WO2023106309A1 - Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
WO2023106309A1
WO2023106309A1 PCT/JP2022/045015 JP2022045015W WO2023106309A1 WO 2023106309 A1 WO2023106309 A1 WO 2023106309A1 JP 2022045015 W JP2022045015 W JP 2022045015W WO 2023106309 A1 WO2023106309 A1 WO 2023106309A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
positive electrode
secondary battery
cam
active material
Prior art date
Application number
PCT/JP2022/045015
Other languages
French (fr)
Japanese (ja)
Inventor
裕樹 松本
祥史 松尾
大輔 長尾
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023106309A1 publication Critical patent/WO2023106309A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for lithium secondary batteries, a positive electrode for lithium secondary batteries, and a lithium secondary battery.
  • the positive electrode active material for lithium secondary batteries is an aggregate of secondary particles in which multiple primary particles are aggregated. During charging and discharging of a lithium secondary battery, desorption reaction and insertion reaction of lithium ions occur from the surface of the positive electrode active material for lithium secondary batteries. Therefore, the shape of the surface of the positive electrode active material for lithium secondary batteries affects the performance of the lithium secondary battery.
  • Patent Document 1 discloses that by controlling the shape of the secondary particles of the positive electrode active material for lithium secondary batteries, the wettability with respect to the non-aqueous electrolyte (electrolytic solution) is improved, and high discharge load characteristics are achieved. are doing. Specifically, the average value of the shape factor, which is the area of the region surrounded by the shortest envelope connecting the vertexes of the convex portions of the two-dimensional image with respect to the area of the two-dimensional image of the secondary particle, exceeds 1, It is disclosed to be less than 2.
  • the present invention has been made in view of the above circumstances, and by controlling the shape of the secondary particles, the stability of the positive electrode active material for lithium secondary batteries is improved, and the cycle maintenance rate is high. It is an object of the present invention to provide a positive electrode active material for a lithium secondary battery that can obtain a
  • a positive electrode active material for a lithium secondary battery having a layered structure wherein a first average aspect ratio, which is an average aspect ratio of the positive electrode active material for a lithium secondary battery, is 0.755 or more and 1.000 or less.
  • a positive electrode active material for a lithium secondary battery wherein the positive electrode active material for a lithium secondary battery has an average enveloping degree of 0.983 or more and 1.000 or less.
  • a second average aspect ratio which is an aspect ratio of particles having a particle diameter smaller than the average particle diameter of the positive electrode active material for a lithium secondary battery, is greater than the first average aspect ratio by 0.003 or more, [ 1] to [3], the positive electrode active material for lithium secondary batteries.
  • the first average aspect ratio is 0.004 or more larger than the third average aspect ratio, which is the aspect ratio of particles having a particle diameter equal to or larger than the average particle diameter of the positive electrode active material for a lithium secondary battery, [ 1] to [4], the positive electrode active material for lithium secondary batteries.
  • the positive electrode active material for a lithium secondary battery according to any one of [1] to [5], represented by formula (A).
  • X is one or more selected from the group consisting of Mn, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, Si, S and P.
  • D 100 ⁇ D 0 of the positive electrode active material for lithium secondary batteries is 10 ⁇ m or more and 60 ⁇ m or less, and the D 100 is the particle diameter of the largest particle among the positive electrode active materials for lithium secondary batteries,
  • ADVANTAGE OF THE INVENTION it is possible to provide a positive electrode active material for a lithium secondary battery that can obtain a lithium secondary battery having a high cycle retention rate, and a positive electrode for a lithium secondary battery and a lithium secondary battery using the same. can.
  • FIG. 1 is a schematic configuration diagram showing an example of a lithium secondary battery
  • FIG. 1 is a schematic diagram showing the overall configuration of an all-solid lithium secondary battery of the present embodiment
  • a positive electrode active material for a lithium secondary battery will be described below. Preferred examples and conditions may be shared among the following embodiments. Moreover, in this specification, each term is defined below.
  • MCC metal composite compound
  • CAM cathode active material for lithium secondary batteries
  • Ni refers to nickel atoms, not nickel metal.
  • Co and Li similarly refer to cobalt atoms and lithium atoms and the like, respectively.
  • CAM composition analysis is performed by the following method. For example, after dissolving CAM in hydrochloric acid, an inductively coupled plasma emission spectrometer (for example, SII Nanotechnology Co., Ltd., SPS3000) can be used.
  • an inductively coupled plasma emission spectrometer for example, SII Nanotechnology Co., Ltd., SPS3000
  • “Cycle retention rate” refers to the initial discharge capacity of a lithium secondary battery after performing a cycle test that repeats charging and discharging a predetermined number of times under specific conditions. It means the percentage of discharge capacity of a lithium secondary battery.
  • cycle retention rate refers to a lithium secondary battery produced by the method described in ⁇ Preparation of positive electrode for lithium secondary battery> and ⁇ Preparation of lithium secondary battery (coin-type half cell)> below. Then, the value measured by repeating the charging/discharging cycle 50 times under the following conditions is defined as the cycle retention rate.
  • Test temperature 25°C Maximum charge voltage 4.3V, charge current 0.5CA, constant current constant voltage charge Minimum discharge voltage 2.5V, discharge current 1CA, constant current discharge
  • the discharge capacity at the 1st cycle is defined as the initial discharge capacity, and the value obtained by dividing the discharge capacity at the 50th cycle by the initial discharge capacity is calculated, and this value is defined as the cycle retention rate (%).
  • a conductive material acetylene black
  • PVdF binder
  • NMP is used as an organic solvent when preparing the positive electrode mixture.
  • the obtained positive electrode mixture is applied to an Al foil having a thickness of 40 ⁇ m as a current collector and vacuum-dried at 150° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of this positive electrode for a lithium secondary battery is 1.65 cm 2 .
  • ⁇ Production of lithium secondary battery (coin-type half cell)> The following operations are performed in an argon atmosphere glove box.
  • ⁇ Preparation of positive electrode for lithium secondary battery> Place the positive electrode for lithium secondary battery prepared in the part for coin battery R2032 (manufactured by Hosen Co., Ltd.) with the aluminum foil side facing down on the lower cover.
  • a laminated film separator (16 ⁇ m-thick laminated body obtained by laminating a heat-resistant porous layer on a polyethylene porous film) is placed thereon. 300 ⁇ l of electrolytic solution is injected here.
  • the electrolytic solution was prepared by dissolving LiPF 6 in a mixed solution of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate (16:10:74 (volume ratio) of 16:10:74 (volume ratio) so as to be 1.3 mol/L.
  • a solution in which 1.0% by volume of vinylene is dissolved is used.
  • metallic lithium is used as the negative electrode, the negative electrode is placed on the upper side of the laminated film separator, the upper lid is placed via a gasket, and the lid is crimped with a crimping machine to produce a lithium secondary battery (coin type half cell R2032).
  • the CAM of the present embodiment has a layered structure, a first average aspect ratio that is the average aspect ratio of the CAM is 0.755 or more and 1.000 or less, and an average envelopment degree is 0.983 or more and 1.000 or less. be.
  • the CAM in this embodiment is an aggregate of multiple particles.
  • CAM is in powder form.
  • the CAM may contain only secondary particles or may be a mixture of primary and secondary particles. At this time, the number of primary particles may be 0-10% of the total number of particles contained in the CAM.
  • Primary particles means particles that do not have grain boundaries in appearance when observed with a scanning electron microscope or the like in a field of view of 5000 times or more and 20000 times or less.
  • Secondary particles are particles in which the primary particles are agglomerated. That is, secondary particles are aggregates of primary particles.
  • the CAM aspect ratio is the ratio of the short axis to the long axis measured in the CAM planar image.
  • the major axis refers to the maximum diameter of CAM particles
  • the minor axis refers to the maximum diameter among diameters orthogonal to the major axis. It can be determined that the smaller the aspect ratio, the flatter the CAM, and the closer the aspect ratio to 1, the closer the shape of the CAM to a true sphere.
  • the average aspect ratio of the CAM is a value obtained by measuring the aspect ratios of 200 or more, preferably 200, CAMs and calculating the average value. Henceforth, the average aspect-ratio of CAM may be described as "1st average aspect-ratio.”
  • the CAM envelope is the ratio of the envelope length to the perimeter measured in the CAM planar image.
  • the perimeter length refers to the length of the outer periphery of the shape of the CAM particle
  • the envelope length refers to the distance between the points of contact with the protrusions in the closed curve that touches all the protrusions on the outer periphery of the CAM particle. Refers to the length of a closed curve for which all connecting lines are straight.
  • the smaller the enveloping degree the larger the amount of unevenness of the CAM.
  • the average envelope of CAM is a value obtained by measuring and calculating the envelope of 200 or more, preferably 200, CAMs and calculating the average value.
  • the circularity of CAM is a value represented by 4 ⁇ (area)/(perimeter) 2 measured in a plane image of CAM. The smaller the circularity, the flatter the CAM. As the circularity approaches 1, the secondary particles of the CAM become more spherical.
  • the average circularity of CAM is a value obtained by measuring and calculating the circularity of 200 or more, preferably 200 CAMs, and calculating the average value.
  • the CAM particle diameter is the value represented by the diameter of a circle having the same area as the area of the particles captured in the CAM planar image.
  • the average particle size of CAM is a value obtained by measuring and calculating the particle size of 200 or more, preferably 200, CAMs and calculating the average value.
  • the first average aspect ratio, average envelopment, average circularity and average particle size of the CAM, as well as the average aspect ratios of the particles in the CAM are calculated from static automated images. It can be measured with an analyzer (for example, Morphologi 4 manufactured by Malvern Panalytical).
  • At least 200, preferably 200, particles of CAM are introduced into the feed section of the analyzer and fixed by spraying onto the preparation. Observe the fixed particles with an optical microscope and acquire an image. The obtained image is analyzed to calculate the first average aspect ratio, average degree of envelopment, average degree of circularity, and average particle size of the CAM, as well as the second average aspect ratio and third average aspect ratio, which will be described later.
  • the first average aspect ratio of the CAM of the present embodiment is 0.755-1.000, preferably 0.755-0.999, more preferably 0.760-0.998.
  • the first average aspect ratio is within the above range, it can be said that the secondary particles in the CAM have a nearly spherical shape.
  • the first average aspect ratio is within the above range, it can be said that the plurality of particles in the CAM has a shape close to a sphere.
  • the packing density of the CAM can be increased, and the cycle retention rate of the lithium secondary battery is improved.
  • the contact with the electrolytic solution is improved.
  • the average aspect ratio of particles having a particle size smaller than the average particle size of CAM is preferably 0.003 or more, more preferably 0.004 or more, and 0.005 or more than the first average aspect ratio. is more preferred.
  • the average aspect ratio of particles having a particle size smaller than the average particle size of CAM may be referred to as "second average aspect ratio".
  • the second average aspect ratio is 0.003 or more larger than the first average aspect ratio, it can be said that the particles having a particle size smaller than the average particle size of the CAM have a shape closer to a perfect sphere. As a result, the packing density of the CAM can be increased, and the cycle retention rate of the lithium secondary battery is further improved.
  • the difference between the second average aspect ratio and the first average aspect ratio is preferably 0.05 or less, more preferably 0.03 or less, and even more preferably 0.02 or less.
  • the upper limit and lower limit of the difference between the second average aspect ratio and the first average aspect ratio can be combined arbitrarily.
  • the difference between the second average aspect ratio and the first average aspect ratio is preferably 0.003 to 0.05, more preferably 0.003 to 0.03, and more preferably 0.003 to 0.03. 003 to 0.02 is more preferable.
  • the first average aspect ratio is preferably 0.004 or more, more preferably 0.005 or more, and 0.006 or more than the average aspect ratio of the particles having a particle diameter equal to or greater than the average particle diameter of the CAM. is more preferred.
  • the average aspect ratio of particles having a particle diameter equal to or larger than the average particle diameter of CAM may be referred to as "third average aspect ratio".
  • the first average aspect ratio is greater than the third average aspect ratio by 0.004 or more, it can be said that particles having a particle size equal to or larger than the average particle size of CAM have a relatively flat shape.
  • the space between the flattened particles can be filled with particles that are closer to a spherical shape and have a smaller particle diameter, and the packing density of the CAM can be increased. As a result, the cycle retention rate of the lithium secondary battery is further improved.
  • the difference between the first average aspect ratio and the third average aspect ratio is preferably 0.09 or less, more preferably 0.05 or less, and even more preferably 0.02 or less.
  • the upper limit and lower limit of the difference between the first average aspect ratio and the third average aspect ratio can be combined arbitrarily. As a combination, for example, the difference between the first average aspect ratio and the third average aspect ratio is preferably 0.004 to 0.09, more preferably 0.004 to 0.05, and more preferably 0.004 to 0.05. 004 to 0.02 is more preferable.
  • the average particle size of CAM is preferably 4-16 ⁇ m, more preferably 4.5-15 ⁇ m, even more preferably 5-14 ⁇ m. When the average particle size of CAM is within the above range, the cycle retention rate is further improved.
  • the average envelope of CAM is 0.983-1.000, preferably 0.983-0.998, more preferably 0.983-0.995, and 0.983-0. 990 is more preferred.
  • the average envelopment is within the above range, it can be said that the secondary particles in the CAM have a shape with a small amount of unevenness between the vertexes. Further, when the average envelopment is within the above range, it can be said that the plurality of particles in the CAM has a shape close to a sphere. As a result, the cycle retention rate of the lithium secondary battery is improved.
  • the average circularity of CAM is 0.910-1.000, preferably 0.915-0.980, more preferably 0.920-0.950, and 0.920-0. 936 is more preferred.
  • the average circularity is within the above range, it can be said that the secondary particles in the CAM have a shape close to a sphere.
  • the average circularity is within the above range, it can be said that the plurality of particles in the CAM has a shape close to a sphere.
  • the packing density of the CAM can be increased, and the cycle retention rate of the lithium secondary battery is further improved.
  • the CAM of the present embodiment preferably has a certain width in particle size distribution. If the particle size distribution of the CAM has a wide range, secondary particles with a smaller particle size can be filled between the secondary particles with a larger particle size when the CAM is formed in layers, and the packing density of the CAM can be increased. As a result, the cycle retention rate of the lithium secondary battery is further improved.
  • the width of the particle size distribution is represented by (D 100 -D 0 ), for example.
  • D 100 -D 0 is preferably 10-60 ⁇ m, more preferably 30-58 ⁇ m, even more preferably 45-55 ⁇ m.
  • the particle size distribution of CAM can be measured by the static automatic image analyzer described above. Specifically, it can be calculated by analyzing an acquired image using a static automatic image analyzer (for example, Morphologi 4 manufactured by Malvern Panalytical).
  • D 100 means the particle size of the largest particle in CAM
  • D 0 means the particle size of the smallest particle in CAM excluding measurement artifacts.
  • D 100 is the value represented by the diameter of a circle having the same area as the area of the largest particle imaged in the acquired image
  • D 0 is the diameter of the largest particle imaged in the acquired image. It is a value expressed by the diameter of a circle having the same area as the area of a small particle.
  • CAM preferably contains Li and Ni, and is preferably represented by formula (A).
  • X is one selected from the group consisting of Mn, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, Si, S and P are the above elements and satisfy -0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, and 0 ⁇ z ⁇ 0.5.
  • x is preferably -0.05 or more, more preferably greater than 0.
  • x is preferably 0.15 or less, more preferably 0.10 or less.
  • the initial coulombic efficiency is the ratio of the discharge capacity to the charge capacity when the secondary battery is charged for the first time under predetermined conditions and then discharged.
  • x The upper and lower limits of x can be arbitrarily combined. Combinations include, for example, x being -0.05 to 0.15, more than 0 and not more than 0.10, and the like.
  • y preferably exceeds 0, more preferably 0.005 or more, and even more preferably 0.05 or more.
  • y is preferably 0.35 or less, more preferably 0.33 or less, and even more preferably 0.30 or less.
  • the upper limit and lower limit of y can be combined arbitrarily. Combinations include, for example, y being more than 0 and not more than 0.35, 0.005 to 0.35, 0.05 to 0.33, 0.05 to 0.30, and the like.
  • z is preferably 0.01 or more, more preferably 0.02 or more. Also, z is preferably 0.45 or less, more preferably 0.40 or less, and even more preferably 0.35 or less.
  • z is preferably 0.01 to 0.45, more preferably 0.02 to 0.40, even more preferably 0.02 to 0.35.
  • y+z preferably exceeds 0, more preferably 0.01 or more, and even more preferably 0.02 or more.
  • y+z is preferably 0.9 or less, more preferably 0.75 or less, even more preferably 0.7 or less, 0.3 or less is particularly preferred.
  • y+z is preferably more than 0 and 0.9 or less, more preferably 0.01 to 0.75, still more preferably 0.02 to 0.7, and 0.02 to 0.75. 3 is particularly preferred.
  • X is preferably one or more elements selected from the group consisting of Mn, Ti, Mg, Al, W, B, Nb and Zr, More preferably, it is one or more elements selected from the group consisting of Mn, Al, W, B, Nb and Zr.
  • X is one or more elements X1 selected from the group consisting of Mn and Al, and Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, B, Si, S and P and one or more elements X2 selected from the group consisting of
  • the crystal structure of CAM is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the crystal structure of CAM can be confirmed by powder X-ray diffractometry (XRD).
  • the hexagonal crystal structure is composed of P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6/m, P6 3 /m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P6 3 /mcm, and P6 3 /mmc.
  • the monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c, and C2 It belongs to any one space group selected from the group consisting of /c.
  • the crystal structure is a hexagonal crystal structure assigned to the space group R-3m, or a monoclinic crystal structure assigned to C2/m A crystalline structure is particularly preferred.
  • the CAM manufacturing method includes at least the steps of manufacturing MCC, mixing MCC and a lithium compound, primary firing of the mixture of MCC and lithium compound, and secondary firing of the reaction product obtained by the primary firing.
  • MCC MCC may be a metal composite hydroxide, a metal composite oxide, or a mixture thereof.
  • Metal composite hydroxides and metal composite oxides contain Ni, Co, and X in molar ratios represented by the following formula (A′), for example.
  • the preferred ranges of y, z, and y+z in formula (A′) are the same as the preferred ranges of y, z, and y+z in formula (A) above.
  • Ni:Co:X (1-yz):y:z (A') (In formula (A′), X is selected from the group consisting of Mn, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, Si, S and P. 1 is an element of at least one species and satisfies 0 ⁇ y ⁇ 0.4 and 0 ⁇ z ⁇ 0.5.)
  • a method for producing MCC containing Ni, Co and Al will be described below as an example.
  • a composite metal hydroxide containing Ni, Co and Al is prepared.
  • a metal composite hydroxide can be produced by a batch coprecipitation method or a continuous coprecipitation method.
  • the nickel salt that is the solute of the nickel salt solution is not particularly limited, but at least one of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.
  • At least one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used as the cobalt salt that is the solute of the cobalt salt solution.
  • the aluminum salt that is the solute of the aluminum salt solution for example, at least one of aluminum sulfate, aluminum nitrate, aluminum chloride and aluminum acetate can be used.
  • the nickel salt, cobalt salt, and aluminum salt used to produce the metal composite hydroxide can be combined arbitrarily.
  • the preferred combination is nickel sulphate, cobalt sulphate, aluminum sulphate.
  • the above metal salts are used in proportions corresponding to the composition ratio of Ni (1-yz) CoyAlz (OH) 2 . That is, the amount of each metal salt is such that the molar ratio of Ni, Co and Al in the mixed solution containing the metal salt corresponds to (1-yz):y:z in formula (A'). Defined. Also, water is used as a solvent.
  • complexing agents include those that can form complexes with nickel ions, cobalt ions, and aluminum ions in an aqueous solution.
  • Complexing agents include, for example, ammonium ion donors (such as ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, or ammonium fluoride), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid and uracildiacetic acid, and glycine.
  • a complexing agent may or may not be used in the manufacturing process of the metal composite hydroxide.
  • the amount of the complexing agent contained in the mixture containing the nickel salt solution, cobalt salt solution, aluminum salt solution and complexing agent is, for example, metal salts (nickel salts, cobalt salts and aluminum salts). is greater than 0 and 2.0 or less.
  • the alkali metal hydroxide is added so that the pH of the mixed liquid is from alkaline to neutral. is added to the mixture before the Alkali metal hydroxides are, for example, sodium hydroxide or potassium hydroxide.
  • the pH value in this specification is defined as the value measured when the temperature of the mixed liquid is 40°C. If the temperature of the mixture sampled from the reaction vessel is not 40°C, the pH is measured by heating or cooling the mixture to 40°C.
  • Ni, Co and Al react to form Ni (1-yz) Co y Al z (OH) 2 is produced.
  • the temperature of the reaction vessel is controlled, for example, within the range of 20-80°C, preferably 30-70°C.
  • the pH value of the mixed liquid in the reaction tank is controlled within the range of 9-13, for example.
  • the reaction precipitate formed in the reaction tank is neutralized while stirring.
  • the time for neutralization of the reaction precipitate is, for example, 1-20 hours.
  • the reaction tank used in the continuous coprecipitation method can be a reaction tank of the type that causes the reaction precipitate to overflow.
  • the reaction tank When producing a metal composite hydroxide by a batch coprecipitation method, the reaction tank includes a reaction tank without an overflow pipe and a thickening tank connected to the overflow pipe, and the overflowed reaction precipitate is removed in the thickening tank.
  • Apparatus having a mechanism for concentrating and recirculating to the reaction vessel, etc., may be mentioned.
  • gases for example, inert gases such as nitrogen, argon or carbon dioxide, oxidizing gases such as air or oxygen, or mixed gases thereof may be supplied into the reaction vessel.
  • inert gases such as nitrogen, argon or carbon dioxide
  • oxidizing gases such as air or oxygen, or mixed gases thereof
  • the average particle size of the finally obtained CAM can be controlled. .
  • the isolated reaction precipitate is washed, dehydrated, dried and sieved to obtain a metal composite hydroxide containing Ni, Co and Al.
