WO2023105970A1 - Estimation device, estimation method, and program - Google Patents

Estimation device, estimation method, and program Download PDF

Info

Publication number
WO2023105970A1
WO2023105970A1 PCT/JP2022/039910 JP2022039910W WO2023105970A1 WO 2023105970 A1 WO2023105970 A1 WO 2023105970A1 JP 2022039910 W JP2022039910 W JP 2022039910W WO 2023105970 A1 WO2023105970 A1 WO 2023105970A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
eye
driver
time
reliability
Prior art date
Application number
PCT/JP2022/039910
Other languages
French (fr)
Japanese (ja)
Inventor
知里 今村
豊 居
孝好 古山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023105970A1 publication Critical patent/WO2023105970A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/06Alarms for ensuring the safety of persons indicating a condition of sleep, e.g. anti-dozing alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to an estimation device, an estimation method, and a program.
  • the present disclosure provides an estimation device, an estimation method, and a program capable of accurately estimating the micro-sleep state.
  • An estimating device for estimating that a driver of a vehicle is in a micro-sleep state, comprising: an eye-closed state detection unit that detects an eye-closed time of the driver; a drowsiness determination unit that determines a drowsiness level of the driver; and the eye-closed state detection unit that detects that the eye-closed time is longer than or equal to a first time and less than a second time, and the drowsiness determination unit detects the drowsiness.
  • a micro-sleep estimator for estimating that the driver is in a micro-sleep state on condition that the level is determined to be equal to or greater than a first threshold.
  • the estimation device and the like according to one aspect of the present disclosure, it is possible to accurately estimate the micro-sleep state.
  • FIG. 1 is a block diagram showing the configuration of an estimation device according to Embodiment 1;
  • FIG. 4 is a flowchart showing the flow of operations of the estimation device according to Embodiment 1;
  • FIG. 12 is a block diagram showing the configuration of an estimation device according to Embodiment 2;
  • FIG. 9 is a flow chart showing the flow of operations of an estimation device according to Embodiment 2;
  • FIG. 12 is a block diagram showing the configuration of an estimation device according to Embodiment 3;
  • FIG. 11 is a flow chart showing the flow of operations of an estimation device according to Embodiment 3.
  • FIG. FIG. 12 is a block diagram showing the configuration of an estimation device according to Embodiment 4;
  • FIG. 14 is a flow chart showing the operation flow of an estimation device according to Embodiment 4;
  • FIG. 12 is a block diagram showing the configuration of an estimation device according to Embodiment 5;
  • 14 is a flow chart showing the flow of operations of an estimation device according to Embodiment 5.
  • FIG. FIG. 13 is a block diagram showing the configuration of an estimation device according to Embodiment 6;
  • 14 is a flow chart showing the flow of operations of an estimation device according to Embodiment 6.
  • FIG. FIG. 13 is a block diagram showing the configuration of an estimation device according to Embodiment 7;
  • FIG. 13 is a flow chart showing the flow of operations of an estimation device according to Embodiment 7.
  • FIG. 22 is a block diagram showing the configuration of an estimation device according to Embodiment 8; 20 is a flow chart showing the operation flow of an estimation device according to Embodiment 8.
  • FIG. FIG. 23 is a block diagram showing the configuration of an estimation device according to Embodiment 9; 29 is a flow chart showing the operation flow of an estimation device according to Embodiment 9.
  • FIG. 23 is a block diagram showing the configuration of an estimation device according to Embodiment 10; 29 is a flow chart showing the operation flow of an estimation device according to Embodiment 10.
  • FIG. FIG. 23 is a block diagram showing the configuration of an estimation device according to Embodiment 11;
  • FIG. 22 is a flow chart showing the operation flow of an estimation device according to Embodiment 11;
  • FIG. 23 is a block diagram showing the configuration of an estimation device according to Embodiment 12; 29 is a flow chart showing the flow of operations of an estimation device according to Embodiment 12.
  • FIG. FIG. 23 is a block diagram showing the configuration of an estimation device according to Embodiment 13;
  • FIG. 22 is a flow chart showing the flow of the first operation of the estimating device according to the thirteenth embodiment;
  • FIG. FIG. 22 is a flow chart showing the flow of the second operation of the estimation device according to the thirteenth embodiment;
  • An estimating device is an estimating device for estimating that a driver of a vehicle is in a micro-sleep state, and includes an eye-closed state detection unit that detects an eye-closed time of the driver. a drowsiness determination unit that determines a drowsiness level of the driver; and the eye-closed state detection unit that detects that the eye-closed time is greater than or equal to a first time period and less than a second time period, and the drowsiness determination unit detects a microsleep estimating unit estimating that the driver is in a microsleep state on condition that the drowsiness level is determined to be equal to or greater than a first threshold.
  • the micro-sleep estimation unit estimates the micro-sleep state of the driver in consideration of the detection result of the closed-eye time by the closed-eye state detection unit and the determination result of the drowsiness level by the drowsiness determination unit. As a result, the microsleep state can be estimated with high accuracy.
  • the first time is 0.5 seconds
  • the second time is 3 seconds. good.
  • the driver when the driver falls into a momentary sleep state for 0.5 seconds or more and less than 3 seconds, and the drowsiness level is equal to or higher than the first threshold, it is determined that the driver is in the micro-sleep state. can be estimated.
  • the micro-sleep estimating unit further confirms the estimation result that the driver is in the micro-sleep state. It may be configured to calculate a first reliability, which is an index indicating likelihood.
  • the eye-closed state detection unit further determines that the eye-closed time is greater than or equal to the first time and less than the second time.
  • a second reliability which is an index indicating the certainty of the detection result
  • the drowsiness determination unit further calculates the second reliability, which is an index indicating the certainty of the determination result that the drowsiness level is equal to or greater than the first threshold.
  • a third confidence may be calculated, and the microsleep estimator may be configured to calculate the first confidence based on the second confidence and the third confidence. .
  • the estimating device further includes an open/closed state detection unit that detects an eye opening/closing speed of the driver, and the microsleep estimation the eye-closed state detection unit detects that the eye-closed time is greater than or equal to the first time period and less than the second time period, and the drowsiness determination unit detects that the drowsiness level is greater than or equal to the first threshold value; and the opening/closing state detection unit detects that the opening/closing speed is less than a second threshold, it is estimated that the driver is in the micro-sleep state.
  • the micro-sleep estimating unit includes the detection result of the closed-eye time by the closed-eye state detection unit, the sleepiness level determination result by the drowsiness determination unit, and the opening/closing speed detection result by the open/close state detection unit.
  • the eye-closed state detection unit further determines that the eye-closed time is greater than or equal to the first time and less than the second time.
  • a second reliability which is an index indicating the certainty of the detection result
  • the drowsiness determination unit further calculates the second reliability, which is an index indicating the certainty of the determination result that the drowsiness level is equal to or greater than the first threshold.
  • the opening/closing state detection unit further calculates a fourth degree of reliability, which is an index indicating the likelihood of the detection result that the opening/closing speed is less than the second threshold.
  • the microsleep estimator may be configured to calculate the first reliability based on the second reliability, the third reliability, and the fourth reliability.
  • the drowsiness determination unit may be configured to include a function as the open/closed state detection unit.
  • the configuration of the estimation device can be simplified.
  • the drowsiness determination unit may further include a function as the closed-eyes state detection unit.
  • the configuration of the estimation device can be further simplified.
  • the estimating device further includes an open/closed state detection unit that detects an eye-closing speed and an eye-opening speed of the driver,
  • the microsleep estimating unit detects that the closed-eyes time is longer than or equal to the first time period and less than the second time period by the closed-eye state detecting unit, and the drowsiness determining unit determines that the drowsiness level is equal to or greater than the first time.
  • the open/closed state detection unit detects that the eye-closing speed is less than the third threshold, and the open-close state detection unit detects that the eye-opening speed is less than the fourth threshold. It may be configured to presume that the driver is in a micro-sleep state on the condition that something is detected.
  • the microsleep estimating unit detects the closing speed and the opening speed of the eyes by the open/closed state detection unit, in addition to the detection result of the closed eye time by the closed eye state detection unit and the determination result of the drowsiness level by the drowsiness determination unit.
  • the results are also taken into account to estimate the driver's microsleep state. This makes it possible to estimate the microsleep state more accurately.
  • the eye-closed state detection unit further determines that the eye-closed time is greater than or equal to the first time and less than the second time.
  • a second reliability which is an index indicating the certainty of the detection result, is calculated, and the drowsiness determination unit further calculates the second reliability, which is an index indicating the certainty of the determination result that the drowsiness level is equal to or greater than the first threshold.
  • the open/closed state detection unit After calculating a certain third reliability, the open/closed state detection unit further calculates a fifth reliability, which is an index indicating the likelihood of the detection result that the eye-closing speed is less than the third threshold, and , calculating a sixth reliability that is an index indicating the likelihood of the detection result that the eye-opening speed is less than the fourth threshold, and the microsleep estimator calculates the second reliability, the The first reliability may be calculated based on the third reliability, the fifth reliability, and the sixth reliability.
  • the microsleep estimating unit determines the first reliability according to the drowsiness level determined by the drowsiness determining unit. You may comprise so that it may calculate.
  • the estimating device further includes binocular detection for detecting both eyes of the driver. and the microsleep estimating unit detects that the eye-closed time is longer than or equal to the first time period and is less than the second time period by the eye-closed state detecting unit, and the drowsiness determining unit detects that the drowsiness level is is determined to be equal to or greater than the first threshold, and the binocular detection unit detects both eyes of the driver, so as to estimate that the driver is in a micro-sleep state.
  • the microsleep estimating unit detects that the eye-closed time is longer than or equal to the first time period and is less than the second time period by the eye-closed state detecting unit, and the drowsiness determining unit detects that the drowsiness level is is determined to be equal to or greater than the first threshold, and the binocular detection unit detects both eyes of the driver, so as to estimate that the driver is in a micro-sleep state.
  • the microsleep estimation unit considers the detection result of the binocular detection unit in addition to the detection result of the closed-eye time by the closed-eye state detection unit and the determination result of the drowsiness level by the drowsiness determination unit. , to estimate the driver's microsleep state. This makes it possible to estimate the microsleep state more accurately.
  • the estimating device further includes a blink count detection that detects the number of blinks of the driver. and the microsleep estimating unit detects that the eye-closed time is longer than or equal to the first time period and is less than the second time period by the eye-closed state detecting unit, and the drowsiness determining unit detects that the drowsiness level is is determined to be equal to or greater than the first threshold, and the number of times of blinking of the driver per unit time is detected by the blinking number detection unit to be increased or decreased by a fifth threshold or more. , the driver is assumed to be in a micro-sleep state.
  • the detection result of the number of blinks detection unit is also taken into consideration, and the microsleep of the driver is performed. Estimate the state. This makes it possible to estimate the microsleep state more accurately.
  • the estimating device further acquires life log information regarding the life of the driver.
  • a life log information acquiring unit wherein the microsleep estimating unit detects that the closed-eyes time is longer than or equal to the first time and less than the second time by the closed-eye state detecting unit; on the condition that the drowsiness level is determined to be less than the first threshold by and the life log information that affects the driver's microsleep state is acquired by the life log information acquisition unit. It may be configured to presume that the driver is in a micro-sleep state.
  • the life log information acquired by the life log information acquisition unit is also considered, Estimate the driver's microsleep state. This makes it possible to estimate the microsleep state more accurately.
  • the estimating device further includes facial feature information indicating facial features of the driver.
  • the microsleep estimating unit detects that the closed-eyes time is longer than or equal to the first time and shorter than the second time by the closed-eye state detecting unit, and the drowsiness On the condition that the determination unit determines that the drowsiness level is less than the first threshold value, and that the facial feature information acquisition unit acquires the facial feature information that affects the micro-sleep state of the driver. , the driver is assumed to be in a micro-sleep state.
  • the facial feature information acquired by the facial feature information acquisition unit is also considered, Estimate the driver's microsleep state. This makes it possible to estimate the microsleep state more accurately.
  • the estimating device further includes: The micro-sleep estimating unit detects that the closed-eyes time is longer than or equal to the first time and less than the second time by the eye-closed state detecting unit, and the drowsiness determining unit detects on the condition that the drowsiness level is determined to be less than the first threshold, and that the head motion detection unit detects the head motion that affects the driver's micro-sleep state; It may be configured to presume that the driver is in a micro-sleep state.
  • the detection result of the head movement detection unit is taken into consideration in addition to the detection result of the closed eye time by the closed eye state detection unit and the determination result of the drowsiness level by the drowsiness determination unit.
  • Estimate sleep state This makes it possible to estimate the microsleep state more accurately.
  • the estimating device further detects a situation that affects the estimation of the driver's micro-sleep state by the micro-sleep estimating unit. and the microsleep estimating unit may change the first reliability in consideration of the detection result of the erroneous estimation condition detecting unit.
  • the estimation device further includes: An erroneous estimation situation detection unit that detects an erroneous estimation situation that is a situation that affects state estimation, and the microsleep estimating unit detects, when the erroneous estimation situation is detected by the erroneous estimation situation detection unit, It may be configured not to perform the estimation of the micro-sleep state of the driver.
  • the estimating device further detects a driving situation of the vehicle by the driver. a driving situation detection unit, and based on the driving situation detected by the driving situation detection unit, the first time and/or the second time used for detecting the eye-closed time in the eye-closed state detection unit; and an eye-closing time changing unit for changing.
  • the eye-closed state detection unit includes image information of the driver captured by the imaging unit. and the drowsiness determination unit may determine the drowsiness level based on the driver's biological information detected by a biological sensor.
  • the imaging unit it is possible to easily detect the closed eye time by using the image information of the driver captured by the imaging unit.
  • the driver's biological information detected by the biological sensor the drowsiness level can be easily determined.
  • the closed-eyes state detection unit includes image information of the driver captured by the imaging unit. and the drowsiness determination unit may determine the drowsiness level based on the image information.
  • An estimation method is an estimation method for estimating that a driver of a vehicle is in a micro-sleep state, comprising: (a) detecting an eye closure time of the driver's eyes; (b) determining the drowsiness level of the driver; (c) detecting that the eye-closing time is longer than or equal to a first time period and less than a second time period in (a); and assuming that the driver is in a micro-sleep state, provided that the drowsiness level is determined to be greater than or equal to a first threshold in b).
  • the driver's micro-sleep state is estimated in consideration of the eye closure time detection result and the drowsiness level determination result.
  • the microsleep state can be estimated with high accuracy.
  • a program according to the twenty-third aspect of the present disclosure is a program that causes a computer to execute the estimation method according to the twenty-second aspect described above.
  • FIG. 1 is a block diagram showing the configuration of an estimation device 2 according to Embodiment 1. As shown in FIG.
  • the estimation device 2 is a device for detecting the micro-sleep state of the driver of the vehicle.
  • An estimation device 2 and a sensor group 3 are mounted on the vehicle.
  • the vehicle is, for example, a motor vehicle such as a passenger car, bus or truck.
  • the vehicle is not limited to an automobile, and may be, for example, a construction machine or an agricultural machine.
  • the sensor group 3 includes, for example, various sensors for detecting information about the vehicle and/or the driver sitting in the driver's seat of the vehicle. Specifically, the sensor group 3 includes, for example, an imaging unit 4, a biosensor 6, a vehicle state sensor 5, and the like.
  • the imaging unit 4 is a camera for imaging the driver sitting in the driver's seat of the vehicle.
  • a camera using a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a camera using a CCD (Charge Coupled Device) image sensor can be applied.
  • the imaging unit 4 outputs image information obtained by imaging the driver to the estimation device 2 .
  • the biosensor 6 is a sensor for detecting the biometric information of the driver sitting in the driver's seat of the vehicle (eg, blood pressure, body temperature, respiratory rate, heart rate, amount of muscle activity, etc.).
  • the biological sensor 6 outputs the detected biological information to the estimating device 2 .
  • the vehicle state sensor 5 is a sensor for detecting the speed and acceleration of the vehicle.
  • the vehicle state sensor 5 outputs vehicle state information indicating the detected speed, acceleration, etc. to the estimation device 2 .
  • the estimation device 2 includes a sensor information acquisition unit 7 , a closed-eye state detection unit 12 , a drowsiness determination unit 14 , and a microsleep estimation unit 16 .
  • the estimation device 2 may include one or more sensors included in the sensor group 3 described above as a component.
  • the sensor information acquisition unit 7 acquires various types of information output from various sensors included in the sensor group 3 and outputs the acquired various types of information to the closed-eyes state detection unit 12 and the drowsiness determination unit 14 .
  • the sensor information acquisition unit 7 acquires image information output from, for example, the imaging unit 4 and outputs the acquired image information to the closed-eye state detection unit 12 .
  • the sensor information acquisition unit 7 acquires, for example, biometric information output from the biosensor 6 and outputs the acquired biometric information to the drowsiness determination unit 14 .
  • the eye-closed state detection unit 12 detects the closed-eye time of the driver based on various information from the sensor information acquisition unit 7, for example, image information from the sensor information acquisition unit 7. Specifically, the eye-closed state detection unit 12 detects the closed-eye time of the driver by analyzing the image of the driver's eyes included in the image information.
  • the closed eye time means the time during which the driver's eyes are closed, more specifically, the time from when the driver's eyelids begin to close until the eyelids close and reopen.
  • the eye-closed state detection unit 12 outputs the detection result of the eye-closed time to the microsleep estimation unit 16 .
  • the eye-closed state detection unit 12 detects the closed-eye time of the driver based on the image information from the sensor information acquisition unit 7, but is not limited to this. may be used to detect the closing time of the driver's eyes.
  • the drowsiness determination unit 14 determines a drowsiness level indicating the degree of drowsiness of the driver based on various information from the sensor information acquisition unit 7, for example, biological information from the sensor information acquisition unit 7.
  • the sleepiness level is represented, for example, by numerical values in five stages from “1" to "5". It is assumed that the higher the numerical value of the drowsiness level, the higher the degree of drowsiness of the driver. Specifically, sleepiness level "1" seems to be not sleepy at all, sleepiness level "2” seems to be slightly sleepy, sleepiness level "3” seems to be sleepy, sleepiness level "4" seems to be quite sleepy, and sleepiness level "5". is classified as very sleepy.
  • the sleepiness determination unit 14 outputs the sleepiness level determination result to the microsleep estimation unit 16 .
  • the drowsiness determination unit 14 determines the drowsiness level of the driver based on the biological information from the sensor information acquisition unit 7, but is not limited to this.
  • the drowsiness level of the driver may be determined based on the image information.
  • the drowsiness determination unit 14 analyzes the image of the driver's eyes included in the image information, and determines the drowsiness level of the driver based on, for example, the degree of eyelid opening, which is an index indicating the degree of opening of the eyelids. You may Alternatively, the drowsiness determination unit 14 may determine the drowsiness level of the driver using, for example, deep learning.
  • the microsleep estimator 16 has an estimator 18 .
  • the estimating unit 18 detects that the eye-closed time is 0.5 seconds (an example of a first time) or more and less than 3 seconds (an example of a second time) by the eye-closed state detection unit 12, and the drowsiness determination unit 14 determines that the drowsiness level is equal to or higher than "4" (an example of the first threshold), it is estimated that the driver is in the micro-sleep state.
  • the condition for the eye closing time is set to 0.5 seconds or more and less than 3 seconds, but is not limited to this. Any time can be set.
  • the sleepiness level condition is set to "4" or higher, but is not limited to this, and may be set to, for example, "5" or higher, and the first threshold can be set arbitrarily.
  • the estimation result of the estimation unit 18 is output to, for example, the CAN (Controller Area Network) of the vehicle.
  • CAN Controller Area Network
  • control is performed such that an alarm is sounded to awaken the driver, or the vehicle is degraded to stop the vehicle safely. is done.
  • the retraction operation means, for example, an operation of controlling the steering to bring the vehicle to the edge of the roadway (road shoulder), or controlling the engine or brakes to decelerate the vehicle.
  • FIG. 2 is a flow chart showing the operation flow of the estimation device 2 according to the first embodiment.
  • the sensor information acquisition unit 7 acquires image information output from the imaging unit 4 (S11), and outputs the acquired image information to the closed-eye state detection unit 12. Further, the sensor information acquisition unit 7 acquires the biological information output from the biological sensor 6 (S11), and outputs the acquired biological information to the drowsiness determination unit .
  • the eye-closed state detection unit 12 detects the eye-closed time based on the image information from the sensor information acquisition unit 7 and outputs the detection result of the eye-closed time to the microsleep estimation unit 16 . Also, the drowsiness determination unit 14 determines the drowsiness level based on the biological information from the sensor information acquisition unit 7 and outputs the result of the drowsiness level determination to the microsleep estimation unit 16 .
  • the estimation unit 18 of the microsleep estimation unit 16 estimates that the driver is in the microsleep state (S14).
  • the estimating unit 18 of the micro-sleep estimating unit 16 estimates that the driver is in the micro-sleep state, taking into consideration the driver's eye closure time and the driver's drowsiness level. As a result, the microsleep state can be estimated with high accuracy.
  • FIG. 3 is a block diagram showing the configuration of an estimation device 2A according to Embodiment 2. As shown in FIG. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the first embodiment, and the description thereof will be omitted.
  • the estimation apparatus 2A includes an image information acquisition section 8 and a biometric information acquisition section 10 instead of the sensor information acquisition section 7 described in Embodiment 1 above. .
  • an example of estimating a micro-sleep state using the imaging unit 4 and the biosensor 6 of the sensor group 3 shown in FIG. 1 will be described.
  • the image information acquisition unit 8 acquires image information output from the imaging unit 4 .
  • the image information acquisition unit 8 outputs the acquired image information to the closed-eye state detection unit 12 .
  • the biometric information acquisition unit 10 acquires biometric information output from the biosensor 6 .
  • the biometric information acquisition unit 10 outputs the acquired biometric information to the drowsiness determination unit 14 .
  • the eye-closed state detection unit 12 Based on the image information from the image information acquisition unit 8, the eye-closed state detection unit 12 detects the eye closure time of the driver. In the present embodiment, the eye-closed state detection unit 12 detects the closed-eye time of the driver based on the image information from the image information acquisition unit 8, but is not limited to this. may be used to detect the closing time of the driver's eyes. Alternatively, the eye-closed state detection unit 12 may detect the closed-eye time of the driver based on the biometric information from the biometric information acquisition unit 10 . In this case, the biological information output from the biological sensor 6 such as a myoelectric sensor can be used as the biological information from the biological information acquisition unit 10 .
  • the biological information output from the biological sensor 6 such as a myoelectric sensor can be used as the biological information from the biological information acquisition unit 10 .
  • the drowsiness determination unit 14 determines a drowsiness level indicating the degree of drowsiness of the driver based on the biometric information from the biometric information acquisition unit 10 .
  • the drowsiness determination unit 14 determines the drowsiness level of the driver based on the biometric information from the biometric information acquisition unit 10, but is not limited to this.
  • the drowsiness level of the driver may be determined based on the image information.
  • the drowsiness determination unit 14 analyzes the image of the driver's eyes included in the image information, and determines the drowsiness level of the driver based on, for example, the degree of eyelid opening, which is an index indicating the degree of opening of the eyelids. You may Alternatively, the drowsiness determination unit 14 may determine the drowsiness level of the driver using, for example, deep learning.
  • the configuration of the microsleep estimation unit 16A is different from that in the first embodiment.
  • the microsleep estimator 16A has a reliability calculator 20 in addition to the estimator 18 described in the first embodiment.
  • the reliability calculation unit 20 calculates a reliability (an example of a first reliability) that is an index indicating the probability of the estimation result of the estimation unit 18 that the driver is in the micro-sleep state.
  • the reliability is calculated in two stages, for example, "low” and "high”.
  • the reliability calculation unit 20 may calculate the reliability according to the drowsiness level determined by the drowsiness determination unit 14. For example, the reliability may be calculated so that the higher the drowsiness level, the higher the reliability. good.
  • the microsleep estimation unit 16A has the reliability calculation unit 20 in the present embodiment, the reliability calculation unit 20 may be omitted without being limited to this.
  • the estimation result of the estimation unit 18 and the calculation result of the reliability calculation unit 20 are output to, for example, the CAN of the vehicle.
  • control is performed to sound an alarm to awaken the driver.
  • the vehicle is controlled to degenerate in order to safely stop the vehicle.
  • FIG. 4 is a flow chart showing the operation flow of the estimation device 2A according to the second embodiment.
  • the image information acquisition unit 8 acquires the image information output from the imaging unit 4 (S101), and outputs the acquired image information to the closed-eye state detection unit 12. Also, the biometric information acquisition unit 10 acquires biometric information output from the biosensor 6 ( S ⁇ b>101 ), and outputs the acquired biometric information to the drowsiness determination unit 14 .
  • the eye-closed state detection unit 12 detects the eye-closed time based on the image information from the image information acquisition unit 8, and outputs the detection result of the eye-closed time to the microsleep estimation unit 16A.
  • the drowsiness determination unit 14 determines the drowsiness level based on the biometric information from the biometric information acquisition unit 10, and outputs the determination result of the drowsiness level to the microsleep estimation unit 16A.
  • the estimating unit 18 of the microsleep estimating unit 16A determines that the driver is in microsleep. It is estimated that it is not in the state (S103). In this case, the reliability calculator 20 of the microsleep estimator 16A does not calculate the reliability.
  • step S102 when the closed-eye state detection unit 12 detects that the closed-eye time is 0.5 seconds or more and less than 3 seconds (YES in S102), the drowsiness determination unit 14 sets the drowsiness level to "4". If it is determined to be above (YES in S104), the reliability calculation unit 20 of the microsleep estimating unit 16A calculates the reliability “high” (S105), and the estimating unit 18 of the microsleep estimating unit 16A estimates that the driver is in a micro-sleep state (S106).
  • step S104 when the drowsiness determination unit 14 determines that the drowsiness level is less than "4" (NO in S104), the reliability calculation unit 20 of the microsleep estimation unit 16A sets the reliability to "low”. (S107), and the estimation unit 18 of the microsleep estimation unit 16A estimates that the driver is in the microsleep state (S106).
  • microsleep estimation unit 16A may not have the reliability calculation unit 20, and in this case, steps S105 and S107 may be omitted.
  • the process proceeds to step S106, and the estimation unit 18 estimates that the driver is in the micro-sleep state. You may When the drowsiness determination unit 14 determines that the drowsiness level is less than "4" (NO in S104), the process proceeds to step S103, where the estimation unit 18 estimates that the driver is not in the micro-sleep state.
  • the estimating unit 18 of the microsleep estimating unit 16A estimates that the driver is in the microsleep state, taking into consideration the driver's eye closure time and the driver's drowsiness level. As a result, even if the driver intentionally closes his or her eyes for a moment, for example, due to displacement of the contact lens, if the driver's drowsiness level is low, it can be determined that the driver is in a micro-sleep state. The reliability of the estimation result can be calculated to be low. As a result, it is possible to accurately estimate the microsleep state.
  • FIG. 5 is a block diagram showing the configuration of an estimation device 2B according to Embodiment 3. As shown in FIG. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
  • the estimation device 2B according to the third embodiment differs from the first embodiment in the configurations of the eye-closed state detection unit 12B, drowsiness determination unit 14B, and microsleep estimation unit 16B.
  • the eye-closed state detector 12B has an eye-closed time detector 22 and a reliability calculator 24 .
  • the eye-closed time detection unit 22 detects the eye-closed time of the driver based on the image information from the image information acquisition unit 8 . Note that the eye-closed time detection unit 12B may detect the eye-closed time of the driver using, for example, deep learning.
  • the eye-closed time detection unit 22 outputs the detection result of the eye-closed time to the microsleep estimation unit 16B.
  • the reliability calculation unit 24 calculates the reliability (an example of the second reliability) that is an index indicating the probability of the detection result of the eye closure time detection unit 22 that the eye closure time is 0.5 seconds or more and less than 3 seconds. calculate.
  • the reliability calculation unit 24 calculates the reliability, which is an index indicating the probability of the detection result of the eye closure time detection unit 22 that the eye closure time is less than 0.5 seconds or 3 seconds or more.
  • the reliability is calculated as a numerical value between 0% and 100%, for example.
  • the reliability calculation unit 24 outputs the reliability calculation result to the microsleep estimation unit 16B.
  • the drowsiness determination unit 14B has a drowsiness level determination unit 26 and a reliability calculation unit 28.
  • the drowsiness level determination unit 26 determines a drowsiness level indicating the degree of drowsiness of the driver based on the biological information from the biological information acquisition unit 10 . Note that the drowsiness level determination unit 26 may determine the drowsiness level of the driver using, for example, deep learning.
  • the sleepiness level determination unit 26 outputs the sleepiness level determination result to the microsleep estimation unit 16B.
  • the reliability calculation unit 28 calculates a reliability (an example of a third reliability) that is an index indicating the likelihood of the determination result of the drowsiness level determination unit 26 that the drowsiness level is "4" or higher. Further, the reliability calculation unit 28 calculates the reliability, which is an index indicating the likelihood of the determination result of the sleepiness level determination unit 26 that the sleepiness level is less than "4". The reliability is calculated as a numerical value between 0% and 100%, for example. The reliability calculation unit 28 outputs the reliability calculation result to the microsleep estimation unit 16B.
  • the reliability calculation unit 20B of the microsleep estimation unit 16B determines whether the driver is A reliability, which is an index indicating the probability of the estimation result of the estimation unit 18 that the state is the micro-sleep state, is calculated. Further, the reliability calculation unit 20B of the micro-sleep estimation unit 16B determines the estimation result of the estimation unit 18 that the driver is not in the micro-sleep state, based on the calculation result of the reliability calculation unit 24 of the closed-eye state detection unit 12B. Reliability, which is an index indicating likelihood, is calculated. The reliability is calculated as a numerical value between 0% and 100%, for example.
  • FIG. 6 is a flow chart showing the operation flow of the estimation device 2B according to the third embodiment.
  • the image information acquisition unit 8 acquires the image information output from the imaging unit 4 (S201), and outputs the acquired image information to the closed-eye state detection unit 12B.
  • the biological information acquisition unit 10 acquires the biological information output from the biological sensor 6 (S201), and outputs the acquired biological information to the drowsiness determination unit 14B.
  • the eye-closed time detection unit 22 of the eye-closed state detection unit 12B detects the eye-closed time based on the image information from the image information acquisition unit 8, and outputs the detection result of the eye-closed time to the microsleep estimation unit 16B.
  • the sleepiness level determination unit 26 of the sleepiness determination unit 14B determines the sleepiness level based on the biological information from the biological information acquisition unit 10, and outputs the sleepiness level determination result to the microsleep estimation unit 16B.
  • the reliability calculation unit 24 of the closed-eye state detection unit 12B detects that the closed-eye time is A reliability, which is an index indicating the probability of the detection result of the closed-eye time detecting unit 22 to be less than 0.5 seconds or more than 3 seconds, is calculated (S203). After that, the estimation unit 18 of the microsleep estimation unit 16B estimates that the driver is not in the microsleep state (S204).
  • the reliability calculation unit 20B of the micro-sleep estimation unit 16B determines the likelihood of the estimation result of the estimation unit 18 that the driver is not in the micro-sleep state, based on the calculation result of the reliability calculation unit 24 of the closed-eye state detection unit 12B. is calculated (S205).
  • step S202 when the eye-closed time detection unit 22 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S202), the reliability calculation unit 24 of the eye-closed state detection unit 12B , the degree of reliability, which is an index indicating the probability of the detection result of the eye closure time detection unit 22 that the eye closure time is 0.5 seconds or more and less than 3 seconds, is calculated (S206).
  • the reliability calculation unit 28 of the drowsiness determination unit 14B determines that the drowsiness level is "4" or higher.
  • a reliability which is an index indicating the probability of the determination result of the drowsiness level determination unit 26, is calculated (S208).
  • the estimating unit 18 of the micro-sleep estimating unit 16B estimates that the driver is in the micro-sleep state (S209), and the reliability calculating unit 20B of the micro-sleep estimating unit 16B detects the reliability calculating unit 24 of the closed-eye state detecting unit 12B. and the calculation result of the reliability calculation unit 28 of the drowsiness determination unit 14B. Calculate (S210).
  • step S207 when the drowsiness level determination unit 26 determines that the drowsiness level is less than "4" (NO in S207), the reliability calculation unit 28 of the drowsiness determination unit 14B determines that the drowsiness level is "4". '' is calculated (S211), and the process proceeds to step S209.
  • the microsleep state can be estimated with even higher accuracy.
  • FIG. 7 is a block diagram showing the configuration of an estimation device 2C according to Embodiment 4. As shown in FIG. In addition, in this embodiment, the same reference numerals are given to the same constituent elements as in the above-described third embodiment, and the description thereof will be omitted.
  • the estimation device 2C includes an image information acquisition unit 8, a biological information acquisition unit 10, an eye-closed state detection unit 12B, a drowsiness determination unit 14B, and a microsleep estimation unit 16C.
  • An open/close state detector 30 is provided.
  • the opening/closing state detection unit 30 has an opening/closing speed calculation unit 32, an opening/closing speed determination unit 34, and a reliability calculation unit 36.
  • the opening/closing speed calculation unit 32 calculates (detects) the opening/closing speed of the driver's eyes based on the image information from the image information acquisition unit 8 . Note that the opening/closing speed calculator 32 may calculate the opening/closing speed of the driver's eyes using, for example, deep learning.
  • the opening/closing speed determination unit 34 determines whether or not the calculated opening/closing speed is less than a threshold (an example of a second threshold).
  • the reliability calculation unit 36 calculates a reliability (an example of a fourth reliability) that is an index indicating the likelihood of the determination result of the opening/closing speed determination unit 34 that the calculated opening/closing speed is less than the threshold. Further, the reliability calculation unit 36 calculates a reliability, which is an index indicating the likelihood of the determination result of the opening/closing speed determination unit 34 that the calculated opening/closing speed is equal to or higher than the threshold. The reliability is calculated as a numerical value between 0% and 100%, for example. The reliability calculation unit 36 outputs the reliability calculation result to the microsleep estimation unit 16C.
  • a reliability an example of a fourth reliability
  • the estimating unit 18 of the microsleep estimating unit 16C detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds by the closed-eye state detecting unit 12B, and the drowsiness determining unit 14B detects that the drowsiness level is "4" or higher.
  • the opening/closing state detection unit 30 detects that the opening/closing speed is less than the threshold value, it is estimated that the driver is in the micro-sleep state.
