WO2023106092A1 - High-frequency circuit - Google Patents

High-frequency circuit Download PDF

Info

Publication number
WO2023106092A1
WO2023106092A1 PCT/JP2022/043197 JP2022043197W WO2023106092A1 WO 2023106092 A1 WO2023106092 A1 WO 2023106092A1 JP 2022043197 W JP2022043197 W JP 2022043197W WO 2023106092 A1 WO2023106092 A1 WO 2023106092A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transmission line
switching
frequency
circuits
Prior art date
Application number
PCT/JP2022/043197
Other languages
French (fr)
Japanese (ja)
Inventor
正 前多
始 神藤
Original Assignee
学校法人 芝浦工業大学
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 芝浦工業大学, 株式会社村田製作所 filed Critical 学校法人 芝浦工業大学
Priority to JP2023566214A priority Critical patent/JPWO2023106092A1/ja
Publication of WO2023106092A1 publication Critical patent/WO2023106092A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices

Definitions

  • the present invention relates to high frequency circuits.
  • Patent Document 1 describes a line-switching phase shifter for switching circuits connected to transmission lines.
  • Non-Patent Document 1 describes a line-switching gyrator for switching circuits connected to transmission lines.
  • the transmission line ( ⁇ /4 line) becomes large.
  • the transmission line is configured by approximating it with a lumped constant circuit using inductors, capacitors, etc., the number of elements increases and the size of the transmission line increases.
  • an object of the present invention is to provide a high-frequency circuit capable of miniaturizing a transmission line.
  • a high-frequency circuit is connected to a plurality of first transmission lines and one end of each of the plurality of first transmission lines, and connects one end of each of the plurality of first transmission lines to the first circuit. and a second switching circuit connected to the other end of each of the plurality of first transmission lines and switching connection between the other end of each of the plurality of first transmission lines and the second circuit.
  • f m0 is the switching frequency of the first switching circuit and the second switching circuit
  • f is the frequency of the signal propagating in the first transmission line
  • ⁇ m0 is the wavelength for the switching frequency
  • m is an integer of 1 or more
  • the transmission line can be miniaturized.
  • FIG. 1 is a configuration diagram showing an example of a high frequency circuit according to an embodiment.
  • FIG. 2 is a configuration diagram showing another example of the high-frequency circuit according to the embodiment.
  • FIG. 3 is a configuration diagram showing another example of the high frequency circuit according to the embodiment.
  • FIG. 4 is a configuration diagram showing an example of a circulator to which the high frequency circuit according to the embodiment is applied.
  • FIG. 5 is a diagram for explaining the input impedance of a transmission line.
  • FIG. 6 is a diagram showing frequency characteristics of input impedance of a transmission line.
  • FIG. 7A is a diagram showing drive signals for the switching circuit at the first timing.
  • FIG. 7B is a diagram showing switching states of the switching circuit at the first timing.
  • FIG. 7A is a diagram showing drive signals for the switching circuit at the first timing.
  • FIG. 7B is a diagram showing switching states of the switching circuit at the first timing.
  • FIG. 8A is a diagram showing drive signals for the switching circuit at the second timing.
  • FIG. 8B is a diagram showing the switching state of the switching circuit at the second timing.
  • FIG. 9A is a diagram showing drive signals for the switching circuit at the third timing.
  • FIG. 9B is a diagram showing the switching state of the switching circuit at the third timing.
  • FIG. 10A is a diagram showing drive signals for the switching circuit at the fourth timing.
  • FIG. 10B is a diagram showing the switching state of the switching circuit at the fourth timing.
  • FIG. 11 is a configuration diagram showing an example of a ladder-type transmission line composed of an L-shaped circuit.
  • FIG. 12 is a diagram showing isolation characteristics of a circulator to which a ladder-type transmission line composed of an L-type circuit is applied.
  • FIG. 13 is a configuration diagram showing an example of a ladder-type transmission line composed of a ⁇ -Lattice circuit.
  • FIG. 14 is a Smith chart showing impedance characteristics of a ladder-type transmission line
  • FIG. 1 An embodiment will be described with reference to FIGS. 1 to 14.
  • FIG. 1 An embodiment will be described with reference to FIGS. 1 to 14.
  • FIG. 1 is a configuration diagram showing an example of a high frequency circuit 1 according to an embodiment.
  • the high-frequency circuit 1 is a circuit for switching paths for transmitting high-frequency signals (Radio Frequency (RF) signals), and includes a transmission line 10 and switching circuits 11 and 12 connected to both ends of the transmission line 10 .
  • RF Radio Frequency
  • the transmission line 10 is an example of a first transmission line.
  • the transmission line 10 may be composed of lumped constant elements (passive elements) using inductors, capacitors, and the like.
  • the transmission line 10 may be composed of a stripline system line in which a conductor is formed in a dielectric, such as a microstripline, a stripline, a coplanar guideline, or a coplanar guideline with GND.
  • the high-frequency circuit 1 only needs to have one or more transmission lines 10, and FIG. 1 shows an example in which a plurality of transmission lines 10 are provided.
  • the switching circuit 11 is an example of a first switching circuit.
  • the switching circuit 11 is connected to one end of the transmission line 10 and switches connection between the one end of the transmission line 10 and the first circuit 20 .
  • the first circuit 20 may be composed of the second transmission line, may be composed of passive elements, or may be composed of a delay circuit composed of passive elements.
  • the second transmission line is referred to as a "second" transmission line in order to distinguish it from the transmission line 10, which is an example of the first transmission line.
  • the switching circuit 12 is an example of a second switching circuit.
  • the switching circuit 12 is connected to the other end of the transmission line 10 and switches connection between the other end of the transmission line 10 and the second circuit 30 .
  • the second circuit 30 may be composed of a second transmission line, may be composed of passive elements, or may be composed of a delay circuit composed of passive elements.
  • the switching circuit 11 switches connection between one end of each of the plurality of transmission lines 10 and the plurality of first circuits 20, and the switching circuit 12 switches the other end of each of the plurality of transmission lines 10. and a plurality of second circuits 30 may be switched.
  • the high-frequency circuit 1 includes only one transmission line 10
  • the switching circuit 11 switches connection between one end of the transmission line 10 and the plurality of first circuits 20, and the switching circuit 12 switches the connection of the transmission line 10.
  • the connection between the other end and the plurality of second circuits 30 is switched.
  • the high-frequency circuit 1 includes a plurality of transmission lines 10
  • the switching circuit 11 connects one end of each of the plurality of transmission lines 10 and the first circuit.
  • the switching circuit 12 switches the connection between the second circuit 30 and the other end of each of the plurality of transmission lines 10 .
  • the switching circuits 11 and 12 may be composed of three-terminal semiconductor elements (semiconductor switches) whose conduction and non-conduction are controlled by control signals.
  • the switching circuits 11 and 12 may each be composed of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the switching circuits 11 and 12 may each be configured by a mechanical switch whose conduction and non-conduction are controlled by a control signal. Conduction and non-conduction of the switches in the switching circuits 11 and 12 are switched according to the switching frequency (frequency LO described later) of the switching circuits 11 and 12 .
  • one end of the transmission line 10 may be exclusively connected to one first circuit 20 out of the plurality of first circuits 20 by the switching circuit 11 .
  • one end of the transmission line 10 is connected to one of the plurality of first circuits 20. It may be connected to only one of the first circuits 20 and may not be connected to two or more first circuits 20 at the same time.
  • the other end of the transmission line 10 may be exclusively connected to one of the plurality of second circuits 30 by the switching circuit 12 .
  • the switching circuit 12 when the connection between the other end of the transmission line 10 and the plurality of second circuits 30 is sequentially switched by the switching circuit 12, the other end of the transmission line 10 is connected to the plurality of second circuits 30. Only one of the second circuits 30 may be connected, and two or more of the second circuits 30 may not be connected at the same time.
  • the first circuit 20 may be exclusively connected to one end of one of the plurality of transmission lines 10 by the switching circuit 11 . Specifically, when the connection between one end of the plurality of transmission lines 10 and the first circuit 20 is sequentially switched by the switching circuit 11, the first circuit 20 is connected to one of the plurality of transmission lines 10. It may be connected to only one transmission line 10 and may not be connected to two or more transmission lines 10 at the same time.
  • the second circuit 30 may be exclusively connected to the other end of one of the plurality of transmission lines 10 by the switching circuit 12. Specifically, when the connection between the other end of the plurality of transmission lines 10 and the second circuit 30 is sequentially switched by the switching circuit 12, the second circuit 30 is connected to any one of the plurality of transmission lines 10. Alternatively, it may be connected to only one transmission line 10 and may not be connected to two or more transmission lines 10 at the same time.
  • FIG. 2 and 3 are configuration diagrams showing another example of the high-frequency circuit 1 according to the embodiment.
  • a plurality of first circuits 20 and a plurality of second circuits 30 may be connected to one transmission line 10 by switching circuits 11 and 12 .
  • two first circuits 20 and two second circuits 30 are shown in FIG. It may be connected by switching circuits 11 and 12 .
  • one first circuit 20 and one second circuit 30 may be connected to a plurality of transmission lines 10 by switching circuits 11 and 12, as shown in FIG.
  • two transmission lines 10 are shown in FIG. 3
  • one first circuit 20 and one second circuit 30 may be connected to three or more transmission lines 10 by switching circuits 11 and 12. good.
  • ⁇ m0 is the wavelength for the switching frequencies of the switching circuits 11 and 12 and m is an integer of 1 or more, the length of the transmission line 10 is m ⁇ m0 /4.
  • Such a high-frequency circuit 1 can be applied to a gyrator that uses a mixer with switches, and the high-frequency circuit 1 that is a gyrator can be applied to a circulator.
  • a circulator to which the high-frequency circuit 1 is applied will be described below.
  • FIG. 4 is a configuration diagram showing an example of a circulator to which the high frequency circuit 1 according to the embodiment is applied.
  • the high-frequency circuit 1 is connected to transmission lines 10a and 10b and one ends of the transmission lines 10a and 10b, and a switching circuit 11 that switches connection between one ends of the transmission lines 10a and 10b and the first circuits 20a and 20b, and a transmission line.
  • a switching circuit 12 connected to the other ends of the transmission lines 10a and 10b and switching the connection between the other ends of the transmission lines 10a and 10b and the second circuits 30a and 30b.
  • the switching circuit 11 switches connection between one end of the transmission line 10a and the first circuits 20a and 20b, and switches connection between one end of the transmission line 10b and the first circuits 20a and 20b.
  • the switching circuit 12 switches connection between the other end of the transmission line 10a and the second circuits 30a and 30b, and switches connection between the other end of the transmission line 10b and the second circuits 30a and 30b.
  • the switching circuit 11 includes four switches whose conduction and non-conduction are controlled by a drive signal with a switching frequency LO.
  • One end of the transmission line 10a is connected to the first circuit 20a via a switch controlled by a drive signal LO1+ of frequency LO from a local oscillator.
  • One end of the transmission line 10a is connected to the first circuit 20b through a switch controlled by a driving signal LO1 ⁇ of frequency LO from a local oscillator.
  • One end of the transmission line 10b is connected to the first circuit 20a through a switch controlled by a driving signal LO1 ⁇ of frequency LO from a local oscillator.
  • One end of the transmission line 10b is connected to the first circuit 20b through a switch controlled by a driving signal LO1+ of frequency LO from a local oscillator.
  • the switching circuit 12 includes four switches whose conduction and non-conduction are controlled by a drive signal with a switching frequency LO.
  • the other end of the transmission line 10a is connected to the second circuit 30a via a switch controlled by a drive signal LO2+ of frequency LO from a local oscillator.
  • the other end of the transmission line 10a is connected to the second circuit 30b through a switch controlled by a drive signal LO2- of frequency LO from a local oscillator.
  • the other end of the transmission line 10b is connected to the second circuit 30a via a switch controlled by a drive signal LO2- of frequency LO from a local oscillator.
  • the other end of the transmission line 10b is connected to the second circuit 30b via a switch controlled by a drive signal LO2+ of frequency LO from the local oscillator.
  • the switching circuits 11 and 12 operate as Gilbert cell mixers, and the high frequency circuit 1 operates as a gyrator.
  • the high-frequency circuit 1 that operates as such a gyrator, the RF signal input to the transmission terminal 51 is transmitted to the antenna terminal 52 with low loss, and the RF signal input to the antenna terminal 52 is transmitted to the reception terminal 53 with low loss.
  • a circulator capable of transmitting with loss and increasing the isolation between the transmission terminal 51 and the reception terminal 53 can be realized.
  • the transmission terminal 51 and the antenna terminal 52 are connected via the third circuits 40a and 40b.
  • the third circuits 40a and 40b are, for example, transmission lines (second transmission lines).
  • the transmission terminal 51 and the high frequency circuit 1 are connected via the first circuits 20a and 20b.
  • the first circuits 20a and 20b are, for example, transmission lines (second transmission lines).
  • the antenna terminal 52, the receiving terminal 53 and the high frequency circuit 1 are connected via the second circuits 30a and 30b.
  • the second circuits 30a and 30b are, for example, transmission lines (second transmission lines).
  • the switching circuit 11 which is a Gilbert cell mixer connected to one end of the transmission lines 10a and 10b, is driven by the drive signal LO1+ of the frequency LO and the drive signal LO1- whose phase is inverted by 180°, thereby driving the first circuit.
  • the second circuits 30a and 30b, and the third circuits 40a and 40b ( ⁇ /4 lines)
  • the high-frequency circuit 1 which is a gyrator, is connected to the other ends of the transmission lines 10a and 10b by the drive signal LO2+ and the drive signal LO2- whose phase is delayed by 90° with respect to the drive signal LO1+ and the drive signal LO1-.
  • the frequency f BB is reconverted to frequency f RF by driving the switching circuit 12, which is a Gilbert cell mixer that is coupled to the circulator shown in FIG. and 90° phase lead and phase lag, respectively, to give a non-reciprocal relationship.
  • the high-frequency circuit 1 has S parameters of Equation 1 below.
  • the wavelength ⁇ m0 is the wavelength of the drive signals LO1+, LO1 ⁇ , LO2+ and LO2 ⁇
  • the wavelength ⁇ is the wavelength of the RF signal.
  • the high-frequency circuit 1 operates to switch two transmission lines 10a and 10b ( ⁇ m0 /4 line) at a frequency LO.
  • the transmission lines 10a and 10b ( ⁇ m0 /4 lines) become large.
