得、
    AIプログラムを用いて、前記第1の教師パルス計測結果を教師データ、第1濃度を正解ラベルとしてAI学習を行い、
    前記AIプログラムを用いて、前記第2の教師パルス計測結果を教師データ、第2濃度を正解ラベルとしてAI学習を行うことで学習済AI定量器を作成する
    ことを含む、方法。
    A method using an AI program for quantifying the concentration of protein contained in a sample, comprising:
    A first sample known to contain the protein at a first concentration is mixed with labeled beads modified with an antibody that specifically binds to the protein to form a first sample containing a conjugate of the protein and the labeled beads. Create a bead mixture sample,
    mixing the labeled beads with a second sample known to contain a second concentration of the protein to form a second bead mixture sample containing a conjugate of the protein and the labeled beads;
    The first bead mixture sample is configured to detect a transient change in electrical resistance between both sides of the pore as a pulse signal when the fine particles dispersed in the electrolyte pass through the pore. Obtaining a first teacher pulse measurement result extracted by the pulse extraction means from the measurement result by the Coulter device,
    Obtaining a second teacher pulse measurement result extracted by the pulse extraction means from the measurement result of the second bead mixed sample by the Coulter device,
    Using an AI program, AI learning is performed using the first teacher pulse measurement result as teacher data and the first concentration as a correct label,
    and creating a learned AI quantifier by performing AI learning using the AI program with the second teacher pulse measurement result as teacher data and the second concentration as a correct label.
  21. 前記タンパク質の濃度が不明な未知試料に前記標識ビーズを混合してビーズ混合未知試料を作成し、
    前記AIプログラムを用いて、前記コールター装置で前記ビーズ混合未知試料を計測した計測結果から、前記パルス抽出手段によって抽出された未知パルス計測結果を前記学習済AI定量器に入力して、前記未知試料中に含まれる前記タンパク質の濃度を推定する
    ことをさらに含む、請求項20記載の方法。
    mixing the labeled beads with an unknown sample with an unknown protein concentration to prepare a bead-mixed unknown sample;
    Using the AI program, the unknown pulse measurement result extracted by the pulse extraction means from the measurement result of measuring the bead-mixed unknown sample with the Coulter device is input to the learned AI quantifier, and the unknown sample is 21. The method of claim 20, further comprising estimating the concentration of said protein contained therein.
  22. 前記標識ビーズのサイズは、前記パルス抽出手段がパルス信号として抽出可能な抽出下限サイズを下回り、
    前記結合体のサイズは、前記抽出下限サイズを上回ることを特徴とする請求項20乃至請求項21記載の方法。
    the size of the labeled bead is below the lower limit size of extraction that can be extracted as a pulse signal by the pulse extraction means;
    22. The method of any one of claims 20-21, wherein the size of the conjugate exceeds the lower extraction limit size.
PCT/JP2022/045152 2021-12-08 2022-12-07 Method and apparatus for detection, identification, and quantification of fine particles WO2023106342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021199464A JP2023085018A (en) 2021-12-08 2021-12-08 Method and apparatus for performing detection, identification and quantification of fine particles
JP2021-199464 2021-12-08

Publications (1)

Publication Number Publication Date
WO2023106342A1 true WO2023106342A1 (en) 2023-06-15

Family

ID=86730543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045152 WO2023106342A1 (en) 2021-12-08 2022-12-07 Method and apparatus for detection, identification, and quantification of fine particles

Country Status (2)

Country Link
JP (1) JP2023085018A (en)
WO (1) WO2023106342A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199179A1 (en) * 2017-04-28 2018-11-01 国立大学法人東京医科歯科大学 Modified nanoparticle, dispersion containing modified nanoparticle, set for resistive pulse sensing, set and reagent for detecting virus or bacterium, and method for detecting virus or bacterium
CN111999225A (en) * 2019-12-19 2020-11-27 瑞芯智造(深圳)科技有限公司 Method for detecting concentration of micro-nano particles
WO2021070385A1 (en) * 2019-10-11 2021-04-15 アイポア株式会社 Sensor for particle identification, measurement instrument, computer device, and system
JP2021532350A (en) * 2018-07-31 2021-11-25 ザ・リージエンツ・オブ・ザ・ユニバーシテイ・オブ・コロラド、ア・ボデイー・コーポレイト Systems and methods for applying machine learning to analyze microcopy images in high-throughput systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199179A1 (en) * 2017-04-28 2018-11-01 国立大学法人東京医科歯科大学 Modified nanoparticle, dispersion containing modified nanoparticle, set for resistive pulse sensing, set and reagent for detecting virus or bacterium, and method for detecting virus or bacterium
JP2021532350A (en) * 2018-07-31 2021-11-25 ザ・リージエンツ・オブ・ザ・ユニバーシテイ・オブ・コロラド、ア・ボデイー・コーポレイト Systems and methods for applying machine learning to analyze microcopy images in high-throughput systems
WO2021070385A1 (en) * 2019-10-11 2021-04-15 アイポア株式会社 Sensor for particle identification, measurement instrument, computer device, and system
CN111999225A (en) * 2019-12-19 2020-11-27 瑞芯智造(深圳)科技有限公司 Method for detecting concentration of micro-nano particles

Also Published As

Publication number Publication date
JP2023085018A (en) 2023-06-20

Similar Documents

Publication Publication Date Title
US9683920B2 (en) Use of focused light scattering techniques in biological applications
JP4568499B2 (en) Method and algorithm for cell counting at low cost
US10222320B2 (en) Identifying and enumerating early granulated cells (EGCs)
WO2016127364A1 (en) Cell analyzer and particle sorting method and device
JP7437393B2 (en) Adaptive sorting for particle analyzers
JP2019512697A (en) Digital holography microscopy and 5-part differential with untouched peripheral blood leukocytes
US10337975B2 (en) Method and system for characterizing particles using a flow cytometer
US6232125B1 (en) Method and apparatus for differentiating and enumerating leukocytes
US20210370301A1 (en) System and method for immune activity determination
CN112161913A (en) Analysis method and equipment for flow type fluorescence analysis system
WO2023106342A1 (en) Method and apparatus for detection, identification, and quantification of fine particles
Sharrow Overview of flow cytometry
Civelekoglu et al. Electronic measurement of cell antigen expression in whole blood
WO2023248624A1 (en) Method, device, and program for detecting and quantifying protein
WO2023248608A1 (en) Methods of measurement and analysis for detection and quantification of pathogens, microorganisms or proteins, and computer program for implementing said methods
US20220003660A1 (en) Method and system for characterizing particles using an angular detection in a flow cytometer
US20190346555A1 (en) Use of focused light scattering techniques in biological applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904270

Country of ref document: EP

Kind code of ref document: A1