  • the reliability calculation unit 20C of the microsleep estimation unit 16C uses the calculation result of the reliability calculation unit 24 of the closed-eye state detection unit 12B, the calculation result of the reliability calculation unit 28 of the drowsiness determination unit 14B, and the open/closed state detection unit 30. Based on the calculation result of the reliability calculation unit 36, the reliability, which is an index indicating the probability of the estimation result of the estimation unit 18 that the driver is in the micro-sleep state, is calculated. Further, the reliability calculation unit 20C of the micro-sleep estimation unit 16C determines the estimation result of the estimation unit 18 that the driver is not in the micro-sleep state, based on the calculation result of the reliability calculation unit 24 of the closed-eye state detection unit 12B. Reliability, which is an index indicating likelihood, is calculated. The reliability is calculated as a numerical value between 0% and 100%, for example.
  • the opening/closing state detection unit 30 has the opening/closing speed calculation unit 32 and the opening/closing speed determination unit 34.
  • a speed determination unit 34 may be provided. That is, the drowsiness determination unit 14B may include a function as the open/closed state detection unit 30. FIG.
  • the drowsiness determination unit 14B may have an eye closing time detection unit 22 in addition to the opening/closing speed calculation unit 32 and the opening/closing speed determination unit 34 . That is, the drowsiness determination unit 14B may include the functions of the closed eye state detection unit 12B and the open/closed state detection unit 30. FIG.
  • FIG. 8 is a flow chart showing the operation flow of the estimation device 2C according to the fourth embodiment.
  • the same step numbers are assigned to the same processes as those of the above-described flowchart of FIG. 6, and the description thereof will be omitted.
  • steps S201 to S208 and S211 are executed in the same manner as in the third embodiment.
  • step S208 or step S211 when the opening/closing speed of less than the threshold is detected by the opening/closing state detection unit 30 (that is, the opening/closing speed determination unit 34 of the opening/closing state detection unit 30 determines that the opening/closing speed is less than the threshold).
  • the reliability calculation unit 36 of the opening/closing state detection unit 30 calculates the reliability, which is an index indicating the likelihood of the determination result of the opening/closing speed determination unit 34 that the detected opening/closing speed is less than the threshold value. is calculated (S302).
  • the estimation unit 18 of the microsleep estimation unit 16C estimates that the driver is in the microsleep state (S209), and the reliability calculation unit 20C of the microsleep estimation unit 16C calculates the reliability of the closed-eye state detection unit 12B. Based on the calculation result of the unit 24, the calculation result of the reliability calculation unit 28 of the drowsiness determination unit 14B, and the calculation result of the reliability calculation unit 36 of the open/closed state detection unit 30, it is determined that the driver is in the micro sleep state. A reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18, is calculated (S210).
  • step S301 when the opening/closing speed of the threshold value or more is detected by the opening/closing state detection unit 30 (that is, the opening/closing speed determination unit 34 of the opening/closing state detection unit 30 determines the opening/closing speed of the threshold value or more) (S301 NO), the reliability calculation unit 36 of the opening/closing state detection unit 30 calculates reliability, which is an index indicating the likelihood of the determination result of the opening/closing speed determination unit 34 that the detected opening/closing speed is equal to or greater than the threshold. (S303). Then, it progresses to step S209 mentioned above.
  • the eye-closed state detection unit 12B, the drowsiness determination unit 14B, and the open/closed state detection unit 30 may not include the reliability calculation unit 24, the reliability calculation unit 28, and the reliability calculation unit 36, respectively. may omit steps S203, S206, S208, S211, S302 and S303.
  • the eye-closed state detection unit 12B detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S202), and the drowsiness determination unit 14B sets the drowsiness level to "4.” ' (YES in S207), and when the opening/closing state detection unit 30 detects that the opening/closing speed is less than the threshold (YES in S301), the reliability calculation unit of the microsleep estimation unit 16C 20C may calculate a reliability of "high".
  • the reliability calculation unit 20C of the microsleep estimation unit 16C may calculate the reliability "low".
  • the microsleep state can be estimated with even higher accuracy.
  • FIG. 9 is a block diagram showing the configuration of an estimation device 2D according to Embodiment 5. As shown in FIG. In addition, in this embodiment, the same reference numerals are given to the same constituent elements as in the above-described third embodiment, and the description thereof will be omitted.
  • the estimation device 2D includes an image information acquisition unit 8, a biological information acquisition unit 10, an eye-closed state detection unit 12B, a drowsiness determination unit 14B, and a microsleep estimation unit 16D.
  • An open/close state detector 38 is provided.
  • the open/close state detection unit 38 has an eye closing speed calculation unit 40 , an eye closing speed determination unit 42 , an eye opening speed calculation unit 44 , an eye opening speed determination unit 46 , and a reliability calculation unit 48 .
  • the eye closing speed calculator 40 calculates (detects) the driver's eye closing speed based on the image information from the image information acquisition unit 8 . Note that the eye closing speed calculator 40 may calculate the driver's eye closing speed using, for example, deep learning.
  • the eye-closing speed determination unit 42 determines whether or not the calculated eye-closing speed is less than the eye-closing threshold (an example of the third threshold).
  • the eye-opening speed calculator 44 calculates (detects) the driver's eye-opening speed based on the image information from the image information acquisition unit 8 . Note that the eye-opening speed calculator 44 may calculate the eye-opening speed of the driver using, for example, deep learning.
  • the eye-opening speed determination unit 46 determines whether or not the calculated eye-opening speed is less than an eye-opening threshold (an example of a fourth threshold).
  • the reliability calculation unit 48 calculates a reliability (an example of a fifth reliability) that is an index indicating the likelihood of the detection result that the calculated eye-closing speed is less than the eye-closing threshold.
  • the reliability calculation unit 48 also calculates a reliability (an example of a sixth reliability), which is an index indicating the probability of the detection result that the calculated eye-opening speed is less than the eye-opening threshold.
  • the reliability is calculated as a numerical value between 0% and 100%, for example.
  • the reliability calculation unit 48 outputs the reliability calculation result to the microsleep estimation unit 16D.
  • the estimating unit 18 of the microsleep estimating unit 16D detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds by the closed-eye state detecting unit 12B, and the drowsiness determining unit 14B detects that the drowsiness level is "4" or more.
  • the open/close state detection unit 38 detects that the eye closing speed is less than the eye closing threshold, and the open/close state detection unit 38 detects that the eye opening speed is less than the eye opening threshold. , the driver is assumed to be in a micro-sleep state.
  • the reliability calculation unit 20D of the microsleep estimation unit 16D uses the calculation result of the reliability calculation unit 24 of the closed-eye state detection unit 12B, the calculation result of the reliability calculation unit 28 of the drowsiness determination unit 14B, and the open/closed state detection unit 38. Based on the calculation result of the reliability calculation unit 48, the reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18 that the driver is in the micro-sleep state, is calculated. Further, the reliability calculation unit 20D of the micro-sleep estimation unit 16D determines the estimation result of the estimation unit 18 that the driver is not in the micro-sleep state, based on the calculation result of the reliability calculation unit 24 of the closed-eye state detection unit 12B. Reliability, which is an index indicating likelihood, is calculated. The reliability is calculated as a numerical value between 0% and 100%, for example.
  • FIG. 10 is a flow chart showing the operation flow of the estimation device 2D according to the fifth embodiment.
  • the same step numbers are given to the same processes as those of the above-described flowchart of FIG. 6, and the description thereof will be omitted.
  • steps S201 to S208 and S211 are executed as in the third embodiment.
  • the open/close state detection unit 38 detects an eye closing speed that is less than the eye closing threshold and an eye opening speed that is less than the eye opening threshold (YES in S401)
  • the reliability calculation unit of the open/close state detection unit 38 48 calculates reliability, which is an index indicating the probability of the detection result that the detected eye-closing speed is less than the eye-closing threshold and the detection result that the detected eye-opening speed is less than the eye-opening threshold ( S402).
  • the estimating unit 18 of the micro-sleep estimating unit 16D estimates that the driver is in the micro-sleep state (S209), and the reliability calculating unit 20D of the micro-sleep estimating unit 16D calculates the reliability of the closed-eye state detecting unit 12B. Based on the calculation result of the unit 24, the calculation result of the reliability calculation unit 28 of the drowsiness determination unit 14B, and the calculation result of the reliability calculation unit 48 of the open/closed state detection unit 38, it is determined that the driver is in the micro sleep state. A reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18, is calculated (S210).
  • step S401 when the open/closed state detection unit 38 detects an eye-closing speed less than the eye-closing threshold and an eye-opening speed equal to or higher than the eye-opening threshold (NO in S401, YES in S403), the reliability of the open/closed state detection unit 38 is calculated.
  • the unit 48 calculates reliability, which is an index indicating the likelihood of the detection result that the detected eye-closing speed is less than the eye-closing threshold and the detection result that the detected eye-opening speed is equal to or greater than the eye-opening threshold. (S404). Note that the reliability calculated in step S404 is lower than the reliability calculated in step S402. Then, it progresses to step S209 mentioned above.
  • step S401 when the open/close state detection unit 38 detects an eye-closing speed equal to or higher than the eye-closing threshold and an eye-opening speed less than the eye-opening threshold (NO in S401, NO in S403, YES in S405), the open/close state detection unit 38
  • the reliability calculation unit 48 is an index indicating the probability of the detection result that the detected eye-closing speed is equal to or higher than the eye-closing threshold and the detection result that the detected eye-opening speed is less than the eye-opening threshold. degree is calculated (S406). Note that the reliability calculated in step S406 is lower than the reliability calculated in step S404. Alternatively, the reliability calculated in step S406 may be the same as the reliability calculated in step S404. Then, it progresses to step S209 mentioned above.
  • step S401 when the open/closed state detection unit 38 detects the eye closing speed equal to or higher than the eye closing threshold and the eye opening speed equal to or higher than the eye opening threshold (NO in S401, NO in S403, NO in S405, S407), open/closed state detection is performed.
  • the reliability calculation unit 48 of the unit 38 is an index indicating the probability of the detection result that the detected eye-closing speed is equal to or higher than the eye-closing threshold and the detection result that the detected eye-opening speed is equal to or higher than the eye-opening threshold.
  • a certain reliability is calculated (S408).
  • the reliability calculated in step S408 is lower than the reliability calculated in step S406. Then, it progresses to step S209 mentioned above.
  • the microsleep state can be estimated with even higher accuracy.
  • FIG. 11 is a block diagram showing the configuration of an estimation device 2E according to Embodiment 6. As shown in FIG. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
  • each configuration of an eye-closed state detection unit 12E and a microsleep estimation unit 16E is different from that in Embodiment 2 above.
  • the eye-closed state detection unit 12E has an eye-closed time detection unit 22 and a both-eyes detection unit 50.
  • the closed-eye time detection unit 22 is the same as the closed-eye time detection unit 22 described in the third embodiment.
  • the binocular detection unit 50 detects the binoculars of the driver based on the image information from the image information acquisition unit 8 .
  • the binocular detection unit 50 outputs the detection result to the microsleep estimation unit 16E. Note that the binocular detection unit 50 may detect the binoculars of the driver based on the biometric information from the biometric information acquisition unit 10 .
  • the estimating unit 18 of the microsleep estimating unit 16E detects that the closed eye time is 0.5 seconds or more and less than 3 seconds by the eye closing time detecting unit 22, and the drowsiness determining unit 14 detects that the drowsiness level is "4" or more. It is assumed that the driver is in the micro-sleep state on condition that both eyes of the driver are detected by the binocular detection unit 50 .
  • the reliability calculation unit 20E of the micro-sleep estimation unit 16E calculates reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18 that the driver is in the micro-sleep state.
  • the reliability is calculated, for example, in three levels of "low", “middle” and "high".
  • FIG. 12 is a flow chart showing the operation flow of the estimation device 2E according to the sixth embodiment.
  • the same step numbers are given to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
  • step S101 is executed in the same manner as in the second embodiment, when both eyes detection unit 50 detects both eyes of the driver (YES in S501), the above execution Steps S102 to S106 are executed in the same manner as in the second form. That is, the estimating unit 18 of the micro-sleep estimating unit 16E determines that both eyes of the driver are detected by the binocular detecting unit 50 (YES in S501), and the eye-closing time detecting unit 22 determines that the eye-closing time is 0.5 seconds or longer. second (YES in S102), and the drowsiness determination unit 14 determines that the drowsiness level is "4" or higher (YES in S104). (S106).
  • step S501 for example, either the left or right eye of the driver is hidden by the bangs, or the driver is wearing an eyepatch, and the binocular detection unit 50 detects only one eye of the driver. If so (NO in S501, YES in S502), the process proceeds to step S503.
  • the eye-closing time detecting unit 22 detects that the eye-closing time is less than 0.5 seconds or longer than 3 seconds (NO in S503)
  • the estimating unit 18 of the microsleep estimating unit 16E determines that the driver is in microsleep. It is estimated that it is not in the state (S103). In this case, the reliability calculator 20E of the microsleep estimator 16E does not calculate the reliability.
  • step S503 when the eye-closed time detection unit 22 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S503), the drowsiness determination unit 14 sets the drowsiness level to "4". If it is determined to be above (YES in S504), the reliability calculation unit 20E of the microsleep estimation unit 16E calculates the reliability “medium” (S505), and the estimation unit 18 of the microsleep estimation unit 16E estimates that the driver is in a micro-sleep state (S106).
  • step S504 when the drowsiness determination unit 14 determines that the drowsiness level is less than "4" (NO in S504), the reliability calculation unit 20E of the microsleep estimation unit 16E sets the reliability to "low”. (S506), and the estimation unit 18 of the microsleep estimation unit 16E estimates that the driver is in the microsleep state (S106).
  • the microsleep state can be estimated with even higher accuracy.
  • FIG. 13 is a block diagram showing the configuration of an estimation device 2F according to Embodiment 7. As shown in FIG. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
  • the estimation device 2F includes an image information acquisition unit 8, a biological information acquisition unit 10, a closed eye state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16F.
  • a blink number detection unit 52 is provided.
  • the number-of-blinks detector 52 detects the number of times the driver blinks per unit time (for example, per minute) based on the image information from the image information acquisition unit 8 .
  • the number-of-blinks detector 52 outputs the detection result to the microsleep estimator 16F.
  • the number-of-blinks detection unit 52 may detect the number of times the driver blinks per unit time based on the biological information from the biological information acquisition unit 10 .
  • the estimating unit 18 of the microsleep estimating unit 16F detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds by the closed-eye state detecting unit 12, and the drowsiness determining unit 14 detects that the drowsiness level is "4" or higher.
  • the number of blinks detection unit 52 detects that the number of times the driver blinks per unit time has increased or decreased by a predetermined number (for example, 10 times/minute) (an example of a fifth threshold value) or more. on the condition that the driver is in a micro-sleep state. This is because when a person becomes sleepy, the number of blinks per unit time often increases or decreases.
  • FIG. 14 is a flowchart showing the operation flow of the estimation device 2F according to the seventh embodiment.
  • the same step numbers are given to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
  • steps S101 to S104 are first executed in the same manner as in the second embodiment.
  • the closed-eye state detection unit 12 detects that the closed-eye time is 0.5 seconds or more and less than 3 seconds (YES in S102)
  • the drowsiness determination unit 14 determines that the drowsiness level is "4" or more. If so (YES in S104), the number-of-blinks detector 52 detects the number of times the driver blinks per unit time.
  • the reliability calculation unit 20F of the microsleep estimation unit 16F calculates the reliability "high” (S105), and microsleep
  • the estimating unit 18 of the estimating unit 16F estimates that the driver is in the micro-sleep state (S106).
  • step S601 if the number of blinks per unit time has not increased or decreased by a predetermined number or more (NO in S601), the reliability calculation unit 20F of the microsleep estimation unit 16F calculates the reliability as "low.” Then (S107), the estimation unit 18 of the microsleep estimation unit 16F estimates that the driver is in the microsleep state (S106).
  • the microsleep state can be estimated with even higher accuracy.
  • FIG. 15 is a block diagram showing the configuration of an estimation device 2G according to the eighth embodiment.
  • the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
  • an estimation device 2G includes an image information acquisition unit 8, a biological information acquisition unit 10, a closed eye state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16G.
  • a life log information acquisition unit 54 is provided. Based on the image information from the image information acquisition unit 8, the life log information acquisition unit 54 acquires life log information related to the life of the driver.
  • the life log information is, for example, information indicating the body type of the driver (thin, obese, etc.).
  • Life log information acquisition unit 54 outputs the acquired life log information to microsleep estimation unit 16G. Note that the life log information acquisition unit 54 may acquire life log information based on the biometric information from the biometric information acquisition unit 10 .
  • the estimating unit 18 of the microsleep estimating unit 16G detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds by the closed-eye state detecting unit 12, and the drowsiness determining unit 14 detects that the drowsiness level is less than "4". It is assumed that the driver is in the micro-sleep state on the condition that it is determined that the driver is in the micro-sleep state and that the life log information acquisition unit 54 has acquired life log information that affects the micro-sleep state of the driver.
  • the lifestyle log information that affects the driver's micro-sleep state is, for example, information indicating that the driver's body type is obese. This is because obese people are prone to sleep apnea and fall asleep suddenly.
  • the reliability calculation unit 20G of the micro-sleep estimation unit 16G calculates reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18 that the driver is in the micro-sleep state.
  • the reliability is calculated, for example, in three levels of "low”, “middle” and "high".
  • the life log information acquisition unit 54 acquires the life log information based on the image information from the image information acquisition unit 8, but is not limited to this.
  • the life log information acquisition unit 54 may acquire life log information from a wearable terminal worn by the driver, or may acquire life log information from a cloud server via a network.
  • the life log information includes, for example, (a) the driver's medical history, (b) the driver's previous day's working hours, (c) the driver's work style (night shift, etc.), and (d) the driver's exercise time. , (e) the driver's bedtime, (f) the driver's sleep quality (long sleeper, etc.), and (g) the driver's medication history.
  • FIG. 16 is a flow chart showing the operation flow of the estimation device 2G according to the eighth embodiment.
  • the same step numbers are given to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
  • steps S101 to S104 are first executed in the same manner as in the second embodiment.
  • the eye-closed state detection unit 12 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S102)
  • the drowsiness determination unit 14 determines that the drowsiness level is less than "4". If so (NO in S104), the process proceeds to step S701, and the life log information acquisition unit 54 acquires life log information.
  • the reliability calculation unit 20G of the micro-sleep estimation unit 16G sets the reliability to "medium.” (S702), and the estimation unit 18 of the microsleep estimation unit 16G estimates that the driver is in the microsleep state (S106).
  • the eye-closed state detection unit 12 detects that the closed-eye time is 0.5 seconds or more and less than 3 seconds (YES in S102), and the drowsiness determination unit 14 detects drowsiness. It is determined that the level is less than "4" (NO in S104), and the life log information that affects the driver's microsleep state is acquired by the life log information acquisition unit 54 (YES in S701). , the driver is assumed to be in a micro-sleep state. This is because even if the driver does not feel very drowsy, there is a possibility that the driver will close his/her eyes because of his/her tendency to fall asleep suddenly.
  • step S701 when the life log information acquisition unit 54 does not acquire the life log information that affects the microsleep state of the driver (NO in S701), the reliability calculation unit 20G of the microsleep estimation unit 16G The degree "low” is calculated (S107), and the estimation unit 18 of the microsleep estimation unit 16G estimates that the driver is in the microsleep state (S106).
  • the microsleep state can be estimated with even higher accuracy.
  • FIG. 17 is a block diagram showing the configuration of an estimation device 2H according to Embodiment 9. As shown in FIG. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
  • the estimation device 2H includes an image information acquisition unit 8, a biological information acquisition unit 10, a closed eye state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16H.
  • a facial feature information acquisition unit 56 is provided. Based on the image information from the image information acquisition unit 8, the facial feature information acquisition unit 56 acquires facial feature information indicating the facial features of the driver in time series. Facial features refer to parts of the face such as eyes and mouth.
  • the facial feature information acquiring section 56 outputs the acquired facial feature information to the microsleep estimating section 16H. Note that the facial feature information acquisition section 56 may acquire facial feature information based on the biometric information from the biometric information acquisition section 10 .
  • the estimating unit 18 of the microsleep estimating unit 16H detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds by the closed-eye state detecting unit 12, and the drowsiness determining unit 14 detects that the drowsiness level is less than "4". It is assumed that the driver is in the micro-sleep state on the condition that it is determined that the driver is in the micro-sleep state and that the facial characteristic information acquiring unit 56 acquires facial feature information that affects the micro-sleep state of the driver.
  • the facial feature information that affects the driver's micro-sleep state means, for example, that the driver's mouth is open due to drowsiness, or that eyebrows are not moving due to drowsiness and the muscles around the eyes are relaxed. This is the information shown.
  • the reliability calculation unit 20H of the micro-sleep estimation unit 16H calculates reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18 that the driver is in the micro-sleep state.
  • the reliability is calculated, for example, in three levels of "low", “middle” and "high".
  • FIG. 18 is a flow chart showing the operation flow of the estimating device 2H according to the ninth embodiment.
  • the same step numbers are given to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
  • steps S101 to S104 are first executed in the same manner as in the second embodiment.
  • the eye-closed state detection unit 12 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S102)
  • the drowsiness determination unit 14 determines that the drowsiness level is less than "4". If so (NO in S104), the process proceeds to step S801, and the facial feature information acquiring unit 56 acquires facial feature information.
  • the reliability calculation unit 20H of the microsleep estimation unit 16H sets the reliability to "medium.” (S802), and the estimation unit 18 of the microsleep estimation unit 16H estimates that the driver is in the microsleep state (S106).
  • the eye-closed state detection unit 12 detects that the closed-eye time is 0.5 seconds or more and less than 3 seconds (YES in S102), and the drowsiness determination unit 14 It is determined that the level is less than "4" (NO in S104), and facial feature information that affects the driver's micro-sleep state is acquired by the facial feature information acquisition unit 56 (YES in S801). , the driver is assumed to be in a micro-sleep state. This is because the driver may close his/her eyes due to fatigue or the like even if the driver does not feel drowsy.
  • step S801 when facial feature information that affects the driver's microsleep state is not acquired by the facial feature information acquisition unit 56 (NO in S801), the reliability calculation unit 20H of the microsleep estimation unit 16H The degree "low” is calculated (S107), and the estimation unit 18 of the microsleep estimation unit 16G estimates that the driver is in the microsleep state (S106).
  • the microsleep state can be estimated with even higher accuracy.
  • FIG. 19 is a block diagram showing the configuration of an estimation device 2J according to the tenth embodiment.
  • the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
  • the estimation device 2J includes an image information acquisition unit 8, a biological information acquisition unit 10, an eye-closed state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16J.
  • a head motion detector 58 is provided. Based on the image information from the image information acquisition unit 8, the head movement detection unit 58 detects movements of the driver's head in time series. The head motion detector 58 outputs the detection result to the microsleep estimator 16J. Note that the head motion detection unit 58 may detect head motion based on the biometric information from the biometric information acquisition unit 10 .
  • the estimating unit 18 of the microsleep estimating unit 16J detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds by the closed-eye state detecting unit 12, and the drowsiness determining unit 14 detects that the drowsiness level is less than "4". It is assumed that the driver is in the micro-sleep state on the condition that it is determined that there is a micro-sleep state and that the head motion detector 58 acquires a head motion that affects the micro-sleep state of the driver.
  • the motion of the head that affects the driver's micro-sleep state is, for example, a so-called motion such as nodding, in which the driver's head shakes up and down due to drowsiness.
  • the reliability calculation unit 20J of the microsleep estimation unit 16J calculates the reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18 that the driver is in the microsleep state.
  • the reliability is calculated, for example, in three levels of "low", “middle” and "high".
  • FIG. 20 is a flowchart showing the operation flow of the estimation device 2J according to the tenth embodiment.
  • the same step numbers are assigned to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
  • steps S101 to S104 are first executed in the same manner as in the second embodiment.
  • the eye-closed state detection unit 12 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S102)
  • the drowsiness determination unit 14 determines that the drowsiness level is less than "4". If so (NO in S104), the process proceeds to step S901, and the head movement detection unit 58 detects the movement of the driver's head.
  • the reliability calculator 20J of the microsleep estimator 16J determines that the reliability is medium. (S902), and the estimation unit 18 of the microsleep estimation unit 16J estimates that the driver is in the microsleep state (S106).
  • the eye-closed state detection unit 12 detects that the closed-eye time is 0.5 seconds or more and less than 3 seconds (YES in S102), and the drowsiness determination unit 14 It is determined that the level is less than "4" (NO in S104), and the head motion detection unit 58 detects a head motion that affects the driver's microsleep state (YES in S901).
  • the driver is in a microsleep state. This is because the driver may close his/her eyes due to fatigue or the like even if the driver does not feel drowsy.
  • step S901 when the head motion detection unit 58 does not acquire a head motion that affects the driver's microsleep state (NO in S901), the reliability calculation unit 20J of the microsleep estimation unit 16J The reliability "low” is calculated (S107), and the estimation unit 18 of the microsleep estimation unit 16J estimates that the driver is in the microsleep state (S106).
  • the microsleep state can be estimated with even higher accuracy.
  • FIG. 21 is a block diagram showing the configuration of an estimating device 2K according to Embodiment 11. As shown in FIG., in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
  • the estimation device 2K includes an image information acquisition unit 8, a biological information acquisition unit 10, an eye-closed state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16K.
  • An erroneous estimation situation detection unit 60 is provided. Based on the image information from the image information acquisition unit 8, the erroneous estimation situation detection unit 60 detects a situation that affects the estimation of the driver's micro-sleep state by the estimation unit 18 (hereinafter referred to as "erroneous estimation situation"). do.
  • the erroneously estimated situation is, for example, a solar situation where the driver's face is exposed to the afternoon sun, or a road situation where the driver's face is in fine shadows such as roadside trees.
  • the erroneous estimation condition detection unit 60 outputs the detection result to the microsleep estimation unit 16K.
  • the erroneous estimation situation detection unit 60 may detect an erroneous estimation situation based on the biometric information from the biometric information acquisition unit 10 .
  • the reliability calculation unit 20K of the microsleep estimating unit 16K is an index indicating the likelihood of the estimation result of the estimating unit 18 that the driver is in the microsleep state, taking into consideration the detection result of the erroneous estimation state detecting unit 60. Calculate a certain reliability.
  • the reliability is calculated, for example, in three levels of "low”, “middle” and "high".
  • FIG. 22 is a flow chart showing the operation flow of the estimating device 2K according to the eleventh embodiment.
  • the same step numbers are given to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
  • steps S101 to S104 are first executed in the same manner as in the second embodiment.
  • the eye-closed state detection unit 12 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S102)
  • the drowsiness determination unit 14 determines that the drowsiness level is less than "4". If so (NO in S104), the process proceeds to step S1001, and the erroneous estimation situation detection unit 60 detects the presence or absence of an erroneous estimation situation.
  • the reliability calculation unit 20K of the microsleep estimating unit 16K calculates the reliability “medium” (S1002), and the microsleep state is detected.
  • the estimating unit 18 of the estimating unit 16K estimates that the driver is in the micro-sleep state (S106).
  • step S1001 if the erroneous estimation condition detection unit 60 does not detect an erroneous estimation condition (NO in S1001), the reliability calculation unit 20K of the microsleep estimation unit 16K calculates the reliability “low” (S107 ), the estimator 18 of the microsleep estimator 16K estimates that the driver is in the microsleep state (S106).
  • the microsleep state can be estimated with even higher accuracy.
  • FIG. 23 is a block diagram showing the configuration of an estimation device 2L according to the twelfth embodiment.
  • the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
  • the estimation device 2L includes an image information acquisition unit 8, a biological information acquisition unit 10, an eye-closed state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16L.
  • An erroneous estimation situation detection unit 62 is provided.
  • the erroneous estimation condition detection unit 62 detects an erroneous estimation condition based on the image information from the image information acquisition unit 8 or the biometric information from the biometric information acquisition unit 10 .
  • the erroneously estimated situation is, for example, a solar situation where the driver's face is exposed to the afternoon sun, or a road situation where the driver's face is in fine shadows such as roadside trees.
  • the erroneous estimation situation detection unit 62 outputs the detection result to the microsleep estimation unit 16L via the closed eye state detection unit 12 and the drowsiness determination unit 14 .
  • the estimating unit 18 of the microsleep estimating unit 16L does not estimate the driver's microsleep state when the erroneous estimation state detection unit 62 detects an erroneous estimation state.
  • FIG. 24 is a flowchart showing the operation flow of the estimation device 2L according to the twelfth embodiment.
  • the same step numbers are assigned to the same processes as those of the flowchart of FIG. 4, and the description thereof is omitted.
  • the erroneous estimation situation detection unit 62 detects the presence or absence of an erroneous estimation situation. If the erroneous estimation situation detection unit 62 does not detect an erroneous estimation situation (NO in S1101), the process proceeds to step S102, and steps S102 to S107 are executed in the same manner as in the second embodiment. On the other hand, if the erroneous estimation state detection unit 62 detects an erroneous estimation state (YES in S1101), the estimating unit 18 of the microsleep estimating unit 16L does not estimate the microsleep state of the driver (S1102). .
  • the erroneous estimation situation is not limited to the situations described above. is conversing with a fellow passenger. In such a situation, it is not necessary to estimate the micro-sleep state. Therefore, by not estimating the micro-sleep state, erroneous estimation of the micro-sleep state can be effectively avoided.
  • the image information from the image information acquisition unit 8 (the driver's image information indicating the face of the person) contains noise, processing for correcting the image information may be performed. This can prevent erroneous estimation of the microsleep state.
  • FIG. 25 is a block diagram showing the configuration of an estimation device 2M according to the thirteenth embodiment.
  • the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
  • the estimation device 2M includes an image information acquisition unit 8, a biological information acquisition unit 10, an eye-closed state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16A.
  • a driving situation determination unit 64 is provided.
  • the driving situation determination unit 64 has a driving situation detection unit 66 and an eye closure time change unit 68 .
  • the biological information from the biological information acquiring section 10 is output to the drowsiness determining section 14 via the driving situation determining section 64 .
  • the driving condition detection unit 66 detects the driving condition of the vehicle by the driver based on the image information from the image information acquisition unit 8 or the biometric information from the biometric information acquisition unit 10 .
  • the driving situation is, for example, the driving time zone of the vehicle, the driving place of the vehicle, or the work pattern of the driver on the previous day.
  • the driving situation detection unit 66 outputs the detection result to the closed-eye state detection unit 12 .
  • the eye-closed time changer 68 changes the first time and/or the second time used to detect the eye-closed time in the eye-closed state detector 12 based on the driving situation detected by the driving situation detector 66.
  • FIG. 26 is a flow chart showing the flow of the first operation of the estimating device 2M according to the thirteenth embodiment.
  • the same step numbers are assigned to the same processes as those of the flowchart of FIG. 4, and the description thereof will be omitted.
  • the driving situation detection unit 66 detects the driving situation. If the driving condition detection unit 66 does not detect any driving condition that affects the micro-sleep state (NO in S1201), the eye closing time change unit 68 sets the first time and the second time to the default value of 0.5, respectively. Seconds and 3 seconds are set (S1202). Driving conditions that affect the micro-sleep state are, for example, conditions in which the driver is driving at night or working the night shift the previous day. Thereafter, as in the second embodiment, the process proceeds to step S102, and steps S102 to S107 are executed in the same manner as in the second embodiment.
  • step S1201 if the driving condition detection unit 66 detects a driving condition that affects the microsleep state (YES in S1201), the eye closing time changing unit 68 changes the second time from the default value of 3 seconds to 2 seconds. Seconds are shortened (S1203). After that, when the eye-closed state detection unit 12 detects that the eye-closed time is less than 0.5 seconds or longer than 2 seconds (NO in S1204), the process proceeds to step S103. On the other hand, if the eye-closed state detection unit 12 detects that the eye-closed time is 0.5 seconds or more and less than 2 seconds (YES in S1204), the process proceeds to step S104.
  • the driver is driving at night, or the driver was on the night shift the day before, and the driver is likely to feel drowsy.
  • the micro-sleep state of the driver is estimated rather harshly.
  • FIG. 27 is a flow chart showing the flow of the second operation of the estimating device 2M according to the thirteenth embodiment.
  • the same step numbers are assigned to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
  • step S101 the driving situation detection unit 66 detects the driving situation. If the driving condition detection unit 66 detects a driving condition that affects the microsleep state (YES in S1301), the eye closing time changing unit 68 sets the first time and the second time to the default value of 0.00. 5 seconds and 3 seconds are set (S1302). Thereafter, as in the second embodiment, the process proceeds to step S102, and steps S102 to S107 are executed in the same manner as in the second embodiment.
  • step S1301 if the driving condition detection unit 66 does not detect any driving condition that affects the microsleep state (NO in S1301), the eye closing time change unit 68 changes the first time from the default value of 0.5 seconds. It is lengthened to 1 second, and the second time is lengthened from the default value of 3 seconds to 4 seconds (S1303).
  • the process proceeds to step S103.
  • the eye-closed state detection unit 12 detects that the eye-closed time is 1 second or more and less than 4 seconds (YES in S1304), the process proceeds to step S104.
  • the driver's micro-sleep state is loosely estimated by lengthening the closed-eye time detected by the closed-eye state detection unit 12 .
  • the reliability calculation unit 20 (20B, 20C, 20D, 20E, 20F, 20G, 20H, 20J, 20K, 24, 28, 36, 48) calculates the reliability. etc. may be used to calculate the reliability.
  • each component may be implemented by dedicated hardware or by executing a software program suitable for each component.
  • Each component may be realized by reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU or processor.
  • some or all of the functions of the estimation device according to each of the above embodiments may be implemented by a processor such as a CPU executing a program.
  • a part or all of the components that make up each device described above may be configured from an IC card or a single module that can be attached to and removed from each device.
  • the IC card or module is a computer system composed of a microprocessor, ROM, RAM and the like.
  • the IC card or the module may include the super multifunctional LSI.
  • the IC card or the module achieves its function by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
  • the present disclosure may be the method shown above. Moreover, it may be a computer program for realizing these methods by a computer, or it may be a digital signal composed of the computer program.
  • the present disclosure provides a computer-readable non-temporary recording medium for the computer program or the digital signal, such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu -ray (registered trademark) Disc), semiconductor memory or the like.
  • the digital signal recorded on these recording media may be used.
  • the computer program or the digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, data broadcasting, or the like.
  • the present disclosure may also be a computer system comprising a microprocessor and memory, the memory storing the computer program, and the microprocessor operating according to the computer program. Also, by recording the program or the digital signal on the recording medium and transferring it, or by transferring the program or the digital signal via the network or the like, it is implemented by another independent computer system It is good as
  • the present disclosure is applicable to, for example, an estimation device for estimating a micro-sleep state of a vehicle driver.