  • the ⁇ m0 /4 line used in the high-frequency circuit 1 propagates a BB signal whose frequency is lower than that of the RF signal.
  • the BB signal will be 2/3 and 4/3 the frequency of the RF signal
  • the wavelength ⁇ m0 will be 3 times the wavelength of the RF signal. Therefore, the ⁇ m0 /4 line may become large.
  • FIG. 5 is a diagram for explaining the input impedance of the transmission lines 10a and 10b.
  • Zm0 is the characteristic impedance of the transmission lines 10a and 10b
  • ZL is the impedance of the transmission lines (first circuits 20a and 20b and second circuits 30a and 30b) connected to the transmission lines 10a and 10b
  • C 0 is the speed of light
  • f m0 is the switching frequency of the switching circuits 11 and 12
  • ⁇ m0 is the wavelength for f m0
  • f is the frequency of the signal propagating through the transmission lines 10a and 10b
  • is the wavelength for f
  • ⁇ r is the transmission line 10a.
  • the transmission lines 10a and 10b are also referred to as the transmission line 10 when there is no need to distinguish between the transmission lines 10a and 10b.
  • first circuits 20a and 20b are also referred to as first circuit 20 when there is no need to distinguish between first circuits 20a and 20b.
  • second circuits 30a and 30b are also referred to as second circuit 30 when there is no need to distinguish between second circuits 30a and 30b.
  • the third circuits 40a and 40b are also referred to as the third circuit 40 when it is not necessary to distinguish between the third circuits 40a and 40b.
  • Equation 2 shows an analytical expression for the input impedance Z in of the transmission line 10 .
  • the frequency f RF of the RF signal is 900 MHz and the switching frequency LO (that is, frequency f m0 ) of the switching circuits 11 and 12 is 300 MHz
  • the frequency f BB (that is, frequency f) of the BB signal that propagates through the transmission line 10 is 600 MHz (900 MHz - 300 MHz) and 1200 MHz (900 MHz + 300 MHz)
  • the impedance can be matched and no reflection occurs.
  • the characteristic impedance Z m0 of the transmission line 10 greatly deviates from 50 ⁇ , the band narrows .
  • ZL is self-evident, and it can be seen that the impedance can be matched regardless of the relationship between the termination impedance ZL and the characteristic impedance Zm0 . That is, even if the transmission line 10 is a line or circuit with an arbitrary value of impedance, the impedance can be matched.
  • the principle of the present invention can be applied not only to unbalanced lines but also to differential lines. If differential lines are used, the present invention can also be applied to the high frequency circuit 1 (gyrator) using the Gilbert cell mixer shown in FIG. 4 and the circulator using it. By using this configuration for each transmission line in FIG. 4, these transmission lines can be miniaturized.
  • the switching frequency of the switching circuits 11 and 12 (drive signal frequency LO) is 300 MHz
  • the RF signal propagating through 30 and third circuit 40 is 900 MHz
  • the isolation between transmission terminal 51 and reception terminal 53 is maximized
  • the loss between transmission terminal 51 and antenna terminal 52 is minimized
  • the loss between the antenna terminal 52 and the receiving terminal 53 is minimized.
  • the frequency of the BB signal propagating through the transmission line 10 is down-converted from the frequency of the RF signal of 900 MHz to 600 MHz.
  • the RF signal is is 900 MHz
  • the impedance can be matched and the reflection loss in the high-frequency circuit 1 can be suppressed, so the characteristic impedance Zm0 of the transmission line 10 can be set to a value suitable for miniaturization.
  • switching circuits 11 and 12 are switched as shown in FIGS. 7A to 10B.
  • FIG. 7A is a diagram showing drive signals for the switching circuits 11 and 12 at the first timing.
  • FIG. 7B is a diagram showing switching states of the switching circuits 11 and 12 at the first timing.
  • FIG. 8A is a diagram showing drive signals for the switching circuits 11 and 12 at the second timing.
  • FIG. 8B is a diagram showing switching states of the switching circuits 11 and 12 at the second timing.
  • FIG. 9A is a diagram showing drive signals for the switching circuits 11 and 12 at the third timing.
  • FIG. 9B is a diagram showing switching states of the switching circuits 11 and 12 at the third timing.
  • FIG. 10A is a diagram showing drive signals for the switching circuits 11 and 12 at the fourth timing.
  • FIG. 10B is a diagram showing switching states of the switching circuits 11 and 12 at the fourth timing.
  • T the period of the driving signal with the switching frequency LO
  • T 1/LO
  • the first timing to the fourth timing are timings every T/4.
  • one end of the transmission line 10a is connected to the first circuit 20a, the other end of the transmission line 10a is connected to the second circuit 30b, and the transmission line 10b
  • One end of the transmission line 10b is connected to the first circuit 20b, and the other end of the transmission line 10b is connected to the second circuit 30a.
  • one end of the transmission line 10a is connected to the first circuit 20a
  • the other end of the transmission line 10a is connected to the second circuit 30a
  • the transmission line 10b is connected to the first circuit 20a, as shown in FIG. 8B.
  • One end of the transmission line 10b is connected to the first circuit 20b
  • the other end of the transmission line 10b is connected to the second circuit 30b.
  • one end of the transmission line 10a is connected to the first circuit 20b, the other end of the transmission line 10a is connected to the second circuit 30a, and the transmission line 10b One end of the transmission line 10b is connected to the first circuit 20a, and the other end of the transmission line 10b is connected to the second circuit 30b.
  • one end of the transmission line 10a is connected to the first circuit 20b, the other end of the transmission line 10a is connected to the second circuit 30b, and the transmission line 10b
  • One end of the transmission line 10b is connected to the first circuit 20a, and the other end of the transmission line 10b is connected to the second circuit 30a.
  • one end of the transmission line 10 is always connected to one of the first circuits 20a and 20b while being switched, and the other end of the transmission line 10 is connected to the first circuit. Only one of the two circuits 30a and 30b is always connected while being switched. Thereby, the high frequency circuit 1 can function as a gyrator.
  • the transmission line 10 may be composed of only passive elements by lumped constant approximation, or may be composed of, for example, a plurality of cascaded circuits.
  • the transmission line 10 may be configured by cascade-connecting circuits each including an inductor and a capacitor as passive elements.
  • the transmission line 10 may be composed of a ladder-type circuit in which L-type circuits are cascade-connected, a ladder-type circuit in which ⁇ -type circuits or ⁇ -lattice-type circuits are cascade-connected, for miniaturization.
  • FIG. 11 is a configuration diagram showing an example of a ladder-type transmission line 10 configured with an L-shaped circuit.
  • the transmission line 10 may be configured by a ladder-type circuit in which a plurality of L-type circuits composed of passive elements such as inductors and capacitors are cascaded.
  • FIG. 12 is a diagram showing isolation characteristics of a circulator to which the ladder-type transmission line 10 configured with an L-type circuit is applied.
  • FIG. 12 shows the isolation between the transmission terminal 51 and the reception terminal 53 when L-shaped circuits are cascaded in nine stages and when L-shaped circuits are cascaded in thirty stages.
  • the inductance value of the inductor can be 4.63 nH
  • the capacitance value of the capacitor can be 0.93 pF.
  • the inductance value of the inductor can be set to 1.39 nH
  • the capacitance value of the capacitor can be set to 0.28 pF.
  • the characteristic impedance of the transmission line 10 can be set to any value. good too.
  • the size of the inductors constituting the transmission line 10 can be reduced by setting the characteristic impedance (equivalent characteristic impedance) of the transmission line 10 to a small value. As a result, the transmission line 10 can be miniaturized.
  • FIG. 13 is a configuration diagram showing an example of a ladder-type transmission line 10 made up of a ⁇ -lattice circuit known for its flat frequency characteristic of delay time.
  • the transmission line 10 may be configured by a ladder type circuit in which a plurality of ⁇ -Lattice type circuits composed of passive elements such as inductors and capacitors are cascaded. For example, assume that five stages of ⁇ -Lattice type circuits are cascaded.
  • the delay time can be realized to the same extent as when 30 stages of L-shaped circuits are connected in cascade, and the configuration can be made smaller than the L-shaped circuit.
  • the inductance value of the inductor is as large as 8.3 nH.
  • FIG. 14 shows the reflection characteristics of the transmission line 10 at this time.
  • FIG. 14 is a Smith chart showing impedance characteristics of the ladder-type transmission line 10 configured by the ⁇ -lattice circuit.
  • the characteristic impedance of the transmission line 10 is that of the first circuit 20. It may be greater than the impedance and the impedance of the second circuit 30 .
  • the characteristic impedance of the transmission line 10 is shown in Formula 4 below. Note that h is the height of the dielectric forming the microstrip line, and W is the width (line width) of the conductor forming the microstrip line.
  • the transmission line 10 can be miniaturized because the line width can be reduced by increasing the characteristic impedance in the stripline system line.
  • the high-frequency circuit 1 includes the transmission line 10, the switching circuit 11 connected to one end of the transmission line 10, and switching connection between one end of the transmission line 10 and the plurality of first circuits 20, and the transmission line 10. and a switching circuit 12 connected to the other end of the transmission line 10 for switching connection between the other end of the transmission line 10 and the plurality of second circuits 30 .
  • fm0 is the switching frequency of the switching circuits 11 and 12
  • f is the frequency of the signal propagating on the transmission line 10
  • ⁇ m0 is the wavelength for the switching frequency
  • m is an integer of 1 or more
  • n is an integer of 0 or more.
  • f/f m0 2n/m when the length of the transmission line 10 is m ⁇ m0 /4.
  • the characteristic impedance of the transmission line 10 can be set to an arbitrary value. can do. That is, since the characteristic impedance of the transmission line 10 can be set to a value that reduces the size of the transmission line, the size of the transmission line 10 can be reduced. As a result, the entire circuit to which the high frequency circuit 1 is applied can be miniaturized.
  • one end of the transmission line 10 is exclusively connected to one first circuit 20 out of the plurality of first circuits 20 by the switching circuit 11 , and the other end of the transmission line 10 is connected to the plurality of first circuits by the switching circuit 12 . It may be exclusively connected to one second circuit 30 of the two circuits 30 .
  • One end of the transmission line 10 is exclusively connected to one first circuit 20 out of the plurality of first circuits 20, and the other end of the transmission line 10 is connected to one second circuit 30 out of the plurality of second circuits 30.
  • the high-frequency circuit 1 can be operated as a gyrator.
  • the high-frequency circuit 1 includes a plurality of transmission lines 10, a switching circuit 11 that is connected to one end of each of the plurality of transmission lines 10, and switches connection between one end of each of the plurality of transmission lines 10 and the first circuit 20; a switching circuit 12 connected to the other end of each of the transmission lines 10 and switching the connection between the other end of each of the plurality of transmission lines 10 and the second circuit 30 .
  • fm0 is the switching frequency of the switching circuits 11 and 12
  • f is the frequency of the signal propagating on the transmission line 10
  • ⁇ m0 is the wavelength for the switching frequency
  • m is an integer of 1 or more
  • n is an integer of 0 or more.
  • f/f m0 2n/m when the length of the transmission line 10 is m ⁇ m0 /4.
  • the characteristic impedance of the transmission line 10 can be set to an arbitrary value. can do. That is, since the characteristic impedance of the transmission line 10 can be set to a value that reduces the size of the transmission line, the size of the transmission line 10 can be reduced. As a result, the entire circuit to which the high frequency circuit 1 is applied can be miniaturized.
  • the first circuit 20 is exclusively connected to one end of one of the plurality of transmission lines 10 by the switching circuit 11
  • the second circuit 30 is connected to one end of the plurality of transmission lines 10 by the switching circuit 12. It may be connected exclusively to the other end of one of the transmission lines 10 .
  • the switching circuits 11 and 12 may each be composed of semiconductor elements whose conduction and non-conduction are controlled by control signals.
  • the high frequency circuit 1 can be applied to high frequency bands.
  • the switching frequencies of the switching circuits 11 and 12 may be different from the frequency of the signal propagating through the transmission line 10.
  • the high-frequency circuit 1 can be applied to a gyrator using a mixer using switches.
  • first circuit 20 and the second circuit 30 may each be configured by a second transmission line.
  • the high-frequency circuit 1 can be applied to a circuit composed of transmission lines.
  • the first circuit 20 and the second circuit 30 may each be composed of passive elements.
  • the high-frequency circuit 1 can be applied to a circuit composed of passive elements.
  • the first circuit 20 and the second circuit 30 may each be composed of a delay circuit composed of passive elements.
  • the high-frequency circuit 1 can be applied to a circuit composed of delay circuits.
  • the transmission line 10 may be composed of a plurality of cascaded circuits, and each of the circuits may be composed of passive elements.
  • the equivalent characteristic impedance of the transmission line 10 may be smaller than the impedance of the first circuit 20 and the impedance of the second circuit 30 .
  • the size of the inductors constituting the transmission line 10 can be reduced by setting the characteristic impedance (equivalent characteristic impedance) of the transmission line 10 to a small value. As a result, the transmission line 10 can be miniaturized.
  • the transmission line 10 may be configured by a stripline system line.
  • the characteristic impedance of transmission line 10 may be greater than the impedance of first circuit 20 and the impedance of second circuit 30 .
  • the characteristic impedance of the transmission line 10 can be set to a large value.
  • the line width of the stripline system can be narrowed, and as a result, the transmission line 10 can be miniaturized.
  • the present invention is not limited to the above embodiments. Another embodiment realized by combining arbitrary constituent elements in the above embodiment, and a modification obtained by applying various modifications that a person skilled in the art can think of without departing from the scope of the present invention to the above embodiment, the present invention also includes various devices incorporating the high-frequency circuit 1 according to the present invention.
  • the high-frequency circuit 1 of the present invention is not only a gyrator or a circulator using a gyrator, but also includes a selector circuit, a multiplexer circuit, a demultiplexer circuit, a serial-parallel conversion circuit, a parallel-serial conversion circuit, and other high-frequency systems in which paths are switched. can be applied to
  • the present invention can be widely used in high-frequency systems such as a gyrator, a circulator, a selector circuit, a multiplexer circuit, a demultiplexer circuit, a serial-parallel conversion circuit, or a parallel-serial conversion circuit as a high-frequency circuit that switches paths.
  • high-frequency systems such as a gyrator, a circulator, a selector circuit, a multiplexer circuit, a demultiplexer circuit, a serial-parallel conversion circuit, or a parallel-serial conversion circuit as a high-frequency circuit that switches paths.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