  • reaction precipitate is preferably washed with an alkaline washing liquid, more preferably washed with an aqueous sodium hydroxide solution.
  • reaction precipitate may be washed with a washing liquid containing elemental sulfur.
  • cleaning liquid containing elemental sulfur include an aqueous K or Na sulfate solution.
  • the metal composite hydroxide is heated to produce the metal composite oxide. Multiple heating steps may be performed if desired.
  • the heating temperature in this specification means the set temperature of the heating device. When a plurality of heating steps are performed, the heating temperature means the temperature of the step heated at the highest temperature among the respective heating steps.
  • the heating temperature is preferably 400-700°C, more preferably 450-680°C.
  • the heating temperature is 400-700° C.
  • the metal composite hydroxide is sufficiently oxidized.
  • the time for holding at the heating temperature is 0.1 to 20 hours, preferably 0.5 to 10 hours.
  • the heating rate to the heating temperature is, for example, 50-400° C./hour.
  • the atmosphere in the heating device may be an oxygen-containing atmosphere.
  • the oxygen-containing atmosphere may be an oxidizing gas (atmosphere, oxygen, etc.) alone, or may be a mixed gas atmosphere of an inert gas (nitrogen, argon, etc.) and an oxidizing gas. and the oxidizing agent may be present.
  • the atmosphere in the heating device is an oxygen-containing atmosphere, the transition metal contained in the metal composite hydroxide is moderately oxidized, making it easier to control the form of the metal composite oxide.
  • the oxidizing gas or oxidizing agent in the oxygen-containing atmosphere should contain sufficient oxygen atoms to oxidize the transition metal.
  • the atmosphere in the heating device is changed by a method such as passing an oxidizing gas into the heating device or bubbling the oxidizing gas into the mixed liquid. can be controlled by
  • a peroxide such as hydrogen peroxide, a peroxide salt such as permanganate, a perchlorate, a hypochlorite, nitric acid, a halogen, ozone, or the like can be used.
  • This step is a step of mixing a lithium compound and MCC to obtain a mixture.
  • the MCC After drying the MCC as necessary, it is mixed with a lithium compound. After drying the MCC, it may be appropriately classified.
  • the lithium compound may be at least one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, lithium chloride and lithium fluoride. .
  • any one of lithium hydroxide, lithium hydroxide hydrate, and lithium carbonate or a mixture thereof is preferable.
  • a mixture is obtained by mixing the lithium compound and MCC in consideration of the composition ratio of the final object. Specifically, the lithium compound and MCC are mixed at a ratio corresponding to the composition ratio of the above compositional formula (A).
  • the amount (molar ratio) of Li to the total amount of 1 of metal atoms contained in MCC is preferably 1.00 or more, more preferably 1.02 or more, and even more preferably 1.05 or more.
  • a fired product is obtained by firing a mixture of a lithium compound and MCC as described later.
  • the mixture of MCC and lithium compound is subjected to primary firing to form a reaction product of MCC and lithium compound.
  • the primary firing means firing at a temperature lower than the firing temperature in the secondary firing described later (when the firing process has a plurality of firing steps, the firing temperature in the firing step performed at the lowest temperature). That is.
  • the primary firing may be performed multiple times.
  • a fluidized-bed firing furnace is used as the firing device for the primary firing.
  • a rotary kiln or a fluidized bed calcining furnace may be used as the fluidized calcining furnace.
  • the material to be fired a mixture of MCC and a lithium compound
  • the first to third average aspect ratios, average enveloping degree and average circularity of the finally produced CAM can be easily controlled within the above ranges.
  • the inner diameter of the rotating cylinder which is the firing furnace, is preferably 50-2000 mm, more preferably 60-1900 mm.
  • the volume of the rotary cylinder is preferably 0.002-100 m 3 , more preferably 0.003-99 m 3 , for example.
  • the rotating speed of the rotating barrel is preferably 0.5-5 rpm, more preferably 0.51-4.9 rpm, More preferably 4.8 rpm.
  • the temperature of the primary firing is preferably 400-700°C, more preferably 410-700°C, even more preferably 420-700°C.
  • the primary firing temperature is 400° C. or higher, the reaction between MCC and the lithium compound is promoted.
  • the primary firing temperature is 700° C. or lower, it is easy to control the first to third average aspect ratios, average degree of envelopment, and average degree of circularity of the finally produced CAM within the above ranges.
  • the firing temperature in this specification means the temperature of the atmosphere in the firing furnace, and is the maximum temperature held in the firing process (hereinafter sometimes referred to as the maximum held temperature).
  • the sintering temperature means the temperature of the highest sintering step among the sintering steps.
  • the above upper limit and lower limit of the firing temperature can be combined arbitrarily.
  • the holding time in the primary firing is preferably 0.01-50 hours.
  • the holding time in the primary firing is 0.01 hour or more, the reaction of the entire mixture of MCC and lithium compound proceeds.
  • the retention time in the primary firing is 50 hours or less, volatilization of lithium ions is less likely to occur, and the cycle retention rate is improved.
  • Air, oxygen, nitrogen, argon, or a mixed gas of these can be selected as the firing atmosphere for the primary firing and the secondary firing described later, depending on the desired composition.
  • the firing atmosphere is an oxygen-containing atmosphere
  • the oxygen concentration in the firing atmosphere is preferably 21-100% by volume, more preferably 25-100% by volume.
  • the reactant obtained by primary firing may be pulverized to the extent that secondary particles that are bound together are separated.
  • the crushing of the reactant includes crushing by a pin mill, a disc mill, etc., for example.
  • Conditions for pulverizing the reactant by the pin mill include, for example, operating the pin mill at a rotational speed of 300 to 20000 rpm.
  • Conditions for pulverizing the reactant by the disc mill include, for example, operating the disc mill at a rotational speed of 12 to 1200 rpm.
  • the pulverized reactant is subjected to secondary firing. Secondary firing is performed using the above-described fluidized bed firing furnace.
  • the inner diameter of the rotating cylinder, which is the firing furnace is preferably 50-2000 mm, more preferably 60-1900 mm.
  • the secondary firing may have multiple firing stages with different firing temperatures. For example, a first firing step and a second firing step of firing at a higher temperature than the first firing step may be performed independently. Furthermore, it may have firing stages with different firing temperatures and firing times.
  • the rotational speed of the rotating shell and the firing temperature is preferably 0.5-5 rpm, more preferably 0.51-4.9 rpm, More preferably 4.8 rpm.
  • the secondary firing temperature at this time is preferably higher than 700.degree. C. and not higher than 750.degree.
  • the secondary firing temperature is higher than 700°C, a CAM having a strong crystal structure can be obtained.
  • the secondary firing temperature is 750° C. or less, the first to third average aspect ratios, average enveloping degree and average circularity of the finally produced CAM can be easily controlled within the above ranges.
  • the rotation speed of the rotating barrel is preferably 0.5-5 rpm, more preferably 0.51-4.9 rpm, and 0.52- More preferably 4.8 rpm.
  • the secondary firing temperature at this time is preferably over 700° C. and 1000° C. or less, and more preferably over 700° C. and 990° C. or less.
  • the secondary firing temperature is higher than 700°C, a CAM having a strong crystal structure can be obtained.
  • the secondary firing temperature is 1000° C. or less, the first to third average aspect ratios, average degree of envelopment, and average degree of circularity of the finally produced CAM are likely to be controlled within the above ranges.
  • volatilization of lithium ions on the surfaces of secondary particles contained in the CAM can be reduced.
  • the retention time in the secondary firing is preferably 1-50 hours.
  • the holding time in the secondary firing is 1 hour or more, crystals are sufficiently developed, and the cycle retention rate is improved.
  • the retention time in the secondary firing is 50 hours or less, volatilization of lithium ions is less likely to occur, and the cycle retention rate is improved.
  • the mixture or reactant of MCC and lithium compound may be fired in the presence of an inert melting agent.
  • the inert melting agent may remain in the fired product, or may be removed after firing by washing with a cleaning liquid as described later.
  • an inert melting agent for example, those described in WO2019/177032A1 can be used.
  • the fired product may be pulverized.
  • the pulverization of the fired product includes, for example, pulverization by a pin mill, a disc mill, or the like.
  • the pin mill is operated so that the number of revolutions is 300 to 20000 rpm.
  • Conditions for pulverizing the reactant by the disc mill include, for example, operating the disc mill at a rotational speed of 12 to 1200 rpm.
  • the fired product (or the crushed fired product) may be washed to remove the remaining unreacted lithium compound and inert melting agent.
  • Pure water or an alkaline cleaning liquid can be used for cleaning.
  • the alkaline cleaning solution include an aqueous solution of one or more anhydrides selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate and ammonium carbonate, and hydrates thereof. can be mentioned.
  • Ammonia water can also be used as the alkaline cleaning liquid.
  • the temperature of the cleaning liquid is preferably 15°C or lower, more preferably 10°C or lower, and even more preferably 8°C or lower.
  • the lower limit of the temperature of the cleaning liquid is 1° C., for example.
  • a method of bringing the cleaning solution and the fired product into contact there is a method in which the fired product is put into each cleaning solution and stirred. Moreover, the method of pouring each washing
  • the cleaning it is preferable to bring the cleaning liquid and the fired product into contact within the appropriate time range.
  • the "appropriate time” in washing refers to a time sufficient to disperse the particles in the fired material while removing any unreacted lithium compound and any inert melting agent remaining on the surface of the fired material. It is preferable to adjust the washing time according to the aggregation state of the baked product. For example, a preliminary experiment may be performed to set an appropriate washing time. Washing times in the range of, for example, 5 minutes to 1 hour are particularly preferred.
  • the ratio of the fired product to the mixture of the cleaning liquid and the fired product (hereinafter sometimes referred to as slurry) is preferably 10-60% by mass, more preferably 20-50% by mass, and 30- More preferably, it is 50% by mass.
  • a proportion of 10-60% by weight of calcined material allows removal of unreacted lithium compounds and any inert fusing agent.
  • the fired product is preferably heat-treated.
  • the heat treatment temperature and method are not particularly limited, but from the viewpoint of preventing a decrease in charge capacity, the temperature is preferably 150° C. or higher, more preferably 175° C. or higher, and even more preferably 200° C. or higher. Although not particularly limited, the temperature is preferably 1000° C. or lower, more preferably 950° C. or lower, from the viewpoint of preventing volatilization of lithium ions and obtaining a CAM having the composition of the present embodiment. The volatilization amount of lithium ions can be controlled by the heat treatment temperature.
  • the upper limit and lower limit of the heat treatment temperature can be combined arbitrarily.
  • the heat treatment temperature is preferably 150-1000°C, more preferably 175-950°C, even more preferably 200-950°C.
  • the holding time in the heat treatment is preferably 1-50 hours.
  • the holding time in the heat treatment is 1 hour or longer, the moisture in the baked product is removed, and a CAM with few impurities can be obtained.
  • the holding time in the heat treatment is 50 hours or less, the lithium ions are less likely to volatilize, and the cycle retention rate improves.
  • the atmosphere during heat treatment includes an oxygen atmosphere, an inert atmosphere, a reduced pressure atmosphere, or a vacuum atmosphere.
  • the CAM can be obtained by crushing, washing, and heat-treating the fired material as necessary under the conditions described above. Moreover, it is good also considering a baked product as CAM.
  • Lithium secondary battery A configuration of a lithium secondary battery suitable for using the CAM of the present embodiment will be described. Also, a positive electrode for a lithium secondary battery (hereinafter sometimes referred to as a positive electrode) suitable for using the CAM of the present embodiment will be described.
  • An example of a lithium secondary battery suitable for using the CAM of the present embodiment has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
  • An example of a lithium secondary battery has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
  • FIG. 1 is a schematic diagram showing an example of a lithium secondary battery.
  • a cylindrical lithium secondary battery 10 is manufactured as follows.
  • An electrode group 4 is formed by laminating a positive electrode 2, a separator 1, and a negative electrode 3 in this order and winding them.
  • the positive electrode 2 has, for example, a positive electrode active material layer containing CAM, and a positive electrode current collector having the positive electrode active material layer formed on one surface.
  • a positive electrode 2 can be manufactured by first preparing a positive electrode mixture containing CAM, a conductive material, and a binder, and supporting the positive electrode mixture on one surface of a positive electrode current collector to form a positive electrode active material layer.
  • Examples of the negative electrode 3 include an electrode in which a negative electrode mixture containing a negative electrode active material (not shown) is supported on a negative electrode current collector, and an electrode composed solely of a negative electrode active material. can be manufactured in
  • the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the electrolyte is arranged between the positive electrode 2 and the negative electrode 3. . Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing member 8, the lithium secondary battery 10 can be manufactured.
  • the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape of the electrode group 4 cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. can be mentioned.
  • a shape defined by IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted.
  • IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500
  • a shape such as a cylindrical shape or a rectangular shape can be mentioned.
  • the lithium secondary battery is not limited to the wound type configuration described above, and may have a layered configuration in which a layered structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • laminated lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode, separator, negative electrode and electrolyte that constitute the lithium secondary battery for example, the configurations, materials and manufacturing methods described in [0113] to [0140] of WO2022/113904A1 can be used.
  • FIG. 2 is a schematic diagram showing an example of the all-solid lithium secondary battery of this embodiment.
  • the all-solid lithium secondary battery 1000 shown in FIG. 2 has a laminate 100 having a positive electrode 110, a negative electrode 120, and a solid electrolyte layer 130, and an outer package 200 that accommodates the laminate 100.
  • the all-solid lithium secondary battery 1000 may have a bipolar structure in which a positive electrode active material and a negative electrode active material are arranged on both sides of a current collector.
  • bipolar structures include structures described in JP-A-2004-95400. The material forming each member will be described later.
  • the positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112 .
  • the positive electrode active material layer 111 contains the above-described CAM and solid electrolyte. Moreover, the positive electrode active material layer 111 may contain a conductive material and a binder.
  • the negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122 .
  • the negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material.
  • the laminate 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122 .
  • all-solid lithium secondary battery 1000 may have a separator between positive electrode 110 and negative electrode 120 .
  • the all-solid lithium secondary battery 1000 further has an insulator (not shown) for insulating the laminate 100 and the exterior body 200 and a sealing body (not shown) for sealing the opening 200 a of the exterior body 200 .
  • a container molded from a highly corrosion-resistant metal material such as aluminum, stainless steel, or nickel-plated steel can be used.
  • a container in which a laminated film having at least one surface subjected to corrosion-resistant processing is processed into a bag shape can also be used.
  • Examples of the shape of the all-solid lithium secondary battery 1000 include coin-shaped, button-shaped, paper-shaped (or sheet-shaped), cylindrical, rectangular, and laminated (pouch-shaped).
  • the all-solid-state lithium secondary battery 1000 is illustrated as having one laminate 100 as an example, but the present embodiment is not limited to this.
  • the all-solid-state lithium secondary battery 1000 may have a configuration in which the laminate 100 is used as a unit cell and a plurality of unit cells (laminate 100 ) are sealed inside the exterior body 200 .
  • the positive electrode having the above configuration has the CAM described above, it is possible to provide a lithium secondary battery with a high cycle retention rate.
  • the lithium secondary battery configured as described above has a high cycle retention rate because it has the positive electrode described above.
  • the present invention includes the following aspects.
  • ⁇ 1> A CAM having a layered structure, wherein the first average aspect ratio of the CAM is 0.760 to 0.998 or less, and the average envelopment of the CAM is 0.983 to 0.990 or less.
  • ⁇ 2> The CAM according to ⁇ 1>, wherein the CAM has an average circularity of 0.915 to 0.998 or less.
  • ⁇ 3> The CAM according to ⁇ 1> or ⁇ 2>, wherein the second average aspect ratio is greater than the first average aspect ratio by 0.003 or more.
  • ⁇ 4> The CAM according to any one of ⁇ 1> to ⁇ 3>, wherein the first average aspect ratio is greater than the third average aspect ratio by 0.004 or more.
  • ⁇ 5> The CAM according to any one of ⁇ 1> to ⁇ 4>, represented by formula (A1). Li[Li x (Ni (1-yz) Co y x z ) 1-x ]O 2 (A1) (In formula A, X is one or more selected from the group consisting of Mn, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, Si, S and P.
  • ⁇ 6> The CAM according to any one of ⁇ 1> to ⁇ 5>, wherein D 100 -D 0 is 10-60 ⁇ m.
  • ⁇ 7> The CAM according to any one of ⁇ 1> to ⁇ 6>, wherein the average circularity is 0.915-0.936.
  • ⁇ 8> A positive electrode for a lithium secondary battery, containing the CAM according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> A lithium secondary battery comprising the positive electrode for a lithium secondary battery according to ⁇ 8>.
  • composition analysis of the CAM produced by the below-described method was performed by the above-described "CAM composition analysis" method.
  • the first to third average aspect ratios, average envelopment, average circularity, average particle diameter and particle size distribution of CAM are measured by the above-described method using a static automatic image analyzer (manufactured by Malvern Panalytical, Morphologi 4). measured by
  • Example 1 After water was put into a reactor equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added and the liquid temperature was maintained at 50°C.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution were mixed so that the molar ratio of Ni, Co, and Al was 0.88:0.09:0.03 to prepare a mixed solution.
  • this mixed solution and an aqueous solution of ammonium sulfate as a complexing agent were continuously added into the reaction tank while stirring.
  • a sodium hydroxide aqueous solution was added dropwise at appropriate times so that the pH of the mixed liquid in the reaction tank became 11.6 (measurement temperature: 40° C.), and a reaction precipitate 1 was obtained.
  • the metal composite hydroxide 1 was held at 650°C in an air atmosphere for 5 hours, heated, and cooled to room temperature to obtain MCC1, which is a metal composite oxide.
  • Lithium hydroxide was weighed so that the amount (molar ratio) of Li to the total amount of Ni, Co and Al contained in MCC1 was 1.10.
  • Mixture 1 was obtained by mixing MCC1 and lithium hydroxide using a mortar.
  • This mixture 1 was put into a rotary kiln (manufactured by Tanabe) having a rotating cylinder with an inner diameter of 300 mm.
  • the rotation speed was 0.67 rpm
  • the temperature in the firing furnace was 690° C.
  • the mixture 1 was heated by holding in an oxygen-containing atmosphere for 2 hours to obtain a reaction product 1 of metal composite oxide 1 and lithium hydroxide.
  • the obtained reactant 1 is crushed under the conditions of 1200 rpm using a disk mill (manufactured by Masuko Sangyo Co., Ltd., MKCA6-2), and then crushed under the conditions of 7000 rpm using a pin mill (impact mill manufactured by Mill System Co., Ltd.). bottom.
  • the pulverized reactant 1 was put into a rotary kiln (manufactured by Tanabe) having a rotating cylinder with an inner diameter of 300 mm.
  • the rotation speed was 0.67 rpm
  • the temperature in the firing furnace was set at 770° C.
  • the reactant 1 was fired in an oxygen-containing atmosphere for 2 hours to obtain a fired product 1 .
  • the fired product 1 obtained was pulverized at 1200 rpm using a disc mill (MKCA6-2, manufactured by Masuko Sangyo Co., Ltd.).
  • a slurry was prepared by mixing the pulverized fired product 1 and pure water adjusted to a liquid temperature of 5°C so that the ratio of the fired product to the total amount was 30% by mass.
  • the prepared slurry was washed with stirring for 20 minutes, dehydrated, heat-treated at 250° C., and dried to remove water remaining after dehydration to obtain CAM-1.
  • Example 2 Mixture 1 obtained by the method described in Example 1 was put into a rotary kiln (manufactured by Noritake TCF Co., Ltd.) having a rotating barrel with an inner diameter of 100 mm. The rotation speed was 1.08 rpm, the temperature in the firing furnace was 680° C., and the mixture 1 was heated by holding it for 2 hours in an oxygen-containing atmosphere to obtain a reaction product 2 .
  • a rotary kiln manufactured by Noritake TCF Co., Ltd.
  • the obtained reactant 2 was pulverized at 1200 rpm using a disk mill (MKCA6-2, manufactured by Masuko Sangyo Co., Ltd.), and then pulverized at 20000 rpm using a pin mill (impact mill, manufactured by Mill System Co., Ltd.).
  • MKCA6-2 manufactured by Masuko Sangyo Co., Ltd.
  • pin mill impact mill, manufactured by Mill System Co., Ltd.
  • the pulverized reactant 2 was put into a rotary kiln (manufactured by Noritake TCF Co., Ltd.) having a rotating cylinder with an inner diameter of 100 mm.
  • the rotation speed was 1.08 rpm
  • the temperature in the firing furnace was set to 720° C.
  • the reactant 2 was fired in an oxygen-containing atmosphere for 2 hours to obtain the fired product 2 .
  • the fired product 2 obtained was pulverized, washed, dehydrated, heat treated and dried by the method described in Example 1 to obtain CAM-2.
  • Mixture 1 was obtained by the method described in Example 1. This mixture 1 is held in a roller hearth kiln (manufactured by Noritake Co., Ltd.) in an oxygen-containing atmosphere at 650 ° C. for 5 hours to bake the mixture 1, and the metal composite oxide 1 reacts with lithium hydroxide. obtained product C1.
  • the obtained reactant C1 was pulverized at 1200 rpm using a disk mill (MKCA6-2, manufactured by Masuko Sangyo Co., Ltd.).
  • the pulverized reactant C1 was fired at 720°C for 6 hours in a roller hearth kiln (manufactured by Noritake Co., Ltd.) to obtain a fired product C1.
  • the obtained fired product C1 was pulverized, washed, dehydrated, heat treated and dried by the method described in Example 1 to obtain CAM-C1.
  • Comparative example 2 A nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution were mixed so that the molar ratio of Ni, Co, and Al was 0.885:0.09:0.025, except that a mixed solution was prepared.
  • a mixture 2 was obtained by the method described in Example 1.
  • CAM-C2 was obtained in the same manner as in Comparative Example 1 except that the obtained mixture 2 was used.
  • the CAMs obtained in Examples 1 and 2 and Comparative Examples 1 and 2 all had a layered structure from the results of XRD.
  • CAM firing conditions of Examples 1 and 2 and Comparative Examples 1 and 2 first average aspect ratio, average enveloping degree, average particle diameter, particle size distribution, second average aspect ratio - first average aspect ratio, first average aspect Table 1 shows the ratio-third average aspect ratio, average circularity, and cycle retention rate of lithium secondary batteries using each CAM.
  • the cycle retention rate of lithium secondary batteries using the above CAM-C1 to CAM-C2 was 87.9% or less.
  • a CAM capable of obtaining a lithium secondary battery with a high cycle retention rate, and a positive electrode for a lithium secondary battery and a lithium secondary battery using the CAM.