Abstract

This estimation device (2) comprises: an eye-closing state detection unit (12) which detects an eye-closing time of the eyes of a driver; a drowsiness determination unit (14) which determines the level of drowsiness of the driver; and a micro-sleep estimation unit (16) which estimates the driver to be in a micro-sleep state on the condition that the eye-closing time is detected as equal to or greater than a first time and smaller than a second time by the eye-closing state detection unit (12), and the level of drowsiness is determined as equal to or greater than a first threshold by the drowsiness determination unit (14).

Description

推定装置、推定方法及びプログラムEstimation device, estimation method and program
 本開示は、推定装置、推定方法及びプログラムに関する。 The present disclosure relates to an estimation device, an estimation method, and a program.
 運転者が車両の運転中に強い眠気を催した際に、完全な居眠り状態に至る前段階において、「マイクロスリープ(Microsleep)」と呼ばれる瞬間的な睡眠状態に陥る場合があることが知られている。危険回避及び事故防止等の観点から、このような運転者のマイクロスリープ状態を検出するための検出装置が提案されている(例えば、特許文献1参照)。この種の検出装置は、運転者の眼の閉眼状態に基づいて、運転者のマイクロスリープ状態を検出する。 It is known that when a driver becomes very drowsy while driving a vehicle, the driver may fall into a momentary state of sleep called "microsleep" in the stage before falling asleep completely. there is From the viewpoint of danger avoidance, accident prevention, etc., a detection device for detecting such a micro-sleep state of a driver has been proposed (see, for example, Patent Document 1). This type of detection device detects the driver's micro-sleep state based on the driver's closed eye state.
特表2018-508870号公報Japanese Patent Application Publication No. 2018-508870
 しかしながら、従来の検出装置では、例えばコンタクトレンズがずれるなどして、運転者が意図的に眼を閉じた場合に、運転者のマイクロスリープ状態を誤検出するおそれがあるという課題が生じる。 However, with conventional detection devices, there is a problem that, for example, when the driver intentionally closes his or her eyes because the contact lens is displaced, the micro-sleep state of the driver may be erroneously detected.
 そこで、本開示は、マイクロスリープ状態を精度良く推定することができる推定装置、推定方法及びプログラムを提供する。 Therefore, the present disclosure provides an estimation device, an estimation method, and a program capable of accurately estimating the micro-sleep state.
 本開示の一態様に係る推定装置は、車両の運転者がマイクロスリープ状態であることを推定するための推定装置であって、前記運転者の眼の閉眼時間を検出する閉眼状態検出部と、前記運転者の眠気レベルを判定する眠気判定部と、前記閉眼状態検出部により前記閉眼時間が第1の時間以上第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが第1の閾値以上であると判定されたことを条件として、前記運転者がマイクロスリープ状態であると推定するマイクロスリープ推定部と、を備える。 An estimating device according to an aspect of the present disclosure is an estimating device for estimating that a driver of a vehicle is in a micro-sleep state, comprising: an eye-closed state detection unit that detects an eye-closed time of the driver; a drowsiness determination unit that determines a drowsiness level of the driver; and the eye-closed state detection unit that detects that the eye-closed time is longer than or equal to a first time and less than a second time, and the drowsiness determination unit detects the drowsiness. a micro-sleep estimator for estimating that the driver is in a micro-sleep state on condition that the level is determined to be equal to or greater than a first threshold.
 なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータで読み取り可能なCD-ROM(Compact Disc-Read Only Memory)等の記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 In addition, these comprehensive or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer-readable CD-ROM (Compact Disc-Read Only Memory), Any combination of systems, methods, integrated circuits, computer programs and storage media may be implemented.
 本開示の一態様に係る推定装置等によれば、マイクロスリープ状態を精度良く推定することができる。 According to the estimation device and the like according to one aspect of the present disclosure, it is possible to accurately estimate the micro-sleep state.
実施の形態1に係る推定装置の構成を示すブロック図である。1 is a block diagram showing the configuration of an estimation device according to Embodiment 1; FIG. 実施の形態1に係る推定装置の動作の流れを示すフローチャートである。4 is a flowchart showing the flow of operations of the estimation device according to Embodiment 1; 実施の形態2に係る推定装置の構成を示すブロック図である。FIG. 12 is a block diagram showing the configuration of an estimation device according to Embodiment 2; FIG. 実施の形態2に係る推定装置の動作の流れを示すフローチャートである。9 is a flow chart showing the flow of operations of an estimation device according to Embodiment 2; 実施の形態3に係る推定装置の構成を示すブロック図である。FIG. 12 is a block diagram showing the configuration of an estimation device according to Embodiment 3; FIG. 実施の形態3に係る推定装置の動作の流れを示すフローチャートである。11 is a flow chart showing the flow of operations of an estimation device according to Embodiment 3. FIG. 実施の形態4に係る推定装置の構成を示すブロック図である。FIG. 12 is a block diagram showing the configuration of an estimation device according to Embodiment 4; FIG. 実施の形態4に係る推定装置の動作の流れを示すフローチャートである。14 is a flow chart showing the operation flow of an estimation device according to Embodiment 4; 実施の形態5に係る推定装置の構成を示すブロック図である。FIG. 12 is a block diagram showing the configuration of an estimation device according to Embodiment 5; 実施の形態5に係る推定装置の動作の流れを示すフローチャートである。14 is a flow chart showing the flow of operations of an estimation device according to Embodiment 5. FIG. 実施の形態6に係る推定装置の構成を示すブロック図である。FIG. 13 is a block diagram showing the configuration of an estimation device according to Embodiment 6; 実施の形態6に係る推定装置の動作の流れを示すフローチャートである。14 is a flow chart showing the flow of operations of an estimation device according to Embodiment 6. FIG. 実施の形態7に係る推定装置の構成を示すブロック図である。FIG. 13 is a block diagram showing the configuration of an estimation device according to Embodiment 7; 実施の形態7に係る推定装置の動作の流れを示すフローチャートである。FIG. 13 is a flow chart showing the flow of operations of an estimation device according to Embodiment 7. FIG. 実施の形態8に係る推定装置の構成を示すブロック図である。FIG. 22 is a block diagram showing the configuration of an estimation device according to Embodiment 8; 実施の形態8に係る推定装置の動作の流れを示すフローチャートである。20 is a flow chart showing the operation flow of an estimation device according to Embodiment 8. FIG. 実施の形態9に係る推定装置の構成を示すブロック図である。FIG. 23 is a block diagram showing the configuration of an estimation device according to Embodiment 9; 実施の形態9に係る推定装置の動作の流れを示すフローチャートである。29 is a flow chart showing the operation flow of an estimation device according to Embodiment 9. FIG. 実施の形態10に係る推定装置の構成を示すブロック図である。FIG. 23 is a block diagram showing the configuration of an estimation device according to Embodiment 10; 実施の形態10に係る推定装置の動作の流れを示すフローチャートである。29 is a flow chart showing the operation flow of an estimation device according to Embodiment 10. FIG. 実施の形態11に係る推定装置の構成を示すブロック図である。FIG. 23 is a block diagram showing the configuration of an estimation device according to Embodiment 11; 実施の形態11に係る推定装置の動作の流れを示すフローチャートである。FIG. 22 is a flow chart showing the operation flow of an estimation device according to Embodiment 11; FIG. 実施の形態12に係る推定装置の構成を示すブロック図である。FIG. 23 is a block diagram showing the configuration of an estimation device according to Embodiment 12; 実施の形態12に係る推定装置の動作の流れを示すフローチャートである。29 is a flow chart showing the flow of operations of an estimation device according to Embodiment 12. FIG. 実施の形態13に係る推定装置の構成を示すブロック図である。FIG. 23 is a block diagram showing the configuration of an estimation device according to Embodiment 13; 実施の形態13に係る推定装置の第1の動作の流れを示すフローチャートである。FIG. 22 is a flow chart showing the flow of the first operation of the estimating device according to the thirteenth embodiment; FIG. 実施の形態13に係る推定装置の第2の動作の流れを示すフローチャートである。FIG. 22 is a flow chart showing the flow of the second operation of the estimation device according to the thirteenth embodiment; FIG.
 本開示の第1の態様に係る推定装置は、車両の運転者がマイクロスリープ状態であることを推定するための推定装置であって、前記運転者の眼の閉眼時間を検出する閉眼状態検出部と、前記運転者の眠気レベルを判定する眠気判定部と、前記閉眼状態検出部により前記閉眼時間が第1の時間以上第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが第1の閾値以上であると判定されたことを条件として、前記運転者がマイクロスリープ状態であると推定するマイクロスリープ推定部と、を備える。 An estimating device according to a first aspect of the present disclosure is an estimating device for estimating that a driver of a vehicle is in a micro-sleep state, and includes an eye-closed state detection unit that detects an eye-closed time of the driver. a drowsiness determination unit that determines a drowsiness level of the driver; and the eye-closed state detection unit that detects that the eye-closed time is greater than or equal to a first time period and less than a second time period, and the drowsiness determination unit detects a microsleep estimating unit estimating that the driver is in a microsleep state on condition that the drowsiness level is determined to be equal to or greater than a first threshold.
 本態様によれば、マイクロスリープ推定部は、閉眼状態検出部による閉眼時間の検出結果、及び、眠気判定部による眠気レベルの判定結果を考慮して、運転者のマイクロスリープ状態を推定する。これにより、マイクロスリープ状態を精度良く推定することができる。 According to this aspect, the micro-sleep estimation unit estimates the micro-sleep state of the driver in consideration of the detection result of the closed-eye time by the closed-eye state detection unit and the determination result of the drowsiness level by the drowsiness determination unit. As a result, the microsleep state can be estimated with high accuracy.
 また、本開示の第2の態様に係る推定装置では、第1の態様において、前記第1の時間は0.5秒であり、前記第2の時間は3秒であるように構成してもよい。 Further, in the estimation device according to the second aspect of the present disclosure, in the first aspect, the first time is 0.5 seconds, and the second time is 3 seconds. good.
 本態様によれば、運転者が0.5秒以上3秒未満の瞬間的な睡眠状態に陥り、且つ、眠気レベルが第1の閾値以上である場合に、運転者がマイクロスリープ状態であると推定することができる。 According to this aspect, when the driver falls into a momentary sleep state for 0.5 seconds or more and less than 3 seconds, and the drowsiness level is equal to or higher than the first threshold, it is determined that the driver is in the micro-sleep state. can be estimated.
 また、本開示の第3の態様に係る推定装置では、第1の態様又は第2の態様において、前記マイクロスリープ推定部は、さらに、前記運転者がマイクロスリープ状態であるとの推定結果の確からしさを示す指標である第1の信頼度を算出するように構成してもよい。 Further, in the estimation device according to the third aspect of the present disclosure, in the first aspect or the second aspect, the micro-sleep estimating unit further confirms the estimation result that the driver is in the micro-sleep state. It may be configured to calculate a first reliability, which is an index indicating likelihood.
 本態様によれば、マイクロスリープ状態の推定精度を高めることができる。 According to this aspect, it is possible to improve the accuracy of estimating the micro-sleep state.
 また、本開示の第4の態様に係る推定装置では、第3の態様において、前記閉眼状態検出部は、さらに、前記閉眼時間が前記第1の時間以上前記第2の時間未満であるとの検出結果の確からしさを示す指標である第2の信頼度を算出し、前記眠気判定部は、さらに、前記眠気レベルが前記第1の閾値以上であるとの判定結果の確からしさを示す指標である第3の信頼度を算出し、前記マイクロスリープ推定部は、前記第2の信頼度及び前記第3の信頼度に基づいて、前記第1の信頼度を算出するように構成してもよい。 Further, in the estimation device according to the fourth aspect of the present disclosure, in the third aspect, the eye-closed state detection unit further determines that the eye-closed time is greater than or equal to the first time and less than the second time. A second reliability, which is an index indicating the certainty of the detection result, is calculated, and the drowsiness determination unit further calculates the second reliability, which is an index indicating the certainty of the determination result that the drowsiness level is equal to or greater than the first threshold. A third confidence may be calculated, and the microsleep estimator may be configured to calculate the first confidence based on the second confidence and the third confidence. .
 本態様によれば、マイクロスリープ状態の推定精度をより高めることができる。 According to this aspect, it is possible to further improve the accuracy of estimating the micro-sleep state.
 また、本開示の第5の態様に係る推定装置では、第3の態様において、前記推定装置は、さらに、前記運転者の眼の開閉速度を検出する開閉状態検出部を備え、前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値以上であると判定され、且つ、前記開閉状態検出部により前記開閉速度が第2の閾値未満であることが検出されたことを条件として、前記運転者がマイクロスリープ状態であると推定するように構成してもよい。 Further, in the estimating device according to the fifth aspect of the present disclosure, in the third aspect, the estimating device further includes an open/closed state detection unit that detects an eye opening/closing speed of the driver, and the microsleep estimation the eye-closed state detection unit detects that the eye-closed time is greater than or equal to the first time period and less than the second time period, and the drowsiness determination unit detects that the drowsiness level is greater than or equal to the first threshold value; and the opening/closing state detection unit detects that the opening/closing speed is less than a second threshold, it is estimated that the driver is in the micro-sleep state. may
 本態様によれば、マイクロスリープ推定部は、閉眼状態検出部による閉眼時間の検出結果、及び、眠気判定部による眠気レベルの判定結果に加えて、開閉状態検出部による開閉速度の検出結果をも考慮して、運転者のマイクロスリープ状態を推定する。これにより、マイクロスリープ状態をより精度良く推定することができる。 According to this aspect, the micro-sleep estimating unit includes the detection result of the closed-eye time by the closed-eye state detection unit, the sleepiness level determination result by the drowsiness determination unit, and the opening/closing speed detection result by the open/close state detection unit. Consider and estimate the driver's micro-sleep state. This makes it possible to estimate the microsleep state more accurately.
 また、本開示の第6の態様に係る推定装置では、第5の態様において、前記閉眼状態検出部は、さらに、前記閉眼時間が前記第1の時間以上前記第2の時間未満であるとの検出結果の確からしさを示す指標である第2の信頼度を算出し、前記眠気判定部は、さらに、前記眠気レベルが前記第1の閾値以上であるとの判定結果の確からしさを示す指標である第3の信頼度を算出し、前記開閉状態検出部は、さらに、前記開閉速度が前記第2の閾値未満であるとの検出結果の確からしさを示す指標である第4の信頼度を算出し、前記マイクロスリープ推定部は、前記第2の信頼度、前記第3の信頼度及び前記第4の信頼度に基づいて、前記第1の信頼度を算出するように構成してもよい。 Further, in the estimation device according to the sixth aspect of the present disclosure, in the fifth aspect, the eye-closed state detection unit further determines that the eye-closed time is greater than or equal to the first time and less than the second time. A second reliability, which is an index indicating the certainty of the detection result, is calculated, and the drowsiness determination unit further calculates the second reliability, which is an index indicating the certainty of the determination result that the drowsiness level is equal to or greater than the first threshold. After calculating a certain third degree of reliability, the opening/closing state detection unit further calculates a fourth degree of reliability, which is an index indicating the likelihood of the detection result that the opening/closing speed is less than the second threshold. and the microsleep estimator may be configured to calculate the first reliability based on the second reliability, the third reliability, and the fourth reliability.
 本態様によれば、マイクロスリープ状態の推定精度をより高めることができる。 According to this aspect, it is possible to further improve the accuracy of estimating the micro-sleep state.
 また、本開示の第7の態様に係る推定装置では、第5の態様又は第6の態様において、前記眠気判定部は、前記開閉状態検出部としての機能を含むように構成してもよい。 Further, in the estimation device according to the seventh aspect of the present disclosure, in the fifth aspect or the sixth aspect, the drowsiness determination unit may be configured to include a function as the open/closed state detection unit.
 本態様によれば、推定装置の構成を簡素化することができる。 According to this aspect, the configuration of the estimation device can be simplified.
 また、本開示の第8の態様に係る推定装置では、第7の態様において、前記眠気判定部は、さらに、前記閉眼状態検出部としての機能を含むように構成してもよい。 Further, in the estimation device according to the eighth aspect of the present disclosure, in the seventh aspect, the drowsiness determination unit may further include a function as the closed-eyes state detection unit.
 本態様によれば、推定装置の構成をより簡素化することができる。 According to this aspect, the configuration of the estimation device can be further simplified.
 また、本開示の第9の態様に係る推定装置では、第3の態様において、前記推定装置は、さらに、前記運転者の眼の閉眼速度及び開眼速度を検出する開閉状態検出部を備え、前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値以上であると判定され、且つ、前記開閉状態検出部により前記閉眼速度が第3の閾値未満であることが検出され、且つ、前記開閉状態検出部により前記開眼速度が第4の閾値未満であることが検出されたことを条件として、前記運転者がマイクロスリープ状態であると推定するように構成してもよい。 Further, in the estimating device according to the ninth aspect of the present disclosure, in the third aspect, the estimating device further includes an open/closed state detection unit that detects an eye-closing speed and an eye-opening speed of the driver, The microsleep estimating unit detects that the closed-eyes time is longer than or equal to the first time period and less than the second time period by the closed-eye state detecting unit, and the drowsiness determining unit determines that the drowsiness level is equal to or greater than the first time. and the open/closed state detection unit detects that the eye-closing speed is less than the third threshold, and the open-close state detection unit detects that the eye-opening speed is less than the fourth threshold. It may be configured to presume that the driver is in a micro-sleep state on the condition that something is detected.
 本態様によれば、マイクロスリープ推定部は、閉眼状態検出部による閉眼時間の検出結果、及び、眠気判定部による眠気レベルの判定結果に加えて、開閉状態検出部による閉眼速度及び開眼速度の検出結果をも考慮して、運転者のマイクロスリープ状態を推定する。これにより、マイクロスリープ状態をより精度良く推定することができる。 According to this aspect, the microsleep estimating unit detects the closing speed and the opening speed of the eyes by the open/closed state detection unit, in addition to the detection result of the closed eye time by the closed eye state detection unit and the determination result of the drowsiness level by the drowsiness determination unit. The results are also taken into account to estimate the driver's microsleep state. This makes it possible to estimate the microsleep state more accurately.
 また、本開示の第10の態様に係る推定装置では、第9の態様において、前記閉眼状態検出部は、さらに、前記閉眼時間が前記第1の時間以上前記第2の時間未満であるとの検出結果の確からしさを示す指標である第2の信頼度を算出し、前記眠気判定部は、さらに、前記眠気レベルが前記第1の閾値以上であるとの判定結果の確からしさを示す指標である第3の信頼度を算出し、前記開閉状態検出部は、さらに、前記閉眼速度が前記第3の閾値未満であるとの検出結果の確からしさを示す指標である第5の信頼度、及び、前記開眼速度が前記第4の閾値未満であるとの検出結果の確からしさを示す指標である第6の信頼度を算出し、前記マイクロスリープ推定部は、前記第2の信頼度、前記第3の信頼度、前記第5の信頼度及び前記第6の信頼度に基づいて、前記第1の信頼度を算出するように構成してもよい。 Further, in the estimating device according to the tenth aspect of the present disclosure, in the ninth aspect, the eye-closed state detection unit further determines that the eye-closed time is greater than or equal to the first time and less than the second time. A second reliability, which is an index indicating the certainty of the detection result, is calculated, and the drowsiness determination unit further calculates the second reliability, which is an index indicating the certainty of the determination result that the drowsiness level is equal to or greater than the first threshold. After calculating a certain third reliability, the open/closed state detection unit further calculates a fifth reliability, which is an index indicating the likelihood of the detection result that the eye-closing speed is less than the third threshold, and , calculating a sixth reliability that is an index indicating the likelihood of the detection result that the eye-opening speed is less than the fourth threshold, and the microsleep estimator calculates the second reliability, the The first reliability may be calculated based on the third reliability, the fifth reliability, and the sixth reliability.
 本態様によれば、マイクロスリープ状態の推定精度をより高めることができる。 According to this aspect, it is possible to further improve the accuracy of estimating the micro-sleep state.
 また、本開示の第11の態様に係る推定装置では、第3の態様において、前記マイクロスリープ推定部は、前記眠気判定部により判定された前記眠気レベルに応じて、前記第1の信頼度を算出するように構成してもよい。 Further, in the estimating device according to the eleventh aspect of the present disclosure, in the third aspect, the microsleep estimating unit determines the first reliability according to the drowsiness level determined by the drowsiness determining unit. You may comprise so that it may calculate.
 本態様によれば、第1の信頼度の算出精度を高めることができる。 According to this aspect, it is possible to improve the calculation accuracy of the first reliability.
 また、本開示の第12の態様に係る推定装置では、第1の態様~第3の態様のいずれか一態様において、前記推定装置は、さらに、前記運転者の両眼を検出する両眼検出部を備え、前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値以上であると判定され、且つ、前記両眼検出部により前記運転者の両眼が検出されたことを条件として、前記運転者がマイクロスリープ状態であると推定するように構成してもよい。 Further, in the estimating device according to the twelfth aspect of the present disclosure, in any one of the first to third aspects, the estimating device further includes binocular detection for detecting both eyes of the driver. and the microsleep estimating unit detects that the eye-closed time is longer than or equal to the first time period and is less than the second time period by the eye-closed state detecting unit, and the drowsiness determining unit detects that the drowsiness level is is determined to be equal to or greater than the first threshold, and the binocular detection unit detects both eyes of the driver, so as to estimate that the driver is in a micro-sleep state. may be configured.
 本態様によれば、マイクロスリープ推定部は、閉眼状態検出部による閉眼時間の検出結果、及び、眠気判定部による眠気レベルの判定結果に加えて、両眼検出部の検出結果をも考慮して、運転者のマイクロスリープ状態を推定する。これにより、マイクロスリープ状態をより精度良く推定することができる。 According to this aspect, the microsleep estimation unit considers the detection result of the binocular detection unit in addition to the detection result of the closed-eye time by the closed-eye state detection unit and the determination result of the drowsiness level by the drowsiness determination unit. , to estimate the driver's microsleep state. This makes it possible to estimate the microsleep state more accurately.
 また、本開示の第13の態様に係る推定装置では、第1の態様~第3の態様のいずれか一態様において、前記推定装置は、さらに、前記運転者の瞬き回数を検出する瞬き回数検出部を備え、前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値以上であると判定され、且つ、前記瞬き回数検出部により前記運転者の単位時間当たりの瞬き回数が第5の閾値以上増加又は減少したことが検出されたことを条件として、前記運転者がマイクロスリープ状態であると推定するように構成してもよい。 Further, in the estimating device according to the thirteenth aspect of the present disclosure, in any one of the first to third aspects, the estimating device further includes a blink count detection that detects the number of blinks of the driver. and the microsleep estimating unit detects that the eye-closed time is longer than or equal to the first time period and is less than the second time period by the eye-closed state detecting unit, and the drowsiness determining unit detects that the drowsiness level is is determined to be equal to or greater than the first threshold, and the number of times of blinking of the driver per unit time is detected by the blinking number detection unit to be increased or decreased by a fifth threshold or more. , the driver is assumed to be in a micro-sleep state.
 本態様によれば、閉眼状態検出部による閉眼時間の検出結果、及び、眠気判定部による眠気レベルの判定結果に加えて、瞬き回数検出部の検出結果をも考慮して、運転者のマイクロスリープ状態を推定する。これにより、マイクロスリープ状態をより精度良く推定することができる。 According to this aspect, in addition to the eye-closed time detection result by the eye-closed state detection unit and the drowsiness level determination result by the drowsiness determination unit, the detection result of the number of blinks detection unit is also taken into consideration, and the microsleep of the driver is performed. Estimate the state. This makes it possible to estimate the microsleep state more accurately.
 また、本開示の第14の態様に係る推定装置では、第1の態様~第3の態様のいずれか一態様において、前記推定装置は、さらに、前記運転者の生活に関する生活ログ情報を取得する生活ログ情報取得部を備え、前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値未満であると判定され、且つ、前記生活ログ情報取得部により前記運転者のマイクロスリープ状態に影響する前記生活ログ情報が取得されたことを条件として、前記運転者がマイクロスリープ状態であると推定するように構成してもよい。 Further, in the estimating device according to the fourteenth aspect of the present disclosure, in any one of the first to third aspects, the estimating device further acquires life log information regarding the life of the driver. a life log information acquiring unit, wherein the microsleep estimating unit detects that the closed-eyes time is longer than or equal to the first time and less than the second time by the closed-eye state detecting unit; on the condition that the drowsiness level is determined to be less than the first threshold by and the life log information that affects the driver's microsleep state is acquired by the life log information acquisition unit. It may be configured to presume that the driver is in a micro-sleep state.
 本態様によれば、閉眼状態検出部による閉眼時間の検出結果、及び、眠気判定部による眠気レベルの判定結果に加えて、生活ログ情報取得部により取得された生活ログ情報をも考慮して、運転者のマイクロスリープ状態を推定する。これにより、マイクロスリープ状態をより精度良く推定することができる。 According to this aspect, in addition to the eye-closed time detection result by the eye-closed state detection unit and the drowsiness level determination result by the drowsiness determination unit, the life log information acquired by the life log information acquisition unit is also considered, Estimate the driver's microsleep state. This makes it possible to estimate the microsleep state more accurately.
 また、本開示の第15の態様に係る推定装置では、第1の態様~第3の態様のいずれか一態様において、前記推定装置は、さらに、前記運転者の顔特徴を示す顔特徴情報を取得する顔特徴情報取得部を備え、前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値未満であると判定され、且つ、前記顔特徴情報取得部により前記運転者のマイクロスリープ状態に影響する前記顔特徴情報が取得されたことを条件として、前記運転者がマイクロスリープ状態であると推定するように構成してもよい。 Further, in the estimating device according to the fifteenth aspect of the present disclosure, in any one of the first to third aspects, the estimating device further includes facial feature information indicating facial features of the driver. The microsleep estimating unit detects that the closed-eyes time is longer than or equal to the first time and shorter than the second time by the closed-eye state detecting unit, and the drowsiness On the condition that the determination unit determines that the drowsiness level is less than the first threshold value, and that the facial feature information acquisition unit acquires the facial feature information that affects the micro-sleep state of the driver. , the driver is assumed to be in a micro-sleep state.
 本態様によれば、閉眼状態検出部による閉眼時間の検出結果、及び、眠気判定部による眠気レベルの判定結果に加えて、顔特徴情報取得部により取得された顔特徴情報をも考慮して、運転者のマイクロスリープ状態を推定する。これにより、マイクロスリープ状態をより精度良く推定することができる。 According to this aspect, in addition to the detection result of the closed-eye time by the closed-eye state detection unit and the determination result of the drowsiness level by the drowsiness determination unit, the facial feature information acquired by the facial feature information acquisition unit is also considered, Estimate the driver's microsleep state. This makes it possible to estimate the microsleep state more accurately.
 また、本開示の第16の態様に係る推定装置では、第1の態様~第3の態様のいずれか一態様において、前記推定装置は、さらに、前記運転者の頭部の動作を検出する頭部動作検出部を備え、前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値未満であると判定され、且つ、前記頭部動作検出部により前記運転者のマイクロスリープ状態に影響する前記頭部の動作が検出されたことを条件として、前記運転者がマイクロスリープ状態であると推定するように構成してもよい。 Further, in the estimating device according to the sixteenth aspect of the present disclosure, in any one of the first to third aspects, the estimating device further includes: The micro-sleep estimating unit detects that the closed-eyes time is longer than or equal to the first time and less than the second time by the eye-closed state detecting unit, and the drowsiness determining unit detects on the condition that the drowsiness level is determined to be less than the first threshold, and that the head motion detection unit detects the head motion that affects the driver's micro-sleep state; It may be configured to presume that the driver is in a micro-sleep state.
 本態様によれば、閉眼状態検出部による閉眼時間の検出結果、及び、眠気判定部による眠気レベルの判定結果に加えて、頭部動作検出部の検出結果をも考慮して、運転者のマイクロスリープ状態を推定する。これにより、マイクロスリープ状態をより精度良く推定することができる。 According to this aspect, the detection result of the head movement detection unit is taken into consideration in addition to the detection result of the closed eye time by the closed eye state detection unit and the determination result of the drowsiness level by the drowsiness determination unit. Estimate sleep state. This makes it possible to estimate the microsleep state more accurately.
 また、本開示の第17の態様に係る推定装置では、第3の態様において、前記推定装置は、さらに、前記マイクロスリープ推定部による前記運転者のマイクロスリープ状態の推定に影響を与える状況を検出する誤推定状況検出部を備え、前記マイクロスリープ推定部は、前記誤推定状況検出部の検出結果を考慮して、前記第1の信頼度を変更するように構成してもよい。 Further, in the estimating device according to the seventeenth aspect of the present disclosure, in the third aspect, the estimating device further detects a situation that affects the estimation of the driver's micro-sleep state by the micro-sleep estimating unit. and the microsleep estimating unit may change the first reliability in consideration of the detection result of the erroneous estimation condition detecting unit.
 本態様によれば、マイクロスリープ状態の推定精度をより高めることができる。 According to this aspect, it is possible to further improve the accuracy of estimating the micro-sleep state.
 また、本開示の第18の態様に係る推定装置では、第1の態様~第3の態様のいずれか一態様において、前記推定装置は、さらに、前記マイクロスリープ推定部による前記運転者のマイクロスリープ状態の推定に影響を与える状況である誤推定状況を検出する誤推定状況検出部を備え、前記マイクロスリープ推定部は、前記誤推定状況検出部により前記誤推定状況が検出された場合には、前記運転者のマイクロスリープ状態の推定を実施しないように構成してもよい。 Further, in the estimation device according to the eighteenth aspect of the present disclosure, in any one aspect of the first to third aspects, the estimation device further includes: An erroneous estimation situation detection unit that detects an erroneous estimation situation that is a situation that affects state estimation, and the microsleep estimating unit detects, when the erroneous estimation situation is detected by the erroneous estimation situation detection unit, It may be configured not to perform the estimation of the micro-sleep state of the driver.
 本態様によれば、マイクロスリープ状態の推定精度をより高めることができる。 According to this aspect, it is possible to further improve the accuracy of estimating the micro-sleep state.
 また、本開示の第19の態様に係る推定装置では、第1の態様~第3の態様のいずれか一態様において、前記推定装置は、さらに、前記運転者による前記車両の運転状況を検出する運転状況検出部と、前記運転状況検出部により検出された前記運転状況に基づいて、前記閉眼状態検出部における前記閉眼時間の検出に用いられる前記第1の時間及び/又は前記第2の時間を変更する閉眼時間変更部と、を備えるように構成してもよい。 Further, in the estimating device according to the nineteenth aspect of the present disclosure, in any one of the first to third aspects, the estimating device further detects a driving situation of the vehicle by the driver. a driving situation detection unit, and based on the driving situation detected by the driving situation detection unit, the first time and/or the second time used for detecting the eye-closed time in the eye-closed state detection unit; and an eye-closing time changing unit for changing.
 本態様によれば、マイクロスリープ状態の推定精度をより高めることができる。 According to this aspect, it is possible to further improve the accuracy of estimating the micro-sleep state.
 また、本開示の第20の態様に係る推定装置では、第1の態様~第11の態様のいずれか一態様において、前記閉眼状態検出部は、撮像部により撮像された前記運転者の画像情報に基づいて、前記閉眼時間を検出し、前記眠気判定部は、生体センサにより検出された前記運転者の生体情報に基づいて、前記眠気レベルを判定するように構成してもよい。 Further, in the estimation device according to the twentieth aspect of the present disclosure, in any one of the first aspect to the eleventh aspect, the eye-closed state detection unit includes image information of the driver captured by the imaging unit. and the drowsiness determination unit may determine the drowsiness level based on the driver's biological information detected by a biological sensor.
 本態様によれば、撮像部により撮像された運転者の画像情報を利用することにより、閉眼時間を容易に検出することができる。また、生体センサにより検出された運転者の生体情報を利用することにより、眠気レベルを容易に判定することができる。 According to this aspect, it is possible to easily detect the closed eye time by using the image information of the driver captured by the imaging unit. In addition, by using the driver's biological information detected by the biological sensor, the drowsiness level can be easily determined.
 また、本開示の第21の態様に係る推定装置では、第1の態様~第11の態様のいずれか一態様において、前記閉眼状態検出部は、撮像部により撮像された前記運転者の画像情報に基づいて、前記閉眼時間を検出し、前記眠気判定部は、前記画像情報に基づいて、前記眠気レベルを判定するように構成してもよい。 Further, in the estimation device according to the twenty-first aspect of the present disclosure, in any one of the first aspect to the eleventh aspect, the closed-eyes state detection unit includes image information of the driver captured by the imaging unit. and the drowsiness determination unit may determine the drowsiness level based on the image information.
 本態様によれば、撮像部により撮像された運転者の画像情報を利用することにより、閉眼時間を容易に検出することができるとともに、眠気レベルを容易に判定することができる。 According to this aspect, by using the image information of the driver imaged by the imaging unit, it is possible to easily detect the closed eye time and easily determine the drowsiness level.
 本開示の第22の態様に係る推定方法は、車両の運転者がマイクロスリープ状態であることを推定するための推定方法であって、(a)前記運転者の眼の閉眼時間を検出するステップと、(b)前記運転者の眠気レベルを判定するステップと、(c)前記(a)において前記閉眼時間が第1の時間以上第2の時間未満であることが検出され、且つ、前記(b)において前記眠気レベルが第1の閾値以上であると判定されたことを条件として、前記運転者がマイクロスリープ状態であると推定するステップと、を含む。 An estimation method according to a twenty-second aspect of the present disclosure is an estimation method for estimating that a driver of a vehicle is in a micro-sleep state, comprising: (a) detecting an eye closure time of the driver's eyes; (b) determining the drowsiness level of the driver; (c) detecting that the eye-closing time is longer than or equal to a first time period and less than a second time period in (a); and assuming that the driver is in a micro-sleep state, provided that the drowsiness level is determined to be greater than or equal to a first threshold in b).
 本態様によれば、閉眼時間の検出結果、及び、眠気レベルの判定結果を考慮して、運転者のマイクロスリープ状態を推定する。これにより、マイクロスリープ状態を精度良く推定することができる。 According to this aspect, the driver's micro-sleep state is estimated in consideration of the eye closure time detection result and the drowsiness level determination result. As a result, the microsleep state can be estimated with high accuracy.
 本開示の第23の態様に係るプログラムは、上述した第22の態様に係る推定方法をコンピュータに実行させるプログラムである。 A program according to the twenty-third aspect of the present disclosure is a program that causes a computer to execute the estimation method according to the twenty-second aspect described above.
 なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータで読み取り可能なCD-ROM等の記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム又は記録媒体の任意な組み合わせで実現されてもよい。 In addition, these comprehensive or specific aspects may be realized by a system, method, integrated circuit, computer program, or a recording medium such as a computer-readable CD-ROM. Any combination of programs or recording media may be used.
 以下、実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, embodiments will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序等は、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 It should be noted that the embodiments described below are all comprehensive or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in independent claims representing the highest concept will be described as optional constituent elements.
 (実施の形態1)
 [1-1.推定装置の構成]
 まず、図1を参照しながら、実施の形態1に係る推定装置2の構成について説明する。図1は、実施の形態1に係る推定装置2の構成を示すブロック図である。
(Embodiment 1)
[1-1. Configuration of estimation device]
First, the configuration of the estimation device 2 according to Embodiment 1 will be described with reference to FIG. FIG. 1 is a block diagram showing the configuration of an estimation device 2 according to Embodiment 1. As shown in FIG.
 図1に示すように、実施の形態1に係る推定装置2は、車両の運転者のマイクロスリープ状態を検出するための装置である。車両には、推定装置2及びセンサ群3が搭載されている。車両は、例えば普通乗用車、バス又はトラック等の自動車である。なお、車両は、自動車に限定されず、例えば建機又は農機等であってもよい。 As shown in FIG. 1, the estimation device 2 according to Embodiment 1 is a device for detecting the micro-sleep state of the driver of the vehicle. An estimation device 2 and a sensor group 3 are mounted on the vehicle. The vehicle is, for example, a motor vehicle such as a passenger car, bus or truck. In addition, the vehicle is not limited to an automobile, and may be, for example, a construction machine or an agricultural machine.
 センサ群3は、例えば、車両、及び/又は、車両の運転席に着座している運転者等に関する情報を検出するための各種センサを含んでいる。具体的には、センサ群3は、例えば、撮像部4、生体センサ6及び車両状態センサ5等を含んでいる。 The sensor group 3 includes, for example, various sensors for detecting information about the vehicle and/or the driver sitting in the driver's seat of the vehicle. Specifically, the sensor group 3 includes, for example, an imaging unit 4, a biosensor 6, a vehicle state sensor 5, and the like.
 撮像部4は、車両の運転席に着座している運転者を撮像するためのカメラである。撮像部4としては、例えばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを用いたカメラ、又は、CCD(Charge Coupled Device)イメージセンサを用いたカメラ等を適用可能である。撮像部4は、運転者を撮像した画像情報を推定装置2に出力する。 The imaging unit 4 is a camera for imaging the driver sitting in the driver's seat of the vehicle. As the imaging unit 4, for example, a camera using a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a camera using a CCD (Charge Coupled Device) image sensor can be applied. The imaging unit 4 outputs image information obtained by imaging the driver to the estimation device 2 .
 生体センサ6は、車両の運転席に着座している運転者の生体情報(例えば、血圧、体温、呼吸数、心拍数及び筋肉の活動量等)を検出するためのセンサである。生体センサ6は、検出した生体情報を推定装置2に出力する。 The biosensor 6 is a sensor for detecting the biometric information of the driver sitting in the driver's seat of the vehicle (eg, blood pressure, body temperature, respiratory rate, heart rate, amount of muscle activity, etc.). The biological sensor 6 outputs the detected biological information to the estimating device 2 .
 車両状態センサ5は、車両の速度及び加速度等を検出するためのセンサである。車両状態センサ5は、検出した速度及び加速度等を示す車両状態情報を推定装置2に出力する。 The vehicle state sensor 5 is a sensor for detecting the speed and acceleration of the vehicle. The vehicle state sensor 5 outputs vehicle state information indicating the detected speed, acceleration, etc. to the estimation device 2 .
 推定装置2は、センサ情報取得部7と、閉眼状態検出部12と、眠気判定部14と、マイクロスリープ推定部16とを備えている。なお、推定装置2は、上述したセンサ群3に含まれる1以上のセンサを構成要件として備えていてもよい。 The estimation device 2 includes a sensor information acquisition unit 7 , a closed-eye state detection unit 12 , a drowsiness determination unit 14 , and a microsleep estimation unit 16 . Note that the estimation device 2 may include one or more sensors included in the sensor group 3 described above as a component.