A high-frequency circuit (1) comprises: a transmission line (10); a first switching circuit (11) that is connected to one end of the transmission line (10) and that switches a connection between the one end of the transmission line (10) and a plurality of first circuits (20); and a second switching circuit (12) that is connected to the other end of the transmission line (10) and that switches a connection between the other end of the transmission line (10) and a plurality of second circuits (30). f/fm0=2n/m in a case where fm0 is the switching frequency of the first switching circuit (11) and the second switching circuit (12), f is the frequency of a signal propagated on the transmission line (10), λm0 is a wavelength with respect to the switching frequency, m is an integer of 1 or more, n is an integer of 0 or more, and the length of the transmission line (10) is mλm0/4.

Description

高周波回路high frequency circuit
 本発明は、高周波回路に関する。 The present invention relates to high frequency circuits.
 特許文献1には、伝送線路に接続される回路を切り替えるための線路切替型移相器が記載されている。非特許文献1には、伝送線路に接続される回路を切り替えるための線路切替型ジャイレータが記載されている。 Patent Document 1 describes a line-switching phase shifter for switching circuits connected to transmission lines. Non-Patent Document 1 describes a line-switching gyrator for switching circuits connected to transmission lines.
特開2021-13071号公報Japanese Patent Application Laid-Open No. 2021-13071
 しかしながら、特許文献1に記載された線路切替型移相器および非特許文献1に記載された線路切替型ジャイレータをマイクロ波帯に適用した場合、伝送線路(λ/4線路)が大型化してしまう。また、伝送線路をインダクタおよびコンデンサなどを用いた集中定数回路で近似して構成した場合においても、素子数が多くなり伝送線路が大型化してしまう。 However, when the line-switching phase shifter described in Patent Document 1 and the line-switching gyrator described in Non-Patent Document 1 are applied to the microwave band, the transmission line (λ/4 line) becomes large. . Further, even if the transmission line is configured by approximating it with a lumped constant circuit using inductors, capacitors, etc., the number of elements increases and the size of the transmission line increases.
 そこで、本発明は、伝送線路を小型化できる高周波回路を提供することを目的とする。 Therefore, an object of the present invention is to provide a high-frequency circuit capable of miniaturizing a transmission line.
 本発明の一態様に係る高周波回路は、第1伝送線路と、第1伝送線路の一端に接続され、第1伝送線路の一端と複数の第1回路との接続を切り替える第1切り替え回路と、第1伝送線路の他端に接続され、第1伝送線路の他端と複数の第2回路との接続を切り替える第2切り替え回路と、を備え、fm0を第1切り替え回路および第2切り替え回路の切り替え周波数とし、fを第1伝送線路を伝播する信号の周波数とし、λm0を切り替え周波数に対する波長とし、mを1以上の整数とし、nを0以上の整数とし、第1伝送線路の長さをmλm0/4とした場合に、f/fm0=2n/mである。 A high-frequency circuit according to an aspect of the present invention includes a first transmission line, a first switching circuit connected to one end of the first transmission line, and switching connection between the one end of the first transmission line and a plurality of first circuits; a second switching circuit connected to the other end of the first transmission line and switching connection between the other end of the first transmission line and the plurality of second circuits, wherein fm0 is the first switching circuit and the second switching circuit; , f is the frequency of the signal propagating in the first transmission line, λ m0 is the wavelength for the switching frequency, m is an integer greater than or equal to 1, n is an integer greater than or equal to 0, and the length of the first transmission line mλ m0 /4, f/f m0 =2n/m.
 本発明の一態様に係る高周波回路は、複数の第1伝送線路と、複数の第1伝送線路のそれぞれの一端に接続され、複数の第1伝送線路のそれぞれの一端と第1回路との接続を切り替える第1切り替え回路と、複数の第1伝送線路のそれぞれの他端に接続され、複数の第1伝送線路のそれぞれの他端と第2回路との接続を切り替える第2切り替え回路と、を備え、fm0を第1切り替え回路および第2切り替え回路の切り替え周波数とし、fを第1伝送線路を伝播する信号の周波数とし、λm0を切り替え周波数に対する波長とし、mを1以上の整数とし、nを0以上の整数とし、第1伝送線路の長さをmλm0/4とした場合に、f/fm0=2n/mである。 A high-frequency circuit according to an aspect of the present invention is connected to a plurality of first transmission lines and one end of each of the plurality of first transmission lines, and connects one end of each of the plurality of first transmission lines to the first circuit. and a second switching circuit connected to the other end of each of the plurality of first transmission lines and switching connection between the other end of each of the plurality of first transmission lines and the second circuit. wherein f m0 is the switching frequency of the first switching circuit and the second switching circuit, f is the frequency of the signal propagating in the first transmission line, λ m0 is the wavelength for the switching frequency, m is an integer of 1 or more, When n is an integer of 0 or more and the length of the first transmission line is mλ m0 /4, f/f m0 =2n/m.
 本発明によれば、伝送線路を小型化できる。 According to the present invention, the transmission line can be miniaturized.
図1は、実施の形態に係る高周波回路の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a high frequency circuit according to an embodiment. 図2は、実施の形態に係る高周波回路の他の一例を示す構成図である。FIG. 2 is a configuration diagram showing another example of the high-frequency circuit according to the embodiment. 図3は、実施の形態に係る高周波回路の他の一例を示す構成図である。FIG. 3 is a configuration diagram showing another example of the high frequency circuit according to the embodiment. 図4は、実施の形態に係る高周波回路が適用されたサーキュレータの一例を示す構成図である。FIG. 4 is a configuration diagram showing an example of a circulator to which the high frequency circuit according to the embodiment is applied. 図5は、伝送線路の入力インピーダンスを説明するための図である。FIG. 5 is a diagram for explaining the input impedance of a transmission line. 図6は、伝送線路の入力インピーダンスの周波数特性を示す図である。FIG. 6 is a diagram showing frequency characteristics of input impedance of a transmission line. 図7Aは、第1タイミングにおける切り替え回路の駆動信号を示す図である。FIG. 7A is a diagram showing drive signals for the switching circuit at the first timing. 図7Bは、第1タイミングにおける切り替え回路の切り替え状態を示す図である。FIG. 7B is a diagram showing switching states of the switching circuit at the first timing. 図8Aは、第2タイミングにおける切り替え回路の駆動信号を示す図である。FIG. 8A is a diagram showing drive signals for the switching circuit at the second timing. 図8Bは、第2タイミングにおける切り替え回路の切り替え状態を示す図である。FIG. 8B is a diagram showing the switching state of the switching circuit at the second timing. 図9Aは、第3タイミングにおける切り替え回路の駆動信号を示す図である。FIG. 9A is a diagram showing drive signals for the switching circuit at the third timing. 図9Bは、第3タイミングにおける切り替え回路の切り替え状態を示す図である。FIG. 9B is a diagram showing the switching state of the switching circuit at the third timing. 図10Aは、第4タイミングにおける切り替え回路の駆動信号を示す図である。FIG. 10A is a diagram showing drive signals for the switching circuit at the fourth timing. 図10Bは、第4タイミングにおける切り替え回路の切り替え状態を示す図である。FIG. 10B is a diagram showing the switching state of the switching circuit at the fourth timing. 図11は、L型回路で構成されたラダー型の伝送線路の一例を示す構成図である。FIG. 11 is a configuration diagram showing an example of a ladder-type transmission line composed of an L-shaped circuit. 図12は、L型回路で構成されたラダー型の伝送線路が適用されたサーキュレータのアイソレーション特性を示す図である。FIG. 12 is a diagram showing isolation characteristics of a circulator to which a ladder-type transmission line composed of an L-type circuit is applied. 図13は、π-Lattice型回路で構成されたラダー型の伝送線路の一例を示す構成図である。FIG. 13 is a configuration diagram showing an example of a ladder-type transmission line composed of a π-Lattice circuit. 図14は、π-Lattice型回路で構成されたラダー型の伝送線路のインピーダンス特性を示すスミスチャートである。FIG. 14 is a Smith chart showing impedance characteristics of a ladder-type transmission line composed of a π-lattice circuit.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。また、以下の実施の形態において、「接続される」とは、直接接続される場合だけでなく、他の素子(例えば、キャパシタ、インダクタ、または、ダイオードもしくはトランジスタ等の半導体素子等)を介して電気的に接続される場合も含まれる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the embodiments described below are all comprehensive or specific examples. Numerical values, shapes, materials, constituent elements, arrangement of constituent elements, connection forms, and the like shown in the following embodiments are examples, and are not intended to limit the present invention. Among the constituent elements in the following embodiments, constituent elements not described in independent claims will be described as optional constituent elements. Also, the sizes, or size ratios, of components shown in the drawings are not necessarily exact. Moreover, in each figure, the same code|symbol is attached|subjected with respect to substantially the same structure, and the overlapping description may be abbreviate|omitted or simplified. In addition, in the following embodiments, "connected" means not only direct connection but also other elements (for example, capacitors, inductors, or semiconductor elements such as diodes or transistors). A case of being electrically connected is also included.
 (実施の形態)
 実施の形態について、図1から図14を用いて説明する。
(Embodiment)
An embodiment will be described with reference to FIGS. 1 to 14. FIG.
 図1は、実施の形態に係る高周波回路1の一例を示す構成図である。 FIG. 1 is a configuration diagram showing an example of a high frequency circuit 1 according to an embodiment.
 高周波回路1は、高周波信号(Radio Frequency(RF)信号)を伝送する経路を切り替えるための回路であり、伝送線路10と、伝送線路10の両端に接続された切り替え回路11および12とを備える。 The high-frequency circuit 1 is a circuit for switching paths for transmitting high-frequency signals (Radio Frequency (RF) signals), and includes a transmission line 10 and switching circuits 11 and 12 connected to both ends of the transmission line 10 .
 伝送線路10は、第1伝送線路の一例である。伝送線路10は、インダクタおよびコンデンサなどを用いた集中定数素子(受動素子)で構成されてもよい。また、伝送線路10は、マイクロストリップライン、ストリップライン、コプレーナガイドラインまたはGND付きコプレーナガイドラインなどの誘電体に導体を形成したストリップライン系線路で構成されてもよい。高周波回路1は、1以上の伝送線路10を備えていればよく、図1では複数の伝送線路10を備える例が示されている。 The transmission line 10 is an example of a first transmission line. The transmission line 10 may be composed of lumped constant elements (passive elements) using inductors, capacitors, and the like. Also, the transmission line 10 may be composed of a stripline system line in which a conductor is formed in a dielectric, such as a microstripline, a stripline, a coplanar guideline, or a coplanar guideline with GND. The high-frequency circuit 1 only needs to have one or more transmission lines 10, and FIG. 1 shows an example in which a plurality of transmission lines 10 are provided.
 切り替え回路11は、第1切り替え回路の一例である。切り替え回路11は、伝送線路10の一端に接続され、伝送線路10の一端と第1回路20との接続を切り替える。第1回路20は、第2伝送線路により構成されてもよいし、受動素子により構成されてもよいし、受動素子で構成された遅延回路により構成されてもよい。なお、第2伝送線路は、第1伝送線路の一例である伝送線路10と区別するために、「第2」伝送線路としている。 The switching circuit 11 is an example of a first switching circuit. The switching circuit 11 is connected to one end of the transmission line 10 and switches connection between the one end of the transmission line 10 and the first circuit 20 . The first circuit 20 may be composed of the second transmission line, may be composed of passive elements, or may be composed of a delay circuit composed of passive elements. The second transmission line is referred to as a "second" transmission line in order to distinguish it from the transmission line 10, which is an example of the first transmission line.
 切り替え回路12は、第2切り替え回路の一例である。切り替え回路12は、伝送線路10の他端に接続され、伝送線路10の他端と第2回路30との接続を切り替える。第2回路30は、第2伝送線路により構成されてもよいし、受動素子により構成されてもよいし、受動素子で構成された遅延回路により構成されてもよい。 The switching circuit 12 is an example of a second switching circuit. The switching circuit 12 is connected to the other end of the transmission line 10 and switches connection between the other end of the transmission line 10 and the second circuit 30 . The second circuit 30 may be composed of a second transmission line, may be composed of passive elements, or may be composed of a delay circuit composed of passive elements.
 図1に示されるように、切り替え回路11は、複数の伝送線路10のそれぞれの一端と複数の第1回路20との接続を切り替え、切り替え回路12は、複数の伝送線路10のそれぞれの他端と複数の第2回路30との接続を切り替えてもよい。なお、高周波回路1が伝送線路10を1つのみ備える場合には、切り替え回路11は、伝送線路10の一端と複数の第1回路20との接続を切り替え、切り替え回路12は、伝送線路10の他端と複数の第2回路30との接続を切り替える。また、第1回路10および第2回路30がそれぞれ1つのみ存在する場合には、高周波回路1は複数の伝送線路10を備え、切り替え回路11は、複数の伝送線路10のそれぞれの一端と第1回路20との接続を切り替え、切り替え回路12は、複数の伝送線路10のそれぞれの他端と第2回路30との接続を切り替える。 As shown in FIG. 1, the switching circuit 11 switches connection between one end of each of the plurality of transmission lines 10 and the plurality of first circuits 20, and the switching circuit 12 switches the other end of each of the plurality of transmission lines 10. and a plurality of second circuits 30 may be switched. When the high-frequency circuit 1 includes only one transmission line 10, the switching circuit 11 switches connection between one end of the transmission line 10 and the plurality of first circuits 20, and the switching circuit 12 switches the connection of the transmission line 10. The connection between the other end and the plurality of second circuits 30 is switched. Further, when only one first circuit 10 and only one second circuit 30 exist, the high-frequency circuit 1 includes a plurality of transmission lines 10, and the switching circuit 11 connects one end of each of the plurality of transmission lines 10 and the first circuit. The switching circuit 12 switches the connection between the second circuit 30 and the other end of each of the plurality of transmission lines 10 .
 切り替え回路11および12は、それぞれ制御信号によって導通および非導通が制御される3端子の半導体素子(半導体スイッチ)によって構成されてもよい。例えば、切り替え回路11および12は、それぞれMOSFET(Metal Oxiside Semiconductor Field Effect Transistor)によって構成されていてもよい。なお、切り替え回路11および12は、それぞれ制御信号によって導通および非導通が制御される機械式のスイッチによって構成されてもよい。切り替え回路11および12におけるスイッチの導通および非導通は、切り替え回路11および12の切り替え周波数(後述する周波数LO)に応じて切り替えられる。 The switching circuits 11 and 12 may be composed of three-terminal semiconductor elements (semiconductor switches) whose conduction and non-conduction are controlled by control signals. For example, the switching circuits 11 and 12 may each be composed of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Note that the switching circuits 11 and 12 may each be configured by a mechanical switch whose conduction and non-conduction are controlled by a control signal. Conduction and non-conduction of the switches in the switching circuits 11 and 12 are switched according to the switching frequency (frequency LO described later) of the switching circuits 11 and 12 .
 第1回路20が複数存在する場合、伝送線路10の一端は、切り替え回路11によって複数の第1回路20のうちの1つの第1回路20と排他的に接続されてもよい。具体的には、伝送線路10の一端と複数の第1回路20との接続が切り替え回路11によって順番に切り替えられていく際に、伝送線路10の一端は、複数の第1回路20のうちのいずれか1つの第1回路20のみと接続され、2つ以上の第1回路20と同時に接続されなくてもよい。 When there are a plurality of first circuits 20 , one end of the transmission line 10 may be exclusively connected to one first circuit 20 out of the plurality of first circuits 20 by the switching circuit 11 . Specifically, when the connection between one end of the transmission line 10 and the plurality of first circuits 20 is sequentially switched by the switching circuit 11, one end of the transmission line 10 is connected to one of the plurality of first circuits 20. It may be connected to only one of the first circuits 20 and may not be connected to two or more first circuits 20 at the same time.