Abstract

This positive electrode active material for a lithium secondary battery has a layered structure, and a first average aspect ratio, which is the aspect ratio of the positive electrode active material for a lithium secondary battery, is 0.755-1.000 inclusive, and the average envelopment of the positive electrode active material for a lithium secondary battery is 0.983-1.000 inclusive.

Description

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
 本発明は、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池に関する。
 本願は、2021年12月8日に日本に出願された特願2021-199651号について優先権を主張し、その内容をここに援用する。
The present invention relates to a positive electrode active material for lithium secondary batteries, a positive electrode for lithium secondary batteries, and a lithium secondary battery.
This application claims priority to Japanese Patent Application No. 2021-199651 filed in Japan on December 8, 2021, the contents of which are incorporated herein.
 リチウム二次電池用正極活物質は、複数の一次粒子が凝集した二次粒子の集合体である。リチウム二次電池の充放電時、リチウム二次電池用正極活物質の表面からリチウムイオンの脱離反応及び挿入反応が生じる。従って、リチウム二次電池用正極活物質の表面の形状は、リチウム二次電池の性能に影響を与える。 The positive electrode active material for lithium secondary batteries is an aggregate of secondary particles in which multiple primary particles are aggregated. During charging and discharging of a lithium secondary battery, desorption reaction and insertion reaction of lithium ions occur from the surface of the positive electrode active material for lithium secondary batteries. Therefore, the shape of the surface of the positive electrode active material for lithium secondary batteries affects the performance of the lithium secondary battery.
 例えば、特許文献1は、リチウム二次電池用正極活物質の二次粒子形状を制御することにより、非水電解質(電解液)に対する濡れ性を改善し、高い放電負荷特性を達成することを開示している。具体的には、二次粒子の二次元の像の面積に対する、二次元の像の凸部の頂点を結ぶ最短包絡線で囲まれた領域の面積である形状係数の平均値が1を超え、2未満とすることを開示している。 For example, Patent Document 1 discloses that by controlling the shape of the secondary particles of the positive electrode active material for lithium secondary batteries, the wettability with respect to the non-aqueous electrolyte (electrolytic solution) is improved, and high discharge load characteristics are achieved. are doing. Specifically, the average value of the shape factor, which is the area of the region surrounded by the shortest envelope connecting the vertexes of the convex portions of the two-dimensional image with respect to the area of the two-dimensional image of the secondary particle, exceeds 1, It is disclosed to be less than 2.
JP-A-2004-362781JP-A-2004-362781
 リチウム二次電池用正極活物質の二次粒子の形状を別の側面から制御することで、リチウム二次電池の性能をさらに改善する余地がある。 There is room for further improving the performance of lithium secondary batteries by controlling the shape of the secondary particles of the positive electrode active material for lithium secondary batteries from another aspect.
 本発明は上記事情に鑑みてなされたものであって、二次粒子の形状を制御することにより、リチウム二次電池用正極活物質の安定性を向上させ、サイクル維持率の高いリチウム二次電池を得ることができるリチウム二次電池用正極活物質、及びこれを用いたリチウム二次電池用正極及びリチウム二次電池を提供することを目的とする。 The present invention has been made in view of the above circumstances, and by controlling the shape of the secondary particles, the stability of the positive electrode active material for lithium secondary batteries is improved, and the cycle maintenance rate is high. It is an object of the present invention to provide a positive electrode active material for a lithium secondary battery that can obtain a
 本発明は、以下の態様を有する。
[1]層状構造を有するリチウム二次電池用正極活物質であって、前記リチウム二次電池用正極活物質の平均アスペクト比である第1平均アスペクト比が0.755以上1.000以下であり、前記リチウム二次電池用正極活物質の平均包絡度が0.983以上1.000以下である、リチウム二次電池用正極活物質。
[2]前記リチウム二次電池用正極活物質の平均円形度が0.910以上1.000以下である、[1]に記載のリチウム二次電池用正極活物質。
[3]前記第1平均アスペクト比が0.755以上0.999以下である、[1]又は[2]に記載のリチウム二次電池用正極活物質。
[4]前記リチウム二次電池用正極活物質の平均粒子径より小さい粒子径をもつ粒子のアスペクト比である第2平均アスペクト比が、前記第1平均アスペクト比よりも0.003以上大きい、[1]~[3]の何れか1つに記載のリチウム二次電池用正極活物質。
[5]前記第1平均アスペクト比が、前記リチウム二次電池用正極活物質の平均粒子径以上の粒子径をもつ粒子のアスペクト比である第3平均アスペクト比よりも0.004以上大きい、[1]~[4]の何れか1つに記載のリチウム二次電池用正極活物質。
[6]式(A)で表される、[1]~[5]の何れか1つに記載のリチウム二次電池用正極活物質。
 Li[Li(Ni(1-y-z)Co1-x]O  ・・・(A)
(式A中、Xは、Mn、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、B、Si、S及びPからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0≦y≦0.4、及び0≦z≦0.5を満たす。)
[7]前記リチウム二次電池用正極活物質のD100-Dが10μm以上60μm以下であり、前記D100が前記リチウム二次電池用正極活物質のうち最も大きい粒子の粒子径であり、前記Dが前記リチウム二次電池用正極活物質のうち最も小さい粒子の粒子径である、[1]~[6]の何れか1つに記載のリチウム二次電池用正極活物質。
[8][1]~[7]の何れか1つに記載のリチウム二次電池用正極活物質を含有するリチウム二次電池用正極。
[9][8]に記載のリチウム二次電池用正極を有するリチウム二次電池。
The present invention has the following aspects.
[1] A positive electrode active material for a lithium secondary battery having a layered structure, wherein a first average aspect ratio, which is an average aspect ratio of the positive electrode active material for a lithium secondary battery, is 0.755 or more and 1.000 or less. A positive electrode active material for a lithium secondary battery, wherein the positive electrode active material for a lithium secondary battery has an average enveloping degree of 0.983 or more and 1.000 or less.
[2] The positive electrode active material for lithium secondary batteries according to [1], wherein the positive electrode active material for lithium secondary batteries has an average circularity of 0.910 or more and 1.000 or less.
[3] The positive electrode active material for lithium secondary batteries according to [1] or [2], wherein the first average aspect ratio is 0.755 or more and 0.999 or less.
[4] A second average aspect ratio, which is an aspect ratio of particles having a particle diameter smaller than the average particle diameter of the positive electrode active material for a lithium secondary battery, is greater than the first average aspect ratio by 0.003 or more, [ 1] to [3], the positive electrode active material for lithium secondary batteries.
[5] The first average aspect ratio is 0.004 or more larger than the third average aspect ratio, which is the aspect ratio of particles having a particle diameter equal to or larger than the average particle diameter of the positive electrode active material for a lithium secondary battery, [ 1] to [4], the positive electrode active material for lithium secondary batteries.
[6] The positive electrode active material for a lithium secondary battery according to any one of [1] to [5], represented by formula (A).
Li[Li x (Ni (1-yz) Co y x z ) 1-x ]O 2 (A)
(In formula A, X is one or more selected from the group consisting of Mn, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, Si, S and P. is an element and satisfies -0.1 ≤ x ≤ 0.2, 0 ≤ y ≤ 0.4, and 0 ≤ z ≤ 0.5.)
[7] D 100 −D 0 of the positive electrode active material for lithium secondary batteries is 10 μm or more and 60 μm or less, and the D 100 is the particle diameter of the largest particle among the positive electrode active materials for lithium secondary batteries, The positive electrode active material for a lithium secondary battery according to any one of [1] to [6], wherein the D 0 is the particle diameter of the smallest particles in the positive electrode active material for a lithium secondary battery.
[8] A positive electrode for lithium secondary batteries containing the positive electrode active material for lithium secondary batteries according to any one of [1] to [7].
[9] A lithium secondary battery having the positive electrode for a lithium secondary battery according to [8].
 本発明によれば、サイクル維持率の高いリチウム二次電池を得ることができるリチウム二次電池用正極活物質、及びこれを用いたリチウム二次電池用正極及びリチウム二次電池を提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide a positive electrode active material for a lithium secondary battery that can obtain a lithium secondary battery having a high cycle retention rate, and a positive electrode for a lithium secondary battery and a lithium secondary battery using the same. can.
リチウム二次電池の一例を示す概略構成図である。1 is a schematic configuration diagram showing an example of a lithium secondary battery; FIG. 本実施形態の全固体リチウム二次電池の全体構成を示す模式図である。1 is a schematic diagram showing the overall configuration of an all-solid lithium secondary battery of the present embodiment; FIG.
 以下、本発明の一態様におけるリチウム二次電池用正極活物質について説明する。以下の複数の実施形態では、好ましい例や条件を共有してもよい。また、本明細書において、各用語を以下に定義する。 A positive electrode active material for a lithium secondary battery according to one embodiment of the present invention will be described below. Preferred examples and conditions may be shared among the following embodiments. Moreover, in this specification, each term is defined below.
 本願明細書において、金属複合化合物(Metal Composite Compound)を以下「MCC」と称し、リチウム二次電池用正極活物質(Cathode Active Material for lithium secondary batteries)を以下「CAM」と称する。 In the specification of the present application, a metal composite compound is hereinafter referred to as "MCC", and a cathode active material for lithium secondary batteries is hereinafter referred to as "CAM".
 「Ni」とは、ニッケル金属ではなく、ニッケル原子を指す。「Co」及び「Li」等も同様に、それぞれコバルト原子及びリチウム原子等を指す。 "Ni" refers to nickel atoms, not nickel metal. “Co” and “Li” and the like similarly refer to cobalt atoms and lithium atoms and the like, respectively.
 数値範囲を例えば「1-10μm」又は「1~10μm」と記載した場合、1μmから10μmまでの範囲を意味し、下限値である1μmと上限値である10μmを含む数値範囲を意味する。 When the numerical range is described as, for example, "1-10 μm" or "1-10 μm", it means the range from 1 μm to 10 μm, including the lower limit of 1 μm and the upper limit of 10 μm.
 「CAMの組成分析」は、以下の方法で実施される。例えば、CAMを塩酸に溶解させた後、誘導結合プラズマ発光分析装置(例えば、エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行うことができる。 "CAM composition analysis" is performed by the following method. For example, after dissolving CAM in hydrochloric acid, an inductively coupled plasma emission spectrometer (for example, SII Nanotechnology Co., Ltd., SPS3000) can be used.
 「サイクル維持率」とは、特定の条件下でリチウム二次電池の充放電を所定の回数繰り返すサイクル試験を行った後の、リチウム二次電池の初期放電容量に対する、充放電を繰り返した後のリチウム二次電池の放電容量の割合を意味する。 "Cycle retention rate" refers to the initial discharge capacity of a lithium secondary battery after performing a cycle test that repeats charging and discharging a predetermined number of times under specific conditions. It means the percentage of discharge capacity of a lithium secondary battery.
 本明細書において「サイクル維持率」は、下記<リチウム二次電池用正極の作製>及び<リチウム二次電池(コイン型ハーフセル)の作製>に記載の方法で作成されたリチウム二次電池を用いて、以下に示す条件で充放電サイクルを50回繰り返す試験を行って測定した値をサイクル維持率とする。 In the present specification, "cycle retention rate" refers to a lithium secondary battery produced by the method described in <Preparation of positive electrode for lithium secondary battery> and <Preparation of lithium secondary battery (coin-type half cell)> below. Then, the value measured by repeating the charging/discharging cycle 50 times under the following conditions is defined as the cycle retention rate.
試験温度:25℃
  充電最大電圧4.3V、充電電流0.5CA、定電流定電圧充電
  放電最小電圧2.5V、放電電流1CA、定電流放電
Test temperature: 25°C
Maximum charge voltage 4.3V, charge current 0.5CA, constant current constant voltage charge Minimum discharge voltage 2.5V, discharge current 1CA, constant current discharge
 1サイクル目の放電容量を初期放電容量とし、50サイクル目の放電容量を初期放電容量で割った値を算出し、この値をサイクル維持率(%)とする。 The discharge capacity at the 1st cycle is defined as the initial discharge capacity, and the value obtained by dividing the discharge capacity at the 50th cycle by the initial discharge capacity is calculated, and this value is defined as the cycle retention rate (%).
<リチウム二次電池用正極の作製>
 CAMと導電材(アセチレンブラック)とバインダー(PVdF)とを、CAM:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製する。正極合剤の調製時には、NMPを有機溶媒として用いる。
<Preparation of positive electrode for lithium secondary battery>
CAM, a conductive material (acetylene black), and a binder (PVdF) were added and kneaded so as to have a composition of CAM: conductive material: binder = 92:5:3 (mass ratio), thereby producing a pasty positive electrode mixture. Prepare the agent. NMP is used as an organic solvent when preparing the positive electrode mixture.
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得る。このリチウム二次電池用正極の電極面積は1.65cmとする。 The obtained positive electrode mixture is applied to an Al foil having a thickness of 40 μm as a current collector and vacuum-dried at 150° C. for 8 hours to obtain a positive electrode for a lithium secondary battery. The electrode area of this positive electrode for a lithium secondary battery is 1.65 cm 2 .
<リチウム二次電池(コイン型ハーフセル)の作製>
 以下の操作を、アルゴン雰囲気のグローブボックス内で行う。
 <リチウム二次電池用正極の作製>で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層した厚さが16μmの積層体)を置く。ここに電解液を300μl注入する。電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの16:10:74(体積比)混合液に、LiPF6を1.3mol/Lとなるように溶解し、混合液の総体積に対し炭酸ビニレンを1.0体積%溶解させたものを用いる。
 次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032)を作製する。
<Production of lithium secondary battery (coin-type half cell)>
The following operations are performed in an argon atmosphere glove box.
<Preparation of positive electrode for lithium secondary battery> Place the positive electrode for lithium secondary battery prepared in the part for coin battery R2032 (manufactured by Hosen Co., Ltd.) with the aluminum foil side facing down on the lower cover. A laminated film separator (16 μm-thick laminated body obtained by laminating a heat-resistant porous layer on a polyethylene porous film) is placed thereon. 300 μl of electrolytic solution is injected here. The electrolytic solution was prepared by dissolving LiPF 6 in a mixed solution of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate (16:10:74 (volume ratio) of 16:10:74 (volume ratio) so as to be 1.3 mol/L. A solution in which 1.0% by volume of vinylene is dissolved is used.
Next, metallic lithium is used as the negative electrode, the negative electrode is placed on the upper side of the laminated film separator, the upper lid is placed via a gasket, and the lid is crimped with a crimping machine to produce a lithium secondary battery (coin type half cell R2032).
<リチウム二次電池用正極活物質>
 本実施形態のCAMは、層状構造を有し、CAMの平均アスペクト比である第1平均アスペクト比が0.755以上1.000以下であり、平均包絡度が0.983以上1.000以下である。
<Positive electrode active material for lithium secondary battery>
The CAM of the present embodiment has a layered structure, a first average aspect ratio that is the average aspect ratio of the CAM is 0.755 or more and 1.000 or less, and an average envelopment degree is 0.983 or more and 1.000 or less. be.
 本実施形態におけるCAMは、複数の粒子の集合体である。言い換えれば、CAMは、粉末状である。CAMは、二次粒子のみを含んでいてもよく、一次粒子と二次粒子の混合物であってもよい。このとき、一次粒子の数は、CAMに含まれる粒子の総数に対して0~10%であってよい。 The CAM in this embodiment is an aggregate of multiple particles. In other words, CAM is in powder form. The CAM may contain only secondary particles or may be a mixture of primary and secondary particles. At this time, the number of primary particles may be 0-10% of the total number of particles contained in the CAM.
 「一次粒子」とは、走査型電子顕微鏡などを用いて5000倍以上20000倍以下の視野にて観察した際に、外観上に粒界が存在しない粒子を意味する。 "Primary particles" means particles that do not have grain boundaries in appearance when observed with a scanning electron microscope or the like in a field of view of 5000 times or more and 20000 times or less.
 「二次粒子」とは、前記一次粒子が凝集している粒子である。即ち、二次粒子は、一次粒子の凝集体である。 "Secondary particles" are particles in which the primary particles are agglomerated. That is, secondary particles are aggregates of primary particles.
 CAMのアスペクト比とは、CAMの平面画像において測定される長軸に対する短軸の比である。ここで、長軸とは、CAMの粒子の最大径を指し、短軸とは、長軸に直交する径の内、最大径を指す。アスペクト比が小さいほど、CAMは扁平な形状であり、アスペクト比が1に近づくほどCAMの形状は真球に近くなると判断できる。CAMの平均アスペクト比は、200個以上、好ましくは200個のCAMのアスペクト比を測定し、平均値を算出した値である。以降、CAMの平均アスペクト比を「第1平均アスペクト比」と記載することがある。 The CAM aspect ratio is the ratio of the short axis to the long axis measured in the CAM planar image. Here, the major axis refers to the maximum diameter of CAM particles, and the minor axis refers to the maximum diameter among diameters orthogonal to the major axis. It can be determined that the smaller the aspect ratio, the flatter the CAM, and the closer the aspect ratio to 1, the closer the shape of the CAM to a true sphere. The average aspect ratio of the CAM is a value obtained by measuring the aspect ratios of 200 or more, preferably 200, CAMs and calculating the average value. Henceforth, the average aspect-ratio of CAM may be described as "1st average aspect-ratio."
 CAMの包絡度とは、CAMの平面画像において測定される周囲長に対する包絡線長の比である。ここで、周囲長とは、CAMの粒子の形状の外周の長さを指し、包絡線長とは、CAMの粒子の外周の全ての凸部に接する閉曲線の内、凸部との接点同士を結ぶ全ての線が直線である閉曲線の長さを指す。包絡度が小さいほどCAMは凹凸量の大きい形状であり、包絡度が1に近づくほどCAMの頂点間の凹凸量が少ない形状である。CAMの平均包絡度は、200個以上、好ましくは200個のCAMの包絡度を測定及び算出し、平均値を算出した値である。 The CAM envelope is the ratio of the envelope length to the perimeter measured in the CAM planar image. Here, the perimeter length refers to the length of the outer periphery of the shape of the CAM particle, and the envelope length refers to the distance between the points of contact with the protrusions in the closed curve that touches all the protrusions on the outer periphery of the CAM particle. Refers to the length of a closed curve for which all connecting lines are straight. The smaller the enveloping degree, the larger the amount of unevenness of the CAM. The average envelope of CAM is a value obtained by measuring and calculating the envelope of 200 or more, preferably 200, CAMs and calculating the average value.
 CAMの円形度は、CAMの平面画像において測定される4π×(面積)/(周囲長)で表される値である。円形度が小さいほど、CAMは扁平な形状であり、円形度が1に近づくほどCAMの二次粒子は真球に近くなる。CAMの平均円形度は、200個以上、好ましくは200個のCAMの円形度を測定及び算出し、平均値を算出した値である。 The circularity of CAM is a value represented by 4π×(area)/(perimeter) 2 measured in a plane image of CAM. The smaller the circularity, the flatter the CAM. As the circularity approaches 1, the secondary particles of the CAM become more spherical. The average circularity of CAM is a value obtained by measuring and calculating the circularity of 200 or more, preferably 200 CAMs, and calculating the average value.
 CAMの粒子径は、CAMの平面画像において撮像された粒子の面積と同じ面積を持つ円の直径で表される値である。CAMの平均粒子径は、200個以上、好ましくは200個のCAMの粒子径を測定及び算出し、平均値を算出した値である。 The CAM particle diameter is the value represented by the diameter of a circle having the same area as the area of the particles captured in the CAM planar image. The average particle size of CAM is a value obtained by measuring and calculating the particle size of 200 or more, preferably 200, CAMs and calculating the average value.
 CAMの第1平均アスペクト比、平均包絡度、平均円形度及び平均粒子径、並びにCAM中の粒子の平均アスペクト比(後述の第2平均アスペクト比及び第3平均アスペクト比)は、静的自動画像分析装置(例えば、マルバーン・パナリティカル社製、モフォロギ4)により測定することができる。 The first average aspect ratio, average envelopment, average circularity and average particle size of the CAM, as well as the average aspect ratios of the particles in the CAM (second average aspect ratio and third average aspect ratio, described below) are calculated from static automated images. It can be measured with an analyzer (for example, Morphologi 4 manufactured by Malvern Panalytical).
 具体的には、以下の方法により測定することができる。200個以上、好ましくは200個のCAMの粒子を上記分析装置の供給部に導入し、プレパラートに吹き付けて固定する。固定した粒子を光学顕微鏡により観察し、画像を取得する。取得した画像を解析し、CAMの第1平均アスペクト比、平均包絡度、平均円形度、及び平均粒子径、並びに後述の第2平均アスペクト比及び第3平均アスペクト比を算出する。 Specifically, it can be measured by the following method. At least 200, preferably 200, particles of CAM are introduced into the feed section of the analyzer and fixed by spraying onto the preparation. Observe the fixed particles with an optical microscope and acquire an image. The obtained image is analyzed to calculate the first average aspect ratio, average degree of envelopment, average degree of circularity, and average particle size of the CAM, as well as the second average aspect ratio and third average aspect ratio, which will be described later.
 本実施形態のCAMの第1平均アスペクト比は、0.755-1.000であり、0.755-0.999であることが好ましく、0.760-0.998であることがより好ましい。第1平均アスペクト比が上述の範囲であると、CAM中の二次粒子が球に近い形状であるといえる。また、第1平均アスペクト比が上述の範囲であると、CAM中の複数の粒子が球に近い形状であるといえる。その結果、CAMの充填密度を高めることができ、リチウム二次電池のサイクル維持率が向上する。また、電解液との接触が良好となる。 The first average aspect ratio of the CAM of the present embodiment is 0.755-1.000, preferably 0.755-0.999, more preferably 0.760-0.998. When the first average aspect ratio is within the above range, it can be said that the secondary particles in the CAM have a nearly spherical shape. Further, when the first average aspect ratio is within the above range, it can be said that the plurality of particles in the CAM has a shape close to a sphere. As a result, the packing density of the CAM can be increased, and the cycle retention rate of the lithium secondary battery is improved. Moreover, the contact with the electrolytic solution is improved.
 CAMの平均粒子径より小さい粒子径をもつ粒子の平均アスペクト比が、第1平均アスペクト比よりも0.003以上大きいことが好ましく、0.004以上大きいことがより好ましく、0.005以上大きいことがさらに好ましい。以降、CAMの平均粒子径より小さい粒子径をもつ粒子の平均アスペクト比を、「第2平均アスペクト比」と記載することがある。第2平均アスペクト比が、第1平均アスペクト比よりも0.003以上大きいと、CAMの平均粒子径より小さい粒子径をもつ粒子がより真球に近い形状であるといえる。その結果、CAMの充填密度を挙げることができ、リチウム二次電池のサイクル維持率がより向上する。また、第2平均アスペクト比と第1平均アスペクト比との差は、0.05以下であることが好ましく、0.03以下であることがより好ましく、0.02以下であることがさらに好ましい。第2平均アスペクト比と第1平均アスペクト比との差の上限値と下限値は、任意に組み合わせることができる。組み合わせとしては、例えば、第2平均アスペクト比と第1平均アスペクト比との差が0.003~0.05であることが好ましく、0.003~0.03であることがより好ましく、0.003~0.02であることがさらに好ましい。 The average aspect ratio of particles having a particle size smaller than the average particle size of CAM is preferably 0.003 or more, more preferably 0.004 or more, and 0.005 or more than the first average aspect ratio. is more preferred. Hereinafter, the average aspect ratio of particles having a particle size smaller than the average particle size of CAM may be referred to as "second average aspect ratio". When the second average aspect ratio is 0.003 or more larger than the first average aspect ratio, it can be said that the particles having a particle size smaller than the average particle size of the CAM have a shape closer to a perfect sphere. As a result, the packing density of the CAM can be increased, and the cycle retention rate of the lithium secondary battery is further improved. Also, the difference between the second average aspect ratio and the first average aspect ratio is preferably 0.05 or less, more preferably 0.03 or less, and even more preferably 0.02 or less. The upper limit and lower limit of the difference between the second average aspect ratio and the first average aspect ratio can be combined arbitrarily. As a combination, for example, the difference between the second average aspect ratio and the first average aspect ratio is preferably 0.003 to 0.05, more preferably 0.003 to 0.03, and more preferably 0.003 to 0.03. 003 to 0.02 is more preferable.