 センサ情報取得部7は、センサ群3に含まれる各種センサから出力された各種情報を取得し、取得した各種情報を閉眼状態検出部12及び眠気判定部14に出力する。本実施の形態では、センサ情報取得部7が例えば撮像部4から出力された画像情報を取得し、取得した画像情報を閉眼状態検出部12に出力する場合について説明する。また、本実施の形態では、センサ情報取得部7が例えば生体センサ6から出力された生体情報を取得し、取得した生体情報を眠気判定部14に出力する場合について説明する。 The sensor information acquisition unit 7 acquires various types of information output from various sensors included in the sensor group 3 and outputs the acquired various types of information to the closed-eyes state detection unit 12 and the drowsiness determination unit 14 . In the present embodiment, a case will be described in which the sensor information acquisition unit 7 acquires image information output from, for example, the imaging unit 4 and outputs the acquired image information to the closed-eye state detection unit 12 . Further, in the present embodiment, a case will be described in which the sensor information acquisition unit 7 acquires, for example, biometric information output from the biosensor 6 and outputs the acquired biometric information to the drowsiness determination unit 14 .
 閉眼状態検出部12は、センサ情報取得部7からの各種情報、例えばセンサ情報取得部7からの画像情報に基づいて、運転者の眼の閉眼時間を検出する。具体的には、閉眼状態検出部12は、画像情報に含まれる運転者の眼の画像を解析することにより、運転者の眼の閉眼時間を検出する。ここで、閉眼時間とは、運転者の眼が閉じている時間、より具体的には、運転者の瞼が閉じ始めてから、瞼が閉じて再度開くまでの時間を意味する。閉眼状態検出部12は、閉眼時間の検出結果をマイクロスリープ推定部16に出力する。なお、本実施の形態では、閉眼状態検出部12は、センサ情報取得部7からの画像情報に基づいて、運転者の眼の閉眼時間を検出したが、これに限定されず、例えばディープラーニング等を用いて、運転者の眼の閉眼時間を検出してもよい。 The eye-closed state detection unit 12 detects the closed-eye time of the driver based on various information from the sensor information acquisition unit 7, for example, image information from the sensor information acquisition unit 7. Specifically, the eye-closed state detection unit 12 detects the closed-eye time of the driver by analyzing the image of the driver's eyes included in the image information. Here, the closed eye time means the time during which the driver's eyes are closed, more specifically, the time from when the driver's eyelids begin to close until the eyelids close and reopen. The eye-closed state detection unit 12 outputs the detection result of the eye-closed time to the microsleep estimation unit 16 . In the present embodiment, the eye-closed state detection unit 12 detects the closed-eye time of the driver based on the image information from the sensor information acquisition unit 7, but is not limited to this. may be used to detect the closing time of the driver's eyes.
 眠気判定部14は、センサ情報取得部7からの各種情報、例えばセンサ情報取得部7からの生体情報に基づいて、運転者の眠気度合いを示す眠気レベルを判定する。眠気レベルは、例えば「1」~「5」の5段階の数値で表される。眠気レベルの数値が高いほど、運転者の眠気度合いが高い状態であるとする。具体的には、眠気レベル「1」は全く眠くなさそう、眠気レベル「2」はやや眠そう、眠気レベル「3」は眠そう、眠気レベル「4」はかなり眠そう、眠気レベル「5」は非常に眠そうと分類される。眠気判定部14は、眠気レベルの判定結果をマイクロスリープ推定部16に出力する。 The drowsiness determination unit 14 determines a drowsiness level indicating the degree of drowsiness of the driver based on various information from the sensor information acquisition unit 7, for example, biological information from the sensor information acquisition unit 7. The sleepiness level is represented, for example, by numerical values in five stages from "1" to "5". It is assumed that the higher the numerical value of the drowsiness level, the higher the degree of drowsiness of the driver. Specifically, sleepiness level "1" seems to be not sleepy at all, sleepiness level "2" seems to be slightly sleepy, sleepiness level "3" seems to be sleepy, sleepiness level "4" seems to be quite sleepy, and sleepiness level "5". is classified as very sleepy. The sleepiness determination unit 14 outputs the sleepiness level determination result to the microsleep estimation unit 16 .
 なお、本実施の形態では、眠気判定部14は、センサ情報取得部7からの生体情報に基づいて、運転者の眠気レベルを判定したが、これに限定されず、センサ情報取得部7からの画像情報に基づいて、運転者の眠気レベルを判定してもよい。この場合、眠気判定部14は、画像情報に含まれる運転者の眼の画像を解析することにより、例えば瞼の開き具合を示す指標である開瞼度に基づいて、運転者の眠気レベルを判定してもよい。あるいは、眠気判定部14は、例えばディープラーニング等を用いて、運転者の眠気レベルを判定してもよい。 In the present embodiment, the drowsiness determination unit 14 determines the drowsiness level of the driver based on the biological information from the sensor information acquisition unit 7, but is not limited to this. The drowsiness level of the driver may be determined based on the image information. In this case, the drowsiness determination unit 14 analyzes the image of the driver's eyes included in the image information, and determines the drowsiness level of the driver based on, for example, the degree of eyelid opening, which is an index indicating the degree of opening of the eyelids. You may Alternatively, the drowsiness determination unit 14 may determine the drowsiness level of the driver using, for example, deep learning.
 マイクロスリープ推定部16は、推定部18を有している。推定部18は、閉眼状態検出部12により閉眼時間が0.5秒(第1の時間の一例)以上3秒(第2の時間の一例)未満であることが検出され、且つ、眠気判定部14により眠気レベルが「4」(第1の閾値の一例)以上であると判定されたことを条件として、運転者がマイクロスリープ状態であると推定する。 The microsleep estimator 16 has an estimator 18 . The estimating unit 18 detects that the eye-closed time is 0.5 seconds (an example of a first time) or more and less than 3 seconds (an example of a second time) by the eye-closed state detection unit 12, and the drowsiness determination unit 14 determines that the drowsiness level is equal to or higher than "4" (an example of the first threshold), it is estimated that the driver is in the micro-sleep state.
 なお、本実施の形態では、閉眼時間の条件を0.5秒以上3秒未満としたが、これに限定されず、例えば1秒以上4秒未満としてもよく、第1の時間及び第2の時間は任意に設定可能である。また、本実施の形態では、眠気レベルの条件を「4」以上としたが、これに限定されず、例えば「5」以上としてもよく、第1の閾値は任意に設定可能である。 In the present embodiment, the condition for the eye closing time is set to 0.5 seconds or more and less than 3 seconds, but is not limited to this. Any time can be set. Also, in the present embodiment, the sleepiness level condition is set to "4" or higher, but is not limited to this, and may be set to, for example, "5" or higher, and the first threshold can be set arbitrarily.
 推定部18の推定結果は、例えば車両のCAN(Controller Area Network)等に出力される。これにより、例えば、運転者がマイクロスリープ状態であると推定された場合には、運転者を覚醒させるために警報音を鳴らしたり、車両を安全に停止させるために車両を縮退動作させたりする制御が行われる。なお、縮退動作とは、例えば車両を車道の端(路肩)に寄せるようにステアリングを制御したり、車両を減速させるためにエンジン又はブレーキを制御したりする動作を意味する。 The estimation result of the estimation unit 18 is output to, for example, the CAN (Controller Area Network) of the vehicle. As a result, for example, when it is estimated that the driver is in a micro-sleep state, control is performed such that an alarm is sounded to awaken the driver, or the vehicle is degraded to stop the vehicle safely. is done. Note that the retraction operation means, for example, an operation of controlling the steering to bring the vehicle to the edge of the roadway (road shoulder), or controlling the engine or brakes to decelerate the vehicle.
 [1-2.推定装置の動作]
 次に、図2を参照しながら、実施の形態1に係る推定装置2の動作について説明する。図2は、実施の形態1に係る推定装置2の動作の流れを示すフローチャートである。
[1-2. Operation of estimation device]
Next, operation of the estimation device 2 according to Embodiment 1 will be described with reference to FIG. FIG. 2 is a flow chart showing the operation flow of the estimation device 2 according to the first embodiment.
 図2に示すように、センサ情報取得部7は、撮像部4から出力された画像情報を取得し(S11)、取得した画像情報を閉眼状態検出部12に出力する。また、センサ情報取得部7は、生体センサ6から出力された生体情報を取得し(S11)、取得した生体情報を眠気判定部14に出力する。 As shown in FIG. 2, the sensor information acquisition unit 7 acquires image information output from the imaging unit 4 (S11), and outputs the acquired image information to the closed-eye state detection unit 12. Further, the sensor information acquisition unit 7 acquires the biological information output from the biological sensor 6 (S11), and outputs the acquired biological information to the drowsiness determination unit .
 閉眼状態検出部12は、センサ情報取得部7からの画像情報に基づいて閉眼時間を検出し、閉眼時間の検出結果をマイクロスリープ推定部16に出力する。また、眠気判定部14は、センサ情報取得部7からの生体情報に基づいて眠気レベルを判定し、眠気レベルの判定結果をマイクロスリープ推定部16に出力する。 The eye-closed state detection unit 12 detects the eye-closed time based on the image information from the sensor information acquisition unit 7 and outputs the detection result of the eye-closed time to the microsleep estimation unit 16 . Also, the drowsiness determination unit 14 determines the drowsiness level based on the biological information from the sensor information acquisition unit 7 and outputs the result of the drowsiness level determination to the microsleep estimation unit 16 .
 閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出され(S12)、且つ、眠気判定部14により眠気レベルが「4」以上であると判定されると(S13)、マイクロスリープ推定部16の推定部18は、運転者がマイクロスリープ状態であると推定する(S14)。 When the eye-closed state detection unit 12 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (S12), and the sleepiness determination unit 14 determines that the sleepiness level is "4" or more (S13 ), the estimation unit 18 of the microsleep estimation unit 16 estimates that the driver is in the microsleep state (S14).
 [1-3.効果]
 本実施の形態では、マイクロスリープ推定部16の推定部18は、運転者の眼の閉眼時間、及び、運転者の眠気レベルを考慮して、運転者がマイクロスリープ状態であると推定する。これにより、マイクロスリープ状態を精度良く推定することができる。
[1-3. effect]
In the present embodiment, the estimating unit 18 of the micro-sleep estimating unit 16 estimates that the driver is in the micro-sleep state, taking into consideration the driver's eye closure time and the driver's drowsiness level. As a result, the microsleep state can be estimated with high accuracy.
 (実施の形態2)
 [2-1.推定装置の構成]
 図3を参照しながら、実施の形態2に係る推定装置2Aの構成について説明する。図3は、実施の形態2に係る推定装置2Aの構成を示すブロック図である。なお、本実施の形態において、上記実施の形態1と同一の構成要素には同一の符号を付して、その説明を省略する。
(Embodiment 2)
[2-1. Configuration of estimation device]
The configuration of an estimation device 2A according to Embodiment 2 will be described with reference to FIG. FIG. 3 is a block diagram showing the configuration of an estimation device 2A according to Embodiment 2. As shown in FIG. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the first embodiment, and the description thereof will be omitted.
 図3に示すように、実施の形態2に係る推定装置2Aでは、上記実施の形態1で説明したセンサ情報取得部7に代えて、画像情報取得部8及び生体情報取得部10を備えている。なお、以下に示す各実施の形態では、上述した図1に示すセンサ群3のうち撮像部4及び生体センサ6を用いて、マイクロスリープ状態を推定する例について説明する。 As shown in FIG. 3, the estimation apparatus 2A according to Embodiment 2 includes an image information acquisition section 8 and a biometric information acquisition section 10 instead of the sensor information acquisition section 7 described in Embodiment 1 above. . In each embodiment described below, an example of estimating a micro-sleep state using the imaging unit 4 and the biosensor 6 of the sensor group 3 shown in FIG. 1 will be described.
 画像情報取得部8は、撮像部4から出力された画像情報を取得する。画像情報取得部8は、取得した画像情報を閉眼状態検出部12に出力する。 The image information acquisition unit 8 acquires image information output from the imaging unit 4 . The image information acquisition unit 8 outputs the acquired image information to the closed-eye state detection unit 12 .
 生体情報取得部10は、生体センサ6から出力された生体情報を取得する。生体情報取得部10は、取得した生体情報を眠気判定部14に出力する。 The biometric information acquisition unit 10 acquires biometric information output from the biosensor 6 . The biometric information acquisition unit 10 outputs the acquired biometric information to the drowsiness determination unit 14 .
 閉眼状態検出部12は、画像情報取得部8からの画像情報に基づいて、運転者の眼の閉眼時間を検出する。なお、本実施の形態では、閉眼状態検出部12は、画像情報取得部8からの画像情報に基づいて、運転者の眼の閉眼時間を検出したが、これに限定されず、例えばディープラーニング等を用いて、運転者の眼の閉眼時間を検出してもよい。あるいは、閉眼状態検出部12は、生体情報取得部10からの生体情報に基づいて、運転者の眼の閉眼時間を検出してもよい。この場合、生体情報取得部10からの生体情報として、例えば筋電センサ等の生体センサ6から出力された生体情報を用いることができる。 Based on the image information from the image information acquisition unit 8, the eye-closed state detection unit 12 detects the eye closure time of the driver. In the present embodiment, the eye-closed state detection unit 12 detects the closed-eye time of the driver based on the image information from the image information acquisition unit 8, but is not limited to this. may be used to detect the closing time of the driver's eyes. Alternatively, the eye-closed state detection unit 12 may detect the closed-eye time of the driver based on the biometric information from the biometric information acquisition unit 10 . In this case, the biological information output from the biological sensor 6 such as a myoelectric sensor can be used as the biological information from the biological information acquisition unit 10 .
 眠気判定部14は、生体情報取得部10からの生体情報に基づいて、運転者の眠気度合いを示す眠気レベルを判定する。 The drowsiness determination unit 14 determines a drowsiness level indicating the degree of drowsiness of the driver based on the biometric information from the biometric information acquisition unit 10 .
 なお、本実施の形態では、眠気判定部14は、生体情報取得部10からの生体情報に基づいて、運転者の眠気レベルを判定したが、これに限定されず、画像情報取得部8からの画像情報に基づいて、運転者の眠気レベルを判定してもよい。この場合、眠気判定部14は、画像情報に含まれる運転者の眼の画像を解析することにより、例えば瞼の開き具合を示す指標である開瞼度に基づいて、運転者の眠気レベルを判定してもよい。あるいは、眠気判定部14は、例えばディープラーニング等を用いて、運転者の眠気レベルを判定してもよい。 In the present embodiment, the drowsiness determination unit 14 determines the drowsiness level of the driver based on the biometric information from the biometric information acquisition unit 10, but is not limited to this. The drowsiness level of the driver may be determined based on the image information. In this case, the drowsiness determination unit 14 analyzes the image of the driver's eyes included in the image information, and determines the drowsiness level of the driver based on, for example, the degree of eyelid opening, which is an index indicating the degree of opening of the eyelids. You may Alternatively, the drowsiness determination unit 14 may determine the drowsiness level of the driver using, for example, deep learning.
 また、実施の形態2に係る推定装置2Aでは、マイクロスリープ推定部16Aの構成が上記実施の形態1と異なっている。具体的には、マイクロスリープ推定部16Aは、上記実施の形態1で説明した推定部18に加えて、信頼度算出部20を有している。 Also, in the estimation device 2A according to the second embodiment, the configuration of the microsleep estimation unit 16A is different from that in the first embodiment. Specifically, the microsleep estimator 16A has a reliability calculator 20 in addition to the estimator 18 described in the first embodiment.
 信頼度算出部20は、運転者がマイクロスリープ状態であるとの推定部18の推定結果の確からしさを示す指標である信頼度(第1の信頼度の一例)を算出する。信頼度は、例えば「低」及び「高」の2段階で算出される。信頼度算出部20は、眠気判定部14により判定された眠気レベルに応じて信頼度を算出してもよく、例えば眠気レベルが高いほど信頼度が高くなるように、信頼度を算出してもよい。なお、本実施の形態では、マイクロスリープ推定部16Aは信頼度算出部20を有するようにしたが、これに限定されず、信頼度算出部20を省略してもよい。 The reliability calculation unit 20 calculates a reliability (an example of a first reliability) that is an index indicating the probability of the estimation result of the estimation unit 18 that the driver is in the micro-sleep state. The reliability is calculated in two stages, for example, "low" and "high". The reliability calculation unit 20 may calculate the reliability according to the drowsiness level determined by the drowsiness determination unit 14. For example, the reliability may be calculated so that the higher the drowsiness level, the higher the reliability. good. Although the microsleep estimation unit 16A has the reliability calculation unit 20 in the present embodiment, the reliability calculation unit 20 may be omitted without being limited to this.
 推定部18の推定結果、及び、信頼度算出部20の算出結果は、例えば車両のCAN等に出力される。これにより、例えば、運転者がマイクロスリープ状態であると推定され、且つ、信頼度が「低」である場合には、運転者を覚醒させるために警報音を鳴らす制御が行われる。また例えば、運転者がマイクロスリープ状態であると推定され、且つ、信頼度が「高」である場合には、車両を安全に停止させるために車両を縮退動作させる制御が行われる。 The estimation result of the estimation unit 18 and the calculation result of the reliability calculation unit 20 are output to, for example, the CAN of the vehicle. As a result, for example, when it is estimated that the driver is in the micro-sleep state and the reliability is "low", control is performed to sound an alarm to awaken the driver. Further, for example, when it is estimated that the driver is in the micro-sleep state and the reliability is "high", the vehicle is controlled to degenerate in order to safely stop the vehicle.
 [2-2.推定装置の動作]
 次に、図4を参照しながら、実施の形態2に係る推定装置2Aの動作について説明する。図4は、実施の形態2に係る推定装置2Aの動作の流れを示すフローチャートである。
[2-2. Operation of estimation device]
Next, operation of the estimation device 2A according to Embodiment 2 will be described with reference to FIG. FIG. 4 is a flow chart showing the operation flow of the estimation device 2A according to the second embodiment.
 図4に示すように、画像情報取得部8は、撮像部4から出力された画像情報を取得し(S101)、取得した画像情報を閉眼状態検出部12に出力する。また、生体情報取得部10は、生体センサ6から出力された生体情報を取得し(S101)、取得した生体情報を眠気判定部14に出力する。 As shown in FIG. 4, the image information acquisition unit 8 acquires the image information output from the imaging unit 4 (S101), and outputs the acquired image information to the closed-eye state detection unit 12. Also, the biometric information acquisition unit 10 acquires biometric information output from the biosensor 6 ( S<b>101 ), and outputs the acquired biometric information to the drowsiness determination unit 14 .
 閉眼状態検出部12は、画像情報取得部8からの画像情報に基づいて閉眼時間を検出し、閉眼時間の検出結果をマイクロスリープ推定部16Aに出力する。また、眠気判定部14は、生体情報取得部10からの生体情報に基づいて眠気レベルを判定し、眠気レベルの判定結果をマイクロスリープ推定部16Aに出力する。 The eye-closed state detection unit 12 detects the eye-closed time based on the image information from the image information acquisition unit 8, and outputs the detection result of the eye-closed time to the microsleep estimation unit 16A. In addition, the drowsiness determination unit 14 determines the drowsiness level based on the biometric information from the biometric information acquisition unit 10, and outputs the determination result of the drowsiness level to the microsleep estimation unit 16A.
 閉眼状態検出部12により閉眼時間が0.5秒未満又は3秒以上であることが検出された場合には(S102でNO)、マイクロスリープ推定部16Aの推定部18は、運転者がマイクロスリープ状態ではないと推定する(S103)。この場合、マイクロスリープ推定部16Aの信頼度算出部20は、信頼度を算出しない。 When the eye-closed state detecting unit 12 detects that the closed-eye time is less than 0.5 seconds or longer than 3 seconds (NO in S102), the estimating unit 18 of the microsleep estimating unit 16A determines that the driver is in microsleep. It is estimated that it is not in the state (S103). In this case, the reliability calculator 20 of the microsleep estimator 16A does not calculate the reliability.
 ステップS102に戻り、閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出された場合であって(S102でYES)、眠気判定部14により眠気レベルが「4」以上であると判定された場合には(S104でYES)、マイクロスリープ推定部16Aの信頼度算出部20は、信頼度「高」を算出し(S105)、マイクロスリープ推定部16Aの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 Returning to step S102, when the closed-eye state detection unit 12 detects that the closed-eye time is 0.5 seconds or more and less than 3 seconds (YES in S102), the drowsiness determination unit 14 sets the drowsiness level to "4". If it is determined to be above (YES in S104), the reliability calculation unit 20 of the microsleep estimating unit 16A calculates the reliability “high” (S105), and the estimating unit 18 of the microsleep estimating unit 16A estimates that the driver is in a micro-sleep state (S106).
 ステップS104に戻り、眠気判定部14により眠気レベルが「4」未満であると判定された場合には(S104でNO)、マイクロスリープ推定部16Aの信頼度算出部20は、信頼度「低」を算出し(S107)、マイクロスリープ推定部16Aの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 Returning to step S104, when the drowsiness determination unit 14 determines that the drowsiness level is less than "4" (NO in S104), the reliability calculation unit 20 of the microsleep estimation unit 16A sets the reliability to "low". (S107), and the estimation unit 18 of the microsleep estimation unit 16A estimates that the driver is in the microsleep state (S106).
 なお、マイクロスリープ推定部16Aは信頼度算出部20を有しないようにしてもよく、この場合には、ステップS105及びS107を省略してもよい。この場合、眠気判定部14により眠気レベルが「4」以上であると判定された場合には(S104でYES)、ステップS106に進み、推定部18は、運転者がマイクロスリープ状態であると推定してもよい。また、眠気判定部14により眠気レベルが「4」未満であると判定された場合には(S104でNO)、ステップS103に進み、推定部18は、運転者がマイクロスリープ状態ではないと推定してもよい。 Note that the microsleep estimation unit 16A may not have the reliability calculation unit 20, and in this case, steps S105 and S107 may be omitted. In this case, when the drowsiness determination unit 14 determines that the drowsiness level is "4" or higher (YES in S104), the process proceeds to step S106, and the estimation unit 18 estimates that the driver is in the micro-sleep state. You may When the drowsiness determination unit 14 determines that the drowsiness level is less than "4" (NO in S104), the process proceeds to step S103, where the estimation unit 18 estimates that the driver is not in the micro-sleep state. may
 [2-3.効果]
 本実施の形態では、マイクロスリープ推定部16Aの推定部18は、運転者の眼の閉眼時間、及び、運転者の眠気レベルを考慮して、運転者がマイクロスリープ状態であると推定する。これにより、例えばコンタクトレンズがずれるなどして、運転者が意図的に眼を瞬間的に閉じた場合であっても、運転者の眠気レベルが低ければ、運転者がマイクロスリープ状態であるとの推定結果の信頼度を低く算出することができる。その結果、マイクロスリープ状態を精度良く推定することができる。
[2-3. effect]
In the present embodiment, the estimating unit 18 of the microsleep estimating unit 16A estimates that the driver is in the microsleep state, taking into consideration the driver's eye closure time and the driver's drowsiness level. As a result, even if the driver intentionally closes his or her eyes for a moment, for example, due to displacement of the contact lens, if the driver's drowsiness level is low, it can be determined that the driver is in a micro-sleep state. The reliability of the estimation result can be calculated to be low. As a result, it is possible to accurately estimate the microsleep state.
 (実施の形態3)
 [3-1.推定装置の構成]
 図5を参照しながら、実施の形態3に係る推定装置2Bの構成について説明する。図5は、実施の形態3に係る推定装置2Bの構成を示すブロック図である。なお、本実施の形態において、上記実施の形態2と同一の構成要素には同一の符号を付して、その説明を省略する。
(Embodiment 3)
[3-1. Configuration of estimation device]
The configuration of the estimation device 2B according to Embodiment 3 will be described with reference to FIG. FIG. 5 is a block diagram showing the configuration of an estimation device 2B according to Embodiment 3. As shown in FIG. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
 図5に示すように、実施の形態3に係る推定装置2Bでは、閉眼状態検出部12B、眠気判定部14B及びマイクロスリープ推定部16Bの各構成が上記実施の形態1と異なっている。 As shown in FIG. 5, the estimation device 2B according to the third embodiment differs from the first embodiment in the configurations of the eye-closed state detection unit 12B, drowsiness determination unit 14B, and microsleep estimation unit 16B.
 閉眼状態検出部12Bは、閉眼時間検出部22と、信頼度算出部24とを有している。閉眼時間検出部22は、画像情報取得部8からの画像情報に基づいて、運転者の眼の閉眼時間を検出する。なお、閉眼時間検出部12Bは、例えばディープラーニング等を用いて、運転者の眼の閉眼時間を検出してもよい。閉眼時間検出部22は、閉眼時間の検出結果をマイクロスリープ推定部16Bに出力する。信頼度算出部24は、閉眼時間が0.5秒以上3秒未満であるとの閉眼時間検出部22の検出結果の確からしさを示す指標である信頼度(第2の信頼度の一例)を算出する。また、信頼度算出部24は、閉眼時間が0.5秒未満又は3秒以上であるとの閉眼時間検出部22の検出結果の確からしさを示す指標である信頼度を算出する。信頼度は、例えば0%~100%の数値で算出される。信頼度算出部24は、信頼度の算出結果をマイクロスリープ推定部16Bに出力する。 The eye-closed state detector 12B has an eye-closed time detector 22 and a reliability calculator 24 . The eye-closed time detection unit 22 detects the eye-closed time of the driver based on the image information from the image information acquisition unit 8 . Note that the eye-closed time detection unit 12B may detect the eye-closed time of the driver using, for example, deep learning. The eye-closed time detection unit 22 outputs the detection result of the eye-closed time to the microsleep estimation unit 16B. The reliability calculation unit 24 calculates the reliability (an example of the second reliability) that is an index indicating the probability of the detection result of the eye closure time detection unit 22 that the eye closure time is 0.5 seconds or more and less than 3 seconds. calculate. Further, the reliability calculation unit 24 calculates the reliability, which is an index indicating the probability of the detection result of the eye closure time detection unit 22 that the eye closure time is less than 0.5 seconds or 3 seconds or more. The reliability is calculated as a numerical value between 0% and 100%, for example. The reliability calculation unit 24 outputs the reliability calculation result to the microsleep estimation unit 16B.
 眠気判定部14Bは、眠気レベル判定部26と、信頼度算出部28とを有している。眠気レベル判定部26は、生体情報取得部10からの生体情報に基づいて、運転者の眠気度合いを示す眠気レベルを判定する。なお、眠気レベル判定部26は、例えばディープラーニング等を用いて、運転者の眠気レベルを判定してもよい。眠気レベル判定部26は、眠気レベルの判定結果をマイクロスリープ推定部16Bに出力する。信頼度算出部28は、眠気レベルが「4」以上であるとの眠気レベル判定部26の判定結果の確からしさを示す指標である信頼度(第3の信頼度の一例)を算出する。また、信頼度算出部28は、眠気レベルが「4」未満であるとの眠気レベル判定部26の判定結果の確からしさを示す指標である信頼度を算出する。信頼度は、例えば0%~100%の数値で算出される。信頼度算出部28は、信頼度の算出結果をマイクロスリープ推定部16Bに出力する。 The drowsiness determination unit 14B has a drowsiness level determination unit 26 and a reliability calculation unit 28. The drowsiness level determination unit 26 determines a drowsiness level indicating the degree of drowsiness of the driver based on the biological information from the biological information acquisition unit 10 . Note that the drowsiness level determination unit 26 may determine the drowsiness level of the driver using, for example, deep learning. The sleepiness level determination unit 26 outputs the sleepiness level determination result to the microsleep estimation unit 16B. The reliability calculation unit 28 calculates a reliability (an example of a third reliability) that is an index indicating the likelihood of the determination result of the drowsiness level determination unit 26 that the drowsiness level is "4" or higher. Further, the reliability calculation unit 28 calculates the reliability, which is an index indicating the likelihood of the determination result of the sleepiness level determination unit 26 that the sleepiness level is less than "4". The reliability is calculated as a numerical value between 0% and 100%, for example. The reliability calculation unit 28 outputs the reliability calculation result to the microsleep estimation unit 16B.
 マイクロスリープ推定部16Bの信頼度算出部20Bは、閉眼状態検出部12Bの信頼度算出部24の算出結果、及び、眠気判定部14Bの信頼度算出部28の算出結果に基づいて、運転者がマイクロスリープ状態であるとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する。また、マイクロスリープ推定部16Bの信頼度算出部20Bは、閉眼状態検出部12Bの信頼度算出部24の算出結果に基づいて、運転者がマイクロスリープ状態ではないとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する。信頼度は、例えば0%~100%の数値で算出される。 The reliability calculation unit 20B of the microsleep estimation unit 16B determines whether the driver is A reliability, which is an index indicating the probability of the estimation result of the estimation unit 18 that the state is the micro-sleep state, is calculated. Further, the reliability calculation unit 20B of the micro-sleep estimation unit 16B determines the estimation result of the estimation unit 18 that the driver is not in the micro-sleep state, based on the calculation result of the reliability calculation unit 24 of the closed-eye state detection unit 12B. Reliability, which is an index indicating likelihood, is calculated. The reliability is calculated as a numerical value between 0% and 100%, for example.
 [3-2.推定装置の動作]
 次に、図6を参照しながら、実施の形態3に係る推定装置2Bの動作について説明する。図6は、実施の形態3に係る推定装置2Bの動作の流れを示すフローチャートである。
[3-2. Operation of estimation device]
Next, operation of the estimation device 2B according to Embodiment 3 will be described with reference to FIG. FIG. 6 is a flow chart showing the operation flow of the estimation device 2B according to the third embodiment.
 図6に示すように、画像情報取得部8は、撮像部4から出力された画像情報を取得し(S201)、取得した画像情報を閉眼状態検出部12Bに出力する。また、生体情報取得部10は、生体センサ6から出力された生体情報を取得し(S201)、取得した生体情報を眠気判定部14Bに出力する。 As shown in FIG. 6, the image information acquisition unit 8 acquires the image information output from the imaging unit 4 (S201), and outputs the acquired image information to the closed-eye state detection unit 12B. Also, the biological information acquisition unit 10 acquires the biological information output from the biological sensor 6 (S201), and outputs the acquired biological information to the drowsiness determination unit 14B.
 閉眼状態検出部12Bの閉眼時間検出部22は、画像情報取得部8からの画像情報に基づいて閉眼時間を検出し、閉眼時間の検出結果をマイクロスリープ推定部16Bに出力する。また、眠気判定部14Bの眠気レベル判定部26は、生体情報取得部10からの生体情報に基づいて眠気レベルを判定し、眠気レベルの判定結果をマイクロスリープ推定部16Bに出力する。 The eye-closed time detection unit 22 of the eye-closed state detection unit 12B detects the eye-closed time based on the image information from the image information acquisition unit 8, and outputs the detection result of the eye-closed time to the microsleep estimation unit 16B. The sleepiness level determination unit 26 of the sleepiness determination unit 14B determines the sleepiness level based on the biological information from the biological information acquisition unit 10, and outputs the sleepiness level determination result to the microsleep estimation unit 16B.
 閉眼時間検出部22により閉眼時間が0.5秒未満又は3秒以上であることが検出された場合には(S202でNO)、閉眼状態検出部12Bの信頼度算出部24は、閉眼時間が0.5秒未満又は3秒以上であるとの閉眼時間検出部22の検出結果の確からしさを示す指標である信頼度を算出する(S203)。その後、マイクロスリープ推定部16Bの推定部18は、運転者がマイクロスリープ状態ではないと推定する(S204)。マイクロスリープ推定部16Bの信頼度算出部20Bは、閉眼状態検出部12Bの信頼度算出部24の算出結果に基づいて、運転者がマイクロスリープ状態ではないとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する(S205)。 If the closed-eye time detection unit 22 detects that the closed-eye time is less than 0.5 seconds or longer than 3 seconds (NO in S202), the reliability calculation unit 24 of the closed-eye state detection unit 12B detects that the closed-eye time is A reliability, which is an index indicating the probability of the detection result of the closed-eye time detecting unit 22 to be less than 0.5 seconds or more than 3 seconds, is calculated (S203). After that, the estimation unit 18 of the microsleep estimation unit 16B estimates that the driver is not in the microsleep state (S204). The reliability calculation unit 20B of the micro-sleep estimation unit 16B determines the likelihood of the estimation result of the estimation unit 18 that the driver is not in the micro-sleep state, based on the calculation result of the reliability calculation unit 24 of the closed-eye state detection unit 12B. is calculated (S205).
 ステップS202に戻り、閉眼時間検出部22により閉眼時間が0.5秒以上3秒未満であることが検出された場合には(S202でYES)、閉眼状態検出部12Bの信頼度算出部24は、閉眼時間が0.5秒以上3秒未満であるとの閉眼時間検出部22の検出結果の確からしさを示す指標である信頼度を算出する(S206)。 Returning to step S202, when the eye-closed time detection unit 22 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S202), the reliability calculation unit 24 of the eye-closed state detection unit 12B , the degree of reliability, which is an index indicating the probability of the detection result of the eye closure time detection unit 22 that the eye closure time is 0.5 seconds or more and less than 3 seconds, is calculated (S206).
 その後、眠気レベル判定部26により眠気レベルが「4」以上であると判定された場合には(S207でYES)、眠気判定部14Bの信頼度算出部28は、眠気レベルが「4」以上であるとの眠気レベル判定部26の判定結果の確からしさを示す指標である信頼度を算出する(S208)。マイクロスリープ推定部16Bの推定部18は、運転者がマイクロスリープ状態であると推定し(S209)、マイクロスリープ推定部16Bの信頼度算出部20Bは、閉眼状態検出部12Bの信頼度算出部24の算出結果、及び、眠気判定部14Bの信頼度算出部28の算出結果に基づいて、運転者がマイクロスリープ状態であるとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する(S210)。 Thereafter, when the drowsiness level determination unit 26 determines that the drowsiness level is "4" or higher (YES in S207), the reliability calculation unit 28 of the drowsiness determination unit 14B determines that the drowsiness level is "4" or higher. A reliability, which is an index indicating the probability of the determination result of the drowsiness level determination unit 26, is calculated (S208). The estimating unit 18 of the micro-sleep estimating unit 16B estimates that the driver is in the micro-sleep state (S209), and the reliability calculating unit 20B of the micro-sleep estimating unit 16B detects the reliability calculating unit 24 of the closed-eye state detecting unit 12B. and the calculation result of the reliability calculation unit 28 of the drowsiness determination unit 14B. Calculate (S210).
 ステップS207に戻り、眠気レベル判定部26により眠気レベルが「4」未満であると判定された場合には(S207でNO)、眠気判定部14Bの信頼度算出部28は、眠気レベルが「4」未満であるとの眠気レベル判定部26の判定結果の確からしさを示す指標である信頼度を算出し(S211)、上述したステップS209に進む。 Returning to step S207, when the drowsiness level determination unit 26 determines that the drowsiness level is less than "4" (NO in S207), the reliability calculation unit 28 of the drowsiness determination unit 14B determines that the drowsiness level is "4". '' is calculated (S211), and the process proceeds to step S209.
 [3-3.効果]
 本実施の形態では、マイクロスリープ状態をより一層精度良く推定することができる。
[3-3. effect]
In this embodiment, the microsleep state can be estimated with even higher accuracy.
 (実施の形態4)
 [4-1.推定装置の構成]
 図7を参照しながら、実施の形態4に係る推定装置2Cの構成について説明する。図7は、実施の形態4に係る推定装置2Cの構成を示すブロック図である。なお、本実施の形態において、上記実施の形態3と同一の構成要素には同一の符号を付して、その説明を省略する。
(Embodiment 4)
[4-1. Configuration of estimation device]
A configuration of an estimation device 2C according to Embodiment 4 will be described with reference to FIG. FIG. 7 is a block diagram showing the configuration of an estimation device 2C according to Embodiment 4. As shown in FIG. In addition, in this embodiment, the same reference numerals are given to the same constituent elements as in the above-described third embodiment, and the description thereof will be omitted.
 図7に示すように、実施の形態4に係る推定装置2Cは、画像情報取得部8、生体情報取得部10、閉眼状態検出部12B、眠気判定部14B及びマイクロスリープ推定部16Cに加えて、開閉状態検出部30を備えている。 As shown in FIG. 7, the estimation device 2C according to Embodiment 4 includes an image information acquisition unit 8, a biological information acquisition unit 10, an eye-closed state detection unit 12B, a drowsiness determination unit 14B, and a microsleep estimation unit 16C. An open/close state detector 30 is provided.
 開閉状態検出部30は、開閉速度算出部32と、開閉速度判定部34と、信頼度算出部36とを有している。開閉速度算出部32は、画像情報取得部8からの画像情報に基づいて、運転者の眼の開閉速度を算出(検出)する。なお、開閉速度算出部32は、例えばディープラーニング等を用いて、運転者の眼の開閉速度を算出してもよい。開閉速度判定部34は、算出された開閉速度が閾値(第2の閾値の一例)未満であるか否かを判定する。信頼度算出部36は、算出された開閉速度が閾値未満であるとの開閉速度判定部34の判定結果の確からしさを示す指標である信頼度(第4の信頼度の一例)を算出する。また、信頼度算出部36は、算出された開閉速度が閾値以上であるとの開閉速度判定部34の判定結果の確からしさを示す指標である信頼度を算出する。信頼度は、例えば0%~100%の数値で算出される。信頼度算出部36は、信頼度の算出結果をマイクロスリープ推定部16Cに出力する。 The opening/closing state detection unit 30 has an opening/closing speed calculation unit 32, an opening/closing speed determination unit 34, and a reliability calculation unit 36. The opening/closing speed calculation unit 32 calculates (detects) the opening/closing speed of the driver's eyes based on the image information from the image information acquisition unit 8 . Note that the opening/closing speed calculator 32 may calculate the opening/closing speed of the driver's eyes using, for example, deep learning. The opening/closing speed determination unit 34 determines whether or not the calculated opening/closing speed is less than a threshold (an example of a second threshold). The reliability calculation unit 36 calculates a reliability (an example of a fourth reliability) that is an index indicating the likelihood of the determination result of the opening/closing speed determination unit 34 that the calculated opening/closing speed is less than the threshold. Further, the reliability calculation unit 36 calculates a reliability, which is an index indicating the likelihood of the determination result of the opening/closing speed determination unit 34 that the calculated opening/closing speed is equal to or higher than the threshold. The reliability is calculated as a numerical value between 0% and 100%, for example. The reliability calculation unit 36 outputs the reliability calculation result to the microsleep estimation unit 16C.
 マイクロスリープ推定部16Cの推定部18は、閉眼状態検出部12Bにより閉眼時間が0.5秒以上3秒未満であることが検出され、且つ、眠気判定部14Bにより眠気レベルが「4」以上であると判定され、且つ、開閉状態検出部30により開閉速度が閾値未満であることが検出されたことを条件として、運転者がマイクロスリープ状態であると推定する。 The estimating unit 18 of the microsleep estimating unit 16C detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds by the closed-eye state detecting unit 12B, and the drowsiness determining unit 14B detects that the drowsiness level is "4" or higher. On the condition that the opening/closing state detection unit 30 detects that the opening/closing speed is less than the threshold value, it is estimated that the driver is in the micro-sleep state.
 マイクロスリープ推定部16Cの信頼度算出部20Cは、閉眼状態検出部12Bの信頼度算出部24の算出結果、眠気判定部14Bの信頼度算出部28の算出結果、及び、開閉状態検出部30の信頼度算出部36の算出結果に基づいて、運転者がマイクロスリープ状態であるとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する。また、マイクロスリープ推定部16Cの信頼度算出部20Cは、閉眼状態検出部12Bの信頼度算出部24の算出結果に基づいて、運転者がマイクロスリープ状態ではないとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する。信頼度は、例えば0%~100%の数値で算出される。 The reliability calculation unit 20C of the microsleep estimation unit 16C uses the calculation result of the reliability calculation unit 24 of the closed-eye state detection unit 12B, the calculation result of the reliability calculation unit 28 of the drowsiness determination unit 14B, and the open/closed state detection unit 30. Based on the calculation result of the reliability calculation unit 36, the reliability, which is an index indicating the probability of the estimation result of the estimation unit 18 that the driver is in the micro-sleep state, is calculated. Further, the reliability calculation unit 20C of the micro-sleep estimation unit 16C determines the estimation result of the estimation unit 18 that the driver is not in the micro-sleep state, based on the calculation result of the reliability calculation unit 24 of the closed-eye state detection unit 12B. Reliability, which is an index indicating likelihood, is calculated. The reliability is calculated as a numerical value between 0% and 100%, for example.
 なお、本実施の形態では、開閉状態検出部30が開閉速度算出部32及び開閉速度判定部34を有するようにしたが、これに限定されず、眠気判定部14Bが開閉速度算出部32及び開閉速度判定部34を有するようにしてもよい。すなわち、眠気判定部14Bは、開閉状態検出部30としての機能を含むようにしてもよい。 In the present embodiment, the opening/closing state detection unit 30 has the opening/closing speed calculation unit 32 and the opening/closing speed determination unit 34. However, the present invention is not limited to this. A speed determination unit 34 may be provided. That is, the drowsiness determination unit 14B may include a function as the open/closed state detection unit 30. FIG.
 あるいは、眠気判定部14Bは、開閉速度算出部32及び開閉速度判定部34に加えて、閉眼時間検出部22を有していてもよい。すなわち、眠気判定部14Bは、閉眼状態検出部12B及び開閉状態検出部30としての機能を含むようにしてもよい。 Alternatively, the drowsiness determination unit 14B may have an eye closing time detection unit 22 in addition to the opening/closing speed calculation unit 32 and the opening/closing speed determination unit 34 . That is, the drowsiness determination unit 14B may include the functions of the closed eye state detection unit 12B and the open/closed state detection unit 30. FIG.