 第2回路30が複数存在する場合、伝送線路10の他端は、切り替え回路12によって複数の第2回路30のうちの1つの第2回路30と排他的に接続されてもよい。具体的には、伝送線路10の他端と複数の第2回路30との接続が切り替え回路12によって順番に切り替えられていく際に、伝送線路10の他端は、複数の第2回路30のうちのいずれか1つの第2回路30のみと接続され、2つ以上の第2回路30と同時に接続されなくてもよい。 When there are a plurality of second circuits 30 , the other end of the transmission line 10 may be exclusively connected to one of the plurality of second circuits 30 by the switching circuit 12 . Specifically, when the connection between the other end of the transmission line 10 and the plurality of second circuits 30 is sequentially switched by the switching circuit 12, the other end of the transmission line 10 is connected to the plurality of second circuits 30. Only one of the second circuits 30 may be connected, and two or more of the second circuits 30 may not be connected at the same time.
 高周波回路1が複数の伝送線路10を備える場合、第1回路20は、切り替え回路11によって複数の伝送線路10のうちの1つの伝送線路10の一端と排他的に接続されてもよい。具体的には、複数の伝送線路10の一端と第1回路20との接続が切り替え回路11によって順番に切り替えられていく際に、第1回路20は、複数の伝送線路10のうちのいずれか1つの伝送線路10のみと接続され、2つ以上の伝送線路10と同時に接続されなくてもよい。 When the high-frequency circuit 1 includes a plurality of transmission lines 10 , the first circuit 20 may be exclusively connected to one end of one of the plurality of transmission lines 10 by the switching circuit 11 . Specifically, when the connection between one end of the plurality of transmission lines 10 and the first circuit 20 is sequentially switched by the switching circuit 11, the first circuit 20 is connected to one of the plurality of transmission lines 10. It may be connected to only one transmission line 10 and may not be connected to two or more transmission lines 10 at the same time.
 また、高周波回路1が複数の伝送線路10を備える場合、第2回路30は、切り替え回路12によって複数の伝送線路10のうちの1つの伝送線路10の他端と排他的に接続されてもよい。具体的には、複数の伝送線路10の他端と第2回路30との接続が切り替え回路12によって順番に切り替えられていく際に、第2回路30は、複数の伝送線路10のうちのいずれか1つの伝送線路10のみと接続され、2つ以上の伝送線路10と同時に接続されなくてもよい。 Further, when the high-frequency circuit 1 includes a plurality of transmission lines 10, the second circuit 30 may be exclusively connected to the other end of one of the plurality of transmission lines 10 by the switching circuit 12. . Specifically, when the connection between the other end of the plurality of transmission lines 10 and the second circuit 30 is sequentially switched by the switching circuit 12, the second circuit 30 is connected to any one of the plurality of transmission lines 10. Alternatively, it may be connected to only one transmission line 10 and may not be connected to two or more transmission lines 10 at the same time.
 図2および図3は、実施の形態に係る高周波回路1の他の一例を示す構成図である。図2に示されるように、1つの伝送線路10に対して複数の第1回路20および複数の第2回路30が切り替え回路11および12によって接続されてもよい。なお、図2では2つの第1回路20および2つの第2回路30を示しているが、1つの伝送線路10に対して3つ以上の第1回路20および3つ以上の第2回路30が切り替え回路11および12によって接続されてもよい。また、図3に示されるように、複数の伝送線路10に対して1つの第1回路20および1つの第2回路30が切り替え回路11および12によって接続されてもよい。なお、図3では2つの伝送線路10を示しているが、3つ以上の伝送線路10に対して1つの第1回路20および1つの第2回路30が切り替え回路11および12によって接続されてもよい。 2 and 3 are configuration diagrams showing another example of the high-frequency circuit 1 according to the embodiment. As shown in FIG. 2 , a plurality of first circuits 20 and a plurality of second circuits 30 may be connected to one transmission line 10 by switching circuits 11 and 12 . Although two first circuits 20 and two second circuits 30 are shown in FIG. It may be connected by switching circuits 11 and 12 . Alternatively, one first circuit 20 and one second circuit 30 may be connected to a plurality of transmission lines 10 by switching circuits 11 and 12, as shown in FIG. Although two transmission lines 10 are shown in FIG. 3, one first circuit 20 and one second circuit 30 may be connected to three or more transmission lines 10 by switching circuits 11 and 12. good.
 λm0を切り替え回路11および12の切り替え周波数に対する波長とし、mを1以上の整数とした場合、伝送線路10の長さは、mλm0/4となっている。 If λ m0 is the wavelength for the switching frequencies of the switching circuits 11 and 12 and m is an integer of 1 or more, the length of the transmission line 10 is mλ m0 /4.
 このような高周波回路1は、スイッチを用いたミキサを利用したジャイレータに応用でき、ジャイレータである高周波回路1をサーキュレータに適用できる。以下では、高周波回路1が適用されたサーキュレータについて説明する。 Such a high-frequency circuit 1 can be applied to a gyrator that uses a mixer with switches, and the high-frequency circuit 1 that is a gyrator can be applied to a circulator. A circulator to which the high-frequency circuit 1 is applied will be described below.
 図4は、実施の形態に係る高周波回路1が適用されたサーキュレータの一例を示す構成図である。 FIG. 4 is a configuration diagram showing an example of a circulator to which the high frequency circuit 1 according to the embodiment is applied.
 例えば、高周波回路1は、伝送線路10aおよび10bと、伝送線路10aおよび10bの一端に接続され、伝送線路10aおよび10bの一端と第1回路20aおよび20bとの接続を切り替える切り替え回路11と、伝送線路10aおよび10bの他端に接続され、伝送線路10aおよび10bの他端と第2回路30aおよび30bとの接続を切り替える切り替え回路12と、を備える。具体的には、切り替え回路11は、伝送線路10aの一端と第1回路20aおよび20bとの接続を切り替え、伝送線路10bの一端と第1回路20aおよび20bとの接続を切り替える。切り替え回路12は、伝送線路10aの他端と第2回路30aおよび30bとの接続を切り替え、伝送線路10bの他端と第2回路30aおよび30bとの接続を切り替える。 For example, the high-frequency circuit 1 is connected to transmission lines 10a and 10b and one ends of the transmission lines 10a and 10b, and a switching circuit 11 that switches connection between one ends of the transmission lines 10a and 10b and the first circuits 20a and 20b, and a transmission line. A switching circuit 12 connected to the other ends of the transmission lines 10a and 10b and switching the connection between the other ends of the transmission lines 10a and 10b and the second circuits 30a and 30b. Specifically, the switching circuit 11 switches connection between one end of the transmission line 10a and the first circuits 20a and 20b, and switches connection between one end of the transmission line 10b and the first circuits 20a and 20b. The switching circuit 12 switches connection between the other end of the transmission line 10a and the second circuits 30a and 30b, and switches connection between the other end of the transmission line 10b and the second circuits 30a and 30b.
 例えば、切り替え回路11は、切り替え周波数LOの駆動信号で導通および非導通が制御される4つのスイッチを備える。伝送線路10aの一端は、ローカルオシレータからの周波数LOの駆動信号LO1+によって制御されるスイッチを介して第1回路20aと接続される。また、伝送線路10aの一端は、ローカルオシレータからの周波数LOの駆動信号LO1-によって制御されるスイッチを介して第1回路20bと接続される。伝送線路10bの一端は、ローカルオシレータからの周波数LOの駆動信号LO1-によって制御されるスイッチを介して第1回路20aと接続される。また、伝送線路10bの一端は、ローカルオシレータからの周波数LOの駆動信号LO1+によって制御されるスイッチを介して第1回路20bと接続される。 For example, the switching circuit 11 includes four switches whose conduction and non-conduction are controlled by a drive signal with a switching frequency LO. One end of the transmission line 10a is connected to the first circuit 20a via a switch controlled by a drive signal LO1+ of frequency LO from a local oscillator. One end of the transmission line 10a is connected to the first circuit 20b through a switch controlled by a driving signal LO1− of frequency LO from a local oscillator. One end of the transmission line 10b is connected to the first circuit 20a through a switch controlled by a driving signal LO1− of frequency LO from a local oscillator. One end of the transmission line 10b is connected to the first circuit 20b through a switch controlled by a driving signal LO1+ of frequency LO from a local oscillator.
 例えば、切り替え回路12は、切り替え周波数LOの駆動信号で導通および非導通が制御される4つのスイッチを備える。伝送線路10aの他端は、ローカルオシレータからの周波数LOの駆動信号LO2+によって制御されるスイッチを介して第2回路30aと接続される。また、伝送線路10aの他端は、ローカルオシレータからの周波数LOの駆動信号LO2-によって制御されるスイッチを介して第2回路30bと接続される。伝送線路10bの他端は、ローカルオシレータからの周波数LOの駆動信号LO2-によって制御されるスイッチを介して第2回路30aと接続される。また、伝送線路10bの他端は、ローカルオシレータからの周波数LOの駆動信号LO2+によって制御されるスイッチを介して第2回路30bと接続される。 For example, the switching circuit 12 includes four switches whose conduction and non-conduction are controlled by a drive signal with a switching frequency LO. The other end of the transmission line 10a is connected to the second circuit 30a via a switch controlled by a drive signal LO2+ of frequency LO from a local oscillator. The other end of the transmission line 10a is connected to the second circuit 30b through a switch controlled by a drive signal LO2- of frequency LO from a local oscillator. The other end of the transmission line 10b is connected to the second circuit 30a via a switch controlled by a drive signal LO2- of frequency LO from a local oscillator. The other end of the transmission line 10b is connected to the second circuit 30b via a switch controlled by a drive signal LO2+ of frequency LO from the local oscillator.
 切り替え回路11および12は、ギルバートセルミキサーとして動作し、高周波回路1は、ジャイレータとして動作する。このようなジャイレータとして動作する高周波回路1を用いることで、送信端子51に入力されたRF信号をアンテナ端子52に低損失で伝送し、アンテナ端子52に入力されたRF信号を受信端子53に低損失で伝送し、送信端子51と受信端子53とのアイソレーションを高めることができるサーキュレータを実現できる。 The switching circuits 11 and 12 operate as Gilbert cell mixers, and the high frequency circuit 1 operates as a gyrator. By using the high-frequency circuit 1 that operates as such a gyrator, the RF signal input to the transmission terminal 51 is transmitted to the antenna terminal 52 with low loss, and the RF signal input to the antenna terminal 52 is transmitted to the reception terminal 53 with low loss. A circulator capable of transmitting with loss and increasing the isolation between the transmission terminal 51 and the reception terminal 53 can be realized.
 送信端子51とアンテナ端子52とは、第3回路40aおよび40bを介して接続される。第3回路40aおよび40bは、例えば、伝送線路(第2伝送線路)である。送信端子51と高周波回路1とは、第1回路20aおよび20bを介して接続される。第1回路20aおよび20bは、例えば、伝送線路(第2伝送線路)である。アンテナ端子52と受信端子53および高周波回路1とは、第2回路30aおよび30bを介して接続される。第2回路30aおよび30bは、例えば、伝送線路(第2伝送線路)である。 The transmission terminal 51 and the antenna terminal 52 are connected via the third circuits 40a and 40b. The third circuits 40a and 40b are, for example, transmission lines (second transmission lines). The transmission terminal 51 and the high frequency circuit 1 are connected via the first circuits 20a and 20b. The first circuits 20a and 20b are, for example, transmission lines (second transmission lines). The antenna terminal 52, the receiving terminal 53 and the high frequency circuit 1 are connected via the second circuits 30a and 30b. The second circuits 30a and 30b are, for example, transmission lines (second transmission lines).
 高周波回路1では、周波数LOの駆動信号LO1+と位相が180°反転した駆動信号LO1-により、伝送線路10aおよび10bの一端に接続されたギルバートセルミキサーである切り替え回路11を駆動し、第1回路20aおよび20b、第2回路30aおよび30bならびに第3回路40aおよび40b(λ/4線路)を伝播するRF信号の周波数fRFをBase Band(BB)の周波数fBB=fRF±LOに変換して伝送線路10aおよび10b(λm0/4線路)にBB信号を伝播させる。そして、ジャイレータである高周波回路1は、駆動信号LO1+および駆動信号LO1-に対して位相が90°遅れた周波数LOの駆動信号LO2+および駆動信号LO2-により、伝送線路10aおよび10bの他端に接続されたギルバートセルミキサーである切り替え回路12を駆動することで、周波数fBBを周波数fRFに再変換し、図4に示されるサーキュレータにおける右回りに伝播するRF信号と左回りに伝播するRF信号とにそれぞれ90°の位相進みと位相遅れを生じさせて非相反の関係を与える。高周波回路1は、以下の式1のSパラメータを有する。なお、波長λm0は駆動信号LO1+、LO1-、LO2+およびLO2-の波長であり、波長λはRF信号の波長である。 In the high-frequency circuit 1, the switching circuit 11, which is a Gilbert cell mixer connected to one end of the transmission lines 10a and 10b, is driven by the drive signal LO1+ of the frequency LO and the drive signal LO1- whose phase is inverted by 180°, thereby driving the first circuit. 20a and 20b, the second circuits 30a and 30b, and the third circuits 40a and 40b (λ/4 lines), the frequency f RF of the RF signal is converted to the base band (BB) frequency f BB =f RF ±LO. to propagate the BB signal to the transmission lines 10a and 10b (λ m0 /4 lines). The high-frequency circuit 1, which is a gyrator, is connected to the other ends of the transmission lines 10a and 10b by the drive signal LO2+ and the drive signal LO2- whose phase is delayed by 90° with respect to the drive signal LO1+ and the drive signal LO1-. The frequency f BB is reconverted to frequency f RF by driving the switching circuit 12, which is a Gilbert cell mixer that is coupled to the circulator shown in FIG. and 90° phase lead and phase lag, respectively, to give a non-reciprocal relationship. The high-frequency circuit 1 has S parameters of Equation 1 below. The wavelength λm0 is the wavelength of the drive signals LO1+, LO1−, LO2+ and LO2−, and the wavelength λ is the wavelength of the RF signal.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 高周波回路1は2つの伝送線路10aおよび10b(λm0/4線路)を周波数LOで切り替える動作をしている。 The high-frequency circuit 1 operates to switch two transmission lines 10a and 10b (λ m0 /4 line) at a frequency LO.
 このような高周波回路1をマイクロ波帯に適用する場合、伝送線路10aおよび10b(λm0/4線路)が大型化してしまうおそれがある。具体的には、高周波回路1に用いられるλm0/4線路は、RF信号より周波数が低いBB信号が伝播する。例えば、周波数LOをRF信号の1/3の周波数とすることで、BB信号はRF信号の2/3の周波数と4/3の周波数となり、波長λm0はRF信号の波長の3倍となるため、λm0/4線路が大型化してしまうおそれがある。しかしながら、本発明によれば、以下に説明するように、伝送線路10aおよび10bの小型化が可能となっている。 When applying such a high-frequency circuit 1 to a microwave band, there is a possibility that the transmission lines 10a and 10b (λ m0 /4 lines) become large. Specifically, the λ m0 /4 line used in the high-frequency circuit 1 propagates a BB signal whose frequency is lower than that of the RF signal. For example, by setting the frequency LO to be 1/3 the frequency of the RF signal, the BB signal will be 2/3 and 4/3 the frequency of the RF signal, and the wavelength λ m0 will be 3 times the wavelength of the RF signal. Therefore, the λ m0 /4 line may become large. However, according to the present invention, it is possible to reduce the size of the transmission lines 10a and 10b as described below.
 図5は、伝送線路10aおよび10bの入力インピーダンスを説明するための図である。図5を用いて、長さx’=mλm0/4の伝送線路10aおよび10bの入力インピーダンスを説明する。以下の説明において、Zm0を伝送線路10aおよび10bの特性インピーダンス、Zを伝送線路10aおよび10bに接続される伝送線路(第1回路20aおよび20bならびに第2回路30aおよび30b)のインピーダンス、Cを光速、fm0を切り替え回路11および12の切り替え周波数、λm0をfm0に対する波長、fを伝送線路10aおよび10bを伝播する信号の周波数、λをfに対する波長、εを伝送線路10aおよび10bの比誘電率、mを1以上の整数、nを0以上の整数とする。このとき、λm0=C/(fm0×√ε)、λ=C/(f×√ε)が成り立つ。なお、以下の説明において、伝送線路10aと伝送線路10bとを区別する必要がない場合には、伝送線路10aおよび10bを伝送線路10とも記載する。同じように、第1回路20aと第1回路20bとを区別する必要がない場合には、第1回路20aおよび20bを第1回路20とも記載する。同じように、第2回路30aと第2回路30bとを区別する必要がない場合には、第2回路30aおよび30bを第2回路30とも記載する。同じように、第3回路40aと第3回路40bとを区別する必要がない場合には、第3回路40aおよび40bを第3回路40とも記載する。 FIG. 5 is a diagram for explaining the input impedance of the transmission lines 10a and 10b. The input impedance of the transmission lines 10a and 10b with length x'=mλ m0 /4 will be described with reference to FIG. In the following description, Zm0 is the characteristic impedance of the transmission lines 10a and 10b, ZL is the impedance of the transmission lines ( first circuits 20a and 20b and second circuits 30a and 30b) connected to the transmission lines 10a and 10b, C 0 is the speed of light, f m0 is the switching frequency of the switching circuits 11 and 12, λ m0 is the wavelength for f m0 , f is the frequency of the signal propagating through the transmission lines 10a and 10b, λ is the wavelength for f, and ε r is the transmission line 10a. and 10b, m is an integer of 1 or more, and n is an integer of 0 or more. At this time, λ m0 =C 0 /(f m0 ×√ε r ) and λ=C 0 /(f×√ε r ) hold. In the following description, the transmission lines 10a and 10b are also referred to as the transmission line 10 when there is no need to distinguish between the transmission lines 10a and 10b. Similarly, first circuits 20a and 20b are also referred to as first circuit 20 when there is no need to distinguish between first circuits 20a and 20b. Similarly, second circuits 30a and 30b are also referred to as second circuit 30 when there is no need to distinguish between second circuits 30a and 30b. Similarly, the third circuits 40a and 40b are also referred to as the third circuit 40 when it is not necessary to distinguish between the third circuits 40a and 40b.