 第1平均アスペクト比が、CAMの平均粒子径以上の粒子径をもつ粒子の平均アスペクト比よりも0.004以上大きいことが好ましく、0.005以上大きいことがより好ましく、0.006以上大きいことがさらに好ましい。以降、CAMの平均粒子径以上の粒子径をもつ粒子の平均アスペクト比を、「第3平均アスペクト比」と記載することがある。第1平均アスペクト比が、第3平均アスペクト比よりも0.004以上大きいと、CAMの平均粒子径以上の粒子径をもつ粒子が比較的扁平した形状であるといえる。扁平した形状である粒子同士の間を、より球形に近く粒子径の小さい粒子により埋めることができ、CAMの充填密度を挙げることができる。その結果、リチウム二次電池のサイクル維持率がより向上する。第1平均アスペクト比と第3平均アスペクト比との差は、0.09以下であることが好ましく、0.05以下であることがより好ましく、0.02以下であることがさらに好ましい。第1平均アスペクト比と第3平均アスペクト比との差の上限値と下限値は、任意に組み合わせることができる。組み合わせとしては、例えば、第1平均アスペクト比と第3平均アスペクト比との差が0.004~0.09であることが好ましく、0.004~0.05であることがより好ましく、0.004~0.02であることがさらに好ましい。 The first average aspect ratio is preferably 0.004 or more, more preferably 0.005 or more, and 0.006 or more than the average aspect ratio of the particles having a particle diameter equal to or greater than the average particle diameter of the CAM. is more preferred. Hereinafter, the average aspect ratio of particles having a particle diameter equal to or larger than the average particle diameter of CAM may be referred to as "third average aspect ratio". When the first average aspect ratio is greater than the third average aspect ratio by 0.004 or more, it can be said that particles having a particle size equal to or larger than the average particle size of CAM have a relatively flat shape. The space between the flattened particles can be filled with particles that are closer to a spherical shape and have a smaller particle diameter, and the packing density of the CAM can be increased. As a result, the cycle retention rate of the lithium secondary battery is further improved. The difference between the first average aspect ratio and the third average aspect ratio is preferably 0.09 or less, more preferably 0.05 or less, and even more preferably 0.02 or less. The upper limit and lower limit of the difference between the first average aspect ratio and the third average aspect ratio can be combined arbitrarily. As a combination, for example, the difference between the first average aspect ratio and the third average aspect ratio is preferably 0.004 to 0.09, more preferably 0.004 to 0.05, and more preferably 0.004 to 0.05. 004 to 0.02 is more preferable.
 CAMの平均粒子径は、4-16μmであることが好ましく、4.5-15μmであることがより好ましく、5-14μmであることがさらに好ましい。CAMの平均粒子径が上述の範囲であると、サイクル維持率がより向上する。 The average particle size of CAM is preferably 4-16 μm, more preferably 4.5-15 μm, even more preferably 5-14 μm. When the average particle size of CAM is within the above range, the cycle retention rate is further improved.
 CAMの平均包絡度は、0.983-1.000であり、0.983-0.998であることが好ましく、0.983-0.995であることがより好ましく、0.983-0.990であることがさらに好ましい。平均包絡度が上述の範囲であると、CAM中の二次粒子はその頂点間の凹凸量の小さい形状であるといえる。また、平均包絡度が上述の範囲であると、CAM中の複数の粒子が球に近い形状であるといえる。その結果、リチウム二次電池のサイクル維持率が向上する。 The average envelope of CAM is 0.983-1.000, preferably 0.983-0.998, more preferably 0.983-0.995, and 0.983-0. 990 is more preferred. When the average envelopment is within the above range, it can be said that the secondary particles in the CAM have a shape with a small amount of unevenness between the vertexes. Further, when the average envelopment is within the above range, it can be said that the plurality of particles in the CAM has a shape close to a sphere. As a result, the cycle retention rate of the lithium secondary battery is improved.
 CAMの平均円形度は、0.910-1.000であり、0.915-0.980であることが好ましく、0.920-0.950であることがより好ましく、0.920-0.936であることがさらに好ましい。平均円形度が上述の範囲であると、CAM中の二次粒子が球に近い形状であるといえる。また、平均円形度が上述の範囲であると、CAM中の複数の粒子が球に近い形状であるといえる。その結果、CAMの充填密度を挙げることができ、リチウム二次電池のサイクル維持率がより向上する。 The average circularity of CAM is 0.910-1.000, preferably 0.915-0.980, more preferably 0.920-0.950, and 0.920-0. 936 is more preferred. When the average circularity is within the above range, it can be said that the secondary particles in the CAM have a shape close to a sphere. Further, when the average circularity is within the above range, it can be said that the plurality of particles in the CAM has a shape close to a sphere. As a result, the packing density of the CAM can be increased, and the cycle retention rate of the lithium secondary battery is further improved.
 本実施形態のCAMは、粒度分布にある程度の幅があることが好ましい。CAMの粒度分布に幅があると、CAMを層状に形成した場合において粒子径の大きい二次粒子間を粒子径の小さい二次粒子が埋めることができ、CAMの充填密度を挙げることができる。その結果、リチウム二次電池のサイクル維持率がより向上する。 The CAM of the present embodiment preferably has a certain width in particle size distribution. If the particle size distribution of the CAM has a wide range, secondary particles with a smaller particle size can be filled between the secondary particles with a larger particle size when the CAM is formed in layers, and the packing density of the CAM can be increased. As a result, the cycle retention rate of the lithium secondary battery is further improved.
 粒度分布の幅は、例えば(D100-D)により表される。D100-Dは、10-60μmであることが好ましく、30-58μmであることがより好ましく、45-55μmであることがさらに好ましい。CAMの粒度分布は、上述の静的自動画像分析装置により測定することができる。具体的には、静的自動画像分析装置(例えば、マルバーン・パナリティカル社製、モフォロギ4)を用い、取得した画像の解析により算出することができる。D100は、CAMのうち最も大きい粒子の粒子径を意味し、Dは、CAMのうち測定アーティファクトを除いた最も小さい粒子の粒子径を意味する。より具体的には、D100は、取得した画像において撮像された最も大きい粒子の面積と同じ面積を持つ円の直径で表される値であり、Dは、取得した画像において撮像された最も小さい粒子の面積と同じ面積を持つ円の直径で表される値である。 The width of the particle size distribution is represented by (D 100 -D 0 ), for example. D 100 -D 0 is preferably 10-60 μm, more preferably 30-58 μm, even more preferably 45-55 μm. The particle size distribution of CAM can be measured by the static automatic image analyzer described above. Specifically, it can be calculated by analyzing an acquired image using a static automatic image analyzer (for example, Morphologi 4 manufactured by Malvern Panalytical). D 100 means the particle size of the largest particle in CAM, and D 0 means the particle size of the smallest particle in CAM excluding measurement artifacts. More specifically, D 100 is the value represented by the diameter of a circle having the same area as the area of the largest particle imaged in the acquired image, and D 0 is the diameter of the largest particle imaged in the acquired image. It is a value expressed by the diameter of a circle having the same area as the area of a small particle.
 CAMは、LiとNiとを含むことが好ましく、式(A)で表されることが好ましい。
 Li[Li(Ni(1-y-z)Co1-x]O  ・・・(A)
(式(A)中、Xは、Mn、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、B、Si、S及びPからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0≦y≦0.4、及び0≦z≦0.5を満たす。)
CAM preferably contains Li and Ni, and is preferably represented by formula (A).
Li[Li x (Ni (1-yz) Co y x z ) 1-x ]O 2 (A)
(In formula (A), X is one selected from the group consisting of Mn, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, Si, S and P are the above elements and satisfy -0.1 ≤ x ≤ 0.2, 0 ≤ y ≤ 0.4, and 0 ≤ z ≤ 0.5.)
 サイクル維持率が高いリチウム二次電池を得る観点から、xは、-0.05以上であることが好ましく、0を超えることがより好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、xは、0.15以下であることが好ましく、0.10以下であることがより好ましい。ここで、初回クーロン効率とは、二次電池を所定の条件で初めて充電し、次いで放電した場合の、充電容量に対する放電容量の比である。 From the viewpoint of obtaining a lithium secondary battery with a high cycle retention rate, x is preferably -0.05 or more, more preferably greater than 0. From the viewpoint of obtaining a lithium secondary battery with a higher initial coulombic efficiency, x is preferably 0.15 or less, more preferably 0.10 or less. Here, the initial coulombic efficiency is the ratio of the discharge capacity to the charge capacity when the secondary battery is charged for the first time under predetermined conditions and then discharged.
 xの上限値と下限値は、任意に組み合わせることができる。組み合わせとしては、例えば、xが、-0.05~0.15、0を超え0.10以下等であることが挙げられる。 The upper and lower limits of x can be arbitrarily combined. Combinations include, for example, x being -0.05 to 0.15, more than 0 and not more than 0.10, and the like.
 電池の内部抵抗が低いリチウム二次電池を得る観点から、yは、0を超えることが好ましく、0.005以上であることがより好ましく、0.05以上であることがさら好ましい。yは、0.35以下であることが好ましく、0.33以下であることがより好ましく、0.30以下であることがさらに好ましい。 From the viewpoint of obtaining a lithium secondary battery with low battery internal resistance, y preferably exceeds 0, more preferably 0.005 or more, and even more preferably 0.05 or more. y is preferably 0.35 or less, more preferably 0.33 or less, and even more preferably 0.30 or less.
 yの上限値と下限値は、任意に組み合わせることができる。組み合わせとしては、例えば、yが、0を超え0.35以下、0.005~0.35、0.05~0.33、0.05~0.30等であることが挙げられる。 The upper limit and lower limit of y can be combined arbitrarily. Combinations include, for example, y being more than 0 and not more than 0.35, 0.005 to 0.35, 0.05 to 0.33, 0.05 to 0.30, and the like.
 サイクル維持率が高いリチウム二次電池を得る観点から、zは、0.01以上であることが好ましく、0.02以上であることがより好ましい。また、zは、0.45以下であることが好ましく、0.40以下であることがより好ましく、0.35以下であることがさらに好ましい。 From the viewpoint of obtaining a lithium secondary battery with a high cycle retention rate, z is preferably 0.01 or more, more preferably 0.02 or more. Also, z is preferably 0.45 or less, more preferably 0.40 or less, and even more preferably 0.35 or less.
 zの上限値と下限値は、任意に組み合わせることができる。zは、0.01~0.45であることが好ましく、0.02~0.40であることがより好ましく、0.02~0.35であることがさらに好ましい。 The upper limit and lower limit of z can be combined arbitrarily. z is preferably 0.01 to 0.45, more preferably 0.02 to 0.40, even more preferably 0.02 to 0.35.
 サイクル維持率が高いリチウム二次電池を得る観点から、y+zは、0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。熱的安定性が高いリチウム二次電池を得る観点から、y+zは、0.9以下であることが好ましく、0.75以下であることがより好ましく、0.7以下であることがさらに好ましく、0.3以下が特に好ましい。 From the viewpoint of obtaining a lithium secondary battery with a high cycle retention rate, y+z preferably exceeds 0, more preferably 0.01 or more, and even more preferably 0.02 or more. From the viewpoint of obtaining a lithium secondary battery with high thermal stability, y+z is preferably 0.9 or less, more preferably 0.75 or less, even more preferably 0.7 or less, 0.3 or less is particularly preferred.
 y+zの上限値と下限値は、任意に組み合わせることができる。y+zは、0を超え0.9以下であることが好ましく、0.01~0.75であることがより好ましく、0.02~0.7であることがさらに好ましく、0.02~0.3が特に好ましい。 The upper limit and lower limit of y+z can be combined arbitrarily. y+z is preferably more than 0 and 0.9 or less, more preferably 0.01 to 0.75, still more preferably 0.02 to 0.7, and 0.02 to 0.75. 3 is particularly preferred.
 サイクル維持率が高いリチウム二次電池を得る観点から、Xは、Mn、Ti、Mg、Al、W、B、Nb及びZrからなる群より選択される1種以上の元素であることが好ましく、Mn、Al、W、B、Nb及びZrからなる群より選択される1種以上の元素であることがより好ましい。また、Xは、Mn及びAlからなる群より選択される1種以上の元素X1と、Cu、Ti、Mg、W、Mo、Nb、Zn、Sn、Zr、Ga、B、Si、S及びPからなる群より選択される1種以上の元素X2とからなっていてもよい。 From the viewpoint of obtaining a lithium secondary battery with a high cycle retention rate, X is preferably one or more elements selected from the group consisting of Mn, Ti, Mg, Al, W, B, Nb and Zr, More preferably, it is one or more elements selected from the group consisting of Mn, Al, W, B, Nb and Zr. X is one or more elements X1 selected from the group consisting of Mn and Al, and Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, B, Si, S and P and one or more elements X2 selected from the group consisting of
 CAMの結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。CAMの結晶構造は、粉末X線回折測定法(XRD)により確認することができる。 The crystal structure of CAM is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure. The crystal structure of CAM can be confirmed by powder X-ray diffractometry (XRD).
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、及びP6/mmcからなる群より選択されるいずれか一つの空間群に帰属される。 The hexagonal crystal structure is composed of P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6/m, P6 3 /m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P6 3 /mcm, and P6 3 /mmc.
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、及びC2/cからなる群より選択されるいずれか一つの空間群に帰属される。 The monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c, and C2 It belongs to any one space group selected from the group consisting of /c.
 これらのうち、放電容量及びサイクル維持率が高いリチウム二次電池を得るため、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。 Among these, in order to obtain a lithium secondary battery with high discharge capacity and cycle retention rate, the crystal structure is a hexagonal crystal structure assigned to the space group R-3m, or a monoclinic crystal structure assigned to C2/m A crystalline structure is particularly preferred.
<CAMの製造方法>
 次にCAMの製造方法について説明する。CAMの製造方法は、MCCの製造、MCCとリチウム化合物との混合、MCCとリチウム化合物との混合物の一次焼成、及び一次焼成により得られた反応物の二次焼成の工程を少なくとも含んでいる。
<Method for manufacturing CAM>
Next, a method for manufacturing a CAM will be described. The CAM manufacturing method includes at least the steps of manufacturing MCC, mixing MCC and a lithium compound, primary firing of the mixture of MCC and lithium compound, and secondary firing of the reaction product obtained by the primary firing.
(1)MCCの製造
 MCCは、金属複合水酸化物、金属複合酸化物、及びこれらの混合物のいずれであってもよい。金属複合水酸化物及び金属複合酸化物は、一例として下記式(A’)で表されるモル比率で、Ni、Co及びXを含む。なお、式(A’)中のy、z、及びy+zの好ましい範囲は、上記式(A)のy、z、及びy+zの好ましい範囲と同様である。
 Ni:Co:X=(1-y-z):y:z   (A’)
 (式(A’)中、Xは、Mn、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、B、Si、S及びPからなる群より選択される1種以上の元素であり、0≦y≦0.4、及び0≦z≦0.5を満たす。)
(1) Production of MCC MCC may be a metal composite hydroxide, a metal composite oxide, or a mixture thereof. Metal composite hydroxides and metal composite oxides contain Ni, Co, and X in molar ratios represented by the following formula (A′), for example. The preferred ranges of y, z, and y+z in formula (A′) are the same as the preferred ranges of y, z, and y+z in formula (A) above.
Ni:Co:X=(1-yz):y:z (A')
(In formula (A′), X is selected from the group consisting of Mn, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, Si, S and P. 1 is an element of at least one species and satisfies 0≤y≤0.4 and 0≤z≤0.5.)
 以下、Ni、Co及びAlを含むMCCの製造方法を一例として説明する。まず、Ni、Co及びAlを含む金属複合水酸化物を調製する。金属複合水酸化物は、バッチ式共沈殿法又は連続式共沈殿法により製造することが可能である。 A method for producing MCC containing Ni, Co and Al will be described below as an example. First, a composite metal hydroxide containing Ni, Co and Al is prepared. A metal composite hydroxide can be produced by a batch coprecipitation method or a continuous coprecipitation method.
 具体的には、JP-A-2002-201028に記載された連続式共沈殿法により、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液及び錯化剤を反応させ、Ni(1-y-z)CoAl(OH)で表される金属複合水酸化物を製造する。 Specifically, by the continuous coprecipitation method described in JP-A-2002-201028, a nickel salt solution, a cobalt salt solution, an aluminum salt solution and a complexing agent are reacted to obtain Ni (1-yz). A metal composite hydroxide represented by CoyAlz (OH) 2 is produced.
 ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの少なくとも1種を使用することができる。 The nickel salt that is the solute of the nickel salt solution is not particularly limited, but at least one of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.
 コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト及び酢酸コバルトのうちの少なくとも1種を使用することができる。 At least one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used as the cobalt salt that is the solute of the cobalt salt solution.
 アルミニウム塩溶液の溶質であるアルミニウム塩としては、例えば硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウム及び酢酸アルミニウムのうちの少なくとも1種を使用することができる。 As the aluminum salt that is the solute of the aluminum salt solution, for example, at least one of aluminum sulfate, aluminum nitrate, aluminum chloride and aluminum acetate can be used.
 金属複合水酸化物の製造に使用するニッケル塩、コバルト塩、アルミニウム塩は、任意に組み合わせることができる。例えば、組み合わせは、硫酸ニッケル、硫酸コバルト、硫酸アルミニウムであることが好ましい。 The nickel salt, cobalt salt, and aluminum salt used to produce the metal composite hydroxide can be combined arbitrarily. For example, the preferred combination is nickel sulphate, cobalt sulphate, aluminum sulphate.
 以上の金属塩は、上記、Ni(1-y-z)CoAl(OH)の組成比に対応する割合で用いられる。すなわち、各金属塩の量は、上記金属塩を含む混合溶液中におけるNi、Co及びAlのモル比が、式(A’)の(1-y-z):y:zと対応するように規定される。また、溶媒として水が使用される。 The above metal salts are used in proportions corresponding to the composition ratio of Ni (1-yz) CoyAlz (OH) 2 . That is, the amount of each metal salt is such that the molar ratio of Ni, Co and Al in the mixed solution containing the metal salt corresponds to (1-yz):y:z in formula (A'). Defined. Also, water is used as a solvent.
 錯化剤としては、水溶液中で、ニッケルイオン、コバルトイオン及びアルミニウムイオンと錯体を形成可能なものが挙げられる。錯化剤としては、例えばアンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、又は弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸及びウラシル二酢酸及びグリシンが挙げられる。 Examples of complexing agents include those that can form complexes with nickel ions, cobalt ions, and aluminum ions in an aqueous solution. Complexing agents include, for example, ammonium ion donors (such as ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, or ammonium fluoride), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid and uracildiacetic acid, and glycine.
 金属複合水酸化物の製造工程において、錯化剤は、用いられてもよく、用いられなくてもよい。錯化剤が用いられる場合、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩(ニッケル塩、コバルト塩及びアルミニウム塩)のモル数の合計に対するモル比が0より大きく2.0以下である。 A complexing agent may or may not be used in the manufacturing process of the metal composite hydroxide. When a complexing agent is used, the amount of the complexing agent contained in the mixture containing the nickel salt solution, cobalt salt solution, aluminum salt solution and complexing agent is, for example, metal salts (nickel salts, cobalt salts and aluminum salts). is greater than 0 and 2.0 or less.
 共沈殿法に際しては、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液、及び錯化剤を含む混合液のpH値を調整するため、アルカリ金属水酸化物は、混合液のpHがアルカリ性から中性になる前に、混合液に添加される。アルカリ金属水酸化物とは、例えば水酸化ナトリウム又は水酸化カリウムである。 In the coprecipitation method, in order to adjust the pH value of the mixed liquid containing the nickel salt solution, the cobalt salt solution, the aluminum salt solution, and the complexing agent, the alkali metal hydroxide is added so that the pH of the mixed liquid is from alkaline to neutral. is added to the mixture before the Alkali metal hydroxides are, for example, sodium hydroxide or potassium hydroxide.
 なお、本明細書におけるpHの値は、混合液の温度が40℃の時に測定された値であると定義する。反応槽からサンプリングした混合液の温度が、40℃でない場合には、pHは混合液を40℃まで加温又は冷却して測定される。 It should be noted that the pH value in this specification is defined as the value measured when the temperature of the mixed liquid is 40°C. If the temperature of the mixture sampled from the reaction vessel is not 40°C, the pH is measured by heating or cooling the mixture to 40°C.
 上記ニッケル塩溶液、コバルト塩溶液、及びアルミニウム塩溶液のほか、錯化剤を反応槽に連続して供給すると、Ni、Co及びAlが反応し、Ni(1-y-z)CoAl(OH)が生成する。 When the nickel salt solution, cobalt salt solution, and aluminum salt solution as well as the complexing agent are continuously supplied to the reactor, Ni, Co and Al react to form Ni (1-yz) Co y Al z (OH) 2 is produced.
 反応に際しては、反応槽の温度は、例えば20-80℃、好ましくは30-70℃の範囲内で制御される。 During the reaction, the temperature of the reaction vessel is controlled, for example, within the range of 20-80°C, preferably 30-70°C.
 また、反応に際しては、反応槽内の混合液のpH値は、例えば9-13の範囲内で制御される。 Also, during the reaction, the pH value of the mixed liquid in the reaction tank is controlled within the range of 9-13, for example.
 反応槽内で形成された反応沈殿物を攪拌しながら中和する。反応沈殿物の中和の時間は、例えば1-20時間である。 The reaction precipitate formed in the reaction tank is neutralized while stirring. The time for neutralization of the reaction precipitate is, for example, 1-20 hours.
 形成された反応沈殿物を分離するために、連続式共沈殿法で用いる反応槽としては、反応沈殿物をオーバーフローさせるタイプの反応槽を用いることができる。 In order to separate the formed reaction precipitate, the reaction tank used in the continuous coprecipitation method can be a reaction tank of the type that causes the reaction precipitate to overflow.
 バッチ式共沈殿法により金属複合水酸化物を製造する場合、反応槽としては、オーバーフローパイプを備えない反応槽、及びオーバーフローパイプに連結された濃縮槽を備え、オーバーフローした反応沈殿物を濃縮槽で濃縮し、再び反応槽へ循環させる機構を有する装置等が挙げられる。 When producing a metal composite hydroxide by a batch coprecipitation method, the reaction tank includes a reaction tank without an overflow pipe and a thickening tank connected to the overflow pipe, and the overflowed reaction precipitate is removed in the thickening tank. Apparatus having a mechanism for concentrating and recirculating to the reaction vessel, etc., may be mentioned.
 各種気体、例えば、窒素、アルゴン若しくは二酸化炭素等の不活性ガス、空気若しくは酸素等の酸化性ガス、又はそれらの混合ガスを反応槽内に供給してもよい。 Various gases, for example, inert gases such as nitrogen, argon or carbon dioxide, oxidizing gases such as air or oxygen, or mixed gases thereof may be supplied into the reaction vessel.
 反応槽に供給する金属塩の濃度、攪拌速度、反応槽の温度、混合液のpH及び中和時間等を適宜制御することにより、最終的に得られるCAMの平均粒子径を制御することができる。 By appropriately controlling the concentration of the metal salt supplied to the reaction tank, the stirring speed, the temperature of the reaction tank, the pH of the mixed solution, the neutralization time, etc., the average particle size of the finally obtained CAM can be controlled. .
 以上の反応後、中和された反応沈殿物を単離する。単離には、例えば反応沈殿物を含むスラリー(つまり、共沈物スラリー)を遠心分離又は吸引ろ過などで脱水する方法が用いられる。 After the above reaction, isolate the neutralized reaction precipitate. For isolation, for example, a method of dehydrating a slurry containing a reaction precipitate (that is, a coprecipitate slurry) by centrifugation or suction filtration is used.
 単離された反応沈殿物を洗浄、脱水、乾燥及び篩別し、Ni、Co及びAlを含む金属複合水酸化物が得られる。 The isolated reaction precipitate is washed, dehydrated, dried and sieved to obtain a metal composite hydroxide containing Ni, Co and Al.
 反応沈殿物の洗浄は、水又はアルカリ性洗浄液で行うことが好ましい。本実施形態においては、反応沈殿物は、アルカリ性洗浄液で洗浄されることが好ましく、水酸化ナトリウム水溶液で洗浄されることがより好ましい。また、反応沈殿物は、硫黄元素を含有する洗浄液を用いて洗浄されてもよい。硫黄元素を含有する洗浄液としては、K又はNaの硫酸塩水溶液等が挙げられる。 It is preferable to wash the reaction precipitate with water or an alkaline washing solution. In the present embodiment, the reaction precipitate is preferably washed with an alkaline washing liquid, more preferably washed with an aqueous sodium hydroxide solution. Also, the reaction precipitate may be washed with a washing liquid containing elemental sulfur. Examples of the cleaning liquid containing elemental sulfur include an aqueous K or Na sulfate solution.
 MCCが金属複合酸化物である場合、金属複合水酸化物を加熱して金属複合酸化物を製造する。必要ならば複数の加熱工程を実施してもよい。本明細書における加熱温度とは、加熱装置の設定温度を意味する。複数の加熱工程が実施される場合、加熱温度とは、各加熱工程のうち、最も高い温度で加熱した工程の温度を意味する。 When MCC is a metal composite oxide, the metal composite hydroxide is heated to produce the metal composite oxide. Multiple heating steps may be performed if desired. The heating temperature in this specification means the set temperature of the heating device. When a plurality of heating steps are performed, the heating temperature means the temperature of the step heated at the highest temperature among the respective heating steps.