 [4-2.推定装置の動作]
 次に、図8を参照しながら、実施の形態4に係る推定装置2Cの動作について説明する。図8は、実施の形態4に係る推定装置2Cの動作の流れを示すフローチャートである。なお、図8のフローチャートでは、上述した図6のフローチャートの処理と同一の処理には同一のステップ番号を付して、その説明を省略する。
[4-2. Operation of estimation device]
Next, operation of the estimation device 2C according to Embodiment 4 will be described with reference to FIG. FIG. 8 is a flow chart showing the operation flow of the estimation device 2C according to the fourth embodiment. In the flowchart of FIG. 8, the same step numbers are assigned to the same processes as those of the above-described flowchart of FIG. 6, and the description thereof will be omitted.
 図8に示すように、上記実施の形態3と同様に、ステップS201~S208及びS211が実行される。ステップS208又はステップS211の後、開閉状態検出部30により閾値未満の開閉速度が検出された(すなわち、開閉状態検出部30の開閉速度判定部34により閾値未満の開閉速度が判定された)場合には(S301でYES)、開閉状態検出部30の信頼度算出部36は、検出された開閉速度が閾値未満であるとの開閉速度判定部34の判定結果の確からしさを示す指標である信頼度を算出する(S302)。 As shown in FIG. 8, steps S201 to S208 and S211 are executed in the same manner as in the third embodiment. After step S208 or step S211, when the opening/closing speed of less than the threshold is detected by the opening/closing state detection unit 30 (that is, the opening/closing speed determination unit 34 of the opening/closing state detection unit 30 determines that the opening/closing speed is less than the threshold). (YES in S301), the reliability calculation unit 36 of the opening/closing state detection unit 30 calculates the reliability, which is an index indicating the likelihood of the determination result of the opening/closing speed determination unit 34 that the detected opening/closing speed is less than the threshold value. is calculated (S302).
 その後、マイクロスリープ推定部16Cの推定部18は、運転者がマイクロスリープ状態であると推定し(S209)、マイクロスリープ推定部16Cの信頼度算出部20Cは、閉眼状態検出部12Bの信頼度算出部24の算出結果、眠気判定部14Bの信頼度算出部28の算出結果、及び、開閉状態検出部30の信頼度算出部36の算出結果に基づいて、運転者がマイクロスリープ状態であるとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する(S210)。 After that, the estimation unit 18 of the microsleep estimation unit 16C estimates that the driver is in the microsleep state (S209), and the reliability calculation unit 20C of the microsleep estimation unit 16C calculates the reliability of the closed-eye state detection unit 12B. Based on the calculation result of the unit 24, the calculation result of the reliability calculation unit 28 of the drowsiness determination unit 14B, and the calculation result of the reliability calculation unit 36 of the open/closed state detection unit 30, it is determined that the driver is in the micro sleep state. A reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18, is calculated (S210).
 ステップS301に戻り、開閉状態検出部30により閾値以上の開閉速度が検出された(すなわち、開閉状態検出部30の開閉速度判定部34により閾値以上の開閉速度が判定された)場合には(S301でNO)、開閉状態検出部30の信頼度算出部36は、検出された開閉速度が閾値以上であるとの開閉速度判定部34の判定結果の確からしさを示す指標である信頼度を算出する(S303)。その後、上述したステップS209に進む。 Returning to step S301, when the opening/closing speed of the threshold value or more is detected by the opening/closing state detection unit 30 (that is, the opening/closing speed determination unit 34 of the opening/closing state detection unit 30 determines the opening/closing speed of the threshold value or more) (S301 NO), the reliability calculation unit 36 of the opening/closing state detection unit 30 calculates reliability, which is an index indicating the likelihood of the determination result of the opening/closing speed determination unit 34 that the detected opening/closing speed is equal to or greater than the threshold. (S303). Then, it progresses to step S209 mentioned above.
 なお、閉眼状態検出部12B、眠気判定部14B及び開閉状態検出部30はそれぞれ、信頼度算出部24、信頼度算出部28及び信頼度算出部36を有しないようにしてもよく、この場合には、ステップS203、S206、S208、S211、S302及びS303を省略してもよい。この場合、上述したステップS210に代えて、閉眼状態検出部12Bにより閉眼時間が0.5秒以上3秒未満であることが検出され(S202でYES)、眠気判定部14Bにより眠気レベルが「4」以上であると判定され(S207でYES)、開閉状態検出部30により開閉速度が閾値未満であることが検出された場合には(S301でYES)、マイクロスリープ推定部16Cの信頼度算出部20Cは、信頼度「高」を算出してもよい。一方、眠気判定部14Bにより眠気レベルが「4」未満であると判定された場合(S207でNO)、又は、開閉状態検出部30により開閉速度が閾値以上であることが検出された場合には(S301でNO)、マイクロスリープ推定部16Cの信頼度算出部20Cは、信頼度「低」を算出してもよい。 Note that the eye-closed state detection unit 12B, the drowsiness determination unit 14B, and the open/closed state detection unit 30 may not include the reliability calculation unit 24, the reliability calculation unit 28, and the reliability calculation unit 36, respectively. may omit steps S203, S206, S208, S211, S302 and S303. In this case, instead of step S210 described above, the eye-closed state detection unit 12B detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S202), and the drowsiness determination unit 14B sets the drowsiness level to "4." ' (YES in S207), and when the opening/closing state detection unit 30 detects that the opening/closing speed is less than the threshold (YES in S301), the reliability calculation unit of the microsleep estimation unit 16C 20C may calculate a reliability of "high". On the other hand, if the drowsiness determination unit 14B determines that the drowsiness level is less than "4" (NO in S207), or if the opening/closing state detection unit 30 detects that the opening/closing speed is equal to or greater than the threshold value, (NO in S301), the reliability calculation unit 20C of the microsleep estimation unit 16C may calculate the reliability "low".
 [4-3.効果]
 本実施の形態では、マイクロスリープ状態をより一層精度良く推定することができる。
[4-3. effect]
In this embodiment, the microsleep state can be estimated with even higher accuracy.
 (実施の形態5)
 [5-1.推定装置の構成]
 図9を参照しながら、実施の形態5に係る推定装置2Dの構成について説明する。図9は、実施の形態5に係る推定装置2Dの構成を示すブロック図である。なお、本実施の形態において、上記実施の形態3と同一の構成要素には同一の符号を付して、その説明を省略する。
(Embodiment 5)
[5-1. Configuration of estimation device]
A configuration of an estimation device 2D according to Embodiment 5 will be described with reference to FIG. FIG. 9 is a block diagram showing the configuration of an estimation device 2D according to Embodiment 5. As shown in FIG. In addition, in this embodiment, the same reference numerals are given to the same constituent elements as in the above-described third embodiment, and the description thereof will be omitted.
 図9に示すように、実施の形態5に係る推定装置2Dは、画像情報取得部8、生体情報取得部10、閉眼状態検出部12B、眠気判定部14B及びマイクロスリープ推定部16Dに加えて、開閉状態検出部38を備えている。 As shown in FIG. 9, the estimation device 2D according to Embodiment 5 includes an image information acquisition unit 8, a biological information acquisition unit 10, an eye-closed state detection unit 12B, a drowsiness determination unit 14B, and a microsleep estimation unit 16D. An open/close state detector 38 is provided.
 開閉状態検出部38は、閉眼速度算出部40と、閉眼速度判定部42と、開眼速度算出部44と、開眼速度判定部46と、信頼度算出部48とを有している。閉眼速度算出部40は、画像情報取得部8からの画像情報に基づいて、運転者の眼の閉眼速度を算出(検出)する。なお、閉眼速度算出部40は、例えばディープラーニング等を用いて、運転者の眼の閉眼速度を算出してもよい。閉眼速度判定部42は、算出された閉眼速度が閉眼閾値(第3の閾値の一例)未満であるか否かを判定する。開眼速度算出部44は、画像情報取得部8からの画像情報に基づいて、運転者の眼の開眼速度を算出(検出)する。なお、開眼速度算出部44は、例えばディープラーニング等を用いて、運転者の眼の開眼速度を算出してもよい。開眼速度判定部46は、算出された開眼速度が開眼閾値(第4の閾値の一例)未満であるか否かを判定する。 The open/close state detection unit 38 has an eye closing speed calculation unit 40 , an eye closing speed determination unit 42 , an eye opening speed calculation unit 44 , an eye opening speed determination unit 46 , and a reliability calculation unit 48 . The eye closing speed calculator 40 calculates (detects) the driver's eye closing speed based on the image information from the image information acquisition unit 8 . Note that the eye closing speed calculator 40 may calculate the driver's eye closing speed using, for example, deep learning. The eye-closing speed determination unit 42 determines whether or not the calculated eye-closing speed is less than the eye-closing threshold (an example of the third threshold). The eye-opening speed calculator 44 calculates (detects) the driver's eye-opening speed based on the image information from the image information acquisition unit 8 . Note that the eye-opening speed calculator 44 may calculate the eye-opening speed of the driver using, for example, deep learning. The eye-opening speed determination unit 46 determines whether or not the calculated eye-opening speed is less than an eye-opening threshold (an example of a fourth threshold).
 信頼度算出部48は、算出された閉眼速度が閉眼閾値未満であるとの検出結果の確からしさを示す指標である信頼度(第5の信頼度の一例)を算出する。また、信頼度算出部48は、算出された開眼速度が開眼閾値未満であるとの検出結果の確からしさを示す指標である信頼度(第6の信頼度の一例)を算出する。信頼度は、例えば0%~100%の数値で算出される。信頼度算出部48は、信頼度の算出結果をマイクロスリープ推定部16Dに出力する。 The reliability calculation unit 48 calculates a reliability (an example of a fifth reliability) that is an index indicating the likelihood of the detection result that the calculated eye-closing speed is less than the eye-closing threshold. The reliability calculation unit 48 also calculates a reliability (an example of a sixth reliability), which is an index indicating the probability of the detection result that the calculated eye-opening speed is less than the eye-opening threshold. The reliability is calculated as a numerical value between 0% and 100%, for example. The reliability calculation unit 48 outputs the reliability calculation result to the microsleep estimation unit 16D.
 マイクロスリープ推定部16Dの推定部18は、閉眼状態検出部12Bにより閉眼時間が0.5秒以上3秒未満であることが検出され、且つ、眠気判定部14Bにより眠気レベルが「4」以上であると判定され、且つ、開閉状態検出部38により閉眼速度が閉眼閾値未満であることが検出され、且つ、開閉状態検出部38により開眼速度が開眼閾値未満であることが検出されたことを条件として、運転者がマイクロスリープ状態であると推定する。 The estimating unit 18 of the microsleep estimating unit 16D detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds by the closed-eye state detecting unit 12B, and the drowsiness determining unit 14B detects that the drowsiness level is "4" or more. In addition, the open/close state detection unit 38 detects that the eye closing speed is less than the eye closing threshold, and the open/close state detection unit 38 detects that the eye opening speed is less than the eye opening threshold. , the driver is assumed to be in a micro-sleep state.
 マイクロスリープ推定部16Dの信頼度算出部20Dは、閉眼状態検出部12Bの信頼度算出部24の算出結果、眠気判定部14Bの信頼度算出部28の算出結果、及び、開閉状態検出部38の信頼度算出部48の算出結果に基づいて、運転者がマイクロスリープ状態であるとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する。また、マイクロスリープ推定部16Dの信頼度算出部20Dは、閉眼状態検出部12Bの信頼度算出部24の算出結果に基づいて、運転者がマイクロスリープ状態ではないとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する。信頼度は、例えば0%~100%の数値で算出される。 The reliability calculation unit 20D of the microsleep estimation unit 16D uses the calculation result of the reliability calculation unit 24 of the closed-eye state detection unit 12B, the calculation result of the reliability calculation unit 28 of the drowsiness determination unit 14B, and the open/closed state detection unit 38. Based on the calculation result of the reliability calculation unit 48, the reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18 that the driver is in the micro-sleep state, is calculated. Further, the reliability calculation unit 20D of the micro-sleep estimation unit 16D determines the estimation result of the estimation unit 18 that the driver is not in the micro-sleep state, based on the calculation result of the reliability calculation unit 24 of the closed-eye state detection unit 12B. Reliability, which is an index indicating likelihood, is calculated. The reliability is calculated as a numerical value between 0% and 100%, for example.
 [5-2.推定装置の動作]
 次に、図10を参照しながら、実施の形態5に係る推定装置2Dの動作について説明する。図10は、実施の形態5に係る推定装置2Dの動作の流れを示すフローチャートである。なお、図10のフローチャートでは、上述した図6のフローチャートの処理と同一の処理には同一のステップ番号を付して、その説明を省略する。
[5-2. Operation of estimation device]
Next, operation of the estimation device 2D according to Embodiment 5 will be described with reference to FIG. FIG. 10 is a flow chart showing the operation flow of the estimation device 2D according to the fifth embodiment. In the flowchart of FIG. 10, the same step numbers are given to the same processes as those of the above-described flowchart of FIG. 6, and the description thereof will be omitted.
 図10に示すように、上記実施の形態3と同様に、ステップS201~S208及びS211が実行される。ステップS208又はステップS211の後、開閉状態検出部38により閉眼閾値未満の閉眼速度及び開眼閾値未満の開眼速度が検出された場合には(S401でYES)、開閉状態検出部38の信頼度算出部48は、検出された閉眼速度が閉眼閾値未満であるとの検出結果、及び、検出された開眼速度が開眼閾値未満であるとの検出結果の確からしさを示す指標である信頼度を算出する(S402)。 As shown in FIG. 10, steps S201 to S208 and S211 are executed as in the third embodiment. After step S208 or step S211, if the open/close state detection unit 38 detects an eye closing speed that is less than the eye closing threshold and an eye opening speed that is less than the eye opening threshold (YES in S401), the reliability calculation unit of the open/close state detection unit 38 48 calculates reliability, which is an index indicating the probability of the detection result that the detected eye-closing speed is less than the eye-closing threshold and the detection result that the detected eye-opening speed is less than the eye-opening threshold ( S402).
 その後、マイクロスリープ推定部16Dの推定部18は、運転者がマイクロスリープ状態であると推定し(S209)、マイクロスリープ推定部16Dの信頼度算出部20Dは、閉眼状態検出部12Bの信頼度算出部24の算出結果、眠気判定部14Bの信頼度算出部28の算出結果、及び、開閉状態検出部38の信頼度算出部48の算出結果に基づいて、運転者がマイクロスリープ状態であるとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する(S210)。 Thereafter, the estimating unit 18 of the micro-sleep estimating unit 16D estimates that the driver is in the micro-sleep state (S209), and the reliability calculating unit 20D of the micro-sleep estimating unit 16D calculates the reliability of the closed-eye state detecting unit 12B. Based on the calculation result of the unit 24, the calculation result of the reliability calculation unit 28 of the drowsiness determination unit 14B, and the calculation result of the reliability calculation unit 48 of the open/closed state detection unit 38, it is determined that the driver is in the micro sleep state. A reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18, is calculated (S210).
 ステップS401に戻り、開閉状態検出部38により閉眼閾値未満の閉眼速度及び開眼閾値以上の開眼速度が検出された場合には(S401でNO、S403でYES)、開閉状態検出部38の信頼度算出部48は、検出された閉眼速度が閉眼閾値未満であるとの検出結果、及び、検出された開眼速度が開眼閾値以上であるとの検出結果の確からしさを示す指標である信頼度を算出する(S404)。なお、ステップS404で算出される信頼度は、ステップS402で算出される信頼度よりも低い。その後、上述したステップS209に進む。 Returning to step S401, when the open/closed state detection unit 38 detects an eye-closing speed less than the eye-closing threshold and an eye-opening speed equal to or higher than the eye-opening threshold (NO in S401, YES in S403), the reliability of the open/closed state detection unit 38 is calculated. The unit 48 calculates reliability, which is an index indicating the likelihood of the detection result that the detected eye-closing speed is less than the eye-closing threshold and the detection result that the detected eye-opening speed is equal to or greater than the eye-opening threshold. (S404). Note that the reliability calculated in step S404 is lower than the reliability calculated in step S402. Then, it progresses to step S209 mentioned above.
 ステップS401に戻り、開閉状態検出部38により閉眼閾値以上の閉眼速度及び開眼閾値未満の開眼速度が検出された場合には(S401でNO、S403でNO、S405でYES)、開閉状態検出部38の信頼度算出部48は、検出された閉眼速度が閉眼閾値以上であるとの検出結果、及び、検出された開眼速度が開眼閾値未満であるとの検出結果の確からしさを示す指標である信頼度を算出する(S406)。なお、ステップS406で算出される信頼度は、ステップS404で算出される信頼度よりも低い。あるいは、ステップS406で算出される信頼度は、ステップS404で算出される信頼度と同一であってもよい。その後、上述したステップS209に進む。 Returning to step S401, when the open/close state detection unit 38 detects an eye-closing speed equal to or higher than the eye-closing threshold and an eye-opening speed less than the eye-opening threshold (NO in S401, NO in S403, YES in S405), the open/close state detection unit 38 The reliability calculation unit 48 is an index indicating the probability of the detection result that the detected eye-closing speed is equal to or higher than the eye-closing threshold and the detection result that the detected eye-opening speed is less than the eye-opening threshold. degree is calculated (S406). Note that the reliability calculated in step S406 is lower than the reliability calculated in step S404. Alternatively, the reliability calculated in step S406 may be the same as the reliability calculated in step S404. Then, it progresses to step S209 mentioned above.
 ステップS401に戻り、開閉状態検出部38により閉眼閾値以上の閉眼速度及び開眼閾値以上の開眼速度が検出された場合には(S401でNO、S403でNO、S405でNO、S407)、開閉状態検出部38の信頼度算出部48は、検出された閉眼速度が閉眼閾値以上であるとの検出結果、及び、検出された開眼速度が開眼閾値以上であるとの検出結果の確からしさを示す指標である信頼度を算出する(S408)。ステップS408で算出される信頼度は、ステップS406で算出される信頼度よりも低い。その後、上述したステップS209に進む。 Returning to step S401, when the open/closed state detection unit 38 detects the eye closing speed equal to or higher than the eye closing threshold and the eye opening speed equal to or higher than the eye opening threshold (NO in S401, NO in S403, NO in S405, S407), open/closed state detection is performed. The reliability calculation unit 48 of the unit 38 is an index indicating the probability of the detection result that the detected eye-closing speed is equal to or higher than the eye-closing threshold and the detection result that the detected eye-opening speed is equal to or higher than the eye-opening threshold. A certain reliability is calculated (S408). The reliability calculated in step S408 is lower than the reliability calculated in step S406. Then, it progresses to step S209 mentioned above.
 [5-3.効果]
 本実施の形態では、マイクロスリープ状態をより一層精度良く推定することができる。
[5-3. effect]
In this embodiment, the microsleep state can be estimated with even higher accuracy.
 (実施の形態6)
 [6-1.推定装置の構成]
 図11を参照しながら、実施の形態6に係る推定装置2Eの構成について説明する。図11は、実施の形態6に係る推定装置2Eの構成を示すブロック図である。なお、本実施の形態において、上記実施の形態2と同一の構成要素には同一の符号を付して、その説明を省略する。
(Embodiment 6)
[6-1. Configuration of estimation device]
The configuration of an estimation device 2E according to Embodiment 6 will be described with reference to FIG. FIG. 11 is a block diagram showing the configuration of an estimation device 2E according to Embodiment 6. As shown in FIG. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
 図11に示すように、実施の形態6に係る推定装置2Eでは、閉眼状態検出部12E及びマイクロスリープ推定部16Eの各構成が上記実施の形態2と異なっている。 As shown in FIG. 11, in an estimation device 2E according to Embodiment 6, each configuration of an eye-closed state detection unit 12E and a microsleep estimation unit 16E is different from that in Embodiment 2 above.
 閉眼状態検出部12Eは、閉眼時間検出部22と、両眼検出部50とを有している。閉眼時間検出部22は、上記実施の形態3で説明した閉眼時間検出部22と同一である。両眼検出部50は、画像情報取得部8からの画像情報に基づいて、運転者の両眼を検出する。両眼検出部50は、検出結果をマイクロスリープ推定部16Eに出力する。なお、両眼検出部50は、生体情報取得部10からの生体情報に基づいて、運転者の両眼を検出してもよい。 The eye-closed state detection unit 12E has an eye-closed time detection unit 22 and a both-eyes detection unit 50. The closed-eye time detection unit 22 is the same as the closed-eye time detection unit 22 described in the third embodiment. The binocular detection unit 50 detects the binoculars of the driver based on the image information from the image information acquisition unit 8 . The binocular detection unit 50 outputs the detection result to the microsleep estimation unit 16E. Note that the binocular detection unit 50 may detect the binoculars of the driver based on the biometric information from the biometric information acquisition unit 10 .
 マイクロスリープ推定部16Eの推定部18は、閉眼時間検出部22により閉眼時間が0.5秒以上3秒未満であることが検出され、且つ、眠気判定部14により眠気レベルが「4」以上であると判定され、且つ、両眼検出部50により運転者の両眼が検出されたことを条件として、運転者がマイクロスリープ状態であると推定する。 The estimating unit 18 of the microsleep estimating unit 16E detects that the closed eye time is 0.5 seconds or more and less than 3 seconds by the eye closing time detecting unit 22, and the drowsiness determining unit 14 detects that the drowsiness level is "4" or more. It is assumed that the driver is in the micro-sleep state on condition that both eyes of the driver are detected by the binocular detection unit 50 .
 マイクロスリープ推定部16Eの信頼度算出部20Eは、運転者がマイクロスリープ状態であるとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する。信頼度は、例えば「低」、「中」及び「高」の3段階で算出される。 The reliability calculation unit 20E of the micro-sleep estimation unit 16E calculates reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18 that the driver is in the micro-sleep state. The reliability is calculated, for example, in three levels of "low", "middle" and "high".
 [6-2.推定装置の動作]
 次に、図12を参照しながら、実施の形態6に係る推定装置2Eの動作について説明する。図12は、実施の形態6に係る推定装置2Eの動作の流れを示すフローチャートである。なお、図12のフローチャートでは、上述した図4のフローチャートの処理と同一の処理には同一のステップ番号を付して、その説明を省略する。
[6-2. Operation of estimation device]
Next, operation of the estimation device 2E according to Embodiment 6 will be described with reference to FIG. FIG. 12 is a flow chart showing the operation flow of the estimation device 2E according to the sixth embodiment. In the flowchart of FIG. 12, the same step numbers are given to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
 図12に示すように、まず、上記実施の形態2と同様にステップS101が実行された後に、両眼検出部50が運転者の両眼を検出した場合には(S501でYES)、上記実施の形態2と同様にステップS102~S106が実行される。すなわち、マイクロスリープ推定部16Eの推定部18は、両眼検出部50により運転者の両眼が検出され(S501でYES)、且つ、閉眼時間検出部22により閉眼時間が0.5秒以上3秒未満であることが検出され(S102でYES)、且つ、眠気判定部14により眠気レベルが「4」以上であると判定された(S104でYES)ことを条件として、運転者がマイクロスリープ状態であると推定する(S106)。 As shown in FIG. 12, first, after step S101 is executed in the same manner as in the second embodiment, when both eyes detection unit 50 detects both eyes of the driver (YES in S501), the above execution Steps S102 to S106 are executed in the same manner as in the second form. That is, the estimating unit 18 of the micro-sleep estimating unit 16E determines that both eyes of the driver are detected by the binocular detecting unit 50 (YES in S501), and the eye-closing time detecting unit 22 determines that the eye-closing time is 0.5 seconds or longer. second (YES in S102), and the drowsiness determination unit 14 determines that the drowsiness level is "4" or higher (YES in S104). (S106).
 ステップS501に戻り、例えば運転者の左右いずれかの眼が前髪で隠れている、又は、運転者が眼帯を着用しているなどして、両眼検出部50が運転者の片眼のみを検出した場合には(S501でNO、S502でYES)、ステップS503に進む。閉眼時間検出部22により閉眼時間が0.5秒未満又は3秒以上であることが検出された場合には(S503でNO)、マイクロスリープ推定部16Eの推定部18は、運転者がマイクロスリープ状態ではないと推定する(S103)。この場合、マイクロスリープ推定部16Eの信頼度算出部20Eは、信頼度を算出しない。 Returning to step S501, for example, either the left or right eye of the driver is hidden by the bangs, or the driver is wearing an eyepatch, and the binocular detection unit 50 detects only one eye of the driver. If so (NO in S501, YES in S502), the process proceeds to step S503. When the eye-closing time detecting unit 22 detects that the eye-closing time is less than 0.5 seconds or longer than 3 seconds (NO in S503), the estimating unit 18 of the microsleep estimating unit 16E determines that the driver is in microsleep. It is estimated that it is not in the state (S103). In this case, the reliability calculator 20E of the microsleep estimator 16E does not calculate the reliability.
 ステップS503に戻り、閉眼時間検出部22により閉眼時間が0.5秒以上3秒未満であることが検出された場合であって(S503でYES)、眠気判定部14により眠気レベルが「4」以上であると判定された場合には(S504でYES)、マイクロスリープ推定部16Eの信頼度算出部20Eは、信頼度「中」を算出し(S505)、マイクロスリープ推定部16Eの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 Returning to step S503, when the eye-closed time detection unit 22 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S503), the drowsiness determination unit 14 sets the drowsiness level to "4". If it is determined to be above (YES in S504), the reliability calculation unit 20E of the microsleep estimation unit 16E calculates the reliability “medium” (S505), and the estimation unit 18 of the microsleep estimation unit 16E estimates that the driver is in a micro-sleep state (S106).
 ステップS504に戻り、眠気判定部14により眠気レベルが「4」未満であると判定された場合には(S504でNO)、マイクロスリープ推定部16Eの信頼度算出部20Eは、信頼度「低」を算出し(S506)、マイクロスリープ推定部16Eの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 Returning to step S504, when the drowsiness determination unit 14 determines that the drowsiness level is less than "4" (NO in S504), the reliability calculation unit 20E of the microsleep estimation unit 16E sets the reliability to "low". (S506), and the estimation unit 18 of the microsleep estimation unit 16E estimates that the driver is in the microsleep state (S106).
 [6-3.効果]
 本実施の形態では、マイクロスリープ状態をより一層精度良く推定することができる。
[6-3. effect]
In this embodiment, the microsleep state can be estimated with even higher accuracy.
 (実施の形態7)
 [7-1.推定装置の構成]
 図13を参照しながら、実施の形態7に係る推定装置2Fの構成について説明する。図13は、実施の形態7に係る推定装置2Fの構成を示すブロック図である。なお、本実施の形態において、上記実施の形態2と同一の構成要素には同一の符号を付して、その説明を省略する。
(Embodiment 7)
[7-1. Configuration of estimation device]
The configuration of an estimation device 2F according to Embodiment 7 will be described with reference to FIG. FIG. 13 is a block diagram showing the configuration of an estimation device 2F according to Embodiment 7. As shown in FIG. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
 図13に示すように、実施の形態7に係る推定装置2Fは、画像情報取得部8、生体情報取得部10、閉眼状態検出部12、眠気判定部14及びマイクロスリープ推定部16Fに加えて、瞬き回数検出部52を備えている。瞬き回数検出部52は、画像情報取得部8からの画像情報に基づいて、単位時間当たり(例えば、1分間当たり)の運転者の瞬き回数を検出する。瞬き回数検出部52は、検出結果をマイクロスリープ推定部16Fに出力する。なお、瞬き回数検出部52は、生体情報取得部10からの生体情報に基づいて、単位時間当たりの運転者の瞬き回数を検出してもよい。 As shown in FIG. 13, the estimation device 2F according to Embodiment 7 includes an image information acquisition unit 8, a biological information acquisition unit 10, a closed eye state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16F. A blink number detection unit 52 is provided. The number-of-blinks detector 52 detects the number of times the driver blinks per unit time (for example, per minute) based on the image information from the image information acquisition unit 8 . The number-of-blinks detector 52 outputs the detection result to the microsleep estimator 16F. The number-of-blinks detection unit 52 may detect the number of times the driver blinks per unit time based on the biological information from the biological information acquisition unit 10 .
 マイクロスリープ推定部16Fの推定部18は、閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出され、且つ、眠気判定部14により眠気レベルが「4」以上であると判定され、且つ、瞬き回数検出部52により運転者の単位時間当たりの瞬き回数が所定回数(例えば10回/分)(第5の閾値の一例)以上増加又は減少したことが検出されたことを条件として、運転者がマイクロスリープ状態であると推定する。これは、人は眠くなると、単位時間当たりの瞬き回数が増加又は減少することが多いためである。 The estimating unit 18 of the microsleep estimating unit 16F detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds by the closed-eye state detecting unit 12, and the drowsiness determining unit 14 detects that the drowsiness level is "4" or higher. In addition, the number of blinks detection unit 52 detects that the number of times the driver blinks per unit time has increased or decreased by a predetermined number (for example, 10 times/minute) (an example of a fifth threshold value) or more. on the condition that the driver is in a micro-sleep state. This is because when a person becomes sleepy, the number of blinks per unit time often increases or decreases.
 [7-2.推定装置の動作]
 次に、図14を参照しながら、実施の形態7に係る推定装置2Fの動作について説明する。図14は、実施の形態7に係る推定装置2Fの動作の流れを示すフローチャートである。なお、図14のフローチャートでは、上述した図4のフローチャートの処理と同一の処理には同一のステップ番号を付して、その説明を省略する。
[7-2. Operation of estimation device]
Next, the operation of the estimation device 2F according to Embodiment 7 will be described with reference to FIG. FIG. 14 is a flowchart showing the operation flow of the estimation device 2F according to the seventh embodiment. In the flowchart of FIG. 14, the same step numbers are given to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
 図14に示すように、まず、上記実施の形態2と同様に、ステップS101~S104が実行される。閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出された場合であって(S102でYES)、眠気判定部14により眠気レベルが「4」以上であると判定された場合には(S104でYES)、瞬き回数検出部52は、単位時間当たりの運転者の瞬き回数を検出する。 As shown in FIG. 14, steps S101 to S104 are first executed in the same manner as in the second embodiment. When the closed-eye state detection unit 12 detects that the closed-eye time is 0.5 seconds or more and less than 3 seconds (YES in S102), the drowsiness determination unit 14 determines that the drowsiness level is "4" or more. If so (YES in S104), the number-of-blinks detector 52 detects the number of times the driver blinks per unit time.
 単位時間当たりの瞬き回数が所定回数以上増加又は減少した場合には(S601でYES)、マイクロスリープ推定部16Fの信頼度算出部20Fは、信頼度「高」を算出し(S105)、マイクロスリープ推定部16Fの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 When the number of blinks per unit time has increased or decreased by a predetermined number or more (YES in S601), the reliability calculation unit 20F of the microsleep estimation unit 16F calculates the reliability "high" (S105), and microsleep The estimating unit 18 of the estimating unit 16F estimates that the driver is in the micro-sleep state (S106).
 ステップS601に戻り、単位時間当たりの瞬き回数が所定回数以上増加又は減少していない場合には(S601でNO)、マイクロスリープ推定部16Fの信頼度算出部20Fは、信頼度「低」を算出し(S107)、マイクロスリープ推定部16Fの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 Returning to step S601, if the number of blinks per unit time has not increased or decreased by a predetermined number or more (NO in S601), the reliability calculation unit 20F of the microsleep estimation unit 16F calculates the reliability as "low." Then (S107), the estimation unit 18 of the microsleep estimation unit 16F estimates that the driver is in the microsleep state (S106).
 [7-3.効果]
 本実施の形態では、マイクロスリープ状態をより一層精度良く推定することができる。
[7-3. effect]
In this embodiment, the microsleep state can be estimated with even higher accuracy.
 (実施の形態8)
 [8-1.推定装置の構成]
 図15を参照しながら、実施の形態8に係る推定装置2Gの構成について説明する。図15は、実施の形態8に係る推定装置2Gの構成を示すブロック図である。なお、本実施の形態において、上記実施の形態2と同一の構成要素には同一の符号を付して、その説明を省略する。
(Embodiment 8)
[8-1. Configuration of estimation device]
The configuration of an estimation device 2G according to Embodiment 8 will be described with reference to FIG. FIG. 15 is a block diagram showing the configuration of an estimation device 2G according to the eighth embodiment. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
 図15に示すように、実施の形態8に係る推定装置2Gは、画像情報取得部8、生体情報取得部10、閉眼状態検出部12、眠気判定部14及びマイクロスリープ推定部16Gに加えて、生活ログ情報取得部54を備えている。生活ログ情報取得部54は、画像情報取得部8からの画像情報に基づいて、運転者の生活に関する生活ログ情報を取得する。生活ログ情報は、例えば、運転者の体型(やせ型、肥満型等)を示す情報である。生活ログ情報取得部54は、取得した生活ログ情報をマイクロスリープ推定部16Gに出力する。なお、生活ログ情報取得部54は、生体情報取得部10からの生体情報に基づいて、生活ログ情報を取得してもよい。 As shown in FIG. 15 , an estimation device 2G according to Embodiment 8 includes an image information acquisition unit 8, a biological information acquisition unit 10, a closed eye state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16G. A life log information acquisition unit 54 is provided. Based on the image information from the image information acquisition unit 8, the life log information acquisition unit 54 acquires life log information related to the life of the driver. The life log information is, for example, information indicating the body type of the driver (thin, obese, etc.). Life log information acquisition unit 54 outputs the acquired life log information to microsleep estimation unit 16G. Note that the life log information acquisition unit 54 may acquire life log information based on the biometric information from the biometric information acquisition unit 10 .
 マイクロスリープ推定部16Gの推定部18は、閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出され、且つ、眠気判定部14により眠気レベルが「4」未満であると判定され、且つ、生活ログ情報取得部54により運転者のマイクロスリープ状態に影響する生活ログ情報が取得されたことを条件として、運転者がマイクロスリープ状態であると推定する。ここで、運転者のマイクロスリープ状態に影響する生活ログ情報とは、例えば、運転者の体型が肥満型であることを示す情報である。これは、肥満型の体型の人は、睡眠時無呼吸症候群を起こしやすく、突然眠りに落ちやすいためである。 The estimating unit 18 of the microsleep estimating unit 16G detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds by the closed-eye state detecting unit 12, and the drowsiness determining unit 14 detects that the drowsiness level is less than "4". It is assumed that the driver is in the micro-sleep state on the condition that it is determined that the driver is in the micro-sleep state and that the life log information acquisition unit 54 has acquired life log information that affects the micro-sleep state of the driver. Here, the lifestyle log information that affects the driver's micro-sleep state is, for example, information indicating that the driver's body type is obese. This is because obese people are prone to sleep apnea and fall asleep suddenly.
 マイクロスリープ推定部16Gの信頼度算出部20Gは、運転者がマイクロスリープ状態であるとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する。信頼度は、例えば「低」、「中」及び「高」の3段階で算出される。 The reliability calculation unit 20G of the micro-sleep estimation unit 16G calculates reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18 that the driver is in the micro-sleep state. The reliability is calculated, for example, in three levels of "low", "middle" and "high".
 なお、本実施の形態では、生活ログ情報取得部54は、画像情報取得部8からの画像情報に基づいて生活ログ情報を取得したが、これに限定されない。生活ログ情報取得部54は、例えば、運転者が身に着けているウェアラブル端末から生活ログ情報を取得してもよいし、ネットワークを介してクラウドサーバから生活ログ情報を取得してもよい。この場合、生活ログ情報は、例えば、(a)運転者の病歴、(b)運転者の前日の勤務時間、(c)運転者の勤務形態(夜勤等)、(d)運転者の運動時間、(e)運転者の就寝時間、(f)運転者の睡眠の性質(ロングスリーパー等)、(g)運転者の薬の服用歴等を示す情報である。 In addition, in the present embodiment, the life log information acquisition unit 54 acquires the life log information based on the image information from the image information acquisition unit 8, but is not limited to this. For example, the life log information acquisition unit 54 may acquire life log information from a wearable terminal worn by the driver, or may acquire life log information from a cloud server via a network. In this case, the life log information includes, for example, (a) the driver's medical history, (b) the driver's previous day's working hours, (c) the driver's work style (night shift, etc.), and (d) the driver's exercise time. , (e) the driver's bedtime, (f) the driver's sleep quality (long sleeper, etc.), and (g) the driver's medication history.
 [8-2.推定装置の動作]
 次に、図16を参照しながら、実施の形態8に係る推定装置2Gの動作について説明する。図16は、実施の形態8に係る推定装置2Gの動作の流れを示すフローチャートである。なお、図16のフローチャートでは、上述した図4のフローチャートの処理と同一の処理には同一のステップ番号を付して、その説明を省略する。
[8-2. Operation of estimation device]
Next, operation of the estimation device 2G according to Embodiment 8 will be described with reference to FIG. FIG. 16 is a flow chart showing the operation flow of the estimation device 2G according to the eighth embodiment. In the flowchart of FIG. 16, the same step numbers are given to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
 図16に示すように、まず、上記実施の形態2と同様に、ステップS101~S104が実行される。閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出された場合であって(S102でYES)、眠気判定部14により眠気レベルが「4」未満であると判定された場合には(S104でNO)、ステップS701に進み、生活ログ情報取得部54は、生活ログ情報を取得する。 As shown in FIG. 16, steps S101 to S104 are first executed in the same manner as in the second embodiment. When the eye-closed state detection unit 12 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S102), the drowsiness determination unit 14 determines that the drowsiness level is less than "4". If so (NO in S104), the process proceeds to step S701, and the life log information acquisition unit 54 acquires life log information.
 生活ログ情報取得部54により運転者のマイクロスリープ状態に影響する生活ログ情報が取得された場合には(S701でYES)、マイクロスリープ推定部16Gの信頼度算出部20Gは、信頼度「中」を算出し(S702)、マイクロスリープ推定部16Gの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 When the life log information that affects the driver's micro-sleep state is acquired by the life log information acquisition unit 54 (YES in S701), the reliability calculation unit 20G of the micro-sleep estimation unit 16G sets the reliability to "medium." (S702), and the estimation unit 18 of the microsleep estimation unit 16G estimates that the driver is in the microsleep state (S106).
 すなわち、マイクロスリープ推定部16Gの推定部18は、閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出され(S102でYES)、且つ、眠気判定部14により眠気レベルが「4」未満であると判定され(S104でNO)、且つ、生活ログ情報取得部54により運転者のマイクロスリープ状態に影響する生活ログ情報が取得された(S701でYES)ことを条件として、運転者がマイクロスリープ状態であると推定する。これは、運転者が強い眠気を感じていなくても、突然眠りに落ちやすい体質等のために眼を閉じてしまう可能性があるためである。 That is, in the estimating unit 18 of the microsleep estimating unit 16G, the eye-closed state detection unit 12 detects that the closed-eye time is 0.5 seconds or more and less than 3 seconds (YES in S102), and the drowsiness determination unit 14 detects drowsiness. It is determined that the level is less than "4" (NO in S104), and the life log information that affects the driver's microsleep state is acquired by the life log information acquisition unit 54 (YES in S701). , the driver is assumed to be in a micro-sleep state. This is because even if the driver does not feel very drowsy, there is a possibility that the driver will close his/her eyes because of his/her tendency to fall asleep suddenly.
 ステップS701に戻り、生活ログ情報取得部54により運転者のマイクロスリープ状態に影響する生活ログ情報が取得されない場合には(S701でNO)、マイクロスリープ推定部16Gの信頼度算出部20Gは、信頼度「低」を算出し(S107)、マイクロスリープ推定部16Gの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 Returning to step S701, when the life log information acquisition unit 54 does not acquire the life log information that affects the microsleep state of the driver (NO in S701), the reliability calculation unit 20G of the microsleep estimation unit 16G The degree "low" is calculated (S107), and the estimation unit 18 of the microsleep estimation unit 16G estimates that the driver is in the microsleep state (S106).
 [8-3.効果]
 本実施の形態では、マイクロスリープ状態をより一層精度良く推定することができる。
[8-3. effect]
In this embodiment, the microsleep state can be estimated with even higher accuracy.
 (実施の形態9)
 [9-1.推定装置の構成]
 図17を参照しながら、実施の形態9に係る推定装置2Hの構成について説明する。図17は、実施の形態9に係る推定装置2Hの構成を示すブロック図である。なお、本実施の形態において、上記実施の形態2と同一の構成要素には同一の符号を付して、その説明を省略する。
(Embodiment 9)
[9-1. Configuration of estimation device]
The configuration of an estimation device 2H according to Embodiment 9 will be described with reference to FIG. FIG. 17 is a block diagram showing the configuration of an estimation device 2H according to Embodiment 9. As shown in FIG. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