 以下の式2は、伝送線路10の入力インピーダンスZinの解析式を示す。 Equation 2 below shows an analytical expression for the input impedance Z in of the transmission line 10 .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式2より、長さがmλm0/4の伝送線路10では、βx’=nπのときにZin=Zとなり、すなわち、f/fm0=2n/mのときにZin=Zとなることがわかる。例えば、RF信号の周波数fRFを900MHz、切り替え回路11および12の切り替え周波数LO(すなわち周波数fm0)を300MHzとすると、伝送線路10を伝播するBB信号の周波数fBB(すなわち周波数f)は、600MHz(900MHz-300MHz)と、1200MHz(900MHz+300MHz)となり、f/fm0=fBB/LO=600MHz/300MHz=2とf/fm0=fBB/LO=1200MHz/300MHz=4であり、f/fm0=2n/mとなる。 From Equation 2, in the transmission line 10 having a length of mλ m0 /4, Z in =Z L when βx′=nπ, that is, Z in =Z L when f/f m0 =2n/m. I know it will be. For example, if the frequency f RF of the RF signal is 900 MHz and the switching frequency LO (that is, frequency f m0 ) of the switching circuits 11 and 12 is 300 MHz, then the frequency f BB (that is, frequency f) of the BB signal that propagates through the transmission line 10 is 600 MHz (900 MHz - 300 MHz) and 1200 MHz (900 MHz + 300 MHz), f/f m0 = f BB /LO = 600 MHz/300 MHz = 2 and f/f m0 = f BB /LO = 1200 MHz/300 MHz = 4, f/ f m0 =2n/m.
 このように、伝送線路10の長さをmλm0/4としたときに、f/fm0=2n/mとすると、インピーダンスが整合できて無反射となる。なお、波長λm0は、上述したように、λm0=C/(fm0×√ε)と求まるが、この式によらず周波数fm0に対応した伝送線路10の波長をλm0として用いてもよい。 In this way, when the length of the transmission line 10 is mλ m0 /4 and f/f m0 =2n/m, the impedance can be matched and no reflection occurs. As described above, the wavelength λ m0 can be obtained by λ m0 =C 0 /(f m0 × √ε r ) . may be used.
 図6は、伝送線路10の入力インピーダンスの周波数特性を示す図である。具体的には、図6は、終端インピーダンスZを50Ωとし、伝送線路10の中心周波数(伝送線路10を伝播する信号の周波数f)を600MHzとし、伝送線路10の長さをλm0/4(m=1)とし、伝送線路10の特性インピーダンスZm0を5Ω、10Ω、200Ω、1KΩとしたときの伝送線路10の入力インピーダンスZinの周波数依存性を計算した結果を示す。 FIG. 6 is a diagram showing frequency characteristics of the input impedance of the transmission line 10. As shown in FIG. Specifically, FIG. 6 assumes that the terminal impedance ZL is 50Ω, the center frequency of the transmission line 10 (the frequency f of the signal propagating through the transmission line 10) is 600 MHz, and the length of the transmission line 10 is λ m0 /4. (m=1) and the frequency dependence of the input impedance Zin of the transmission line 10 when the characteristic impedance Zm0 of the transmission line 10 is 5Ω, 10Ω, 200Ω, and 1KΩ.
 図6より、f=2×fm0=600MHzで終端インピーダンスZと入力インピーダンスZinとが一致し、インピーダンスを整合できることがわかる。また、伝送線路10の特性インピーダンスZm0が50Ωから大きく離れる場合には帯域が狭まるが、f=2n×fm0のときに、式2のtan(πf/2fm0)が0となり、Zin=Zとなることが自明であり、終端インピーダンスZと特性インピーダンスZm0とがどのような関係であっても、インピーダンスを整合できることがわかる。つまり、伝送線路10をインピーダンスが任意の値の線路や回路にしても、インピーダンスを整合できる。 From FIG. 6, it can be seen that the termination impedance Z L and the input impedance Z in match at f=2×f m0 =600 MHz, and the impedance can be matched. In addition, when the characteristic impedance Z m0 of the transmission line 10 greatly deviates from 50Ω, the band narrows . ZL is self-evident, and it can be seen that the impedance can be matched regardless of the relationship between the termination impedance ZL and the characteristic impedance Zm0 . That is, even if the transmission line 10 is a line or circuit with an arbitrary value of impedance, the impedance can be matched.
 なお、本発明の原理は、不平衡線路のみでなく差動線路にも適用できる。差動線路を用いると図4に示されるギルバートセルミキサーを用いた高周波回路1(ジャイレータ)、それを用いたサーキュレータにも本発明を適用することができる。図4の各伝送線路に本構成を利用することで、これらの伝送線路を小型化できる。 The principle of the present invention can be applied not only to unbalanced lines but also to differential lines. If differential lines are used, the present invention can also be applied to the high frequency circuit 1 (gyrator) using the Gilbert cell mixer shown in FIG. 4 and the circulator using it. By using this configuration for each transmission line in FIG. 4, these transmission lines can be miniaturized.
 図4に示されるサーキュレータにおいて、切り替え回路11および12の切り替え周波数(駆動信号の周波数LO)を300MHzとした場合に、送信端子51、アンテナ端子52、受信端子53、第1回路20、第2回路30および第3回路40を伝播するRF信号が900MHzのときに、送信端子51と受信端子53との間のアイソレーションが最大となり、送信端子51とアンテナ端子52との間の損失が最小となり、アンテナ端子52と受信端子53との間の損失が最小となる。このとき、伝送線路10を伝播するBB信号の周波数は、RF信号の周波数900MHzからダウンコンバートされ600MHzとなる。 In the circulator shown in FIG. 4, when the switching frequency of the switching circuits 11 and 12 (drive signal frequency LO) is 300 MHz, the transmission terminal 51, the antenna terminal 52, the reception terminal 53, the first circuit 20, the second circuit When the RF signal propagating through 30 and third circuit 40 is 900 MHz, the isolation between transmission terminal 51 and reception terminal 53 is maximized, the loss between transmission terminal 51 and antenna terminal 52 is minimized, and The loss between the antenna terminal 52 and the receiving terminal 53 is minimized. At this time, the frequency of the BB signal propagating through the transmission line 10 is down-converted from the frequency of the RF signal of 900 MHz to 600 MHz.
 したがって、図4に示されるサーキュレータでは、終端インピーダンスZ(第1回路20のインピーダンスおよび第2回路30のインピーダンス)の大きさおよび伝送線路10の特性インピーダンスZm0の大きさにかかわらず、RF信号が900MHzのときにインピーダンスを整合して高周波回路1での反射損失を抑制できることから、伝送線路10の特性インピーダンスZm0を小型化に適した値に設定することができる。 Therefore, in the circulator shown in FIG . 4 , the RF signal is is 900 MHz, the impedance can be matched and the reflection loss in the high-frequency circuit 1 can be suppressed, so the characteristic impedance Zm0 of the transmission line 10 can be set to a value suitable for miniaturization.
 なお、切り替え回路11および12は、図7Aから図10Bに示されるように切り替えられる。 Note that the switching circuits 11 and 12 are switched as shown in FIGS. 7A to 10B.
 図7Aは、第1タイミングにおける切り替え回路11および12の駆動信号を示す図である。 FIG. 7A is a diagram showing drive signals for the switching circuits 11 and 12 at the first timing.
 図7Bは、第1タイミングにおける切り替え回路11および12の切り替え状態を示す図である。 FIG. 7B is a diagram showing switching states of the switching circuits 11 and 12 at the first timing.
 図8Aは、第2タイミングにおける切り替え回路11および12の駆動信号を示す図である。 FIG. 8A is a diagram showing drive signals for the switching circuits 11 and 12 at the second timing.
 図8Bは、第2タイミングにおける切り替え回路11および12の切り替え状態を示す図である。 FIG. 8B is a diagram showing switching states of the switching circuits 11 and 12 at the second timing.
 図9Aは、第3タイミングにおける切り替え回路11および12の駆動信号を示す図である。 FIG. 9A is a diagram showing drive signals for the switching circuits 11 and 12 at the third timing.
 図9Bは、第3タイミングにおける切り替え回路11および12の切り替え状態を示す図である。 FIG. 9B is a diagram showing switching states of the switching circuits 11 and 12 at the third timing.
 図10Aは、第4タイミングにおける切り替え回路11および12の駆動信号を示す図である。 FIG. 10A is a diagram showing drive signals for the switching circuits 11 and 12 at the fourth timing.
 図10Bは、第4タイミングにおける切り替え回路11および12の切り替え状態を示す図である。 FIG. 10B is a diagram showing switching states of the switching circuits 11 and 12 at the fourth timing.
 切り替え周波数LOの駆動信号の周期をTとするとT=1/LOであり、第1タイミングから第4タイミングは、T/4ごとのタイミングとなる。 If the period of the driving signal with the switching frequency LO is T, then T=1/LO, and the first timing to the fourth timing are timings every T/4.
 図7Aに示される第1タイミングでは、図7Bに示されるように、伝送線路10aの一端は第1回路20aに接続され、伝送線路10aの他端は第2回路30bに接続され、伝送線路10bの一端は第1回路20bに接続され、伝送線路10bの他端は第2回路30aに接続される。 At the first timing shown in FIG. 7A, as shown in FIG. 7B, one end of the transmission line 10a is connected to the first circuit 20a, the other end of the transmission line 10a is connected to the second circuit 30b, and the transmission line 10b One end of the transmission line 10b is connected to the first circuit 20b, and the other end of the transmission line 10b is connected to the second circuit 30a.
 図8Aに示される第2タイミングでは、図8Bに示されるように、伝送線路10aの一端は第1回路20aに接続され、伝送線路10aの他端は第2回路30aに接続され、伝送線路10bの一端は第1回路20bに接続され、伝送線路10bの他端は第2回路30bに接続される。 At the second timing shown in FIG. 8A, one end of the transmission line 10a is connected to the first circuit 20a, the other end of the transmission line 10a is connected to the second circuit 30a, and the transmission line 10b is connected to the first circuit 20a, as shown in FIG. 8B. One end of the transmission line 10b is connected to the first circuit 20b, and the other end of the transmission line 10b is connected to the second circuit 30b.
 図9Aに示される第3タイミングでは、図9Bに示されるように、伝送線路10aの一端は第1回路20bに接続され、伝送線路10aの他端は第2回路30aに接続され、伝送線路10bの一端は第1回路20aに接続され、伝送線路10bの他端は第2回路30bに接続される。 At the third timing shown in FIG. 9A, as shown in FIG. 9B, one end of the transmission line 10a is connected to the first circuit 20b, the other end of the transmission line 10a is connected to the second circuit 30a, and the transmission line 10b One end of the transmission line 10b is connected to the first circuit 20a, and the other end of the transmission line 10b is connected to the second circuit 30b.
 図10Aに示される第4タイミングでは、図10Bに示されるように、伝送線路10aの一端は第1回路20bに接続され、伝送線路10aの他端は第2回路30bに接続され、伝送線路10bの一端は第1回路20aに接続され、伝送線路10bの他端は第2回路30aに接続される。 At the fourth timing shown in FIG. 10A, as shown in FIG. 10B, one end of the transmission line 10a is connected to the first circuit 20b, the other end of the transmission line 10a is connected to the second circuit 30b, and the transmission line 10b One end of the transmission line 10b is connected to the first circuit 20a, and the other end of the transmission line 10b is connected to the second circuit 30a.
 図7B、図8B、図9Bおよび図10Bに示されるように、伝送線路10の一端には第1回路20aおよび20bの一方のみが切り替えられながら常に接続され、伝送線路10の他端には第2回路30aおよび30bの一方のみが切り替えられながら常に接続される。これにより、高周波回路1は、ジャイレータとして機能することができる。 As shown in FIGS. 7B, 8B, 9B and 10B, one end of the transmission line 10 is always connected to one of the first circuits 20a and 20b while being switched, and the other end of the transmission line 10 is connected to the first circuit. Only one of the two circuits 30a and 30b is always connected while being switched. Thereby, the high frequency circuit 1 can function as a gyrator.
 なお、伝送線路10は、受動素子のみで集中定数近似により構成されてもよく、例えば、縦続接続された複数の回路によって構成されてもよい。例えば、伝送線路10は、受動素子としてインダクタとコンデンサとからなる回路が縦続接続されて構成されてもよい。例えば、伝送線路10は、小型化のためにL型回路を縦続接続したラダー型回路、π型回路またはπ-Lattice型回路を縦続接続したラダー型回路で構成されてもよい。 It should be noted that the transmission line 10 may be composed of only passive elements by lumped constant approximation, or may be composed of, for example, a plurality of cascaded circuits. For example, the transmission line 10 may be configured by cascade-connecting circuits each including an inductor and a capacitor as passive elements. For example, the transmission line 10 may be composed of a ladder-type circuit in which L-type circuits are cascade-connected, a ladder-type circuit in which π-type circuits or π-lattice-type circuits are cascade-connected, for miniaturization.
 図11は、L型回路で構成されたラダー型の伝送線路10の一例を示す構成図である。図11に示されるように、伝送線路10は、インダクタおよびコンデンサなどの受動素子からなるL型回路が複数段縦続接続されたラダー型回路により構成されてもよい。 FIG. 11 is a configuration diagram showing an example of a ladder-type transmission line 10 configured with an L-shaped circuit. As shown in FIG. 11, the transmission line 10 may be configured by a ladder-type circuit in which a plurality of L-type circuits composed of passive elements such as inductors and capacitors are cascaded.
 図12は、L型回路で構成されたラダー型の伝送線路10が適用されたサーキュレータのアイソレーション特性を示す図である。図12には、L型回路が9段縦続接続されたときおよび30段縦続接続されたときの送信端子51と受信端子53との間のアイソレーションが示される。例えば、L型回路が9段縦続接続された場合、インダクタのインダクタンス値を4.63nH、コンデンサのキャパシタンス値を0.93pFとすることができる。また、例えば、L型回路が30段縦続接続された場合、インダクタのインダクタンス値を1.39nH、コンデンサのキャパシタンス値を0.28pFとすることができる。L型回路が9段縦続接続されたときには、送信電力が30dBmのときに26dBのアイソレーションが得られており、L型回路が30段縦続接続されたときには、送信電力が30dBmのときには遅延時間の周波数特性が平坦となるため33dBと9段縦続接続の場合より優れたアイソレーションが得られていることがわかる。しかし、L型回路の段数を増やすと回路のサイズが大型化してしまう。 FIG. 12 is a diagram showing isolation characteristics of a circulator to which the ladder-type transmission line 10 configured with an L-type circuit is applied. FIG. 12 shows the isolation between the transmission terminal 51 and the reception terminal 53 when L-shaped circuits are cascaded in nine stages and when L-shaped circuits are cascaded in thirty stages. For example, when nine L-shaped circuits are connected in series, the inductance value of the inductor can be 4.63 nH, and the capacitance value of the capacitor can be 0.93 pF. Further, for example, when 30 stages of L-shaped circuits are connected in series, the inductance value of the inductor can be set to 1.39 nH, and the capacitance value of the capacitor can be set to 0.28 pF. When nine L-shaped circuits are cascade-connected, an isolation of 26 dB is obtained at a transmission power of 30 dBm. Since the frequency characteristic is flat, it can be seen that an isolation of 33 dB, which is superior to the nine-stage cascade connection, is obtained. However, increasing the number of stages of the L-shaped circuit increases the size of the circuit.
 しかし、本発明によれば、伝送線路10の特性インピーダンスを任意の値とすることができるため、伝送線路10の特性インピーダンスは、第1回路20のインピーダンスおよび第2回路30のインピーダンスよりも小さくてもよい。伝送線路10がインダクタおよびコンデンサなどを用いた集中定数素子で構成される場合、伝送線路10の特性インピーダンス(等価特性インピーダンス)を小さな値にすることで、伝送線路10を構成するインダクタのサイズを小さくすることができ、その結果、伝送線路10を小型化できる。 However, according to the present invention, the characteristic impedance of the transmission line 10 can be set to any value. good too. When the transmission line 10 is composed of lumped constant elements using inductors, capacitors, etc., the size of the inductors constituting the transmission line 10 can be reduced by setting the characteristic impedance (equivalent characteristic impedance) of the transmission line 10 to a small value. As a result, the transmission line 10 can be miniaturized.
 図13は、遅延時間の周波数特性が平坦なことで知られているπ-Lattice型回路で構成されたラダー型の伝送線路10の一例を示す構成図である。図13に示されるように、伝送線路10は、インダクタおよびコンデンサなどの受動素子からなるπ-Lattice型回路が複数段縦続接続されたラダー型回路により構成されてもよい。例えば、π-Lattice型回路が5段縦続接続されているとする。 FIG. 13 is a configuration diagram showing an example of a ladder-type transmission line 10 made up of a π-lattice circuit known for its flat frequency characteristic of delay time. As shown in FIG. 13, the transmission line 10 may be configured by a ladder type circuit in which a plurality of π-Lattice type circuits composed of passive elements such as inductors and capacitors are cascaded. For example, assume that five stages of π-Lattice type circuits are cascaded.
