WO2023106250A1 - Antigen for preparing antibody against trichothecene mycotoxin, and use thereof - Google Patents

Antigen for preparing antibody against trichothecene mycotoxin, and use thereof Download PDF

Info

Publication number
WO2023106250A1
WO2023106250A1 PCT/JP2022/044663 JP2022044663W WO2023106250A1 WO 2023106250 A1 WO2023106250 A1 WO 2023106250A1 JP 2022044663 W JP2022044663 W JP 2022044663W WO 2023106250 A1 WO2023106250 A1 WO 2023106250A1
Authority
WO
WIPO (PCT)
Prior art keywords
don
antibody
niv
antigen
group
Prior art date
Application number
PCT/JP2022/044663
Other languages
French (fr)
Japanese (ja)
Inventor
司郎 三宅
賢二 大仲
響子 野田
哲也 山本
敏弘 山本
拓 吉矢
敬子 門間
由紀 平川
Original Assignee
学校法人 麻布獣医学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 麻布獣医学園 filed Critical 学校法人 麻布獣医学園
Publication of WO2023106250A1 publication Critical patent/WO2023106250A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/14Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from fungi, algea or lichens

Definitions

  • the present invention relates to the preparation of antibodies against trichothecene mycotoxins, particularly deoxynivalenol, nivalenol, and their acetylated forms and glycosides.
  • Fusarium genus fungi such as Fusarium graminearum infect barley such as wheat and barley, and cereals such as corn, and cause Fusarium mold, which is difficult to control.
  • these Fusarium mold fungi can produce trichothecene toxins such as deoxynivalenol (DON) and nivalenol (NIV), so humans who consume Fusarium-contaminated grains and It is known to cause poisoning symptoms such as diarrhea, vomiting, and disorders of the digestive tract, etc. in livestock, and to cause health problems such as weight loss when the symptoms become chronic. Therefore, rapid detection of Fusarium mold is required at production sites.
  • DON deoxynivalenol
  • NMV nivalenol
  • HPLC, GC/MS, and LC/MS methods are used to detect trichothecene toxins such as DON and NIV, but these methods are not suitable for processing many samples in a short time. Not suitable. Therefore, it is desirable to efficiently measure many samples by immunological quantification methods such as ELISA.
  • Immunoassay kits for DON are currently on the market, and specifications and standards have been established.
  • the toxicity of NIV is known to be equal to or higher than that of DON, no kit capable of detecting NIV is available on the market, and standards and the like have not been established. Therefore, it is important to develop a simple immunoassay especially for NIV.
  • DON it is still important to obtain more optimized antibodies in terms of reaction specificity and the like.
  • Non-Patent Document 1 polyclonal antibodies recognizing DON, 3-Ac-DON and 15-Ac-DON
  • Non-Patent Document 2 monoclonal antibodies recognizing DON, 3-Ac-DON and some trichothecene toxins
  • Non-Patent Document 3 monoclonal antibodies recognizing DON and 3-Ac-DON
  • Non-Patent Document 4 antibodies that cross-react with DON and 3-Ac-DON
  • Non-Patent Document 3 antibodies that recognize 3,4,15-triAc-NIV, 3,4,15-triAc-NIV and 3
  • Patent Document 1 reports on an antibody that recognizes ,15-diAc-NIV
  • Patent Document 2 there is no report on an antibody that specifically recognizes NIV.
  • the present invention provides a method for preparing an antibody that recognizes DON, NIV, and trichothecene derivatives including their acetylated forms and glycosides, an antigen suitable for use in the method, and an antibody against the antigen.
  • the challenge is to provide
  • DON and NIV have multiple OH groups for protein binding.
  • DON is R 1 at position 3
  • R 4 at position 7 is -OH
  • R 3 at position 15 is -OH
  • R 2 at position 4 is -H
  • NIV is at position 3.
  • R 2 at position 4, R 4 at position 7 , and R 3 at position 15 are all -OH.
  • the present inventors developed a synthetic method of introducing a linker (a linker containing a terminal carboxyl group) for selectively binding a carrier protein only to the 15-position of DON and NIV. Found it.
  • DON and NIV having a linker at position 15 synthesized by this selective synthesis method and DON and NIV having a carrier protein introduced into the linker portion at position 15 of NIV are prepared, and monoclonal antibodies are prepared using these DON and NIV as antigens.
  • the present invention is a method for producing an antibody, comprising immunizing with a trichothecene derivative represented by the following formula (I) as an antigen.
  • R2 represents a hydrogen or hydroxyl group
  • X represents a carrier protein.
  • the present invention also provides an antibody against the trichothecene derivative represented by formula (I) above, and a kit for detecting a trichothecene mycotoxin containing the antibody.
  • the present invention is an immunogenic composition comprising the trichothecene derivative represented by the above formula (I) as an antigen.
  • the present invention is a trichothecene derivative represented by the following formula (III).
  • R2 represents a hydrogen or hydroxyl group
  • Y represents a functional group for cross-linking proteins or a linker containing the functional group.
  • the present invention provides a more efficient method than the conventionally reported methods for producing antibodies against trichothecene mycotoxins.
  • the vertical axis indicates the ratio of the OD of the sample to the OD of the reaction without DON and 15-Ac-DON, and the horizontal axis indicates the concentration of DON or 15-Ac-DON added to the reaction wells.
  • the vertical axis indicates the ratio of the OD of the sample to the OD of the reaction without NIV and 15-Ac-NIV, and the horizontal axis indicates the concentration of NIV or 15-Ac-NIV added to the reaction wells.
  • the vertical axis indicates the ratio of the OD of the sample to the OD of the reaction without NIV and 15-Ac-NIV
  • the horizontal axis indicates the concentration of NIV or 15-Ac-NIV added to the reaction wells.
  • the first embodiment is a method for producing an antibody, which comprises immunizing a trichothecene derivative represented by the following formula (I) as an antigen (hereinafter referred to as "antibody producing method of the present embodiment” also described).
  • R2 represents a hydrogen or hydroxyl group
  • X represents a carrier protein.
  • An antibody produced by the method for producing an antibody according to this embodiment is an antibody that specifically binds to a trichothecene mycotoxin.
  • the trichothecene mycotoxin is a general term for fungal toxins having a trichothecene ring.
  • Examples include NIV, fusalenone-X (4-Ac-NIV) in which R2 is an acetoxy group and R1 and R3 are hydroxyl groups.
  • the method for producing an antibody according to this embodiment may include a step of binding carrier protein X via Y to position 15 of the trichothecene derivative represented by the following formula (III).
  • R 2 represents hydrogen or a hydroxyl group
  • Y represents a functional group for cross-linking proteins or a linker containing the functional group.
  • This embodiment is characterized in that an antibody is produced using, as an antigen, a trichothecene derivative in which a carrier protein (represented by X in formula (I)) is bound to position 15, as represented by formula (I). ing.
  • a carrier protein is a protein that is used to conjugate a hapten to confer immunogenicity.
  • the carrier protein used in the present embodiment may be any protein that can be appropriately selected by those skilled in the art, and is not particularly limited. Examples include keyhole limpet hemocyanin (KLH), ovalbumin ( OVA), rabbit serum albumin (RSA), bovine serum albumin (BSA), human serum albumin (HSA), thyroglobulin (TG), and immunoglobulins.
  • X in formula (I) has a functional group for binding the carrier protein to position 15 of the trichothecene skeleton corresponding to Y in formula (III), or a linker containing the functional group.
  • Y corresponds to a linker containing the carboxyl group as well as the carboxyl group.
  • Y may be a carboxyl group, a maleimide group, a thiol group, an amino group, an azide group, or a linker containing these functional groups, but a preferred functional group is a carboxyl group. can.
  • the linker containing a carboxyl group includes, for example, a linear, branched or cyclic C2-C10 acyloxy group containing a carboxyl group, preferably a 3-carboxypropionyloxy group, a 4-carboxybutyryloxy group. , a carboxy C3-C5 alkoxy group such as a 5-carboxypentanoyloxy group, more preferably a carboxy C4 alkoxy group such as a 4-carboxybutyryloxy group.
  • the antibody production method according to the present embodiment is characterized by using the trichothecene derivative represented by the above formula (I) as an antigen, and specific antibody preparation methods are well known in the art. It can be easily obtained by those skilled in the art by using the method.
  • a second embodiment is an antibody against a trichothecene derivative represented by the following formula (II) or an antigen-binding fragment thereof (hereinafter also referred to as an "antibody according to this embodiment” or an “antigen-binding fragment according to this embodiment”). do).
  • the antibody according to this embodiment is an antibody against DON, 3-Ac-DON and/or 15-Ac-DON, or NIV and/or fusalenone-X (4-Ac-NIV), DON It is an antibody against -3-O-glucoside.
  • the antibody according to this embodiment may be produced by any method, and may be an antibody produced by the antibody production method according to the first embodiment.
  • the antibody according to this embodiment is a polyclonal antibody
  • a mixture of an antigen and an adjuvant is administered to an immunized animal (such as, but not limited to, rabbits, goats, sheep, chickens, guinea pigs, mice, rats or pigs) can be prepared by injecting Typically, the antigen and/or adjuvant are injected subcutaneously or intraperitoneally multiple times into the immunized animal.
  • Adjuvants include, but are not limited to, Freund's complete and monophosphoryl lipid A synthetic-trehalose dicorynomycolate (MPL-TMD).
  • MPL-TMD monophosphoryl lipid A synthetic-trehalose dicorynomycolate
  • the antibody of interest can be purified from serum derived from the immunized animal by a standard method (for example, a method using Protein A-retained Sepharose or the like).
  • the term "monoclonal” indicates the characteristics of an antibody obtained from a substantially homogeneous antibody population (an antibody population in which the amino acid sequences of the heavy and light chains that constitute the antibody are the same). and should not be construed as being limited to antibodies produced by a specific method (eg, hybridoma method, etc.). Methods for producing monoclonal antibodies include, for example, the hybridoma method (Kohler and Milstein, Nature 256 495-497 1975) or the recombinant method (US Pat. No. 4,816,567).
  • antibodies according to this embodiment may be isolated from phage antibody libraries (eg, Clackson et al., Nature 352 624-628 1991; Marks et al., J. Mol. Biol. 222 581-597 1991, etc.). More specifically, in the case of preparation using the hybridoma method, the preparation method includes, for example, the following four steps: (i) immunizing an immunized animal with an antigen, (ii) monoclonal antibody (iii) fusing the lymphocytes to immortalized cells; (iv) selecting cells that secrete the desired monoclonal antibody. Examples of animals to be immunized include mice, rats, guinea pigs, hamsters, and rabbits.
  • lymphocytes obtained from the host animal are fused with an immortalized cell line using a fusing agent such as polyethylene glycol or an electrofusion method to establish hybridoma cells.
  • a fusing agent such as polyethylene glycol or an electrofusion method to establish hybridoma cells.
  • fusion cells for example, rat or mouse myeloma cell lines are used.
  • the cells are grown in a suitable medium containing substrates that inhibit the growth or survival of unfused lymphocytes and immortalized cell lines.
  • a common technique uses parental cells that lack the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT or HPRT). In this case, aminopterin is added to the medium (HAT medium) that inhibits the growth of HGPRT-deficient cells and allows the growth of hybridomas.
  • HGPRT hypoxanthine-guanine phosphoribosyltransferase
  • Hybridomas producing the desired antibody can be selected from the hybridomas thus obtained, and the monoclonal antibody of interest can be obtained from the culture medium in which the selected hybridoma grows according to conventional methods.
  • the hybridoma thus prepared can be cultured in vitro or cultured in vivo in the ascites fluid of mice, rats, guinea pigs, hamsters, etc., and the antibody of interest can be prepared from the culture supernatant or the ascites fluid.
  • a nanobody is a polypeptide consisting of the variable domain of the heavy chain of heavy chain antibody (VHH).
  • VHH heavy chain antibody
  • human antibodies are composed of heavy and light chains, but camelids such as llamas, alpacas, and camels produce single-chain antibodies (heavy-chain antibodies) composed only of heavy chains.
  • a heavy chain antibody can recognize and bind to a target antigen in the same way as a normal antibody consisting of heavy and light chains.
  • the variable region of a heavy chain antibody is the smallest unit that has binding affinity for an antigen, and this variable region fragment is called a "nanobody”.
  • Nanobodies have high heat resistance, digestion resistance, and room temperature stability, and can be easily prepared in large amounts by genetic engineering techniques. Nanobodies can be produced, for example, as follows.
  • a camelid animal is immunized with an antigen, the presence or absence of the antibody of interest is detected in the collected serum, and cDNA is prepared from RNA derived from peripheral blood lymphocytes of the immunized animal in which a desired antibody titer is detected.
  • a VHH-encoding DNA fragment is amplified from the resulting cDNA and inserted into a phagemid to prepare a VHH phagemid library. Desired nanobodies can be produced through several rounds of screening from the produced VHH phagemid library.
  • the antibody according to this embodiment may be a genetically engineered antibody.
  • genetically modified antibodies include, but are not limited to, humanized antibodies and chimeric antibodies with human antibodies.
  • a chimeric antibody is, for example, an antibody in which a variable region and a constant region derived from different animal species are linked (for example, an antibody in which a rat-derived antibody variable region is linked to a human-derived constant region) (for example, Morrison et al., Proc. Natl. Acad. Sci.
  • a humanized antibody is an antibody that has a human-derived sequence in the framework region (FR) and a complementarity-determining region (CDR) that consists of sequences derived from other animal species (eg, mouse).
  • Humanized antibodies are first described in other animal species, here mouse, by grafting the CDRs from mouse-derived antibody variable regions into human antibody variable regions to reconstitute the heavy and light chain variable regions. Later, these humanized reshaped human antibody variable regions can be made by joining them to human antibody constant regions. Methods for producing such humanized antibodies are well known in the art (eg, Queen et al., Proc. Natl. Acad. Sci. USA, 86, 10029-10033 1989).
  • the antigen-binding fragment according to this embodiment is a partial region of the antibody according to this embodiment, and is an antibody fragment that binds to a desired antigen.
  • fragments include Fab, Fab', F (ab') 2 , Fv (variable fragment of antibody), single chain antibody (heavy chain, light chain, heavy chain variable region, light chain variable region, nano antibody, etc.), scFv (single chain Fv), diabody (scFv dimers), dsFv (disulfide-stabilized Fv), and peptides at least partially containing the CDRs of the antibody according to this embodiment.
  • Fab is an antibody fragment with antigen-binding activity in which about half of the N-terminal side of the heavy chain and the entire light chain are bound by disulfide bonds, among the fragments obtained by treating the antibody molecule with the proteolytic enzyme papain.
  • Preparation of Fab is carried out by treating antibody molecules with papain to obtain fragments, for example, constructing an appropriate expression vector into which DNA encoding Fab is inserted, and inserting this into an appropriate host cell (e.g., CHO cell, etc.). (mammalian cells, yeast cells, insect cells, etc.), and then expressing Fab in the cells.