 図17に示すように、実施の形態9に係る推定装置2Hは、画像情報取得部8、生体情報取得部10、閉眼状態検出部12、眠気判定部14及びマイクロスリープ推定部16Hに加えて、顔特徴情報取得部56を備えている。顔特徴情報取得部56は、画像情報取得部8からの画像情報に基づいて、運転者の顔特徴を示す顔特徴情報を時系列で取得する。顔特徴は、例えば目及び口等の顔のパーツを意味する。顔特徴情報取得部56は、取得した顔特徴情報をマイクロスリープ推定部16Hに出力する。なお、顔特徴情報取得部56は、生体情報取得部10からの生体情報に基づいて、顔特徴情報を取得してもよい。 As shown in FIG. 17, the estimation device 2H according to the ninth embodiment includes an image information acquisition unit 8, a biological information acquisition unit 10, a closed eye state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16H. A facial feature information acquisition unit 56 is provided. Based on the image information from the image information acquisition unit 8, the facial feature information acquisition unit 56 acquires facial feature information indicating the facial features of the driver in time series. Facial features refer to parts of the face such as eyes and mouth. The facial feature information acquiring section 56 outputs the acquired facial feature information to the microsleep estimating section 16H. Note that the facial feature information acquisition section 56 may acquire facial feature information based on the biometric information from the biometric information acquisition section 10 .
 マイクロスリープ推定部16Hの推定部18は、閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出され、且つ、眠気判定部14により眠気レベルが「4」未満であると判定され、且つ、顔特徴情報取得部56により運転者のマイクロスリープ状態に影響する顔特徴情報が取得されたことを条件として、運転者がマイクロスリープ状態であると推定する。ここで、運転者のマイクロスリープ状態に影響する顔特徴情報とは、例えば、眠気により運転者の口が開いていたり、眠気により眉の動きが見られず目元の筋肉が緩んでいたりすることを示す情報である。 The estimating unit 18 of the microsleep estimating unit 16H detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds by the closed-eye state detecting unit 12, and the drowsiness determining unit 14 detects that the drowsiness level is less than "4". It is assumed that the driver is in the micro-sleep state on the condition that it is determined that the driver is in the micro-sleep state and that the facial characteristic information acquiring unit 56 acquires facial feature information that affects the micro-sleep state of the driver. Here, the facial feature information that affects the driver's micro-sleep state means, for example, that the driver's mouth is open due to drowsiness, or that eyebrows are not moving due to drowsiness and the muscles around the eyes are relaxed. This is the information shown.
 マイクロスリープ推定部16Hの信頼度算出部20Hは、運転者がマイクロスリープ状態であるとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する。信頼度は、例えば「低」、「中」及び「高」の3段階で算出される。 The reliability calculation unit 20H of the micro-sleep estimation unit 16H calculates reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18 that the driver is in the micro-sleep state. The reliability is calculated, for example, in three levels of "low", "middle" and "high".
 [9-2.推定装置の動作]
 次に、図18を参照しながら、実施の形態9に係る推定装置2Hの動作について説明する。図18は、実施の形態9に係る推定装置2Hの動作の流れを示すフローチャートである。なお、図18のフローチャートでは、上述した図4のフローチャートの処理と同一の処理には同一のステップ番号を付して、その説明を省略する。
[9-2. Operation of estimation device]
Next, the operation of the estimating device 2H according to Embodiment 9 will be described with reference to FIG. FIG. 18 is a flow chart showing the operation flow of the estimating device 2H according to the ninth embodiment. In the flowchart of FIG. 18, the same step numbers are given to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
 図18に示すように、まず、上記実施の形態2と同様に、ステップS101~S104が実行される。閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出された場合であって(S102でYES)、眠気判定部14により眠気レベルが「4」未満であると判定された場合には(S104でNO)、ステップS801に進み、顔特徴情報取得部56は、顔特徴情報を取得する。 As shown in FIG. 18, steps S101 to S104 are first executed in the same manner as in the second embodiment. When the eye-closed state detection unit 12 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S102), the drowsiness determination unit 14 determines that the drowsiness level is less than "4". If so (NO in S104), the process proceeds to step S801, and the facial feature information acquiring unit 56 acquires facial feature information.
 顔特徴情報取得部56により運転者のマイクロスリープ状態に影響する顔特徴情報が取得された場合には(S801でYES)、マイクロスリープ推定部16Hの信頼度算出部20Hは、信頼度「中」を算出し(S802)、マイクロスリープ推定部16Hの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 When facial feature information that affects the driver's microsleep state is acquired by the facial feature information acquisition unit 56 (YES in S801), the reliability calculation unit 20H of the microsleep estimation unit 16H sets the reliability to "medium." (S802), and the estimation unit 18 of the microsleep estimation unit 16H estimates that the driver is in the microsleep state (S106).
 すなわち、マイクロスリープ推定部16Hの推定部18は、閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出され(S102でYES)、且つ、眠気判定部14により眠気レベルが「4」未満であると判定され(S104でNO)、且つ、顔特徴情報取得部56により運転者のマイクロスリープ状態に影響する顔特徴情報が取得された(S801でYES)ことを条件として、運転者がマイクロスリープ状態であると推定する。これは、運転者が強い眠気を感じていなくても、疲労等から眼を閉じてしまう可能性があるためである。 That is, in the estimating unit 18 of the microsleep estimating unit 16H, the eye-closed state detection unit 12 detects that the closed-eye time is 0.5 seconds or more and less than 3 seconds (YES in S102), and the drowsiness determination unit 14 It is determined that the level is less than "4" (NO in S104), and facial feature information that affects the driver's micro-sleep state is acquired by the facial feature information acquisition unit 56 (YES in S801). , the driver is assumed to be in a micro-sleep state. This is because the driver may close his/her eyes due to fatigue or the like even if the driver does not feel drowsy.
 ステップS801に戻り、顔特徴情報取得部56により運転者のマイクロスリープ状態に影響する顔特徴情報が取得されない場合には(S801でNO)、マイクロスリープ推定部16Hの信頼度算出部20Hは、信頼度「低」を算出し(S107)、マイクロスリープ推定部16Gの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 Returning to step S801, when facial feature information that affects the driver's microsleep state is not acquired by the facial feature information acquisition unit 56 (NO in S801), the reliability calculation unit 20H of the microsleep estimation unit 16H The degree "low" is calculated (S107), and the estimation unit 18 of the microsleep estimation unit 16G estimates that the driver is in the microsleep state (S106).
 [9-3.効果]
 本実施の形態では、マイクロスリープ状態をより一層精度良く推定することができる。
[9-3. effect]
In this embodiment, the microsleep state can be estimated with even higher accuracy.
 (実施の形態10)
 [10-1.推定装置の構成]
 図19を参照しながら、実施の形態10に係る推定装置2Jの構成について説明する。図19は、実施の形態10に係る推定装置2Jの構成を示すブロック図である。なお、本実施の形態において、上記実施の形態2と同一の構成要素には同一の符号を付して、その説明を省略する。
(Embodiment 10)
[10-1. Configuration of estimation device]
A configuration of an estimation device 2J according to the tenth embodiment will be described with reference to FIG. FIG. 19 is a block diagram showing the configuration of an estimation device 2J according to the tenth embodiment. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
 図19に示すように、実施の形態10に係る推定装置2Jは、画像情報取得部8、生体情報取得部10、閉眼状態検出部12、眠気判定部14及びマイクロスリープ推定部16Jに加えて、頭部動作検出部58を備えている。頭部動作検出部58は、画像情報取得部8からの画像情報に基づいて、運転者の頭部の動作を時系列で検出する。頭部動作検出部58は、検出結果をマイクロスリープ推定部16Jに出力する。なお、頭部動作検出部58は、生体情報取得部10からの生体情報に基づいて、頭部動作を検出してもよい。 As shown in FIG. 19, the estimation device 2J according to Embodiment 10 includes an image information acquisition unit 8, a biological information acquisition unit 10, an eye-closed state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16J. A head motion detector 58 is provided. Based on the image information from the image information acquisition unit 8, the head movement detection unit 58 detects movements of the driver's head in time series. The head motion detector 58 outputs the detection result to the microsleep estimator 16J. Note that the head motion detection unit 58 may detect head motion based on the biometric information from the biometric information acquisition unit 10 .
 マイクロスリープ推定部16Jの推定部18は、閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出され、且つ、眠気判定部14により眠気レベルが「4」未満であると判定され、且つ、頭部動作検出部58により運転者のマイクロスリープ状態に影響する頭部の動作が取得されたことを条件として、運転者がマイクロスリープ状態であると推定する。ここで、運転者のマイクロスリープ状態に影響する頭部の動作とは、例えば、眠気により運転者の頭部が上下に振れる、いわゆるこっくり等の動作である。 The estimating unit 18 of the microsleep estimating unit 16J detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds by the closed-eye state detecting unit 12, and the drowsiness determining unit 14 detects that the drowsiness level is less than "4". It is assumed that the driver is in the micro-sleep state on the condition that it is determined that there is a micro-sleep state and that the head motion detector 58 acquires a head motion that affects the micro-sleep state of the driver. Here, the motion of the head that affects the driver's micro-sleep state is, for example, a so-called motion such as nodding, in which the driver's head shakes up and down due to drowsiness.
 マイクロスリープ推定部16Jの信頼度算出部20Jは、運転者がマイクロスリープ状態であるとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する。信頼度は、例えば「低」、「中」及び「高」の3段階で算出される。 The reliability calculation unit 20J of the microsleep estimation unit 16J calculates the reliability, which is an index indicating the likelihood of the estimation result of the estimation unit 18 that the driver is in the microsleep state. The reliability is calculated, for example, in three levels of "low", "middle" and "high".
 [10-2.推定装置の動作]
 次に、図20を参照しながら、実施の形態10に係る推定装置2Jの動作について説明する。図20は、実施の形態10に係る推定装置2Jの動作の流れを示すフローチャートである。なお、図20のフローチャートでは、上述した図4のフローチャートの処理と同一の処理には同一のステップ番号を付して、その説明を省略する。
[10-2. Operation of estimation device]
Next, operation of the estimation device 2J according to the tenth embodiment will be described with reference to FIG. FIG. 20 is a flowchart showing the operation flow of the estimation device 2J according to the tenth embodiment. In the flowchart of FIG. 20, the same step numbers are assigned to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
 図20に示すように、まず、上記実施の形態2と同様に、ステップS101~S104が実行される。閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出された場合であって(S102でYES)、眠気判定部14により眠気レベルが「4」未満であると判定された場合には(S104でNO)、ステップS901に進み、頭部動作検出部58は、運転者の頭部の動作を検出する。 As shown in FIG. 20, steps S101 to S104 are first executed in the same manner as in the second embodiment. When the eye-closed state detection unit 12 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S102), the drowsiness determination unit 14 determines that the drowsiness level is less than "4". If so (NO in S104), the process proceeds to step S901, and the head movement detection unit 58 detects the movement of the driver's head.
 頭部動作検出部58により運転者のマイクロスリープ状態に影響する頭部の動作が検出された場合には(S901でYES)、マイクロスリープ推定部16Jの信頼度算出部20Jは、信頼度「中」を算出し(S902)、マイクロスリープ推定部16Jの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 When the head motion detector 58 detects a head motion that affects the driver's microsleep state (YES in S901), the reliability calculator 20J of the microsleep estimator 16J determines that the reliability is medium. (S902), and the estimation unit 18 of the microsleep estimation unit 16J estimates that the driver is in the microsleep state (S106).
 すなわち、マイクロスリープ推定部16Jの推定部18は、閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出され(S102でYES)、且つ、眠気判定部14により眠気レベルが「4」未満であると判定され(S104でNO)、且つ、頭部動作検出部58により運転者のマイクロスリープ状態に影響する頭部の動作が検出された(S901でYES)ことを条件として、運転者がマイクロスリープ状態であると推定する。これは、運転者が強い眠気を感じていなくても、疲労等から眼を閉じてしまう可能性があるためである。 That is, in the estimating unit 18 of the microsleep estimating unit 16J, the eye-closed state detection unit 12 detects that the closed-eye time is 0.5 seconds or more and less than 3 seconds (YES in S102), and the drowsiness determination unit 14 It is determined that the level is less than "4" (NO in S104), and the head motion detection unit 58 detects a head motion that affects the driver's microsleep state (YES in S901). As a condition, it is assumed that the driver is in a microsleep state. This is because the driver may close his/her eyes due to fatigue or the like even if the driver does not feel drowsy.
 ステップS901に戻り、頭部動作検出部58により運転者のマイクロスリープ状態に影響する頭部の動作が取得されない場合には(S901でNO)、マイクロスリープ推定部16Jの信頼度算出部20Jは、信頼度「低」を算出し(S107)、マイクロスリープ推定部16Jの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 Returning to step S901, when the head motion detection unit 58 does not acquire a head motion that affects the driver's microsleep state (NO in S901), the reliability calculation unit 20J of the microsleep estimation unit 16J The reliability "low" is calculated (S107), and the estimation unit 18 of the microsleep estimation unit 16J estimates that the driver is in the microsleep state (S106).
 [10-3.効果]
 本実施の形態では、マイクロスリープ状態をより一層精度良く推定することができる。
[10-3. effect]
In this embodiment, the microsleep state can be estimated with even higher accuracy.
 (実施の形態11)
 [11-1.推定装置の構成]
 図21を参照しながら、実施の形態11に係る推定装置2Kの構成について説明する。図21は、実施の形態11に係る推定装置2Kの構成を示すブロック図である。なお、本実施の形態において、上記実施の形態2と同一の構成要素には同一の符号を付して、その説明を省略する。
(Embodiment 11)
[11-1. Configuration of estimation device]
A configuration of an estimation device 2K according to Embodiment 11 will be described with reference to FIG. FIG. 21 is a block diagram showing the configuration of an estimating device 2K according to Embodiment 11. As shown in FIG. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
 図21に示すように、実施の形態11に係る推定装置2Kは、画像情報取得部8、生体情報取得部10、閉眼状態検出部12、眠気判定部14及びマイクロスリープ推定部16Kに加えて、誤推定状況検出部60を備えている。誤推定状況検出部60は、画像情報取得部8からの画像情報に基づいて、推定部18による運転者のマイクロスリープ状態の推定に影響を与える状況(以下、「誤推定状況」という)を検出する。誤推定状況は、例えば、運転者の顔に西日が射している日射状況、又は、運転者の顔に街路樹等の細かい影がかかっている道路状況等である。誤推定状況検出部60は、検出結果をマイクロスリープ推定部16Kに出力する。なお、誤推定状況検出部60は、生体情報取得部10からの生体情報に基づいて、誤推定状況を検出してもよい。 As shown in FIG. 21, the estimation device 2K according to Embodiment 11 includes an image information acquisition unit 8, a biological information acquisition unit 10, an eye-closed state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16K. An erroneous estimation situation detection unit 60 is provided. Based on the image information from the image information acquisition unit 8, the erroneous estimation situation detection unit 60 detects a situation that affects the estimation of the driver's micro-sleep state by the estimation unit 18 (hereinafter referred to as "erroneous estimation situation"). do. The erroneously estimated situation is, for example, a solar situation where the driver's face is exposed to the afternoon sun, or a road situation where the driver's face is in fine shadows such as roadside trees. The erroneous estimation condition detection unit 60 outputs the detection result to the microsleep estimation unit 16K. The erroneous estimation situation detection unit 60 may detect an erroneous estimation situation based on the biometric information from the biometric information acquisition unit 10 .
 マイクロスリープ推定部16Kの信頼度算出部20Kは、誤推定状況検出部60の検出結果を考慮して、運転者がマイクロスリープ状態であるとの推定部18の推定結果の確からしさを示す指標である信頼度を算出する。信頼度は、例えば「低」、「中」及び「高」の3段階で算出される。 The reliability calculation unit 20K of the microsleep estimating unit 16K is an index indicating the likelihood of the estimation result of the estimating unit 18 that the driver is in the microsleep state, taking into consideration the detection result of the erroneous estimation state detecting unit 60. Calculate a certain reliability. The reliability is calculated, for example, in three levels of "low", "middle" and "high".
 [11-2.推定装置の動作]
 次に、図22を参照しながら、実施の形態11に係る推定装置2Kの動作について説明する。図22は、実施の形態11に係る推定装置2Kの動作の流れを示すフローチャートである。なお、図22のフローチャートでは、上述した図4のフローチャートの処理と同一の処理には同一のステップ番号を付して、その説明を省略する。
[11-2. Operation of estimation device]
Next, the operation of the estimation device 2K according to Embodiment 11 will be described with reference to FIG. FIG. 22 is a flow chart showing the operation flow of the estimating device 2K according to the eleventh embodiment. In the flowchart of FIG. 22, the same step numbers are given to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
 図22に示すように、まず、上記実施の形態2と同様に、ステップS101~S104が実行される。閉眼状態検出部12により閉眼時間が0.5秒以上3秒未満であることが検出された場合であって(S102でYES)、眠気判定部14により眠気レベルが「4」未満であると判定された場合には(S104でNO)、ステップS1001に進み、誤推定状況検出部60は、誤推定状況の有無を検出する。 As shown in FIG. 22, steps S101 to S104 are first executed in the same manner as in the second embodiment. When the eye-closed state detection unit 12 detects that the eye-closed time is 0.5 seconds or more and less than 3 seconds (YES in S102), the drowsiness determination unit 14 determines that the drowsiness level is less than "4". If so (NO in S104), the process proceeds to step S1001, and the erroneous estimation situation detection unit 60 detects the presence or absence of an erroneous estimation situation.
 誤推定状況検出部60により誤推定状況が検出された場合には(S1001でYES)、マイクロスリープ推定部16Kの信頼度算出部20Kは、信頼度「中」を算出し(S1002)、マイクロスリープ推定部16Kの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 When the erroneous estimation state detection unit 60 detects an erroneous estimation state (YES in S1001), the reliability calculation unit 20K of the microsleep estimating unit 16K calculates the reliability “medium” (S1002), and the microsleep state is detected. The estimating unit 18 of the estimating unit 16K estimates that the driver is in the micro-sleep state (S106).
 ステップS1001に戻り、誤推定状況検出部60により誤推定状況が検出されない場合には(S1001でNO)、マイクロスリープ推定部16Kの信頼度算出部20Kは、信頼度「低」を算出し(S107)、マイクロスリープ推定部16Kの推定部18は、運転者がマイクロスリープ状態であると推定する(S106)。 Returning to step S1001, if the erroneous estimation condition detection unit 60 does not detect an erroneous estimation condition (NO in S1001), the reliability calculation unit 20K of the microsleep estimation unit 16K calculates the reliability “low” (S107 ), the estimator 18 of the microsleep estimator 16K estimates that the driver is in the microsleep state (S106).
 [11-3.効果]
 本実施の形態では、マイクロスリープ状態をより一層精度良く推定することができる。
[11-3. effect]
In this embodiment, the microsleep state can be estimated with even higher accuracy.
 (実施の形態12)
 [12-1.推定装置の構成]
 図23を参照しながら、実施の形態12に係る推定装置2Lの構成について説明する。図23は、実施の形態12に係る推定装置2Lの構成を示すブロック図である。なお、本実施の形態において、上記実施の形態2と同一の構成要素には同一の符号を付して、その説明を省略する。
(Embodiment 12)
[12-1. Configuration of estimation device]
A configuration of an estimation device 2L according to Embodiment 12 will be described with reference to FIG. FIG. 23 is a block diagram showing the configuration of an estimation device 2L according to the twelfth embodiment. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
 図23に示すように、実施の形態12に係る推定装置2Lは、画像情報取得部8、生体情報取得部10、閉眼状態検出部12、眠気判定部14及びマイクロスリープ推定部16Lに加えて、誤推定状況検出部62を備えている。誤推定状況検出部62は、画像情報取得部8からの画像情報、又は、生体情報取得部10からの生体情報に基づいて、誤推定状況を検出する。誤推定状況は、例えば、運転者の顔に西日が射している日射状況、又は、運転者の顔に街路樹等の細かい影がかかっている道路状況等である。誤推定状況検出部62は、閉眼状態検出部12及び眠気判定部14を介して、検出結果をマイクロスリープ推定部16Lに出力する。 As shown in FIG. 23, the estimation device 2L according to the twelfth embodiment includes an image information acquisition unit 8, a biological information acquisition unit 10, an eye-closed state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16L. An erroneous estimation situation detection unit 62 is provided. The erroneous estimation condition detection unit 62 detects an erroneous estimation condition based on the image information from the image information acquisition unit 8 or the biometric information from the biometric information acquisition unit 10 . The erroneously estimated situation is, for example, a solar situation where the driver's face is exposed to the afternoon sun, or a road situation where the driver's face is in fine shadows such as roadside trees. The erroneous estimation situation detection unit 62 outputs the detection result to the microsleep estimation unit 16L via the closed eye state detection unit 12 and the drowsiness determination unit 14 .
 マイクロスリープ推定部16Lの推定部18は、誤推定状況検出部62により誤推定状況が検出された場合には、運転者のマイクロスリープ状態の推定を実施しない。 The estimating unit 18 of the microsleep estimating unit 16L does not estimate the driver's microsleep state when the erroneous estimation state detection unit 62 detects an erroneous estimation state.
 [12-2.推定装置の動作]
 次に、図24を参照しながら、実施の形態12に係る推定装置2Lの動作について説明する。図24は、実施の形態12に係る推定装置2Lの動作の流れを示すフローチャートである。なお、図24のフローチャートでは、上述した図4のフローチャートの処理と同一の処理には同一のステップ番号を付して、その説明を省略する。
[12-2. Operation of estimation device]
Next, the operation of the estimation device 2L according to Embodiment 12 will be described with reference to FIG. FIG. 24 is a flowchart showing the operation flow of the estimation device 2L according to the twelfth embodiment. In addition, in the flowchart of FIG. 24, the same step numbers are assigned to the same processes as those of the flowchart of FIG. 4, and the description thereof is omitted.
 図24に示すように、まず、上記実施の形態2と同様に、ステップS101が実行された後に、誤推定状況検出部62は、誤推定状況の有無を検出する。誤推定状況検出部62により誤推定状況が検出されない場合には(S1101でNO)、ステップS102に進み、上記実施の形態2と同様にステップS102~S107が実行される。一方、誤推定状況検出部62により誤推定状況が検出された場合には(S1101でYES)、マイクロスリープ推定部16Lの推定部18は、運転者のマイクロスリープ状態の推定を実施しない(S1102)。 As shown in FIG. 24, first, similarly to the second embodiment, after step S101 is executed, the erroneous estimation situation detection unit 62 detects the presence or absence of an erroneous estimation situation. If the erroneous estimation situation detection unit 62 does not detect an erroneous estimation situation (NO in S1101), the process proceeds to step S102, and steps S102 to S107 are executed in the same manner as in the second embodiment. On the other hand, if the erroneous estimation state detection unit 62 detects an erroneous estimation state (YES in S1101), the estimating unit 18 of the microsleep estimating unit 16L does not estimate the microsleep state of the driver (S1102). .
 [12-3.効果]
 本実施の形態では、マイクロスリープ状態の誤推定を回避することができる。
[12-3. effect]
In this embodiment, erroneous estimation of the microsleep state can be avoided.
 なお、誤推定状況は、上述した状況に限定されず、例えば、停車中等の目をつぶっていても問題の無い状況や、運転者が笑顔になって目をつぶっている状況、あるいは、運転者が同乗者と会話している状況等であってもよい。このような状況は、マイクロスリープ状態を推定しなくてもよい状況であるため、マイクロスリープ状態の推定を実施しないことにより、マイクロスリープ状態の誤推定を効果的に回避することができる。 The erroneous estimation situation is not limited to the situations described above. is conversing with a fellow passenger. In such a situation, it is not necessary to estimate the micro-sleep state. Therefore, by not estimating the micro-sleep state, erroneous estimation of the micro-sleep state can be effectively avoided.
 また、西日が射しているなどの日射条件、又は、街路樹等で運転者の顔に細かい影がかかるなどの道路条件等が原因で、画像情報取得部8からの画像情報(運転者の顔を示す画像情報)にノイズがのる場合には、当該画像情報を補正する処理を実施してもよい。これにより、マイクロスリープ状態の誤推定を未然に防ぐことができる。 In addition, the image information from the image information acquisition unit 8 (the driver's image information indicating the face of the person) contains noise, processing for correcting the image information may be performed. This can prevent erroneous estimation of the microsleep state.
 (実施の形態13)
 [13-1.推定装置の構成]
 図25を参照しながら、実施の形態13に係る推定装置2Mの構成について説明する。図25は、実施の形態13に係る推定装置2Mの構成を示すブロック図である。なお、本実施の形態において、上記実施の形態2と同一の構成要素には同一の符号を付して、その説明を省略する。
(Embodiment 13)
[13-1. Configuration of estimation device]
A configuration of an estimation device 2M according to Embodiment 13 will be described with reference to FIG. FIG. 25 is a block diagram showing the configuration of an estimation device 2M according to the thirteenth embodiment. In addition, in the present embodiment, the same reference numerals are given to the same constituent elements as in the above-described second embodiment, and the description thereof will be omitted.
 図25に示すように、実施の形態13に係る推定装置2Mは、画像情報取得部8、生体情報取得部10、閉眼状態検出部12、眠気判定部14及びマイクロスリープ推定部16Aに加えて、運転状況判定部64を備えている。運転状況判定部64は、運転状況検出部66と、閉眼時間変更部68とを有している。なお、生体情報取得部10からの生体情報は、運転状況判定部64を介して眠気判定部14に出力される。 As shown in FIG. 25, the estimation device 2M according to the thirteenth embodiment includes an image information acquisition unit 8, a biological information acquisition unit 10, an eye-closed state detection unit 12, a drowsiness determination unit 14, and a microsleep estimation unit 16A. A driving situation determination unit 64 is provided. The driving situation determination unit 64 has a driving situation detection unit 66 and an eye closure time change unit 68 . The biological information from the biological information acquiring section 10 is output to the drowsiness determining section 14 via the driving situation determining section 64 .
 運転状況検出部66は、画像情報取得部8からの画像情報、又は、生体情報取得部10からの生体情報に基づいて、運転者による車両の運転状況を検出する。ここで、運転状況とは、例えば、車両の運転時間帯、車両の走行場所、又は、運転者の前日の勤務形態等の状況である。運転状況検出部66は、検出結果を閉眼状態検出部12に出力する。 The driving condition detection unit 66 detects the driving condition of the vehicle by the driver based on the image information from the image information acquisition unit 8 or the biometric information from the biometric information acquisition unit 10 . Here, the driving situation is, for example, the driving time zone of the vehicle, the driving place of the vehicle, or the work pattern of the driver on the previous day. The driving situation detection unit 66 outputs the detection result to the closed-eye state detection unit 12 .
 閉眼時間変更部68は、運転状況検出部66により検出された運転状況に基づいて、閉眼状態検出部12における閉眼時間の検出に用いられる第1の時間及び/又は第2の時間を変更する。 The eye-closed time changer 68 changes the first time and/or the second time used to detect the eye-closed time in the eye-closed state detector 12 based on the driving situation detected by the driving situation detector 66.
 [13-2.推定装置の動作]
 次に、図26を参照しながら、実施の形態13に係る推定装置2Mの第1の動作について説明する。図26は、実施の形態13に係る推定装置2Mの第1の動作の流れを示すフローチャートである。なお、図26のフローチャートでは、上述した図4のフローチャートの処理と同一の処理には同一のステップ番号を付して、その説明を省略する。
[13-2. Operation of estimation device]
Next, a first operation of the estimation device 2M according to Embodiment 13 will be described with reference to FIG. FIG. 26 is a flow chart showing the flow of the first operation of the estimating device 2M according to the thirteenth embodiment. In addition, in the flowchart of FIG. 26, the same step numbers are assigned to the same processes as those of the flowchart of FIG. 4, and the description thereof will be omitted.
 図26に示すように、まず、上記実施の形態2と同様に、ステップS101が実行された後に、運転状況検出部66は、運転状況を検出する。運転状況検出部66によりマイクロスリープ状態に影響する運転状況が検出されない場合には(S1201でNO)、閉眼時間変更部68は、第1の時間及び第2の時間をそれぞれ、デフォルト値0.5秒及び3秒に設定する(S1202)。マイクロスリープ状態に影響する運転状況とは、例えば、運転者が夜間に運転中であったり、前日に運転者が夜勤をしていたりする状況である。その後、上記実施の形態2と同様に、ステップS102に進み、上記実施の形態2と同様に、ステップS102~S107が実行される。 As shown in FIG. 26, first, similarly to the second embodiment, after step S101 is executed, the driving situation detection unit 66 detects the driving situation. If the driving condition detection unit 66 does not detect any driving condition that affects the micro-sleep state (NO in S1201), the eye closing time change unit 68 sets the first time and the second time to the default value of 0.5, respectively. Seconds and 3 seconds are set (S1202). Driving conditions that affect the micro-sleep state are, for example, conditions in which the driver is driving at night or working the night shift the previous day. Thereafter, as in the second embodiment, the process proceeds to step S102, and steps S102 to S107 are executed in the same manner as in the second embodiment.
 ステップS1201に戻り、運転状況検出部66によりマイクロスリープ状態に影響する運転状況が検出された場合には(S1201でYES)、閉眼時間変更部68は、第2の時間をデフォルト値3秒から2秒に短く変更する(S1203)。その後、閉眼状態検出部12により閉眼時間が0.5秒未満又は2秒以上であることが検出された場合には(S1204でNO)、ステップS103に進む。一方、閉眼状態検出部12により閉眼時間が0.5秒以上2秒未満であることが検出された場合には(S1204でYES)、ステップS104に進む。 Returning to step S1201, if the driving condition detection unit 66 detects a driving condition that affects the microsleep state (YES in S1201), the eye closing time changing unit 68 changes the second time from the default value of 3 seconds to 2 seconds. Seconds are shortened (S1203). After that, when the eye-closed state detection unit 12 detects that the eye-closed time is less than 0.5 seconds or longer than 2 seconds (NO in S1204), the process proceeds to step S103. On the other hand, if the eye-closed state detection unit 12 detects that the eye-closed time is 0.5 seconds or more and less than 2 seconds (YES in S1204), the process proceeds to step S104.
 上述したように、第1の動作では、例えば、運転者が夜間に運転中であったり、前日に運転者が夜勤をしていたりするなどして、運転者が眠気を感じやすい状況である場合には、閉眼状態検出部12により検出する閉眼時間を短くすることにより、運転者のマイクロスリープ状態を厳しめに推定する。 As described above, in the first operation, for example, the driver is driving at night, or the driver was on the night shift the day before, and the driver is likely to feel drowsy. First, by shortening the closed-eye time detected by the closed-eye state detection unit 12, the micro-sleep state of the driver is estimated rather harshly.
 次に、図27を参照しながら、実施の形態13に係る推定装置2Mの第2の動作について説明する。図27は、実施の形態13に係る推定装置2Mの第2の動作の流れを示すフローチャートである。なお、図27のフローチャートでは、上述した図4のフローチャートの処理と同一の処理には同一のステップ番号を付して、その説明を省略する。 Next, the second operation of the estimation device 2M according to Embodiment 13 will be described with reference to FIG. FIG. 27 is a flow chart showing the flow of the second operation of the estimating device 2M according to the thirteenth embodiment. In the flowchart of FIG. 27, the same step numbers are assigned to the same processes as those of the above-described flowchart of FIG. 4, and the description thereof will be omitted.
 図27に示すように、まず、上記実施の形態2と同様に、ステップS101が実行された後に、運転状況検出部66は、運転状況を検出する。運転状況検出部66によりマイクロスリープ状態に影響する運転状況が検出された場合には(S1301でYES)、閉眼時間変更部68は、第1の時間及び第2の時間をそれぞれ、デフォルト値0.5秒及び3秒に設定する(S1302)。その後、上記実施の形態2と同様に、ステップS102に進み、上記実施の形態2と同様に、ステップS102~S107が実行される。 As shown in FIG. 27, first, as in the second embodiment, after step S101 is executed, the driving situation detection unit 66 detects the driving situation. If the driving condition detection unit 66 detects a driving condition that affects the microsleep state (YES in S1301), the eye closing time changing unit 68 sets the first time and the second time to the default value of 0.00. 5 seconds and 3 seconds are set (S1302). Thereafter, as in the second embodiment, the process proceeds to step S102, and steps S102 to S107 are executed in the same manner as in the second embodiment.
 ステップS1301に戻り、運転状況検出部66によりマイクロスリープ状態に影響する運転状況が検出されない場合には(S1301でNO)、閉眼時間変更部68は、第1の時間をデフォルト値0.5秒から1秒に長く変更し、且つ、第2の時間をデフォルト値3秒から4秒に長く変更する(S1303)。その後、閉眼状態検出部12により閉眼時間が1秒未満又は4秒以上であることが検出された場合には(S1304でNO)、ステップS103に進む。一方、閉眼状態検出部12により閉眼時間が1秒以上4秒未満であることが検出された場合には(S1304でYES)、ステップS104に進む。 Returning to step S1301, if the driving condition detection unit 66 does not detect any driving condition that affects the microsleep state (NO in S1301), the eye closing time change unit 68 changes the first time from the default value of 0.5 seconds. It is lengthened to 1 second, and the second time is lengthened from the default value of 3 seconds to 4 seconds (S1303). After that, when the eye-closed state detection unit 12 detects that the eye-closed time is less than 1 second or 4 seconds or longer (NO in S1304), the process proceeds to step S103. On the other hand, if the eye-closed state detection unit 12 detects that the eye-closed time is 1 second or more and less than 4 seconds (YES in S1304), the process proceeds to step S104.
 上述したように、第2の動作では、例えば、運転者が仮眠の直後であったり、運転者がカフェインを摂取した直後であったりなどして、運転者が眠気を感じにくい状況である場合には、閉眼状態検出部12により検出する閉眼時間を長くすることにより、運転者のマイクロスリープ状態を緩めに推定する。 As described above, in the second operation, for example, when the driver is in a situation where it is difficult to feel drowsy, such as immediately after a nap or after ingesting caffeine. First, the driver's micro-sleep state is loosely estimated by lengthening the closed-eye time detected by the closed-eye state detection unit 12 .
 [13-3.効果]
 本実施の形態では、マイクロスリープ状態の誤推定を回避することができる。
[13-3. effect]
In this embodiment, erroneous estimation of the microsleep state can be avoided.
 (他の変形例)
 以上、一つ又は複数の態様に係る推定装置について、上記各実施の形態に基づいて説明したが、本開示は、上記各実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思い付く各種変形を上記各実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つ又は複数の態様の範囲内に含まれてもよい。
(Other modifications)
Although the estimation apparatus according to one or more aspects has been described based on the above embodiments, the present disclosure is not limited to the above embodiments. As long as it does not deviate from the spirit of the present disclosure, various modifications that can be conceived by those skilled in the art may be applied to the above-described embodiments, and a configuration constructed by combining the components of different embodiments may also be one or more aspects. may be included within the scope.
 上記各実施の形態では、信頼度算出部20(20B,20C,20D,20E,20F,20G,20H,20J,20K,24,28,36,48)は信頼度を算出したが、例えばディープラーニング等を用いて信頼度を算出してもよい。 In each of the above embodiments, the reliability calculation unit 20 (20B, 20C, 20D, 20E, 20F, 20G, 20H, 20J, 20K, 24, 28, 36, 48) calculates the reliability. etc. may be used to calculate the reliability.
 なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサ等のプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 It should be noted that in each of the above embodiments, each component may be implemented by dedicated hardware or by executing a software program suitable for each component. Each component may be realized by reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU or processor.
 また、上記各実施の形態に係る推定装置の機能の一部又は全てを、CPU等のプロセッサがプログラムを実行することにより実現してもよい。 Also, some or all of the functions of the estimation device according to each of the above embodiments may be implemented by a processor such as a CPU executing a program.
 上記の各装置を構成する構成要素の一部又は全部は、各装置に脱着可能なICカード又は単体のモジュールから構成されているとしても良い。前記ICカード又は前記モジュールは、マイクロプロセッサ、ROM、RAM等から構成されるコンピュータシステムである。前記ICカード又は前記モジュールは、上記の超多機能LSIを含むとしても良い。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、前記ICカード又は前記モジュールは、その機能を達成する。このICカード又はこのモジュールは、耐タンパ性を有するとしても良い。 A part or all of the components that make up each device described above may be configured from an IC card or a single module that can be attached to and removed from each device. The IC card or module is a computer system composed of a microprocessor, ROM, RAM and the like. The IC card or the module may include the super multifunctional LSI. The IC card or the module achieves its function by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
 本開示は、上記に示す方法であるとしても良い。また、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしても良いし、前記コンピュータプログラムからなるデジタル信号であるとしても良い。また、本開示は、前記コンピュータプログラム又は前記デジタル信号をコンピュータ読み取り可能な非一時的な記録媒体、例えばフレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray(登録商標) Disc)、半導体メモリ等に記録したものとしても良い。また、これらの記録媒体に記録されている前記デジタル信号であるとしても良い。また、本開示は、前記コンピュータプログラム又は前記デジタル信号を、電気通信回線、無線又は有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしても良い。また、本開示は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、前記メモリは、上記コンピュータプログラムを記憶しており、前記マイクロプロセッサは、前記コンピュータプログラムにしたがって動作するとしても良い。また、前記プログラム又は前記デジタル信号を前記記録媒体に記録して移送することにより、又は前記プログラム又は前記デジタル信号を前記ネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしても良い。 The present disclosure may be the method shown above. Moreover, it may be a computer program for realizing these methods by a computer, or it may be a digital signal composed of the computer program. In addition, the present disclosure provides a computer-readable non-temporary recording medium for the computer program or the digital signal, such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu -ray (registered trademark) Disc), semiconductor memory or the like. Alternatively, the digital signal recorded on these recording media may be used. Further, according to the present disclosure, the computer program or the digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, data broadcasting, or the like. The present disclosure may also be a computer system comprising a microprocessor and memory, the memory storing the computer program, and the microprocessor operating according to the computer program. Also, by recording the program or the digital signal on the recording medium and transferring it, or by transferring the program or the digital signal via the network or the like, it is implemented by another independent computer system It is good as
 本開示は、例えば車両の運転者のマイクロスリープ状態を推定するための推定装置等に適用可能である。 The present disclosure is applicable to, for example, an estimation device for estimating a micro-sleep state of a vehicle driver.
2,2A,2B,2C,2D,2E,2F,2G,2H,2J,2K,2L,2M 推定装置
3 センサ群
4 撮像部
5 車両状態センサ
6 生体センサ
7 センサ情報取得部
8 画像情報取得部
10 生体情報取得部
12,12B,12E 閉眼状態検出部
14,14B 眠気判定部
16,16A,16B,16C,16D,16E,16F,16G,16H,16J,16K,16L マイクロスリープ推定部
18 推定部
20,20B,20C,20D,20E,20F,20G,20H,20J,20K,24,28,36,48 信頼度算出部
22 閉眼時間検出部
26 眠気レベル判定部
30,38 開閉状態検出部
32 開閉速度算出部
34 開閉速度判定部
40 閉眼速度算出部
42 閉眼速度判定部
44 開眼速度算出部
46 開眼速度判定部
50 両眼検出部
52 瞬き回数検出部
54 生活ログ情報取得部
56 顔特徴情報取得部
58 頭部動作検出部
60,62 誤推定状況検出部
64 運転状況判定部
66 運転状況検出部
68 閉眼時間変更部
2, 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2J, 2K, 2L, 2M estimation device 3 sensor group 4 imaging unit 5 vehicle state sensor 6 biological sensor 7 sensor information acquisition unit 8 image information acquisition unit 10 biological information acquisition units 12, 12B, 12E closed-eye state detection units 14, 14B drowsiness determination units 16, 16A, 16B, 16C, 16D, 16E, 16F, 16G, 16H, 16J, 16K, 16L microsleep estimation unit 18 estimation unit 20, 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20J, 20K, 24, 28, 36, 48 Reliability calculation unit 22 Closed eye time detection unit 26 Sleepiness level determination units 30, 38 Open/close state detection unit 32 Open/close Speed calculation unit 34 Opening/closing speed determination unit 40 Eye closing speed calculation unit 42 Eye closing speed determination unit 44 Eye opening speed calculation unit 46 Eye opening speed determination unit 50 Binocular detection unit 52 Blink number detection unit 54 Life log information acquisition unit 56 Facial feature information acquisition unit 58 head movement detection units 60 and 62 erroneous estimation situation detection unit 64 driving situation determination unit 66 driving situation detection unit 68 eye closure time change unit

Claims (23)

  1.  車両の運転者がマイクロスリープ状態であることを推定するための推定装置であって、
     前記運転者の眼の閉眼時間を検出する閉眼状態検出部と、
     前記運転者の眠気レベルを判定する眠気判定部と、
     前記閉眼状態検出部により前記閉眼時間が第1の時間以上第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが第1の閾値以上であると判定されたことを条件として、前記運転者がマイクロスリープ状態であると推定するマイクロスリープ推定部と、を備える
     推定装置。
    An estimation device for estimating that a vehicle driver is in a micro-sleep state,
    an eye-closed state detection unit that detects an eye-closed time of the driver;
    a drowsiness determination unit that determines the drowsiness level of the driver;
    The eye-closed state detection unit detects that the eye-closed time is greater than or equal to a first time period and less than a second time period, and the drowsiness determination unit determines that the drowsiness level is greater than or equal to a first threshold. a micro-sleep estimator that estimates that the driver is in a micro-sleep state on condition that:
  2.  前記第1の時間は0.5秒であり、前記第2の時間は3秒である
     請求項1に記載の推定装置。
    The estimating device according to claim 1, wherein the first time is 0.5 seconds and the second time is 3 seconds.
  3.  前記マイクロスリープ推定部は、さらに、前記運転者がマイクロスリープ状態であるとの推定結果の確からしさを示す指標である第1の信頼度を算出する
     請求項1に記載の推定装置。
    The estimating device according to claim 1, wherein the microsleep estimator further calculates a first reliability that is an index indicating the probability of the estimation result that the driver is in the microsleep state.
  4.  前記閉眼状態検出部は、さらに、前記閉眼時間が前記第1の時間以上前記第2の時間未満であるとの検出結果の確からしさを示す指標である第2の信頼度を算出し、
     前記眠気判定部は、さらに、前記眠気レベルが前記第1の閾値以上であるとの判定結果の確からしさを示す指標である第3の信頼度を算出し、
     前記マイクロスリープ推定部は、前記第2の信頼度及び前記第3の信頼度に基づいて、前記第1の信頼度を算出する
     請求項3に記載の推定装置。
    The eye-closed state detection unit further calculates a second reliability that is an index indicating the likelihood of the detection result that the eye-closed time is greater than or equal to the first time and less than the second time,
    The drowsiness determination unit further calculates a third reliability that is an index indicating the likelihood of the determination result that the drowsiness level is equal to or greater than the first threshold,
    The estimation device according to claim 3, wherein the microsleep estimator calculates the first reliability based on the second reliability and the third reliability.
  5.  前記推定装置は、さらに、前記運転者の眼の開閉速度を検出する開閉状態検出部を備え、
     前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値以上であると判定され、且つ、前記開閉状態検出部により前記開閉速度が第2の閾値未満であることが検出されたことを条件として、前記運転者がマイクロスリープ状態であると推定する
     請求項3に記載の推定装置。
    The estimating device further comprises an open/closed state detection unit that detects an eye opening/closing speed of the driver,
    The micro-sleep estimating unit detects that the eye-closed time is longer than or equal to the first time and less than the second time by the eye-closed state detecting unit, and the drowsiness determining unit determines that the drowsiness level is equal to or greater than the first time. and the opening/closing state detection unit detects that the opening/closing speed is less than the second threshold, presuming that the driver is in the micro sleep state The estimating device according to claim 3.
  6.  前記閉眼状態検出部は、さらに、前記閉眼時間が前記第1の時間以上前記第2の時間未満であるとの検出結果の確からしさを示す指標である第2の信頼度を算出し、
     前記眠気判定部は、さらに、前記眠気レベルが前記第1の閾値以上であるとの判定結果の確からしさを示す指標である第3の信頼度を算出し、
     前記開閉状態検出部は、さらに、前記開閉速度が前記第2の閾値未満であるとの検出結果の確からしさを示す指標である第4の信頼度を算出し、
     前記マイクロスリープ推定部は、前記第2の信頼度、前記第3の信頼度及び前記第4の信頼度に基づいて、前記第1の信頼度を算出する
     請求項5に記載の推定装置。
    The eye-closed state detection unit further calculates a second reliability that is an index indicating the likelihood of the detection result that the eye-closed time is greater than or equal to the first time and less than the second time,
    The drowsiness determination unit further calculates a third reliability that is an index indicating the likelihood of the determination result that the drowsiness level is equal to or greater than the first threshold,
    The open/closed state detection unit further calculates a fourth reliability, which is an index indicating the likelihood of the detection result that the open/close speed is less than the second threshold,
    The estimation device according to claim 5, wherein the microsleep estimator calculates the first reliability based on the second reliability, the third reliability, and the fourth reliability.
  7.  前記眠気判定部は、前記開閉状態検出部としての機能を含む
     請求項5に記載の推定装置。
    The estimation device according to claim 5, wherein the drowsiness determination unit includes a function as the open/closed state detection unit.
  8.  前記眠気判定部は、さらに、前記閉眼状態検出部としての機能を含む
     請求項7に記載の推定装置。
    The estimation device according to claim 7, wherein the drowsiness determination unit further includes a function as the closed eye state detection unit.
  9.  前記推定装置は、さらに、前記運転者の眼の閉眼速度及び開眼速度を検出する開閉状態検出部を備え、
     前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値以上であると判定され、且つ、前記開閉状態検出部により前記閉眼速度が第3の閾値未満であることが検出され、且つ、前記開閉状態検出部により前記開眼速度が第4の閾値未満であることが検出されたことを条件として、前記運転者がマイクロスリープ状態であると推定する
     請求項3に記載の推定装置。
    The estimating device further comprises an open/closed state detection unit that detects the eye closing speed and the eye opening speed of the driver,
    The micro-sleep estimating unit detects that the eye-closed time is longer than or equal to the first time and less than the second time by the eye-closed state detecting unit, and the drowsiness determining unit determines that the drowsiness level is equal to or greater than the first time. and the open/closed state detection unit detects that the eye-closing speed is less than a third threshold, and the open/closed state detection unit detects that the eye-opening speed is less than a fourth threshold 4. The estimating device according to claim 3, wherein the driver is estimated to be in a micro-sleep state on the condition that it is detected that .
  10.  前記閉眼状態検出部は、さらに、前記閉眼時間が前記第1の時間以上前記第2の時間未満であるとの検出結果の確からしさを示す指標である第2の信頼度を算出し、
     前記眠気判定部は、さらに、前記眠気レベルが前記第1の閾値以上であるとの判定結果の確からしさを示す指標である第3の信頼度を算出し、
     前記開閉状態検出部は、さらに、前記閉眼速度が前記第3の閾値未満であるとの検出結果の確からしさを示す指標である第5の信頼度、及び、前記開眼速度が前記第4の閾値未満であるとの検出結果の確からしさを示す指標である第6の信頼度を算出し、
     前記マイクロスリープ推定部は、前記第2の信頼度、前記第3の信頼度、前記第5の信頼度及び前記第6の信頼度に基づいて、前記第1の信頼度を算出する
     請求項9に記載の推定装置。
    The eye-closed state detection unit further calculates a second reliability that is an index indicating the likelihood of the detection result that the eye-closed time is greater than or equal to the first time and less than the second time,
    The drowsiness determination unit further calculates a third reliability that is an index indicating the likelihood of the determination result that the drowsiness level is equal to or greater than the first threshold,
    The open/closed state detection unit further includes a fifth reliability, which is an index indicating the likelihood of the detection result that the eye closing speed is less than the third threshold, and the eye opening speed is less than the fourth threshold. Calculate the sixth reliability, which is an index indicating the likelihood of the detection result that it is less than
    10. The microsleep estimator calculates the first reliability based on the second reliability, the third reliability, the fifth reliability, and the sixth reliability. The estimating device described in .
  11.  前記マイクロスリープ推定部は、前記眠気判定部により判定された前記眠気レベルに応じて、前記第1の信頼度を算出する
     請求項3に記載の推定装置。
    The estimating device according to claim 3, wherein the microsleep estimating unit calculates the first reliability according to the drowsiness level determined by the drowsiness determining unit.
  12.  前記推定装置は、さらに、前記運転者の両眼を検出する両眼検出部を備え、
     前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値以上であると判定され、且つ、前記両眼検出部により前記運転者の両眼が検出されたことを条件として、前記運転者がマイクロスリープ状態であると推定する
     請求項1に記載の推定装置。
    The estimating device further comprises a binocular detection unit that detects the binoculars of the driver,
    The micro-sleep estimating unit detects that the eye-closed time is longer than or equal to the first time and less than the second time by the eye-closed state detecting unit, and the drowsiness determining unit determines that the drowsiness level is equal to or greater than the first time. The driver is estimated to be in a micro-sleep state on the condition that it is determined to be equal to or greater than the threshold of and the both eyes of the driver are detected by the binocular detection unit. estimation device.
  13.  前記推定装置は、さらに、前記運転者の瞬き回数を検出する瞬き回数検出部を備え、
     前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値以上であると判定され、且つ、前記瞬き回数検出部により前記運転者の単位時間当たりの瞬き回数が第5の閾値以上増加又は減少したことが検出されたことを条件として、前記運転者がマイクロスリープ状態であると推定する
     請求項1に記載の推定装置。
    The estimating device further comprises a blink number detection unit that detects the number of blinks of the driver,
    The micro-sleep estimating unit detects that the eye-closed time is longer than or equal to the first time and less than the second time by the eye-closed state detecting unit, and the drowsiness determining unit determines that the drowsiness level is equal to or greater than the first time. and that the number of blinks of the driver per unit time has increased or decreased by a fifth threshold or more, and the driver is in a micro-sleep state.
  14.  前記推定装置は、さらに、前記運転者の生活に関する生活ログ情報を取得する生活ログ情報取得部を備え、
     前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値未満であると判定され、且つ、前記生活ログ情報取得部により前記運転者のマイクロスリープ状態に影響する前記生活ログ情報が取得されたことを条件として、前記運転者がマイクロスリープ状態であると推定する
     請求項1に記載の推定装置。
    The estimating device further comprises a life log information acquisition unit that acquires life log information relating to the life of the driver,
    The micro-sleep estimating unit detects that the eye-closed time is longer than or equal to the first time and less than the second time by the eye-closed state detecting unit, and the drowsiness determining unit determines that the drowsiness level is equal to or greater than the first time. and that the life log information that affects the micro sleep state of the driver is acquired by the life log information acquiring unit, the driver is in the micro sleep state. The estimating device according to claim 1, which is estimated as .
  15.  前記推定装置は、さらに、前記運転者の顔特徴を示す顔特徴情報を取得する顔特徴情報取得部を備え、
     前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値未満であると判定され、且つ、前記顔特徴情報取得部により前記運転者のマイクロスリープ状態に影響する前記顔特徴情報が取得されたことを条件として、前記運転者がマイクロスリープ状態であると推定する
     請求項1に記載の推定装置。
    The estimating device further comprises a facial feature information acquisition unit that acquires facial feature information indicating facial features of the driver,
    The micro-sleep estimating unit detects that the eye-closed time is longer than or equal to the first time and less than the second time by the eye-closed state detecting unit, and the drowsiness determining unit determines that the drowsiness level is equal to or greater than the first time. and that the facial feature information that affects the driver's micro-sleep state is acquired by the facial feature information acquiring unit, and the driver is in the micro-sleep state. The estimating device according to claim 1, which is estimated as .
  16.  前記推定装置は、さらに、前記運転者の頭部の動作を検出する頭部動作検出部を備え、
     前記マイクロスリープ推定部は、前記閉眼状態検出部により前記閉眼時間が前記第1の時間以上前記第2の時間未満であることが検出され、且つ、前記眠気判定部により前記眠気レベルが前記第1の閾値未満であると判定され、且つ、前記頭部動作検出部により前記運転者のマイクロスリープ状態に影響する前記頭部の動作が検出されたことを条件として、前記運転者がマイクロスリープ状態であると推定する
     請求項1に記載の推定装置。
    The estimating device further includes a head motion detection unit that detects a motion of the driver's head,
    The micro-sleep estimating unit detects that the eye-closed time is longer than or equal to the first time and less than the second time by the eye-closed state detecting unit, and the drowsiness determining unit determines that the drowsiness level is equal to or greater than the first time. is determined to be less than the threshold of, and the head movement detection unit detects the head movement that affects the micro sleep state of the driver, on the condition that the driver is in the micro sleep state The estimating device according to claim 1, which estimates that there is.
  17.  前記推定装置は、さらに、前記マイクロスリープ推定部による前記運転者のマイクロスリープ状態の推定に影響を与える状況を検出する誤推定状況検出部を備え、
     前記マイクロスリープ推定部は、前記誤推定状況検出部の検出結果を考慮して、前記第1の信頼度を変更する
     請求項3に記載の推定装置。
    The estimating device further includes an erroneous estimation situation detection unit that detects a situation that affects the estimation of the driver's microsleep state by the microsleep estimating unit,
    The estimation device according to claim 3, wherein the microsleep estimator changes the first reliability in consideration of the detection result of the erroneous estimation situation detector.
  18.  前記推定装置は、さらに、前記マイクロスリープ推定部による前記運転者のマイクロスリープ状態の推定に影響を与える状況である誤推定状況を検出する誤推定状況検出部を備え、
     前記マイクロスリープ推定部は、前記誤推定状況検出部により前記誤推定状況が検出された場合には、前記運転者のマイクロスリープ状態の推定を実施しない
     請求項1に記載の推定装置。
    The estimating device further comprises an erroneous estimation situation detection unit that detects an erroneous estimation situation, which is a situation that affects the estimation of the driver's microsleep state by the microsleep estimating unit,
    The estimation device according to claim 1, wherein the micro-sleep estimating unit does not estimate the driver's micro-sleep state when the erroneous estimation condition detection unit detects the erroneous estimation condition.
  19.  前記推定装置は、さらに、
     前記運転者による前記車両の運転状況を検出する運転状況検出部と、
     前記運転状況検出部により検出された前記運転状況に基づいて、前記閉眼状態検出部における前記閉眼時間の検出に用いられる前記第1の時間及び/又は前記第2の時間を変更する閉眼時間変更部と、を備える
     請求項1に記載の推定装置。
    The estimation device further
    a driving situation detection unit that detects a driving situation of the vehicle by the driver;
    An eye-closing time changing unit that changes the first time and/or the second time used for detecting the eye-closing time in the eye-closing state detecting unit based on the driving situation detected by the driving situation detecting unit. The estimating device according to claim 1, comprising:
  20.  前記閉眼状態検出部は、撮像部により撮像された前記運転者の画像情報に基づいて、前記閉眼時間を検出し、
     前記眠気判定部は、生体センサにより検出された前記運転者の生体情報に基づいて、前記眠気レベルを判定する
     請求項1~19のいずれか1項に記載の推定装置。
    The eye-closed state detection unit detects the eye-closed time based on the image information of the driver captured by the imaging unit,
    The estimation device according to any one of claims 1 to 19, wherein the drowsiness determination unit determines the drowsiness level based on the driver's biological information detected by a biological sensor.
  21.  前記閉眼状態検出部は、撮像部により撮像された前記運転者の画像情報に基づいて、前記閉眼時間を検出し、
     前記眠気判定部は、前記画像情報に基づいて、前記眠気レベルを判定する
     請求項1~19のいずれか1項に記載の推定装置。
    The eye-closed state detection unit detects the eye-closed time based on the image information of the driver captured by the imaging unit,
    The estimation device according to any one of claims 1 to 19, wherein the drowsiness determination unit determines the drowsiness level based on the image information.
  22.  車両の運転者がマイクロスリープ状態であることを推定するための推定方法であって、
     (a)前記運転者の眼の閉眼時間を検出するステップと、
     (b)前記運転者の眠気レベルを判定するステップと、
     (c)前記(a)において前記閉眼時間が第1の時間以上第2の時間未満であることが検出され、且つ、前記(b)において前記眠気レベルが第1の閾値以上であると判定されたことを条件として、前記運転者がマイクロスリープ状態であると推定するステップと、を含む
     推定方法。
    An estimation method for estimating that a vehicle driver is in a micro-sleep state, comprising:
    (a) detecting the closing time of the driver's eyes;
    (b) determining a drowsiness level of the driver;
    (c) detecting that the closed-eye time is longer than or equal to the first time and shorter than the second time in (a), and determining that the drowsiness level is greater than or equal to the first threshold in (b); and estimating that the driver is in a micro-sleep state if the driver is in a micro-sleep state.
  23.  請求項22に記載の推定方法をコンピュータに実行させる
     プログラム。
    A program that causes a computer to execute the estimation method according to claim 22.
PCT/JP2022/039910 2021-12-10 2022-10-26 Estimation device, estimation method, and program WO2023105970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021200584 2021-12-10
JP2021-200584 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023105970A1 true WO2023105970A1 (en) 2023-06-15

Family

ID=86730096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039910 WO2023105970A1 (en) 2021-12-10 2022-10-26 Estimation device, estimation method, and program

Country Status (1)

Country Link
WO (1) WO2023105970A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130181A (en) * 2005-11-09 2007-05-31 Toshiba Corp Apparatus, method and system for measuring sleeping condition
JP2009018091A (en) * 2007-07-13 2009-01-29 Toyota Motor Corp Doze detector
JP2013257691A (en) * 2012-06-12 2013-12-26 Panasonic Corp Doze state determination device and doze state determination method
JP2017536589A (en) * 2014-06-20 2017-12-07 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Device, method and computer program for detecting instantaneous sleep
JP2018508870A (en) * 2015-01-19 2018-03-29 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for detecting instantaneous sleep of a vehicle driver
JP2018161432A (en) * 2017-03-27 2018-10-18 公立大学法人名古屋市立大学 Evaluation of Sleep State
JP2018537787A (en) * 2015-12-14 2018-12-20 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for classifying at least one eye opening data of a vehicle occupant and method and apparatus for detecting drowsiness and / or microsleep of a vehicle occupant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130181A (en) * 2005-11-09 2007-05-31 Toshiba Corp Apparatus, method and system for measuring sleeping condition
JP2009018091A (en) * 2007-07-13 2009-01-29 Toyota Motor Corp Doze detector
JP2013257691A (en) * 2012-06-12 2013-12-26 Panasonic Corp Doze state determination device and doze state determination method
JP2017536589A (en) * 2014-06-20 2017-12-07 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Device, method and computer program for detecting instantaneous sleep
JP2018508870A (en) * 2015-01-19 2018-03-29 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for detecting instantaneous sleep of a vehicle driver
JP2018537787A (en) * 2015-12-14 2018-12-20 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for classifying at least one eye opening data of a vehicle occupant and method and apparatus for detecting drowsiness and / or microsleep of a vehicle occupant
JP2018161432A (en) * 2017-03-27 2018-10-18 公立大学法人名古屋市立大学 Evaluation of Sleep State

Similar Documents

Publication Publication Date Title
US11027608B2 (en) Driving assistance apparatus and driving assistance method
US20220095975A1 (en) Detection of cognitive state of a driver
JP5326521B2 (en) Arousal state determination device and arousal state determination method
US10899356B2 (en) Drowsiness prevention device, drowsiness prevention method, and recording medium
JP2007122579A (en) Vehicle controller
WO2019208450A1 (en) Driving assistance device, driving assistance method, and program
CN106945672B (en) Method and controller for outputting drowsiness warning
JP7118136B2 (en) PASSENGER STATE DETERMINATION DEVICE, WARNING OUTPUT CONTROL DEVICE AND PASSENGER STATE DETERMINATION METHOD
JPWO2006054542A1 (en) Fatigue judgment system and fatigue judgment method
Nakamura et al. Detection of driver's drowsy facial expression
JP6399311B2 (en) Dozing detection device
CN109886148A (en) A kind of driver&#39;s active warning system and device based on recognition of face
US20220036101A1 (en) Methods, systems and computer program products for driver monitoring
US11430231B2 (en) Emotion estimation device and emotion estimation method
WO2023105970A1 (en) Estimation device, estimation method, and program
JP2013257691A (en) Doze state determination device and doze state determination method
JPH08332871A (en) Degree of awakening detecting device
US10945651B2 (en) Arousal level determination device
JP7192668B2 (en) Arousal level determination device
JP3812355B2 (en) Driving attention detection device and drowsy driving detection device
WO2019138733A1 (en) Detection device and program
JP2023094914A (en) Estimation apparatus, estimation method, and program
US20220314975A1 (en) Drive assist system
US20220315017A1 (en) Drive assist system
Friedrichs Driver alertness monitoring using steering, lane keeping and eye tracking data under real driving conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903902

Country of ref document: EP

Kind code of ref document: A1