 例えば、無反射とするために、終端インピーダンスZ(差動インピーダンス)を100Ω、伝送線路10の特性インピーダンスZm0(差動インピーダンス)を100Ωとする場合、以下の式3より、L=8.3nH、C=0.55pFとなり、L型回路が30段縦続接続されたときと同程度の遅延時間を実現でき、L型回路に比べると小型に構成できる。 For example, when the termination impedance Z L (differential impedance) is 100Ω and the characteristic impedance Z m0 (differential impedance) of the transmission line 10 is 100Ω in order to prevent reflection, L=8. 3nH and C=0.55pF, the delay time can be realized to the same extent as when 30 stages of L-shaped circuits are connected in cascade, and the configuration can be made smaller than the L-shaped circuit.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ただし、この場合でも、インダクタのインダクタンス値が8.3nHと大きく、インダクタのインダクタンス値が大きいとそのサイズも大きくなり、伝送線路10が大型化してしまう。 However, even in this case, the inductance value of the inductor is as large as 8.3 nH.
 そこで、f/fm0=2n/mを満たしながら、π-Lattice型回路におけるインダクタのインダクタンス値を0.52nH、コンデンサのキャパシタンス値を8.8pFとして、伝送線路10の特性インピーダンスZm0(差動インピーダンス)を6.1Ωとした。このときの伝送線路10の反射特性を図14に示す。 Therefore, while satisfying f/f m0 =2n/m, the inductance value of the inductor in the π-Lattice type circuit is set to 0.52 nH, and the capacitance value of the capacitor is set to 8.8 pF . impedance) was set to 6.1Ω. FIG. 14 shows the reflection characteristics of the transmission line 10 at this time.
 図14は、π-Lattice型回路で構成されたラダー型の伝送線路10のインピーダンス特性を示すスミスチャートである。 FIG. 14 is a Smith chart showing impedance characteristics of the ladder-type transmission line 10 configured by the π-lattice circuit.
 図14に示されるように、伝送線路10を伝播する信号の周波数である600MHzにおいて、ZinとZとはほぼ等しく、損失となる反射がほぼ発生しないことがわかる。また、Zm0=6.1Ωは、100Ωの1/16であり、インダクタのインダクタンス値の大幅な低下、すなわち、インダクタのサイズの大幅な小型化が可能であることがわかる。 As shown in FIG. 14, at 600 MHz, which is the frequency of the signal propagating through the transmission line 10, Z in and Z L are almost equal, and it can be seen that almost no lossy reflection occurs. Also, Z m0 =6.1Ω is 1/16 of 100Ω, and it can be seen that the inductance value of the inductor can be significantly reduced, that is, the size of the inductor can be greatly reduced.
 伝送線路10がマイクロストリップライン、ストリップライン、コプレーナガイドラインまたはGND付きコプレーナガイドラインなどの誘電体に導体を形成したストリップライン系線路で構成される場合、伝送線路10の特性インピーダンスは、第1回路20のインピーダンスおよび第2回路30のインピーダンスよりも大きくてもよい。伝送線路10の特性インピーダンスを大きな値にすることで、ストリップライン系線路の線路幅を狭くすることができ、その結果、伝送線路10を小型化できる。一例として、マイクロストリップラインの特性インピーダンスZm0の近似式を以下の式4に示す。なお、hはマイクロストリップラインを構成する誘電体の高さであり、Wはマイクロストリップラインを構成する導体の幅(線路幅)である。 When the transmission line 10 is composed of a stripline system line in which a conductor is formed in a dielectric, such as a microstripline, a stripline, a coplanar guideline, or a coplanar guideline with GND, the characteristic impedance of the transmission line 10 is that of the first circuit 20. It may be greater than the impedance and the impedance of the second circuit 30 . By setting the characteristic impedance of the transmission line 10 to a large value, the line width of the stripline system line can be narrowed, and as a result, the transmission line 10 can be miniaturized. As an example, the approximation formula of the characteristic impedance Zm0 of the microstrip line is shown in Formula 4 below. Note that h is the height of the dielectric forming the microstrip line, and W is the width (line width) of the conductor forming the microstrip line.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式4に示されるように、ストリップライン系線路では、特性インピーダンスを大きくすることで線路幅を小さくできるため、伝送線路10を小型化できる。 As shown in Equation 4, the transmission line 10 can be miniaturized because the line width can be reduced by increasing the characteristic impedance in the stripline system line.
 以上説明したように、高周波回路1は、伝送線路10と、伝送線路10の一端に接続され、伝送線路10の一端と複数の第1回路20との接続を切り替える切り替え回路11と、伝送線路10の他端に接続され、伝送線路10の他端と複数の第2回路30との接続を切り替える切り替え回路12と、を備える。fm0を切り替え回路11および12の切り替え周波数とし、fを伝送線路10を伝播する信号の周波数とし、λm0を上記切り替え周波数に対する波長とし、mを1以上の整数とし、nを0以上の整数とし、伝送線路10の長さをmλm0/4とした場合に、f/fm0=2n/mである。 As described above, the high-frequency circuit 1 includes the transmission line 10, the switching circuit 11 connected to one end of the transmission line 10, and switching connection between one end of the transmission line 10 and the plurality of first circuits 20, and the transmission line 10. and a switching circuit 12 connected to the other end of the transmission line 10 for switching connection between the other end of the transmission line 10 and the plurality of second circuits 30 . fm0 is the switching frequency of the switching circuits 11 and 12, f is the frequency of the signal propagating on the transmission line 10, λm0 is the wavelength for the switching frequency, m is an integer of 1 or more, and n is an integer of 0 or more. and f/f m0 =2n/m when the length of the transmission line 10 is mλ m0 /4.
 f/fm0=2n/mとなるように、伝送線路10を伝播する信号の周波数に対して切り替え回路11および12の切り替え周波数を設定することで、伝送線路10の特性インピーダンスを任意の値にすることができる。すなわち、伝送線路10の特性インピーダンスを伝送線路のサイズが小さくなるような値にすることができるため、伝送線路10を小型化できる。ひいては、高周波回路1が適用される回路全体を小型化できる。 By setting the switching frequencies of the switching circuits 11 and 12 with respect to the frequency of the signal propagating through the transmission line 10 so that f/f m0 =2n/m, the characteristic impedance of the transmission line 10 can be set to an arbitrary value. can do. That is, since the characteristic impedance of the transmission line 10 can be set to a value that reduces the size of the transmission line, the size of the transmission line 10 can be reduced. As a result, the entire circuit to which the high frequency circuit 1 is applied can be miniaturized.
 例えば、伝送線路10の一端は、切り替え回路11によって複数の第1回路20のうちの1つの第1回路20と排他的に接続され、伝送線路10の他端は、切り替え回路12によって複数の第2回路30のうちの1つの第2回路30と排他的に接続されていてもよい。 For example, one end of the transmission line 10 is exclusively connected to one first circuit 20 out of the plurality of first circuits 20 by the switching circuit 11 , and the other end of the transmission line 10 is connected to the plurality of first circuits by the switching circuit 12 . It may be exclusively connected to one second circuit 30 of the two circuits 30 .
 伝送線路10の一端が複数の第1回路20のうちの1つの第1回路20と排他的に接続され、伝送線路10の他端が複数の第2回路30のうちの1つの第2回路30と排他的に接続されることで、高周波回路1をジャイレータとして動作させることができる。 One end of the transmission line 10 is exclusively connected to one first circuit 20 out of the plurality of first circuits 20, and the other end of the transmission line 10 is connected to one second circuit 30 out of the plurality of second circuits 30. , the high-frequency circuit 1 can be operated as a gyrator.
 高周波回路1は、複数の伝送線路10と、複数の伝送線路10のそれぞれの一端に接続され、複数の伝送線路10のそれぞれの一端と第1回路20との接続を切り替える切り替え回路11と、複数の伝送線路10のそれぞれの他端に接続され、複数の伝送線路10のそれぞれの他端と第2回路30との接続を切り替える切り替え回路12と、を備える。fm0を切り替え回路11および12の切り替え周波数とし、fを伝送線路10を伝播する信号の周波数とし、λm0を上記切り替え周波数に対する波長とし、mを1以上の整数とし、nを0以上の整数とし、伝送線路10の長さをmλm0/4とした場合に、f/fm0=2n/mである。 The high-frequency circuit 1 includes a plurality of transmission lines 10, a switching circuit 11 that is connected to one end of each of the plurality of transmission lines 10, and switches connection between one end of each of the plurality of transmission lines 10 and the first circuit 20; a switching circuit 12 connected to the other end of each of the transmission lines 10 and switching the connection between the other end of each of the plurality of transmission lines 10 and the second circuit 30 . fm0 is the switching frequency of the switching circuits 11 and 12, f is the frequency of the signal propagating on the transmission line 10, λm0 is the wavelength for the switching frequency, m is an integer of 1 or more, and n is an integer of 0 or more. and f/f m0 =2n/m when the length of the transmission line 10 is mλ m0 /4.
 f/fm0=2n/mとなるように、伝送線路10を伝播する信号の周波数に対して切り替え回路11および12の切り替え周波数を設定することで、伝送線路10の特性インピーダンスを任意の値にすることができる。すなわち、伝送線路10の特性インピーダンスを伝送線路のサイズが小さくなるような値にすることができるため、伝送線路10を小型化できる。ひいては、高周波回路1が適用される回路全体を小型化できる。 By setting the switching frequencies of the switching circuits 11 and 12 with respect to the frequency of the signal propagating through the transmission line 10 so that f/f m0 =2n/m, the characteristic impedance of the transmission line 10 can be set to an arbitrary value. can do. That is, since the characteristic impedance of the transmission line 10 can be set to a value that reduces the size of the transmission line, the size of the transmission line 10 can be reduced. As a result, the entire circuit to which the high frequency circuit 1 is applied can be miniaturized.
 例えば、第1回路20は、切り替え回路11によって複数の伝送線路10のうちの1つの伝送線路10の一端と排他的に接続され、第2回路30は、切り替え回路12によって複数の伝送線路10のうちの1つの伝送線路10の他端と排他的に接続されていてもよい。 For example, the first circuit 20 is exclusively connected to one end of one of the plurality of transmission lines 10 by the switching circuit 11, and the second circuit 30 is connected to one end of the plurality of transmission lines 10 by the switching circuit 12. It may be connected exclusively to the other end of one of the transmission lines 10 .
 高周波回路1が伝送線路10を複数備えることで、複数の異なる特性インピーダンスの伝送線路10を利用することが可能となり、高周波回路1の対応可能な周波数範囲を広げることができる。 By providing a plurality of transmission lines 10 in the high-frequency circuit 1, it is possible to use a plurality of transmission lines 10 with different characteristic impedances, and the frequency range that the high-frequency circuit 1 can handle can be expanded.
 例えば、切り替え回路11および12は、それぞれ制御信号によって導通および非導通が制御される半導体素子によって構成されていてもよい。 For example, the switching circuits 11 and 12 may each be composed of semiconductor elements whose conduction and non-conduction are controlled by control signals.
 切り替え回路11および12にMOSFETなどの半導体素子を利用することで、高周波回路1を高い周波数帯に適用することができる。 By using semiconductor elements such as MOSFETs for the switching circuits 11 and 12, the high frequency circuit 1 can be applied to high frequency bands.
 例えば、切り替え回路11および12の切り替え周波数は、伝送線路10を伝播する信号の周波数と異なっていてもよい。 For example, the switching frequencies of the switching circuits 11 and 12 may be different from the frequency of the signal propagating through the transmission line 10.
 これによれば、高周波回路1を、スイッチを用いたミキサを利用したジャイレータに応用できる。 According to this, the high-frequency circuit 1 can be applied to a gyrator using a mixer using switches.
 例えば、第1回路20および第2回路30は、それぞれ第2伝送線路により構成されていてもよい。 For example, the first circuit 20 and the second circuit 30 may each be configured by a second transmission line.
 このように、高周波回路1を、伝送線路により構成されている回路に適用できる。 In this way, the high-frequency circuit 1 can be applied to a circuit composed of transmission lines.
 例えば、第1回路20および第2回路30は、それぞれ受動素子により構成されていてもよい。 For example, the first circuit 20 and the second circuit 30 may each be composed of passive elements.
 このように、高周波回路1を、受動素子により構成されている回路に適用できる。 Thus, the high-frequency circuit 1 can be applied to a circuit composed of passive elements.
 例えば、第1回路20および第2回路30は、それぞれ受動素子で構成された遅延回路により構成されていてもよい。 For example, the first circuit 20 and the second circuit 30 may each be composed of a delay circuit composed of passive elements.
 このように、高周波回路1を、遅延回路により構成されている回路に適用できる。 In this way, the high-frequency circuit 1 can be applied to a circuit composed of delay circuits.
 例えば、伝送線路10は、縦続接続された複数の回路によって構成されており、当該複数の回路は、それぞれ受動素子で構成されていてもよい。例えば、伝送線路10の等価特性インピーダンスは、第1回路20のインピーダンスおよび第2回路30のインピーダンスよりも小さくてもよい。 For example, the transmission line 10 may be composed of a plurality of cascaded circuits, and each of the circuits may be composed of passive elements. For example, the equivalent characteristic impedance of the transmission line 10 may be smaller than the impedance of the first circuit 20 and the impedance of the second circuit 30 .
 伝送線路10がインダクタおよびコンデンサなどを用いた集中定数素子で構成される場合、伝送線路10の特性インピーダンス(等価特性インピーダンス)を小さな値にすることで、伝送線路10を構成するインダクタのサイズを小さくすることができ、その結果、伝送線路10を小型化できる。 When the transmission line 10 is composed of lumped constant elements using inductors, capacitors, etc., the size of the inductors constituting the transmission line 10 can be reduced by setting the characteristic impedance (equivalent characteristic impedance) of the transmission line 10 to a small value. As a result, the transmission line 10 can be miniaturized.
 例えば、伝送線路10は、ストリップライン系線路によって構成されていてもよい。例えば、伝送線路10の特性インピーダンスは、第1回路20のインピーダンスおよび第2回路30のインピーダンスよりも大きくてもよい。 For example, the transmission line 10 may be configured by a stripline system line. For example, the characteristic impedance of transmission line 10 may be greater than the impedance of first circuit 20 and the impedance of second circuit 30 .
 伝送線路10がマイクロストリップライン、ストリップライン、コプレーナガイドラインまたはGND付きコプレーナガイドラインなどの誘電体に導体を形成したストリップライン系線路で構成される場合、伝送線路10の特性インピーダンスを大きな値にすることで、ストリップライン系線路の線路幅を狭くすることができ、その結果、伝送線路10を小型化できる。 When the transmission line 10 is composed of a stripline system line in which a conductor is formed in a dielectric, such as a microstrip line, a stripline, a coplanar guideline, or a coplanar guideline with GND, the characteristic impedance of the transmission line 10 can be set to a large value. , the line width of the stripline system can be narrowed, and as a result, the transmission line 10 can be miniaturized.
 (その他の実施の形態)
 以上、本発明に係る高周波回路1について、実施の形態を挙げて説明したが、本発明は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る高周波回路1を内蔵した各種機器も本発明に含まれる。
(Other embodiments)
Although the high frequency circuit 1 according to the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Another embodiment realized by combining arbitrary constituent elements in the above embodiment, and a modification obtained by applying various modifications that a person skilled in the art can think of without departing from the scope of the present invention to the above embodiment For example, the present invention also includes various devices incorporating the high-frequency circuit 1 according to the present invention.
 また、本発明の高周波回路1は、ジャイレータまたはジャイレータを用いたサーキュレータ以外にもセレクタ回路、マルチプレクサ回路、デマルチプレクサ回路、シリアルパラレル変換回路またはパラレルシリアル変換回路など、経路の切り替えが行われる高周波システム全般に適用できる。 Further, the high-frequency circuit 1 of the present invention is not only a gyrator or a circulator using a gyrator, but also includes a selector circuit, a multiplexer circuit, a demultiplexer circuit, a serial-parallel conversion circuit, a parallel-serial conversion circuit, and other high-frequency systems in which paths are switched. can be applied to
 本発明は、経路の切り替えを行う高周波回路として、ジャイレータ、サーキュレータ、セレクタ回路、マルチプレクサ回路、デマルチプレクサ回路、シリアルパラレル変換回路またはパラレルシリアル変換回路など高周波システムに広く利用できる。 The present invention can be widely used in high-frequency systems such as a gyrator, a circulator, a selector circuit, a multiplexer circuit, a demultiplexer circuit, a serial-parallel conversion circuit, or a parallel-serial conversion circuit as a high-frequency circuit that switches paths.
 1 高周波回路
 10、10a、10b 伝送線路
 11、12 切り替え回路
 20、20a、20b 第1回路
 30、30a、30b 第2回路
 40、40a、40b 第3回路
 51 送信端子
 52 アンテナ端子
 53 受信端子
1 high- frequency circuit 10, 10a, 10b transmission line 11, 12 switching circuit 20, 20a, 20b first circuit 30, 30a, 30b second circuit 40, 40a, 40b third circuit 51 transmitting terminal 52 antenna terminal 53 receiving terminal