  • F(ab') 2 is an antibody fragment having antigen-binding activity that is slightly larger than a fragment obtained by treating an antibody molecule with a proteolytic enzyme pepsin and having Fab bound via a disulfide bond in the hinge region. is.
  • F(ab') 2 can be prepared by treating an antibody molecule with pepsin to obtain a fragment, or by forming a thioether bond or a disulfide bond with Fab. can be made.
  • Fab' is an antibody fragment having antigen-binding activity obtained by cleaving the disulfide bond in the hinge region of F(ab') 2 .
  • Fab' can also be produced by a genetic engineering technique like Fab and the like.
  • scFv is a VH-linker-VL or VL-linker-VH polypeptide in which one heavy chain variable region (VH) and one light chain variable region (VL) are linked using an appropriate peptide linker. It is an antibody fragment having antigen-binding activity.
  • scFv can be produced by obtaining cDNAs encoding the heavy chain variable region and light chain variable region of an antibody and using genetic engineering techniques.
  • a diabody is an antibody fragment in which scFv is dimerized and has bivalent antigen-binding activity.
  • the bivalent antigen-binding activities may be the same antigen-binding activity or one of which may be different.
  • Diabody obtains cDNAs encoding the heavy and light chain variable regions of an antibody, constructs a scFv-encoding cDNA by linking the heavy and light chain variable regions with a peptide linker, and genetically engineered method.
  • dsFv refers to polypeptides in which one amino acid residue in each of the heavy chain variable region and light chain variable region is substituted with a cysteine residue, and are linked via a disulfide bond between the cysteine residues. Amino acid residues to be substituted for cysteine residues can be selected based on antibody tertiary structure prediction.
  • a dsFv can be produced by genetic engineering techniques by obtaining cDNAs encoding the heavy chain variable region and light chain variable region of an antibody and constructing a DNA encoding the dsFv.
  • a peptide containing CDRs is constructed to contain at least one region or more of CDRs (CDR1-3) of a heavy or light chain.
  • CDR1-3 CDRs
  • Peptides containing multiple CDRs can be joined directly or via suitable peptide linkers.
  • the CDR-containing peptides are inserted into an expression vector by constructing DNA encoding the heavy or light chain CDRs of the antibody.
  • the type of vector is not particularly limited, and may be appropriately selected depending on the type of host cell into which it is subsequently introduced. In order to express these as antibodies, they can be produced by introducing them into suitable host cells (eg, mammalian cells such as CHO cells, yeast cells, insect cells, etc.).
  • Peptides containing CDRs can also be produced by chemical synthesis methods such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
  • Human antibodies (fully human antibodies) generally have the same structures as human antibodies in the structure of the hypervariable region, which is the antigen-binding site of the V region, other parts of the V region, and the constant region. . Human antibodies can be easily produced by those skilled in the art using known techniques. Human antibodies can be obtained, for example, by methods using human antibody-producing mice that have human chromosome fragments containing human antibody H chain and L chain genes (for example, Tomizuka et al., Proc. Natl. Acad. Sci.
  • phage display-derived human antibodies selected from a human antibody library see, for example, Siriwardena et al., Opthalmology, 109, 427-431 2002.).
  • a multispecific antibody may be constructed using the antigen-binding fragment according to this embodiment.
  • Multispecific means having binding specificities for two or more antigens, for example, protein forms comprising monoclonal antibodies or antigen-binding fragments that have binding specificities for two or more antigens mentioned. This is done by a person skilled in the art according to known techniques. Methods for constructing multispecificity include the technique of constructing asymmetric IgG by protein engineering so that two different types of antibody heavy chain molecules form a heterodimer, and the low-molecular-weight antigen-binding technique obtained from antibodies. A number of techniques have been developed that can be classified into techniques for linking fragments together or linking to another antibody molecule. Examples of specific construction methods can be referred to, for example, the following documents. Kontermann et al., Drug Discovery Today, 20, 838-847 2015.
  • a third embodiment is an immunogenic composition comprising a trichothecene derivative represented by the following formula (I) as an antigen.
  • R2 represents a hydrogen or hydroxyl group
  • X represents a carrier protein.
  • Immunogenicity in this embodiment means the ability to induce a specific immune response in vivo against the trichothecene derivative represented by the above formula (I).
  • the immunogenic composition according to this embodiment includes any substance, such as an adjuvant, as long as it is useful for inducing an immune response in vivo. It may be
  • the adjuvant contained in the immunogenic composition of the present embodiment is not particularly limited. ), oil-in-water emulsion, monophosphoryl lipid A (MPL), potassium alum, adjuvants containing saponin, and the like.
  • a fourth embodiment is a kit for detecting a trichothecene mycotoxin, the kit comprising at least the antibody produced by the method according to the first embodiment or the antibody according to the second embodiment.
  • the kit according to the present embodiment includes reagents necessary for detecting trichothecene mycotoxins, devices (for example, immunochromatographs and immunosensors for detecting antigens), instruments (plates for ELISA etc.) may be included.
  • a fifth embodiment is a trichothecene derivative represented by the following formula (III).
  • R2 represents a hydrogen or hydroxyl group
  • Y represents a functional group for cross-linking proteins or a linker containing the functional group.
  • a fifth embodiment is a trichothecene derivative in which a functional group for cross-linking proteins or a linker containing the functional group (Y in formula (III)) is bound to position 15 of formula (III) above.
  • Y is a functional group that is reactive with specific functional groups such as primary amines and sulfhydryls of proteins, or reactive with specific functional groups such as primary amines and sulfhydryls.
  • Y may be a linker having these functional groups at the end (that is, the terminal side that forms a crosslink with the protein), and the linker portion is not particularly limited. It may be a hydrogen chain (which may optionally contain oxygen, nitrogen, etc.), or the like.
  • DON, NIV and 3-acetyl-DON 2-1 Purification of DON DON was extracted with 85% acetonitrile (v/v) (400 mL, 3 times) from the culture (approximately 400 g) grown in the medium for toxin production. The amount of DON contained in this extract (about 1.2 L) was about 244 mg. This extract (about 1.2 L) was concentrated under reduced pressure and then washed three times with an equal volume (about 900 mL) of n-hexane. The aqueous layer (about 900 mL) was applied to a synthetic adsorption resin (DIAION HP20, 300 mL, 6.0 cm i.d.
  • DIAION HP20 300 mL, 6.0 cm i.d.
  • NIV NIV was extracted by adding 5 volumes of purified water (3.5 L) to the culture (approximately 700 g) grown in toxin production medium. The centrifuged supernatant was mixed with HP20 (300 mL) for adsorption. Thereafter, washing by adding 300 mL of purified water was repeated 10 times. The washed HP20 was packed in a column (6.0 cm i.d. ⁇ 9.5 cm), washed with 300 mL of purified water, and NIV was eluted with 450 mL of methanol.
  • NIV derivative (NIV-Linker-COOH) Glutaric anhydride (23 mg) and 4-dimethylaminopyridine (2.4 mg) were added to a solution of NIV (20 mg) in dimethylsulfoxide (1 mL)-CHCl 3 (10 mL) and stirred at room temperature for 3 hours. bottom. 1% aqueous acetic acid was added to the reaction mixture for liquid separation, and the aqueous layer was purified by reverse-phase HPLC. Fractions containing the desired product were freeze-dried to obtain NIV-linker-COOH (15-O-(4-carboxybutyryl)NIV) (2.0 mg) represented by the following formula (4) as a white powder. This process was repeated to obtain 22 mg of NIV-linker-COOH.
  • 3-acetyl-DON derivative (3-acetyl-DON-Linker-COOH)
  • a CHCl 3 (20 mL) solution of glutaric anhydride (206 mg) and N,N-dimethylaminopyridine (49 mg) was added to 3-acetyl-DON (122 mg), and the mixture was stirred at room temperature for 3 hours. After that, glutaric anhydride (206 mg) and N,N-dimethylaminopyridine (49 mg) were added, and the mixture was further stirred for 2.5 hours.
  • the reaction was concentrated and purified by reverse phase HPLC. Fractions containing the desired product were freeze-dried to obtain 3-acetyl-DON-Linker-COOH (105 mg) represented by the following formula (6) as a white powder.
  • N-hydroxysuccinimide NHS
  • EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
  • Antiserum obtained by immunization with DON-KLH conjugate was designated as anti-DON polyclonal antibody (PoAb), and antiserum obtained by immunization with NIV-KLH conjugate was designated as anti-NIV PoAb.
  • mice 3 days after the booster immunization were subjected to monoclonal antibody (MoAb) production.
  • MoAb monoclonal antibody
  • Anti-DON antibody (PoAb, MoAb) antibody titers were confirmed by direct ELISA. Add 100 ⁇ L/well of anti-mouse IgG goat antibody (Thermo Fisher Scientific) diluted to 4 ⁇ g/mL in PBS to each well of a 96-well microtiter plate, and leave overnight at 4°C. The antibody was immobilized by this. After removing the liquid by aspiration, 300 ⁇ L/well of PBS containing 0.4% BSA (hereinafter referred to as blocking solution) was added to block at room temperature for 1 hour.
  • blocking solution 300 ⁇ L/well of PBS containing 0.4% BSA
  • washing solution serially diluted anti-DON antibody with 0.2% BSA-added PBS (hereinafter referred to as antibody diluent) was added to 100 ⁇ L/well. Added in wells and allowed to react for 1 hour at room temperature. After washing three times with washing solution, 100 ⁇ L/well of HRP-labeled DON diluted to 20 ng/mL with antibody diluent was added and allowed to react at room temperature for 1 hour.
  • Anti-NIV antibodies (PoAb, MoAb) were similarly tested except that HRP-labeled NIV was used at 50 ng/mL instead of HRP-labeled DON to obtain antibody titers.
  • Anti-3-Ac-DON MoAb was also tested in the same manner except that HRP-labeled 3-Ac-DON was used at 20 ng/mL in place of HRP-labeled DON to obtain an antibody titer.
  • Indirect ELISA and indirect competitive ELISA were used for screening during MoAb production. Indirect ELISA during anti-DON MoAb generation was performed as follows. First, a DON-BSA conjugate was prepared with PBS to 1 ⁇ g/mL, added to a 96-well microtiter plate at an amount of 50 ⁇ L/well, and allowed to stand overnight at 4° C. for immobilization. After removing the liquid by aspiration, blocking was performed at room temperature for 1 hour by adding 200 ⁇ L/well of blocking liquid. After washing with a washing solution, 50 ⁇ L/well of hybridoma culture supernatant was added and allowed to react at room temperature for 1 hour.
  • indirect competitive ELISA during anti-DON MoAb production was performed as follows. First, prepare 25 ng/mL DON-BSA conjugate and 100 ng/mL BSA in PBS, add 50 ⁇ L/well to a 96-well microtiter plate, and allow to stand overnight at 4°C. It was solid-phased by this. After removing the liquid by aspiration, blocking was performed at room temperature for 1 hour by adding 200 ⁇ L/well of blocking liquid. After washing with a washing solution, an equal volume mixture of hybridoma culture supernatant and DON dissolved in 10% methanol was added at 50 ⁇ L/well and allowed to react competitively at room temperature for 1 hour.
  • HRP-labeled anti-mouse IgG (H+L) goat antibody manufactured by Thermo Fisher Scientific was added in an amount of 100 ⁇ L/well. Color development was performed according to direct ELISA, and absorbance at 450 nm was measured. Other steps were the same as indirect competitive ELISA for anti-DON MoAb production.
  • Monoclonal antibodies were prepared by a conventional method. First, for cell fusion, spleen cells removed from mice three days after the final immunization were used. While removing large solids with a mesh, the spleen cells taken out in RPMI1640 medium were washed three times with RPMI1640 medium, and then the cells were added to mouse myeloma cells P3U1 at a cell number ratio of 5:1 (spleen cells:myeloma cells). and centrifuged (1300 rpm, 5 minutes) to collect the cell sediment. 1 mL of 50% polyethylene glycol (molecular weight 1500) prewarmed to 37° C. was added to the cell sediment to fuse the cells.
  • RPMI1640/10% FBS medium Fused cells were suspended in HAT medium supplemented with 100 ⁇ mol/L hypoxanthine, 0.4 ⁇ mol/L aminopterin, and 16 ⁇ mol/L thymidine in RPMI1640/10% FBS medium, and placed in four 96-well microplates. and cultured at 37°C in the presence of 5% CO 2 for 10-14 days. After culturing, the antibody reactivity in colony-bearing hybridoma wells was examined using indirect ELISA and indirect competitive ELISA.
  • MDN8 MoAb MDN8-derived monoclonal antibody
  • MDN31 MoAb MDN31-derived monoclonal antibody
  • MDN8 MoAb was 3-200 ng/mL with DON, 3-85 ng/mL with 15-Ac-DON
  • MDN31 MoAb was 2-200 ng/mL with DON, 15 It quantitatively reacted with -Ac-DON in the range of 3-120 ng/mL, and showed high reactivity with DON and 15-Ac-DON like the anti-DON PoAb.
  • Table 5 it showed no reactivity with 3-Ac-DON and NIV.
  • the DON derivatives synthesized in this way were effective in producing monoclonal antibodies exhibiting high reactivity against DON and 15-Ac-DON.
  • Anti-NIV MoAb was also produced under the same conditions as the anti-DON MoAb. However, for screening, a combination of indirect ELISA and indirect competitive ELISA and a combination of direct ELISA and direct competitive ELISA were used. There were also many hybridomas that produced antibodies that showed reactivity to NIV. Among them, hybridomas that showed high reactivity in direct competitive ELISA were cell-cloned by the limiting dilution method and MoAb-producing cells (MNV80, MNV87, NIV150, NIV464) were obtained.
  • 15-acetyl-NIV (15-Ac-NIV) is 2.8-100 ng/mL for MNV80 MoAb, 2.4-95 ng/mL for MNV87 MoAb, 0.1-1.2 ng/mL for NIV150 MoAb, and 0.1-1.2 ng/mL for NIV464 MoAb. It reacted quantitatively in the range of 0.4-8.5 ng/mL.
  • MNV80 MoAb and MNV87 MoAb showed no reactivity with DON, 3-Ac-DON, 15-Ac-DON and 4-Ac-NIV.
  • NIV150 MoAb and NIV464 MoAb showed little reactivity with DON and 4-Ac-NIV. Since the contamination of barley with 15-Ac-NIV is scarcely known, the synthesized NIV derivative was thought to be effective in producing MoAb showing high reactivity against NIV.
  • Anti-3-Ac-DON MoAb was also prepared under the same conditions as anti-DON MoAb. Screening used direct ELISA and direct competitive ELISA. Hybridomas that showed high reactivity to 3-Ac-DON in direct competitive ELISA were cloned by limiting dilution to obtain MoAb-producing cells (M3ADN27 and M3ADN28). The culture supernatants of these cells were used as M3ADN27 MoAb and M3ADN28 MoAb, and their reactivities with 3-Ac-DON, DON and 15-Ac-DON were examined by direct competitive ELISA. As shown in Fig.
  • M3ADN27 MoAb was 3-Ac-DON in the range of 11-120 ng/mL, 15-Ac-DON in the range of 210-2300 ng/mL, and DON in the range of 3300-10000 ng/mL.
  • M3ADN28 MoAb quantitatively reacted with 3-Ac-DON at 13-140 ng/mL, with 15-Ac-DON at 180-1900 ng/mL, and with DON at 2000-10000 ng/mL. It showed high reactivity with Ac-DON.
  • Table 5 it showed no reactivity with NIV.
  • the NIV derivatives thus synthesized were effective in producing MoAbs with high reactivity to 3-Ac-DON.
  • Quantification range for anti-NIV PoAb was 12-950 ng/mL, MNV80 MoAb 6.9-180 ng/mL, MNV87 MoAb 7.1-170 ng/mL, NIV150 MoAb 0.7-14 ng/mL, NIV464 MoAb 6.2-185 ng/mL, the direct competitive ELISA constructed using anti-NIV MoAb was also considered to have suitable sensitivity for NIV measurement.
  • 3-Ac-DON which is a major analogue of DON, we were able to generate MoAb capable of constructing a measurement method showing the same level of sensitivity. Based on the above, we were able to provide and design a technique for synthesizing derivatives suitable for producing antibodies for measuring DON, NIV, or their analogues that contaminate wheat, etc.
  • the present invention is useful in conducting fact-finding surveys of grain contamination by mycotoxins, and is therefore expected to be used in the agricultural field.

Abstract

The present invention addresses the problem of providing an antigen suitable for the preparation of an antibody recognizing a trichothecene derivative, a method of producing an antibody against this antigen, and this antibody. More specifically, the present invention pertains to a method for producing an antibody, said method comprising immunization with a trichothecene derivative represented by formula (I) as an antigen. [In formula (I): R2 represents a hydrogen or a hydroxyl group; and X represents a carrier protein.]

Description

トリコテセン系カビ毒に対する抗体の調製のための抗原およびその使用Antigens for the preparation of antibodies against trichothecene mycotoxins and uses thereof
 本発明は、トリコテセン系カビ毒、特に、デオキシニバレノール、ニバレノールおよびこれらのアセチル化体や配糖体に対する抗体の調製等に関する。 The present invention relates to the preparation of antibodies against trichothecene mycotoxins, particularly deoxynivalenol, nivalenol, and their acetylated forms and glycosides.
 フザリウム・グラミネアラム(Fusarium graminearum)などのフザリウム属菌は、小麦、大麦などの麦類やトウモロコシなどの穀類に感染し、防除が困難な赤カビ病を引き起こす。さらに、これらの赤カビ病菌は、デオキシニバレノール(deoxynivalenol;DON)やニバレノール(nivalenol;NIV)などのトリコテセン系の毒素を生産する場合があるため、赤カビ病菌に汚染された穀物を摂取したヒトや家畜に、下痢、嘔吐、消化管等への障害などの中毒症状を引き起こし、症状が慢性化すると体重減少などの健康被害をもたらすことが知られている。そのため、生産現場において、赤カビ病菌の迅速な検出が求められている。 Fusarium genus fungi such as Fusarium graminearum infect barley such as wheat and barley, and cereals such as corn, and cause Fusarium mold, which is difficult to control. In addition, these Fusarium mold fungi can produce trichothecene toxins such as deoxynivalenol (DON) and nivalenol (NIV), so humans who consume Fusarium-contaminated grains and It is known to cause poisoning symptoms such as diarrhea, vomiting, and disorders of the digestive tract, etc. in livestock, and to cause health problems such as weight loss when the symptoms become chronic. Therefore, rapid detection of Fusarium mold is required at production sites.
 DONやNIVなどのトリコテセン系毒素の検出には、HPLC法、GC/MS法、LC/MS法などが用いられているが、これらの方法は、短時間で多くのサンプルを処理するにはあまり適していない。そのため、ELISAなどの免疫学的定量法により、多くのサンプルを効率的に測定することが望ましい。現在、DON を対象としたイムノアッセイキットは市販されており、規格基準等が定められている。一方で、NIVの毒性はDONと同等以上と知られているものの、NIVを検出できるキットは市販されておらず、規格基準等も定められていない。そのため、特にNIVについての簡易免疫測定法の開発は重要である。また、DONについても、反応特異性などの点において、より適正化された抗体を取得することは依然として重要である。 HPLC, GC/MS, and LC/MS methods are used to detect trichothecene toxins such as DON and NIV, but these methods are not suitable for processing many samples in a short time. Not suitable. Therefore, it is desirable to efficiently measure many samples by immunological quantification methods such as ELISA. Immunoassay kits for DON are currently on the market, and specifications and standards have been established. On the other hand, although the toxicity of NIV is known to be equal to or higher than that of DON, no kit capable of detecting NIV is available on the market, and standards and the like have not been established. Therefore, it is important to develop a simple immunoassay especially for NIV. As for DON, it is still important to obtain more optimized antibodies in terms of reaction specificity and the like.
 DONに対する抗体に関しては、そのアセチル化体に対する抗体を含めて多くの報告が存在する。これまでに、例えば、DON、3-Ac-DONおよび15-Ac-DONを認識するポリクローナル抗体(非特許文献1)、DON、3-Ac-DONの他いくつかのトリコテセン系毒素を認識するモノクローナル抗体(非特許文献2)、DON、3-Ac-DONを認識するモノクローナル抗体(非特許文献3)などに関する報告がある。
 また、NIVについては、DONおよび3-Ac-DONと交差反応する抗体(非特許文献4)、3,4,15-triAc-NIVを認識する抗体、3,4,15-triAc-NIVおよび3,15-diAc-NIVを認識する抗体に関する報告(特許文献1)はあるが、NIVを特異的に認識する抗体の報告は今のところない。
There are many reports on antibodies against DON, including antibodies against its acetylated form. So far, for example, polyclonal antibodies recognizing DON, 3-Ac-DON and 15-Ac-DON (Non-Patent Document 1), monoclonal antibodies recognizing DON, 3-Ac-DON and some trichothecene toxins There are reports on antibodies (Non-Patent Document 2), monoclonal antibodies recognizing DON and 3-Ac-DON (Non-Patent Document 3), and the like.
For NIV, antibodies that cross-react with DON and 3-Ac-DON (Non-Patent Document 4), antibodies that recognize 3,4,15-triAc-NIV, 3,4,15-triAc-NIV and 3 Although there is a report on an antibody that recognizes ,15-diAc-NIV (Patent Document 1), there is no report on an antibody that specifically recognizes NIV.
 上記事情を踏まえると、現在のところDONについては抗体を用いた検出キット等が販売されてはいるものの、反応特異性および反応親和性等の点において、より改善された抗DON抗体が依然として求められている。一方、NIVについては、NIV特異的な抗体が未だ存在していなため、抗NIV抗体の開発の必要性は非常に高い。 In light of the above circumstances, although DON detection kits using antibodies are currently on the market, there is still a need for improved anti-DON antibodies in terms of reaction specificity and reaction affinity. ing. On the other hand, as for NIV, since there are no NIV-specific antibodies yet, the need for development of anti-NIV antibodies is very high.
WO2001/018196号公報WO2001/018196
 上記事情に鑑み、本発明は、DON、NIVおよびこれらのアセチル化体や配糖体を含むトリコテセン誘導体を認識する抗体の調製方法、および当該方法の使用に適した抗原の提供および当該抗原に対する抗体の提供を課題とする。 In view of the above circumstances, the present invention provides a method for preparing an antibody that recognizes DON, NIV, and trichothecene derivatives including their acetylated forms and glycosides, an antigen suitable for use in the method, and an antibody against the antigen. The challenge is to provide
 発明者らは、トリコテセン誘導体のうち、まず、DONおよびNIVの免疫測定法の開発に必要な抗体の作製に取り組んだ。DON およびNIV は、タンパク質と結合させるための OH基を複数もつ。下記のトリコテセン誘導体の構造式において、DONは、3位のR1、7位のR4、15位のR3が-OHで、4位のR2が-Hであり、NIVは、3位のR1、4位のR2、7位のR4、15位のR3が全て-OHである。
Figure JPOXMLDOC01-appb-C000010
 そのため、DONおよびNIVなどのトリコテセン誘導体に免疫原性を付与するためのキャリアタンパク質を導入しようとすると、上記OH基にランダムに結合してしまい、元の立体構造を維持したままキャリアタンパク質を結合させることが難しいと考えられていた。
 このような事情を考慮し、本発明者らは、DONおよびNIVに対し、15位のみに選択的にキャリアタンパク質を結合させるためのリンカー(末端にカルボキシル基を含むリンカー)を導入する合成方法を見出した。さらに、本選択的合成法により合成された15位にリンカーを有するDONおよびNIVの15位リンカー部分にキャリアタンパク質を導入したDONおよびNIVを作製し、これらのDONおよびNIVを抗原としてモノクローナル抗体の作製を試みたところ、DONおよびNIVに特異的な抗体の作製に成功した。
Among the trichothecene derivatives, the inventors first worked on the production of antibodies necessary for the development of DON and NIV immunoassays. DON and NIV have multiple OH groups for protein binding. In the structural formula of the trichothecene derivative below, DON is R 1 at position 3, R 4 at position 7, R 3 at position 15 is -OH, R 2 at position 4 is -H, and NIV is at position 3. , R 2 at position 4, R 4 at position 7 , and R 3 at position 15 are all -OH.
Figure JPOXMLDOC01-appb-C000010
Therefore, when trying to introduce a carrier protein for imparting immunogenicity to trichothecene derivatives such as DON and NIV, it randomly binds to the OH group, and the carrier protein binds while maintaining the original three-dimensional structure. was considered difficult.
In consideration of these circumstances, the present inventors developed a synthetic method of introducing a linker (a linker containing a terminal carboxyl group) for selectively binding a carrier protein only to the 15-position of DON and NIV. Found it. Furthermore, DON and NIV having a linker at position 15 synthesized by this selective synthesis method and DON and NIV having a carrier protein introduced into the linker portion at position 15 of NIV are prepared, and monoclonal antibodies are prepared using these DON and NIV as antigens. As a result, we succeeded in producing antibodies specific to DON and NIV.
 すなわち、本発明は、抗体の作製方法であって、下記式(I)で表されるトリコテセン誘導体を抗原として免疫することを含む方法である。
Figure JPOXMLDOC01-appb-C000011
(式(I)中、R2は水素または水酸基を表し、Xはキャリアタンパク質を表す。)
 また、本発明は、 上記式(I)で表されるトリコテセン誘導体に対する抗体、および当該抗体を含む、トリコテセン系カビ毒を検出するキットである。
 さらに、本発明は、上記式(I)で表されるトリコテセン誘導体を抗原として含む免疫原性組成物である。
That is, the present invention is a method for producing an antibody, comprising immunizing with a trichothecene derivative represented by the following formula (I) as an antigen.
Figure JPOXMLDOC01-appb-C000011
(In formula (I), R2 represents a hydrogen or hydroxyl group, and X represents a carrier protein.)
The present invention also provides an antibody against the trichothecene derivative represented by formula (I) above, and a kit for detecting a trichothecene mycotoxin containing the antibody.
Furthermore, the present invention is an immunogenic composition comprising the trichothecene derivative represented by the above formula (I) as an antigen.
 さらにまた、本発明は、下記式(III)で表されるトリコテセン誘導体である。
Figure JPOXMLDOC01-appb-C000012
(式(III)中、R2は水素または水酸基を表し、Yはタンパク質を架橋するための官能基または当該官能基を含むリンカーを表す。)
Furthermore, the present invention is a trichothecene derivative represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000012
(In formula (III), R2 represents a hydrogen or hydroxyl group, and Y represents a functional group for cross-linking proteins or a linker containing the functional group.)
 本発明により、従来報告されているトリコテセン系カビ毒に対する抗体の作製方法よりも効率的な方法が提供される。 The present invention provides a more efficient method than the conventionally reported methods for producing antibodies against trichothecene mycotoxins.
 また、本発明により、既知のトリコテセン系カビ毒に対する抗体とは異なる特異性および/または親和性を発揮する抗体の提供が可能である。 In addition, according to the present invention, it is possible to provide antibodies that exhibit different specificity and/or affinity from known antibodies against trichothecene mycotoxins.
抗DON PoAbのDONと15-Ac-DONに対する反応特性の検討。縦軸はDONを含まずに反応させたODに対するサンプルのODの比率を示し、横軸は反応ウェルに添加したDONまたは15-Ac-DONの濃度を示す。Investigation of the reaction characteristics of anti-DON PoAb to DON and 15-Ac-DON. The vertical axis indicates the ratio of the OD of the sample to the OD of the reaction without DON, and the horizontal axis indicates the concentration of DON or 15-Ac-DON added to the reaction wells. 抗NIV PoAbのNIVに対する反応特性の検討。縦軸はNIVおよび15-Ac-NIVを含まずに反応させたODに対するサンプルのODの比率を示し、横軸は反応ウェルに添加したNIVまたは15-Ac-NIVの濃度を示す。Investigation of reaction characteristics of anti-NIV PoAb to NIV. The vertical axis indicates the ratio of the OD of the sample to the OD of the reaction without NIV and 15-Ac-NIV, and the horizontal axis indicates the concentration of NIV or 15-Ac-NIV added to the reaction wells. 抗DON MoAb のMDN8とMDN31のDONと15-Ac-DONに対する反応特性の検討。縦軸はDONおよび15-Ac-DONを含まずに反応させたODに対するサンプルのODの比率を示し、横軸は反応ウェルに添加したDONまたは15-Ac-DONの濃度を示す。Investigation of the reaction characteristics of anti-DON MoAb MDN8 and MDN31 to DON and 15-Ac-DON. The vertical axis indicates the ratio of the OD of the sample to the OD of the reaction without DON and 15-Ac-DON, and the horizontal axis indicates the concentration of DON or 15-Ac-DON added to the reaction wells. 抗NIV MoAb のMNV80とMNV87のNIVと15-Ac-NIVに対する反応特性の検討。縦軸はNIVおよび15-Ac-NIVを含まずに反応させたODに対するサンプルのODの比率を示し、横軸は反応ウェルに添加したNIVまたは15-Ac-NIVの濃度を示す。Investigation of the reaction characteristics of anti-NIV MoAb MNV80 and MNV87 to NIV and 15-Ac-NIV. The vertical axis indicates the ratio of the OD of the sample to the OD of the reaction without NIV and 15-Ac-NIV, and the horizontal axis indicates the concentration of NIV or 15-Ac-NIV added to the reaction wells. 抗NIV MoAb のNIV150とNIV464のNIVと15-Ac-NIVに対する反応特性の検討。縦軸はNIVおよび15-Ac-NIVを含まずに反応させたODに対するサンプルのODの比率を示し、横軸は反応ウェルに添加したNIVまたは15-Ac-NIVの濃度を示す。Investigation of the reaction characteristics of anti-NIV MoAb NIV150 and NIV464 to NIV and 15-Ac-NIV. The vertical axis indicates the ratio of the OD of the sample to the OD of the reaction without NIV and 15-Ac-NIV, and the horizontal axis indicates the concentration of NIV or 15-Ac-NIV added to the reaction wells. 抗3-Ac-DON MoAb のM3ADN27とM3ADN28のDON、3-Ac-DONおよび15-Ac-DONに対する反応特性の検討。縦軸はDON、3-Ac-DONおよび15-Ac-DONを含まずに反応させたODに対するサンプルのODの比率を示し、横軸は反応ウェルに添加したDON、3-Ac-DONまたは15-Ac-DONの濃度を示す。Investigation of the reaction characteristics of anti-3-Ac-DON MoAb M3ADN27 and M3ADN28 to DON, 3-Ac-DON and 15-Ac-DON. The vertical axis shows the ratio of sample OD to the OD of reactions without DON, 3-Ac-DON and 15-Ac-DON, and the horizontal axis shows DON, 3-Ac-DON or 15-acid added to the reaction wells. - Indicates the concentration of Ac-DON.
 以下、本発明を実施するための形態について説明する。
 第1の実施形態は、抗体の作製方法であって、下記式(I)で表されるトリコテセン誘導体を抗原として免疫することを含む、前記方法である(以下「本実施形態の抗体作製方法」とも記載する)。
Figure JPOXMLDOC01-appb-C000013
(式(I)中、R2は水素または水酸基を表し、Xはキャリアタンパク質を表す。)
EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated.
The first embodiment is a method for producing an antibody, which comprises immunizing a trichothecene derivative represented by the following formula (I) as an antigen (hereinafter referred to as "antibody producing method of the present embodiment" also described).
Figure JPOXMLDOC01-appb-C000013
(In formula (I), R2 represents a hydrogen or hydroxyl group, and X represents a carrier protein.)
 本実施形態にかかる抗体作製方法によって作製される抗体は、トリコテセン系カビ毒と特異的に結合する抗体である。ここで、トリコテセン系カビ毒とは、トリコテセン環を有するカビ系毒素の総称であり、例えば、下記式(II)において、
Figure JPOXMLDOC01-appb-C000014
 R2が水素、R1およびR3が水酸基であるDON、R2が水素、R1がアセトキシ基、R3が水酸基である3-Ac-DON、R2が水素、R1が水酸基、R3がアセトキシ基である15-Ac-DON、R2が水素、R1がグルコシルオキシ基、R3が水酸基であるDON-3-O-グルコシド、R2、R1およびR3が水酸基であるNIV、R2がアセトキシ基、R1およびR3が水酸基であるフザレノン-X(4-Ac-NIV)などが挙げられる。
An antibody produced by the method for producing an antibody according to this embodiment is an antibody that specifically binds to a trichothecene mycotoxin. Here, the trichothecene mycotoxin is a general term for fungal toxins having a trichothecene ring. For example, in the following formula (II),
Figure JPOXMLDOC01-appb-C000014
DON where R2 is hydrogen, R1 and R3 are hydroxyl groups, 3-Ac-DON where R2 is hydrogen, R1 is an acetoxy group, R3 is a hydroxyl group, R2 is hydrogen, R1 is a hydroxyl group, R 15-Ac-DON in which 3 is an acetoxy group, R2 is hydrogen, R1 is a glucosyloxy group, R3 is a hydroxyl group, DON-3-O-glucoside, R2 , R1 and R3 are hydroxyl groups Examples include NIV, fusalenone-X (4-Ac-NIV) in which R2 is an acetoxy group and R1 and R3 are hydroxyl groups.
 また、本実施形態にかかる抗体作製方法は、下記式(III)で表されるトリコテセン誘導体の15位に、Yを介してキャリアタンパク質Xを結合させる工程を含んでもよい。
Figure JPOXMLDOC01-appb-C000015
 ここで、式(III)中、R2は水素または水酸基を表し、Yはタンパク質を架橋するための官能基または当該官能基を含むリンカーを表す。
In addition, the method for producing an antibody according to this embodiment may include a step of binding carrier protein X via Y to position 15 of the trichothecene derivative represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000015
Here, in formula (III), R 2 represents hydrogen or a hydroxyl group, and Y represents a functional group for cross-linking proteins or a linker containing the functional group.
 本実施形態は、式(I)で示されるように、15位にキャリアタンパク質(式(I)中Xで表す)を結合させたトリコテセン誘導体を抗原として、抗体を作製する点に特徴を有している。本実施形態において、キャリアタンパク質とは、ハプテンに結合させて免疫原性を付与させるために使用されるタンパク質のことである。本実施形態において使用されるキャリアタンパク質として、当業者であれば適宜選択することが可能である如何なるタンパク質であってもよく、特に限定はしないが、例えば、スカシ貝ヘモシアニン(KLH)、卵白アルブミン(OVA)、ウサギ血清アルブミン(RSA)、ウシ血清アルブミン(BSA)、ヒト血清アルブミン(HSA)、サイログロブリン(TG)、免疫グロブリンなどがある。 This embodiment is characterized in that an antibody is produced using, as an antigen, a trichothecene derivative in which a carrier protein (represented by X in formula (I)) is bound to position 15, as represented by formula (I). ing. In this embodiment, a carrier protein is a protein that is used to conjugate a hapten to confer immunogenicity. The carrier protein used in the present embodiment may be any protein that can be appropriately selected by those skilled in the art, and is not particularly limited. Examples include keyhole limpet hemocyanin (KLH), ovalbumin ( OVA), rabbit serum albumin (RSA), bovine serum albumin (BSA), human serum albumin (HSA), thyroglobulin (TG), and immunoglobulins.
 また、式(I)のXには、キャリアタンパク質の他、式(III)中のYに相当する、トリコテセン骨格の15位にキャリアタンパク質を結合するための官能基または当該官能基を含むリンカーが含まれていてもよい。ここで、例えば、カルボキシル基を当該官能基として選択した場合には、当該カルボキシル基の他、カルボキシル基を含むリンカーがYに相当する。本実施形態において、Yは、カルボキシル基の他、マレイミド基、チオール基、アミノ基、アジド基または、これらの官能基を含むリンカーであってもよいが、好ましい官能基としてカルボキシル基をあげることができる。カルボキシル基を含むリンカーとしては、例えばカルボキシ基を含む直鎖、分岐鎖または環状のC2-C10アシルオキシ基をあげることができ、好ましくは、例えば3-カルボキシプロピオニルオキシ基、4-カルボキシブチリルオキシ基、5-カルボキシペンタノイルオキシ基のようなカルボキシC3-C5アルコキシ基をあげることができ、更に好ましくは、4-カルボキシブチリルオキシ基のようなカルボキシC4アルコキシ基である。 In addition to the carrier protein, X in formula (I) has a functional group for binding the carrier protein to position 15 of the trichothecene skeleton corresponding to Y in formula (III), or a linker containing the functional group. may be included. Here, for example, when a carboxyl group is selected as the functional group, Y corresponds to a linker containing the carboxyl group as well as the carboxyl group. In this embodiment, Y may be a carboxyl group, a maleimide group, a thiol group, an amino group, an azide group, or a linker containing these functional groups, but a preferred functional group is a carboxyl group. can. The linker containing a carboxyl group includes, for example, a linear, branched or cyclic C2-C10 acyloxy group containing a carboxyl group, preferably a 3-carboxypropionyloxy group, a 4-carboxybutyryloxy group. , a carboxy C3-C5 alkoxy group such as a 5-carboxypentanoyloxy group, more preferably a carboxy C4 alkoxy group such as a 4-carboxybutyryloxy group.
 本実施形態にかかる抗体の作製方法は、上記式(I)で表されるトリコテセン誘導体を抗原として用いる点に特徴を有しており、具体的な抗体の調製方法は、当該技術分野において周知の方法を用いることにより、当業者であれば容易に取得することができる。 The antibody production method according to the present embodiment is characterized by using the trichothecene derivative represented by the above formula (I) as an antigen, and specific antibody preparation methods are well known in the art. It can be easily obtained by those skilled in the art by using the method.
 第2の実施形態は、下記式(II)で表されるトリコテセン誘導体に対する抗体またはその抗原結合断片である(以下「本実施形態にかかる抗体」または「本実施形態にかかる抗原結合断片」とも記載する)。
Figure JPOXMLDOC01-appb-C000016
(式(II)中、R1は水酸基、アセトキシ基またはグルコシルオキシ基を表し、R2は水素、水酸基またはアセトキシ基を表し、R3は水酸基またはアセトキシ基を表す。)
 より具体的には、本実施形態にかかる抗体は、DON、3-Ac-DONおよび/もしくは15-Ac-DONに対する抗体、または、NIVおよび/もしくはフザレノン-X(4-Ac-NIV)、DON-3-O-グルコシドに対する抗体である。
 本実施形態にかかる抗体は、いかなる方法で作製したものであってもよいが、第1の実施形態にかかる抗体作製方法によって作製した抗体であってもよい。
A second embodiment is an antibody against a trichothecene derivative represented by the following formula (II) or an antigen-binding fragment thereof (hereinafter also referred to as an "antibody according to this embodiment" or an "antigen-binding fragment according to this embodiment"). do).
Figure JPOXMLDOC01-appb-C000016
(In formula (II), R1 represents a hydroxyl group, an acetoxy group or a glucosyloxy group, R2 represents a hydrogen group, a hydroxyl group or an acetoxy group, and R3 represents a hydroxyl group or an acetoxy group.)
More specifically, the antibody according to this embodiment is an antibody against DON, 3-Ac-DON and/or 15-Ac-DON, or NIV and/or fusalenone-X (4-Ac-NIV), DON It is an antibody against -3-O-glucoside.
The antibody according to this embodiment may be produced by any method, and may be an antibody produced by the antibody production method according to the first embodiment.
 本実施形態にかかる抗体がポリクローナル抗体の場合、例えば、免疫動物(限定はしないが、例えば、ウサギ、ヤギ、ヒツジ、ニワトリ、モルモット、マウス、ラットまたはブタなど)に対して、抗原およびアジュバントの混合物をインジェクトすることにより調製することができる。通常は、抗原および/またはアジュバントを免疫動物の皮下または腹腔内へ複数回インジェクトする。アジュバントとして、限定はしないが、例えば、完全フロイントおよびモノホスホリル脂質A合成-トレハロースジコリノミコレート(MPL-TMD)が含まれる。抗原の免疫後、免疫動物由来の血清から、定法により(例えば、ProteinAを保持したセファロースなどを用いる方法など)、目的の抗体を精製することができる。 When the antibody according to this embodiment is a polyclonal antibody, for example, a mixture of an antigen and an adjuvant is administered to an immunized animal (such as, but not limited to, rabbits, goats, sheep, chickens, guinea pigs, mice, rats or pigs) can be prepared by injecting Typically, the antigen and/or adjuvant are injected subcutaneously or intraperitoneally multiple times into the immunized animal. Adjuvants include, but are not limited to, Freund's complete and monophosphoryl lipid A synthetic-trehalose dicorynomycolate (MPL-TMD). After immunization with the antigen, the antibody of interest can be purified from serum derived from the immunized animal by a standard method (for example, a method using Protein A-retained Sepharose or the like).
 また、本実施形態にかかる抗体がモノクローナル抗体の場合、例えば、以下のようにして作製することができる。なお、本明細書において「モノクローナル」とは、実質的に均一な抗体の集団(抗体を構成する重鎖、軽鎖のアミノ酸配列が同一である抗体集団)から得られた抗体の特性を示唆するものであって、抗体が特定の方法(例えば、ハイブリドーマ法など)により作製されるものとして限定的に解釈されるものではない。
 モノクローナル抗体の作製方法としては、例えば、ハイブリドーマ法(KohlerおよびMilstein, Nature 256 495-497 1975)、または、組換え法(米国特許第4,816,567号)などを挙げることができる。さらに、本実施形態にかかる抗体は、ファージ抗体ライブラリ(例えば、Clacksonら, Nature 352 624-628 1991;Marksら, J.Mol.Biol. 222 581-597 1991など)などから単離してもよい。より具体的に説明すると、ハイブリドーマ法を用いて調製する場合、その調製方法には、例えば、以下に示す4つの工程が含まれる:(i)抗原を免疫動物に免疫する、(ii)モノクローナル抗体分泌性(または潜在的に分泌性)のリンパ球を回収する、(iii)リンパ球を不死化細胞に融合させる、(iv)所望のモノクローナル抗体を分泌する細胞を選択する。免疫動物としては、例えば、マウス、ラット、モルモット、ハムスター、ウサギなどが選択可能である。免疫後、宿主動物から得られたリンパ球はハイブリドーマ細胞を樹立するために、ポリエチレングリコールなどの融合剤や電気融合法を用いて不死化細胞株と融合する。融合細胞としては、例えば、ラットもしくはマウスのミエローマ細胞株が使用される。細胞融合を行った後、融合しなかったリンパ球および不死化細胞株の成長または生存を阻害する基質を含む適切な培地中で細胞を生育させる。通常の技術では、酵素のヒポキサンチン-グアニンホスホリボシルトランスフェラーゼ(HGPRTまたはHPRT)を欠く親細胞を使用する。この場合、アミノプテリンがHGPRT欠損細胞の成長を阻害し、ハイブリドーマの成長を許容する培地(HAT培地)に添加される。このようにして得られたハイブリドーマから、所望の抗体を産生するハイブリドーマを選択し、選択したハイブリドーマが生育する培地から、常法に従い、目的のモノクローナル抗体を取得することができる。
 このようにして作製したハイブリドーマをインビトロ培養し、あるいは、マウス、ラット、モルモット、ハムスターなどの腹水中でインビボ培養し、目的の抗体を培養上清、あるいは、腹水から調製することができる。
Moreover, when the antibody according to the present embodiment is a monoclonal antibody, it can be produced, for example, as follows. As used herein, the term "monoclonal" indicates the characteristics of an antibody obtained from a substantially homogeneous antibody population (an antibody population in which the amino acid sequences of the heavy and light chains that constitute the antibody are the same). and should not be construed as being limited to antibodies produced by a specific method (eg, hybridoma method, etc.).
Methods for producing monoclonal antibodies include, for example, the hybridoma method (Kohler and Milstein, Nature 256 495-497 1975) or the recombinant method (US Pat. No. 4,816,567). Furthermore, antibodies according to this embodiment may be isolated from phage antibody libraries (eg, Clackson et al., Nature 352 624-628 1991; Marks et al., J. Mol. Biol. 222 581-597 1991, etc.). More specifically, in the case of preparation using the hybridoma method, the preparation method includes, for example, the following four steps: (i) immunizing an immunized animal with an antigen, (ii) monoclonal antibody (iii) fusing the lymphocytes to immortalized cells; (iv) selecting cells that secrete the desired monoclonal antibody. Examples of animals to be immunized include mice, rats, guinea pigs, hamsters, and rabbits. After immunization, lymphocytes obtained from the host animal are fused with an immortalized cell line using a fusing agent such as polyethylene glycol or an electrofusion method to establish hybridoma cells. As fusion cells, for example, rat or mouse myeloma cell lines are used. After cell fusion, the cells are grown in a suitable medium containing substrates that inhibit the growth or survival of unfused lymphocytes and immortalized cell lines. A common technique uses parental cells that lack the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT or HPRT). In this case, aminopterin is added to the medium (HAT medium) that inhibits the growth of HGPRT-deficient cells and allows the growth of hybridomas. Hybridomas producing the desired antibody can be selected from the hybridomas thus obtained, and the monoclonal antibody of interest can be obtained from the culture medium in which the selected hybridoma grows according to conventional methods.
The hybridoma thus prepared can be cultured in vitro or cultured in vivo in the ascites fluid of mice, rats, guinea pigs, hamsters, etc., and the antibody of interest can be prepared from the culture supernatant or the ascites fluid.
 ナノ抗体とは、抗体重鎖の可変領域(variable domain of the heavy chain of heavy chain antibody;VHH)からなるポリペプチドのことである。通常ヒトなどの抗体は重鎖と軽鎖から構成されているが、ラマ、アルパカおよびラクダなどのラクダ科の動物では、重鎖のみからなる1本鎖抗体(重鎖抗体)を産生する。重鎖抗体は、通常の重鎖および軽鎖からなる抗体と同様に、標的抗原を認識し、抗原に結合することができる。重鎖抗体の可変領域は、抗原への結合親和性を有する最小単位であり、この可変領域断片は「ナノ抗体」と呼ばれている。ナノ抗体は、高耐熱性、消化耐性、常温安定性があり、遺伝子工学的手法により容易に大量に調製することが可能である。
 ナノ抗体は、例えば、以下のようにして作製することができる。ラクダ科の動物に抗原を免疫し、採取した血清から目的の抗体の有無を検出し、所望の抗体価が検出された免疫動物の末梢血リンパ球由来のRNAからcDNAを作製する。得られたcDNAからVHHをコードするDNA断片を増幅して、これを、ファージミドに挿入して、VHHファージミドライブラリを調製する。作製したVHHファージミドライブラリから数回のスクリーニングを経て、所望のナノ抗体を作製することができる。
A nanobody is a polypeptide consisting of the variable domain of the heavy chain of heavy chain antibody (VHH). Generally, human antibodies are composed of heavy and light chains, but camelids such as llamas, alpacas, and camels produce single-chain antibodies (heavy-chain antibodies) composed only of heavy chains. A heavy chain antibody can recognize and bind to a target antigen in the same way as a normal antibody consisting of heavy and light chains. The variable region of a heavy chain antibody is the smallest unit that has binding affinity for an antigen, and this variable region fragment is called a "nanobody". Nanobodies have high heat resistance, digestion resistance, and room temperature stability, and can be easily prepared in large amounts by genetic engineering techniques.
Nanobodies can be produced, for example, as follows. A camelid animal is immunized with an antigen, the presence or absence of the antibody of interest is detected in the collected serum, and cDNA is prepared from RNA derived from peripheral blood lymphocytes of the immunized animal in which a desired antibody titer is detected. A VHH-encoding DNA fragment is amplified from the resulting cDNA and inserted into a phagemid to prepare a VHH phagemid library. Desired nanobodies can be produced through several rounds of screening from the produced VHH phagemid library.
  本実施形態にかかる抗体は、遺伝子組換え抗体であってもよい。遺伝子組換え抗体としては、限定はされないが、例えば、ヒト化抗体およびヒト抗体とのキメラ抗体などが挙げられる。キメラ抗体とは、例えば、異なる動物種由来の可変領域と定常領域を連結した抗体(例えば、ラット由来抗体の可変領域をヒト由来の定常領域に結合させた抗体)などのことで(例えば、Morrisonら, Proc. Natl. Acad. Sci. U.S.A. 81, 6851-6855 1984.など)、遺伝子組換え技術によって容易に構築することができる。 The antibody according to this embodiment may be a genetically engineered antibody. Examples of genetically modified antibodies include, but are not limited to, humanized antibodies and chimeric antibodies with human antibodies. A chimeric antibody is, for example, an antibody in which a variable region and a constant region derived from different animal species are linked (for example, an antibody in which a rat-derived antibody variable region is linked to a human-derived constant region) (for example, Morrison et al., Proc. Natl. Acad. Sci.
  ヒト化抗体は、フレームワーク領域(FR)にヒト由来の配列を持ち、相補性決定領域(CDR)が他の動物種(例えば、マウスなど)由来の配列からなる抗体である。ヒト化抗体は、まず、他の動物種、ここではマウスで説明するが、マウス由来の抗体の可変領域からそのCDRをヒト抗体可変領域に移植し、重鎖および軽鎖可変領域を再構成した後、これらヒト化された再構成ヒト抗体可変領域をヒト抗体定常領域に連結することで作製することができる。このようなヒト化抗体の作製法は、当分野において周知である(例えば、Queenら, Proc. Natl. Acad. Sci. USA, 86, 10029-10033 1989.など)。 A humanized antibody is an antibody that has a human-derived sequence in the framework region (FR) and a complementarity-determining region (CDR) that consists of sequences derived from other animal species (eg, mouse). Humanized antibodies are first described in other animal species, here mouse, by grafting the CDRs from mouse-derived antibody variable regions into human antibody variable regions to reconstitute the heavy and light chain variable regions. Later, these humanized reshaped human antibody variable regions can be made by joining them to human antibody constant regions. Methods for producing such humanized antibodies are well known in the art (eg, Queen et al., Proc. Natl. Acad. Sci. USA, 86, 10029-10033 1989).
 本実施形態にかかる抗原結合断片とは、本実施形態にかかる抗体の一部分の領域であって、所望の抗原に結合する抗体断片のことであり、断片としては、例えば、Fab、Fab’、F(ab’)2、Fv(variable fragment of antibody)、一本鎖抗体(重鎖、軽鎖、重鎖可変領域、軽鎖可変領域およびナノ抗体等)、scFv(single chain Fv)、diabody(scFv二量体)、dsFv(disulfide-stabilized Fv)、ならびに、本実施形態にかかる抗体のCDRを少なくとも一部に含むペプチド等が挙げられる。 The antigen-binding fragment according to this embodiment is a partial region of the antibody according to this embodiment, and is an antibody fragment that binds to a desired antigen. Examples of fragments include Fab, Fab', F (ab') 2 , Fv (variable fragment of antibody), single chain antibody (heavy chain, light chain, heavy chain variable region, light chain variable region, nano antibody, etc.), scFv (single chain Fv), diabody (scFv dimers), dsFv (disulfide-stabilized Fv), and peptides at least partially containing the CDRs of the antibody according to this embodiment.
 Fabは、抗体分子をタンパク質分解酵素パパインで処理して得られる断片のうち、重鎖のN末端側約半分と軽鎖全体とがジスルフィド結合で結合した、抗原結合活性を有する抗体断片である。Fabの作製は、抗体分子をパパインで処理して断片を取得する他、例えば、FabをコードするDNAを挿入した適当な発現ベクターを構築し、これを適当な宿主細胞(例えば、CHO細胞などの哺乳類細胞、酵母細胞、昆虫細胞など)に導入後、細胞内でFabを発現させることで実施することができる。 Fab is an antibody fragment with antigen-binding activity in which about half of the N-terminal side of the heavy chain and the entire light chain are bound by disulfide bonds, among the fragments obtained by treating the antibody molecule with the proteolytic enzyme papain. Preparation of Fab is carried out by treating antibody molecules with papain to obtain fragments, for example, constructing an appropriate expression vector into which DNA encoding Fab is inserted, and inserting this into an appropriate host cell (e.g., CHO cell, etc.). (mammalian cells, yeast cells, insect cells, etc.), and then expressing Fab in the cells.
 F(ab’)2は、抗体分子をタンパク質分解酵素ペプシンで処理して得られる断片のうち、Fabがヒンジ領域のジスルフィド結合を介して結合されたものよりやや大きい、抗原結合活性を有する抗体断片である。F(ab’)2は、抗体分子をペプシンで処理して断片を取得する他、Fabをチオエーテル結合あるいはジスルフィド結合させて作製することも可能で、さらに、Fabと同様に遺伝子工学的手法によっても作製することができる。 F(ab') 2 is an antibody fragment having antigen-binding activity that is slightly larger than a fragment obtained by treating an antibody molecule with a proteolytic enzyme pepsin and having Fab bound via a disulfide bond in the hinge region. is. F(ab') 2 can be prepared by treating an antibody molecule with pepsin to obtain a fragment, or by forming a thioether bond or a disulfide bond with Fab. can be made.
 Fab’は、上記F(ab’)2のヒンジ領域のジスルフィド結合を切断した、抗原結合活性を有する抗体断片である。Fab’も、Fab等と同様に遺伝子工学的な手法により作製することができる。 Fab' is an antibody fragment having antigen-binding activity obtained by cleaving the disulfide bond in the hinge region of F(ab') 2 . Fab' can also be produced by a genetic engineering technique like Fab and the like.
 scFvは、1本の重鎖可変領域(VH)と1本の軽鎖可変領域(VL)とを適当なペプチドリンカーを用いて連結した、VH-リンカー-VLないしはVL-リンカー-VHポリペプチドであって、抗原結合活性を有する抗体断片である。scFvは、抗体の重鎖可変領域および軽鎖可変領域をコードするcDNAを取得し、遺伝子工学的手法により作製することができる。 scFv is a VH-linker-VL or VL-linker-VH polypeptide in which one heavy chain variable region (VH) and one light chain variable region (VL) are linked using an appropriate peptide linker. It is an antibody fragment having antigen-binding activity. scFv can be produced by obtaining cDNAs encoding the heavy chain variable region and light chain variable region of an antibody and using genetic engineering techniques.
 diabodyは、scFvが二量体化した抗体断片で、2価の抗原結合活性を有する抗体断片である。2価の抗原結合活性は、同一抗原結合活性であっても、または、一方が異なる抗原結合活性であってもよい。diabodyは、抗体の重鎖可変領域および軽鎖可変領域をコードするcDNAを取得し、重鎖可変領域と軽鎖可変領域をペプチドリンカーで結合したscFvをコードするcDNAを構築して、遺伝子工学的手法により作製することができる。 A diabody is an antibody fragment in which scFv is dimerized and has bivalent antigen-binding activity. The bivalent antigen-binding activities may be the same antigen-binding activity or one of which may be different. Diabody obtains cDNAs encoding the heavy and light chain variable regions of an antibody, constructs a scFv-encoding cDNA by linking the heavy and light chain variable regions with a peptide linker, and genetically engineered method.
 dsFvは、重鎖可変領域および軽鎖可変領域中のそれぞれ1アミノ酸残基をシステイン残基に置換したポリペプチドを、該システイン残基間のジスルフィド結合を介して結合させたものをいう。システイン残基に置換するアミノ酸残基は、抗体の立体構造予測に基づいて選択することができる。dsFvは、抗体の重鎖可変領域および軽鎖可変領域をコードするcDNAを取得し、dsFvをコードするDNAを構築して遺伝子工学的手法により作製することができる。 dsFv refers to polypeptides in which one amino acid residue in each of the heavy chain variable region and light chain variable region is substituted with a cysteine residue, and are linked via a disulfide bond between the cysteine residues. Amino acid residues to be substituted for cysteine residues can be selected based on antibody tertiary structure prediction. A dsFv can be produced by genetic engineering techniques by obtaining cDNAs encoding the heavy chain variable region and light chain variable region of an antibody and constructing a DNA encoding the dsFv.
 CDRを含むペプチドは、重鎖または軽鎖のCDR(CDR1~3)の少なくとも1領域以上を含むように構成される。複数のCDRを含むペプチドは、直接または適当なペプチドリンカーを介して結合させることができる。CDRを含むペプチドは、抗体の重鎖または軽鎖のCDRをコードするDNAを構築し、発現ベクターに挿入する。ベクターの種類としては特に限定はなく、その後に導入される宿主細胞の種類等によって適宜選択すればよい。これらを抗体として発現させるために適当な宿主細胞(例えば、CHO細胞などの哺乳類細胞、酵母細胞、昆虫細胞など)に導入し製造することができる。また、CDRを含むペプチドは、Fmoc法(フルオレニルメチルオキシカルボニル法)およびtBoc法(t-ブチルオキシカルボニル法)等の化学合成法によって製造することもできる。 A peptide containing CDRs is constructed to contain at least one region or more of CDRs (CDR1-3) of a heavy or light chain. Peptides containing multiple CDRs can be joined directly or via suitable peptide linkers. The CDR-containing peptides are inserted into an expression vector by constructing DNA encoding the heavy or light chain CDRs of the antibody. The type of vector is not particularly limited, and may be appropriately selected depending on the type of host cell into which it is subsequently introduced. In order to express these as antibodies, they can be produced by introducing them into suitable host cells (eg, mammalian cells such as CHO cells, yeast cells, insect cells, etc.). Peptides containing CDRs can also be produced by chemical synthesis methods such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
 ヒト抗体(完全ヒト抗体)は、一般にV領域の抗原結合部位である超可変領域(Hypervariable region)、V領域のその他の部分および定常領域の構造が、ヒトの抗体と同じ構造を有するものである。ヒト抗体は、公知の技術により当業者であれば容易に作製することができる。ヒト抗体は、例えば、ヒト抗体のH鎖およびL鎖の遺伝子を含むヒト染色体断片を有するヒト抗体産生マウスを用いた方法(例えば、Tomizukaら, Proc. Natl. Acad. Sci. USA, 97, 722-727 2000.など)や、ヒト抗体ライブラリーより選別したファージディスプレイ由来のヒト抗体を取得する方法(例えば、Siriwardenaら, Opthalmology, 109, 427-431 2002.等を参照)により取得することができる。 Human antibodies (fully human antibodies) generally have the same structures as human antibodies in the structure of the hypervariable region, which is the antigen-binding site of the V region, other parts of the V region, and the constant region. . Human antibodies can be easily produced by those skilled in the art using known techniques. Human antibodies can be obtained, for example, by methods using human antibody-producing mice that have human chromosome fragments containing human antibody H chain and L chain genes (for example, Tomizuka et al., Proc. Natl. Acad. Sci. USA, 97, 722 -727 2000., etc.) or a method of obtaining phage display-derived human antibodies selected from a human antibody library (see, for example, Siriwardena et al., Opthalmology, 109, 427-431 2002.). .
 本実施形態にかかる抗原結合断片を用いて、多重特異性抗体を構築してもよい。多重特異性とは2つ以上の抗原に対して結合特異性を有することを意味し、例えば、2つ以上の抗原に対して結合特異性を有するモノクローナル抗体あるいは抗原結合断片を含むタンパク質の形態が挙げられる。これは既知の技術によって当業者によって実施される。多重特異性を構築する方法としては、異なる2種類の抗体重鎖分子がヘテロ二量体を形成するようにタンパク工学的操作を施した非対称IgGの構築技術、抗体から得た低分子量の抗原結合断片同士を連結する、あるいは別の抗体分子と連結する技術、などに分類される手法が複数開発されている。具体的な構築法の例はたとえば以下の文献を参考にすることができる。Kontermannら, Drug Discovery Today, 20, 838-847 2015.  A multispecific antibody may be constructed using the antigen-binding fragment according to this embodiment. Multispecific means having binding specificities for two or more antigens, for example, protein forms comprising monoclonal antibodies or antigen-binding fragments that have binding specificities for two or more antigens mentioned. This is done by a person skilled in the art according to known techniques. Methods for constructing multispecificity include the technique of constructing asymmetric IgG by protein engineering so that two different types of antibody heavy chain molecules form a heterodimer, and the low-molecular-weight antigen-binding technique obtained from antibodies. A number of techniques have been developed that can be classified into techniques for linking fragments together or linking to another antibody molecule. Examples of specific construction methods can be referred to, for example, the following documents. Kontermann et al., Drug Discovery Today, 20, 838-847 2015.
 第3の実施形態は、下記式(I)で表されるトリコテセン誘導体を抗原として含む免疫原性組成物である。
Figure JPOXMLDOC01-appb-C000017
(式(I)中、R2は水素または水酸基を表し、Xはキャリアタンパク質を表す。)
 本実施形態における免疫原性とは、生体内において、上記式(I)で表されるトリコテセン誘導体に対して、特異的な免疫応答を誘発する能力のことである。本実施形態にかかる免疫原性組成物には、上記式(I)で表されるトリコテセン誘導体の他、アジュバントなど、生体内において免疫応答を引き起こす上で有用な物質であれば、いかなるものが含まれていてもよい。
A third embodiment is an immunogenic composition comprising a trichothecene derivative represented by the following formula (I) as an antigen.
Figure JPOXMLDOC01-appb-C000017
(In formula (I), R2 represents a hydrogen or hydroxyl group, and X represents a carrier protein.)
Immunogenicity in this embodiment means the ability to induce a specific immune response in vivo against the trichothecene derivative represented by the above formula (I). In addition to the trichothecene derivative represented by the above formula (I), the immunogenic composition according to this embodiment includes any substance, such as an adjuvant, as long as it is useful for inducing an immune response in vivo. It may be
 本実施形態の免疫原性組成物に含まれるアジュバントとしては、特に限定はしないが、例えば、フロイント不完全アジュバントおよび完全アジュバント、アルミニウム塩(例えば、水酸化アルミニウム、リン酸アルミニウム、硫酸アルミニウム、塩化アルミニウム)、水中油型エマルジョン、モノホスホリルリピッドA(MPL)、カリウムミョウバン、サポニンを含むアジュバントなどが挙げられる。 The adjuvant contained in the immunogenic composition of the present embodiment is not particularly limited. ), oil-in-water emulsion, monophosphoryl lipid A (MPL), potassium alum, adjuvants containing saponin, and the like.
 第4の実施形態は、トリコテセン系カビ毒を検出するためのキットであって、第1の実施形態にかかる方法で作製された抗体または第2の実施形態にかかる抗体を、少なくとも含む、キットである。
 本実施形態にかかるキットには、上記抗体の他、トリコテセン系カビ毒を検出するために必要な試薬、装置(例えば、抗原を検出するためのイムノクロマトやイムノセンサなど)、器具(ELISA用のプレートなど)が含まれていてもよい。
A fourth embodiment is a kit for detecting a trichothecene mycotoxin, the kit comprising at least the antibody produced by the method according to the first embodiment or the antibody according to the second embodiment. be.
In addition to the above antibodies, the kit according to the present embodiment includes reagents necessary for detecting trichothecene mycotoxins, devices (for example, immunochromatographs and immunosensors for detecting antigens), instruments (plates for ELISA etc.) may be included.
 第5の実施形態は、下記式(III)で表されるトリコテセン誘導体である。
Figure JPOXMLDOC01-appb-C000018
(式(III)中、R2は水素または水酸基を表し、Yはタンパク質を架橋するための官能基または当該官能基を含むリンカーを表す。)
 第5の実施形態は、上記式(III)の15位にタンパク質を架橋するための官能基または当該官能基を含むリンカー(式(III)中のY)が結合した、トリコテセン誘導体である。
 上記式(III)において、Yは、タンパク質の一級アミンやスルフヒドリルなどの特定の官能基に対して反応性がある官能基、または、一級アミンやスルフヒドリルなどの特定の官能基に対して反応性がある官能基を末端に有するリンカーである。ここで、一級アミンやスルフヒドリルなどの特定の官能基に対して反応性がある官能基としては、特に限定はしないが、例えば、カルボキシル基、マレイミド基、アミノ基、アジド基などが挙げられる。また、Yはこれらの官能基を末端に有する(すなわち、タンパク質と架橋を形成する末端側)リンカーであってもよく、リンカー部分は、特に限定されず、例えば、炭素数1~10程度の炭化水素鎖(場合によっては、適宜、酸素、窒素などを含んでもよい)などであってもよい。
A fifth embodiment is a trichothecene derivative represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000018
(In formula (III), R2 represents a hydrogen or hydroxyl group, and Y represents a functional group for cross-linking proteins or a linker containing the functional group.)
A fifth embodiment is a trichothecene derivative in which a functional group for cross-linking proteins or a linker containing the functional group (Y in formula (III)) is bound to position 15 of formula (III) above.
In the above formula (III), Y is a functional group that is reactive with specific functional groups such as primary amines and sulfhydryls of proteins, or reactive with specific functional groups such as primary amines and sulfhydryls. It is a linker with a certain functional group at the end. Here, the functional group reactive with a specific functional group such as primary amine or sulfhydryl is not particularly limited, but examples thereof include carboxyl group, maleimide group, amino group and azide group. In addition, Y may be a linker having these functional groups at the end (that is, the terminal side that forms a crosslink with the protein), and the linker portion is not particularly limited. It may be a hydrogen chain (which may optionally contain oxygen, nitrogen, etc.), or the like.
 本明細書が英語に翻訳されて、単数形の「a」、「an」および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数のものも含むものとする。
 以下に実施例を示してさらに本発明の説明を行うが、本実施例は、あくまでも本発明の実施形態の例示にすぎず、本発明の範囲を限定するものではない。
When this specification is translated into English and contains the words "a", "an" and "the" in the singular, the singular as well as the plural unless the context clearly indicates otherwise. shall also include those of
EXAMPLES The present invention will be further described below with reference to Examples, but these Examples are merely illustrations of embodiments of the present invention and do not limit the scope of the present invention.
1.デオキシニバレノール(DON)およびニバレノール(NIV)を産生する菌株の培養
 DONを産生する保存菌株、Fusarium graminearum TSY 0341と、NIVを産生する保存菌株、Fusarium kyushuense Fn-2B-1を、各々、ポテトデキストロースアガーに植菌し、20 ℃、1週間培養した。毒素産生用培地として、市販押し麦50 gを500 mL三角コルベンに入れ、等量の精製水をさらに加えた後、一晩冷蔵庫に静置した。静置後121 ℃、60分間加熱し室温に戻した後(培地量約100 g)、上記ポテトデキストロースアガーに培養した菌を毒素産生用培地に植菌し、2週間後に毒素産生用培地に発育した培養物をDONおよびNIVの抽出に用いた。
1. Cultivation of strains producing deoxynivalenol (DON) and nivalenol (NIV) Potato dextrose agar for the DON-producing stock strain Fusarium graminearum TSY 0341 and the NIV-producing stock strain Fusarium kyushuense Fn-2B-1, respectively. and cultured at 20°C for 1 week. As a medium for toxin production, 50 g of commercially available rolled barley was placed in a 500 mL triangular kolben, an equal amount of purified water was further added, and the mixture was allowed to stand overnight in a refrigerator. After standing, heat at 121 ° C for 60 minutes and return to room temperature (medium volume: about 100 g), inoculate the bacteria cultured in the potato dextrose agar above into the toxin production medium, and after 2 weeks grow on the toxin production medium. cultures were used for the extraction of DON and NIV.
2.DON、NIVおよび3-acetyl-DONの調製
2-1.DONの精製
 毒素産生用培地に発育した培養物(約400 g)より、85%アセトニトリル (v/v) でDONを抽出した(400 mL、3回)。この抽出液(約1.2 L)に含まれるDONの量は、約244 mgであった。この抽出液(約1.2 L)を、減圧下濃縮した後、等量(約900 mL)のn-ヘキサンで3回洗浄した。水層(約900 mL)を、合成吸着樹脂(DIAION HP20、300 mL、6.0 cm i. d. × 9.5 cm、三菱ケミカル)に供し、水(900 mL)で洗浄後、DONをメタノール(450 mL)で溶出させた。この溶出液を減圧下濃縮した。この濃縮液より、DONを等量(約100 mL)の酢酸エチルで3回抽出した。酢酸エチル層を減圧下乾固した後、シリカゲルカラム(2 cm i.d. x 20 cm;Silica gel 60、Merck)に填着し、ジクロロメタン/メタノール混合液(20:1、10:1)、メタノールで順次展開した。その結果得られたDONを含む溶出液(ジクロロメタン:メタノール=10:1)を合わせ、減圧下濃縮した。その液をODS-HPLCに供した。ODS-HPLCのクロマト条件は、ポンプ:LC-6AD(島津)、カラム:InertSustein C18(20 mm i.d. ×250 mm、5μm、ジーエルサイエンス)、移動相:アセトニトリル:水 = 5:95 (v/v)、流速:10 mL/min、カラム温度:40℃、検出器:SPD-20A(島津)、検出波長:220 nmを用いた。DONを含むフラクションを減圧下乾固することで、下記式(1)で表されるDON(無色の飴状の固形物)を、69 mg得た。
Figure JPOXMLDOC01-appb-C000019
2. Preparation of DON, NIV and 3-acetyl-DON 2-1. Purification of DON DON was extracted with 85% acetonitrile (v/v) (400 mL, 3 times) from the culture (approximately 400 g) grown in the medium for toxin production. The amount of DON contained in this extract (about 1.2 L) was about 244 mg. This extract (about 1.2 L) was concentrated under reduced pressure and then washed three times with an equal volume (about 900 mL) of n-hexane. The aqueous layer (about 900 mL) was applied to a synthetic adsorption resin (DIAION HP20, 300 mL, 6.0 cm i.d. × 9.5 cm, Mitsubishi Chemical), washed with water (900 mL), and DON was eluted with methanol (450 mL). let me This eluate was concentrated under reduced pressure. From this concentrate, DON was extracted three times with equal volumes (approximately 100 mL) of ethyl acetate. After the ethyl acetate layer was dried under reduced pressure, it was loaded onto a silica gel column (2 cm id x 20 cm; Silica gel 60, Merck), and washed with dichloromethane/methanol mixture (20:1, 10:1) and then with methanol. Expanded. The resulting DON-containing eluate (dichloromethane:methanol=10:1) was combined and concentrated under reduced pressure. The liquid was subjected to ODS-HPLC. Chromatographic conditions for ODS-HPLC are pump: LC-6AD (Shimadzu), column: InertSustein C18 (20 mm id × 250 mm, 5 µm, GL Sciences), mobile phase: acetonitrile: water = 5: 95 (v/v). , flow rate: 10 mL/min, column temperature: 40°C, detector: SPD-20A (Shimadzu), detection wavelength: 220 nm. By drying the fraction containing DON under reduced pressure, 69 mg of DON (a colorless candy-like solid substance) represented by the following formula (1) was obtained.
Figure JPOXMLDOC01-appb-C000019
2-2.NIVの精製
 NIVは、毒素産生用培地に発育した培養物(約700 g)に5倍量の精製水(3.5L)を加えて抽出した。遠心した上清をHP20(300 mL)と混合して吸着させた。その後、精製水300 mLを加えての洗浄を10回繰り返した。洗浄したHP20をカラム(6.0 cm i. d. × 9.5 cm)に詰め300 mLの精製水で洗浄し、NIVを450 mLのメタノールで溶出させた。濃縮乾固したのちに、1 mLの酢酸エチル/メタノール混合液(8:1)に懸濁し、さらに1 mLのシリカゲルを加えて超音波を当てることにより分散しNIVをゲルに吸着させた。このシリカゲルをシリカゲルカラムに填着し、酢酸エチル/メタノール混合液(8:1)で展開した。その結果得られたNIVを含むフラクションを合わせ、濃縮乾固した。800μLの5%アセトニトリル(水:アセトニトリル=95:5)に溶解し、室温で静置することによって析出させ、下記式(2)で表されるNIVを、140 mg得た。
Figure JPOXMLDOC01-appb-C000020
2-2. Purification of NIV NIV was extracted by adding 5 volumes of purified water (3.5 L) to the culture (approximately 700 g) grown in toxin production medium. The centrifuged supernatant was mixed with HP20 (300 mL) for adsorption. Thereafter, washing by adding 300 mL of purified water was repeated 10 times. The washed HP20 was packed in a column (6.0 cm i.d. × 9.5 cm), washed with 300 mL of purified water, and NIV was eluted with 450 mL of methanol. After concentrating to dryness, it was suspended in 1 mL of ethyl acetate/methanol mixed solution (8:1), 1 mL of silica gel was added, and ultrasonic waves were applied to disperse and adsorb NIV to the gel. This silica gel was packed in a silica gel column and developed with an ethyl acetate/methanol mixture (8:1). The resulting fractions containing NIV were combined and concentrated to dryness. It was dissolved in 800 µL of 5% acetonitrile (water: acetonitrile = 95:5) and allowed to stand at room temperature for precipitation to obtain 140 mg of NIV represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000020
2-3.3-acetyl-DONの合成
 DON(145 mg)のピリジン(10 mL)溶液にn-ブチルボロン酸(498 mg)を加え、室温で終夜撹拌し、次いで無水酢酸 (0. 92 mL) のピリジン (4 mL) 溶液を加え、55℃で3.5時間撹拌した。反応液にメタノール (2 mL) を加えて濃縮し逆相HPLCで精製した。目的物を含むフラクションを凍結乾燥し、白色粉末として下記式(5)で表される3-acetyl-DON(142 mg)を得た。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-T000022
2-3. Synthesis of 3-acetyl-DON To a solution of DON (145 mg) in pyridine (10 mL) was added n-butylboronic acid (498 mg), stirred overnight at room temperature, and then acetic anhydride (0.92 mL) was added. in pyridine (4 mL) was added, and the mixture was stirred at 55°C for 3.5 hours. Methanol (2 mL) was added to the reaction mixture, and the mixture was concentrated and purified by reverse-phase HPLC. Fractions containing the desired product were freeze-dried to obtain 3-acetyl-DON (142 mg) represented by the following formula (5) as a white powder.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-T000022
3.DON、NIVまたは3-acetyl-DONにリンカーを介してカルボキシ基を導入した誘導体の合成
3-1.DON誘導体(DON-Linker-COOH)
 2つの容器に分けてDONへの修飾反応を実施した。
 「第一容器」;グルタル酸無水物(8.2 mg)のCHCl3(1.8 mL)溶液に、DON(21 mg)、1-メチルイミダゾール(1.7μL)を加えた。
 「第二容器」;グルタル酸無水物(77 mg)のCHCl3(17 mL)溶液に、DON(200 mg)、1-メチルイミダゾール(16 μL)を加えた。2つの容器とも室温で10日間撹拌し、その反応液を合わせて濃縮し逆相HPLCで精製した。目的物を含むフラクションを凍結乾燥し、白色粉末として下記式(3)で表されるDON-linker-COOH(15-O-(4-カルボキシブチリル)DON)(51 mg)を得た。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-T000024
3. Synthesis of derivatives in which a carboxyl group is introduced into DON, NIV or 3-acetyl-DON via a linker 3-1. DON derivative (DON-Linker-COOH)
The modification reaction to DON was performed in two separate vessels.
"First container"; DON (21 mg) and 1-methylimidazole (1.7 µL) were added to a CHCl 3 (1.8 mL) solution of glutaric anhydride (8.2 mg).
"Second container"; DON (200 mg) and 1-methylimidazole (16 μL) were added to a CHCl 3 (17 mL) solution of glutaric anhydride (77 mg). Both vessels were stirred at room temperature for 10 days and the combined reactions were concentrated and purified by reverse phase HPLC. Fractions containing the desired product were freeze-dried to obtain DON-linker-COOH (15-O-(4-carboxybutyryl)DON) (51 mg) represented by the following formula (3) as a white powder.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-T000024
3-2.NIV誘導体(NIV-Linker-COOH)
 NIV(20 mg)のジメチルスルホキシド(1 mL)- CHCl3(10 mL)溶液に、グルタル酸無水物(23 mg)、4-ジメチルアミノピリジン(2.4 mg)を添加し、室温にて3時間攪拌した。反応混合物に1%酢酸水を加えて分液し、水層を逆相HPLCで精製した。目的物を含むフラクションを凍結乾燥し、白色粉末として下記式(4)で表されるNIV-linker-COOH (15-O-(4-カルボキシブチリル)NIV)(2.0 mg)を得た。この工程を繰り返すことで、22 mgのNIV-linker-COOHを得た。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-T000026
3-2. NIV derivative (NIV-Linker-COOH)
Glutaric anhydride (23 mg) and 4-dimethylaminopyridine (2.4 mg) were added to a solution of NIV (20 mg) in dimethylsulfoxide (1 mL)-CHCl 3 (10 mL) and stirred at room temperature for 3 hours. bottom. 1% aqueous acetic acid was added to the reaction mixture for liquid separation, and the aqueous layer was purified by reverse-phase HPLC. Fractions containing the desired product were freeze-dried to obtain NIV-linker-COOH (15-O-(4-carboxybutyryl)NIV) (2.0 mg) represented by the following formula (4) as a white powder. This process was repeated to obtain 22 mg of NIV-linker-COOH.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-T000026
3-3.3-acetyl-DON誘導体(3-acetyl-DON -Linker-COOH)
 3-acetyl-DON(122 mg)にグルタル酸無水物(206 mg)、N,N-ジメチルアミノピリジン(49 mg)のCHCl3(20 mL)溶液を加え、室温で3時間撹拌した。その後、グルタル酸無水物(206 mg)、N,N-ジメチルアミノピリジン(49 mg)を追加し、さらに2.5時間撹拌した。反応液を濃縮し逆相HPLCで精製した。目的物を含むフラクションを凍結乾燥し、白色粉末として下記式(6)で表される3-acetyl-DON-Linker-COOH(105 mg)を得た。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-T000028
3-3. 3-acetyl-DON derivative (3-acetyl-DON-Linker-COOH)
A CHCl 3 (20 mL) solution of glutaric anhydride (206 mg) and N,N-dimethylaminopyridine (49 mg) was added to 3-acetyl-DON (122 mg), and the mixture was stirred at room temperature for 3 hours. After that, glutaric anhydride (206 mg) and N,N-dimethylaminopyridine (49 mg) were added, and the mixture was further stirred for 2.5 hours. The reaction was concentrated and purified by reverse phase HPLC. Fractions containing the desired product were freeze-dried to obtain 3-acetyl-DON-Linker-COOH (105 mg) represented by the following formula (6) as a white powder.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-T000028
4.DON誘導体、NIV誘導体および3-acetyl-DON (3-Ac-DON) 誘導体とタンパク質との結合体の調製
 合成したDON-Linker-COOH、NIV-Linker-COOH と3-Ac-DON-Linker-COOHは、活性化エステル法によりスカシ貝ヘモシアニン(KLH)、ウシ血清アルブミン(BSA)、および西洋ワサビペルオキシダーゼ(HRP)のL-リシン残基のε位にある1級アミンと共有結合し、各々免疫原(DON-KLH結合体、NIV-KLH結合体、3-Ac-DON-KLH結合体)、間接競合ELISA用抗原(DON-BSA結合体、NIV-BSA結合体、3-Ac-DON-BSA結合体)および直接競合ELISA用抗原(HRP標識DON、HRP標識NIV、HRP標識3-Ac-DON)とした。
 まず、誘導体5.0μmolを各々DMSO 100μLに溶解した。次にこれらの溶液にDMSO 5μLに溶解したN-ヒドロキシコハク酸イミド(NHS)6.0μmolを添加し、さらにDMSO 10μLに溶解した1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC) 6.0μmolを添加し、混合した。室温にて1.5時間静置して反応させた後、この反応溶液に10 mmol/Lリン酸緩衝液(pH 7.0)1 mLに溶解したKLH、BSA、HRP各々10 mgを添加し、再び室温にて1.5時間反応させた。反応終了後、150 mmolの塩化ナトリウムを添加したリン酸緩衝液(PBS)に対して透析し、DON-KLH結合体、NIV-KLH結合体、3-Ac-DON-KLH結合体およびDON-BSA結合体、NIV-BSA結合体、3-Ac-DON-BSA結合体を調製した。一方、HRP標識DON、HRP標識NIV、HRP標識3-Ac-DONは、ゲル濾過(セファデックス G-25、fineグレード、Cytiva)により精製した。
4. Preparation of conjugates of DON derivatives, NIV derivatives and 3-acetyl-DON (3-Ac-DON) derivatives with proteins Synthesized DON-Linker-COOH, NIV-Linker-COOH and 3-Ac-DON-Linker-COOH are covalently attached to the primary amines at the epsilon position of the L-lysine residues of keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA), and horseradish peroxidase (HRP) by the activated ester method, yielding immunogens, respectively. (DON-KLH conjugate, NIV-KLH conjugate, 3-Ac-DON-KLH conjugate), antigen for indirect competitive ELISA (DON-BSA conjugate, NIV-BSA conjugate, 3-Ac-DON-BSA conjugate antibody) and antigens for direct competitive ELISA (HRP-labeled DON, HRP-labeled NIV, HRP-labeled 3-Ac-DON).
First, 5.0 μmol of each derivative were dissolved in 100 μL of DMSO. To these solutions was then added 6.0 μmol N-hydroxysuccinimide (NHS) dissolved in 5 μL DMSO and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) 6.0 dissolved in 10 μL DMSO. μmol was added and mixed. After reacting at room temperature for 1.5 hours, 10 mg each of KLH, BSA, and HRP dissolved in 1 mL of 10 mmol/L phosphate buffer (pH 7.0) was added to the reaction solution, and the mixture was cooled to room temperature again. and reacted for 1.5 hours. After completion of the reaction, dialyze against phosphate buffered saline (PBS) containing 150 mmol of sodium chloride to obtain DON-KLH conjugate, NIV-KLH conjugate, 3-Ac-DON-KLH conjugate and DON-BSA. Conjugates, NIV-BSA conjugate and 3-Ac-DON-BSA conjugate were prepared. On the other hand, HRP-labeled DON, HRP-labeled NIV, and HRP-labeled 3-Ac-DON were purified by gel filtration (Sephadex G-25, fine grade, Cytiva).
5.DON-KLH結合体およびNIV-KLH結合体の免疫
 免疫は、DON-KLH結合体、NIV-KLH結合体、3-Ac-DON-KLH結合体を、各々2 mg/mL(PBS)の濃度に調製し、等量のフロイント完全アジュバントと乳化混合した後、この100 μLをマウス(Balb/c、7週齢、メス)の腹腔内に接種することで実施した。その後2週間ごとに合計3回、初回免疫の1/4量(25 μg)をフロイント不完全アジュバントと乳化混合して追加免疫した。追加免疫の1週間後に尾静脈から部分採血し、抗血清を調製した。DON-KLH結合体を免疫して得られた抗血清を抗DONポリクローナル抗体(PoAb)、NIV-KLH結合体を免疫して得られた抗血清を抗NIV PoAbとした。また、追加免疫の3日後のマウスをモノクローナル抗体(MoAb)作製に供した。抗3-Ac-DON抗体については、MoAb作製のみ実施した。
5. Immunization with DON-KLH Conjugate and NIV-KLH Conjugate After preparing and emulsifying and mixing with an equal amount of Freund's complete adjuvant, 100 μL of this was intraperitoneally inoculated into mice (Balb/c, 7 weeks old, female). After that, 1/4 amount (25 μg) of the initial immunization was emulsified and mixed with incomplete Freund's adjuvant for booster immunization, 3 times in total every 2 weeks. One week after the booster immunization, partial blood was collected from the tail vein and antiserum was prepared. Antiserum obtained by immunization with DON-KLH conjugate was designated as anti-DON polyclonal antibody (PoAb), and antiserum obtained by immunization with NIV-KLH conjugate was designated as anti-NIV PoAb. In addition, mice 3 days after the booster immunization were subjected to monoclonal antibody (MoAb) production. For the anti-3-Ac-DON antibody, only MoAb production was performed.
6.直接ELISAの構築と抗血清の抗体価の確認
 抗DON抗体(PoAb、MoAb)の抗体価は、直接ELISAで確認された。PBSで4 μg/mLに希釈した抗マウスIgGヤギ抗体(Thermo Fisher Scientific社製)を、96ウェルのマイクロタイタープレートの各ウェルに100 μL/ウェルで添加した後、4℃で1晩静置することにより抗体を固相化した。液を吸引除去後、0.4% BSAを添加したPBS(以下、ブロッキング液という)300 μL/ウェルを加えて室温で1時間ブロッキングした。このウェルを0.02%のtween20を添加したPBS(以下、洗浄液という)で1回洗浄後、0.2% のBSAを添加したPBS(以下、抗体希釈液という)で段階希釈した抗DON抗体を100 μL/ウェルで加え、室温で1時間反応させた。洗浄液で3回洗浄した後、抗体希釈液で20 ng/mLに希釈したHRP標識DONを100 μL/ウェルで加え、室温で1時間反応させた。洗浄液で3回洗浄した後、100 μg/mLの3,3’,5,5’-テトラメチルベンジジンと0.006%の過酸化水素を加えた0.1 mol/L酢酸ナトリウム緩衝液(pH5.5)(以下、発色基質液という)100 μLで発色させ、10分後に等量の0.5 mol/Lの硫酸で発色停止したのちに450 nmの吸光度を測定した。得られた結果から、飽和時の1/2の吸光度になる抗DON抗体の希釈倍数を抗体価と定義した。
 抗NIV抗体(PoAb、MoAb)についても、HRP標識DONに代えてHRP標識NIVを50 ng/mLで用いた以外は同様に実施し、抗体価を得た。また、抗3-Ac-DON MoAbについても、HRP標識DONに代えてHRP標識3-Ac-DONを20 ng/mLで用いた以外は同様に実施し、抗体価を得た。
6. Construction of Direct ELISA and Confirmation of Antiserum Antibody Titers Anti-DON antibody (PoAb, MoAb) antibody titers were confirmed by direct ELISA. Add 100 μL/well of anti-mouse IgG goat antibody (Thermo Fisher Scientific) diluted to 4 μg/mL in PBS to each well of a 96-well microtiter plate, and leave overnight at 4°C. The antibody was immobilized by this. After removing the liquid by aspiration, 300 µL/well of PBS containing 0.4% BSA (hereinafter referred to as blocking solution) was added to block at room temperature for 1 hour. After washing the wells once with 0.02% tween20-added PBS (hereinafter referred to as washing solution), serially diluted anti-DON antibody with 0.2% BSA-added PBS (hereinafter referred to as antibody diluent) was added to 100 μL/well. Added in wells and allowed to react for 1 hour at room temperature. After washing three times with washing solution, 100 μL/well of HRP-labeled DON diluted to 20 ng/mL with antibody diluent was added and allowed to react at room temperature for 1 hour. After washing three times with washing solution, add 100 μg/ mL 3,3',5,5'-tetramethylbenzidine and 0.006% hydrogen peroxide in 0.1 mol/L sodium acetate buffer (pH 5.5) ( The color was developed with 100 μL of a chromogenic substrate solution, 10 minutes later, the color was stopped with an equal volume of 0.5 mol/L sulfuric acid, and the absorbance at 450 nm was measured. Based on the results obtained, the antibody titer was defined as the dilution factor of the anti-DON antibody that reduces the absorbance to 1/2 of the saturation.
Anti-NIV antibodies (PoAb, MoAb) were similarly tested except that HRP-labeled NIV was used at 50 ng/mL instead of HRP-labeled DON to obtain antibody titers. Anti-3-Ac-DON MoAb was also tested in the same manner except that HRP-labeled 3-Ac-DON was used at 20 ng/mL in place of HRP-labeled DON to obtain an antibody titer.
7.直接競合ELISAの構築
 抗DON抗体を用いた直接競合ELISAにおいては、直接ELISAと同様に抗マウスIgGヤギ抗体を固相化し、ブロッキングした。抗体価を示す希釈倍数に調製した抗DON抗体を100 μL/ウェルで加え、室温で1時間反応させた。一方、10%メタノールで段階希釈したDON、NIVあるいはその類縁体標準液をHRP標識DON(40 ng/mL)と等量混合した。この混合液を3回洗浄後の各ウェルに100 μL/ウェルで加えた。室温で1時間反応させたのち、直接ELISAと同様に洗浄、発色させ、吸光度を測定した。抗NIV抗体についても、HRP標識DONに代えてHRP標識NIVを100 ng/mLで用いた以外は同様に実施した。また、抗3-Ac-DON MoAbについても、HRP標識DONに代えてHRP標識3-Ac-DONを40 ng/mLで用いた以外は同様に実施した。
7. Construction of Direct Competitive ELISA In direct competitive ELISA using an anti-DON antibody, an anti-mouse IgG goat antibody was immobilized and blocked in the same manner as in the direct ELISA. An anti-DON antibody prepared at a dilution factor that indicates the antibody titer was added at 100 μL/well and allowed to react at room temperature for 1 hour. On the other hand, a standard solution of DON, NIV, or analogs thereof serially diluted with 10% methanol was mixed with HRP-labeled DON (40 ng/mL) in an equal amount. This mixed solution was added to each well after washing three times at 100 μL/well. After reacting at room temperature for 1 hour, the cells were washed and developed in the same manner as in direct ELISA, and the absorbance was measured. Anti-NIV antibodies were tested in the same manner, except that HRP-labeled NIV was used at 100 ng/mL instead of HRP-labeled DON. Anti-3-Ac-DON MoAb was also tested in the same manner, except that HRP-labeled 3-Ac-DON was used at 40 ng/mL instead of HRP-labeled DON.
8.間接ELISAと間接競合ELISA
 間接ELISAと間接競合ELISAは、 MoAb作製時のスクリーニングに用いた。
 抗DON MoAb作製時の間接ELISAは、以下のように実施した。まずDON-BSA結合体をPBSで1μg/mLに調製し、96ウェルのマイクロタイタープレートに50μL/ウェルの量で添加した後、4℃で1晩静置することにより固相化した。液を吸引除去後、ブロッキング液200μL/ウェルを加えて室温で1時間ブロッキングした。洗浄液で洗浄後、ハイブリドーマの培養上清を50 μL/ウェルで加え、室温で1時間反応させた。洗浄液で3回洗浄した後、抗体希釈液で5000倍に希釈したHRP標識抗マウスIgG(γ)ヤギ抗体(American Qualex社製)を50 μL/ウェルの量で加え、1時間反応させた。再び洗浄液で3回洗浄した後、発色基質液を加えて発色させ、450 nmの吸光度を測定した。
 抗NIV MoAb作製時の間接ELISAは、NIV-BSA結合体をPBSで4μg/mLに調製し、96ウェルのマイクロタイタープレートに100μL/ウェルの量で添加した。また、抗体希釈液で8000倍に希釈したHRP標識抗マウスIgG(H+L)ヤギ抗体(Thermo Fisher Scientific社製)を100 μL/ウェルの量で加えた。発色は、直接ELISAに準じて行い450 nmの吸光度を測定した。その他の工程は、抗DON MoAb作製時の間接ELISAと同様に行った。
8. Indirect ELISA and indirect competitive ELISA
Indirect ELISA and indirect competitive ELISA were used for screening during MoAb production.
Indirect ELISA during anti-DON MoAb generation was performed as follows. First, a DON-BSA conjugate was prepared with PBS to 1 μg/mL, added to a 96-well microtiter plate at an amount of 50 μL/well, and allowed to stand overnight at 4° C. for immobilization. After removing the liquid by aspiration, blocking was performed at room temperature for 1 hour by adding 200 μL/well of blocking liquid. After washing with a washing solution, 50 μL/well of hybridoma culture supernatant was added and allowed to react at room temperature for 1 hour. After washing three times with washing solution, 50 μL/well of HRP-labeled anti-mouse IgG (γ) goat antibody (manufactured by American Qualex) diluted 5000-fold with antibody diluent was added and allowed to react for 1 hour. After washing again with the washing solution three times, a coloring substrate solution was added to develop color, and the absorbance at 450 nm was measured.
For indirect ELISA during anti-NIV MoAb production, the NIV-BSA conjugate was adjusted to 4 μg/mL in PBS and added to a 96-well microtiter plate at a volume of 100 μL/well. In addition, 100 μL/well of HRP-labeled anti-mouse IgG (H+L) goat antibody (manufactured by Thermo Fisher Scientific) diluted 8000-fold with an antibody diluent was added. Color development was performed according to direct ELISA, and absorbance at 450 nm was measured. Other steps were the same as indirect ELISA for anti-DON MoAb production.
 一方、抗DON MoAb作製時の間接競合ELISAは、以下のように実施した。まずDON-BSA結合体25 ng/mLとBSA 100 ng/mLになるようPBSで調製し、96ウェルのマイクロタイタープレートに50 μL/ウェルの量で添加した後、4℃で1晩静置することにより固相化した。液を吸引除去後、ブロッキング液200 μL/ウェルを加えて室温で1時間ブロッキングした。洗浄液で洗浄後、ハイブリドーマの培養上清と10%メタノールに溶解したDONの等量混合液を50 μL/ウェルで加え、室温で1時間競合的に反応させた。洗浄液で3回洗浄した後、抗体希釈液で5000倍に希釈したHRP標識抗マウスIgG(γ)ヤギ抗体(American Qualex社製)を50 μL/ウェルの量で加え、1時間反応させた。再び洗浄液で3回洗浄した後、発色基質液を加えて発色させ、450 nmの吸光度を測定した。
 抗NIV MoAb作製時の間接競合ELISAは、NIV-BSA結合体をPBSで4μg/mLに調製し、96ウェルのマイクロタイタープレートに100μL/ウェルの量で添加した。また、8000倍に希釈したHRP標識抗マウスIgG(H+L)ヤギ抗体(Thermo Fisher Scientific社製)を100 μL/ウェルの量で加えた。発色は、直接ELISAに準じて行い、450 nmの吸光度を測定した。その他の工程は、抗DON MoAb作製時の間接競合ELISAと同様に行った。
On the other hand, indirect competitive ELISA during anti-DON MoAb production was performed as follows. First, prepare 25 ng/mL DON-BSA conjugate and 100 ng/mL BSA in PBS, add 50 μL/well to a 96-well microtiter plate, and allow to stand overnight at 4°C. It was solid-phased by this. After removing the liquid by aspiration, blocking was performed at room temperature for 1 hour by adding 200 μL/well of blocking liquid. After washing with a washing solution, an equal volume mixture of hybridoma culture supernatant and DON dissolved in 10% methanol was added at 50 μL/well and allowed to react competitively at room temperature for 1 hour. After washing three times with washing solution, 50 μL/well of HRP-labeled anti-mouse IgG (γ) goat antibody (manufactured by American Qualex) diluted 5000-fold with antibody diluent was added and allowed to react for 1 hour. After washing again with the washing solution three times, a coloring substrate solution was added to develop color, and the absorbance at 450 nm was measured.
For indirect competitive ELISA for anti-NIV MoAb production, the NIV-BSA conjugate was adjusted to 4 μg/mL in PBS and added to a 96-well microtiter plate at a volume of 100 μL/well. In addition, 8000-fold diluted HRP-labeled anti-mouse IgG (H+L) goat antibody (manufactured by Thermo Fisher Scientific) was added in an amount of 100 µL/well. Color development was performed according to direct ELISA, and absorbance at 450 nm was measured. Other steps were the same as indirect competitive ELISA for anti-DON MoAb production.
9. 抗DON PoAbのDONおよびその類縁体との反応性
 抗DON抗体のDONおよびその類縁体との反応性は、直接競合ELISAで調べた。その際、定量的に反応し得るDONの範囲は、DONを含まずに反応させた吸光度との比率が競合的な阻害により0.2~0.8を示すDONの濃度と定義した。図1から明らかなように、抗DON抗体は、DONと4.0~300 ng/mLで定量的に反応し、DON誘導体のリンカー部位がアセチル化されている15-Ac-DONとは1.0~40 ng/mLで高い反応性を示した。一方、表5に記載したように、3-Ac-DON、NIVとは全く反応性を示さなかった。このように、合成したDON誘導体は、DONと15-Ac-DONに対して高い反応性を示す抗血清を調製するのに有効だった。
Figure JPOXMLDOC01-appb-T000029
9. Reactivity of anti-DON PoAbs with DON and its analogues The reactivity of anti-DON antibodies with DON and its analogues was examined by direct competitive ELISA. At that time, the range of DON capable of reacting quantitatively was defined as the concentration of DON showing 0.2 to 0.8 by competitive inhibition with respect to the absorbance in the reaction without DON. As is clear from FIG. 1, the anti-DON antibody quantitatively reacted with DON at 4.0-300 ng/mL, and 1.0-40 ng with 15-Ac-DON, in which the linker site of the DON derivative was acetylated. /mL showed high reactivity. On the other hand, as shown in Table 5, it showed no reactivity with 3-Ac-DON and NIV. Thus, the synthesized DON derivatives were effective in preparing highly reactive antisera against DON and 15-Ac-DON.
Figure JPOXMLDOC01-appb-T000029
10.抗NIV PoAbのNIVおよびその類縁体との反応性
 抗NIV PoAbのNIVおよびその類縁体との反応性は、直接競合ELISAで調べた。その結果、図2から明らかなように、抗NIV PoAbはNIVと12~950 ng/mLで定量的に反応し、NIV誘導体のリンカー部位がアセチル化されている15-Ac-NIVとは1.7~85 ng/mLで高い反応性を示した。一方、表5に記載したように、DON、3-Ac-DON、15-Ac-DON、4-Ac-NIVとは全く反応性を示さなかった。このように、合成したNIV誘導体は、NIVに対して高い反応性を示すPoAbを調製するのに有効だった。
10. Reactivity of Anti-NIV PoAbs with NIV and Its Analogues The reactivity of anti-NIV PoAbs with NIV and its analogues was examined by direct competitive ELISA. As a result, as is clear from FIG. 2, anti-NIV PoAb reacted quantitatively with NIV at 12-950 ng/mL, and with 15-Ac-NIV, in which the linker site of the NIV derivative is acetylated, 1.7-950 ng/mL. It showed high reactivity at 85 ng/mL. On the other hand, as shown in Table 5, it showed no reactivity with DON, 3-Ac-DON, 15-Ac-DON and 4-Ac-NIV. Thus, the synthesized NIV derivatives were effective in preparing PoAbs exhibiting high reactivity against NIV.
11.抗DON MoAbの作製
 モノクローナル抗体の作製は、常法により行った。まず細胞融合には、最終免疫後3日目のマウスから取り出した脾臓細胞を用いた。メッシュで大きな固形物を除去しながら、RPMI1640培地中に取り出した脾臓細胞をRPMI1640培地にて3回洗浄した後、マウスのミエローマ細胞P3U1と細胞数の比で5:1(脾臓細胞:ミエローマ細胞)になるように混合し、遠心(1300 rpm、5分間)して細胞沈渣を集めた。この細胞沈渣に予め37℃に温めた50%ポリエチレングリコール(分子量1500)1 mLを加え、細胞を融合した。細胞融合は、10%のウシ胎児血清(以下、FBSという)を添加したRPMI1640培地(以下「RPMI1640/10% FBS培地」という)30 mLを徐々に添加することにより、停止した。融合した細胞は、RPMI1640/10% FBS培地に100μmol/Lのヒポキサンチン、0.4μmol/Lのアミノプテリン、および16μmol/Lのチミジンを添加したHAT培地に懸濁後、96ウェルのマイクロプレート4枚に分注し、37℃、5%CO2存在下で10~14日間培養した。培養後、コロニーを生じたハイブリドーマのウェル中での抗体の反応性を、間接ELISAと間接競合ELISAを用いて調べた。
11. Preparation of Anti-DON MoAb Monoclonal antibodies were prepared by a conventional method. First, for cell fusion, spleen cells removed from mice three days after the final immunization were used. While removing large solids with a mesh, the spleen cells taken out in RPMI1640 medium were washed three times with RPMI1640 medium, and then the cells were added to mouse myeloma cells P3U1 at a cell number ratio of 5:1 (spleen cells:myeloma cells). and centrifuged (1300 rpm, 5 minutes) to collect the cell sediment. 1 mL of 50% polyethylene glycol (molecular weight 1500) prewarmed to 37° C. was added to the cell sediment to fuse the cells. Cell fusion was stopped by gradually adding 30 mL of RPMI1640 medium supplemented with 10% fetal bovine serum (hereinafter referred to as FBS) (hereinafter referred to as "RPMI1640/10% FBS medium"). Fused cells were suspended in HAT medium supplemented with 100 μmol/L hypoxanthine, 0.4 μmol/L aminopterin, and 16 μmol/L thymidine in RPMI1640/10% FBS medium, and placed in four 96-well microplates. and cultured at 37°C in the presence of 5% CO 2 for 10-14 days. After culturing, the antibody reactivity in colony-bearing hybridoma wells was examined using indirect ELISA and indirect competitive ELISA.
12.抗DON MoAbの反応性
 DONに反応性を示す抗体を産生したハイブリドーマは多数存在したが、中でも間接競合ELISAで高い反応性を示したハイブリドーマを限界希釈法によって細胞クローニングし、モノクローナル抗体産生細胞(MDN8とMDN31)とした。これらの細胞の培養上清は、MDN8由来のモノクローナル抗体(以下、MDN8 MoAbという)およびMDN31由来のモノクローナル抗体(以下、MDN31 MoAbという)として使用した。両抗体のサブクラスはMDN8: IgG2a λ、MDN31;IgG2a κであった。
 MDN8 MoAbとMDN31 MoAbのDONとの反応性を、ポリクローナル抗体である抗DON PoAbと同様に直接競合ELISAで調べた。結果は、図3に示した通り、MDN8MoAbがDONとは3~200 ng/mL、15-Ac-DONとは3~85 ng/mL、MDN31 MoAbがDONとは2~200 ng/mL、15-Ac-DONとは3~120 ng/mLの範囲で定量的に反応し、抗DON PoAbと同様にDONと15-Ac-DONに対して高い反応性を示した。一方、表5に記載したように、3-Ac-DON、NIVとは全く反応性を示さなかった。このように合成したDON誘導体は、DONと15-Ac-DONに対して高い反応性を示すモノクローナル抗体を作製するのに有効だった。
12. Reactivity of anti-DON MoAb There were many hybridomas that produced antibodies that showed reactivity to DON. and MDN31). The culture supernatant of these cells was used as an MDN8-derived monoclonal antibody (hereinafter referred to as MDN8 MoAb) and an MDN31-derived monoclonal antibody (hereinafter referred to as MDN31 MoAb). The subclasses of both antibodies were MDN8: IgG2a λ, MDN31; IgG2a κ.
The reactivity of MDN8 MoAb and MDN31 MoAb with DON was examined by direct competitive ELISA as well as anti-DON PoAb, which is a polyclonal antibody. As shown in Figure 3, MDN8 MoAb was 3-200 ng/mL with DON, 3-85 ng/mL with 15-Ac-DON, MDN31 MoAb was 2-200 ng/mL with DON, 15 It quantitatively reacted with -Ac-DON in the range of 3-120 ng/mL, and showed high reactivity with DON and 15-Ac-DON like the anti-DON PoAb. On the other hand, as shown in Table 5, it showed no reactivity with 3-Ac-DON and NIV. The DON derivatives synthesized in this way were effective in producing monoclonal antibodies exhibiting high reactivity against DON and 15-Ac-DON.
13.抗NIV MoAbの作製とその反応性
 抗NIV MoAbも抗DON MoAbと同様の条件で作製した。ただし、スクリーニングは、間接ELISAと間接競合ELISAの組み合わせと直接ELISAと直接競合ELISAの組み合わせを併用した。NIVに反応性を示す抗体を産生したハイブリドーマも多数存在したが、中でも直接競合ELISAで高い反応性を示したハイブリドーマを限界希釈法によって細胞クローニングし、 MoAb産生細胞(MNV80、MNV87、NIV150、NIV464)とした。これらの細胞の培養上清は、MNV80 MoAb、MNV87 MoAb、NIV150 MoAbおよびNIV464 MoAbとして用い、NIVとの反応性を、各々直接競合ELISAで調べた。結果は、図4および図5に示した通り、MNV80 MoAbが6.9~180 ng/mL、MNV87 MoAbが7.1~170 ng/mL、NIV150 MoAbが0.7~14 ng/mL、NIV464 MoAbが6.2~185 ng/mLの範囲でNIVと定量的に反応した。一方、15-acetyl-NIV (15-Ac-NIV) とは、MNV80 MoAbが2.8~100 ng/mL、MNV87 MoAbが2.4~95 ng/mL、NIV150 MoAbが0.1~1.2 ng/mL、NIV464 MoAbが0.4~8.5 ng/mLの範囲で定量的に反応した。表5に記載したように、MNV80 MoAbとMNV87 MoAbは、DON、3-Ac-DON、15-Ac-DON、4-Ac-NIVとは反応性を示さなかった。NIV150 MoAbとNIV464 MoAbは、DONや4-Ac-NIVとはほとんど反応性を示さなかった。15-Ac-NIVの麦類への汚染はほとんど知られていないため、合成したNIV誘導体は、NIVに対して高い反応性を示す MoAbを作製するのに有効と考えられた。
13. Production of anti-NIV MoAb and its reactivity Anti-NIV MoAb was also produced under the same conditions as the anti-DON MoAb. However, for screening, a combination of indirect ELISA and indirect competitive ELISA and a combination of direct ELISA and direct competitive ELISA were used. There were also many hybridomas that produced antibodies that showed reactivity to NIV. Among them, hybridomas that showed high reactivity in direct competitive ELISA were cell-cloned by the limiting dilution method and MoAb-producing cells (MNV80, MNV87, NIV150, NIV464) were obtained. and The culture supernatants of these cells were used as MNV80 MoAb, MNV87 MoAb, NIV150 MoAb and NIV464 MoAb, and their reactivity with NIV was examined by direct competitive ELISA. The results, as shown in Figures 4 and 5, were 6.9-180 ng/mL for MNV80 MoAb, 7.1-170 ng/mL for MNV87 MoAb, 0.7-14 ng/mL for NIV150 MoAb, and 6.2-185 ng for NIV464 MoAb. /mL ranged quantitatively reacted with NIV. On the other hand, 15-acetyl-NIV (15-Ac-NIV) is 2.8-100 ng/mL for MNV80 MoAb, 2.4-95 ng/mL for MNV87 MoAb, 0.1-1.2 ng/mL for NIV150 MoAb, and 0.1-1.2 ng/mL for NIV464 MoAb. It reacted quantitatively in the range of 0.4-8.5 ng/mL. As shown in Table 5, MNV80 MoAb and MNV87 MoAb showed no reactivity with DON, 3-Ac-DON, 15-Ac-DON and 4-Ac-NIV. NIV150 MoAb and NIV464 MoAb showed little reactivity with DON and 4-Ac-NIV. Since the contamination of barley with 15-Ac-NIV is scarcely known, the synthesized NIV derivative was thought to be effective in producing MoAb showing high reactivity against NIV.
14.抗3-Ac-DON MoAbの作製とその反応性
  抗3-Ac-DON MoAbも抗DON MoAbと同様の条件で作製した。スクリーニングは、直接ELISAと直接競合ELISAを用いた。直接競合ELISAで3-Ac-DONに高い反応性を示したハイブリドーマを限界希釈法によって細胞クローニングし、 MoAb産生細胞(M3ADN27とM3ADN28)とした。
  これらの細胞の培養上清は、M3ADN27 MoAbとM3ADN28 MoAbとして用い、3-Ac-DON、DON、15-Ac-DONとの反応性を、各々直接競合ELISAで調べた。結果は、図6に示した通り、M3ADN27 MoAbが3-Ac-DON と11~120 ng/mL、15-Ac-DONと210~2300 ng/mL、DONと3300~10000 ng/mLの範囲で、M3ADN28 MoAbが3-Ac-DON と13~140 ng/mL、15-Ac-DONと180~1900 ng/mL、DONと2000~10000 ng/mLの範囲で定量的に反応し、特に3-Ac-DONと高い反応性を示した。一方、表5に記載したように、NIVとは全く反応性を示さなかった。このように合成したNIV誘導体は、3-Ac-DONに対して高い反応性を示す MoAbを作製するのに有効だった。
14. Preparation of anti-3-Ac-DON MoAb and its reactivity Anti-3-Ac-DON MoAb was also prepared under the same conditions as anti-DON MoAb. Screening used direct ELISA and direct competitive ELISA. Hybridomas that showed high reactivity to 3-Ac-DON in direct competitive ELISA were cloned by limiting dilution to obtain MoAb-producing cells (M3ADN27 and M3ADN28).
The culture supernatants of these cells were used as M3ADN27 MoAb and M3ADN28 MoAb, and their reactivities with 3-Ac-DON, DON and 15-Ac-DON were examined by direct competitive ELISA. As shown in Fig. 6, M3ADN27 MoAb was 3-Ac-DON in the range of 11-120 ng/mL, 15-Ac-DON in the range of 210-2300 ng/mL, and DON in the range of 3300-10000 ng/mL. , M3ADN28 MoAb quantitatively reacted with 3-Ac-DON at 13-140 ng/mL, with 15-Ac-DON at 180-1900 ng/mL, and with DON at 2000-10000 ng/mL. It showed high reactivity with Ac-DON. On the other hand, as shown in Table 5, it showed no reactivity with NIV. The NIV derivatives thus synthesized were effective in producing MoAbs with high reactivity to 3-Ac-DON.
15.DONの基準値、DONとNIVの一日耐用摂取量との比較
 DON誘導体を用いて得られた抗体は、抗DON PoAb、MDN8 MoAb、およびMDN31 MoAbである。これらの直接競合ELISAにおけるDONの定量範囲は、抗DON PoAbが4.0~300 ng/mL、MDN8 MoAbが3~200 ng/mL、MDN31 MoAbが2~200 ng/mLだった。2020年に実施された厚生労働省(日本国)の薬事・食品衛生審議会食品衛生分科会において、小麦(玄麦)に対する DON の規格基準は 1.0 mg/kg と定められた。小麦からDONを抽出し、適宜希釈したのちに測定に供することを考慮すると、これらの抗体を用いて構成した直接競合ELISAは、基準値近傍あるいは基準値以下の食品中のDONを測定するために適した感度と考えられた。
15. Reference value of DON, comparison of DON and tolerable daily intake of NIV Antibodies obtained using DON derivatives are anti-DON PoAb, MDN8 MoAb and MDN31 MoAb. The quantification ranges for DON in these direct competitive ELISAs were 4.0-300 ng/mL for the anti-DON PoAb, 3-200 ng/mL for the MDN8 MoAb, and 2-200 ng/mL for the MDN31 MoAb. In 2020, the Food Sanitation Subcommittee of the Pharmaceutical Affairs and Food Sanitation Council of the Ministry of Health, Labor and Welfare (Japan) established the DON standard for wheat (brown barley) as 1.0 mg/kg. Considering that DON is extracted from wheat and diluted appropriately before measurement, a direct competitive ELISA constructed using these antibodies is effective for measuring DON in foods near or below the reference value. It was considered suitable sensitivity.
 一方、NIVについては規格基準が定められていないが、内閣府食品安全委員会(日本国)は、DONとNIVの食品健康影響評価において、一日耐容摂取量をDON単独で1 μg/kg体重/日、NIV単独で0.4μg/kg体重/日と設定した。すなわち、NIVにおいては、DONと同程度か少し高感度な測定方法が求められる可能性が高い。抗NIV PoAbの定量範囲は12~950 ng/mL、MNV80 MoAbが6.9~180 ng/mL、MNV87 MoAbが7.1~170 ng/mL、NIV150 MoAbが0.7~14 ng/mL、NIV464 MoAbが6.2~185 ng/mLだったことから、抗NIV MoAbを用いて構成した直接競合ELISAも、NIVの測定に適した感度と考えられた。
 さらに、DONの主要な類縁体である3-Ac-DONにおいても、同程度の感度を示す測定方法を構築可能な MoAbを作製できた。
 以上のことから、小麦などを汚染したDONやNIVあるいはその類縁体を測定するための抗体作製に適した誘導体の合成技術を提供し、デザインできた。
On the other hand, although standards and standards have not been established for NIV, the Food Safety Commission of the Cabinet Office (Japan) has established a tolerable daily intake of 1 μg/kg body weight for DON alone in the food health assessment of DON and NIV. /day, NIV alone was set at 0.4 μg/kg body weight/day. In other words, there is a high possibility that NIV will require a measurement method that is as sensitive as or slightly higher than DON. Quantification range for anti-NIV PoAb was 12-950 ng/mL, MNV80 MoAb 6.9-180 ng/mL, MNV87 MoAb 7.1-170 ng/mL, NIV150 MoAb 0.7-14 ng/mL, NIV464 MoAb 6.2-185 ng/mL, the direct competitive ELISA constructed using anti-NIV MoAb was also considered to have suitable sensitivity for NIV measurement.
Furthermore, for 3-Ac-DON, which is a major analogue of DON, we were able to generate MoAb capable of constructing a measurement method showing the same level of sensitivity.
Based on the above, we were able to provide and design a technique for synthesizing derivatives suitable for producing antibodies for measuring DON, NIV, or their analogues that contaminate wheat, etc.
 本発明は、カビ毒による穀物汚染の実態調査を行う上で有用であることから、農業分野における利用が期待される。

 
INDUSTRIAL APPLICABILITY The present invention is useful in conducting fact-finding surveys of grain contamination by mycotoxins, and is therefore expected to be used in the agricultural field.

Claims (24)

  1.  抗体の作製方法であって、下記式(I)で表されるトリコテセン誘導体を抗原として免疫することを含む、前記方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、R2は水素または水酸基を表し、Xはキャリアタンパク質を表す。)
    A method for producing an antibody, comprising immunizing with a trichothecene derivative represented by the following formula (I) as an antigen.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (I), R2 represents a hydrogen or hydroxyl group, and X represents a carrier protein.)
  2.  下記式(III)の化合物に、Yを介してキャリアタンパク質Xを結合させる工程を含む、請求項1に記載の方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(III)中、R2は水素または水酸基を表し、Yはタンパク質を架橋するための官能基または当該官能基を含むリンカーを表す。)
    2. A method according to claim 1, comprising the step of binding a carrier protein X via Y to a compound of formula (III) below.
    Figure JPOXMLDOC01-appb-C000002
    (In formula (III), R2 represents a hydrogen or hydroxyl group, and Y represents a functional group for cross-linking proteins or a linker containing the functional group.)
  3.  前記抗体が下記式(II)で表されるトリコテセン誘導体に対する抗体であることを特徴とする、請求項1または請求項2に記載の方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(II)中、R1は水酸基、アセトキシ基またはグルコシルオキシ基を表し、R2は水素、水酸基またはアセトキシ基を表し、R3は水酸基またはアセトキシ基を表す。)
    3. The method according to claim 1 or 2, wherein the antibody is an antibody against a trichothecene derivative represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000003
    (In formula (II), R1 represents a hydroxyl group, an acetoxy group or a glucosyloxy group, R2 represents a hydrogen group, a hydroxyl group or an acetoxy group, and R3 represents a hydroxyl group or an acetoxy group.)
  4.  請求項1または請求項2に記載の方法で作製されることを特徴とする、下記式(II)で表されるトリコテセン誘導体に対する抗体またはその抗原結合断片。
    Figure JPOXMLDOC01-appb-C000004
    (式(II)中、R1は水酸基、アセトキシ基またはグルコシルオキシ基を表し、R2は水素、水酸基またはアセトキシ基を表し、R3は水酸基またはアセトキシ基を表す。)
    3. An antibody or an antigen-binding fragment thereof against a trichothecene derivative represented by the following formula (II), which is produced by the method according to claim 1 or 2.
    Figure JPOXMLDOC01-appb-C000004
    (In formula (II), R1 represents a hydroxyl group, an acetoxy group or a glucosyloxy group, R2 represents a hydrogen group, a hydroxyl group or an acetoxy group, and R3 represents a hydroxyl group or an acetoxy group.)
  5.  下記式(II)で表されるDONおよび15-Ac-DONに対する抗体またはその抗原結合断片。
    Figure JPOXMLDOC01-appb-C000005
    (式(II)中、R1は水酸基、R2は水素、R3は水酸基またはアセトキシ基を表す。)
    An antibody or an antigen-binding fragment thereof against DON and 15-Ac-DON represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000005
    (In formula (II), R1 represents a hydroxyl group, R2 represents hydrogen, and R3 represents a hydroxyl group or an acetoxy group.)
  6.  4.0~300ng/mLのDONおよび1.0~40ng/mLの15-Ac-DONと定量的に反応する事を特徴とする請求項5に記載の抗体またはその抗原結合断片。 The antibody or antigen-binding fragment thereof according to claim 5, which reacts quantitatively with 4.0-300 ng/mL DON and 1.0-40 ng/mL 15-Ac-DON.
  7.  3.0~200ng/mLのDONおよび3.0~85ng/mLの15-Ac-DONと定量的に反応する事を特徴とする請求項5に記載の抗体またはその抗原結合断片。 The antibody or antigen-binding fragment thereof according to claim 5, which reacts quantitatively with 3.0-200 ng/mL of DON and 3.0-85 ng/mL of 15-Ac-DON.
  8.  2.0~200ng/mLのDONおよび3.0~120ng/mLの15-Ac-DONと定量的に反応する事を特徴とする請求項5に記載の抗体またはその抗原結合断片。 The antibody or antigen-binding fragment thereof according to claim 5, which reacts quantitatively with 2.0-200 ng/mL of DON and 3.0-120 ng/mL of 15-Ac-DON.
  9.  下記式(II)で表される3-Ac-DONに対する抗体またはその抗原結合断片。
    Figure JPOXMLDOC01-appb-C000006
    (式(II)中、R1はアセトキシ基、R2は水素、R3は水酸基を表す。)
    An antibody or an antigen-binding fragment thereof against 3-Ac-DON represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000006
    (In formula (II), R1 represents an acetoxy group, R2 represents hydrogen, and R3 represents a hydroxyl group.)
  10.  11~120ng/mLの3-Ac-DONと定量的に反応する事を特徴とする請求項9に記載の抗体またはその抗原結合断片。 The antibody or antigen-binding fragment thereof according to claim 9, which reacts quantitatively with 11 to 120 ng/mL of 3-Ac-DON.
  11.  13~140ng/mLの3-Ac-DONと定量的に反応する事を特徴とする請求項9に記載の抗体またはその抗原結合断片。 The antibody or antigen-binding fragment thereof according to claim 9, which reacts quantitatively with 13 to 140 ng/mL of 3-Ac-DON.
  12.  下記式(II)で表されるNIVおよび15-Ac-NIVに対する抗体またはその抗原結合断片。
    Figure JPOXMLDOC01-appb-C000007
    (式(II)中、R1およびR2は水酸基、R3は水酸基またはアセトキシ基を表す。)
    An antibody or an antigen-binding fragment thereof against NIV and 15-Ac-NIV represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000007
    (In formula (II), R 1 and R 2 represent a hydroxyl group, and R 3 represents a hydroxyl group or an acetoxy group.)
  13.  12~950ng/mLのNIVおよび1.7~85ng/mLの15-Ac-NIVと定量的に反応する事を特徴とする請求項12に記載の抗体またはその抗原結合断片。 The antibody or antigen-binding fragment thereof according to claim 12, which reacts quantitatively with 12-950 ng/mL of NIV and 1.7-85 ng/mL of 15-Ac-NIV.
  14.  6.9~180ng/mLのNIVおよび2.8~100ng/mLの15-Ac-NIVと定量的に反応する事を特徴とする請求項12に記載の抗体またはその抗原結合断片。 The antibody or antigen-binding fragment thereof according to claim 12, which reacts quantitatively with 6.9-180 ng/mL of NIV and 2.8-100 ng/mL of 15-Ac-NIV.
  15.  7.1~170ng/mLのNIVおよび2.4~95ng/mLの15-Ac-NIVと定量的に反応する事を特徴とする請求項12に記載の抗体またはその抗原結合断片。 The antibody or antigen-binding fragment thereof according to claim 12, which reacts quantitatively with 7.1-170 ng/mL of NIV and 2.4-95 ng/mL of 15-Ac-NIV.
  16.  0.7~14ng/mLのNIVおよび0.1~1.2ng/mLの15-Ac-NIVと定量的に反応する事を特徴とする請求項12に記載の抗体またはその抗原結合断片。 The antibody or antigen-binding fragment thereof according to claim 12, which reacts quantitatively with 0.7-14 ng/mL of NIV and 0.1-1.2 ng/mL of 15-Ac-NIV.
  17.  6.2~185ng/mLのNIVおよび0.4~8.5ng/mLの15-Ac-NIVと定量的に反応する事を特徴とする請求項12に記載の抗体またはその抗原結合断片。 The antibody or antigen-binding fragment thereof according to claim 12, which reacts quantitatively with 6.2-185 ng/mL of NIV and 0.4-8.5 ng/mL of 15-Ac-NIV.
  18.  下記式(I)で表されるトリコテセン誘導体を抗原として含む免疫原性組成物。
    Figure JPOXMLDOC01-appb-C000008
    (式(I)中、R2は水素または水酸基を表し、Xはキャリアタンパク質を表す。)
    An immunogenic composition comprising a trichothecene derivative represented by the following formula (I) as an antigen.
    Figure JPOXMLDOC01-appb-C000008
    (In formula (I), R2 represents a hydrogen or hydroxyl group, and X represents a carrier protein.)
  19.  前記キャリアタンパク質が、リンカーを介して前記式(I)の15位に結合していることを特徴とする請求項18に記載の免疫原性組成物。 The immunogenic composition according to claim 18, wherein said carrier protein is bound to position 15 of said formula (I) via a linker.
  20.  トリコテセン系カビ毒を検出するためのキットであって、請求項4に記載の抗体または抗原結合断片を含む、前記キット。 A kit for detecting a trichothecene mycotoxin, comprising the antibody or antigen-binding fragment according to claim 4.
  21.  トリコテセン系カビ毒を検出するためのキットであって、請求項5、請求項9または請求項12に記載の抗体または抗原結合断片を含む、前記キット。 A kit for detecting a trichothecene mycotoxin, comprising the antibody or antigen-binding fragment of claim 5, 9 or 12.
  22.  下記式(III)で表されるトリコテセン誘導体。
    Figure JPOXMLDOC01-appb-C000009
    (式(III)中、R2は水素または水酸基を表し、Yはタンパク質を架橋するための官能基(ただし、水酸基を除く)または当該官能基を含むリンカーを表す。)
    A trichothecene derivative represented by the following formula (III).
    Figure JPOXMLDOC01-appb-C000009
    (In formula (III), R 2 represents hydrogen or a hydroxyl group, and Y represents a functional group (excluding a hydroxyl group) for cross-linking proteins or a linker containing the functional group.)
  23.  前記Yが、カルボキシル基またはカルボキシル基を含むリンカーであることを特徴とする、請求項22に記載のトリコテセン誘導体。 The trichothecene derivative according to claim 22, wherein said Y is a carboxyl group or a linker containing a carboxyl group.
  24.  前記Yが、4-カルボキシブチリルオキシ基である請求項22に記載のトリコテセン誘導体。

     
    The trichothecene derivative according to claim 22, wherein said Y is a 4-carboxybutyryloxy group.

PCT/JP2022/044663 2021-12-09 2022-12-05 Antigen for preparing antibody against trichothecene mycotoxin, and use thereof WO2023106250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-199764 2021-12-09
JP2021199764 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023106250A1 true WO2023106250A1 (en) 2023-06-15

Family

ID=86730390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044663 WO2023106250A1 (en) 2021-12-09 2022-12-05 Antigen for preparing antibody against trichothecene mycotoxin, and use thereof

Country Status (1)

Country Link
WO (1) WO2023106250A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120024239A (en) * 2010-09-06 2012-03-14 대한민국(관리부서 : 농림수산식품부 농림수산검역검사본부) Monoclonal antibody specifically binding to deoxynivalenol and the kit for detecting deoxynivalenol comprising thereof
CN108614106A (en) * 2018-04-11 2018-10-02 江苏省苏微微生物研究有限公司 A kind of time-resolved fluoroimmunoassay chromatography card detecting vomitoxin and its acetyl derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120024239A (en) * 2010-09-06 2012-03-14 대한민국(관리부서 : 농림수산식품부 농림수산검역검사본부) Monoclonal antibody specifically binding to deoxynivalenol and the kit for detecting deoxynivalenol comprising thereof
CN108614106A (en) * 2018-04-11 2018-10-02 江苏省苏微微生物研究有限公司 A kind of time-resolved fluoroimmunoassay chromatography card detecting vomitoxin and its acetyl derivatives

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ELLEN MORRISON ; THOMAS RUNDBERGET ; BARBARA KOSIAK ; ARE H. AASTVEIT ; AKSEL BERNHOFT: "Cytotoxicity of trichothecenes and fusarochromanone produced by Fusarium equiseti strains isolated from Norwegian cereals", MYCOPATHOLOGIA, KLUWER ACADEMIC PUBLISHERS, DO, vol. 153, no. 1, 1 January 2002 (2002-01-01), Do , pages 49 - 56, XP019259639, ISSN: 1573-0832 *
HAN LI, LI YUETAO, JIANG JINQING, LI RENFENG, FAN GUOYING, LEI ZHUANG, WANG HAOJIE, WANG ZILIANG, ZHANG WENJU: "Preparation and characterisation of monoclonal antibodies against deoxynivalenol", ITALIAN JOURNAL OF ANIMAL SCIENCE, vol. 19, no. 1, 14 December 2020 (2020-12-14), pages 560 - 568, XP093069721, DOI: 10.1080/1828051X.2020.1763861 *
KAWAMURA OSAMU: "Preparation of monoclonal antibody against nivalenol ", KAKEN, 24 October 2022 (2022-10-24), XP093069725, Retrieved from the Internet <URL:https://kaken.nii.ac.jp/ja/file/KAKENHI-PROJECT-18K05489/18K05489seika.pdf> [retrieved on 20230802] *
MARAGOS C., BUSMAN M., SUGITA-KONISHI Y.: "Production and characterization of a monoclonal antibody that cross-reacts with the mycotoxins nivalenol and 4-deoxynivalenol", FOOD ADDITIVES AND CONTAMINANTS, TAYLOR AND FRANCIS LONDON, GB, vol. 23, no. 8, 1 August 2006 (2006-08-01), GB , pages 816 - 825, XP093069724, ISSN: 0265-203X, DOI: 10.1080/02652030600699072 *
MIYAKE SHIRO: "Preparation of monoclonal antibodies against pesticides and mycotoxins and their application to food analysis technology", BUNSEKI KAGAKU. VOL. 60. NO. 5. 2011. PP. 389-398, vol. 60, no. 5, 1 January 2011 (2011-01-01), pages 389 - 398, XP093069719 *
SINHA R C, SAVARD M E, LAU R: "PRODUCTION OF MONOCLONAL ANTIBODIES FOR THE SPECIFIC DETECTION OF DEOXYNIVALENOL AND 15-ACETYLDEOXYNIVALENOL BY ELISA", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 43, no. 06, 1 January 1995 (1995-01-01), US , pages 1740 - 1744, XP002933367, ISSN: 0021-8561, DOI: 10.1021/jf00054a061 *

Similar Documents

Publication Publication Date Title
Hong et al. Site-specific C-terminal dinitrophenylation to reconstitute the antibody Fc functions for nanobodies
US20170146524A1 (en) Antibody specific for trans-resveratrol and use thereof
Morita et al. Immunochemical monitoring of psilocybin and psilocin to identify hallucinogenic mushrooms
JP2006282547A (en) Hapten compound of nitenpyram, antibody, hybridoma, means for assaying the same and assay kit or assay method
JPH04126094A (en) Monoclonal antibody to human ige
He et al. Isolation of atrazine nanobodies enhanced by depletion of anti-carrier protein phages and performance comparison between the nanobody and monoclonal antibody derived from the same immunogen
WO2023106250A1 (en) Antigen for preparing antibody against trichothecene mycotoxin, and use thereof
KR101736420B1 (en) Patulin-specific antibody and method for detecting patulin using the same
KR101396167B1 (en) Anti-2-O-desulfated acharan sulfate antibody and its application
KR20180128293A (en) Preparation method of monoclonal antibody for detection of organophosphorus pesticide
JP2018011583A (en) Anti-mepanipyrim antibody and mepanipyrim measuring method using the antibody
Morita et al. Derivatization-assisted enzyme-linked immunosorbent assay for identifying hallucinogenic mushrooms with enhanced sensitivity
JP4663831B2 (en) Monoclonal antibodies, cell lines, and methods for measuring N1, N12-diacetylspermine
JP2016145201A (en) Anti-boscalid antibodies and methods for measuring boscalid using the same
JP6553491B2 (en) Method for predicting morbidity or risk of diseases associated with final glycation products (AGEs)
JP5770092B2 (en) Monoclonal antibody against human HIG1 polypeptide
CN110579610A (en) Kit for detecting V-domain immunosuppressive factor activated by T cells
CN114317450B (en) Hybridoma cell strain secreting Flurobendiamide monoclonal antibody and application thereof
KR100876430B1 (en) Antibody and hapten-protein conjugate utilized in an enzyme-linked immunosorbent assay (ELISA) for herbicide metamifop residues
KR101806522B1 (en) Pathogenic Escherichia coli-Specific Novel Monoclonal Antibody, Hybridoma For Producing The Antibody, Method For Detecting The Same Comprising The Antibody And Kit For Detecting The Same
JP6407990B2 (en) Augrin immunoassay
WO2005037870A1 (en) Antibody and use of the same
US7615218B2 (en) Methods for determining and lowering caffeine concentration in fluids
CN107267464B (en) Hybridoma cell strain CIT1F2 secreting anti-tadalafil specific monoclonal antibody and application thereof
EA034932B1 (en) MONOCLONAL IgA ANTIBODY FOR MYCOTOXINS, HYBRIDOMA CELL LINE PRODUCING SAID ANTIBODY, AND SPECIFIC USE THEREOF IN IMMUNOASSAYS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904179

Country of ref document: EP

Kind code of ref document: A1