 加熱温度は、400-700℃であることが好ましく、450-680℃であることがより好ましい。加熱温度が400-700℃であると、金属複合水酸化物が十分に酸化される。 The heating temperature is preferably 400-700°C, more preferably 450-680°C. When the heating temperature is 400-700° C., the metal composite hydroxide is sufficiently oxidized.
 前記加熱温度で保持する時間は、0.1-20時間が挙げられ、0.5-10時間が好ましい。前記加熱温度までの昇温速度は、例えば、50-400℃/時間である。 The time for holding at the heating temperature is 0.1 to 20 hours, preferably 0.5 to 10 hours. The heating rate to the heating temperature is, for example, 50-400° C./hour.
 加熱装置内の雰囲気は、酸素含有雰囲気であってもよい。酸素含有雰囲気は、酸化性ガス(大気、酸素等)のみであってもよく、不活性ガス(窒素、アルゴン等)と酸化性ガスとの混合ガス雰囲気であってもよく、不活性ガス雰囲気下で酸化剤が存在する状態であってもよい。加熱装置内の雰囲気が適度な酸素含有雰囲気であることにより、金属複合水酸化物に含まれる遷移金属が適度に酸化され、金属複合酸化物の形態が制御されやすくなる。 The atmosphere in the heating device may be an oxygen-containing atmosphere. The oxygen-containing atmosphere may be an oxidizing gas (atmosphere, oxygen, etc.) alone, or may be a mixed gas atmosphere of an inert gas (nitrogen, argon, etc.) and an oxidizing gas. and the oxidizing agent may be present. When the atmosphere in the heating device is an oxygen-containing atmosphere, the transition metal contained in the metal composite hydroxide is moderately oxidized, making it easier to control the form of the metal composite oxide.
 酸素含有雰囲気中の酸化性ガス又は酸化剤は、遷移金属を酸化させるために十分な酸素原子を含めばよい。 The oxidizing gas or oxidizing agent in the oxygen-containing atmosphere should contain sufficient oxygen atoms to oxidize the transition metal.
 酸素含有雰囲気が不活性ガスと酸化性ガスとの混合ガス雰囲気である場合、加熱装置内の雰囲気は、加熱装置内に酸化性ガスを通気させる又は混合液に酸化性ガスをバブリングするなどの方法で制御することができる。 When the oxygen-containing atmosphere is a mixed gas atmosphere of an inert gas and an oxidizing gas, the atmosphere in the heating device is changed by a method such as passing an oxidizing gas into the heating device or bubbling the oxidizing gas into the mixed liquid. can be controlled by
 酸化剤として、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン又はオゾンなどを使用できる。 As an oxidizing agent, a peroxide such as hydrogen peroxide, a peroxide salt such as permanganate, a perchlorate, a hypochlorite, nitric acid, a halogen, ozone, or the like can be used.
(2)MCCとリチウム化合物との混合
 本工程は、リチウム化合物とMCCとを混合し、混合物を得る工程である。
(2) Mixing of MCC and Lithium Compound This step is a step of mixing a lithium compound and MCC to obtain a mixture.
 前記MCCを必要に応じて乾燥させた後、リチウム化合物と混合する。MCCの乾燥後に、適宜分級を行ってもよい。 After drying the MCC as necessary, it is mixed with a lithium compound. After drying the MCC, it may be appropriately classified.
 本実施形態において、リチウム化合物は、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウム、塩化リチウム及びフッ化リチウムの少なくとも何れか一つを使用することができる。これらの中では、水酸化リチウム、水酸化リチウム水和物、及び炭酸リチウムのいずれか一方又はその混合物が好ましい。 In this embodiment, the lithium compound may be at least one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, lithium chloride and lithium fluoride. . Among these, any one of lithium hydroxide, lithium hydroxide hydrate, and lithium carbonate or a mixture thereof is preferable.
 リチウム化合物とMCCとを、最終目的物の組成比を勘案して混合し、混合物を得る。具体的には、リチウム化合物とMCCは、上記組成式(A)の組成比に対応する割合で混合する。MCCに含まれる金属原子の合計量1に対するLiの量(モル比)は、1.00以上が好ましく、1.02以上がより好ましく、1.05以上がさらに好ましい。リチウム化合物とMCCの混合物を、後に説明するように焼成することによって、焼成物が得られる。 A mixture is obtained by mixing the lithium compound and MCC in consideration of the composition ratio of the final object. Specifically, the lithium compound and MCC are mixed at a ratio corresponding to the composition ratio of the above compositional formula (A). The amount (molar ratio) of Li to the total amount of 1 of metal atoms contained in MCC is preferably 1.00 or more, more preferably 1.02 or more, and even more preferably 1.05 or more. A fired product is obtained by firing a mixture of a lithium compound and MCC as described later.
(3)混合物の一次焼成
 MCCとリチウム化合物との混合物は、一次焼成され、MCCとリチウム化合物との反応物が形成される。本実施形態において一次焼成とは、後述の二次焼成における焼成温度(焼成工程が複数の焼成段階を有する場合は、最も低い温度で実施される焼成段階における焼成温度)よりも低い温度で焼成することである。一次焼成は、複数回行ってもよい。
(3) Primary Firing of Mixture The mixture of MCC and lithium compound is subjected to primary firing to form a reaction product of MCC and lithium compound. In the present embodiment, the primary firing means firing at a temperature lower than the firing temperature in the secondary firing described later (when the firing process has a plurality of firing steps, the firing temperature in the firing step performed at the lowest temperature). That is. The primary firing may be performed multiple times.
 一次焼成時に用いる焼成装置として、流動式焼成炉が使用される。流動式焼成炉としては、ロータリーキルン又は流動層焼成炉を用いてもよい。流動式焼成炉においては、被焼成物(MCCとリチウム化合物との混合物)が撹拌されながら焼成される。そのため、被焼成物に等方向に力が加わり、最終的に生成されるCAMの第1~第3平均アスペクト比、平均包絡度及び平均円形度を上述の範囲に制御しやすい。 A fluidized-bed firing furnace is used as the firing device for the primary firing. A rotary kiln or a fluidized bed calcining furnace may be used as the fluidized calcining furnace. In the fluidized-bed firing furnace, the material to be fired (a mixture of MCC and a lithium compound) is fired while being stirred. Therefore, force is applied in the same direction to the object to be fired, and the first to third average aspect ratios, average enveloping degree and average circularity of the finally produced CAM can be easily controlled within the above ranges.
 例えば、焼成炉としてロータリーキルンを用いる場合、焼成炉である回転筒の内径は、50-2000mmであることが好ましく、60-1900mmであることがより好ましい。回転筒の容積は、例えば0.002-100mであることが好ましく、0.003-99mであることがより好ましい。 For example, when a rotary kiln is used as the firing furnace, the inner diameter of the rotating cylinder, which is the firing furnace, is preferably 50-2000 mm, more preferably 60-1900 mm. The volume of the rotary cylinder is preferably 0.002-100 m 3 , more preferably 0.003-99 m 3 , for example.
 ここで、回転筒の内径に応じて、回転筒の回転速度や焼成温度を適切に設定することが好ましい。例えば、回転筒の内径が50-2000mmである場合、回転筒の回転速度は、0.5-5rpmであることが好ましく、0.51-4.9rpmであることがより好ましく、0.52-4.8rpmであることがさらに好ましい。また、一次焼成の温度は、400-700℃であることが好ましく、410-700℃であることがより好ましく、420-700℃であることがさらに好ましい。一次焼成温度が400℃以上であると、MCCとリチウム化合物との反応が促進される。また、一次焼成温度が700℃以下であると、最終的に生成されるCAMの第1~第3平均アスペクト比、平均包絡度及び平均円形度を上述の範囲に制御しやすい。 Here, it is preferable to appropriately set the rotational speed and firing temperature of the rotating shell according to the inner diameter of the rotating shell. For example, when the inner diameter of the rotating barrel is 50-2000 mm, the rotating speed of the rotating barrel is preferably 0.5-5 rpm, more preferably 0.51-4.9 rpm, More preferably 4.8 rpm. The temperature of the primary firing is preferably 400-700°C, more preferably 410-700°C, even more preferably 420-700°C. When the primary firing temperature is 400° C. or higher, the reaction between MCC and the lithium compound is promoted. Further, when the primary firing temperature is 700° C. or lower, it is easy to control the first to third average aspect ratios, average degree of envelopment, and average degree of circularity of the finally produced CAM within the above ranges.
 本明細書における焼成温度とは、焼成炉内雰囲気の温度を意味し、かつ焼成工程での保持温度の最高温度(以下、最高保持温度と呼ぶことがある)である。複数の焼成段階を有する焼成工程の場合、焼成温度とは、各焼成段階のうち、最も高い温度で焼成した段階の温度を意味する。焼成温度の上記上限値と下限値は任意に組み合わせることができる。 The firing temperature in this specification means the temperature of the atmosphere in the firing furnace, and is the maximum temperature held in the firing process (hereinafter sometimes referred to as the maximum held temperature). In the case of a sintering process having a plurality of sintering steps, the sintering temperature means the temperature of the highest sintering step among the sintering steps. The above upper limit and lower limit of the firing temperature can be combined arbitrarily.
 一次焼成における保持時間は、0.01-50時間が好ましい。一次焼成における保持時間が0.01時間以上であると、MCCとリチウム化合物との混合物全体の反応が進行する。一次焼成における保持時間が50時間以下であると、リチウムイオンの揮発が生じ難く、サイクル維持率が向上する。 The holding time in the primary firing is preferably 0.01-50 hours. When the holding time in the primary firing is 0.01 hour or more, the reaction of the entire mixture of MCC and lithium compound proceeds. When the retention time in the primary firing is 50 hours or less, volatilization of lithium ions is less likely to occur, and the cycle retention rate is improved.
 一次焼成及び後述の二次焼成時の焼成雰囲気は、所望の組成に応じて大気、酸素、窒素、アルゴン又はこれらの混合ガスを選択することができる。焼成雰囲気が酸素含有雰囲気である場合、焼成雰囲気における酸素濃度は、21-100体積%であることが好ましく、25-100体積%であることがより好ましい。 Air, oxygen, nitrogen, argon, or a mixed gas of these can be selected as the firing atmosphere for the primary firing and the secondary firing described later, depending on the desired composition. When the firing atmosphere is an oxygen-containing atmosphere, the oxygen concentration in the firing atmosphere is preferably 21-100% by volume, more preferably 25-100% by volume.
 一次焼成により得られた反応物は、結合している二次粒子同士を分離する程度に解砕されてもよい。 The reactant obtained by primary firing may be pulverized to the extent that secondary particles that are bound together are separated.
 反応物の解砕は、例えばピンミル及びディスクミル等による解砕が挙げられる。ピンミルによる反応物の解砕条件としては、例えば、回転数が300-20000rpmとなるようにピンミルを運転することが挙げられる。ディスクミルによる反応物の解砕条件としては、例えば、回転数が12-1200rpmとなるようにディスクミルを運転することが挙げられる。反応物をこのような条件で解砕することによって、CAMの第1~第3平均アスペクト比、平均包絡度及び平均円形度を上述の範囲に制御しやすい。  The crushing of the reactant includes crushing by a pin mill, a disc mill, etc., for example. Conditions for pulverizing the reactant by the pin mill include, for example, operating the pin mill at a rotational speed of 300 to 20000 rpm. Conditions for pulverizing the reactant by the disc mill include, for example, operating the disc mill at a rotational speed of 12 to 1200 rpm. By pulverizing the reaction product under such conditions, it is easy to control the first to third average aspect ratios, average enveloping degree and average circularity of the CAM within the ranges described above.
(5)反応物の二次焼成
 解砕された反応物は、二次焼成される。二次焼成は上述の流動式焼成炉を用いて行われる。焼成炉としてロータリーキルンを用いる場合、焼成炉である回転筒の内径は、50-2000mmであることが好ましく、60-1900mmであることがより好ましい。
(5) Secondary Firing of Reactant The pulverized reactant is subjected to secondary firing. Secondary firing is performed using the above-described fluidized bed firing furnace. When a rotary kiln is used as the firing furnace, the inner diameter of the rotating cylinder, which is the firing furnace, is preferably 50-2000 mm, more preferably 60-1900 mm.
 二次焼成は、焼成温度が異なる複数の焼成段階を有していてもよい。例えば、第1の焼成段階と、第1の焼成段階よりも高温で焼成する第2の焼成段階がそれぞれ独立に行われてもよい。さらに焼成温度及び焼成時間が異なる焼成段階を有していてもよい。 The secondary firing may have multiple firing stages with different firing temperatures. For example, a first firing step and a second firing step of firing at a higher temperature than the first firing step may be performed independently. Furthermore, it may have firing stages with different firing temperatures and firing times.
 二次焼成は、一次焼成と同様に、回転筒の内径に応じて、回転筒の回転速度や焼成温度を適切に設定することが好ましい。例えば、回転筒の内径が50-250mmである場合、回転筒の回転速度は、0.5-5rpmであることが好ましく、0.51-4.9rpmであることがより好ましく、0.52-4.8rpmであることがさらに好ましい。また、このときの二次焼成の温度は、700℃を超え750℃以下であることが好ましく、710-750℃であることがより好ましい。二次焼成の温度が700℃超であると、強固な結晶構造を有するCAMを得ることができる。また、二次焼成の温度が750℃以下であると、最終的に生成されるCAMの第1~第3平均アスペクト比、平均包絡度及び平均円形度を上述の範囲に制御しやすい。 In the secondary firing, it is preferable to appropriately set the rotational speed of the rotating shell and the firing temperature according to the inner diameter of the rotating shell, as in the primary firing. For example, when the inner diameter of the rotating barrel is 50-250 mm, the rotational speed of the rotating barrel is preferably 0.5-5 rpm, more preferably 0.51-4.9 rpm, More preferably 4.8 rpm. The secondary firing temperature at this time is preferably higher than 700.degree. C. and not higher than 750.degree. When the secondary firing temperature is higher than 700°C, a CAM having a strong crystal structure can be obtained. Further, when the secondary firing temperature is 750° C. or less, the first to third average aspect ratios, average enveloping degree and average circularity of the finally produced CAM can be easily controlled within the above ranges.
 回転筒の内径が250mmを超え2000mm以下である場合、回転筒の回転速度は、0.5-5rpmであることが好ましく、0.51-4.9rpmであることがより好ましく、0.52-4.8rpmであることがさらに好ましい。また、このときの二次焼成の温度は、700℃を超え1000℃以下であることが好ましく、700℃を超え990℃以下であることがより好ましい。二次焼成の温度が700℃超であると、強固な結晶構造を有するCAMを得ることができる。また、二次焼成の温度が1000℃以下であると、最終的に生成されるCAMの第1~第3平均アスペクト比、平均包絡度、平均円形度が上述の範囲に制御されやすい。加えて、CAMに含まれる二次粒子表面のリチウムイオンの揮発を低減できる。 When the inner diameter of the rotating barrel is more than 250 mm and 2000 mm or less, the rotation speed of the rotating barrel is preferably 0.5-5 rpm, more preferably 0.51-4.9 rpm, and 0.52- More preferably 4.8 rpm. The secondary firing temperature at this time is preferably over 700° C. and 1000° C. or less, and more preferably over 700° C. and 990° C. or less. When the secondary firing temperature is higher than 700°C, a CAM having a strong crystal structure can be obtained. Further, when the secondary firing temperature is 1000° C. or less, the first to third average aspect ratios, average degree of envelopment, and average degree of circularity of the finally produced CAM are likely to be controlled within the above ranges. In addition, volatilization of lithium ions on the surfaces of secondary particles contained in the CAM can be reduced.
 二次焼成における保持時間は、1-50時間が好ましい。二次焼成における保持時間が1時間以上であると、結晶が十分に発達し、サイクル維持率が向上する。二次焼成における保持時間が50時間以下であると、リチウムイオンの揮発が生じ難く、サイクル維持率が向上する。 The retention time in the secondary firing is preferably 1-50 hours. When the holding time in the secondary firing is 1 hour or more, crystals are sufficiently developed, and the cycle retention rate is improved. When the retention time in the secondary firing is 50 hours or less, volatilization of lithium ions is less likely to occur, and the cycle retention rate is improved.
 MCCとリチウム化合物との混合物又は反応物は、不活性溶融剤の存在下で焼成されてもよい。不活性溶融剤は、焼成物に残留してもよいし、焼成後に後述するように洗浄液で洗浄すること等により除去されてもよい。不活性溶融剤としては、例えばWO2019/177032A1に記載のものを使用することができる。 The mixture or reactant of MCC and lithium compound may be fired in the presence of an inert melting agent. The inert melting agent may remain in the fired product, or may be removed after firing by washing with a cleaning liquid as described later. As an inert melting agent, for example, those described in WO2019/177032A1 can be used.
 以上のようにMCCとリチウム化合物との反応物を焼成することにより、焼成物が得られる。 By firing the reaction product of MCC and the lithium compound as described above, a fired product is obtained.
(4)その他の工程
 二次焼成を行った後、焼成物を解砕してもよい。焼成物の解砕は、例えばピンミル及びディスクミル等による解砕が挙げられる。ピンミルによる焼成物の解砕条件としては、例えば、回転数が300-20000rpmとなるようにピンミルを運転することが挙げられる。ディスクミルによる反応物の解砕条件としては、例えば、回転数が12-1200rpmとなるようにディスクミルを運転することが挙げられる。焼成物をこのような条件で解砕することによって、CAMの第1~第3平均アスペクト比、平均包絡度及び平均円形度を上述の範囲に制御しやすい。
(4) Other Steps After secondary firing, the fired product may be pulverized. The pulverization of the fired product includes, for example, pulverization by a pin mill, a disc mill, or the like. As conditions for pulverizing the fired product by the pin mill, for example, the pin mill is operated so that the number of revolutions is 300 to 20000 rpm. Conditions for pulverizing the reactant by the disc mill include, for example, operating the disc mill at a rotational speed of 12 to 1200 rpm. By pulverizing the fired product under such conditions, it is easy to control the first to third average aspect ratios, average degree of envelopment, and average degree of circularity of the CAM within the ranges described above.
 二次焼成及び必要に応じて解砕を行った後、焼成物(又は解砕した焼成物)を洗浄して残留する未反応のリチウム化合物及び不活性溶融剤を除去してもよい。洗浄には、純水やアルカリ性洗浄液を用いることができる。アルカリ性洗浄液としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム及び炭酸アンモニウムからなる群より選択される1種以上の無水物並びにその水和物の水溶液を挙げることができる。また、アルカリ性洗浄液として、アンモニア水を使用することもできる。 After secondary firing and, if necessary, crushing, the fired product (or the crushed fired product) may be washed to remove the remaining unreacted lithium compound and inert melting agent. Pure water or an alkaline cleaning liquid can be used for cleaning. Examples of the alkaline cleaning solution include an aqueous solution of one or more anhydrides selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate and ammonium carbonate, and hydrates thereof. can be mentioned. Ammonia water can also be used as the alkaline cleaning liquid.
 洗浄液の温度は、15℃以下が好ましく、10℃以下がより好ましく、8℃以下がさらに好ましい。洗浄液の温度の下限値は、例えば1℃である。洗浄液の温度を洗浄液が凍結しない範囲且つ上記範囲に制御することで、洗浄時に焼成物の結晶構造中から洗浄液中へのリチウムイオンの過度な溶出が抑制できる。 The temperature of the cleaning liquid is preferably 15°C or lower, more preferably 10°C or lower, and even more preferably 8°C or lower. The lower limit of the temperature of the cleaning liquid is 1° C., for example. By controlling the temperature of the cleaning liquid within the range above which the cleaning liquid does not freeze, excessive elution of lithium ions from the crystal structure of the baked product into the cleaning liquid during cleaning can be suppressed.
 洗浄液と焼成物とを接触させる方法としては、各洗浄液の中に、焼成物を投入して撹拌する方法が挙げられる。また、各洗浄液をシャワー水として、焼成物にかける方法でもよい。さらに、洗浄液中に、焼成物を投入して撹拌した後、各洗浄液から焼成物を分離し、次いで、各洗浄液をシャワー水として、分離後の焼成物にかける方法でもよい。 As a method of bringing the cleaning solution and the fired product into contact, there is a method in which the fired product is put into each cleaning solution and stirred. Moreover, the method of pouring each washing|cleaning liquid as shower water on a baking product may be used. Furthermore, a method may also be employed in which the fired product is put into the cleaning solution and stirred, then the fired product is separated from each cleaning solution, and then each cleaning solution is used as shower water to be poured over the separated fired product.
 洗浄において、洗浄液と焼成物を適正な時間の範囲で接触させることが好ましい。洗浄における「適正な時間」とは、焼成物の表面に残留する未反応のリチウム化合物及び任意の不活性溶融剤を除去しつつ、焼成物中の各粒子を分散させる程度の時間を指す。洗浄時間は、焼成物の凝集状態に応じて調整することが好ましい。例えば、予備実験を行って適切な洗浄時間を設定してもよい。洗浄時間は、例えば5分間-1時間の範囲が特に好ましい。 In the cleaning, it is preferable to bring the cleaning liquid and the fired product into contact within the appropriate time range. The "appropriate time" in washing refers to a time sufficient to disperse the particles in the fired material while removing any unreacted lithium compound and any inert melting agent remaining on the surface of the fired material. It is preferable to adjust the washing time according to the aggregation state of the baked product. For example, a preliminary experiment may be performed to set an appropriate washing time. Washing times in the range of, for example, 5 minutes to 1 hour are particularly preferred.
 洗浄液と焼成物との混合物(以下、スラリーと記載することがある)に対する焼成物の割合は、10-60質量%であることが好ましく、20-50質量%であることがより好ましく、30-50質量%であることがさらに好ましい。焼成物の割合が10-60質量%であると、未反応のリチウム化合物及び任意の不活性溶融剤を除去することができる。 The ratio of the fired product to the mixture of the cleaning liquid and the fired product (hereinafter sometimes referred to as slurry) is preferably 10-60% by mass, more preferably 20-50% by mass, and 30- More preferably, it is 50% by mass. A proportion of 10-60% by weight of calcined material allows removal of unreacted lithium compounds and any inert fusing agent.
 焼成物の洗浄後、焼成物は熱処理されることが好ましい。熱処理する温度や方法は特に限定されないが、充電容量の低下を防止できる観点から、150℃以上であることが好ましく、175℃以上であることがより好ましく、200℃以上であることがさらに好ましい。また、特に制限はないが、リチウムイオンの揮発を防止でき、本実施形態の組成を有するCAMが得られる観点から、1000℃以下であることが好ましく、950℃以下であることがより好ましい。
 リチウムイオンの揮発量は、熱処理温度により制御することができる。
After washing the fired product, the fired product is preferably heat-treated. The heat treatment temperature and method are not particularly limited, but from the viewpoint of preventing a decrease in charge capacity, the temperature is preferably 150° C. or higher, more preferably 175° C. or higher, and even more preferably 200° C. or higher. Although not particularly limited, the temperature is preferably 1000° C. or lower, more preferably 950° C. or lower, from the viewpoint of preventing volatilization of lithium ions and obtaining a CAM having the composition of the present embodiment.
The volatilization amount of lithium ions can be controlled by the heat treatment temperature.
 熱処理温度の上限値と下限値は任意に組み合わせることができる。例えば、熱処理温度は、150-1000℃であることが好ましく、175-950℃であることがより好ましく、200-950℃であることがさらに好ましい。 The upper limit and lower limit of the heat treatment temperature can be combined arbitrarily. For example, the heat treatment temperature is preferably 150-1000°C, more preferably 175-950°C, even more preferably 200-950°C.
 熱処理における保持時間は、1-50時間が好ましい。熱処理における保持時間が1時間以上であると、焼成物中の水分を除去し、不純物の少ないCAMが得られる。熱処理における保持時間が50時間以下であると、リチウムイオンが揮発しにくく、サイクル維持率が向上する。 The holding time in the heat treatment is preferably 1-50 hours. When the holding time in the heat treatment is 1 hour or longer, the moisture in the baked product is removed, and a CAM with few impurities can be obtained. When the holding time in the heat treatment is 50 hours or less, the lithium ions are less likely to volatilize, and the cycle retention rate improves.
 熱処理中の雰囲気は、酸素雰囲気、不活性雰囲気、減圧雰囲気又は真空雰囲気が挙げられる。洗浄後の熱処理を上記雰囲気で行うことで、熱処理中に焼成物と雰囲気中の水分又は二酸化炭素との反応が抑制され、不純物の少ないCAMが得られる。 The atmosphere during heat treatment includes an oxygen atmosphere, an inert atmosphere, a reduced pressure atmosphere, or a vacuum atmosphere. By performing the heat treatment after washing in the above atmosphere, the reaction between the fired product and moisture or carbon dioxide in the atmosphere is suppressed during the heat treatment, and a CAM with few impurities can be obtained.
 焼成物を必要に応じて前述の条件で解砕、洗浄、熱処理することによって、CAMが得られる。また、焼成物をCAMとしてもよい。 The CAM can be obtained by crushing, washing, and heat-treating the fired material as necessary under the conditions described above. Moreover, it is good also considering a baked product as CAM.
<リチウム二次電池>
 本実施形態のCAMを用いる場合の好適なリチウム二次電池の構成を説明する。また、本実施形態のCAMを用いる場合に好適なリチウム二次電池用正極(以下、正極と称することがある。)について説明する。
<Lithium secondary battery>
A configuration of a lithium secondary battery suitable for using the CAM of the present embodiment will be described. Also, a positive electrode for a lithium secondary battery (hereinafter sometimes referred to as a positive electrode) suitable for using the CAM of the present embodiment will be described.
 本実施形態のCAMを用いる場合の好適なリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 An example of a lithium secondary battery suitable for using the CAM of the present embodiment has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
 リチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 An example of a lithium secondary battery has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
 図1は、リチウム二次電池の一例を示す模式図である。例えば円筒型のリチウム二次電池10は、次のようにして製造する。 FIG. 1 is a schematic diagram showing an example of a lithium secondary battery. For example, a cylindrical lithium secondary battery 10 is manufactured as follows.
 まず、図1の部分拡大図に示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。 First, as shown in the partial enlarged view of FIG. An electrode group 4 is formed by laminating a positive electrode 2, a separator 1, and a negative electrode 3 in this order and winding them.
 正極2は、一例として、CAMを含む正極活物質層と、正極活物質層が一面に形成された正極集電体とを有する。このような正極2は、まずCAM、導電材及びバインダーを含む正極合剤を調製し、正極合剤を正極集電体の一面に担持させて正極活物質層を形成することで製造できる。 The positive electrode 2 has, for example, a positive electrode active material layer containing CAM, and a positive electrode current collector having the positive electrode active material layer formed on one surface. Such a positive electrode 2 can be manufactured by first preparing a positive electrode mixture containing CAM, a conductive material, and a binder, and supporting the positive electrode mixture on one surface of a positive electrode current collector to form a positive electrode active material layer.
 負極3は、一例として、不図示の負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができ、正極2と同様の方法で製造できる。 Examples of the negative electrode 3 include an electrode in which a negative electrode mixture containing a negative electrode active material (not shown) is supported on a negative electrode current collector, and an electrode composed solely of a negative electrode active material. can be manufactured in
 次いで、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。 Next, after housing the electrode group 4 and an insulator (not shown) in the battery can 5, the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the electrolyte is arranged between the positive electrode 2 and the negative electrode 3. . Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing member 8, the lithium secondary battery 10 can be manufactured.
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形又は角を丸めた長方形となるような柱状の形状を挙げることができる。 The shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape of the electrode group 4 cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. can be mentioned.
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型又は角型などの形状を挙げることができる。 In addition, as the shape of the lithium secondary battery having such an electrode group 4, a shape defined by IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted. . For example, a shape such as a cylindrical shape or a rectangular shape can be mentioned.
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、又はペーパー型(又はシート型)電池を例示することができる。 Further, the lithium secondary battery is not limited to the wound type configuration described above, and may have a layered configuration in which a layered structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked. Examples of laminated lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
 リチウム二次電池を構成する正極、セパレータ、負極及び電解液については、例えば、WO2022/113904A1の[0113]~[0140]に記載の構成、材料及び製造方法を用いることが出来る。 For the positive electrode, separator, negative electrode and electrolyte that constitute the lithium secondary battery, for example, the configurations, materials and manufacturing methods described in [0113] to [0140] of WO2022/113904A1 can be used.
 <全固体リチウム二次電池>
 次いで、全固体リチウム二次電池の構成を説明しながら、本発明の一態様に係るCAMを用いた正極、及びこの正極を有する全固体リチウム二次電池について説明する。
<All-solid lithium secondary battery>
Next, a positive electrode using a CAM according to one embodiment of the present invention and an all-solid lithium secondary battery including the positive electrode will be described while describing the structure of the all-solid lithium secondary battery.
 図2は、本実施形態の全固体リチウム二次電池の一例を示す模式図である。図2に示す全固体リチウム二次電池1000は、正極110と、負極120と、固体電解質層130とを有する積層体100と、積層体100を収容する外装体200と、を有する。また、全固体リチウム二次電池1000は、集電体の両側に正極活物質と負極活物質とを配置したバイポーラ構造であってもよい。バイポーラ構造の具体例として、例えば、JP-A-2004-95400に記載される構造が挙げられる。各部材を構成する材料については、後述する。 FIG. 2 is a schematic diagram showing an example of the all-solid lithium secondary battery of this embodiment. The all-solid lithium secondary battery 1000 shown in FIG. 2 has a laminate 100 having a positive electrode 110, a negative electrode 120, and a solid electrolyte layer 130, and an outer package 200 that accommodates the laminate 100. Moreover, the all-solid lithium secondary battery 1000 may have a bipolar structure in which a positive electrode active material and a negative electrode active material are arranged on both sides of a current collector. Specific examples of bipolar structures include structures described in JP-A-2004-95400. The material forming each member will be described later.
 正極110は、正極活物質層111と正極集電体112とを有している。正極活物質層111は、上述したCAM及び固体電解質を含む。また、正極活物質層111は、導電材及びバインダーを含んでいてもよい。 The positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112 . The positive electrode active material layer 111 contains the above-described CAM and solid electrolyte. Moreover, the positive electrode active material layer 111 may contain a conductive material and a binder.
 負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質及び導電材を含んでいてもよい。 The negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122 . The negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material.
 積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123と、を有していてもよい。その他、全固体リチウム二次電池1000は、正極110と負極120との間にセパレータを有していてもよい。 The laminate 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122 . In addition, all-solid lithium secondary battery 1000 may have a separator between positive electrode 110 and negative electrode 120 .
 全固体リチウム二次電池1000は、さらに積層体100と外装体200とを絶縁する不図示のインシュレーター及び外装体200の開口部200aを封止する不図示の封止体を有する。 The all-solid lithium secondary battery 1000 further has an insulator (not shown) for insulating the laminate 100 and the exterior body 200 and a sealing body (not shown) for sealing the opening 200 a of the exterior body 200 .
 外装体200は、アルミニウム、ステンレス鋼又はニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器を用いることができる。また、外装体200として、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器を用いることもできる。 For the exterior body 200, a container molded from a highly corrosion-resistant metal material such as aluminum, stainless steel, or nickel-plated steel can be used. Moreover, as the exterior body 200, a container in which a laminated film having at least one surface subjected to corrosion-resistant processing is processed into a bag shape can also be used.
 全固体リチウム二次電池1000の形状としては、例えば、コイン型、ボタン型、ペーパー型(又はシート型)、円筒型、角型、又はラミネート型(パウチ型)などの形状を挙げることができる。 Examples of the shape of the all-solid lithium secondary battery 1000 include coin-shaped, button-shaped, paper-shaped (or sheet-shaped), cylindrical, rectangular, and laminated (pouch-shaped).
 全固体リチウム二次電池1000は、一例として積層体100を1つ有する形態が図示されているが、本実施形態はこれに限らない。全固体リチウム二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成であってもよい。 The all-solid-state lithium secondary battery 1000 is illustrated as having one laminate 100 as an example, but the present embodiment is not limited to this. The all-solid-state lithium secondary battery 1000 may have a configuration in which the laminate 100 is used as a unit cell and a plurality of unit cells (laminate 100 ) are sealed inside the exterior body 200 .
 全固体リチウム二次電池については、例えば、WO2022/113904A1の[0151]~[0181]に記載の構成、材料及び製造方法を用いることができる。 For all-solid-state lithium secondary batteries, for example, the configurations, materials and manufacturing methods described in [0151] to [0181] of WO2022/113904A1 can be used.
 以上のような構成の正極は、上述したCAMを有するため、サイクル維持率の高いリチウム二次電池を提供できる。 Since the positive electrode having the above configuration has the CAM described above, it is possible to provide a lithium secondary battery with a high cycle retention rate.
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、サイクル維持率が高い。 Furthermore, the lithium secondary battery configured as described above has a high cycle retention rate because it has the positive electrode described above.
 もう一つの側面として、本発明は以下の態様を包含する。
<1>層状構造を有するCAMであって、前記CAMの前記第1平均アスペクト比が0.760-0.998以下であり、前記CAMの平均包絡度が0.983-0.990以下である、CAM。
<2>前記CAMの平均円形度が0.915-0.998以下である、<1>に記載のCAM。
<3>前記第2平均アスペクト比が、前記第1平均アスペクト比よりも0.003以上大きい、<1>又は<2>に記載のCAM。
<4>前記第1平均アスペクト比が、前記第3平均アスペクト比よりも0.004以上大きい、<1>~<3>の何れか1つに記載のCAM。
<5>式(A1)で表される、<1>~<4>の何れか一項に記載のCAM。
 Li[Li(Ni(1-y-z)Co1-x]O  ・・・(A1)
(式A中、Xは、Mn、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、B、Si、S及びPからなる群より選択される1種以上の元素であり、0<x≦0.10、0.05≦y≦0.30、0.05≦z≦0.35及びy+z≦0.3を満たす。)
<6>前記D100-Dが10-60μmである、<1>~<5>の何れか1つに記載のCAM。
<7>前記平均円形度が0.915-0.936である、<1>~<6>の何れか1つに記載のCAM。
<8><1>~<7>の何れか一項に記載のCAMを含有するリチウム二次電池用正極。
<9><8>に記載のリチウム二次電池用正極を有するリチウム二次電池。
As another aspect, the present invention includes the following aspects.
<1> A CAM having a layered structure, wherein the first average aspect ratio of the CAM is 0.760 to 0.998 or less, and the average envelopment of the CAM is 0.983 to 0.990 or less. , CAM.
<2> The CAM according to <1>, wherein the CAM has an average circularity of 0.915 to 0.998 or less.
<3> The CAM according to <1> or <2>, wherein the second average aspect ratio is greater than the first average aspect ratio by 0.003 or more.
<4> The CAM according to any one of <1> to <3>, wherein the first average aspect ratio is greater than the third average aspect ratio by 0.004 or more.
<5> The CAM according to any one of <1> to <4>, represented by formula (A1).
Li[Li x (Ni (1-yz) Co y x z ) 1-x ]O 2 (A1)
(In formula A, X is one or more selected from the group consisting of Mn, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, Si, S and P. is an element and satisfies 0<x≤0.10, 0.05≤y≤0.30, 0.05≤z≤0.35 and y+z≤0.3.)
<6> The CAM according to any one of <1> to <5>, wherein D 100 -D 0 is 10-60 μm.
<7> The CAM according to any one of <1> to <6>, wherein the average circularity is 0.915-0.936.
<8> A positive electrode for a lithium secondary battery, containing the CAM according to any one of <1> to <7>.
<9> A lithium secondary battery comprising the positive electrode for a lithium secondary battery according to <8>.
 以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited by the following description.
<組成分析>
 後述の方法で製造されるCAMの組成分析は、上述の「CAMの組成分析」の方法により行った。
<Composition analysis>
The composition analysis of the CAM produced by the below-described method was performed by the above-described "CAM composition analysis" method.
<静的自動画像分析>
 CAMの第1~第3平均アスペクト比、平均包絡度、平均円形度、平均粒子径及び粒度分布は、静的自動画像分析装置(マルバーン・パナリティカル社製、モフォロギ4)により、上述の方法にて測定された。
<Static automatic image analysis>
The first to third average aspect ratios, average envelopment, average circularity, average particle diameter and particle size distribution of CAM are measured by the above-described method using a static automatic image analyzer (manufactured by Malvern Panalytical, Morphologi 4). measured by
<サイクル維持率>
 上述の方法で作成されたリチウム二次電池について、上述の「サイクル維持率」の測定方法に記載の方法で測定した。
<Cycle maintenance rate>
The lithium secondary battery produced by the method described above was measured by the method described in the method for measuring the "cycle retention rate" described above.
 (実施例1)
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
(Example 1)
After water was put into a reactor equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added and the liquid temperature was maintained at 50°C.
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸アルミニウム水溶液とを、NiとCoとAlとのモル比が0.88:0.09:0.03となるように混合して、混合溶液を調製した。 A nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution were mixed so that the molar ratio of Ni, Co, and Al was 0.88:0.09:0.03 to prepare a mixed solution.
 次に、反応槽内に、攪拌下、この混合溶液及び錯化剤として硫酸アンモニウム水溶液を連続的に添加した。反応槽内の混合液のpHが11.6(測定温度:40℃)になるよう水酸化ナトリウム水溶液を適時滴下し、反応沈殿物1を得た。 Next, this mixed solution and an aqueous solution of ammonium sulfate as a complexing agent were continuously added into the reaction tank while stirring. A sodium hydroxide aqueous solution was added dropwise at appropriate times so that the pH of the mixed liquid in the reaction tank became 11.6 (measurement temperature: 40° C.), and a reaction precipitate 1 was obtained.
 反応沈殿物1を洗浄した後、脱水、乾燥及び篩別し、Ni、Co及びAlを含む金属複合水酸化物1が得られた。 After washing the reaction precipitate 1, it was dehydrated, dried and sieved to obtain a metal composite hydroxide 1 containing Ni, Co and Al.
 金属複合水酸化物1を大気雰囲気中650℃で5時間保持して加熱し、室温まで冷却して金属複合酸化物であるMCC1を得た。 The metal composite hydroxide 1 was held at 650°C in an air atmosphere for 5 hours, heated, and cooled to room temperature to obtain MCC1, which is a metal composite oxide.
 MCC1に含まれるNi、Co及びAlの合計量1に対するLiの量(モル比)が1.10となるように水酸化リチウムを秤量した。MCC1と水酸化リチウムを乳鉢を用いて混合し、混合物1を得た。 Lithium hydroxide was weighed so that the amount (molar ratio) of Li to the total amount of Ni, Co and Al contained in MCC1 was 1.10. Mixture 1 was obtained by mixing MCC1 and lithium hydroxide using a mortar.
 この混合物1を内径が300mmの回転筒を有するロータリーキルン(タナベ社製)に投入した。回転速度0.67rpm、焼成炉内の温度を690℃とし、酸素含有雰囲気下で2時間保持して混合物1を加熱し、金属複合酸化物1と水酸化リチウムとの反応物1を得た。 This mixture 1 was put into a rotary kiln (manufactured by Tanabe) having a rotating cylinder with an inner diameter of 300 mm. The rotation speed was 0.67 rpm, the temperature in the firing furnace was 690° C., and the mixture 1 was heated by holding in an oxygen-containing atmosphere for 2 hours to obtain a reaction product 1 of metal composite oxide 1 and lithium hydroxide.
 得られた反応物1を、ディスクミル(増幸産業社製、MKCA6-2)を用い、1200rpmの条件で解砕後、ピンミル(ミルシステム社製、インパクトミル)を用い、7000rpmの条件で解砕した。 The obtained reactant 1 is crushed under the conditions of 1200 rpm using a disk mill (manufactured by Masuko Sangyo Co., Ltd., MKCA6-2), and then crushed under the conditions of 7000 rpm using a pin mill (impact mill manufactured by Mill System Co., Ltd.). bottom.
 解砕した反応物1を内径が300mmの回転筒を有するロータリーキルン(タナベ社製)に投入した。回転速度0.67rpm、焼成炉内の温度を770℃とし、酸素含有雰囲気下で2時間保持して反応物1を焼成し、焼成物1を得た。 The pulverized reactant 1 was put into a rotary kiln (manufactured by Tanabe) having a rotating cylinder with an inner diameter of 300 mm. The rotation speed was 0.67 rpm, the temperature in the firing furnace was set at 770° C., and the reactant 1 was fired in an oxygen-containing atmosphere for 2 hours to obtain a fired product 1 .
 得られた焼成物1を、ディスクミル(増幸産業社製、MKCA6-2)を用い、1200rpmの条件で解砕した。 The fired product 1 obtained was pulverized at 1200 rpm using a disc mill (MKCA6-2, manufactured by Masuko Sangyo Co., Ltd.).
 解砕した焼成物1と液温を5℃に調整した純水とを、全体量に対して焼成物の割合が30質量%になるように混合してスラリーを作製した。作製したスラリーを20分間撹拌させて洗浄した後、脱水し、250℃で熱処理し、脱水後に残留する水分を乾燥することにより、CAM-1を得た。 A slurry was prepared by mixing the pulverized fired product 1 and pure water adjusted to a liquid temperature of 5°C so that the ratio of the fired product to the total amount was 30% by mass. The prepared slurry was washed with stirring for 20 minutes, dehydrated, heat-treated at 250° C., and dried to remove water remaining after dehydration to obtain CAM-1.
 CAM-1の組成分析を行ったところ、組成式(A)において、x=0.04、y=0.089、z=0.022であり、XはAlであった。 A composition analysis of CAM-1 revealed that x = 0.04, y = 0.089, z = 0.022 and X was Al in the composition formula (A).
 (実施例2)
 実施例1に記載の方法で得られた混合物1を、内径が100mmの回転筒を有するロータリーキルン(ノリタケTCF社製)に投入した。回転速度1.08rpm、焼成炉内の温度を680℃とし、酸素含有雰囲気下で2時間保持して混合物1を加熱し、反応物2を得た。
(Example 2)
Mixture 1 obtained by the method described in Example 1 was put into a rotary kiln (manufactured by Noritake TCF Co., Ltd.) having a rotating barrel with an inner diameter of 100 mm. The rotation speed was 1.08 rpm, the temperature in the firing furnace was 680° C., and the mixture 1 was heated by holding it for 2 hours in an oxygen-containing atmosphere to obtain a reaction product 2 .
 得られた反応物2を、ディスクミル(増幸産業社製、MKCA6-2)を用い、1200rpmの条件で解砕後、ピンミル(ミルシステム社製、インパクトミル)を用い、20000rpmで解砕した。 The obtained reactant 2 was pulverized at 1200 rpm using a disk mill (MKCA6-2, manufactured by Masuko Sangyo Co., Ltd.), and then pulverized at 20000 rpm using a pin mill (impact mill, manufactured by Mill System Co., Ltd.).
 解砕した反応物2を、内径が100mmの回転筒を有するロータリーキルン(ノリタケTCF社製)に投入した。回転速度1.08rpm、焼成炉内の温度を720℃とし、酸素含有雰囲気下で2時間保持して反応物2を焼成し、焼成物2を得た。 The pulverized reactant 2 was put into a rotary kiln (manufactured by Noritake TCF Co., Ltd.) having a rotating cylinder with an inner diameter of 100 mm. The rotation speed was 1.08 rpm, the temperature in the firing furnace was set to 720° C., and the reactant 2 was fired in an oxygen-containing atmosphere for 2 hours to obtain the fired product 2 .
 得られた焼成物2を、実施例1に記載の方法で解砕、洗浄、脱水、熱処理及び乾燥し、CAM-2を得た。 The fired product 2 obtained was pulverized, washed, dehydrated, heat treated and dried by the method described in Example 1 to obtain CAM-2.
 CAM-2の組成分析を行ったところ、組成式(A)において、x=0.05、y=0.088、z=0.023であり、元素XはAlであった。 A composition analysis of CAM-2 revealed that x = 0.05, y = 0.088, z = 0.023 in composition formula (A), and element X was Al.
 (比較例1)
 実施例1に記載の方法で混合物1を得た。この混合物1をローラーハースキルン(ノリタケカンパニーリミテド社製)の焼成炉内で酸素含有雰囲気下、650℃、5時間保持して混合物1を焼成し、金属複合酸化物1と水酸化リチウムとの反応物C1を得た。
(Comparative example 1)
Mixture 1 was obtained by the method described in Example 1. This mixture 1 is held in a roller hearth kiln (manufactured by Noritake Co., Ltd.) in an oxygen-containing atmosphere at 650 ° C. for 5 hours to bake the mixture 1, and the metal composite oxide 1 reacts with lithium hydroxide. obtained product C1.
 得られた反応物C1を、ディスクミル(増幸産業社製、MKCA6-2)を用い、1200rpmの条件で解砕した。 The obtained reactant C1 was pulverized at 1200 rpm using a disk mill (MKCA6-2, manufactured by Masuko Sangyo Co., Ltd.).
 次いで、解砕した反応物C1を、ローラーハースキルン(ノリタケカンパニーリミテド社製)の焼成炉内で720℃、6時間保持して焼成し、焼成物C1を得た。 Next, the pulverized reactant C1 was fired at 720°C for 6 hours in a roller hearth kiln (manufactured by Noritake Co., Ltd.) to obtain a fired product C1.
 得られた焼成物C1を、実施例1に記載の方法で解砕、洗浄、脱水、熱処理及び乾燥し、CAM-C1を得た。 The obtained fired product C1 was pulverized, washed, dehydrated, heat treated and dried by the method described in Example 1 to obtain CAM-C1.
 CAM-C1の組成分析を行ったところ、組成式(A)において、x=0.04、y=0.089、z=0.022であり、元素XはAlであった。 A composition analysis of CAM-C1 revealed that x = 0.04, y = 0.089, z = 0.022 in composition formula (A), and element X was Al.
 (比較例2)
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸アルミニウム水溶液とを、NiとCoとAlとのモル比が0.885:0.09:0.025となるように混合して、混合溶液を調製した以外は、実施例1に記載の方法で混合物2を得た。得られた混合物2を用いた以外は比較例1と同様の方法を実施して、CAM-C2を得た。
(Comparative example 2)
A nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution were mixed so that the molar ratio of Ni, Co, and Al was 0.885:0.09:0.025, except that a mixed solution was prepared. A mixture 2 was obtained by the method described in Example 1. CAM-C2 was obtained in the same manner as in Comparative Example 1 except that the obtained mixture 2 was used.
 CAM-C2の組成分析を行ったところ、組成式(A)において、x=0.10、y=0.09、z=0.025であり、元素XはAlであった。 A composition analysis of CAM-C2 revealed that x = 0.10, y = 0.09, and z = 0.025 in the composition formula (A), and the element X was Al.
 実施例1~2及び比較例1~2で得られたCAMは、XRDの結果から全て層状構造を有していた。
 実施例1~2及び比較例1~2のCAMの焼成条件、第1平均アスペクト比、平均包絡度、平均粒子径、粒度分布、第2平均アスペクト比-第1平均アスペクト比、第1平均アスペクト比-第3平均アスペクト比、平均円形度及び各CAMを使用したリチウム二次電池のサイクル維持率を表1に示す。
The CAMs obtained in Examples 1 and 2 and Comparative Examples 1 and 2 all had a layered structure from the results of XRD.
CAM firing conditions of Examples 1 and 2 and Comparative Examples 1 and 2, first average aspect ratio, average enveloping degree, average particle diameter, particle size distribution, second average aspect ratio - first average aspect ratio, first average aspect Table 1 shows the ratio-third average aspect ratio, average circularity, and cycle retention rate of lithium secondary batteries using each CAM.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~2の焼成工程では、ロータリーキルンを使用して一次焼成及び二次焼成を行った。さらに、回転筒の内径が300mmの場合は焼成条件を0.67rpmとし、回転筒の内径が100mmの場合は焼成条件を1.08rpmとなるよう調整した。このようなCAMは、第1平均アスペクト比が0.755-1.000であり、平均包絡度が0.983-1.000であった。さらに、CAM-1~CAM-2を用いたリチウム二次電池のサイクル維持率は、88%以上であった。 In the firing process of Examples 1 and 2, primary firing and secondary firing were performed using a rotary kiln. Furthermore, when the inner diameter of the rotating cylinder was 300 mm, the firing conditions were adjusted to 0.67 rpm, and when the inner diameter of the rotating cylinder was 100 mm, the firing conditions were adjusted to 1.08 rpm. Such CAMs had a first average aspect ratio of 0.755-1.000 and an average envelope of 0.983-1.000. Furthermore, the cycle retention rate of lithium secondary batteries using CAM-1 to CAM-2 was 88% or more.
 一方で、一次焼成及び二次焼成をローラーハースキルンで行った比較例1~2では、平均アスペクト比又は平均包絡度が上記範囲を満たしていなかった。これは、焼成において混合物が流動せず、二次粒子に等方的に力が加えられなかったためと考えられる。 On the other hand, in Comparative Examples 1 and 2 in which the primary firing and secondary firing were performed in a roller hearth kiln, the average aspect ratio or average enveloping degree did not satisfy the above ranges. It is considered that this is because the mixture did not flow during firing and no isotropic force was applied to the secondary particles.
 以上のCAM-C1~CAM-C2を用いたリチウム二次電池のサイクル維持率は87.9%以下であった。 The cycle retention rate of lithium secondary batteries using the above CAM-C1 to CAM-C2 was 87.9% or less.
 本発明によれば、サイクル維持率の高いリチウム二次電池を得ることができるCAM、及びこれを用いたリチウム二次電池用正極及びリチウム二次電池を提供することができる。 According to the present invention, it is possible to provide a CAM capable of obtaining a lithium secondary battery with a high cycle retention rate, and a positive electrode for a lithium secondary battery and a lithium secondary battery using the CAM.
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード、100…積層体、110…正極、111…正極活物質層、112…正極集電体、113…外部端子、120…負極、121…負極活物質層、122…負極集電体、123…外部端子、130…固体電解質層、200…外装体、200a…開口部、1000…全固体リチウム二次電池 DESCRIPTION OF SYMBOLS 1... Separator, 2... Positive electrode, 3... Negative electrode, 4... Electrode group, 5... Battery can, 6... Electrolytic solution, 7... Top insulator, 8... Sealing body, 10... Lithium secondary battery, 21... Positive electrode lead, 31 Negative electrode lead 100 Laminated body 110 Positive electrode 111 Positive electrode active material layer 112 Positive electrode current collector 113 External terminal 120 Negative electrode 121 Negative electrode active material layer 122 Negative electrode current collector DESCRIPTION OF SYMBOLS 123... External terminal 130... Solid electrolyte layer 200... Exterior body 200a... Opening part 1000... All-solid-state lithium secondary battery

Claims (9)

  1.  層状構造を有するリチウム二次電池用正極活物質であって、前記リチウム二次電池用正極活物質のアスペクト比である第1平均アスペクト比が0.755以上1.000以下であり、前記リチウム二次電池用正極活物質の平均包絡度が0.983以上1.000以下である、リチウム二次電池用正極活物質。 A positive electrode active material for a lithium secondary battery having a layered structure, wherein a first average aspect ratio, which is an aspect ratio of the positive electrode active material for a lithium secondary battery, is 0.755 or more and 1.000 or less; A positive electrode active material for a lithium secondary battery, which has an average enveloping degree of 0.983 or more and 1.000 or less.
  2.  前記リチウム二次電池用正極活物質の平均円形度が0.910以上1.000以下である、請求項1に記載のリチウム二次電池用正極活物質。 The positive electrode active material for lithium secondary batteries according to claim 1, wherein the positive electrode active material for lithium secondary batteries has an average circularity of 0.910 or more and 1.000 or less.
  3.  前記第1平均アスペクト比が0.755以上0.999以下である、請求項1又は2に記載のリチウム二次電池用正極活物質。 The positive electrode active material for a lithium secondary battery according to claim 1 or 2, wherein the first average aspect ratio is 0.755 or more and 0.999 or less.
  4.  前記リチウム二次電池用正極活物質の平均粒子径より小さい粒子径をもつ粒子のアスペクト比である第2平均アスペクト比が、前記第1平均アスペクト比よりも0.003以上大きい、請求項1~3の何れか1つに記載のリチウム二次電池用正極活物質。 Claims 1 to 1, wherein a second average aspect ratio, which is an aspect ratio of particles having a particle diameter smaller than the average particle diameter of the positive electrode active material for a lithium secondary battery, is greater than the first average aspect ratio by 0.003 or more. 4. The positive electrode active material for a lithium secondary battery according to any one of 3.
  5.  前記第1平均アスペクト比が、前記リチウム二次電池用正極活物質の平均粒子径以上の粒子径をもつ粒子のアスペクト比である第3平均アスペクト比よりも0.004以上大きい、請求項1~4の何れか1つに記載のリチウム二次電池用正極活物質。 Claims 1 to 1, wherein the first average aspect ratio is 0.004 or more larger than the third average aspect ratio, which is the aspect ratio of particles having a particle diameter equal to or larger than the average particle diameter of the positive electrode active material for a lithium secondary battery. 5. The positive electrode active material for a lithium secondary battery according to any one of 4.
  6.  式(A)で表される、請求項1~5の何れか1つに記載のリチウム二次電池用正極活物質。
     Li[Li(Ni(1-y-z)Co1-x]O  ・・・(A)
    (式A中、Xは、Mn、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、B、Si、S及びPからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0≦y≦0.4、及び0≦z≦0.5を満たす。)
    The positive electrode active material for a lithium secondary battery according to any one of claims 1 to 5, represented by formula (A).
    Li[Li x (Ni (1-yz) Co y x z ) 1-x ]O 2 (A)
    (In formula A, X is one or more selected from the group consisting of Mn, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, Si, S and P. is an element and satisfies -0.1 ≤ x ≤ 0.2, 0 ≤ y ≤ 0.4, and 0 ≤ z ≤ 0.5.)
  7.  前記リチウム二次電池用正極活物質のD100-Dが10μm以上60μm以下であり、前記D100が前記リチウム二次電池用正極活物質のうち最も大きい粒子の粒子径であり、前記Dが前記リチウム二次電池用正極活物質のうち最も小さい粒子の粒子径である、請求項1~6の何れか1つに記載のリチウム二次電池用正極活物質。 D 100 −D 0 of the positive electrode active material for a lithium secondary battery is 10 μm or more and 60 μm or less, the D 100 is the particle diameter of the largest particle of the positive electrode active material for the lithium secondary battery, and the D 0 The positive electrode active material for a lithium secondary battery according to any one of claims 1 to 6, wherein is the particle diameter of the smallest particles in the positive electrode active material for a lithium secondary battery.
  8.  請求項1~7の何れか1つに記載のリチウム二次電池用正極活物質を含有するリチウム二次電池用正極。 A positive electrode for lithium secondary batteries containing the positive electrode active material for lithium secondary batteries according to any one of claims 1 to 7.
  9.  請求項8に記載のリチウム二次電池用正極を有するリチウム二次電池。 A lithium secondary battery having the positive electrode for a lithium secondary battery according to claim 8.
PCT/JP2022/045015 2021-12-08 2022-12-07 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery WO2023106309A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-199651 2021-12-08
JP2021199651A JP7455795B2 (en) 2021-12-08 2021-12-08 Positive electrode active materials for lithium secondary batteries, positive electrodes for lithium secondary batteries, and lithium secondary batteries

Publications (1)

Publication Number Publication Date
WO2023106309A1 true WO2023106309A1 (en) 2023-06-15

Family

ID=86730496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045015 WO2023106309A1 (en) 2021-12-08 2022-12-07 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Country Status (2)

Country Link
JP (2) JP7455795B2 (en)
WO (1) WO2023106309A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181193A (en) * 2010-02-26 2011-09-15 Sumitomo Metal Mining Co Ltd Nickel-cobalt composite hydroxide for nonaqueous electrolyte secondary battery positive electrode active material, manufacturing method thereof, and method of manufacturing nonaqueous electrolyte secondary battery positive electrode active material using nickel-cobalt composite hydroxide
JP2013120734A (en) * 2011-12-08 2013-06-17 Toyota Motor Corp Nonaqueous secondary battery
JP2021091574A (en) * 2019-12-10 2021-06-17 三菱マテリアル株式会社 Silicon fine particles and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251332B2 (en) 2007-07-30 2013-07-31 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181193A (en) * 2010-02-26 2011-09-15 Sumitomo Metal Mining Co Ltd Nickel-cobalt composite hydroxide for nonaqueous electrolyte secondary battery positive electrode active material, manufacturing method thereof, and method of manufacturing nonaqueous electrolyte secondary battery positive electrode active material using nickel-cobalt composite hydroxide
JP2013120734A (en) * 2011-12-08 2013-06-17 Toyota Motor Corp Nonaqueous secondary battery
JP2021091574A (en) * 2019-12-10 2021-06-17 三菱マテリアル株式会社 Silicon fine particles and method for producing the same

Also Published As

Publication number Publication date
JP2023085223A (en) 2023-06-20
JP7455795B2 (en) 2024-03-26
JP2023085141A (en) 2023-06-20

Similar Documents

Publication Publication Date Title
JP6323117B2 (en) Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2019029343A (en) Cathode active material, and battery
KR20050058968A (en) Method for preparing lithium manganese nickel composite oxide
JP2001122628A (en) Lithium-manganese multi-component oxide particulate composition, method for manufacturing the same and secondary battery
JP5076258B2 (en) Element-substituted lithium manganese composite oxide particulate composition, its production method and its use in secondary batteries
WO2022260072A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2023013494A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7146140B1 (en) Method for producing lithium metal composite oxide
WO2023106309A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2023106274A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2023106336A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022264992A1 (en) Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, lithium secondary battery, and method for producing lithium secondary battery positive electrode active material
WO2023181992A1 (en) Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, lithium secondary battery, and method for producing lithium secondary battery positive electrode active material
JP7441999B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JP7412485B1 (en) Method for producing metal composite hydroxide particles and positive electrode active material for lithium secondary batteries
JP7359911B1 (en) Precursor and method for producing positive electrode active material for lithium secondary batteries
JP7118187B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP7416897B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JP7417675B1 (en) Metal composite hydroxide particles, method for producing metal composite compound, and method for producing positive electrode active material for lithium secondary batteries
JP7441998B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JP7454642B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
WO2023106313A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2023090452A1 (en) Precursor powder, positive electrode active material powder, positive electrode active material powder production method, positive electrode, and lithium secondary battery
JP2018085339A (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode active material for nonaqueous electrolyte secondary battery, and method for manufacturing the same
US20230163294A1 (en) Lithium-metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904237

Country of ref document: EP

Kind code of ref document: A1