Claims (13)

  1.  第1伝送線路と、
     前記第1伝送線路の一端に接続され、前記第1伝送線路の一端と複数の第1回路との接続を切り替える第1切り替え回路と、
     前記第1伝送線路の他端に接続され、前記第1伝送線路の他端と複数の第2回路との接続を切り替える第2切り替え回路と、を備え、
     fm0を前記第1切り替え回路および前記第2切り替え回路の切り替え周波数とし、fを前記第1伝送線路を伝播する信号の周波数とし、λm0を前記切り替え周波数に対する波長とし、mを1以上の整数とし、nを0以上の整数とし、前記第1伝送線路の長さをmλm0/4とした場合に、f/fm0=2n/mである、
     高周波回路。
    a first transmission line;
    a first switching circuit connected to one end of the first transmission line and switching connection between one end of the first transmission line and a plurality of first circuits;
    a second switching circuit connected to the other end of the first transmission line and switching connection between the other end of the first transmission line and a plurality of second circuits;
    Let f m0 be the switching frequency of the first switching circuit and the second switching circuit, f be the frequency of the signal propagating in the first transmission line, λ m0 be the wavelength for the switching frequency, and m be an integer of 1 or more. and f/f m0 = 2n/m, where n is an integer of 0 or more and the length of the first transmission line is mλ m0 /4.
    high frequency circuit.
  2.  前記第1伝送線路の一端は、前記第1切り替え回路によって前記複数の第1回路のうちの1つの第1回路と排他的に接続され、
     前記第1伝送線路の他端は、前記第2切り替え回路によって前記複数の第2回路のうちの1つの第2回路と排他的に接続される、
     請求項1に記載の高周波回路。
    one end of the first transmission line is exclusively connected to one first circuit of the plurality of first circuits by the first switching circuit;
    The other end of the first transmission line is exclusively connected to one of the plurality of second circuits by the second switching circuit,
    A high-frequency circuit according to claim 1.
  3.  複数の第1伝送線路と、
     前記複数の第1伝送線路のそれぞれの一端に接続され、前記複数の第1伝送線路のそれぞれの一端と第1回路との接続を切り替える第1切り替え回路と、
     前記複数の第1伝送線路のそれぞれの他端に接続され、前記複数の第1伝送線路のそれぞれの他端と第2回路との接続を切り替える第2切り替え回路と、を備え、
     fm0を前記第1切り替え回路および前記第2切り替え回路の切り替え周波数とし、fを前記第1伝送線路を伝播する信号の周波数とし、λm0を前記切り替え周波数に対する波長とし、mを1以上の整数とし、nを0以上の整数とし、前記第1伝送線路の長さをmλm0/4とした場合に、f/fm0=2n/mである、
     高周波回路。
    a plurality of first transmission lines;
    a first switching circuit connected to one end of each of the plurality of first transmission lines and switching connection between one end of each of the plurality of first transmission lines and a first circuit;
    a second switching circuit connected to the other end of each of the plurality of first transmission lines and switching connection between the other end of each of the plurality of first transmission lines and a second circuit;
    Let f m0 be the switching frequency of the first switching circuit and the second switching circuit, f be the frequency of the signal propagating in the first transmission line, λ m0 be the wavelength for the switching frequency, and m be an integer of 1 or more. and f/f m0 = 2n/m, where n is an integer of 0 or more and the length of the first transmission line is mλ m0 /4.
    high frequency circuit.
  4.  前記第1回路は、前記第1切り替え回路によって前記複数の第1伝送線路のうちの1つの第1伝送線路の一端と排他的に接続され、
     前記第2回路は、前記第2切り替え回路によって前記複数の第1伝送線路のうちの1つの第1伝送線路の他端と排他的に接続される、
     請求項3に記載の高周波回路。
    The first circuit is exclusively connected to one end of one of the plurality of first transmission lines by the first switching circuit,
    The second circuit is exclusively connected to the other end of one of the plurality of first transmission lines by the second switching circuit,
    A high-frequency circuit according to claim 3.
  5.  前記第1切り替え回路および前記第2切り替え回路は、それぞれ制御信号によって導通および非導通が制御される半導体素子によって構成される、
     請求項1~4のいずれか1項に記載の高周波回路。
    The first switching circuit and the second switching circuit are each composed of a semiconductor element whose conduction and non-conduction are controlled by a control signal,
    A high-frequency circuit according to any one of claims 1 to 4.
  6.  前記切り替え周波数は、前記第1伝送線路を伝播する信号の周波数と異なる、
     請求項1~5のいずれか1項に記載の高周波回路。
    The switching frequency is different from the frequency of the signal propagating on the first transmission line,
    A high-frequency circuit according to any one of claims 1 to 5.
  7.  前記第1回路および前記第2回路は、それぞれ第2伝送線路により構成される、
     請求項1~6のいずれか1項に記載の高周波回路。
    The first circuit and the second circuit are each configured by a second transmission line,
    A high-frequency circuit according to any one of claims 1 to 6.
  8.  前記第1回路および前記第2回路は、それぞれ受動素子により構成される、
     請求項1~6のいずれか1項に記載の高周波回路。
    The first circuit and the second circuit are each composed of a passive element,
    A high-frequency circuit according to any one of claims 1 to 6.
  9.  前記第1回路および前記第2回路は、それぞれ受動素子で構成された遅延回路により構成される、
     請求項8に記載の高周波回路。
    The first circuit and the second circuit are each composed of a delay circuit composed of passive elements,
    The high frequency circuit according to claim 8.
  10.  前記第1伝送線路は、縦続接続された複数の回路によって構成されており、
     前記複数の回路は、それぞれ受動素子で構成される、
     請求項1~9のいずれか1項に記載の高周波回路。
    The first transmission line is composed of a plurality of cascaded circuits,
    wherein each of the plurality of circuits is composed of a passive element;
    A high-frequency circuit according to any one of claims 1 to 9.
  11.  前記第1伝送線路の等価特性インピーダンスは、前記第1回路のインピーダンスおよび前記第2回路のインピーダンスよりも小さい、
     請求項10に記載の高周波回路。
    The equivalent characteristic impedance of the first transmission line is smaller than the impedance of the first circuit and the impedance of the second circuit.
    A high-frequency circuit according to claim 10.
  12.  前記第1伝送線路は、ストリップライン系線路によって構成される、
     請求項1~9のいずれか1項に記載の高周波回路。
    wherein the first transmission line is composed of a stripline system line,
    A high-frequency circuit according to any one of claims 1 to 9.
  13.  前記第1伝送線路の特性インピーダンスは、前記第1回路のインピーダンスおよび前記第2回路のインピーダンスよりも大きい、
     請求項12に記載の高周波回路。
    the characteristic impedance of the first transmission line is greater than the impedance of the first circuit and the impedance of the second circuit;
    A high frequency circuit according to claim 12.
PCT/JP2022/043197 2021-12-10 2022-11-22 High-frequency circuit WO2023106092A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023566214A JPWO2023106092A1 (en) 2021-12-10 2022-11-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021200757 2021-12-10
JP2021-200757 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023106092A1 true WO2023106092A1 (en) 2023-06-15

Family

ID=86730325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043197 WO2023106092A1 (en) 2021-12-10 2022-11-22 High-frequency circuit

Country Status (2)

Country Link
JP (1) JPWO2023106092A1 (en)
WO (1) WO2023106092A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713860A (en) * 2020-12-10 2021-04-27 电子科技大学 K-waveband integrated circulator based on CMOS (complementary metal oxide semiconductor) process
JP2021527358A (en) * 2018-06-11 2021-10-11 ザ・トラスティーズ・オブ・コロンビア・ユニバーシティ・イン・ザ・シティ・オブ・ニューヨーク Circuits and methods for circulators with multiple offset paths

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021527358A (en) * 2018-06-11 2021-10-11 ザ・トラスティーズ・オブ・コロンビア・ユニバーシティ・イン・ザ・シティ・オブ・ニューヨーク Circuits and methods for circulators with multiple offset paths
CN112713860A (en) * 2020-12-10 2021-04-27 电子科技大学 K-waveband integrated circulator based on CMOS (complementary metal oxide semiconductor) process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKIYA ORIKASA, CHISHIRO KUDO, TADASHI MAEDA: "C-12-9 Design of a CMOS differential gyrator circuit in switched transmission-line circulator", PROCEEDINGS OF THE 2022 IEICE GENERAL CONFERENCE (ELECTRONICS 2); MARCH 15TH-18TH, 2022, IEICE, JP, 18 March 2022 (2022-03-18) - 18 March 2022 (2022-03-18), JP, pages 47 - 47, XP009546541 *
NAGULU ARAVIND; ALU ANDREA; KRISHNASWAMY HARISH: "Fully-Integrated Non-Magnetic 180nm SOI Circulator with > 1W P1dB, >+50dBm IIP3 and High Isolation Across 1.85 VSWR", 2018 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM (RFIC), IEEE, 10 June 2018 (2018-06-10), pages 104 - 107, XP033383039, DOI: 10.1109/RFIC.2018.8428969 *

Also Published As

Publication number Publication date
JPWO2023106092A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
US7239853B2 (en) Antenna switching circuit
JP2009278618A (en) Reflection-type phase shifter having reflection loads implemented using transmission lines and phased-array receiver/transmitter using the same
US11967977B2 (en) Switch circuit, radio frequency front-end circuit, and communication device
US10027306B2 (en) Non-reciprocal, tunable notch amplifying RF front-ends based on distributedly modulated capacitors (DMC)
US10270146B2 (en) Ultra wide band digital phase shifter
US10284165B2 (en) Variable phase shifter, variable phase shift circuit, RF front-end circuit, and communication apparatus
US11784385B2 (en) Wilkinson power combiner, communication unit and method therefor
JP2013085076A (en) Transmission line resonator, band pass filter and branching filter
US7498897B2 (en) Impedance matching circuit, and semiconductor element and radio communication device using the same
Pirro et al. Novel topology for a non-reciprocal MEMS filter
KR100730491B1 (en) Electronic circuit device
Voisin et al. A 25-50 GHz Digitally Controlled Phase-Shifter
WO2023106092A1 (en) High-frequency circuit
EP1156585B1 (en) Phase shifter and communication device using the same
CN117678157A (en) Signal power splitter/combiner with resistive and impedance transformer loads
US11146242B2 (en) Filter device, multiplexer, radio frequency front end circuit, and communication device
CN113196560B (en) High frequency switch
US7254371B2 (en) Multi-port multi-band RF switch
Algumaei et al. Analysis of open stub resonator and its application in dual isolation band of SPDT switch design
JP2008054174A (en) 90-degree hybrid circuit
WO2020225857A1 (en) Phase shifter
WO2023195387A1 (en) N-path filter
Bahaonde et al. A Highly Linear Non-Magnetic GaN Circulator Based on Spatio-Temporal Modulation with an IIP3 of 56 dBm
Malmqvist et al. A tunable active MMIC filter for on-chip X-band radar receiver front-ends
Psychogiou et al. Miniaturized Signal-Interference Bandpass Filters Using Resonant RF Signal Paths

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023566214

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE