WO2023105919A1 - Fuel injection device, fuel injection system, and control method - Google Patents

Fuel injection device, fuel injection system, and control method Download PDF

Info

Publication number
WO2023105919A1
WO2023105919A1 PCT/JP2022/038216 JP2022038216W WO2023105919A1 WO 2023105919 A1 WO2023105919 A1 WO 2023105919A1 JP 2022038216 W JP2022038216 W JP 2022038216W WO 2023105919 A1 WO2023105919 A1 WO 2023105919A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
fuel
valve
fuel injection
injection device
Prior art date
Application number
PCT/JP2022/038216
Other languages
French (fr)
Japanese (ja)
Inventor
哲哉 相澤
泰三 嶋田
凌伍 吉宇田
諒平 池田
直輝 芳賀
晴天 保井
Original Assignee
学校法人明治大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人明治大学 filed Critical 学校法人明治大学
Priority to JP2023566114A priority Critical patent/JPWO2023105919A1/ja
Publication of WO2023105919A1 publication Critical patent/WO2023105919A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14

Definitions

  • the present invention relates to a fuel injection device, a fuel injection system, and a control method.
  • This application claims priority based on Japanese Patent Application No. 2021-199326 filed in Japan on December 08, 2021, the contents of which are incorporated herein.
  • a method such as that described in Patent Document 1 can improve the responsiveness to the control of opening and closing the injection port, and can sharpen the rise of the fuel injection rate. The steeper the rise of the fuel injection rate, the more the fuel combustion efficiency improves.
  • the rise of the fuel injection rate can be made steeper by increasing the fuel injection pressure. This means that even if the method described in Patent Literature 1 is used, there is room for further improving the fuel combustion efficiency in a fuel-injection internal combustion engine.
  • a method of increasing the injection pressure of fuel a method of increasing the pressure of a high-pressure source that supplies fuel into the combustion chamber is known.
  • it is necessary to improve the pressure resistance of the entire system that supplies fuel into the combustion chamber. This is not preferable because it causes an increase in the weight of the internal combustion engine, an increase in the manufacturing cost of the internal combustion engine, and the like.
  • the present invention has been made in view of the above problems of the prior art, and provides a fuel injection device, a fuel injection system, and a control method capable of injecting fuel at a pressure higher than the pressure of a high-pressure source. .
  • a fuel injection device that injects fuel into a combustion chamber of an internal combustion engine, comprising: an injection port that injects the fuel into the combustion chamber; a first flow path for connecting a high-pressure source for supplying the fuel at a predetermined pressure to the injection port, and for supplying the fuel from the high-pressure source; a first valve that opens and closes; a second flow path that is connected to the first flow path and to which the fuel is supplied from the first flow path; and a second valve that opens and closes.
  • a fuel injection device is a fuel injection device that injects fuel into a combustion chamber of an internal combustion engine, the fuel injection device injecting the fuel into the combustion chamber.
  • a first flow path connecting a port, a high-pressure source for supplying the fuel at a predetermined pressure, and the injection port, and supplied with the fuel from the high-pressure source; a first valve for opening and closing a port; a second flow path connected to the first flow path and supplied with the fuel from the first flow path; a second valve that opens and closes a passage; a portion that is provided in the first passage and is located upstream of the first valve in the first passage among portions of the first passage; and a third valve that opens and closes a portion of the first flow path located downstream of a connection portion between the first flow path and the second flow path in the first flow path; wherein the fuel is held in the first flow path when the first valve closes the injection port and the third valve closes the first flow path space is
  • a fuel injection system includes a first fuel injection device that injects fuel into a combustion chamber of an internal combustion engine, and a first fuel injection device that injects the fuel into the combustion chamber.
  • a fuel injection device that injects fuel into a combustion chamber of an internal combustion engine, and a first fuel injection device that injects the fuel into the combustion chamber.
  • a fuel injection device a 0th flow path connected to a high-pressure source that supplies the fuel at a predetermined pressure and to which the fuel is supplied from the high-pressure source; and a second valve provided in the second flow path for opening and closing the second flow path, wherein the first fuel injection device supplies the fuel.
  • the second fuel injection device includes a twenty-first injection port for injecting the fuel into the combustion chamber, the zeroth flow path, a 21st flow path connected to a 21st injection port and supplied with the fuel from the high pressure source; and a 21st valve provided in the 21st flow path for opening and closing the 21st injection port.
  • a control method is a control method for a fuel injection device that injects fuel into a combustion chamber of an internal combustion engine, wherein the fuel injection device includes the fuel into the combustion chamber, a high-pressure source for supplying the fuel at a predetermined pressure, and the injection port are connected to each other, and a first flow path to which the fuel is supplied from the high-pressure source; a first valve provided in a flow path for opening and closing the injection port; a first driving unit for causing the first valve to open and close the injection port; a second flow passage to which the fuel is supplied from the passage; a second valve provided in the second flow passage for opening and closing the second flow passage; and a second drive unit that causes the first valve to open the second flow path in a state in which the first valve closes the injection port; a second step of closing the second flow path by the second valve after a predetermined time has elapsed since the second valve opened the second flow path in the step; and
  • a control method is a control method for a fuel injection device that injects fuel into a combustion chamber of an internal combustion engine, wherein the fuel injection device includes the fuel into the combustion chamber, a high-pressure source for supplying the fuel at a predetermined pressure, and the injection port are connected to each other, and a first flow path to which the fuel is supplied from the high-pressure source; a first valve provided in a flow path for opening and closing the injection port; a first driving unit for causing the first valve to open and close the injection port; a second flow passage to which the fuel is supplied from the passage; a second valve provided in the second flow passage for opening and closing the second flow passage; and a portion of the portion of the first flow path that is located upstream of the first valve in the first flow path, and that of the portion of the first flow path.
  • a third valve provided in a portion of the first flow path located downstream of a connection portion between the first flow path and the second flow path to open and close the first flow path; and a third drive unit that causes three valves to open and close the first flow path, and the first valve is in a state where the injection port is closed in the first flow path, and the third When the valve closes the first flow path, a space is formed in which the fuel is held, and the control method includes controlling the second flow path with the third valve closing the first flow path.
  • an eleventh step of opening the second flow path with a valve and after a predetermined first time has elapsed since the second valve opened the second flow path in the eleventh step, a twelfth step of closing two flow paths; a thirteenth step of opening the first flow path by the third valve at a timing after the second valve closes the second flow path in the twelfth step; During the period from when the second valve closes the second flow path in the twelfth step to when the third valve opens the first flow path in the thirteenth step, the injection port is operated by the first valve. and a fourteenth step of opening
  • a fuel injection device a fuel injection system, and a control method that can inject fuel at a pressure higher than the pressure of a high-pressure source.
  • FIG. 1 is a diagram showing an example of a configuration of a fuel injection device 1; FIG. It is a figure which shows an example of the hardware constitutions of ECU3. It is a figure which shows an example of a functional structure of ECU3.
  • FIG. 4 is a diagram showing an example of temporal changes in fuel injection pressure and temporal changes in fuel injection rate.
  • FIG. 4 is a diagram showing an example of temporal changes in fuel injection pressure and temporal changes in fuel injection rate
  • FIG. 5 is a diagram showing another example of the configuration of the fuel injection device 1B
  • It is a figure showing other examples of functional composition of ECU3.
  • FIG. 2 is a diagram showing an example of each of a change over time, a change over time in the lift amount of the first valve V1, a change over time in the injection pressure of fuel, and a change over time in the injection rate of fuel.
  • FIG. 2 is a diagram showing an example of each of a change over time, a change over time in the lift amount of the first valve V1, a change over time in the injection pressure of fuel, and a change over time in the injection rate of fuel.
  • FIG. 1 is a diagram showing an example of a configuration of a fuel injection system 10;
  • the fuel injection device 1 is provided in the fuel injection type internal combustion engine EG, and is a device that injects (supplies) fuel into the combustion chamber CC of the internal combustion engine EG.
  • the internal combustion engine EG is an internal combustion engine provided with a pressure accumulation injection system (common rail injection system).
  • the internal combustion engine EG is, for example, a diesel engine provided in automobiles, ships, railway vehicles, heavy machinery, and the like. Thus, the fuel is light oil in this example.
  • the internal combustion engine EG may be another fuel injection type internal combustion engine such as a fuel injection type gasoline engine instead of the diesel engine.
  • a method of increasing the injection pressure of fuel into the combustion chamber CC is known. This can be achieved, for example, by increasing the pressure of the high pressure source that supplies fuel into the combustion chamber CC.
  • the fuel injection device 1 includes an injection port, a first flow path, a first valve, a second flow path, and a second valve.
  • the injection port is an opening through which fuel is injected into the combustion chamber CC.
  • the first flow path connects a high-pressure source (common rail) that supplies fuel at a predetermined pressure to the injection port, and fuel is supplied from the high-pressure source.
  • the predetermined pressure is the reference pressure in the fuel injection device 1 .
  • the first valve is provided in the first flow path and opens and closes the injection port.
  • the second flow path is connected to the first flow path and supplied with fuel from the first flow path.
  • the second valve is provided in the second flow path and opens and closes the second flow path.
  • the fuel injection device 1 can block the flow of fuel to the second flow path by closing the second flow path with the second valve while the injection port is closed with the first valve.
  • the pressure in the first flow path momentarily becomes higher than the predetermined pressure due to the water hammer effect of the dammed fuel.
  • the fuel injection device 1 opens the injection port during the period in which the pressure in the first flow path is higher than the predetermined pressure, thereby injecting fuel into the combustion chamber CC at a pressure higher than the predetermined pressure. can be injected into The higher the initial injection pressure of the fuel, the steeper and sharper the rise of the injection rate of the fuel injected into the combustion chamber CC. That is, the fuel injection device 1 can further improve the fuel combustion efficiency.
  • the fuel injection device 1 can also improve user convenience.
  • the configuration of the fuel injection device 1 and the control method of the fuel injection device 1 will be described in detail below.
  • FIG. 1 is a diagram showing an example of the configuration of the fuel injection device 1.
  • the fuel injection device 1 includes a fuel injector 2 and an ECU (Electronic Control Unit) 3 that controls the fuel injector 2 . Note that the fuel injection device 1 may be configured without the ECU 3 .
  • Fuel is supplied to the fuel injector 2 from a high pressure source 4 at a predetermined pressure Pb.
  • the high pressure source 4 is a common rail provided in the internal combustion engine EG.
  • the fuel injector 2 injects the fuel supplied from the high pressure source 4 into the combustion chamber CC under the control of the ECU 3 .
  • the high pressure source 4 is provided with a common rail pressure regulating valve (pressure relief valve).
  • a common rail pressure regulating valve pressure relief valve
  • the fuel injector 2 is, for example, an electric injector.
  • the fuel injector 2 includes a first flow path F1, an injection port H, a first valve V1, a driving portion A1, a second flow path F2, a second valve V2, and a driving portion A2.
  • the first flow path F1 is a pipeline formed inside the housing of the fuel injector 2 .
  • the first flow path F1 is a conduit through which fuel supplied from the high pressure source 4 at a predetermined pressure Pb passes. Further, the first flow path F1 is a pipeline that connects the high pressure source 4 and the injection port H. As shown in FIG. That is, fuel supplied from the high-pressure source 4 at a predetermined pressure Pb reaches the injection port H through the first flow path F1.
  • the injection port H is an opening formed in the first flow path F1. Therefore, the fuel supplied from the high-pressure source 4 to the first flow path F1 is injected (supplied) from the injection port H into the combustion chamber CC. That is, the injection port H injects fuel into the combustion chamber CC.
  • the first valve V1 is provided in the first flow path F1 and opens and closes the injection port H.
  • the state in which the injection port H is open means a state in which the fuel supplied from the first flow path F1 can be injected from the injection port H into the combustion chamber CC.
  • a state in which the injection port H is closed means a state in which the fuel supplied from the first flow path F1 cannot be injected from the injection port H into the combustion chamber CC. Therefore, the opening and closing of the injection port H may be realized by opening and closing the injection port H itself, or by opening and closing the first flow path F1. In the following, as an example, the opening and closing of the injection port H is realized by opening and closing the injection port H itself.
  • the first valve V1 is a nozzle needle.
  • the first valve V1 may be any member as long as it is a member capable of opening and closing the injection port H instead of the nozzle needle.
  • the first valve V1 closes the injection port H by closing the injection port H with the tip of the first valve V1. More specifically, the first valve V1 does not move while blocking the injection port H when the ECU 3 does not drive the drive unit A1. This causes the first valve V1 to keep the injection port H closed in that case. On the other hand, the first valve V1 moves away from the injection port H when the ECU 3 drives the driving portion A1. As a result, the first valve V1 is in that case moved away from the injection port H in that direction, and the injection port H opens.
  • the drive unit A1 causes the first valve V1 to open and close the injection port H.
  • the drive unit A1 has, for example, a solenoid, a piezo element, or the like as an actuator for driving the first valve V1.
  • the pressure of the fuel supplied through the pipe line connected to the first flow path F1 that is, the predetermined pressure Pb
  • the driving part A1 keeps the injection port H closed by the first valve V1 in this case.
  • the pipeline connects the first flow path F1 and an outlet through which the fuel passing through the pipeline is discharged.
  • This outlet is connected, for example, to a fuel tank (this fuel tank may or may not be connected to the high pressure source 4) via a conduit (not shown). Therefore, the fuel flowing out from this outlet eventually returns to the fuel tank.
  • the configuration beyond this discharge port may be replaced with any other configuration. Therefore, further detailed description of the configuration beyond this discharge port will be omitted.
  • the drive unit A1 is driven by the ECU 3, the pressure of the fuel supplied through the pipeline (that is, the predetermined pressure Pb) is reduced by opening the valve provided in the drive unit A1. , moves the first valve V1 away from the injection port H. That is, the driving part A1 opens the injection port H by the first valve V1 in this case.
  • the structure and operation for opening and closing the first valve V1 may be a known structure and operation, or may be a structure and operation to be developed in the future, so further detailed description will be omitted.
  • the second flow path F2 is a pipeline formed inside the housing of the fuel injector 2. Also, the second flow path F2 is a conduit connecting the first flow path F1 and an outlet through which the fuel passing through the second flow path F2 is discharged. In other words, the second flow path F2 is a conduit connected to the first flow path F1. Therefore, fuel is supplied from the first flow path F1 to the second flow path F2.
  • this outlet is connected to a fuel tank (this fuel tank may or may not be connected to the high pressure source 4) via a conduit (not shown). . Therefore, the fuel flowing out from this outlet through the second flow path F2 finally returns to the fuel tank.
  • the configuration beyond this discharge port may be any configuration instead of this. Therefore, further detailed description of the configuration beyond this discharge port is omitted.
  • the second valve V2 is provided in the second flow path F2 and opens and closes the second flow path F2.
  • the fuel supplied from the first flow path F1 flows through the second flow path F2 to the outlet through which the fuel passing through the second flow path F2 is discharged. means flowing through.
  • the fuel supplied from the first flow path F1 is discharged from the second flow path F2 to the outlet through which the fuel passing through the second flow path F2 is discharged. It means no flow through F2.
  • the opening and closing of the second flow path F2 may be realized by opening and closing the second flow path F2 itself, or may be realized by opening and closing the connecting portion between the first flow path F1 and the second flow path F2. .
  • the second valve V2 is a valve that changes the pressure in the first flow path F1 by opening and closing the second flow path F2.
  • the second valve V2 is a valve additionally provided in the second flow path F2 separately from the common rail pressure regulating valve, and is not a valve functioning as a common rail pressure regulating valve.
  • the common rail pressure regulating valve is a valve that releases fuel from the high-pressure source 4, which is a source of pressure, so that the high-pressure source 4 does not malfunction when the pressure of the high-pressure source 4 rises too much.
  • a common rail pressure regulating valve is therefore usually provided in the high pressure source 4 itself.
  • the position of the connecting portion between the first flow path F1 and the second flow path F2 is preferably closer to the injection port H. Also, the closer the position of the second valve V2 is to the injection port H, the better. This is because it is desired to increase the pressure of the fuel injected into the combustion chamber CC from the injection port H by the above-described water hammer action.
  • the fuel injection device 1 is provided with the second valve V2 as an additional valve separate from the common rail pressure regulating valve.
  • the second valve V2 may be any member as long as it is a member that can open and close the second flow path F2 according to the drive of the driving part A2. Therefore, in FIG. 1, the second valve V2 is indicated by a rectangle for convenience.
  • the second valve V2 closes the second flow path F2 by blocking the second flow path F2. More specifically, the second valve V2 closes the second flow path F2 and, as a result, closes the second flow path F2 when the ECU 3 does not drive the drive unit A2. On the other hand, when the ECU 3 drives the drive unit A2, the second valve V2 moves in the direction of opening the second flow path F2, opening the second flow path F2.
  • the drive unit A2 causes the second valve V2 to open and close the second flow path F2.
  • the drive unit A2 has, for example, a solenoid, a piezo element, or the like as an actuator for driving the second valve V2.
  • the driving part A2 does not move the second valve V2 and continues to close the second flow path F2.
  • the drive unit A2 moves the second valve V2 in the direction of opening the second flow path F2 to open the second flow path F2.
  • the structure and operation for opening and closing the second valve V2 may be a known structure and operation, or may be a structure and operation that will be developed in the future, so further detailed description will be omitted.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the ECU 3.
  • the ECU 3 includes, for example, a CPU (Central Processing Unit) 31, a storage section 32, a first valve drive circuit 33, and a second valve drive circuit . These components are communicatively connected to each other via a bus. Moreover, the structure provided with the communication part for mutually communicating with other ECU may be sufficient as ECU3.
  • a CPU Central Processing Unit
  • the CPU 31 executes various programs stored in the storage section 32 .
  • the CPU 31 may be another processor such as an FPGA (Field Programmable Gate Array).
  • the storage unit 32 includes, for example, EEPROM (Electrically Erasable Programmable Read Only Memory), ROM (Read Only Memory), RAM (Random Access Memory), and the like.
  • the storage unit 32 stores various information processed by the ECU 3 .
  • the first valve drive circuit 33 supplies drive current to the drive unit A1 for driving the drive unit A1 that opens and closes the first valve V1.
  • the second valve drive circuit 34 supplies a drive current for driving the drive section A2 that opens and closes the second valve V2 to the drive section A2.
  • FIG. 3 is a diagram showing an example of the functional configuration of the ECU 3.
  • the ECU 3 includes a storage section 32 , a first valve drive circuit 33 , a second valve drive circuit 34 and a control section 36 .
  • the control unit 36 controls the first valve driving circuit 33 and causes the driving unit A1 to open and close the injection port H by the first valve V1 according to the timing stored in the storage unit 32 in advance. Further, the control unit 36 controls the second valve drive circuit 34 and causes the drive unit A2 to open and close the second flow path F2 by the second valve V2 according to the timing stored in advance in the storage unit 32 .
  • the control unit 36 is implemented, for example, by the CPU 31 executing a program stored in the storage unit 32 . Also, the control unit 36 may be a hardware function unit such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit).
  • control method of the fuel-injection apparatus 1 in the case of performing main injection is demonstrated as an example. However, this control method may be applied to other injections such as pre-injection and pilot injection.
  • the control involving the opening/closing of the injection port H and the opening/closing of the second flow path F2 will be referred to as the first control.
  • the control that accompanies the opening and closing of the injection port H and does not accompany the opening and closing of the second flow path F2 will be referred to as the second control.
  • the second control When the second control is performed, temporal changes in the fuel injection pressure and injection rate in the fuel injection device 1 are substantially the same as temporal changes in the fuel injection pressure and injection rate in the conventional fuel injection device. Gone. For this reason, comparing the control method of the fuel injection device 1 by the first control and the control method of the fuel injection device 1 by the second control is a different fuel injection device from the fuel injection device 1 (for example, a conventional fuel injection device). ), the superiority of the fuel injection device 1 can be clearly shown. Therefore, below, the control method of the fuel injection device 1 by the first control and the control method of the fuel injection device 1 by the second control will be compared, and the advantages of the fuel injection device 1 as compared with the conventional fuel injection device will be described. will be explained.
  • the fuel injection pressure indicates the fuel pressure at the injection port H outlet. Further, in the present embodiment, the fuel injection rate indicates the volume of fuel that flows out from the injection port H toward the combustion chamber CC per unit time.
  • FIG. 4 shows the opening and closing timings of the injection port H and the second flow path F2 in the fuel injection device 1, the temporal change of the pressure in the first flow path F1, and the temporal change of the lift amount of the first valve V1.
  • FIG. 3 is a diagram showing an example of each of a change in pressure, a change in fuel injection pressure over time, and a change in fuel injection rate over time.
  • the lift amount of the first valve V1 is calculated by taking the position of the first valve V1 that blocks the injection port H as a reference position of the first valve V1 and comparing the reference position with the position of the first valve V1. It is the amount that indicates the difference between That is, as the lift amount of the first valve V1 increases, the opening degree of the injection port H increases.
  • the position of the first valve V1 is represented by the position at the tip of the first valve V1, for example, but may be represented by the position of other parts of the first valve V1.
  • FIG. 4 clearly shows the difference between the fuel injection device 1 controlled by the first control and the fuel injection device 1 controlled by the second control.
  • the vertical axis of the graph G1 shown in FIG. 4 indicates the pressure inside the first flow path F1.
  • a curve FN1 plotted on the graph G1 shows an example of temporal change in pressure in the first flow path F1 when the fuel injection device 1 is controlled by the first control.
  • a curve FX1 plotted in the graph G1 shows an example of temporal change in pressure in the first flow path F1 when the fuel injection device 1 is controlled by the second control.
  • a timing chart TC1 showing the opening/closing timing of the injection port H and a timing chart TC2 showing the opening/closing timing of the second flow path F2 are superimposed on the graph G1.
  • the vertical axis of the graph G2 shown in FIG. 4 indicates the lift amount of the first valve V1.
  • a curve FN2 plotted on the graph G2 shows an example of temporal changes in the lift amount of the first valve V1 when the fuel injection device 1 is controlled by the first control.
  • a curve FX2 plotted on the graph G2 shows an example of temporal change in the lift amount of the first valve V1 when the fuel injection device 1 is controlled by the second control.
  • the vertical axis of graph G3 shown in FIG. 4 indicates the fuel injection pressure.
  • a curve FN3 plotted on the graph G3 shows an example of temporal changes in the fuel injection pressure when the fuel injection device 1 is controlled by the first control.
  • a curve FX3 plotted on the graph G3 shows an example of temporal change in fuel injection pressure when the fuel injection device 1 is controlled by the second control.
  • the vertical axis of graph G4 shown in FIG. 4 indicates the fuel injection rate.
  • a curve FN4 plotted on the graph G4 shows an example of temporal changes in the fuel injection rate when the fuel injection device 1 is controlled by the first control.
  • a curve FX4 plotted on the graph G4 shows an example of temporal changes in the fuel injection rate when the fuel injection device 1 is controlled by the second control.
  • the fuel injection device 1 controlled by the first control waits with the injection port H and the second flow path F2 closed until timing t1. Then, the fuel injection device 1 starts to open the second flow path F2 at the timing t1. As a result, as indicated by the curve FN1, in the fuel injection device 1, the pressure inside the first flow path F1 begins to decrease at timing t1. This is because the fuel starts to flow from the first flow path F1 to the second flow path F2 at the timing t1.
  • the driving section A2 starts moving the second valve V2 so that the second flow path F2 is closed at timing t2 when a predetermined first time has elapsed from timing t1. .
  • the pressure inside the first flow path F1 starts to rise at timing t2.
  • the pressure in the first flow path F1 momentarily becomes higher than the predetermined pressure Pb at the timing after the timing t2.
  • the fuel flowing from the first flow path F1 through the second flow path F2 to the discharge port is dammed by the second valve V2, and the resulting water hammer action causes the fuel to flow into the first flow path F1.
  • This phenomenon occurs because the pressure momentarily becomes higher than the predetermined pressure Pb. More specifically, the fuel flowing from the first flow path F1 to the discharge port through the second flow path F2 is blocked by the second valve V2 in the second flow path F2 at timing t2.
  • the dammed fuel is compressed according to the flow velocity of the fuel before dammed. As a result, a water hammer action occurs, and the pressure in the first flow path F1 begins to rise.
  • the pressure in the first flow path F1 damps and oscillates after timing t2. Therefore, the fuel injection device 1 controlled by the first control starts opening the injection port H at timing t3. At timing t3, among the timings after timing t2, the pressure in the first flow path F1 rises from the pressure less than the predetermined pressure Pb to the pressure exceeding the predetermined pressure Pb, and then the pressure in the first flow path F1 Any timing may be used as long as it is within the period until starts to fall again.
  • ⁇ Pmax indicates the difference between the highest pressure due to the water hammer action and the predetermined pressure Pb among the pressures in the first flow path F1.
  • the fuel injection device 1 sets the timing within the period until the pressure in the first flow path F1 becomes (Pb+ ⁇ Pmax) among timings after the timing t2 as the timing t3, and the injection port H is injected at the timing t3. start to open.
  • the timing t3 is the timing after the timing t2 when the pressure in the first flow path F1 returns from the pressure lower than the predetermined pressure Pb to the predetermined pressure Pb.
  • the time difference between the timing t2 and the timing t3 is determined, for example, by trial and error in advance tests, experiments, etc., so that the combustion efficiency of the fuel approaches the desired combustion efficiency (for example, the highest combustion efficiency, etc.). , may be determined based on theoretical calculation, may be determined by simulation, or may be determined by other methods. Since the injection port H starts to open at the timing t3 determined in this way, the fuel in the first flow path F1 flows from the injection port H into the combustion chamber CC at the timing t3 at a pressure higher than the predetermined pressure Pb. begins to be sprayed into Therefore, the fuel injection pressure and injection rate also start to rise at timing t3, as indicated by curves FN3 and FN4, respectively.
  • the driving section A1 moves the first valve V1 so that the injection port H is closed at the timing t4 when a predetermined second time has elapsed from the timing t3. start.
  • the fuel injection device 1 reduces the lift amount of the first valve V1 and increases the amount of fuel during the period from timing t3 to timing t4. Injection pressure and injection rate begin to drop.
  • the lift amount of the first valve V1 becomes 0 [mm]
  • the fuel injection pressure becomes 0 [MPa]
  • the fuel injection rate becomes 0 [mm 3 /s]. becomes.
  • each of the lift amount of the first valve V1, the fuel injection pressure, and the fuel injection rate fluctuates in the order of rising, falling, rising, and falling within the period. Therefore, in this example, two peaks appear in the temporal changes in the lift amount of the first valve V1, the fuel injection pressure, and the fuel injection rate. This is a reflection of the influence of the damped oscillation of the pressure in the first flow path F1 during this period. Countermeasures against this influence will be described in modification 1 and subsequent embodiments of the embodiment.
  • the fuel injection device 1 controlled by the first control waits with the injection port H and the second flow path F2 closed until the next injection of fuel is started. Therefore, in the fuel injection device 1, the pressure in the first flow path F1 returns to the predetermined pressure Pb until the next injection of fuel is started.
  • the fuel injection device 1 controlled by the second control keeps the injection port H and the second flow path F2 closed until timing t3. stand by. Then, the fuel injection device 1 starts to open the injection port H at timing t3. Since the injection port H begins to open, the fuel in the first flow path F1 begins to be injected from the injection port H into the combustion chamber CC at a predetermined pressure Pb at timing t3. Therefore, the fuel injection pressure and injection rate also start to rise at timing t3, as indicated by curves FX3 and FX4, respectively. As a result, as indicated by the curve FX1, in the fuel injection device 1, the pressure in the first flow path F1 starts to decrease from the predetermined pressure Pb at timing t3.
  • the driving section A1 starts moving the first valve V1 so that the injection port H is closed at timing t4.
  • the fuel injection device 1 reduces the lift amount of the first valve V1 and increases the amount of fuel during the period from timing t3 to timing t4. Injection pressure and injection rate begin to drop.
  • the lift amount of the first valve V1 becomes 0 [mm]
  • the fuel injection pressure becomes 0 [MPa]
  • the fuel injection rate becomes 0 [mm 3 /s]. becomes.
  • the fuel injection device 1 controlled by the second control waits with the injection port H and the second flow path F2 closed until the next injection of fuel is started. Therefore, in the fuel injection device 1, the pressure in the first flow path F1 returns to the predetermined pressure Pb until the next injection of fuel is started.
  • the pressure in the first flow path F1 is such that the fuel flowing through the first flow path F1 toward the injection port H is dammed by the first valve V1 at time t4. Therefore, as indicated by the curve FX1, damped vibration occurs due to the occurrence of water hammer.
  • the influence of this damped oscillation is not transmitted to the combustion chamber CC because the injection port H is closed at the timing t4. Then, in the fuel injection device 1, this damped oscillation is settled within a period until the next injection of fuel is started.
  • the fuel injection device 1 controlled by the first control starts injecting fuel into the combustion chamber CC from timing t3 at a pressure higher than the predetermined pressure Pb. It is impossible for the fuel injection device 1 controlled by the second control to start injecting fuel at a pressure higher than the predetermined pressure Pb, that is, at a pressure higher than the pressure of the high-pressure source 4 . In other words, it is impossible for a conventional fuel injection device to start injecting fuel at a pressure higher than the predetermined pressure Pb, that is, at a pressure higher than the pressure of the high-pressure source 4 .
  • the rise of the lift amount of the first valve V1 is steeper and sharper than before, the rise of the fuel injection pressure is steeper and sharper than before, and the fuel is injected.
  • the rise in rate is steeper and sharper than in the past.
  • the injection port H can be opened faster than the conventional fuel injection device, and the injection pressure and the injection rate of the fuel can be increased faster than the conventional fuel injection device.
  • the fuel injection device 1 can further improve the fuel combustion efficiency as compared with the conventional fuel injection device.
  • the fuel injection device 1 can realize a sharp rise of the fuel injection pressure from the timing t3 without using an expensive actuator with high response such as a piezo element. This indicates that the fuel injection device 1 can also suppress an increase in manufacturing costs. Naturally, the fuel injection device 1 can further sharpen the rising of the fuel injection pressure from the timing t3 by combining with the highly responsive actuator.
  • each of the above-mentioned first time and second time is set so that the combustion efficiency of the fuel approaches the desired combustion efficiency (for example, the highest combustion efficiency, etc.) by trial and error in advance tests, experiments, etc.
  • the desired combustion efficiency for example, the highest combustion efficiency, etc.
  • it may be determined based on theoretical calculation, may be determined by simulation, or may be determined by other methods.
  • ⁇ Pmax which is a change in the pressure that rises due to the water hammer action in the first flow path F1
  • the time required from timing t2 until the pressure in the first flow path F1 exceeds a predetermined pressure Pb the first flow
  • the length of time during which the pressure in the passage F1 continues to exceed the predetermined pressure Pb depends on the flow velocity, flow rate, etc. of the fuel flowing from the first passage F1 to the discharge port through the second passage F2. Determined. For this reason, the flow velocity, flow rate, etc.
  • the combustion efficiency of the fuel flowing from the first flow path F1 to the discharge port through the second flow path F2 can be determined, for example, by trial and error in advance tests, experiments, etc., so that the combustion efficiency of the fuel reaches the desired combustion efficiency ( For example, the maximum combustion efficiency, etc.) may be determined based on theoretical calculations, simulations, or other methods.
  • Modification 1 of Embodiment will be described below.
  • the same reference numerals are assigned to the same components as in the embodiment, and the description thereof is omitted.
  • the fuel injection device 1 according to Modification 1 of the embodiment will be referred to as a fuel injection device 1A in order to distinguish it from the fuel injection device 1 according to the embodiment.
  • the flow rate of the fuel is increased without changing the flow velocity of the fuel flowing from the first flow path F1 to the discharge port through the second flow path F2.
  • This can be achieved, for example, by increasing the diameter of the second flow path F2, forming the second flow path F2 in a tapered shape, and configuring the second flow path F2 with a plurality of pipe lines.
  • the diameter of the second flow path F2 provided in the fuel injection device 1A is larger than the diameter of the second flow path F2 provided in the fuel injection device 1 will be described.
  • the second valve V2 provided in the fuel injection device 1A also becomes larger than the second valve V2 provided in the fuel injection device 1 .
  • the fuel injection device 1A can suppress damped oscillation of the pressure in the first flow path F1 during the period from the timing t3 to the timing t4.
  • FIG. 5 shows the opening/closing timing of each of the injection port H and the second flow path F2 in the fuel injection device 1A, the temporal change of the pressure in the first flow path F1, and the temporal change of the lift amount of the first valve V1.
  • FIG. 3 is a diagram showing an example of each of a change in pressure, a change in fuel injection pressure over time, and a change in fuel injection rate over time.
  • the graph G1 shown in FIG. 5 is the same as the graph G1 shown in FIG. 4 except that the curve FN11 is plotted instead of the curve FN1.
  • the graph G1 shown in FIG. 5 is called the graph G11, and it demonstrates for convenience of explanation.
  • a curve FN11 shows another example of the temporal change in the pressure inside the first flow path F1 when the fuel injection device 1A is controlled by the first control.
  • Graph G2 shown in FIG. 5 is the same as graph G2 shown in FIG. 4 except that curve FN21 is plotted instead of curve FN2.
  • the temporal change in the lift amount of the first valve V1 in the fuel injection device 1A controlled by the second control changes the lift amount of the first valve V1 in the fuel injection device 1 controlled by the second control.
  • the graph G21 the graph G21, and it demonstrates for convenience of explanation.
  • a curve FN21 shows another example of temporal change in the lift amount of the first valve V1 when the fuel injection device 1A is controlled by the first control.
  • Graph G3 shown in FIG. 5 is the same as graph G3 shown in FIG. 4 except that curve FN31 is plotted instead of curve FN3. This is because the temporal change in the fuel injection pressure in the fuel injection device 1A controlled by the second control is the same as the temporal change in the fuel injection pressure in the fuel injection device 1 controlled by the second control. is.
  • the graph G3 shown in FIG. 5 will be referred to as a graph G31 below.
  • a curve FN31 shows another example of temporal changes in the fuel injection pressure when the fuel injection device 1A is controlled by the first control.
  • Graph G4 shown in FIG. 5 is the same as graph G4 shown in FIG. 4 except that curve FN41 is plotted instead of curve FN4. This is because the temporal change in the fuel injection rate in the fuel injection device 1A controlled by the second control is the same as the temporal change in the fuel injection rate in the fuel injection device 1 controlled by the second control. is.
  • the graph G4 shown in FIG. 5 is called the graph G41, and it demonstrates for convenience of explanation.
  • a curve FN41 shows another example of temporal changes in the fuel injection rate when the fuel injection device 1A is controlled by the first control.
  • the pressure in the first flow path F1 only increases and then decreases during the period from timing t3 to timing t4, and does not vibrate. .
  • the pressure in the first flow path F1 is higher than the predetermined pressure Pb over substantially the entire period. This is because the flow rate of fuel flowing through the second flow path F2 in the fuel injection device 1A is greater than the flow rate of fuel flowing through the second flow path F2 in the fuel injection device 1. This is because the length of time during which the pressure in the path F1 continues to exceed the predetermined pressure Pb is getting longer.
  • the lift amount of the first valve V1 the fuel injection pressure, and the fuel injection rate all oscillate within the period. It disappears and only rises and then falls.
  • the fuel injection device 1A controlled by the first control can also start injecting fuel into the combustion chamber CC from timing t3 at a pressure higher than the predetermined pressure Pb.
  • the rise of the curve FN21 is steeper and sharper than the rise of the curve FX2.
  • the rise of curve FN31 is steeper and sharper than the rise of curve FX3, and the rise of curve FN41 is steeper and sharper than the rise of curve FX4.
  • the rise of the lift amount of the first valve V1 is steeper and sharper than the conventional one
  • the rise of the fuel injection pressure is steeper and sharper than the conventional one
  • the fuel is injected.
  • the rise in rate is steeper and sharper than in the past.
  • the injection port H can be opened faster than the conventional fuel injection device, and the fuel injection pressure and the injection rate can be increased faster than the conventional fuel injection device.
  • the fuel injection device 1A can further improve the fuel combustion efficiency as compared with the conventional fuel injection device, and in addition, the pressure fluctuation in the first flow path F1 caused by the water hammer action can be reduced. It is possible to suppress the influence from being transmitted to the inside of the combustion chamber CC.
  • the fuel injection device 1 and the fuel injection device 1A are fuel injection devices that inject fuel into the combustion chamber CC of the internal combustion engine EG, and have injection ports H that inject fuel into the combustion chamber CC.
  • a high-pressure source 4 that supplies fuel at a predetermined pressure Pb and an injection port H are connected, and a first flow path F1 to which fuel is supplied from the high-pressure source 4, and the injection port is provided in the first flow path F1.
  • a first valve V1 that opens and closes H; a second flow path F2 that is connected to the first flow path F1 and to which fuel is supplied from the first flow path F1; a second valve V2 for opening and closing the path F2.
  • the fuel injection device 1 and the fuel injection device 1A open the injection port H by the first valve V1 within a period when the pressure in the first flow path F1 is higher than the predetermined pressure Pb, Fuel can be injected into the combustion chamber CC at a pressure higher than the pressure Pb of .
  • the fuel injection device 1 and the fuel injection device 1A can further improve the fuel combustion efficiency.
  • Modification 2 of Embodiment will be described below.
  • the same reference numerals are given to the same components as in the embodiment, and the description thereof is omitted.
  • the fuel injection device 1 according to Modification 1 of the embodiment is distinguished from the fuel injection device 1 according to the embodiment and the fuel injection device 1A according to Modification 1 of the embodiment. This will be described as an injection device 1B.
  • the fuel injector 2 includes a first flow path F1, an injection port H, a first valve V1, a drive portion A1, and a second flow path F2. , a second valve V2 and an actuator A2, as well as a third valve V3 and an actuator A3.
  • FIG. 6 is a diagram showing another example of the configuration of the fuel injection device 1B. Further, in Modification 2 of the embodiment, as shown in FIG. A third valve drive circuit 35 is provided.
  • FIG. 7 is a diagram showing another example of the functional configuration of the ECU 3. As shown in FIG. In FIG. 6, the configuration of the fuel injector 2 is realized by connecting two fuel injectors in series. However, instead of connecting two fuel injectors in series, the configuration of the fuel injectors 2 may also be realized in other ways.
  • the third valve V3 is provided in the first flow path F1, and is a portion of the first flow path F1 located upstream of the first valve V1 in the first flow path F1. Among the portions of the flow path F1, it is provided in the portion PP2 located downstream of the connecting portion PP1 between the first flow path F1 and the second flow path F2 in the first flow path F1. That is, the third valve V3 opens and closes the first flow path F1 in the portion PP2. Therefore, when the first valve V1 closes the injection port H and the third valve V3 closes the first flow path F1, fuel is retained in the first flow path F1. A space S is formed.
  • the first valve V1 closes the injection port H and the third valve V3 closes the first flow path F1 in the space in the first flow path F1.
  • a space closed by the first valve V1 and the third valve V3 in the case of the state is referred to as a space S for explanation.
  • the space S when the first valve V1 closes the injection port H and the third valve V3 opens the first flow path F1, Fuel is supplied and accumulated through Therefore, the pressure in the space S is maintained when the first valve V1 closes the injection port H and the third valve V3 closes the first flow path F1. Therefore, the space S can also be interpreted as a pressure accumulator that accumulates pressure.
  • the third valve V3 is the nozzle needle.
  • the third valve V3 may be any member instead of the nozzle needle as long as it is a member capable of opening and closing the portion PP2.
  • the third valve V3 closes the first flow path F1 by blocking the portion PP2. More specifically, the third valve V3 does not move while blocking the portion PP2 when the ECU 3 does not drive the drive portion A3. This causes the third valve V3 to keep the first flow path F1 closed in that case. On the other hand, the third valve V3 moves in the direction to open the portion PP2 when the ECU 3 drives the driving portion A3. As a result, the third valve V3 opens the first flow path F1 in that case.
  • the driving section A3 causes the third valve V3 to open and close the portion PP2.
  • the driving section A3 has, for example, a solenoid, a piezo element, etc. as an actuator for driving the third valve V3.
  • the pressure of the fuel supplied through the pipe line connected to the first flow path F1 causes the third valve V3 to move to the portion PP2. to continue to block part PP2. That is, the driving part A3 continues to close the first flow path F1 by the third valve V3 in this case.
  • the pipeline connects the first flow path F1 and an outlet through which the fuel passing through the pipeline is discharged.
  • This outlet is connected, for example, to a fuel tank (this fuel tank may or may not be connected to the high pressure source 4) via a conduit (not shown). Therefore, the fuel flowing out from this outlet eventually returns to the fuel tank.
  • the configuration beyond this discharge port may be replaced with any other configuration. Therefore, further detailed description of the configuration beyond this discharge port will be omitted.
  • the driving portion A3 reduces the pressure of the fuel supplied through the pipe (that is, the predetermined pressure Pb) by opening a valve provided in the driving portion A3. , the third valve V3 in the direction of opening the part PP2. That is, in this case, the driving part A3 opens the first flow path F1 by means of the third valve V3.
  • the structure and operation for opening and closing the third valve V3 may be a known structure and operation, or may be a structure and operation that will be developed in the future, so further detailed description will be omitted.
  • the third valve drive circuit 35 supplies a drive current for driving the drive section A3 that opens and closes the third valve V3 to the drive section A3.
  • the control unit 36 controls the third valve driving circuit 35 and causes the driving unit A3 to open and close the first flow path F1 by the third valve V3 according to the timing stored in the storage unit 32 in advance.
  • the control method of the fuel-injection apparatus 1B in the case of performing main injection is demonstrated as an example. However, this control method may be applied to other injections such as pre-injection and pilot injection.
  • the control involving the opening and closing of the injection port H, the opening and closing of the first flow path F1, and the opening and closing of the second flow path F2 will be referred to as the third control as an example.
  • the control involving the opening and closing of the injection port H and the opening and closing of the first flow path F1 and not involving the opening and closing of the second flow path F2 will be described as an example. 4 control will be described.
  • temporal changes in the injection pressure and injection rate of the fuel in the fuel injection device 1B do not include a valve corresponding to the second valve V2, and the first valve V1 and the third valve V3 corresponding to a conventional fuel injector (e.g., a fuel injector known as a TAIZAC (in-line two-valve instantaneous changeover injector)), fuel injection pressure and injection rate, respectively, over time. Almost no change. For this reason, comparing the control method of the fuel injection device 1B by the third control and the control method of the fuel injection device 1B by the fourth control can be compared with a fuel injection device (for example, TAIZAC) different from the fuel injection device 1B.
  • a fuel injection device for example, TAIZAC
  • FIG. 8 shows the opening/closing timing of each of the injection port H, the first flow path F1, and the second flow path F2 in the fuel injection device 1B, the temporal change in the pressure in the first flow path F1, and the pressure in the space S.
  • FIG. 5 is a diagram showing an example of temporal changes in pressure, temporal changes in the lift amount of the first valve V1, temporal changes in fuel injection pressure, and temporal changes in fuel injection rate; is.
  • each of the graphs G1A to G5A shown in FIG. 8 indicates the elapsed time in the period during which the fuel injection device 1 performs the main injection.
  • the timing at which the injection port H is closed in the fuel injection device 1B controlled by the third control is matched with the timing at which the injection port H is closed in the fuel injection device 1B controlled by the fourth control. ing.
  • FIG. 8 clearly shows the difference between the fuel injection device 1B controlled by the third control and the fuel injection device 1B controlled by the fourth control.
  • the vertical axis of the graph G1A shown in FIG. 8 indicates the pressure inside the first flow path F1.
  • a curve FN1A plotted on the graph G1A shows an example of temporal change in pressure in the first flow path F1 when the fuel injection device 1B is controlled by the third control.
  • a curve FX1A plotted on the graph G1A shows an example of temporal change in the pressure inside the first flow path F1 when the fuel injection device 1B is controlled by the fourth control.
  • a timing chart TC1A showing opening/closing timing of the first flow path F1 and a timing chart TC2A showing opening/closing timing of the second flow path F2 are superimposed on the graph G1A.
  • the vertical axis of the graph G2A shown in FIG. 8 indicates the pressure in the space S.
  • a curve FN2A plotted on the graph G2A shows an example of temporal changes in the pressure in the space S when the fuel injection device 1B is controlled by the third control.
  • a curve FX2A plotted on the graph G2A shows an example of temporal change in pressure in the space S when the fuel injection device 1B is controlled by the fourth control.
  • the vertical axis of the graph G3A shown in FIG. 8 indicates the lift amount of the first valve V1.
  • a curve FN3A plotted on the graph G3A shows an example of temporal changes in the lift amount of the first valve V1 when the fuel injection device 1B is controlled by the third control.
  • a curve FX3A plotted on the graph G3A shows an example of temporal changes in the lift amount of the first valve V1 when the fuel injection device 1B is controlled by the fourth control.
  • a timing chart TC3A showing the opening/closing timing of the injection port H is superimposed on the graph G3A.
  • the vertical axis of graph G4A shown in FIG. 8 indicates the fuel injection pressure.
  • a curve FN4A plotted on the graph G4A shows an example of temporal changes in the fuel injection pressure when the fuel injection device 1B is controlled by the third control.
  • a curve FX4A plotted on the graph G4A shows an example of temporal changes in the fuel injection pressure when the fuel injection device 1B is controlled by the fourth control.
  • the vertical axis of graph G5A shown in FIG. 8 indicates the fuel injection rate.
  • a curve FN5A plotted on the graph G5A shows an example of temporal changes in the fuel injection rate when the fuel injection device 1B is controlled by the third control.
  • a curve FX5A plotted on the graph G5A shows an example of temporal changes in the fuel injection rate when the fuel injection device 1B is controlled by the fourth control.
  • the fuel injection device 1B controlled by the third control waits with the injection port H, the first flow path F1, and the second flow path F2 closed until timing t5.
  • the pressure in the space S is maintained at a predetermined pressure P0 until timing t5.
  • the predetermined pressure P0 may be any pressure that is higher than 0 [MPa] and lower than the predetermined pressure Pb.
  • the fuel injection device 1B starts to open the second flow path F2 at timing t5.
  • the pressure inside the first flow path F1 begins to decrease at timing t5. This is because the fuel starts to flow from the first flow path F1 to the second flow path F2 at timing t5.
  • the driving section A2 starts moving the second valve V2 so that the second flow path F2 is closed at timing t6 after a predetermined third time has elapsed from timing t5. .
  • the pressure inside the first flow path F1 starts to rise at timing t6.
  • the pressure in the first flow path F1 momentarily becomes higher than the predetermined pressure Pb at the timing after the timing t6. This is because the fuel flowing from the first flow path F1 through the second flow path F2 to the discharge port is dammed by the second valve V2, and the resulting water hammer action causes the fuel to flow into the first flow path F1. This phenomenon occurs because the pressure momentarily becomes higher than the predetermined pressure Pb.
  • the pressure in the first flow path F1 damps and oscillates after timing t6. Therefore, the fuel injection device 1B controlled by the third control starts opening the first flow path F1 at timing t7. At timing t7, among the timings after timing t6, the pressure in the first flow path F1 rises from the pressure less than the predetermined pressure Pb to the pressure exceeding the predetermined pressure Pb, and then the pressure in the first flow path F1 Any timing may be used as long as it is within the period until starts falling again.
  • ⁇ Pmax indicates the difference between the highest pressure due to the water hammer action and the predetermined pressure Pb among the pressures in the first flow path F1.
  • the fuel injection device 1B sets the timing within the period until the pressure in the first flow path F1 reaches (Pb+ ⁇ Pmax) among the timings after the timing t6 as the timing t7, and the first flow injection is performed at the timing t7. Begin to open road F1.
  • the time difference between the timing t6 and the timing t7 is determined, for example, by trial and error in advance tests, experiments, etc., so that the combustion efficiency of the fuel approaches the desired combustion efficiency (for example, the highest combustion efficiency, etc.). , may be determined based on theoretical calculation, may be determined by simulation, or may be determined by other methods. Since the first flow path F1 begins to open at the timing t7 thus determined, the fuel in the first flow path F1 begins to be supplied into the space S from the first flow path F1 at the timing t7. Therefore, the pressure in space S also begins to rise at timing t7, as indicated by curve FN2A.
  • the pressure in the first flow path F1 exceeds the predetermined pressure Pb due to the water hammer effect described above after timing t7. Therefore, after timing t7, the fuel in the first flow path F1 is supplied from the first flow path F1 into the space S at a pressure higher than the predetermined pressure Pb.
  • the timing t7 may be adjusted so that the fuel in the first flow path F1 is supplied into the space S at a pressure higher than the predetermined pressure Pb at the timing t7.
  • the pressure in the space S is maintained by closing both the injection port H and the first flow path F1. Therefore, after timing t7, when both the injection port H and the first flow path F1 are closed while the pressure in the space S is higher than the predetermined pressure Pb, the pressure in the space S is , is maintained at a pressure higher than the predetermined pressure Pb.
  • the driving portion A3 closes the third valve V3 so that the first flow path F1 is closed at timing t9 when a predetermined fourth time has elapsed from timing t7. start moving.
  • the driving portion A1 causes the first valve V1 to open so that the injection port H is opened at timing t8 after the lapse of a predetermined fifth time from timing t7. start moving.
  • the timing t8 may be the timing before the timing t9, the timing after the timing t9, or the same timing as the timing t9 as long as the timing t8 is after the timing t7. may In the example shown in FIG. 8, timing t8 is earlier than timing t9. Since the fuel injection device 1B opens the injection port H at the timing t8, the fuel can be injected from the injection port H into the combustion chamber CC at a pressure higher than the predetermined pressure Pb. In this example, at timing t8, the fuel injection device 1B can inject fuel from the injection port H into the combustion chamber CC at a pressure of (Pb+ ⁇ Pmax).
  • the drive unit A1 moves the first valve V1 so that the injection port H closes at timing t10 when a predetermined sixth time has elapsed from timing t8. start.
  • the fuel injection device 1B reduces the lift amount of the first valve V1 and increases the amount of fuel during the period from timing t8 to timing t10. Injection pressure and injection rate begin to drop.
  • the lift amount of the first valve V1 becomes 0 [mm]
  • the fuel injection pressure becomes 0 [MPa]
  • the fuel injection rate becomes 0 [mm 3 /s]. becomes.
  • the pressure in the space S is the predetermined pressure P0.
  • the pressure in the space S decreases during the period from the timing t9 to the timing t10, so that the fuel injection device 1B realizes reverse delta injection as indicated by the curves FN4A and FN5A. be done.
  • the fuel injection device 1B can suppress the occurrence of an excessively rich air-fuel mixture mass, etc., and improve the fuel combustion efficiency more reliably.
  • the fuel injection device 1B controlled by the third control waits with the injection port H, the first flow path F1, and the second flow path F2 closed until the next injection of fuel is started. do. Therefore, in the fuel injection device 1B, the pressure in the first flow path F1 returns to the predetermined pressure Pb until the next injection of fuel is started. Further, in the fuel injection device 1B, the pressure in the space S is maintained at the predetermined pressure P0 until the next injection of fuel is started.
  • the fuel injection device 1B controlled by the fourth control keeps the injection port H, the first flow passage F1, the second flow It waits with the road F2 closed. Then, the fuel injection device 1 starts to open the first flow path F1 at timing t7. Since the first flow path F1 begins to open, the fuel in the first flow path F1 is supplied from the first flow path F1 into the space S at the predetermined pressure Pb at timing t7. Therefore, the pressure in space S also begins to rise at timing t7, as indicated by curve FX2A.
  • the driving section A3 After timing t7, in the fuel injection device 1B controlled by the fourth control, the driving section A3 starts moving the third valve V3 so as to close the first flow path F1 at timing t9.
  • the drive unit A1 After timing t7, in the fuel injection device 1B controlled by the fourth control, the drive unit A1 starts moving the first valve V1 so that the injection port H opens at timing t8. Since the fuel injection device 1B opens the injection port H at the timing t8, the fuel is injected from the injection port H into the combustion chamber CC at a predetermined pressure Pb.
  • the driving section A1 starts moving the first valve V1 so that the injection port H is closed at timing t10.
  • the fuel injection device 1B reduces the lift amount of the first valve V1 and increases the amount of fuel during the period from timing t8 to timing t10. Injection pressure and injection rate begin to drop.
  • the lift amount of the first valve V1 becomes 0 [mm]
  • the fuel injection pressure becomes 0 [MPa]
  • the fuel injection rate becomes 0 [mm 3 /s]. becomes.
  • the amount of fuel in the space S decreases with the lapse of time because fuel is not supplied from the high pressure source 4 to the space S through the first flow path F1.
  • the pressure in the space S also decreases as the timing t9 approaches the timing t10.
  • the pressure in the space S is the predetermined pressure P0.
  • the pressure in the space S decreases during the period from the timing t9 to the timing t10, so that the fuel injection device 1B also realizes reverse delta injection as indicated by the curves FN4A and FN5A. It is
  • the fuel injection device 1B controlled by the fourth control waits with the injection port H, the first flow path F1, and the second flow path F2 closed until the next injection of fuel is started. do. Therefore, in the fuel injection device 1B, the pressure in the first flow path F1 returns to the predetermined pressure Pb until the next injection of fuel is started. Further, in the fuel injection device 1B, the pressure in the space S is maintained at the predetermined pressure P0 until the next injection of fuel is started.
  • the fuel injection device 1 controlled by the third control starts injecting fuel into the combustion chamber CC from timing t8 at a pressure higher than the predetermined pressure Pb. It is impossible for the fuel injection device 1 controlled by the fourth control to start injecting fuel at a pressure higher than the predetermined pressure Pb, that is, at a pressure higher than the pressure of the high-pressure source 4 . In other words, it is impossible for the conventional fuel injection device to start injecting fuel at a pressure higher than the predetermined pressure Pb, that is, at a pressure higher than the pressure of the high-pressure source 4 .
  • the rise of the curve FN2A is steeper and sharper than the rise of the curve FX2A.
  • the rise of curve FN3A is steeper and sharper than the rise of curve FX3A
  • the rise of curve FN4A is steeper and sharper than the rise of curve FX4A
  • the rise of curve FN5A is steeper than the rise of curve FX5A. are becoming sharper and sharper.
  • the rise of the lift amount of the first valve V1 becomes steeper and sharper than in the conventional art, and the fuel is injected. It shows that the rise of the injection pressure is steeper and sharper than before, and the rise of the fuel injection rate is steeper and sharper than before.
  • the injection port H can be opened faster than the conventional fuel injection device, and the injection pressure and injection rate of the fuel can be increased faster than the conventional fuel injection device. Furthermore, it is possible to raise the injection pressure and the injection rate of the fuel more than the conventional fuel injection device.
  • the fuel injection device 1B can further improve the fuel combustion efficiency as compared with the conventional fuel injection device. Further, the fuel injection device 1B can realize a sharp rise of the fuel injection pressure from the timing t8 without using an expensive actuator with high response such as a piezo element. This indicates that the fuel injection device 1 can also suppress an increase in manufacturing costs. Naturally, the fuel injection device 1B can further sharpen the rising of the fuel injection pressure from the timing t8 by combining with the highly responsive actuator.
  • each of the above-mentioned 3rd time to 6th time is set so that the combustion efficiency of the fuel approaches the desired combustion efficiency (for example, the highest combustion efficiency, etc.) by trial and error in advance tests, experiments, etc.
  • the desired combustion efficiency for example, the highest combustion efficiency, etc.
  • the magnitude of the predetermined pressure P0 is determined according to the length of the sixth time. The longer the sixth time, the lower the predetermined pressure P0. On the other hand, the shorter the sixth time, the higher the predetermined pressure P0.
  • Modification 3 of the embodiment is a modification of Modification 2 of the embodiment.
  • the same reference numerals are given to the same components as in Modification 2 of the embodiment, and the description thereof is omitted.
  • the fuel injection device 1B according to Modification 3 of the embodiment will be referred to as fuel injection device 1C in order to distinguish it from the fuel injection device 1B according to Modification 2 of the embodiment.
  • the fuel injection device 1C increases the flow rate of the fuel without changing the flow velocity of the fuel flowing from the first flow path F1 to the discharge port through the second flow path F2. .
  • the diameter of the second flow path F2 provided in the fuel injection device 1C is larger than the diameter of the second flow path F2 provided in the fuel injection device 1B will be described.
  • the second valve V2 provided in the fuel injection device 1C also becomes larger than the second valve V2 provided in the fuel injection device 1B.
  • the flow rate of the fuel dammed up by the second valve V2 increases at timing t6, and the length of time during which the pressure in the first flow path F1 continues to exceed the predetermined pressure Pb due to the water hammer action. becomes longer.
  • FIG. 9 shows the opening and closing timings of the injection port H, the first flow path F1, and the second flow path F2 in the fuel injection device 1C, the temporal change in the pressure in the first flow path F1, and the pressure in the space S.
  • FIG. 5 is a diagram showing an example of temporal changes in pressure, temporal changes in the lift amount of the first valve V1, temporal changes in fuel injection pressure, and temporal changes in fuel injection rate; is.
  • the graph G1A shown in FIG. 9 is the same graph as the graph G1A shown in FIG. 8 except that the curve FN11A is plotted instead of the curve FN1A.
  • the graph G1A shown in FIG. 9 will be referred to as a graph G11A.
  • the curve FN11A shows another example of the temporal change in the pressure inside the first flow path F1 when the fuel injection device 1C is controlled by the third control.
  • the graph G2A shown in FIG. 9 is the same graph as the graph G2A shown in FIG. 8 except that the curve FN21A is plotted instead of the curve FN2A. This is because the temporal change in the pressure in the space S in the fuel injection device 1C controlled by the fourth control is the same as the temporal change in the pressure in the space S in the fuel injection device 1B controlled by the fourth control. because they are the same.
  • the graph G2A shown in FIG. 9 will be referred to as a graph G21A.
  • curve FN21A shows another example of temporal change in pressure in space S when fuel injection device 1C is controlled by the third control.
  • the graph G3A shown in FIG. 9 is the same graph as the graph G3A shown in FIG. 8 except that the curve FN31A is plotted instead of the curve FN3A.
  • the temporal change in the lift amount of the first valve V1 in the fuel injection device 1C controlled by the fourth control is the same as the lift amount of the first valve V1 in the fuel injection device 1B controlled by the fourth control.
  • the graph G3A shown in FIG. 9 will be referred to as a graph G31A.
  • a curve FN31A shows another example of temporal change in the lift amount of the first valve V1 when the fuel injection device 1C is controlled by the third control.
  • Graph G4A shown in FIG. 9 is the same graph as graph G4A shown in FIG. 8 except that curve FN41A is plotted instead of curve FN4A. This is because the temporal change in the fuel injection pressure in the fuel injection device 1C controlled by the fourth control is the same as the temporal change in the fuel injection pressure in the fuel injection device 1B controlled by the fourth control. is.
  • the graph G4A shown in FIG. 9 will be referred to as a graph G41A.
  • the curve FN41A shows another example of temporal changes in the fuel injection pressure when the fuel injection device 1C is controlled by the third control.
  • the graph G5A shown in FIG. 9 is the same graph as the graph G5A shown in FIG. 8 except that the curve FN51A is plotted instead of the curve FN5A. This is because the temporal change in the fuel injection rate in the fuel injection device 1C controlled by the fourth control is the same as the temporal change in the fuel injection rate in the fuel injection device 1B controlled by the fourth control. is.
  • the graph G5A shown in FIG. 9 will be referred to as a graph G51A.
  • the curve FN51A shows another example of temporal changes in the fuel injection rate when the fuel injection device 1C is controlled by the third control.
  • the pressure in the first flow path F1 only increases and then decreases during the period from timing t8 to timing t10, and does not vibrate. .
  • the pressure in the first flow path F1 is higher than the predetermined pressure Pb over substantially the entire period.
  • the pressure inside the first flow path F1 does not affect the space S and the combustion chamber CC. Therefore, how the pressure in the space S in the fuel injection device 1C, the lift amount of the first valve V1, the injection pressure of the fuel, and the injection rate of the fuel change with time varies depending on the pressure in the space S in the fuel injection device 1B.
  • the pressure, the lift amount of the first valve V1, the fuel injection pressure, and the fuel injection rate change over time.
  • the pressure in the first flow path F1 can be instantaneously increased (instantaneous to the extent that pressure resistance is not affected).
  • the range of increase can be further increased.
  • the fuel injection device 1C can inject a large amount of fuel without smoke, and can increase the torque and output of the internal combustion engine EG. For example, when the fuel injection device 1C is applied to an automobile engine, it is possible to generate a large amount of torque without smoke by ultra-high pressure injection during an acceleration phase during overtaking.
  • the fuel injection device 1C when the fuel injection device 1C is applied to an engine for power generation, it is possible to inject a large amount of fuel without smoke when the demand for electric power surges, thereby suppressing a decrease in the rotation speed of the engine for power generation. can.
  • an instantaneous rise width of the pressure in the first flow path F1 increases as the diameter of the second flow path F2 provided in the fuel injection device 1C increases, as shown in this example. can be done. That is, in the fuel injection device 1C, the diameter of the second flow path F2 is larger than that of the fuel injection device 1B.
  • the instantaneous rise width of the internal pressure can be made even larger than that of the fuel injection device 1B.
  • the fuel injection device 1C controlled by the third control also starts injecting fuel into the combustion chamber CC from timing t8 at a pressure higher than the predetermined pressure Pb. be able to.
  • the rise of curve FN31A is steeper and sharper than the rise of curve FX3A.
  • the rise of curve FN41A is steeper and sharper than the rise of curve FX4A, and the rise of curve FN51A is steeper and sharper than the rise of curve FX5A.
  • the rise of the lift amount of the first valve V1 is steeper and sharper than the conventional one
  • the rise of the fuel injection pressure is steeper and sharper than the conventional one
  • the fuel is injected.
  • the rise in rate is steeper and sharper than in the past.
  • the injection port H can be opened faster than the conventional fuel injection device, and the fuel injection pressure and injection rate can be increased faster than the conventional fuel injection device. Furthermore, it is possible to raise the injection pressure and the injection rate of the fuel more than the conventional fuel injection device.
  • the fuel injection device 1C can further improve the fuel combustion efficiency as compared with the conventional fuel injection device, and in addition, the pressure fluctuation in the first flow path F1 caused by the water hammer action can be reduced. It is possible to suppress the influence from being transmitted to the inside of the combustion chamber CC.
  • the fuel injection device 1B and the fuel injection device 1C are fuel injection devices that inject fuel into the combustion chamber CC of the internal combustion engine EG, and have injection ports H that inject fuel into the combustion chamber CC.
  • a high-pressure source 4 that supplies fuel at a predetermined pressure Pb and an injection port H are connected, and a first flow path F1 to which fuel is supplied from the high-pressure source 4, and the injection port is provided in the first flow path F1.
  • a first valve V1 that opens and closes H
  • a second flow path F2 that is connected to the first flow path F1 and to which fuel is supplied from the first flow path F1
  • a second valve V2 that opens and closes the passage F2, and a portion that is provided in the first passage F1 and located upstream of the first valve V1 in the first passage F1 among the portions of the first passage F1.
  • a third valve that opens and closes a portion of the first flow path F1 located downstream of the connecting portion between the first flow path F1 and the second flow path F2 in the first flow path F1.
  • the fuel injection device 1B and the fuel injection device 1C open the injection port H by the first valve V1 within a period in which the pressure in the first flow path F1 is higher than the predetermined pressure Pb. Fuel can be injected into the combustion chamber CC at a pressure higher than the pressure Pb of . As a result, the fuel injection device 1B and the fuel injection device 1C can further improve the fuel combustion efficiency.
  • Modification 4 of Embodiment will be described below.
  • the same reference numerals are assigned to the same components as in the embodiment, and the description thereof is omitted.
  • the internal combustion engine EG is provided with a plurality of different combustion chambers CC2 instead of the combustion chambers CC will be described.
  • FIG. 10 is a diagram showing an example of the configuration of the fuel injection system 10.
  • the fuel injection system 10 includes multiple fuel injectors. Each of these multiple fuel injection devices injects fuel into one of the multiple combustion chambers CC2. These multiple fuel injection devices include some or all of fuel injection device 1, fuel injection device 1A, fuel injection device 1B, and fuel injection device 1C.
  • the internal combustion engine EG comprises four combustion chambers CC2.
  • Each of these four fuel injection devices may be fuel injection device 1, fuel injection device 1A, fuel injection device 1B, or fuel injection device 1C.
  • four fuel injection devices 1 are labeled "1, 1A, 1B, 1C".
  • Some of these four fuel injection devices may be fuel injection devices different from all of fuel injection device 1, fuel injection device 1A, fuel injection device 1B, and fuel injection device 1C.
  • combustion chambers CC2 are hereinafter referred to as combustion chambers CC2-1 to CC2-4.
  • the four fuel injection devices included in the fuel injection system 10 will be referred to as a first fuel injection device 1D1 to a fourth fuel injection device 1D4.
  • the first fuel injection device 1D1 is one of the fuel injection device 1, the fuel injection device 1A, the fuel injection device 1B, and the fuel injection device 1C, and is a fuel injection device that injects fuel into the combustion chamber CC2-1. be.
  • the second fuel injection device 1D2 is one of the fuel injection device 1, the fuel injection device 1A, the fuel injection device 1B, and the fuel injection device 1C, and is a fuel injection device that injects fuel into the combustion chamber CC2-2. be.
  • the third fuel injection device 1D3 is one of the fuel injection device 1, the fuel injection device 1A, the fuel injection device 1B, and the fuel injection device 1C, and is a fuel injection device that injects fuel into the combustion chamber CC2-3.
  • the fourth fuel injection device 1D4 is one of the fuel injection device 1, the fuel injection device 1A, the fuel injection device 1B, and the fuel injection device 1C, and is a fuel injection device that injects fuel into the combustion chamber CC2-4. be.
  • the fuel injection device 1D will be referred to as the first fuel injection device 1D1, the second fuel injection device 1D2, the third fuel injection device 1D3, and the fourth fuel injection device 1D4 unless it is necessary to distinguish between them. will be described.
  • the first flow paths F1 of the four fuel injection devices 1D are connected to the 0th flow path F0 connected to the high pressure source 4.
  • each of the first flow paths F1 of the four fuel injection devices 1D is connected to the 0th flow path F0 at one point.
  • some or all of the first flow paths F1 of the four fuel injection devices 1D may be connected to the 0th flow paths F0 at different portions.
  • the second flow path F2 is not connected to each of the first flow paths F1 of the four fuel injection devices 1D, but is connected to the 0th flow path F0. That is, in the fuel injection system 10, one second flow path F2 is shared by each of the four fuel injection devices 1D. In the example shown in FIG. 10, the second flow path F2 is connected to the portion PP3. good.
  • the second flow path F2 is provided with the second valve V2. Also in the fuel injection system 10, the second valve V2 is driven by the driving portion A2.
  • the fuel injection system 10 is connected to four fuel injection devices 1D for injecting fuel into the combustion chamber CC2 of the internal combustion engine EG, and a high pressure source 4 for supplying fuel at a predetermined pressure Pb.
  • a 0th flow path F0 to which fuel is supplied from a second flow path F2 connected to the 0th flow path F0 and to which fuel is supplied from the 0th flow path F0; and a second valve V2 for opening and closing the second flow path F2.
  • the fuel injection system 10 instantaneously raises the pressure in the first flow path F1 to a pressure higher than the predetermined pressure Pb by the water hammer effect generated by closing the 0th flow path F0 by the second valve V2. can be raised to Therefore, the fuel injection system 10 can operate each of the four fuel injection devices 1D provided in the fuel injection system 10 as described in each of the embodiment and Modifications 1 to 3 of the embodiment.
  • the fuel injection system 10 by opening and closing the 0th flow path F0 by the second valve V2, from each of the four fuel injection devices 1D into each of the four combustion chambers CC2, the pressure higher than the pressure of the high pressure source 4 Fuel can be injected at high pressure. This is desirable because it leads to improvement in fuel combustion efficiency of the internal combustion engine EG while reducing the number of parts of the internal combustion engine EG.
  • FIG. 11 shows the opening/closing timing of the second flow path F2, the opening/closing timing of the injection port H of each of the four fuel injection devices 1D, and the pressure in the four first flow paths F1 (that is, the portion PP3
  • FIG. 10 is a diagram showing an example of temporal changes in inner pressure).
  • these four first flow paths F1 are the first flow paths F1 of the four fuel injection devices 1D.
  • FIG. 11 in order to simplify the explanation, the case where each of the four fuel injection devices 1D does not perform injection such as pre-injection, pilot injection, etc., but performs only main injection will be described.
  • the horizontal axis of the graph shown in FIG. 11 indicates elapsed time. Also, the vertical axis of the graph indicates the pressure within the first flow path F1 of each of the four fuel injection devices 1D, that is, the pressure within the portion PP3.
  • the curve F10 plotted in the graph represents the four first flows when the four fuel injectors 1D are controlled so that each of the four fuel injectors 1D injects fuel into the four combustion chambers CC2 in sequence.
  • An example of the temporal change of the pressure in the path F1 is shown.
  • control of the four fuel injection devices 1D will be referred to as tenth control.
  • the graph also includes a timing chart TC10 showing the opening/closing timing of the second flow path F2, a timing chart TC11 showing the opening/closing timing of the injection port H of the first fuel injection device 1D1, and a timing chart TC11 showing the opening/closing timing of the injection port H of the first fuel injection device 1D1.
  • FIG. 10 the period in which the piston of the internal combustion engine EG rotates once is indicated by an arrow with the words "engine 1 rotation”.
  • the fuel injection system 10 starts opening the second flow path F2 by the driving section A2 at timing t11.
  • the pressure in the first flow path F1 of each of the four fuel injection devices 1D that is, the pressure in the portion PP3 begins to decrease. This is because the fuel begins to flow from the portion PP3 to the second flow path F2 at timing t11.
  • the drive unit A2 starts moving the second valve V2 so that the second flow path F2 is closed at timing t12 when a predetermined eleventh time has elapsed from timing t11. .
  • the pressure inside the first flow path F1 of each of the four fuel injection devices 1D starts to rise at timing t12.
  • the pressure in the portion PP3 momentarily becomes higher than the predetermined pressure Pb at the timing after the timing t12. This is because the fuel flowing from the portion PP3 through the second flow path F2 to the discharge port is dammed by the second valve V2, and the resulting water hammer action instantly raises the pressure in the portion PP3 to a predetermined level. is higher than the pressure Pb of . More specifically, the fuel that has flowed from the portion PP3 through the second flow path F2 to the discharge port is dammed in the second flow path F2 by the second valve V2 at timing t12. The dammed fuel is compressed according to the flow velocity of the fuel before dammed. As a result, a water hammer action occurs and the pressure in part PP3 begins to rise.
  • the fuel injection system 10 controlled by the tenth control starts opening the injection port H of the first fuel injection device 1D1 at timing t13.
  • the pressure in the portion PP3 rises from the pressure less than the predetermined pressure Pb to the pressure exceeding the predetermined pressure Pb among the timings after the timing t12, and then the pressure in the portion PP3 starts falling again. Any timing may be used as long as the timing is within the period between.
  • the timing t13 is the timing after the timing t12 when the pressure in the portion PP3 returns from the pressure lower than the predetermined pressure Pb to the predetermined pressure Pb.
  • the time difference between the timing t12 and the timing t13 is determined, for example, by trial and error in advance tests, experiments, etc., so that the combustion efficiency of the fuel approaches the desired combustion efficiency (for example, the highest combustion efficiency, etc.). , may be determined based on theoretical calculation, may be determined by simulation, or may be determined by other methods.
  • the injection port H of the first fuel injection device 1D1 begins to open, so the fuel in the portion PP3 is injected at the timing t13 by a pressure higher than the predetermined pressure Pb. H starts to be injected into the combustion chamber CC2-1.
  • the first injection device 1D1 closes the injection port H.
  • the driving part A1 of the fuel injector 1D1 starts to move the first valve V1 of the first fuel injector 1D1.
  • the first valve V1 closes the injection port H.
  • the fuel injection system 10 controlled by the tenth control waits with the injection port H of the first fuel injection device 1D1 closed until the next fuel injection by the first fuel injection device 1D1 is started. do. Further, in the fuel injection system 10, at timing t15 when a predetermined thirteenth time has elapsed from timing t14, the second flow path F2 is started to open again by the driving portion A2. As a result, as indicated by the curve F10, in the fuel injection system 10, the pressure in the first flow path F1 of each of the four fuel injection devices 1D, that is, the pressure in the portion PP3 begins to decrease.
  • the thirteenth time is determined so that the timing after the timing at which the pressure oscillation in the portion PP3 from timing t2 due to the water hammer action subsides is timing t15.
  • the fuel injection system 10 controlled by the tenth control causes each of the four fuel injection devices 1D to repeatedly perform such fuel injection in a predetermined order. That is, each of timing t15, timing t19, timing t23, timing t27, timing t31, and timing t35 indicates the timing at which the second flow path F2 starts opening in such repeated fuel injection. Timing t16, timing t20, timing t24, timing t28, timing t32, and timing t36 each indicate the timing at which the second flow path F2 closes in such repeated fuel injection. Timing t17 indicates the timing at which the injection port H of the third fuel injection device 1D3 begins to open in such repeated fuel injection.
  • Timing t18 indicates the timing at which the injection port H of the third fuel injection device 1D3 is closed during such repeated fuel injection.
  • Timing t21 indicates the timing at which the injection port H of the fourth fuel injection device 1D4 begins to open during such repeated fuel injection.
  • Timing t22 indicates the timing at which the injection port H of the fourth fuel injection device 1D4 is closed during such repeated fuel injection.
  • Timing t25 indicates the timing at which the injection port H of the second fuel injection device 1D2 begins to open in such repeated fuel injection.
  • Timing t26 indicates the timing at which the injection port H of the second fuel injection device 1D2 is closed during such repeated fuel injection.
  • Timing t29 indicates the timing at which the injection port H of the first fuel injection device 1D1 begins to open again in such repeated fuel injection.
  • Timing t30 indicates the timing at which the injection port H of the first fuel injection device 1D1 is closed during such repeated fuel injection.
  • Timing t33 indicates the timing at which the injection port H of the third fuel injection device 1D3 begins to open again in such repeated fuel injection.
  • Timing t34 indicates the timing at which the injection port H of the third fuel injection device 1D3 is closed during such repeated fuel injection.
  • Timing t37 indicates the timing at which the injection port H of the fourth fuel injection device 1D4 begins to open again in such repeated fuel injection.
  • Timing t38 indicates the timing at which the injection port H of the fourth fuel injection device 1D4 is closed during such repeated fuel injection.
  • the fuel injection system 10 rotates the piston of the internal combustion engine EG by causing each of the four fuel injection devices 1D to repeatedly inject fuel into each combustion chamber CC2.
  • the fuel injection system 10 can inject fuel at a pressure higher than the predetermined pressure Pb each time fuel is injected into each combustion chamber CC2.
  • the fuel injection system 10 does not have a second valve V2 for each of the four fuel injection devices 1D, but has one common second valve V2. is causing Therefore, the fuel injection system 10 can improve the fuel combustion efficiency of the internal combustion engine EG while reducing the number of parts of the internal combustion engine EG. In other words, the fuel injection system 10 can reduce manufacturing costs.
  • the ECU 3 described above opens and closes the first to third valves V1 to V3 in accordance with the timings stored in the storage unit 32 in advance.
  • a user causes the fuel injection device 1 to open and close each of the first to third valves V1 to V3 at the user's desired timing by pre-storing the user's desired timing in the storage unit 32 .
  • the timing pre-stored in the storage unit 32 may be represented by time, may be represented by elapsed time from a reference time, or may be represented by another known method. It may be represented by a developed method.
  • the fuel injection device supplies fuel to the internal combustion engine (the internal combustion engine EG in the example described above).
  • a fuel injection device that injects into a combustion chamber inside the combustion chamber CC in the example described above, and includes an injection port (injection port H in the example described above) that injects fuel into the combustion chamber, and fuel is supplied at a predetermined pressure (predetermined pressure Pb in the example described above) and a high pressure source (high pressure source 4 in the example described above) is connected to the injection port, and fuel is supplied from the high pressure source
  • a first flow path (first flow path F1 in the example described above), and a first valve (first valve V1 in the example described above) provided in the first flow path for opening and closing the injection port.
  • the fuel injection device includes a first drive section (drive section A1 in the example described above) that causes the first valve to open and close the injection port, and a second drive section that causes the second valve to open and close the second flow path.
  • 2 drive units drive unit A2 in the example described above
  • ECU 3 and control unit 36 in the example described above controls the first drive unit and the second drive unit A configuration may be used.
  • the control unit controls the first drive unit and the second drive unit to perform the first injection process of injecting the fuel from the injection port into the combustion chamber. a first step of opening the second flow passage by the second valve while the valve is closing the injection port; a second step of closing the second flow path by the two valves; and a third step of opening the injection port by the first valve at a timing after the second valve closes the second flow path in the second step. Any configuration may be used.
  • a fuel injection device is a fuel injection device for injecting fuel into a combustion chamber of an internal combustion engine, and includes an injection port for injecting fuel into the combustion chamber, a high-pressure source for supplying fuel at a predetermined pressure, and an injection port.
  • a third valve in the example described above, the third valve V3 that opens and closes the portion located in the first flow path, the first valve is in a state where the injection port is closed, and , when the third valve closes the first flow path, a space (space S in the example described above) in which fuel is held is formed. This allows the fuel injector to inject fuel at a pressure higher than the pressure of the high pressure source.
  • the fuel injection device includes a first drive section that causes the first valve to open and close the injection port, a second drive section that causes the second valve to open and close the second flow path, and a third valve that causes the first flow path to open and close.
  • a third drive section (drive section A3 in the example described above) that opens and closes the path, and a control section (the example described above) that controls the first drive section, the second drive section, and the third drive section.
  • a configuration further including the ECU 3 and the control unit 36 may be used.
  • the control unit controls the first drive unit, the second drive unit, and the third drive unit, performs the second injection process of injecting the fuel from the injection port into the combustion chamber, and performs the second injection process.
  • the fuel injection system includes a first fuel injection device (the fuel injection device in the example described above) that injects fuel into the combustion chamber of the internal combustion engine. 1, fuel injection device 1A, fuel injection device 1B, fuel injection device 1C) and a second fuel injection device that injects fuel into the combustion chamber (in the example described above, fuel injection device 1, fuel injection device 1A, fuel Injection device 1B, fuel injection device 1C) is connected to a high-pressure source that supplies fuel at a predetermined pressure, and the 0th flow path to which fuel is supplied from the high-pressure source (in the example described above, the 0th flow path F0 ), a second flow path connected to the 0th flow path and supplied with fuel from the 0th flow path, and a second valve provided in the second flow path for opening and closing the second flow path.
  • the first fuel injection device connects the 11th injection port (the injection port H in the example described above) for injecting fuel into the combustion chamber, the 0th flow path and the 11th injection port, and supplies fuel from the high pressure source.
  • An eleventh flow path (the first flow path F1 in the example described above) to which fuel is supplied, and an eleventh valve (the example described above) that is provided in the eleventh flow path and opens and closes the eleventh injection port.
  • the second fuel injection device includes a 21st injection port (in the example described above, the injection port H) for injecting fuel into the combustion chamber, a 0th flow path and a 1st valve V1).
  • a 21st flow path (the first flow path F1 in the example described above) connected to the 21st injection port and supplied with fuel from a high pressure source, and a 21st flow path provided in the 21st flow path for opening and closing the 21st injection port. and a twenty-first valve (in the example described above, the first valve V1). This allows the fuel injection system to inject fuel at a pressure higher than the pressure of the high pressure source 4 .
  • a program for realizing the function of any component in the above-described device is recorded on a computer-readable recording medium, and the program is read and executed by a computer system.
  • computer system includes hardware such as an OS (Operating System) and peripheral devices.
  • computer-readable recording medium refers to portable media such as flexible disks, magneto-optical disks, ROM, CD (Compact Disk)-ROM, etc., and storage devices such as hard disks built into computer systems. .
  • “computer-readable recording medium” means a volatile memory (RAM) inside a computer system that acts as a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. , includes those that hold the program for a certain period of time.
  • RAM volatile memory
  • the above program may be transmitted from a computer system storing this program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in a transmission medium.
  • the "transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the above program may be for realizing part of the functions described above.
  • the above program may be a so-called difference file (difference program) that can realize the functions described above in combination with a program already recorded in the computer system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

This fuel injection device, which injects a fuel into a combustion chamber of an internal combustion engine, comprises: an injection port for injecting the fuel into the combustion chamber; a first flow passage which connects the injection port and a high-pressure source that supplies the fuel at a predetermined pressure, and to which the fuel is supplied from the high-pressure source; a first valve which is provided to the first flow passage and performs opening/closing of the injection port; a second flow passage which is connected to the first flow passage and to which the fuel is supplied from the first flow passage; and a second valve which is provided to the second flow passage and performs opening/closing of the second flow passage.

Description

燃料噴射装置、燃料噴射システム、及び制御方法FUEL INJECTION DEVICE, FUEL INJECTION SYSTEM, AND CONTROL METHOD
 この発明は、燃料噴射装置、燃料噴射システム、及び制御方法に関する。
 本願は、2021年12月08日に、日本に出願された特願2021-199326号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a fuel injection device, a fuel injection system, and a control method.
This application claims priority based on Japanese Patent Application No. 2021-199326 filed in Japan on December 08, 2021, the contents of which are incorporated herein.
 ディーゼルエンジンのような燃料噴射式の内燃機関において、燃料の燃焼効率を向上させる技術の研究、開発が行われている。 Research and development of technology to improve fuel combustion efficiency in fuel-injected internal combustion engines such as diesel engines is underway.
 これに関し、燃料噴射式の内燃機関の燃焼室内に燃料を噴射する噴射口の開閉を行う弁を、ピエゾ素子によって駆動する方法が知られている(特許文献1参照)。 In this regard, a method is known in which a piezoelectric element drives a valve that opens and closes an injection port for injecting fuel into the combustion chamber of a fuel-injection internal combustion engine (see Patent Document 1).
特開2021-162009号公報Japanese Patent Application Laid-Open No. 2021-162009
 特許文献1に記載されたような方法は、噴射口を開閉させる制御に対する応答性を向上させることができ、燃料の噴射率の立ち上がりを急峻にすることができる。燃料の噴射率の立ち上がりを急峻にするほど、燃料の燃焼効率が向上する。 A method such as that described in Patent Document 1 can improve the responsiveness to the control of opening and closing the injection port, and can sharpen the rise of the fuel injection rate. The steeper the rise of the fuel injection rate, the more the fuel combustion efficiency improves.
 ここで、燃料の噴射率の立ち上がりは、燃料の噴射圧を上げることにより、更に急峻にすることができる。これは、特許文献1に記載された方法を用いた場合であっても、燃料噴射式の内燃機関における燃料の燃焼効率を更に向上させる余地があることを意味している。そして、燃料の噴射圧を上げる方法として、燃料を燃焼室内へ供給する高圧源の圧力を上げる方法が知られている。しかしながら、高圧源の圧力を上げるためには、燃焼室内へ燃料を供給するシステム全体の耐圧性を向上させる必要がある。これは、内燃機関の重量の増大、内燃機関の製造コストの増大等を招くため、好ましくない。 Here, the rise of the fuel injection rate can be made steeper by increasing the fuel injection pressure. This means that even if the method described in Patent Literature 1 is used, there is room for further improving the fuel combustion efficiency in a fuel-injection internal combustion engine. As a method of increasing the injection pressure of fuel, a method of increasing the pressure of a high-pressure source that supplies fuel into the combustion chamber is known. However, in order to raise the pressure of the high-pressure source, it is necessary to improve the pressure resistance of the entire system that supplies fuel into the combustion chamber. This is not preferable because it causes an increase in the weight of the internal combustion engine, an increase in the manufacturing cost of the internal combustion engine, and the like.
 そこで本発明は、上記従来技術の問題に鑑みてなされたものであり、高圧源の圧力よりも高い圧力によって燃料の噴射を行うことができる燃料噴射装置、燃料噴射システム、及び制御方法を提供する。 SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above problems of the prior art, and provides a fuel injection device, a fuel injection system, and a control method capable of injecting fuel at a pressure higher than the pressure of a high-pressure source. .
 上述した課題を解決するために、本発明の一態様に係る燃料噴射装置は、燃料を内燃機関の燃焼室内に噴射する燃料噴射装置であって、前記燃料を前記燃焼室内に噴射する噴射口と、前記燃料を所定の圧力によって供給する高圧源と前記噴射口とを接続し、前記高圧源から前記燃料が供給される第1流路と、前記第1流路に設けられ、前記噴射口の開閉を行う第1弁と、前記第1流路に接続され、前記第1流路から前記燃料が供給される第2流路と、前記第2流路に設けられ、前記第2流路の開閉を行う第2弁と、を備える。 In order to solve the above-described problems, a fuel injection device according to one aspect of the present invention is a fuel injection device that injects fuel into a combustion chamber of an internal combustion engine, comprising: an injection port that injects the fuel into the combustion chamber; a first flow path for connecting a high-pressure source for supplying the fuel at a predetermined pressure to the injection port, and for supplying the fuel from the high-pressure source; a first valve that opens and closes; a second flow path that is connected to the first flow path and to which the fuel is supplied from the first flow path; and a second valve that opens and closes.
 また、上述した課題を解決するために、本発明の一態様に係る燃料噴射装置は、燃料を内燃機関の燃焼室内に噴射する燃料噴射装置であって、前記燃料を前記燃焼室内に噴射する噴射口と、前記燃料を所定の圧力によって供給する高圧源と前記噴射口とを接続し、前記高圧源から前記燃料が供給される第1流路と、前記第1流路に設けられ、前記噴射口の開閉を行う第1弁と、前記第1流路に接続され、前記第1流路から前記燃料が供給される第2流路と、前記第2流路に設けられ、前記第2流路の開閉を行う第2弁と、前記第1流路に設けられ、前記第1流路が有する部分のうち前記第1流路において前記第1弁よりも上流側に位置する部分であり、且つ、前記第1流路が有する部分のうち前記第1流路において前記第1流路と前記第2流路との接続部分よりも下流側に位置する部分の開閉を行う第3弁と、を備え、前記第1流路には、前記第1弁が前記噴射口を閉じた状態であり、且つ、前記第3弁が前記第1流路を閉じた状態である場合、前記燃料が保持される空間が形成される。 Further, in order to solve the above-described problems, a fuel injection device according to one aspect of the present invention is a fuel injection device that injects fuel into a combustion chamber of an internal combustion engine, the fuel injection device injecting the fuel into the combustion chamber. a first flow path connecting a port, a high-pressure source for supplying the fuel at a predetermined pressure, and the injection port, and supplied with the fuel from the high-pressure source; a first valve for opening and closing a port; a second flow path connected to the first flow path and supplied with the fuel from the first flow path; a second valve that opens and closes a passage; a portion that is provided in the first passage and is located upstream of the first valve in the first passage among portions of the first passage; and a third valve that opens and closes a portion of the first flow path located downstream of a connection portion between the first flow path and the second flow path in the first flow path; wherein the fuel is held in the first flow path when the first valve closes the injection port and the third valve closes the first flow path space is formed.
 また、上述した課題を解決するために、本発明の一態様に係る燃料噴射システムは、燃料を内燃機関の燃焼室内に噴射する第1燃料噴射装置と、前記燃料を前記燃焼室内に噴射する第2燃料噴射装置と、前記燃料を所定の圧力によって供給する高圧源と接続され、前記高圧源から前記燃料が供給される第0流路と、前記第0流路と接続され、前記第0流路から燃料が供給される第2流路と、前記第2流路に設けられ、前記第2流路の開閉を行う第2弁と、を備え、前記第1燃料噴射装置は、前記燃料を前記燃焼室内に噴射する第11噴射口と、前記第0流路と前記第11噴射口とを接続し、前記高圧源から前記燃料が供給される第11流路と、前記第11流路に設けられ、前記第11噴射口の開閉を行う第11弁と、を備え、前記第2燃料噴射装置は、前記燃料を前記燃焼室内に噴射する第21噴射口と、前記第0流路と前記第21噴射口とを接続し、前記高圧源から前記燃料が供給される第21流路と、前記第21流路に設けられ、前記第21噴射口の開閉を行う第21弁と、を備える。 Further, in order to solve the above-described problems, a fuel injection system according to one aspect of the present invention includes a first fuel injection device that injects fuel into a combustion chamber of an internal combustion engine, and a first fuel injection device that injects the fuel into the combustion chamber. 2 a fuel injection device, a 0th flow path connected to a high-pressure source that supplies the fuel at a predetermined pressure and to which the fuel is supplied from the high-pressure source; and a second valve provided in the second flow path for opening and closing the second flow path, wherein the first fuel injection device supplies the fuel. an eleventh injection port for injecting into the combustion chamber; an eleventh passage connecting the zeroth flow passage and the eleventh injection port; and an eleventh valve for opening and closing the eleventh injection port, and the second fuel injection device includes a twenty-first injection port for injecting the fuel into the combustion chamber, the zeroth flow path, a 21st flow path connected to a 21st injection port and supplied with the fuel from the high pressure source; and a 21st valve provided in the 21st flow path for opening and closing the 21st injection port. .
 また、上述した課題を解決するために、本発明の一態様に係る制御方法は、燃料を内燃機関の燃焼室内に噴射する燃料噴射装置の制御方法であって、前記燃料噴射装置は、前記燃料を前記燃焼室内に噴射する噴射口と、前記燃料を所定の圧力によって供給する高圧源と前記噴射口とを接続し、前記高圧源から前記燃料が供給される第1流路と、前記第1流路に設けられ、前記噴射口の開閉を行う第1弁と、前記第1弁に前記噴射口の開閉を行わせる第1駆動部と、前記第1流路に接続され、前記第1流路から前記燃料が供給される第2流路と、前記第2流路に設けられ、前記第2流路の開閉を行う第2弁と、前記第2弁に前記第2流路の開閉を行わせる第2駆動部と、を備え、前記制御方法は、前記第1弁が前記噴射口を閉じている状態で前記第2弁により前記第2流路を開く第1ステップと、前記第1ステップにより前記第2弁が前記第2流路を開いてから所定の時間が経過した後、前記第2弁により前記第2流路を閉じる第2ステップと、前記第2ステップにより前記第2弁が前記第2流路を閉じたタイミング以降のタイミングにおいて前記第1弁により前記噴射口を開く第3ステップと、を有する。 Further, in order to solve the above-described problems, a control method according to an aspect of the present invention is a control method for a fuel injection device that injects fuel into a combustion chamber of an internal combustion engine, wherein the fuel injection device includes the fuel into the combustion chamber, a high-pressure source for supplying the fuel at a predetermined pressure, and the injection port are connected to each other, and a first flow path to which the fuel is supplied from the high-pressure source; a first valve provided in a flow path for opening and closing the injection port; a first driving unit for causing the first valve to open and close the injection port; a second flow passage to which the fuel is supplied from the passage; a second valve provided in the second flow passage for opening and closing the second flow passage; and a second drive unit that causes the first valve to open the second flow path in a state in which the first valve closes the injection port; a second step of closing the second flow path by the second valve after a predetermined time has elapsed since the second valve opened the second flow path in the step; and a third step of opening the injection port by the first valve at a timing after closing the second flow path.
 また、上述した課題を解決するために、本発明の一態様に係る制御方法は、燃料を内燃機関の燃焼室内に噴射する燃料噴射装置の制御方法であって、前記燃料噴射装置は、前記燃料を前記燃焼室内に噴射する噴射口と、前記燃料を所定の圧力によって供給する高圧源と前記噴射口とを接続し、前記高圧源から前記燃料が供給される第1流路と、前記第1流路に設けられ、前記噴射口の開閉を行う第1弁と、前記第1弁に前記噴射口の開閉を行わせる第1駆動部と、前記第1流路に接続され、前記第1流路から前記燃料が供給される第2流路と、前記第2流路に設けられ、前記第2流路の開閉を行う第2弁と、前記第2弁に前記第2流路の開閉を行わせる第2駆動部と、前記第1流路が有する部分のうち前記第1流路において前記第1弁よりも上流側に位置する部分であり、且つ、前記第1流路が有する部分のうち前記第1流路において前記第1流路と前記第2流路との接続部分よりも下流側に位置する部分に設けられ、前記第1流路の開閉を行う第3弁と、前記第3弁に前記第1流路の開閉を行わせる第3駆動部と、を備え、前記第1流路には、前記第1弁が前記噴射口を閉じた状態であり、且つ、前記第3弁が前記第1流路を閉じた状態である場合、前記燃料が保持される空間が形成され、前記制御方法は、前記第3弁が前記第1流路を閉じている状態で前記第2弁により前記第2流路を開く第11ステップと、前記第11ステップにより前記第2弁が前記第2流路を開いてから所定の第1時間が経過した後、前記第2弁により前記第2流路を閉じる第12ステップと、前記第12ステップにより前記第2弁が前記第2流路を閉じたタイミング以降のタイミングにおいて前記第3弁により前記第1流路を開く第13ステップと、前記第12ステップにより前記第2弁が前記第2流路を閉じてから、前記第13ステップにより前記第3弁が前記第1流路を開くまでの間において、前記第1弁により前記噴射口を開く第14ステップと、を有する。 Further, in order to solve the above-described problems, a control method according to an aspect of the present invention is a control method for a fuel injection device that injects fuel into a combustion chamber of an internal combustion engine, wherein the fuel injection device includes the fuel into the combustion chamber, a high-pressure source for supplying the fuel at a predetermined pressure, and the injection port are connected to each other, and a first flow path to which the fuel is supplied from the high-pressure source; a first valve provided in a flow path for opening and closing the injection port; a first driving unit for causing the first valve to open and close the injection port; a second flow passage to which the fuel is supplied from the passage; a second valve provided in the second flow passage for opening and closing the second flow passage; and a portion of the portion of the first flow path that is located upstream of the first valve in the first flow path, and that of the portion of the first flow path. a third valve provided in a portion of the first flow path located downstream of a connection portion between the first flow path and the second flow path to open and close the first flow path; and a third drive unit that causes three valves to open and close the first flow path, and the first valve is in a state where the injection port is closed in the first flow path, and the third When the valve closes the first flow path, a space is formed in which the fuel is held, and the control method includes controlling the second flow path with the third valve closing the first flow path. an eleventh step of opening the second flow path with a valve; and after a predetermined first time has elapsed since the second valve opened the second flow path in the eleventh step, a twelfth step of closing two flow paths; a thirteenth step of opening the first flow path by the third valve at a timing after the second valve closes the second flow path in the twelfth step; During the period from when the second valve closes the second flow path in the twelfth step to when the third valve opens the first flow path in the thirteenth step, the injection port is operated by the first valve. and a fourteenth step of opening
 本発明によれば、高圧源の圧力よりも高い圧力によって燃料の噴射を行うことができる燃料噴射装置、燃料噴射システム、及び制御方法を提供することができる。 According to the present invention, it is possible to provide a fuel injection device, a fuel injection system, and a control method that can inject fuel at a pressure higher than the pressure of a high-pressure source.
燃料噴射装置1の構成の一例を示す図である。1 is a diagram showing an example of a configuration of a fuel injection device 1; FIG. ECU3のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of ECU3. ECU3の機能構成の一例を示す図である。It is a figure which shows an example of a functional structure of ECU3. 燃料噴射装置1における噴射口H及び第2流路F2それぞれの開閉のタイミングと、第1流路F1内の圧力の時間的な変化と、第1弁V1のリフト量の時間的な変化と、燃料の噴射圧の時間的な変化と、燃料の噴射率の時間的な変化とのそれぞれの一例を示す図である。The opening and closing timings of the injection port H and the second flow path F2 in the fuel injection device 1, the temporal change of the pressure in the first flow path F1, the temporal change of the lift amount of the first valve V1, FIG. 4 is a diagram showing an example of temporal changes in fuel injection pressure and temporal changes in fuel injection rate. 燃料噴射装置1Aにおける噴射口H及び第2流路F2それぞれの開閉のタイミングと、第1流路F1内の圧力の時間的な変化と、第1弁V1のリフト量の時間的な変化と、燃料の噴射圧の時間的な変化と、燃料の噴射率の時間的な変化とのそれぞれの一例を示す図である。The opening and closing timings of the injection port H and the second flow path F2 in the fuel injection device 1A, the temporal change of the pressure in the first flow path F1, the temporal change of the lift amount of the first valve V1, FIG. 4 is a diagram showing an example of temporal changes in fuel injection pressure and temporal changes in fuel injection rate; 燃料噴射装置1Bの構成の他の例を示す図である。FIG. 5 is a diagram showing another example of the configuration of the fuel injection device 1B; ECU3の機能構成の他の例を示す図である。It is a figure showing other examples of functional composition of ECU3. 燃料噴射装置1Bにおける噴射口H、第1流路F1、第2流路F2それぞれの開閉のタイミングと、第1流路F1内の圧力の時間的な変化と、空間S内の圧力の時間的な変化と、第1弁V1のリフト量の時間的な変化と、燃料の噴射圧の時間的な変化と、燃料の噴射率の時間的な変化とのそれぞれの一例を示す図である。The opening and closing timings of the injection port H, the first flow path F1, and the second flow path F2 in the fuel injection device 1B, the temporal change of the pressure in the first flow path F1, and the temporal change in the pressure in the space S FIG. 2 is a diagram showing an example of each of a change over time, a change over time in the lift amount of the first valve V1, a change over time in the injection pressure of fuel, and a change over time in the injection rate of fuel. 燃料噴射装置1Cにおける噴射口H、第1流路F1、第2流路F2それぞれの開閉のタイミングと、第1流路F1内の圧力の時間的な変化と、空間S内の圧力の時間的な変化と、第1弁V1のリフト量の時間的な変化と、燃料の噴射圧の時間的な変化と、燃料の噴射率の時間的な変化とのそれぞれの一例を示す図である。The opening and closing timings of the injection port H, the first flow path F1, and the second flow path F2 in the fuel injection device 1C, the temporal change in the pressure in the first flow path F1, and the temporal change in the pressure in the space S FIG. 2 is a diagram showing an example of each of a change over time, a change over time in the lift amount of the first valve V1, a change over time in the injection pressure of fuel, and a change over time in the injection rate of fuel. 燃料噴射システム10の構成の一例を示す図である。1 is a diagram showing an example of a configuration of a fuel injection system 10; FIG. 第2流路F2の開閉のタイミングと、4つの燃料噴射装置1Dそれぞれの噴射口Hの開閉のタイミングと、4つの第1流路F1内の圧力の時間的な変化とのそれぞれの一例を示す図である。An example of opening/closing timing of the second flow path F2, opening/closing timing of the injection port H of each of the four fuel injection devices 1D, and temporal change in pressure in the four first flow paths F1 is shown. It is a diagram.
 <実施形態>
 以下、本発明の実施形態について、図面を参照して説明する。なお、本実施形態において、ある物理量の増大が開始するタイミングから、当該物理量が最大値に到達するタイミングまでの時間が短くなることを、当該物理量の立ち上がりの急峻化と称して説明する。また、本実施形態において、当該物理量の最大値が高くなることを、当該物理量の立ち上がりの先鋭化と称して説明する。当該物理量は、例えば、以下において登場する燃料の噴射圧、燃料の噴射率等のことであるが、これらに限られるわけではない。
<Embodiment>
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, shortening of the time from the timing when a certain physical quantity starts to increase to the timing when the physical quantity reaches the maximum value is referred to as steep rise of the physical quantity. Further, in the present embodiment, an increase in the maximum value of the physical quantity will be described as a sharp rise of the physical quantity. The physical quantity is, for example, a fuel injection pressure, a fuel injection rate, etc., which will appear below, but is not limited to these.
 <燃料噴射装置の概要>
 まず、実施形態に係る燃料噴射装置1の概要について説明する。
<Overview of Fuel Injector>
First, an overview of the fuel injection device 1 according to the embodiment will be described.
 燃料噴射装置1は、燃料噴射式の内燃機関EGに備えられ、内燃機関EGの燃焼室CCに燃料を噴射(供給)する装置である。内燃機関EGは、蓄圧噴射システム(コモンレール噴射システム)を備えた内燃機関である。内燃機関EGは、例えば、自動車、船舶、鉄道車両、重機等に備えられるディーゼルエンジンである。このため、燃料は、この一例において、軽油である。なお、内燃機関EGは、ディーゼルエンジンに代えて、燃料噴射式のガソリンエンジン等の燃料噴射式の他の内燃機関であってもよい。 The fuel injection device 1 is provided in the fuel injection type internal combustion engine EG, and is a device that injects (supplies) fuel into the combustion chamber CC of the internal combustion engine EG. The internal combustion engine EG is an internal combustion engine provided with a pressure accumulation injection system (common rail injection system). The internal combustion engine EG is, for example, a diesel engine provided in automobiles, ships, railway vehicles, heavy machinery, and the like. Thus, the fuel is light oil in this example. The internal combustion engine EG may be another fuel injection type internal combustion engine such as a fuel injection type gasoline engine instead of the diesel engine.
 ここで、内燃機関EGにおける燃料の燃焼効率を上げる方法として、燃焼室CC内への燃料の噴射圧を上げる方法が知られている。これは、例えば、燃料を燃焼室CC内へ供給する高圧源の圧力を上げることにより実現することができる。しかしながら、高圧源の圧力を上げるためには、燃焼室CC内へ燃料を供給するシステム全体の耐圧性を向上させる必要がある。これは、内燃機関EGの重量の増大、内燃機関EGの製造コストの増大等を招くため、好ましくない。 Here, as a method of increasing the fuel combustion efficiency in the internal combustion engine EG, a method of increasing the injection pressure of fuel into the combustion chamber CC is known. This can be achieved, for example, by increasing the pressure of the high pressure source that supplies fuel into the combustion chamber CC. However, in order to increase the pressure of the high-pressure source, it is necessary to improve the pressure resistance of the entire system that supplies fuel into the combustion chamber CC. This is not preferable because it causes an increase in the weight of the internal combustion engine EG, an increase in the manufacturing cost of the internal combustion engine EG, and the like.
 そこで、燃料噴射装置1は、噴射口と、第1流路と、第1弁と、第2流路と、第2弁を備える。噴射口は、燃料を燃焼室CC内に噴射する開口である。第1流路は、燃料を所定の圧力によって供給する高圧源(コモンレール)と噴射口とを接続し、高圧源から燃料が供給される。所定の圧力は、燃料噴射装置1における基準圧力である。第1弁は、第1流路に設けられ、噴射口の開閉を行う。第2流路は、第1流路に接続され、第1流路から燃料が供給される。第2弁は、第2流路に設けられ、第2流路の開閉を行う。これにより、燃料噴射装置1は、第1弁により噴射口を閉じた状態のまま第2弁により第2流路を閉じることにより、第2流路への燃料の流れを堰き止めることができる。この場合、堰き止められた燃料による水撃作用により、第1流路内の圧力が瞬間的に所定の圧力よりも高くなる。その結果、燃料噴射装置1は、第1流路内の圧力が所定の圧力よりも高くなっている期間内において噴射口を開くことにより、所定の圧力よりも高い圧力で燃料を燃焼室CC内に噴射することができる。燃料の初期の噴射圧が高いほど、燃焼室CCへ噴射される燃料の噴射率の立ち上がりが急峻化且つ先鋭化する。すなわち、燃料噴射装置1は、燃料の燃焼効率を更に向上させることができる。ここで、内燃機関EGでは、燃料の燃焼効率が向上した場合、燃焼室CC内の燃焼状態に応じて単位時間あたりの燃料消費率が小さくなる。このため、燃料噴射装置1は、ユーザーの利便性を向上させることもできる。以下では、燃料噴射装置1の構成と、燃料噴射装置1の制御方法について詳しく説明する。 Therefore, the fuel injection device 1 includes an injection port, a first flow path, a first valve, a second flow path, and a second valve. The injection port is an opening through which fuel is injected into the combustion chamber CC. The first flow path connects a high-pressure source (common rail) that supplies fuel at a predetermined pressure to the injection port, and fuel is supplied from the high-pressure source. The predetermined pressure is the reference pressure in the fuel injection device 1 . The first valve is provided in the first flow path and opens and closes the injection port. The second flow path is connected to the first flow path and supplied with fuel from the first flow path. The second valve is provided in the second flow path and opens and closes the second flow path. As a result, the fuel injection device 1 can block the flow of fuel to the second flow path by closing the second flow path with the second valve while the injection port is closed with the first valve. In this case, the pressure in the first flow path momentarily becomes higher than the predetermined pressure due to the water hammer effect of the dammed fuel. As a result, the fuel injection device 1 opens the injection port during the period in which the pressure in the first flow path is higher than the predetermined pressure, thereby injecting fuel into the combustion chamber CC at a pressure higher than the predetermined pressure. can be injected into The higher the initial injection pressure of the fuel, the steeper and sharper the rise of the injection rate of the fuel injected into the combustion chamber CC. That is, the fuel injection device 1 can further improve the fuel combustion efficiency. Here, in the internal combustion engine EG, when the fuel combustion efficiency is improved, the fuel consumption rate per unit time is decreased according to the combustion state in the combustion chamber CC. Therefore, the fuel injection device 1 can also improve user convenience. The configuration of the fuel injection device 1 and the control method of the fuel injection device 1 will be described in detail below.
 <燃料噴射装置の構成>
 以下、実施形態に係る燃料噴射装置1の構成について説明する。
<Structure of Fuel Injector>
The configuration of the fuel injection device 1 according to the embodiment will be described below.
 図1は、燃料噴射装置1の構成の一例を示す図である。燃料噴射装置1は、燃料インジェクター2と、燃料インジェクター2を制御するECU(Electronic Control Unit;電子制御装置)3を備える。なお、燃料噴射装置1は、ECU3を備えない構成であってもよい。 FIG. 1 is a diagram showing an example of the configuration of the fuel injection device 1. FIG. The fuel injection device 1 includes a fuel injector 2 and an ECU (Electronic Control Unit) 3 that controls the fuel injector 2 . Note that the fuel injection device 1 may be configured without the ECU 3 .
 燃料インジェクター2には、高圧源4から所定の圧力Pbによって燃料が供給される。ここで、高圧源4は、内燃機関EGが備えるコモンレールである。燃料インジェクター2は、ECU3による制御に応じて、高圧源4から供給された燃料を燃焼室CC内に噴射する。なお、高圧源4には、コモンレール圧調整弁(圧力リリーフバルブ)が設けられている。しかしながら、図1では、図を簡略化するため、コモンレール圧調整弁についての図示が省略されている。 Fuel is supplied to the fuel injector 2 from a high pressure source 4 at a predetermined pressure Pb. Here, the high pressure source 4 is a common rail provided in the internal combustion engine EG. The fuel injector 2 injects the fuel supplied from the high pressure source 4 into the combustion chamber CC under the control of the ECU 3 . The high pressure source 4 is provided with a common rail pressure regulating valve (pressure relief valve). However, in FIG. 1, the illustration of the common rail pressure regulating valve is omitted for the sake of simplification.
 燃料インジェクター2は、例えば、電動インジェクターである。燃料インジェクター2は、第1流路F1と、噴射口Hと、第1弁V1と、駆動部A1と、第2流路F2と、第2弁V2と、駆動部A2を備える。 The fuel injector 2 is, for example, an electric injector. The fuel injector 2 includes a first flow path F1, an injection port H, a first valve V1, a driving portion A1, a second flow path F2, a second valve V2, and a driving portion A2.
 第1流路F1は、燃料インジェクター2の筐体の内部に形成された管路である。また、第1流路F1は、高圧源4から所定の圧力Pbによって供給された燃料が通る管路である。また、第1流路F1は、高圧源4と噴射口Hとを接続する管路である。すなわち、高圧源4から所定の圧力Pbによって供給される燃料は、第1流路F1を通って噴射口Hへ到達する。 The first flow path F1 is a pipeline formed inside the housing of the fuel injector 2 . The first flow path F1 is a conduit through which fuel supplied from the high pressure source 4 at a predetermined pressure Pb passes. Further, the first flow path F1 is a pipeline that connects the high pressure source 4 and the injection port H. As shown in FIG. That is, fuel supplied from the high-pressure source 4 at a predetermined pressure Pb reaches the injection port H through the first flow path F1.
 噴射口Hは、第1流路F1に形成された開口である。このため、高圧源4から第1流路F1に供給された燃料は、噴射口Hから燃焼室CC内へ噴射(供給)される。すなわち、噴射口Hは、燃料を燃焼室CC内に噴射する。 The injection port H is an opening formed in the first flow path F1. Therefore, the fuel supplied from the high-pressure source 4 to the first flow path F1 is injected (supplied) from the injection port H into the combustion chamber CC. That is, the injection port H injects fuel into the combustion chamber CC.
 第1弁V1は、第1流路F1に設けられ、噴射口Hの開閉を行う。本実施形態において、噴射口Hが開いている状態は、第1流路F1から供給された燃料を噴射口Hから燃焼室CC内へ噴射可能な状態を意味する。また、本実施形態において、噴射口Hが閉じている状態は、第1流路F1から供給された燃料を噴射口Hから燃焼室CC内へ噴射不可能な状態を意味する。このため、噴射口Hの開閉は、噴射口H自体の開閉によって実現されてもよく、第1流路F1の開閉によって実現されてもよい。以下では、一例として、噴射口Hの開閉が、噴射口H自体の開閉によって実現されている場合について説明する。 The first valve V1 is provided in the first flow path F1 and opens and closes the injection port H. In this embodiment, the state in which the injection port H is open means a state in which the fuel supplied from the first flow path F1 can be injected from the injection port H into the combustion chamber CC. Further, in the present embodiment, a state in which the injection port H is closed means a state in which the fuel supplied from the first flow path F1 cannot be injected from the injection port H into the combustion chamber CC. Therefore, the opening and closing of the injection port H may be realized by opening and closing the injection port H itself, or by opening and closing the first flow path F1. In the following, as an example, the opening and closing of the injection port H is realized by opening and closing the injection port H itself.
 図1に示した例では、第1弁V1は、ノズルニードルである。なお、第1弁V1は、ノズルニードルに代えて、噴射口Hの開閉を行うことが可能な弁となる部材であれば、如何なる部材であってもよい。 In the example shown in FIG. 1, the first valve V1 is a nozzle needle. Note that the first valve V1 may be any member as long as it is a member capable of opening and closing the injection port H instead of the nozzle needle.
 第1弁V1は、第1弁V1の先端によって噴射口Hを塞ぐことにより、噴射口Hを閉じる。より具体的には、第1弁V1は、ECU3が駆動部A1を駆動させていない場合、噴射口Hを塞いだまま動かない。これにより、第1弁V1は、当該場合、噴射口Hを閉じ続ける。一方、第1弁V1は、ECU3が駆動部A1を駆動させた場合、噴射口Hから離間する方向に動く。その結果、第1弁V1は、当該場合、噴射口Hから当該方向へ離間し、噴射口Hが開く。 The first valve V1 closes the injection port H by closing the injection port H with the tip of the first valve V1. More specifically, the first valve V1 does not move while blocking the injection port H when the ECU 3 does not drive the drive unit A1. This causes the first valve V1 to keep the injection port H closed in that case. On the other hand, the first valve V1 moves away from the injection port H when the ECU 3 drives the driving portion A1. As a result, the first valve V1 is in that case moved away from the injection port H in that direction, and the injection port H opens.
 駆動部A1は、第1弁V1に噴射口Hの開閉を行わせる。駆動部A1は、例えば、第1弁V1を駆動するアクチュエーターとして、ソレノイド、ピエゾ素子等を有する。駆動部A1は、ECU3によって駆動されていない場合、第1流路F1に接続される管路を通って供給された燃料の圧力(すなわち、所定の圧力Pb)によって、第1弁V1の先端を噴射口Hに押し付けさせ、噴射口Hを塞ぎ続ける。すなわち、駆動部A1は、当該場合、第1弁V1により噴射口Hを閉じ続ける。ここで、当該管路は、第1流路F1と、当該管路を通る燃料が排出される排出口とを接続する。この排出口は、例えば、図示しない管路を介して燃料タンク(この燃料タンクは、高圧源4と繋がっていてもよく、高圧源4と繋がっていなくてもよい)と接続される。このため、この排出口から流れ出る燃料は、最終的に、燃料タンクへと戻っていく。なお、この排出口から先の構成については、これに代えて、如何なる構成であってもよい。このため、この排出口から先の構成については、これ以上の詳細な説明を省略する。一方、駆動部A1は、ECU3によって駆動された場合、当該管路を通って供給された燃料の圧力(すなわち、所定の圧力Pb)を、駆動部A1に設けられた弁を開けることによって減圧し、第1弁V1を噴射口Hから離間する方向に動かす。すなわち、駆動部A1は、当該場合、第1弁V1により噴射口Hを開ける。なお、第1弁V1の開閉についての構造及び動作は、既知の構造及び動作であってもよく、これから開発される構造及び動作であってもよいため、これ以上の詳細な説明を省略する。 The drive unit A1 causes the first valve V1 to open and close the injection port H. The drive unit A1 has, for example, a solenoid, a piezo element, or the like as an actuator for driving the first valve V1. When the drive unit A1 is not driven by the ECU 3, the pressure of the fuel supplied through the pipe line connected to the first flow path F1 (that is, the predetermined pressure Pb) pushes the tip of the first valve V1. Continue to block the injection port H by pressing it against the injection port H. That is, the driving part A1 keeps the injection port H closed by the first valve V1 in this case. Here, the pipeline connects the first flow path F1 and an outlet through which the fuel passing through the pipeline is discharged. This outlet is connected, for example, to a fuel tank (this fuel tank may or may not be connected to the high pressure source 4) via a conduit (not shown). Therefore, the fuel flowing out from this outlet eventually returns to the fuel tank. It should be noted that the configuration beyond this discharge port may be replaced with any other configuration. Therefore, further detailed description of the configuration beyond this discharge port will be omitted. On the other hand, when the drive unit A1 is driven by the ECU 3, the pressure of the fuel supplied through the pipeline (that is, the predetermined pressure Pb) is reduced by opening the valve provided in the drive unit A1. , moves the first valve V1 away from the injection port H. That is, the driving part A1 opens the injection port H by the first valve V1 in this case. The structure and operation for opening and closing the first valve V1 may be a known structure and operation, or may be a structure and operation to be developed in the future, so further detailed description will be omitted.
 第2流路F2は、燃料インジェクター2の筐体の内部に形成された管路である。また、第2流路F2は、第1流路F1と、第2流路F2を通る燃料が排出される排出口とを接続する管路である。換言すると、第2流路F2は、第1流路F1と接続された管路である。このため、第2流路F2には、第1流路F1から燃料が供給される。ここで、この排出口は、例えば、図示しない管路を介して燃料タンク(この燃料タンクは、高圧源4と繋がっていてもよく、高圧源4と繋がっていなくてもよい)と接続される。このため、第2流路F2を通ってこの排出口から流れ出る燃料は、最終的に、燃料タンクへと戻っていく。なお、この排出口から先の構成については、これに代えて、如何なる構成であってもよい。このため、この排出口から先の構成については、これ以上の詳細な説明を省略する。 The second flow path F2 is a pipeline formed inside the housing of the fuel injector 2. Also, the second flow path F2 is a conduit connecting the first flow path F1 and an outlet through which the fuel passing through the second flow path F2 is discharged. In other words, the second flow path F2 is a conduit connected to the first flow path F1. Therefore, fuel is supplied from the first flow path F1 to the second flow path F2. Here, for example, this outlet is connected to a fuel tank (this fuel tank may or may not be connected to the high pressure source 4) via a conduit (not shown). . Therefore, the fuel flowing out from this outlet through the second flow path F2 finally returns to the fuel tank. It should be noted that the configuration beyond this discharge port may be any configuration instead of this. Therefore, further detailed description of the configuration beyond this discharge port is omitted.
 第2弁V2は、第2流路F2に設けられ、第2流路F2の開閉を行う。本実施形態において、第2流路F2が開いている状態は、第2流路F2を通る燃料が排出される排出口へ、第1流路F1から供給された燃料が第2流路F2を通って流れている状態を意味する。また、本実施形態において、第2流路F2が閉じている状態は、第2流路F2を通る燃料が排出される排出口へ、第1流路F1から供給された燃料が第2流路F2を通って流れていない状態を意味する。このため、第2流路F2の開閉は、第2流路F2自体の開閉によって実現されてもよく、第1流路F1と第2流路F2との接続部分の開閉によって実現されてもよい。以下では、一例として、第2流路F2の開閉が、第2流路F2自体の開閉によって実現されている場合について説明する。ここで、第2弁V2は、第2流路F2の開閉を行うことにより、第1流路F1内の圧力を変化させる弁であると言い表すこともできる。しかしながら、第2弁V2は、コモンレール圧調整弁と別に付加的に第2流路F2に設けられる弁であり、コモンレール圧調整弁として機能させる弁ではない。コモンレール圧調整弁は、高圧源4の圧力が上昇し過ぎてしまった場合において、高圧源4に不具合が発生しないように、圧力の発生源である高圧源4から燃料を放出する弁である。従って、コモンレール圧調整弁は、通常、高圧源4自体に設けられる。一方、第1流路F1と第2流路F2との接続部分の位置は、噴射口Hに近いほど望ましい。そして、第2弁V2の位置も、噴射口Hに近いほど望ましい。これは、噴射口Hから燃焼室CC内へ噴射される燃料の圧力を、前述した水撃作用によって上昇させたいためである。更に、第2弁V2をコモンレール圧調整弁の代わりに利用することは、第1流路F1内の圧力を不定期に変化させることを意味し、第1流路F1内の圧力を不安定にさせることに繋がり、適当ではない。以上のような理由から、燃料噴射装置1には、コモンレール圧調整弁と別の付加的な弁として、第2弁V2が備えられている。 The second valve V2 is provided in the second flow path F2 and opens and closes the second flow path F2. In the present embodiment, when the second flow path F2 is open, the fuel supplied from the first flow path F1 flows through the second flow path F2 to the outlet through which the fuel passing through the second flow path F2 is discharged. means flowing through. Further, in the present embodiment, when the second flow path F2 is closed, the fuel supplied from the first flow path F1 is discharged from the second flow path F2 to the outlet through which the fuel passing through the second flow path F2 is discharged. It means no flow through F2. Therefore, the opening and closing of the second flow path F2 may be realized by opening and closing the second flow path F2 itself, or may be realized by opening and closing the connecting portion between the first flow path F1 and the second flow path F2. . In the following, as an example, a case where opening and closing of the second flow path F2 is realized by opening and closing of the second flow path F2 itself will be described. Here, it can also be said that the second valve V2 is a valve that changes the pressure in the first flow path F1 by opening and closing the second flow path F2. However, the second valve V2 is a valve additionally provided in the second flow path F2 separately from the common rail pressure regulating valve, and is not a valve functioning as a common rail pressure regulating valve. The common rail pressure regulating valve is a valve that releases fuel from the high-pressure source 4, which is a source of pressure, so that the high-pressure source 4 does not malfunction when the pressure of the high-pressure source 4 rises too much. A common rail pressure regulating valve is therefore usually provided in the high pressure source 4 itself. On the other hand, the position of the connecting portion between the first flow path F1 and the second flow path F2 is preferably closer to the injection port H. Also, the closer the position of the second valve V2 is to the injection port H, the better. This is because it is desired to increase the pressure of the fuel injected into the combustion chamber CC from the injection port H by the above-described water hammer action. Furthermore, using the second valve V2 instead of the common rail pressure regulating valve means that the pressure in the first flow path F1 changes irregularly, and the pressure in the first flow path F1 becomes unstable. It is not appropriate because it leads to For the above reasons, the fuel injection device 1 is provided with the second valve V2 as an additional valve separate from the common rail pressure regulating valve.
 第2弁V2は、駆動部A2の駆動に応じて第2流路F2を開閉可能な弁となる部材であれば、如何なる部材であってもよい。このため、図1では、便宜上、第2弁V2を長方形によって示している。 The second valve V2 may be any member as long as it is a member that can open and close the second flow path F2 according to the drive of the driving part A2. Therefore, in FIG. 1, the second valve V2 is indicated by a rectangle for convenience.
 第2弁V2は、第2流路F2を塞ぐことにより、第2流路F2を閉じる。より具体的には、第2弁V2は、ECU3が駆動部A2を駆動させていない場合、第2流路F2を塞ぎ、その結果、第2流路F2を閉じる。一方、第2弁V2は、ECU3が駆動部A2を駆動させた場合、第2流路F2を開く方向に動き、第2流路F2を開く。 The second valve V2 closes the second flow path F2 by blocking the second flow path F2. More specifically, the second valve V2 closes the second flow path F2 and, as a result, closes the second flow path F2 when the ECU 3 does not drive the drive unit A2. On the other hand, when the ECU 3 drives the drive unit A2, the second valve V2 moves in the direction of opening the second flow path F2, opening the second flow path F2.
 駆動部A2は、第2弁V2に第2流路F2の開閉を行わせる。駆動部A2は、例えば、第2弁V2を駆動するアクチュエーターとして、ソレノイド、ピエゾ素子等を有する。駆動部A2は、ECU3によって駆動されていない場合、第2弁V2を動かさず、第2流路F2を閉じ続ける。一方、駆動部A2は、ECU3によって駆動された場合、第2流路F2を開く方向へ第2弁V2を動かして第2流路F2を開く。なお、第2弁V2の開閉についての構造及び動作は、既知の構造及び動作であってもよく、これから開発される構造及び動作であってもよいため、これ以上の詳細な説明を省略する。 The drive unit A2 causes the second valve V2 to open and close the second flow path F2. The drive unit A2 has, for example, a solenoid, a piezo element, or the like as an actuator for driving the second valve V2. When not driven by the ECU 3, the driving part A2 does not move the second valve V2 and continues to close the second flow path F2. On the other hand, when driven by the ECU 3, the drive unit A2 moves the second valve V2 in the direction of opening the second flow path F2 to open the second flow path F2. The structure and operation for opening and closing the second valve V2 may be a known structure and operation, or may be a structure and operation that will be developed in the future, so further detailed description will be omitted.
 <ECUの機能構成>
 以下、図2を参照し、ECU3の機能構成について説明する。図2は、ECU3のハードウェア構成の一例を示す図である。ECU3は、例えば、CPU(Central Processing Unit)31と、記憶部32と、第1弁駆動回路33と、第2弁駆動回路34を備える。これらの構成要素は、バスを介して相互に通信可能に接続されている。また、ECU3は、他のECUと互いに通信するための通信部を備える構成であってもよい。
<ECU functional configuration>
Hereinafter, with reference to FIG. 2, the functional configuration of the ECU 3 will be described. FIG. 2 is a diagram showing an example of the hardware configuration of the ECU 3. As shown in FIG. The ECU 3 includes, for example, a CPU (Central Processing Unit) 31, a storage section 32, a first valve drive circuit 33, and a second valve drive circuit . These components are communicatively connected to each other via a bus. Moreover, the structure provided with the communication part for mutually communicating with other ECU may be sufficient as ECU3.
 CPU31は、記憶部32に格納された各種プログラムを実行する。なお、CPU31は、FPGA(Field Programmable Gate Array)等の他のプロセッサーであってもよい。
 記憶部32は、例えば、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、RAM(Random Access Memory)等を含む。記憶部32は、ECU3が処理する各種の情報を格納する。
The CPU 31 executes various programs stored in the storage section 32 . Note that the CPU 31 may be another processor such as an FPGA (Field Programmable Gate Array).
The storage unit 32 includes, for example, EEPROM (Electrically Erasable Programmable Read Only Memory), ROM (Read Only Memory), RAM (Random Access Memory), and the like. The storage unit 32 stores various information processed by the ECU 3 .
 第1弁駆動回路33は、第1弁V1の開閉を行う駆動部A1を駆動する駆動電流を駆動部A1に供給する。
 第2弁駆動回路34は、第2弁V2の開閉を行う駆動部A2を駆動する駆動電流を駆動部A2に供給する。
The first valve drive circuit 33 supplies drive current to the drive unit A1 for driving the drive unit A1 that opens and closes the first valve V1.
The second valve drive circuit 34 supplies a drive current for driving the drive section A2 that opens and closes the second valve V2 to the drive section A2.
 <ECUの機能構成>
 以下、図3を参照し、ECU3の機能構成について説明する。図3は、ECU3の機能構成の一例を示す図である。ECU3は、記憶部32と、第1弁駆動回路33と、第2弁駆動回路34と、制御部36を備える。
<ECU functional configuration>
Hereinafter, with reference to FIG. 3, the functional configuration of the ECU 3 will be described. FIG. 3 is a diagram showing an example of the functional configuration of the ECU 3. As shown in FIG. The ECU 3 includes a storage section 32 , a first valve drive circuit 33 , a second valve drive circuit 34 and a control section 36 .
 制御部36は、第1弁駆動回路33を制御し、記憶部32に予め記憶されたタイミングに応じて第1弁V1による噴射口Hの開閉を駆動部A1に行わせる。また、制御部36は、第2弁駆動回路34を制御し、記憶部32に予め記憶されたタイミングに応じて第2弁V2による第2流路F2の開閉を駆動部A2に行わせる。制御部36は、例えば、CPU31が、記憶部32に記憶されたプログラムを実行することにより実現される。また、制御部36は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。 The control unit 36 controls the first valve driving circuit 33 and causes the driving unit A1 to open and close the injection port H by the first valve V1 according to the timing stored in the storage unit 32 in advance. Further, the control unit 36 controls the second valve drive circuit 34 and causes the drive unit A2 to open and close the second flow path F2 by the second valve V2 according to the timing stored in advance in the storage unit 32 . The control unit 36 is implemented, for example, by the CPU 31 executing a program stored in the storage unit 32 . Also, the control unit 36 may be a hardware function unit such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit).
 <燃料噴射装置の制御方法>
 以下、図4を参照し、燃料噴射装置1の制御方法の具体例について説明する。なお、以下では、一例として、駆動部A1に駆動電流C1が供給された場合に駆動部A1が第1弁V1により噴射口Hを開け、駆動部A2に駆動電流C2が供給された場合に駆動部A2が第2弁V2により第2流路F2を開ける場合について説明する。すなわち、駆動部A1は、駆動部A1への駆動電流C1の供給が止められた場合、第1弁V1により噴射口Hを閉じる。また、駆動部A2は、駆動部A2への駆動電流C2の供給が止められた場合、第2弁V2により第2流路F2を閉じる。また、以下では、一例として、メイン噴射を行う場合における燃料噴射装置1の制御方法について説明する。しかしながら、この制御方法は、プレ噴射、パイロット噴射等の他の噴射に適用されてもよい。また、以下では、一例として、燃料噴射装置1の制御のうち、噴射口Hの開閉と第2流路F2の開閉とを伴う制御を、第1制御と称して説明する。また、以下では、一例として、燃料噴射装置1の制御のうち、噴射口Hの開閉を伴い、且つ、第2流路F2の開閉を伴わない制御を、第2制御と称して説明する。第2制御を行った場合、燃料噴射装置1における燃料の噴射圧及び噴射率それぞれの時間的な変化は、従来の燃料噴射装置における燃料の噴射圧及び噴射率それぞれの時間的な変化とほぼ変わらなくなる。このため、第1制御による燃料噴射装置1の制御方法と第2制御による燃料噴射装置1の制御方法とを比較することは、燃料噴射装置1と異なる燃料噴射装置(例えば、従来の燃料噴射装置)と比べて燃料噴射装置1が優れている点を明確に示すことに繋がる。そこで、以下では、第1制御による燃料噴射装置1の制御方法と第2制御による燃料噴射装置1の制御方法とを比較し、燃料噴射装置1が従来の燃料噴射装置と比べて優れている点について説明する。なお、本実施形態において、燃料の噴射圧は、噴射口H出口における燃料の圧力を示す。また、本実施形態において、燃料の噴射率は、噴射口Hから燃焼室CCに向かって単位時間あたりに流れ出る燃料の体積を示す。
<Control Method of Fuel Injector>
A specific example of the control method of the fuel injection device 1 will be described below with reference to FIG. In the following, as an example, when the driving current C1 is supplied to the driving part A1, the driving part A1 opens the injection port H by the first valve V1, and when the driving current C2 is supplied to the driving part A2, the driving is performed. A case where the part A2 opens the second flow path F2 by the second valve V2 will be described. That is, the driving portion A1 closes the injection port H by the first valve V1 when the supply of the driving current C1 to the driving portion A1 is stopped. Further, when the supply of the driving current C2 to the driving portion A2 is stopped, the driving portion A2 closes the second flow path F2 by the second valve V2. Moreover, below, the control method of the fuel-injection apparatus 1 in the case of performing main injection is demonstrated as an example. However, this control method may be applied to other injections such as pre-injection and pilot injection. In the following description, among the controls of the fuel injection device 1, the control involving the opening/closing of the injection port H and the opening/closing of the second flow path F2 will be referred to as the first control. In the following, as an example, among the controls of the fuel injection device 1, the control that accompanies the opening and closing of the injection port H and does not accompany the opening and closing of the second flow path F2 will be referred to as the second control. When the second control is performed, temporal changes in the fuel injection pressure and injection rate in the fuel injection device 1 are substantially the same as temporal changes in the fuel injection pressure and injection rate in the conventional fuel injection device. Gone. For this reason, comparing the control method of the fuel injection device 1 by the first control and the control method of the fuel injection device 1 by the second control is a different fuel injection device from the fuel injection device 1 (for example, a conventional fuel injection device). ), the superiority of the fuel injection device 1 can be clearly shown. Therefore, below, the control method of the fuel injection device 1 by the first control and the control method of the fuel injection device 1 by the second control will be compared, and the advantages of the fuel injection device 1 as compared with the conventional fuel injection device will be described. will be explained. In this embodiment, the fuel injection pressure indicates the fuel pressure at the injection port H outlet. Further, in the present embodiment, the fuel injection rate indicates the volume of fuel that flows out from the injection port H toward the combustion chamber CC per unit time.
 図4は、燃料噴射装置1における噴射口H及び第2流路F2それぞれの開閉のタイミングと、第1流路F1内の圧力の時間的な変化と、第1弁V1のリフト量の時間的な変化と、燃料の噴射圧の時間的な変化と、燃料の噴射率の時間的な変化とのそれぞれの一例を示す図である。ここで、第1弁V1のリフト量は、噴射口Hを塞いでいる状態の第1弁V1の位置を第1弁V1の基準の位置として、その基準の位置と第1弁V1の位置との差を示す量のことである。すなわち、第1弁V1のリフト量が大きくなるほど、噴射口Hが開いている度合いが大きくなる。なお、第1弁V1の位置は、例えば、第1弁V1の先端に位置によって表されるが、第1弁V1の他の部位の位置によって表される構成であってもよい。 FIG. 4 shows the opening and closing timings of the injection port H and the second flow path F2 in the fuel injection device 1, the temporal change of the pressure in the first flow path F1, and the temporal change of the lift amount of the first valve V1. FIG. 3 is a diagram showing an example of each of a change in pressure, a change in fuel injection pressure over time, and a change in fuel injection rate over time. Here, the lift amount of the first valve V1 is calculated by taking the position of the first valve V1 that blocks the injection port H as a reference position of the first valve V1 and comparing the reference position with the position of the first valve V1. It is the amount that indicates the difference between That is, as the lift amount of the first valve V1 increases, the opening degree of the injection port H increases. The position of the first valve V1 is represented by the position at the tip of the first valve V1, for example, but may be represented by the position of other parts of the first valve V1.
 図4に示したグラフG1~グラフG4それぞれの横軸は、燃料噴射装置1によってメイン噴射を行う期間における経過時間を示す。ただし、図4に示した例では、第1制御によって制御される燃料噴射装置1において噴射口Hが開き始めたタイミングと、第2制御によって制御される燃料噴射装置1において噴射口Hが開き始めたタイミングとを一致させている。また、当該例では、第1制御によって制御される燃料噴射装置1において噴射口Hが閉じたタイミングと、第2制御によって制御される燃料噴射装置1において噴射口Hが閉じたタイミングとを一致させている。これらのタイミングを一致させることにより、図4には、第1制御によって制御される燃料噴射装置1と、第2制御によって制御される燃料噴射装置1との違いが明確に示されている。  The horizontal axis of each of the graphs G1 to G4 shown in FIG. However, in the example shown in FIG. 4, the timing at which the injection port H of the fuel injection device 1 controlled by the first control begins to open and the timing at which the injection port H of the fuel injection device 1 controlled by the second control begins to open. timing. Further, in this example, the timing at which the injection port H is closed in the fuel injection device 1 controlled by the first control is matched with the timing at which the injection port H is closed in the fuel injection device 1 controlled by the second control. ing. By matching these timings, FIG. 4 clearly shows the difference between the fuel injection device 1 controlled by the first control and the fuel injection device 1 controlled by the second control.
 図4に示したグラフG1の縦軸は、第1流路F1内の圧力を示す。グラフG1にプロットされた曲線FN1は、第1制御によって燃料噴射装置1を制御した場合における第1流路F1内の圧力の時間的な変化の一例を示す。一方、グラフG1にプロットされた曲線FX1は、第2制御によって燃料噴射装置1を制御した場合における第1流路F1内の圧力の時間的な変化の一例を示す。また、グラフG1には、噴射口Hの開閉のタイミングを示すタイミングチャートTC1と、第2流路F2の開閉のタイミングを示すタイミングチャートTC2とが重ねられている。 The vertical axis of the graph G1 shown in FIG. 4 indicates the pressure inside the first flow path F1. A curve FN1 plotted on the graph G1 shows an example of temporal change in pressure in the first flow path F1 when the fuel injection device 1 is controlled by the first control. On the other hand, a curve FX1 plotted in the graph G1 shows an example of temporal change in pressure in the first flow path F1 when the fuel injection device 1 is controlled by the second control. Also, a timing chart TC1 showing the opening/closing timing of the injection port H and a timing chart TC2 showing the opening/closing timing of the second flow path F2 are superimposed on the graph G1.
 図4に示したグラフG2の縦軸は、第1弁V1のリフト量を示す。グラフG2にプロットされた曲線FN2は、第1制御によって燃料噴射装置1を制御した場合における第1弁V1のリフト量の時間的な変化の一例を示す。一方、グラフG2にプロットされた曲線FX2は、第2制御によって燃料噴射装置1を制御した場合における第1弁V1のリフト量の時間的な変化の一例を示す。 The vertical axis of the graph G2 shown in FIG. 4 indicates the lift amount of the first valve V1. A curve FN2 plotted on the graph G2 shows an example of temporal changes in the lift amount of the first valve V1 when the fuel injection device 1 is controlled by the first control. On the other hand, a curve FX2 plotted on the graph G2 shows an example of temporal change in the lift amount of the first valve V1 when the fuel injection device 1 is controlled by the second control.
 図4に示したグラフG3の縦軸は、燃料の噴射圧を示す。グラフG3にプロットされた曲線FN3は、第1制御によって燃料噴射装置1を制御した場合における燃料の噴射圧の時間的な変化の一例を示す。一方、グラフG3にプロットされた曲線FX3は、第2制御によって燃料噴射装置1を制御した場合における燃料の噴射圧の時間的な変化の一例を示す。 The vertical axis of graph G3 shown in FIG. 4 indicates the fuel injection pressure. A curve FN3 plotted on the graph G3 shows an example of temporal changes in the fuel injection pressure when the fuel injection device 1 is controlled by the first control. On the other hand, a curve FX3 plotted on the graph G3 shows an example of temporal change in fuel injection pressure when the fuel injection device 1 is controlled by the second control.
 図4に示したグラフG4の縦軸は、燃料の噴射率を示す。グラフG4にプロットされた曲線FN4は、第1制御によって燃料噴射装置1を制御した場合における燃料の噴射率の時間的な変化の一例を示す。一方、グラフG4にプロットされた曲線FX4は、第2制御によって燃料噴射装置1を制御した場合における燃料の噴射率の時間的な変化の一例を示す。 The vertical axis of graph G4 shown in FIG. 4 indicates the fuel injection rate. A curve FN4 plotted on the graph G4 shows an example of temporal changes in the fuel injection rate when the fuel injection device 1 is controlled by the first control. On the other hand, a curve FX4 plotted on the graph G4 shows an example of temporal changes in the fuel injection rate when the fuel injection device 1 is controlled by the second control.
 図4に示した例では、第1制御によって制御される燃料噴射装置1は、タイミングt1になるまで、噴射口H及び第2流路F2を閉じたまま待機する。そして、当該燃料噴射装置1は、タイミングt1において、第2流路F2を開き始める。その結果、曲線FN1が示すように、当該燃料噴射装置1では、タイミングt1において、第1流路F1内の圧力が低下し始める。これは、タイミングt1において、第1流路F1から第2流路F2へ燃料が流れ始めるからである。 In the example shown in FIG. 4, the fuel injection device 1 controlled by the first control waits with the injection port H and the second flow path F2 closed until timing t1. Then, the fuel injection device 1 starts to open the second flow path F2 at the timing t1. As a result, as indicated by the curve FN1, in the fuel injection device 1, the pressure inside the first flow path F1 begins to decrease at timing t1. This is because the fuel starts to flow from the first flow path F1 to the second flow path F2 at the timing t1.
 その後、第1制御によって制御される燃料噴射装置1では、タイミングt1から所定の第1時間が経過したタイミングt2において第2流路F2が閉じるように、駆動部A2が第2弁V2を動かし始める。その結果、当該燃料噴射装置1では、タイミングt2において、第1流路F1内の圧力が上昇し始める。 After that, in the fuel injection device 1 controlled by the first control, the driving section A2 starts moving the second valve V2 so that the second flow path F2 is closed at timing t2 when a predetermined first time has elapsed from timing t1. . As a result, in the fuel injection device 1, the pressure inside the first flow path F1 starts to rise at timing t2.
 そして、第1制御によって制御される燃料噴射装置1では、タイミングt2以降のタイミングにおいて、第1流路F1内の圧力が瞬間的に所定の圧力Pbよりも高くなる。これは、第1流路F1から第2流路F2を通って排出口へ流れ出ていた燃料が第2弁V2によって堰き止められ、その結果として生じた水撃作用によって第1流路F1内の圧力が瞬間的に所定の圧力Pbよりも高くなるために発生する現象である。より具体的には、第1流路F1から第2流路F2を通って排出口へ流れていた燃料は、タイミングt2において、第2流路F2内において第2弁V2によって堰き止められる。堰き止められた燃料は、堰き止められる前の燃料の流速に応じて圧縮される。その結果、水撃作用が発生し、第1流路F1内の圧力は、上昇し始める。 Then, in the fuel injection device 1 controlled by the first control, the pressure in the first flow path F1 momentarily becomes higher than the predetermined pressure Pb at the timing after the timing t2. This is because the fuel flowing from the first flow path F1 through the second flow path F2 to the discharge port is dammed by the second valve V2, and the resulting water hammer action causes the fuel to flow into the first flow path F1. This phenomenon occurs because the pressure momentarily becomes higher than the predetermined pressure Pb. More specifically, the fuel flowing from the first flow path F1 to the discharge port through the second flow path F2 is blocked by the second valve V2 in the second flow path F2 at timing t2. The dammed fuel is compressed according to the flow velocity of the fuel before dammed. As a result, a water hammer action occurs, and the pressure in the first flow path F1 begins to rise.
 しかしながら、曲線FN1が示すように、第1流路F1内の圧力は、タイミングt2以降において、減衰振動する。このため、第1制御によって制御される燃料噴射装置1は、タイミングt3において噴射口Hを開き始める。タイミングt3は、タイミングt2以降のタイミングのうち、所定の圧力Pb未満の圧力から所定の圧力Pbを超える圧力まで第1流路F1内の圧力が上昇し、その後、第1流路F1内の圧力が再び下降を開始するまでの間の期間内のタイミングであれば、如何なるタイミングであってもよい。ここで、図4では、第1流路F1内の圧力のうち、水撃作用によって最も高くなった圧力と所定の圧力Pbとの差を、ΔPmaxによって示している。すなわち、当該燃料噴射装置1は、タイミングt2以降のタイミングのうち、第1流路F1内の圧力が(Pb+ΔPmax)となるまでの間の期間内のタイミングをタイミングt3として、タイミングt3で噴射口Hを開き始める。図4に示した例では、タイミングt3は、タイミングt2以降のタイミングのうち、第1流路F1内の圧力が所定の圧力Pb未満の圧力から所定の圧力Pbに戻ったタイミングである。 However, as indicated by the curve FN1, the pressure in the first flow path F1 damps and oscillates after timing t2. Therefore, the fuel injection device 1 controlled by the first control starts opening the injection port H at timing t3. At timing t3, among the timings after timing t2, the pressure in the first flow path F1 rises from the pressure less than the predetermined pressure Pb to the pressure exceeding the predetermined pressure Pb, and then the pressure in the first flow path F1 Any timing may be used as long as it is within the period until starts to fall again. Here, in FIG. 4, ΔPmax indicates the difference between the highest pressure due to the water hammer action and the predetermined pressure Pb among the pressures in the first flow path F1. That is, the fuel injection device 1 sets the timing within the period until the pressure in the first flow path F1 becomes (Pb+ΔPmax) among timings after the timing t2 as the timing t3, and the injection port H is injected at the timing t3. start to open. In the example shown in FIG. 4, the timing t3 is the timing after the timing t2 when the pressure in the first flow path F1 returns from the pressure lower than the predetermined pressure Pb to the predetermined pressure Pb.
 タイミングt2とタイミングt3との間の時間差は、例えば、事前の試験、実験等によるトライアンドエラーによって燃料の燃焼効率が所望の燃焼効率(例えば、最も高い燃焼効率等)に近づくように決められるが、理論計算に基づいて決められてもよく、シミュレーションによって決められてもよく、他の方法によって決められてもよい。このようにして決められたタイミングt3において噴射口Hが開き始めるため、第1流路F1内の燃料は、タイミングt3において、所定の圧力Pbよりも高い圧力によって、噴射口Hから燃焼室CC内へ噴射され始める。このため、燃料の噴射圧及び噴射率も、曲線FN3及び曲線FN4のそれぞれが示すように、タイミングt3において上昇し始める。 The time difference between the timing t2 and the timing t3 is determined, for example, by trial and error in advance tests, experiments, etc., so that the combustion efficiency of the fuel approaches the desired combustion efficiency (for example, the highest combustion efficiency, etc.). , may be determined based on theoretical calculation, may be determined by simulation, or may be determined by other methods. Since the injection port H starts to open at the timing t3 determined in this way, the fuel in the first flow path F1 flows from the injection port H into the combustion chamber CC at the timing t3 at a pressure higher than the predetermined pressure Pb. begins to be sprayed into Therefore, the fuel injection pressure and injection rate also start to rise at timing t3, as indicated by curves FN3 and FN4, respectively.
 タイミングt3の後、第1制御によって制御される燃料噴射装置1では、タイミングt3から所定の第2時間が経過したタイミングt4において噴射口Hが閉じるように、駆動部A1が第1弁V1を動かし始める。駆動部A1が第1弁V1を動かし始めることをトリガーとして、当該燃料噴射装置1では、タイミングt3からタイミングt4までの間の期間内において、第1弁V1のリフト量が減少するとともに、燃料の噴射圧及び噴射率が下降し始める。そして、タイミングt4において、当該燃料噴射装置1では、第1弁V1のリフト量が0[mm]となり、燃料の噴射圧が0[MPa]となり、燃料の噴射率が0[mm/s]となる。ただし、タイミングt3からタイミングt4までの間の期間において、第1弁V1のリフト量、燃料の噴射圧、燃料の噴射率のそれぞれには、振動が見られることがある。図4に示した例では、第1弁V1のリフト量、燃料の噴射圧、燃料の噴射率のそれぞれは、当該期間内において、上昇、下降、上昇、下降の順に変動している。このため、当該例では、第1弁V1のリフト量、燃料の噴射圧、燃料の噴射率のそれぞれの時間的な変化には、2つのピークが現れている。これは、当該期間内における第1流路F1内の圧力が、減衰振動していることによる影響の反映である。この影響に対する対策は、実施形態の変形例1以降において説明する。 After the timing t3, in the fuel injection device 1 controlled by the first control, the driving section A1 moves the first valve V1 so that the injection port H is closed at the timing t4 when a predetermined second time has elapsed from the timing t3. start. Triggered by the drive unit A1 starting to move the first valve V1, the fuel injection device 1 reduces the lift amount of the first valve V1 and increases the amount of fuel during the period from timing t3 to timing t4. Injection pressure and injection rate begin to drop. At timing t4, in the fuel injection device 1, the lift amount of the first valve V1 becomes 0 [mm], the fuel injection pressure becomes 0 [MPa], and the fuel injection rate becomes 0 [mm 3 /s]. becomes. However, in the period from timing t3 to timing t4, oscillations may be observed in each of the lift amount of the first valve V1, the fuel injection pressure, and the fuel injection rate. In the example shown in FIG. 4, each of the lift amount of the first valve V1, the fuel injection pressure, and the fuel injection rate fluctuates in the order of rising, falling, rising, and falling within the period. Therefore, in this example, two peaks appear in the temporal changes in the lift amount of the first valve V1, the fuel injection pressure, and the fuel injection rate. This is a reflection of the influence of the damped oscillation of the pressure in the first flow path F1 during this period. Countermeasures against this influence will be described in modification 1 and subsequent embodiments of the embodiment.
 タイミングt4の後、第1制御によって制御される燃料噴射装置1は、燃料の次の噴射を行い始めるまで、噴射口H及び第2流路F2のそれぞれを閉じたまま待機する。このため、当該燃料噴射装置1では、第1流路F1内の圧力は、燃料の次の噴射を行い始めるまでの間において、所定の圧力Pbに戻る。 After timing t4, the fuel injection device 1 controlled by the first control waits with the injection port H and the second flow path F2 closed until the next injection of fuel is started. Therefore, in the fuel injection device 1, the pressure in the first flow path F1 returns to the predetermined pressure Pb until the next injection of fuel is started.
 一方、図4に示した例では、タイミングチャートTC1が示すように、第2制御によって制御される燃料噴射装置1は、タイミングt3になるまで、噴射口H及び第2流路F2を閉じたまま待機する。そして、当該燃料噴射装置1は、タイミングt3において、噴射口Hを開き始める。噴射口Hが開き始めるため、第1流路F1内の燃料は、タイミングt3において、所定の圧力Pbによって、噴射口Hから燃焼室CC内へ噴射され始める。このため、燃料の噴射圧及び噴射率も、曲線FX3及び曲線FX4のそれぞれが示すように、タイミングt3において上昇し始める。その結果、曲線FX1が示すように、当該燃料噴射装置1では、タイミングt3において、第1流路F1内の圧力が所定の圧力Pbから低下し始める。 On the other hand, in the example shown in FIG. 4, as shown in the timing chart TC1, the fuel injection device 1 controlled by the second control keeps the injection port H and the second flow path F2 closed until timing t3. stand by. Then, the fuel injection device 1 starts to open the injection port H at timing t3. Since the injection port H begins to open, the fuel in the first flow path F1 begins to be injected from the injection port H into the combustion chamber CC at a predetermined pressure Pb at timing t3. Therefore, the fuel injection pressure and injection rate also start to rise at timing t3, as indicated by curves FX3 and FX4, respectively. As a result, as indicated by the curve FX1, in the fuel injection device 1, the pressure in the first flow path F1 starts to decrease from the predetermined pressure Pb at timing t3.
 タイミングt3の後、第2制御によって制御される燃料噴射装置1では、タイミングt4において噴射口Hが閉じるように、駆動部A1が第1弁V1を動かし始める。駆動部A1が第1弁V1を動かし始めることをトリガーとして、当該燃料噴射装置1では、タイミングt3からタイミングt4までの間の期間内において、第1弁V1のリフト量が減少するとともに、燃料の噴射圧及び噴射率が下降し始める。そして、タイミングt4において、当該燃料噴射装置1では、第1弁V1のリフト量が0[mm]となり、燃料の噴射圧が0[MPa]となり、燃料の噴射率が0[mm/s]となる。なお、当該燃料噴射装置1では、タイミングt3からタイミングt4までの間の期間において、第1弁V1のリフト量、燃料の噴射圧、燃料の噴射率のそれぞれには、振動が見られない。これは、当該燃料噴射装置1において、当該期間内における第1流路F1内の圧力が、振動していないためである。 After timing t3, in the fuel injection device 1 controlled by the second control, the driving section A1 starts moving the first valve V1 so that the injection port H is closed at timing t4. Triggered by the drive unit A1 starting to move the first valve V1, the fuel injection device 1 reduces the lift amount of the first valve V1 and increases the amount of fuel during the period from timing t3 to timing t4. Injection pressure and injection rate begin to drop. At timing t4, in the fuel injection device 1, the lift amount of the first valve V1 becomes 0 [mm], the fuel injection pressure becomes 0 [MPa], and the fuel injection rate becomes 0 [mm 3 /s]. becomes. In the fuel injection device 1, no vibration is observed in the lift amount of the first valve V1, the fuel injection pressure, and the fuel injection rate during the period from timing t3 to timing t4. This is because, in the fuel injection device 1, the pressure in the first flow path F1 does not oscillate during the period.
 タイミングt4の後、第2制御によって制御される燃料噴射装置1は、燃料の次の噴射を行い始めるまで、噴射口H及び第2流路F2のそれぞれを閉じたまま待機する。このため、当該燃料噴射装置1では、第1流路F1内の圧力は、燃料の次の噴射を行い始めるまでの間において、所定の圧力Pbに戻る。なお、タイミングt4の後、当該燃料噴射装置1では、第1流路F1内の圧力は、噴射口Hへ向かって第1流路F1を流れる燃料がタイミングt4において第1弁V1により堰き止められるため、曲線FX1が示すように、水撃作用の発生によって減衰振動する。しかしながら、当該燃料噴射装置1では、この減衰振動の影響は、タイミングt4において噴射口Hが閉じているため、燃焼室CC内に伝わらない。そして、当該燃料噴射装置1において、この減衰振動は、燃料の次の噴射を行い始めるまでの間の期間内で収まる。 After timing t4, the fuel injection device 1 controlled by the second control waits with the injection port H and the second flow path F2 closed until the next injection of fuel is started. Therefore, in the fuel injection device 1, the pressure in the first flow path F1 returns to the predetermined pressure Pb until the next injection of fuel is started. After timing t4, in the fuel injection device 1, the pressure in the first flow path F1 is such that the fuel flowing through the first flow path F1 toward the injection port H is dammed by the first valve V1 at time t4. Therefore, as indicated by the curve FX1, damped vibration occurs due to the occurrence of water hammer. However, in the fuel injection device 1, the influence of this damped oscillation is not transmitted to the combustion chamber CC because the injection port H is closed at the timing t4. Then, in the fuel injection device 1, this damped oscillation is settled within a period until the next injection of fuel is started.
 ここで、第1制御によって制御される燃料噴射装置1は、前述したように、タイミングt3からの燃料の燃焼室CC内への噴射を、所定の圧力Pbより高い圧力によって行い始める。このように所定の圧力Pbよりも高い圧力、すなわち、高圧源4の圧力よりも高い圧力で燃料を噴射し始めることは、第2制御によって制御される燃料噴射装置1にできないことである。換言すると、このように所定の圧力Pbよりも高い圧力、すなわち、高圧源4の圧力よりも高い圧力で燃料を噴射し始めることは、従来の燃料噴射装置にできないことである。そして、グラフG2~グラフG4のそれぞれが示すように、所定の圧力Pbよりも高い圧力で燃料を噴射し始める結果として、曲線FN2の立ち上がりが曲線FX2の立ち上がりよりも急峻化且つ先鋭化しており、曲線FN3の立ち上がりが曲線FX3の立ち上がりよりも急峻化且つ先鋭化しており、曲線FN4の立ち上がりが曲線FX4の立ち上がりよりも急峻化且つ先鋭化している。 Here, as described above, the fuel injection device 1 controlled by the first control starts injecting fuel into the combustion chamber CC from timing t3 at a pressure higher than the predetermined pressure Pb. It is impossible for the fuel injection device 1 controlled by the second control to start injecting fuel at a pressure higher than the predetermined pressure Pb, that is, at a pressure higher than the pressure of the high-pressure source 4 . In other words, it is impossible for a conventional fuel injection device to start injecting fuel at a pressure higher than the predetermined pressure Pb, that is, at a pressure higher than the pressure of the high-pressure source 4 . Then, as shown by graphs G2 to G4, as a result of starting to inject fuel at a pressure higher than the predetermined pressure Pb, the rise of curve FN2 is steeper and sharper than the rise of curve FX2. The rise of curve FN3 is steeper and sharper than the rise of curve FX3, and the rise of curve FN4 is steeper and sharper than the rise of curve FX4.
 これはすなわち、燃料噴射装置1では、第1弁V1のリフト量の立ち上がりが従来と比べて急峻化且つ先鋭化し、燃料の噴射圧の立ち上がりが従来と比べて急峻化且つ先鋭化し、燃料の噴射率の立ち上がりが従来と比べて急峻化且つ先鋭化していることを示している。換言すると、燃料噴射装置1では、従来の燃料噴射装置よりも速く噴射口Hを開くことができ、従来の燃料噴射装置よりも速く燃料の噴射圧及び噴射率のそれぞれを上昇させることができ、更に、従来の燃料噴射装置よりも高く燃料の噴射圧及び噴射率のそれぞれを上昇させることができる。その結果、燃料噴射装置1は、従来の燃料噴射装置と比較して、燃料の燃焼効率をより向上させることができる。また、燃料噴射装置1は、タイミングt3からの燃料の噴射圧の立ち上がりの急峻化を、ピエゾ素子のような応答性の高い高価なアクチュエーターを用いなくても実現することができる。これは、燃料噴射装置1が製造コストの増大を抑制することも可能であることを示している。当然ながら、燃料噴射装置1は、応答性の高いアクチュエーターとの組み合わせにより、タイミングt3からの燃料の噴射圧の立ち上がりを、更に急峻化することができる。 That is, in the fuel injection device 1, the rise of the lift amount of the first valve V1 is steeper and sharper than before, the rise of the fuel injection pressure is steeper and sharper than before, and the fuel is injected. This indicates that the rise in rate is steeper and sharper than in the past. In other words, in the fuel injection device 1, the injection port H can be opened faster than the conventional fuel injection device, and the injection pressure and the injection rate of the fuel can be increased faster than the conventional fuel injection device. Furthermore, it is possible to raise the injection pressure and the injection rate of the fuel more than the conventional fuel injection device. As a result, the fuel injection device 1 can further improve the fuel combustion efficiency as compared with the conventional fuel injection device. In addition, the fuel injection device 1 can realize a sharp rise of the fuel injection pressure from the timing t3 without using an expensive actuator with high response such as a piezo element. This indicates that the fuel injection device 1 can also suppress an increase in manufacturing costs. Naturally, the fuel injection device 1 can further sharpen the rising of the fuel injection pressure from the timing t3 by combining with the highly responsive actuator.
 なお、前述の第1時間及び第2時間のそれぞれは、例えば、事前の試験、実験等によるトライアンドエラーによって燃料の燃焼効率が所望の燃焼効率(例えば、最も高い燃焼効率等)に近づくように決められるが、理論計算に基づいて決められてもよく、シミュレーションによって決められてもよく、他の方法によって決められてもよい。 In addition, each of the above-mentioned first time and second time is set so that the combustion efficiency of the fuel approaches the desired combustion efficiency (for example, the highest combustion efficiency, etc.) by trial and error in advance tests, experiments, etc. Although it is determined, it may be determined based on theoretical calculation, may be determined by simulation, or may be determined by other methods.
 また、第1流路F1内において水撃作用により上昇する圧力の変化分であるΔPmax、第1流路F1内の圧力が所定の圧力Pbを超えるまでのタイミングt2からの所要時間、第1流路F1内の圧力が所定の圧力Pbを超え続ける時間の長さ等は、第1流路F1から第2流路F2を通って排出口へ流れていた燃料の流速、流量等に依存して決まる。このため、第1流路F1から第2流路F2を通して排出口へ流す燃料の流速、流量等は、例えば、事前の試験、実験等によるトライアンドエラーによって燃料の燃焼効率が所望の燃焼効率(例えば、最も高い燃焼効率等)に近づくように決められるが、理論計算に基づいて決められてもよく、シミュレーションによって決められてもよく、他の方法によって決められてもよい。 In addition, ΔPmax, which is a change in the pressure that rises due to the water hammer action in the first flow path F1, the time required from timing t2 until the pressure in the first flow path F1 exceeds a predetermined pressure Pb, the first flow The length of time during which the pressure in the passage F1 continues to exceed the predetermined pressure Pb depends on the flow velocity, flow rate, etc. of the fuel flowing from the first passage F1 to the discharge port through the second passage F2. Determined. For this reason, the flow velocity, flow rate, etc. of the fuel flowing from the first flow path F1 to the discharge port through the second flow path F2 can be determined, for example, by trial and error in advance tests, experiments, etc., so that the combustion efficiency of the fuel reaches the desired combustion efficiency ( For example, the maximum combustion efficiency, etc.) may be determined based on theoretical calculations, simulations, or other methods.
 <実施形態の変形例1>
 以下、実施形態の変形例1について説明する。なお、実施形態の変形例1では、実施形態と同様な構成部に対して同じ符号を付して説明を省略する。以下では、説明の便宜上、実施形態の変形例1に係る燃料噴射装置1を、実施形態に係る燃料噴射装置1と区別するため、燃料噴射装置1Aと称して説明する。
<Modification 1 of Embodiment>
Modification 1 of the embodiment will be described below. In addition, in the modified example 1 of the embodiment, the same reference numerals are assigned to the same components as in the embodiment, and the description thereof is omitted. Hereinafter, for convenience of explanation, the fuel injection device 1 according to Modification 1 of the embodiment will be referred to as a fuel injection device 1A in order to distinguish it from the fuel injection device 1 according to the embodiment.
 燃料噴射装置1Aでは、燃料噴射装置1と比較して、第1流路F1から第2流路F2を通って排出口へ流れる燃料の流速を変えずに、当該燃料の流量が増やされている。これは、例えば、第2流路F2の直径を大きくすること、第2流路F2をテーパ状に形成すること、第2流路F2を複数の管路によって構成すること等によって実現できる。以下では、一例として、燃料噴射装置1Aが備える第2流路F2の直径が、燃料噴射装置1が備える第2流路F2の直径よりも大きい場合について説明する。この場合、燃料噴射装置1Aが備える第2弁V2も、燃料噴射装置1が備える第2弁V2と比較して、大きくなる。その結果、燃料噴射装置1Aでは、タイミングt2において第2弁V2により堰き止められる燃料の流量が増え、水撃作用によって第1流路F1内の圧力が所定の圧力Pbを超え続ける時間の長さが長くなる。これにより、燃料噴射装置1Aは、タイミングt3からタイミングt4までの間の期間内における第1流路F1内の圧力が減衰振動してしまうことを、抑制することができる。 In the fuel injection device 1A, compared with the fuel injection device 1, the flow rate of the fuel is increased without changing the flow velocity of the fuel flowing from the first flow path F1 to the discharge port through the second flow path F2. . This can be achieved, for example, by increasing the diameter of the second flow path F2, forming the second flow path F2 in a tapered shape, and configuring the second flow path F2 with a plurality of pipe lines. Below, as an example, a case where the diameter of the second flow path F2 provided in the fuel injection device 1A is larger than the diameter of the second flow path F2 provided in the fuel injection device 1 will be described. In this case, the second valve V2 provided in the fuel injection device 1A also becomes larger than the second valve V2 provided in the fuel injection device 1 . As a result, in the fuel injection device 1A, the flow rate of the fuel dammed up by the second valve V2 increases at the timing t2, and the pressure in the first flow path F1 continues to exceed the predetermined pressure Pb due to the water hammer effect. becomes longer. As a result, the fuel injection device 1A can suppress damped oscillation of the pressure in the first flow path F1 during the period from the timing t3 to the timing t4.
 図5は、燃料噴射装置1Aにおける噴射口H及び第2流路F2それぞれの開閉のタイミングと、第1流路F1内の圧力の時間的な変化と、第1弁V1のリフト量の時間的な変化と、燃料の噴射圧の時間的な変化と、燃料の噴射率の時間的な変化とのそれぞれの一例を示す図である。 FIG. 5 shows the opening/closing timing of each of the injection port H and the second flow path F2 in the fuel injection device 1A, the temporal change of the pressure in the first flow path F1, and the temporal change of the lift amount of the first valve V1. FIG. 3 is a diagram showing an example of each of a change in pressure, a change in fuel injection pressure over time, and a change in fuel injection rate over time.
 図5に示したグラフG1は、曲線FN1に代えて、曲線FN11がプロットされている以外、図4に示したグラフG1と同じグラフである。何故なら、第2制御によって制御される燃料噴射装置1Aにおける第1流路F1内の圧力の時間的な変化は、第2制御によって制御される燃料噴射装置1における第1流路F1内の圧力の時間的な変化と同じだからである。以下では、説明の便宜上、図5に示したグラフG1を、グラフG11と称して説明する。ここで、曲線FN11は、第1制御によって燃料噴射装置1Aを制御した場合における第1流路F1内の圧力の時間的な変化の他の例を示す。 The graph G1 shown in FIG. 5 is the same as the graph G1 shown in FIG. 4 except that the curve FN11 is plotted instead of the curve FN1. This is because the temporal change in the pressure in the first flow path F1 in the fuel injection device 1A controlled by the second control changes the pressure in the first flow path F1 in the fuel injection device 1 controlled by the second control. This is because it is the same as the temporal change of Below, the graph G1 shown in FIG. 5 is called the graph G11, and it demonstrates for convenience of explanation. Here, a curve FN11 shows another example of the temporal change in the pressure inside the first flow path F1 when the fuel injection device 1A is controlled by the first control.
 図5に示したグラフG2は、曲線FN2に代えて、曲線FN21がプロットされている以外、図4に示したグラフG2と同じグラフである。何故なら、第2制御によって制御される燃料噴射装置1Aにおける第1弁V1のリフト量の時間的な変化は、第2制御によって制御される燃料噴射装置1における第1弁V1のリフト量の時間的な変化と同じだからである。以下では、説明の便宜上、図5に示したグラフG2を、グラフG21と称して説明する。ここで、曲線FN21は、第1制御によって燃料噴射装置1Aを制御した場合における第1弁V1のリフト量の時間的な変化の他の例を示す。 Graph G2 shown in FIG. 5 is the same as graph G2 shown in FIG. 4 except that curve FN21 is plotted instead of curve FN2. This is because the temporal change in the lift amount of the first valve V1 in the fuel injection device 1A controlled by the second control changes the lift amount of the first valve V1 in the fuel injection device 1 controlled by the second control. This is because it is the same as a physical change. Below, the graph G2 shown in FIG. 5 is called the graph G21, and it demonstrates for convenience of explanation. Here, a curve FN21 shows another example of temporal change in the lift amount of the first valve V1 when the fuel injection device 1A is controlled by the first control.
 図5に示したグラフG3は、曲線FN3に代えて、曲線FN31がプロットされている以外、図4に示したグラフG3と同じグラフである。何故なら、第2制御によって制御される燃料噴射装置1Aにおける燃料の噴射圧の時間的な変化は、第2制御によって制御される燃料噴射装置1における燃料の噴射圧の時間的な変化と同じだからである。以下では、説明の便宜上、図5に示したグラフG3を、グラフG31と称して説明する。ここで、曲線FN31は、第1制御によって燃料噴射装置1Aを制御した場合における燃料の噴射圧の時間的な変化の他の例を示す。 Graph G3 shown in FIG. 5 is the same as graph G3 shown in FIG. 4 except that curve FN31 is plotted instead of curve FN3. This is because the temporal change in the fuel injection pressure in the fuel injection device 1A controlled by the second control is the same as the temporal change in the fuel injection pressure in the fuel injection device 1 controlled by the second control. is. For convenience of explanation, the graph G3 shown in FIG. 5 will be referred to as a graph G31 below. Here, a curve FN31 shows another example of temporal changes in the fuel injection pressure when the fuel injection device 1A is controlled by the first control.
 図5に示したグラフG4は、曲線FN4に代えて、曲線FN41がプロットされている以外、図4に示したグラフG4と同じグラフである。何故なら、第2制御によって制御される燃料噴射装置1Aにおける燃料の噴射率の時間的な変化は、第2制御によって制御される燃料噴射装置1における燃料の噴射率の時間的な変化と同じだからである。以下では、説明の便宜上、図5に示したグラフG4を、グラフG41と称して説明する。ここで、曲線FN41は、第1制御によって燃料噴射装置1Aを制御した場合における燃料の噴射率の時間的な変化の他の例を示す。 Graph G4 shown in FIG. 5 is the same as graph G4 shown in FIG. 4 except that curve FN41 is plotted instead of curve FN4. This is because the temporal change in the fuel injection rate in the fuel injection device 1A controlled by the second control is the same as the temporal change in the fuel injection rate in the fuel injection device 1 controlled by the second control. is. Below, the graph G4 shown in FIG. 5 is called the graph G41, and it demonstrates for convenience of explanation. Here, a curve FN41 shows another example of temporal changes in the fuel injection rate when the fuel injection device 1A is controlled by the first control.
 曲線FN11が示すように、燃料噴射装置1Aでは、タイミングt3からタイミングt4までの間の期間内において、第1流路F1内の圧力は、上昇してから下降するのみであり、振動していない。そして、当該期間内のほぼ全域において、第1流路F1の圧力は、所定の圧力Pbより高い圧力になっている。これは、燃料噴射装置1Aにおいて第2流路F2を流れる燃料の流量が、燃料噴射装置1において第2流路F2を流れる燃料の流量よりも増えている結果として、水撃作用によって第1流路F1内の圧力が所定の圧力Pbを超え続ける時間の長さが長くなっているためである。その結果、曲線FN21、曲線FN31、曲線FN41が示すように、燃料噴射装置1Aでは、第1弁V1のリフト量、燃料の噴射圧、燃料の噴射率のそれぞれも、当該期間内において、振動しなくなり、上昇してから下降するのみである。 As indicated by the curve FN11, in the fuel injection device 1A, the pressure in the first flow path F1 only increases and then decreases during the period from timing t3 to timing t4, and does not vibrate. . The pressure in the first flow path F1 is higher than the predetermined pressure Pb over substantially the entire period. This is because the flow rate of fuel flowing through the second flow path F2 in the fuel injection device 1A is greater than the flow rate of fuel flowing through the second flow path F2 in the fuel injection device 1. This is because the length of time during which the pressure in the path F1 continues to exceed the predetermined pressure Pb is getting longer. As a result, as indicated by curves FN21, FN31, and FN41, in the fuel injection device 1A, the lift amount of the first valve V1, the fuel injection pressure, and the fuel injection rate all oscillate within the period. It disappears and only rises and then falls.
 また、グラフG11が示すように、第1制御によって制御される燃料噴射装置1Aも、タイミングt3からの燃料の燃焼室CC内への噴射を、所定の圧力Pbより高い圧力によって行い始めることができる。そして、グラフG21~グラフG41のそれぞれが示すように、所定の圧力Pbよりも高い圧力で燃料を噴射し始める結果として、曲線FN21の立ち上がりが曲線FX2の立ち上がりよりも急峻化且つ先鋭化しており、曲線FN31の立ち上がりが曲線FX3の立ち上がりよりも急峻化且つ先鋭化しており、曲線FN41の立ち上がりが曲線FX4の立ち上がりよりも急峻化且つ先鋭化している。 Further, as shown by the graph G11, the fuel injection device 1A controlled by the first control can also start injecting fuel into the combustion chamber CC from timing t3 at a pressure higher than the predetermined pressure Pb. . As each of the graphs G21 to G41 indicates, as a result of starting to inject fuel at a pressure higher than the predetermined pressure Pb, the rise of the curve FN21 is steeper and sharper than the rise of the curve FX2. The rise of curve FN31 is steeper and sharper than the rise of curve FX3, and the rise of curve FN41 is steeper and sharper than the rise of curve FX4.
 これはすなわち、燃料噴射装置1Aでも、第1弁V1のリフト量の立ち上がりが従来と比べて急峻化且つ先鋭化し、燃料の噴射圧の立ち上がりが従来と比べて急峻化且つ先鋭化し、燃料の噴射率の立ち上がりが従来と比べて急峻化且つ先鋭化していることを示している。換言すると、燃料噴射装置1Aでも、従来の燃料噴射装置よりも速く噴射口Hを開くことができ、従来の燃料噴射装置よりも速く燃料の噴射圧及び噴射率のそれぞれを上昇させることができ、更に、従来の燃料噴射装置よりも高く燃料の噴射圧及び噴射率のそれぞれを上昇させることができる。その結果、燃料噴射装置1Aは、従来の燃料噴射装置と比較して、燃料の燃焼効率をより向上させることができることに加えて、水撃作用によって生じる第1流路F1内の圧力の振動の影響が、燃焼室CC内に伝わってしまうことを抑制することができる。 That is, in the fuel injection device 1A as well, the rise of the lift amount of the first valve V1 is steeper and sharper than the conventional one, the rise of the fuel injection pressure is steeper and sharper than the conventional one, and the fuel is injected. This indicates that the rise in rate is steeper and sharper than in the past. In other words, even in the fuel injection device 1A, the injection port H can be opened faster than the conventional fuel injection device, and the fuel injection pressure and the injection rate can be increased faster than the conventional fuel injection device. Furthermore, it is possible to raise the injection pressure and the injection rate of the fuel more than the conventional fuel injection device. As a result, the fuel injection device 1A can further improve the fuel combustion efficiency as compared with the conventional fuel injection device, and in addition, the pressure fluctuation in the first flow path F1 caused by the water hammer action can be reduced. It is possible to suppress the influence from being transmitted to the inside of the combustion chamber CC.
 以上説明したように、燃料噴射装置1、及び燃料噴射装置1Aは、燃料を内燃機関EGの燃焼室CC内に噴射する燃料噴射装置であって、燃料を燃焼室CC内に噴射する噴射口Hと、燃料を所定の圧力Pbによって供給する高圧源4と噴射口Hとを接続し、高圧源4から燃料が供給される第1流路F1と、第1流路F1に設けられ、噴射口Hの開閉を行う第1弁V1と、第1流路F1に接続され、第1流路F1から燃料が供給される第2流路F2と、第2流路F2に設けられ、第2流路F2の開閉を行う第2弁V2と、を備える。これにより、燃料噴射装置1、及び燃料噴射装置1Aは、第1流路F1内の圧力が所定の圧力Pbよりも高くなっている期間内において、第1弁V1により噴射口Hを開き、所定の圧力Pbよりも高い圧力で燃料を燃焼室CC内に噴射することができる。その結果、燃料噴射装置1、及び燃料噴射装置1Aは、燃料の燃焼効率をより向上させることができる。 As described above, the fuel injection device 1 and the fuel injection device 1A are fuel injection devices that inject fuel into the combustion chamber CC of the internal combustion engine EG, and have injection ports H that inject fuel into the combustion chamber CC. , a high-pressure source 4 that supplies fuel at a predetermined pressure Pb and an injection port H are connected, and a first flow path F1 to which fuel is supplied from the high-pressure source 4, and the injection port is provided in the first flow path F1. a first valve V1 that opens and closes H; a second flow path F2 that is connected to the first flow path F1 and to which fuel is supplied from the first flow path F1; a second valve V2 for opening and closing the path F2. As a result, the fuel injection device 1 and the fuel injection device 1A open the injection port H by the first valve V1 within a period when the pressure in the first flow path F1 is higher than the predetermined pressure Pb, Fuel can be injected into the combustion chamber CC at a pressure higher than the pressure Pb of . As a result, the fuel injection device 1 and the fuel injection device 1A can further improve the fuel combustion efficiency.
 <実施形態の変形例2>
 以下、実施形態の変形例2について説明する。なお、実施形態の変形例2では、実施形態と同様な構成部に対して同じ符号を付して説明を省略する。以下では、説明の便宜上、実施形態の変形例1に係る燃料噴射装置1を、実施形態に係る燃料噴射装置1、実施形態の変形例1に係る燃料噴射装置1Aのそれぞれと区別するため、燃料噴射装置1Bと称して説明する。
<Modification 2 of Embodiment>
Modification 2 of the embodiment will be described below. In addition, in the modified example 2 of the embodiment, the same reference numerals are given to the same components as in the embodiment, and the description thereof is omitted. Hereinafter, for convenience of explanation, the fuel injection device 1 according to Modification 1 of the embodiment is distinguished from the fuel injection device 1 according to the embodiment and the fuel injection device 1A according to Modification 1 of the embodiment. This will be described as an injection device 1B.
 実施形態の変形例2では、図6に示したように、燃料インジェクター2が、第1流路F1と、噴射口Hと、第1弁V1と、駆動部A1と、第2流路F2と、第2弁V2と、駆動部A2とに加えて、第3弁V3と、駆動部A3を備える。図6は、燃料噴射装置1Bの構成の他の例を示す図である。また、実施形態の変形例2では、ECU3は、図7に示したように、記憶部32と、第1弁駆動回路33と、第2弁駆動回路34と、制御部36とに加えて、第3弁駆動回路35を備える。図7は、ECU3の機能構成の他の例を示す図である。なお、図6では、燃料インジェクター2の構成は、2本の燃料インジェクターを直列に接続することにより実現されている。しかしながら、燃料インジェクター2の構成は、2本の燃料インジェクターを直列に接続することに代えて、他の方法により実現されてもよい。 In Modified Example 2 of the embodiment, as shown in FIG. 6, the fuel injector 2 includes a first flow path F1, an injection port H, a first valve V1, a drive portion A1, and a second flow path F2. , a second valve V2 and an actuator A2, as well as a third valve V3 and an actuator A3. FIG. 6 is a diagram showing another example of the configuration of the fuel injection device 1B. Further, in Modification 2 of the embodiment, as shown in FIG. A third valve drive circuit 35 is provided. FIG. 7 is a diagram showing another example of the functional configuration of the ECU 3. As shown in FIG. In FIG. 6, the configuration of the fuel injector 2 is realized by connecting two fuel injectors in series. However, instead of connecting two fuel injectors in series, the configuration of the fuel injectors 2 may also be realized in other ways.
 第3弁V3は、第1流路F1に設けられ、第1流路F1が有する部分のうち第1流路F1において第1弁V1よりも上流側に位置する部分であり、且つ、第1流路F1が有する部分のうち第1流路F1において第1流路F1と第2流路F2との接続部分PP1よりも下流側に位置する部分PP2に設けられる。すなわち、第3弁V3は、部分PP2において、第1流路F1の開閉を行う。このため、第1流路F1には、第1弁V1が噴射口Hを閉じた状態であり、且つ、第3弁V3が第1流路F1を閉じた状態である場合、燃料が保持される空間Sが形成される。そこで、以下では、説明の便宜上、第1流路F1内の空間のうち、第1弁V1が噴射口Hを閉じた状態であり、且つ、第3弁V3が第1流路F1を閉じた状態である場合において第1弁V1と第3弁V3とによって閉じられる空間を、空間Sと称して説明する。空間Sには、第1弁V1が噴射口Hを閉じた状態であり、且つ、第3弁V3が第1流路F1を開いた状態である場合、高圧源4から第1流路F1を介して燃料が供給されて蓄積される。このため、空間S内の圧力は、第1弁V1が噴射口Hを閉じた状態であり、且つ、第3弁V3が第1流路F1を閉じた状態である場合、保持される。このため、空間Sは、圧力を蓄積する蓄圧部であると解釈することもできる。 The third valve V3 is provided in the first flow path F1, and is a portion of the first flow path F1 located upstream of the first valve V1 in the first flow path F1. Among the portions of the flow path F1, it is provided in the portion PP2 located downstream of the connecting portion PP1 between the first flow path F1 and the second flow path F2 in the first flow path F1. That is, the third valve V3 opens and closes the first flow path F1 in the portion PP2. Therefore, when the first valve V1 closes the injection port H and the third valve V3 closes the first flow path F1, fuel is retained in the first flow path F1. A space S is formed. Therefore, hereinafter, for convenience of explanation, the first valve V1 closes the injection port H and the third valve V3 closes the first flow path F1 in the space in the first flow path F1. A space closed by the first valve V1 and the third valve V3 in the case of the state is referred to as a space S for explanation. In the space S, when the first valve V1 closes the injection port H and the third valve V3 opens the first flow path F1, Fuel is supplied and accumulated through Therefore, the pressure in the space S is maintained when the first valve V1 closes the injection port H and the third valve V3 closes the first flow path F1. Therefore, the space S can also be interpreted as a pressure accumulator that accumulates pressure.
 図6に示した例では、第3弁V3は、ノズルニードルである。なお、第3弁V3は、ノズルニードルに代えて、部分PP2の開閉を行うことが可能な弁となる部材であれば、如何なる部材であってもよい。 In the example shown in FIG. 6, the third valve V3 is the nozzle needle. The third valve V3 may be any member instead of the nozzle needle as long as it is a member capable of opening and closing the portion PP2.
 第3弁V3は、部分PP2を塞ぐことにより、第1流路F1を閉じる。より具体的には、第3弁V3は、ECU3が駆動部A3を駆動させていない場合、部分PP2を塞いだまま動かない。これにより、第3弁V3は、当該場合、第1流路F1を閉じ続ける。一方、第3弁V3は、ECU3が駆動部A3を駆動させた場合、部分PP2を開く方向に動く。その結果、第3弁V3は、当該場合、第1流路F1を開く。 The third valve V3 closes the first flow path F1 by blocking the portion PP2. More specifically, the third valve V3 does not move while blocking the portion PP2 when the ECU 3 does not drive the drive portion A3. This causes the third valve V3 to keep the first flow path F1 closed in that case. On the other hand, the third valve V3 moves in the direction to open the portion PP2 when the ECU 3 drives the driving portion A3. As a result, the third valve V3 opens the first flow path F1 in that case.
 駆動部A3は、第3弁V3に部分PP2の開閉を行わせる。駆動部A3は、例えば、第3弁V3を駆動するアクチュエーターとして、ソレノイド、ピエゾ素子等を有する。駆動部A3は、ECU3によって駆動されていない場合、第1流路F1に接続される管路を通って供給された燃料の圧力(すなわち、所定の圧力Pb)によって、第3弁V3を部分PP2に押し付けさせ、部分PP2を塞ぎ続ける。すなわち、駆動部A3は、当該場合、第3弁V3により第1流路F1を閉じ続ける。ここで、当該管路は、第1流路F1と、当該管路を通る燃料が排出される排出口とを接続する。この排出口は、例えば、図示しない管路を介して燃料タンク(この燃料タンクは、高圧源4と繋がっていてもよく、高圧源4と繋がっていなくてもよい)と接続される。このため、この排出口から流れ出る燃料は、最終的に、燃料タンクへと戻っていく。なお、この排出口から先の構成については、これに代えて、如何なる構成であってもよい。このため、この排出口から先の構成については、これ以上の詳細な説明を省略する。一方、駆動部A3は、ECU3によって駆動された場合、当該管路を通って供給された燃料の圧力(すなわち、所定の圧力Pb)を、駆動部A3に設けられた弁を開けることによって減圧し、部分PP2を開く方向に第3弁V3を動かす。すなわち、駆動部A3は、当該場合、第3弁V3により第1流路F1を開ける。なお、第3弁V3の開閉についての構造及び動作は、既知の構造及び動作であってもよく、これから開発される構造及び動作であってもよいため、これ以上の詳細な説明を省略する。 The driving section A3 causes the third valve V3 to open and close the portion PP2. The driving section A3 has, for example, a solenoid, a piezo element, etc. as an actuator for driving the third valve V3. When the drive unit A3 is not driven by the ECU 3, the pressure of the fuel supplied through the pipe line connected to the first flow path F1 (that is, the predetermined pressure Pb) causes the third valve V3 to move to the portion PP2. to continue to block part PP2. That is, the driving part A3 continues to close the first flow path F1 by the third valve V3 in this case. Here, the pipeline connects the first flow path F1 and an outlet through which the fuel passing through the pipeline is discharged. This outlet is connected, for example, to a fuel tank (this fuel tank may or may not be connected to the high pressure source 4) via a conduit (not shown). Therefore, the fuel flowing out from this outlet eventually returns to the fuel tank. It should be noted that the configuration beyond this discharge port may be replaced with any other configuration. Therefore, further detailed description of the configuration beyond this discharge port will be omitted. On the other hand, when driven by the ECU 3, the driving portion A3 reduces the pressure of the fuel supplied through the pipe (that is, the predetermined pressure Pb) by opening a valve provided in the driving portion A3. , the third valve V3 in the direction of opening the part PP2. That is, in this case, the driving part A3 opens the first flow path F1 by means of the third valve V3. The structure and operation for opening and closing the third valve V3 may be a known structure and operation, or may be a structure and operation that will be developed in the future, so further detailed description will be omitted.
 第3弁駆動回路35は、第3弁V3の開閉を行う駆動部A3を駆動する駆動電流を駆動部A3に供給する。ここで、制御部36は、第3弁駆動回路35を制御し、記憶部32に予め記憶されたタイミングに応じて第3弁V3による第1流路F1の開閉を駆動部A3に行わせる。 The third valve drive circuit 35 supplies a drive current for driving the drive section A3 that opens and closes the third valve V3 to the drive section A3. Here, the control unit 36 controls the third valve driving circuit 35 and causes the driving unit A3 to open and close the first flow path F1 by the third valve V3 according to the timing stored in the storage unit 32 in advance.
 <燃料噴射装置の制御方法>
 以下、図8を参照し、燃料噴射装置1Bの制御方法の具体例について説明する。なお、以下では、一例として、駆動部A1に駆動電流C1が供給された場合に駆動部A1が第1弁V1により噴射口Hを開け、駆動部A2に駆動電流C2が供給された場合に駆動部A2が第2弁V2により第2流路F2を開け、駆動部A3に駆動電流C3が供給された場合に駆動部A3が第3弁V3により第1流路F1を開ける場合について説明する。すなわち、駆動部A1は、駆動部A1への駆動電流C1の供給が止められた場合、第1弁V1により噴射口Hを閉じる。また、駆動部A2は、駆動部A2への駆動電流C2の供給が止められた場合、第2弁V2により第2流路F2を閉じる。また、駆動部A3は、駆動部A3への駆動電流C3の供給が止められた場合、第3弁V3により第1流路F1を閉じる。また、以下では、一例として、メイン噴射を行う場合における燃料噴射装置1Bの制御方法について説明する。しかしながら、この制御方法は、プレ噴射、パイロット噴射等の他の噴射に適用されてもよい。また、以下では、一例として、燃料噴射装置1Bの制御のうち、噴射口Hの開閉と第1流路F1の開閉と第2流路F2の開閉とを伴う制御を、第3制御と称して説明する。また、以下では、一例として、燃料噴射装置1Bの制御のうち、噴射口Hの開閉と第1流路F1の開閉とを伴い、且つ、第2流路F2の開閉を伴わない制御を、第4制御と称して説明する。第4制御を行った場合、燃料噴射装置1Bにおける燃料の噴射圧及び噴射率それぞれの時間的な変化は、第2弁V2に相当する弁を備えず、且つ、第1弁V1及び第3弁V3のそれぞれに相当する弁を備える従来の燃料噴射装置(例えば、TAIZAC(直列2弁瞬時切り替え式インジェクター)として知られている燃料噴射装置等)における燃料の噴射圧及び噴射率それぞれの時間的な変化とほぼ変わらなくなる。このため、第3制御による燃料噴射装置1Bの制御方法と第4制御による燃料噴射装置1Bの制御方法とを比較することは、燃料噴射装置1Bと異なる燃料噴射装置(例えば、TAIZAC等)と比べて燃料噴射装置1Bが優れている点を明確に示すことに繋がる。そこで、以下では、第3制御による燃料噴射装置1Bの制御方法と第4制御による燃料噴射装置1Bの制御方法とを比較し、燃料噴射装置1Bが従来の燃料噴射装置と比べて優れている点について説明する。
<Control Method of Fuel Injector>
A specific example of the control method for the fuel injection device 1B will be described below with reference to FIG. In the following, as an example, when the driving current C1 is supplied to the driving part A1, the driving part A1 opens the injection port H by the first valve V1, and when the driving current C2 is supplied to the driving part A2, the driving is performed. A case will be described where, when the part A2 opens the second flow path F2 by the second valve V2 and the driving current C3 is supplied to the driving part A3, the driving part A3 opens the first flow path F1 by the third valve V3. That is, the driving portion A1 closes the injection port H by the first valve V1 when the supply of the driving current C1 to the driving portion A1 is stopped. Further, when the supply of the driving current C2 to the driving portion A2 is stopped, the driving portion A2 closes the second flow path F2 by the second valve V2. Further, when the supply of the driving current C3 to the driving portion A3 is stopped, the driving portion A3 closes the first flow path F1 by the third valve V3. Moreover, below, the control method of the fuel-injection apparatus 1B in the case of performing main injection is demonstrated as an example. However, this control method may be applied to other injections such as pre-injection and pilot injection. Further, hereinafter, among the controls of the fuel injection device 1B, the control involving the opening and closing of the injection port H, the opening and closing of the first flow path F1, and the opening and closing of the second flow path F2 will be referred to as the third control as an example. explain. Further, hereinafter, of the control of the fuel injection device 1B, the control involving the opening and closing of the injection port H and the opening and closing of the first flow path F1 and not involving the opening and closing of the second flow path F2 will be described as an example. 4 control will be described. When the fourth control is performed, temporal changes in the injection pressure and injection rate of the fuel in the fuel injection device 1B do not include a valve corresponding to the second valve V2, and the first valve V1 and the third valve V3 corresponding to a conventional fuel injector (e.g., a fuel injector known as a TAIZAC (in-line two-valve instantaneous changeover injector)), fuel injection pressure and injection rate, respectively, over time. Almost no change. For this reason, comparing the control method of the fuel injection device 1B by the third control and the control method of the fuel injection device 1B by the fourth control can be compared with a fuel injection device (for example, TAIZAC) different from the fuel injection device 1B. This leads to a clear demonstration of the superiority of the fuel injection device 1B. Therefore, in the following, the control method of the fuel injection device 1B by the third control and the control method of the fuel injection device 1B by the fourth control are compared, and the points that the fuel injection device 1B is superior to the conventional fuel injection device. will be explained.
 図8は、燃料噴射装置1Bにおける噴射口H、第1流路F1、第2流路F2それぞれの開閉のタイミングと、第1流路F1内の圧力の時間的な変化と、空間S内の圧力の時間的な変化と、第1弁V1のリフト量の時間的な変化と、燃料の噴射圧の時間的な変化と、燃料の噴射率の時間的な変化とのそれぞれの一例を示す図である。 FIG. 8 shows the opening/closing timing of each of the injection port H, the first flow path F1, and the second flow path F2 in the fuel injection device 1B, the temporal change in the pressure in the first flow path F1, and the pressure in the space S. FIG. 5 is a diagram showing an example of temporal changes in pressure, temporal changes in the lift amount of the first valve V1, temporal changes in fuel injection pressure, and temporal changes in fuel injection rate; is.
 図8に示したグラフG1A~グラフG5Aそれぞれの横軸は、燃料噴射装置1によってメイン噴射を行う期間における経過時間を示す。ただし、図8に示した例では、第3制御によって制御される燃料噴射装置1Bにおいて噴射口Hが開き始めたタイミングと、第4制御によって制御される燃料噴射装置1Bにおいて噴射口Hが開き始めたタイミングとを一致させている。また、当該例では、第3制御によって制御される燃料噴射装置1Bにおいて噴射口Hが閉じたタイミングと、第4制御によって制御される燃料噴射装置1Bにおいて噴射口Hが閉じたタイミングとを一致させている。これらのタイミングを一致させることにより、図8には、第3制御によって制御される燃料噴射装置1Bと、第4制御によって制御される燃料噴射装置1Bとの違いが明確に示されている。 The horizontal axis of each of the graphs G1A to G5A shown in FIG. 8 indicates the elapsed time in the period during which the fuel injection device 1 performs the main injection. However, in the example shown in FIG. 8, the timing at which the injection port H of the fuel injection device 1B controlled by the third control begins to open and the timing at which the injection port H of the fuel injection device 1B controlled by the fourth control begins to open. timing. Further, in this example, the timing at which the injection port H is closed in the fuel injection device 1B controlled by the third control is matched with the timing at which the injection port H is closed in the fuel injection device 1B controlled by the fourth control. ing. By matching these timings, FIG. 8 clearly shows the difference between the fuel injection device 1B controlled by the third control and the fuel injection device 1B controlled by the fourth control.
 図8に示したグラフG1Aの縦軸は、第1流路F1内の圧力を示す。グラフG1Aにプロットされた曲線FN1Aは、第3制御によって燃料噴射装置1Bを制御した場合における第1流路F1内の圧力の時間的な変化の一例を示す。一方、グラフG1Aにプロットされた曲線FX1Aは、第4制御によって燃料噴射装置1Bを制御した場合における第1流路F1内の圧力の時間的な変化の一例を示す。また、グラフG1Aには、第1流路F1の開閉のタイミングを示すタイミングチャートTC1Aと、第2流路F2の開閉のタイミングを示すタイミングチャートTC2Aとが重ねられている。 The vertical axis of the graph G1A shown in FIG. 8 indicates the pressure inside the first flow path F1. A curve FN1A plotted on the graph G1A shows an example of temporal change in pressure in the first flow path F1 when the fuel injection device 1B is controlled by the third control. On the other hand, a curve FX1A plotted on the graph G1A shows an example of temporal change in the pressure inside the first flow path F1 when the fuel injection device 1B is controlled by the fourth control. Also, a timing chart TC1A showing opening/closing timing of the first flow path F1 and a timing chart TC2A showing opening/closing timing of the second flow path F2 are superimposed on the graph G1A.
 図8に示したグラフG2Aの縦軸は、空間S内の圧力を示す。グラフG2Aにプロットされた曲線FN2Aは、第3制御によって燃料噴射装置1Bを制御した場合における空間S内の圧力の時間的な変化の一例を示す。一方、グラフG2Aにプロットされた曲線FX2Aは、第4制御によって燃料噴射装置1Bを制御した場合における空間S内の圧力の時間的な変化の一例を示す。 The vertical axis of the graph G2A shown in FIG. 8 indicates the pressure in the space S. A curve FN2A plotted on the graph G2A shows an example of temporal changes in the pressure in the space S when the fuel injection device 1B is controlled by the third control. On the other hand, a curve FX2A plotted on the graph G2A shows an example of temporal change in pressure in the space S when the fuel injection device 1B is controlled by the fourth control.
 図8に示したグラフG3Aの縦軸は、第1弁V1のリフト量を示す。グラフG3Aにプロットされた曲線FN3Aは、第3制御によって燃料噴射装置1Bを制御した場合における第1弁V1のリフト量の時間的な変化の一例を示す。一方、グラフG3Aにプロットされた曲線FX3Aは、第4制御によって燃料噴射装置1Bを制御した場合における第1弁V1のリフト量の時間的な変化の一例を示す。また、グラフG3Aには、噴射口Hの開閉のタイミングを示すタイミングチャートTC3Aが重ねられている。 The vertical axis of the graph G3A shown in FIG. 8 indicates the lift amount of the first valve V1. A curve FN3A plotted on the graph G3A shows an example of temporal changes in the lift amount of the first valve V1 when the fuel injection device 1B is controlled by the third control. On the other hand, a curve FX3A plotted on the graph G3A shows an example of temporal changes in the lift amount of the first valve V1 when the fuel injection device 1B is controlled by the fourth control. A timing chart TC3A showing the opening/closing timing of the injection port H is superimposed on the graph G3A.
 図8に示したグラフG4Aの縦軸は、燃料の噴射圧を示す。グラフG4Aにプロットされた曲線FN4Aは、第3制御によって燃料噴射装置1Bを制御した場合における燃料の噴射圧の時間的な変化の一例を示す。一方、グラフG4Aにプロットされた曲線FX4Aは、第4制御によって燃料噴射装置1Bを制御した場合における燃料の噴射圧の時間的な変化の一例を示す。 The vertical axis of graph G4A shown in FIG. 8 indicates the fuel injection pressure. A curve FN4A plotted on the graph G4A shows an example of temporal changes in the fuel injection pressure when the fuel injection device 1B is controlled by the third control. On the other hand, a curve FX4A plotted on the graph G4A shows an example of temporal changes in the fuel injection pressure when the fuel injection device 1B is controlled by the fourth control.
 図8に示したグラフG5Aの縦軸は、燃料の噴射率を示す。グラフG5Aにプロットされた曲線FN5Aは、第3制御によって燃料噴射装置1Bを制御した場合における燃料の噴射率の時間的な変化の一例を示す。一方、グラフG5Aにプロットされた曲線FX5Aは、第4制御によって燃料噴射装置1Bを制御した場合における燃料の噴射率の時間的な変化の一例を示す。 The vertical axis of graph G5A shown in FIG. 8 indicates the fuel injection rate. A curve FN5A plotted on the graph G5A shows an example of temporal changes in the fuel injection rate when the fuel injection device 1B is controlled by the third control. On the other hand, a curve FX5A plotted on the graph G5A shows an example of temporal changes in the fuel injection rate when the fuel injection device 1B is controlled by the fourth control.
 図8に示した例では、第3制御によって制御される燃料噴射装置1Bは、タイミングt5になるまで、噴射口H、第1流路F1、第2流路F2を閉じたまま待機する。この際、空間S内の圧力は、タイミングt5になるまで、所定の圧力P0に保持される。所定の圧力P0は、0[MPa]より高い圧力であり、且つ、所定の圧力Pbより低い圧力であれば、如何なる圧力であってもよい。そして、当該燃料噴射装置1Bは、タイミングt5において、第2流路F2を開き始める。その結果、曲線FN1Aが示すように、当該燃料噴射装置1Bでは、タイミングt5において、第1流路F1内の圧力が低下し始める。これは、タイミングt5において、第1流路F1から第2流路F2へ燃料が流れ始めるからである。 In the example shown in FIG. 8, the fuel injection device 1B controlled by the third control waits with the injection port H, the first flow path F1, and the second flow path F2 closed until timing t5. At this time, the pressure in the space S is maintained at a predetermined pressure P0 until timing t5. The predetermined pressure P0 may be any pressure that is higher than 0 [MPa] and lower than the predetermined pressure Pb. Then, the fuel injection device 1B starts to open the second flow path F2 at timing t5. As a result, as indicated by the curve FN1A, in the fuel injection device 1B, the pressure inside the first flow path F1 begins to decrease at timing t5. This is because the fuel starts to flow from the first flow path F1 to the second flow path F2 at timing t5.
 その後、第3制御によって制御される燃料噴射装置1Bでは、タイミングt5から所定の第3時間が経過したタイミングt6において第2流路F2が閉じるように、駆動部A2が第2弁V2を動かし始める。その結果、当該燃料噴射装置1では、タイミングt6において、第1流路F1内の圧力が上昇し始める。 After that, in the fuel injection device 1B controlled by the third control, the driving section A2 starts moving the second valve V2 so that the second flow path F2 is closed at timing t6 after a predetermined third time has elapsed from timing t5. . As a result, in the fuel injection device 1, the pressure inside the first flow path F1 starts to rise at timing t6.
 そして、第3制御によって制御される燃料噴射装置1Bでは、タイミングt6以降のタイミングにおいて、第1流路F1内の圧力が瞬間的に所定の圧力Pbよりも高くなる。これは、第1流路F1から第2流路F2を通って排出口へ流れ出ていた燃料が第2弁V2によって堰き止められ、その結果として生じた水撃作用によって第1流路F1内の圧力が瞬間的に所定の圧力Pbよりも高くなるために発生する現象である。 Then, in the fuel injection device 1B controlled by the third control, the pressure in the first flow path F1 momentarily becomes higher than the predetermined pressure Pb at the timing after the timing t6. This is because the fuel flowing from the first flow path F1 through the second flow path F2 to the discharge port is dammed by the second valve V2, and the resulting water hammer action causes the fuel to flow into the first flow path F1. This phenomenon occurs because the pressure momentarily becomes higher than the predetermined pressure Pb.
 しかしながら、曲線FN1Aが示すように、第1流路F1内の圧力は、タイミングt6以降において、減衰振動する。このため、第3制御によって制御される燃料噴射装置1Bは、タイミングt7において第1流路F1を開き始める。タイミングt7は、タイミングt6以降のタイミングのうち、所定の圧力Pb未満の圧力から所定の圧力Pbを第1流路F1内の圧力が超える圧力まで上昇し、その後、第1流路F1内の圧力が再び下降を開始するまでの間の期間内のタイミングであれば、如何なるタイミングであってもよい。ここで、図8でも、第1流路F1内の圧力のうち、水撃作用によって最も高くなった圧力と所定の圧力Pbとの差を、ΔPmaxによって示している。すなわち、当該燃料噴射装置1Bは、タイミングt6以降のタイミングのうち、第1流路F1内の圧力が(Pb+ΔPmax)となるまでの間の期間内のタイミングをタイミングt7として、タイミングt7で第1流路F1を開き始める。 However, as indicated by the curve FN1A, the pressure in the first flow path F1 damps and oscillates after timing t6. Therefore, the fuel injection device 1B controlled by the third control starts opening the first flow path F1 at timing t7. At timing t7, among the timings after timing t6, the pressure in the first flow path F1 rises from the pressure less than the predetermined pressure Pb to the pressure exceeding the predetermined pressure Pb, and then the pressure in the first flow path F1 Any timing may be used as long as it is within the period until starts falling again. Here, also in FIG. 8, ΔPmax indicates the difference between the highest pressure due to the water hammer action and the predetermined pressure Pb among the pressures in the first flow path F1. That is, the fuel injection device 1B sets the timing within the period until the pressure in the first flow path F1 reaches (Pb+ΔPmax) among the timings after the timing t6 as the timing t7, and the first flow injection is performed at the timing t7. Begin to open road F1.
 タイミングt6とタイミングt7との間の時間差は、例えば、事前の試験、実験等によるトライアンドエラーによって燃料の燃焼効率が所望の燃焼効率(例えば、最も高い燃焼効率等)に近づくように決められるが、理論計算に基づいて決められてもよく、シミュレーションによって決められてもよく、他の方法によって決められてもよい。このようにして決められたタイミングt7において第1流路F1が開き始めるため、第1流路F1内の燃料は、タイミングt7において、第1流路F1から空間S内へ供給され始める。このため、空間S内の圧力も、曲線FN2Aが示すように、タイミングt7において上昇し始める。ここで、第1流路F1内の圧力は、タイミングt7以降において、前述した水撃作用によって所定の圧力Pbを超える。このため、タイミングt7以降において、第1流路F1内の燃料は、所定の圧力Pbよりも高い圧力によって、第1流路F1から空間S内へ供給されることになる。なお、第1流路F1内の燃料は、タイミングt7において、所定の圧力Pbよりも高い圧力で空間S内へ供給されるように、タイミングt7を調整してもよい。 The time difference between the timing t6 and the timing t7 is determined, for example, by trial and error in advance tests, experiments, etc., so that the combustion efficiency of the fuel approaches the desired combustion efficiency (for example, the highest combustion efficiency, etc.). , may be determined based on theoretical calculation, may be determined by simulation, or may be determined by other methods. Since the first flow path F1 begins to open at the timing t7 thus determined, the fuel in the first flow path F1 begins to be supplied into the space S from the first flow path F1 at the timing t7. Therefore, the pressure in space S also begins to rise at timing t7, as indicated by curve FN2A. Here, the pressure in the first flow path F1 exceeds the predetermined pressure Pb due to the water hammer effect described above after timing t7. Therefore, after timing t7, the fuel in the first flow path F1 is supplied from the first flow path F1 into the space S at a pressure higher than the predetermined pressure Pb. The timing t7 may be adjusted so that the fuel in the first flow path F1 is supplied into the space S at a pressure higher than the predetermined pressure Pb at the timing t7.
 ここで、前述した通り、空間S内の圧力は、噴射口Hと第1流路F1との両方を閉じることにより、保持される。このため、タイミングt7以降において、空間S内の圧力が所定の圧力Pbよりも高い圧力になっている状態で噴射口Hと第1流路F1との両方を閉じると、空間S内の圧力は、所定の圧力Pbよりも高い圧力のまま保持される。 Here, as described above, the pressure in the space S is maintained by closing both the injection port H and the first flow path F1. Therefore, after timing t7, when both the injection port H and the first flow path F1 are closed while the pressure in the space S is higher than the predetermined pressure Pb, the pressure in the space S is , is maintained at a pressure higher than the predetermined pressure Pb.
 タイミングt7の後、第3制御によって制御される燃料噴射装置1Bでは、タイミングt7から所定の第4時間が経過したタイミングt9において第1流路F1が閉じるように、駆動部A3が第3弁V3を動かし始める。 After timing t7, in the fuel injection device 1B controlled by the third control, the driving portion A3 closes the third valve V3 so that the first flow path F1 is closed at timing t9 when a predetermined fourth time has elapsed from timing t7. start moving.
 また、タイミングt7の後、第3制御によって制御される燃料噴射装置1Bでは、タイミングt7から所定の第5時間が経過したタイミングt8において噴射口Hが開くように、駆動部A1が第1弁V1を動かし始める。なお、タイミングt8は、タイミングt7よりも後のタイミングであれば、タイミングt9よりも前のタイミングであってもよく、タイミングt9よりも後のタイミングであってもよく、タイミングt9と同じタイミングであってもよい。図8に示した例では、タイミングt8は、タイミングt9よりも前のタイミングである。当該燃料噴射装置1Bは、タイミングt8において噴射口Hを開くため、所定の圧力Pbよりも高い圧力によって燃料を噴射口Hから燃焼室CC内へ噴射することができる。当該例では、タイミングt8において、当該燃料噴射装置1Bは、(Pb+ΔPmax)の圧力で、燃料を噴射口Hから燃焼室CC内へ噴射することができている。 Further, after timing t7, in the fuel injection device 1B controlled by the third control, the driving portion A1 causes the first valve V1 to open so that the injection port H is opened at timing t8 after the lapse of a predetermined fifth time from timing t7. start moving. Note that the timing t8 may be the timing before the timing t9, the timing after the timing t9, or the same timing as the timing t9 as long as the timing t8 is after the timing t7. may In the example shown in FIG. 8, timing t8 is earlier than timing t9. Since the fuel injection device 1B opens the injection port H at the timing t8, the fuel can be injected from the injection port H into the combustion chamber CC at a pressure higher than the predetermined pressure Pb. In this example, at timing t8, the fuel injection device 1B can inject fuel from the injection port H into the combustion chamber CC at a pressure of (Pb+ΔPmax).
 タイミングt8の後、第3制御によって制御される燃料噴射装置1Bでは、タイミングt8から所定の第6時間が経過したタイミングt10において噴射口Hが閉じるように、駆動部A1が第1弁V1を動かし始める。駆動部A1が第1弁V1を動かし始めることをトリガーとして、当該燃料噴射装置1Bでは、タイミングt8からタイミングt10までの間の期間内において、第1弁V1のリフト量が減少するとともに、燃料の噴射圧及び噴射率が下降し始める。そして、タイミングt10において、当該燃料噴射装置1Bでは、第1弁V1のリフト量が0[mm]となり、燃料の噴射圧が0[MPa]となり、燃料の噴射率が0[mm/s]となる。なお、タイミングt8からタイミングt10までの間の期間において、第1弁V1のリフト量、燃料の噴射圧、燃料の噴射率のそれぞれには、振動が見られない。これは、タイミングt9において第3弁V3によって第1流路F1が閉じているため、タイミングt9以降における第1流路F1内の圧力の減衰振動の影響が、空間S内に伝わらないためである。また、タイミングt9からタイミングt10までの間の期間において、空間S内の燃料は、第1流路F1を介して高圧源4から空間Sへ燃料が供給されないため、時間の経過とともに減っていく。その結果、空間S内の圧力も、タイミングt9からタイミングt10に近づくほど、下降していく。図8に示した例では、タイミングt10において、空間S内の圧力は、所定の圧力P0となっている。このように、タイミングt9からタイミングt10の間に期間内において、空間S内の圧力が下降していくため、当該燃料噴射装置1Bでは、曲線FN4A及び曲線FN5Aが示すように、逆デルタ噴射が実現される。これにより、当該燃料噴射装置1Bは、過濃混合気塊等の発生を抑制し、燃料の燃焼効率を、より確実に向上させることができる。 After timing t8, in the fuel injection device 1B controlled by the third control, the drive unit A1 moves the first valve V1 so that the injection port H closes at timing t10 when a predetermined sixth time has elapsed from timing t8. start. Triggered by the drive unit A1 starting to move the first valve V1, the fuel injection device 1B reduces the lift amount of the first valve V1 and increases the amount of fuel during the period from timing t8 to timing t10. Injection pressure and injection rate begin to drop. Then, at timing t10, in the fuel injection device 1B, the lift amount of the first valve V1 becomes 0 [mm], the fuel injection pressure becomes 0 [MPa], and the fuel injection rate becomes 0 [mm 3 /s]. becomes. In the period from timing t8 to timing t10, no vibration is observed in the lift amount of the first valve V1, the fuel injection pressure, and the fuel injection rate. This is because the first flow path F1 is closed by the third valve V3 at the timing t9, so that the influence of the damped oscillation of the pressure in the first flow path F1 after the timing t9 is not transmitted to the space S. . Further, during the period from timing t9 to timing t10, the fuel in the space S decreases with the lapse of time because the fuel is not supplied from the high pressure source 4 to the space S through the first flow path F1. As a result, the pressure in the space S also decreases as the timing t9 approaches the timing t10. In the example shown in FIG. 8, at timing t10, the pressure in the space S is the predetermined pressure P0. As described above, the pressure in the space S decreases during the period from the timing t9 to the timing t10, so that the fuel injection device 1B realizes reverse delta injection as indicated by the curves FN4A and FN5A. be done. As a result, the fuel injection device 1B can suppress the occurrence of an excessively rich air-fuel mixture mass, etc., and improve the fuel combustion efficiency more reliably.
 タイミングt10の後、第3制御によって制御される燃料噴射装置1Bは、燃料の次の噴射を行い始めるまで、噴射口H、第1流路F1、第2流路F2のそれぞれを閉じたまま待機する。このため、当該燃料噴射装置1Bでは、第1流路F1内の圧力は、燃料の次の噴射を行い始めるまでの間において、所定の圧力Pbに戻る。また、当該燃料噴射装置1Bでは、空間S内の圧力は、燃料の次の噴射を行い始めるまでの間において、所定の圧力P0のまま保持される。 After timing t10, the fuel injection device 1B controlled by the third control waits with the injection port H, the first flow path F1, and the second flow path F2 closed until the next injection of fuel is started. do. Therefore, in the fuel injection device 1B, the pressure in the first flow path F1 returns to the predetermined pressure Pb until the next injection of fuel is started. Further, in the fuel injection device 1B, the pressure in the space S is maintained at the predetermined pressure P0 until the next injection of fuel is started.
 一方、図8に示した例では、タイミングチャートTC1Aが示すように、第4制御によって制御される燃料噴射装置1Bは、タイミングt7になるまで、噴射口H、第1流路F1、第2流路F2を閉じたまま待機する。そして、当該燃料噴射装置1は、タイミングt7において、第1流路F1を開き始める。第1流路F1が開き始めるため、第1流路F1内の燃料は、タイミングt7において、所定の圧力Pbによって、第1流路F1から空間S内へ供給される。このため、空間S内の圧力も、曲線FX2Aが示すように、タイミングt7において上昇し始める。 On the other hand, in the example shown in FIG. 8, as shown in the timing chart TC1A, the fuel injection device 1B controlled by the fourth control keeps the injection port H, the first flow passage F1, the second flow It waits with the road F2 closed. Then, the fuel injection device 1 starts to open the first flow path F1 at timing t7. Since the first flow path F1 begins to open, the fuel in the first flow path F1 is supplied from the first flow path F1 into the space S at the predetermined pressure Pb at timing t7. Therefore, the pressure in space S also begins to rise at timing t7, as indicated by curve FX2A.
 ここで、タイミングt7以降において、空間S内の圧力が所定の圧力Pbになっている状態で噴射口Hと第1流路F1との両方が閉じた状態では、空間S内の圧力は、所定の圧力Pbのまま保持される。 Here, after timing t7, in a state in which both the injection port H and the first flow path F1 are closed in a state where the pressure in the space S is the predetermined pressure Pb, the pressure in the space S is kept at a predetermined pressure Pb. is maintained at the pressure Pb of .
 タイミングt7の後、第4制御によって制御される燃料噴射装置1Bでは、タイミングt9において第1流路F1が閉じるように、駆動部A3が第3弁V3を動かし始める。 After timing t7, in the fuel injection device 1B controlled by the fourth control, the driving section A3 starts moving the third valve V3 so as to close the first flow path F1 at timing t9.
 また、タイミングt7の後、第4制御によって制御される燃料噴射装置1Bでは、タイミングt8において噴射口Hが開くように、駆動部A1が第1弁V1を動かし始める。当該燃料噴射装置1Bは、タイミングt8において噴射口Hを開くため、所定の圧力Pbによって燃料を噴射口Hから燃焼室CC内へ噴射する。 After timing t7, in the fuel injection device 1B controlled by the fourth control, the drive unit A1 starts moving the first valve V1 so that the injection port H opens at timing t8. Since the fuel injection device 1B opens the injection port H at the timing t8, the fuel is injected from the injection port H into the combustion chamber CC at a predetermined pressure Pb.
 タイミングt8の後、第4制御によって制御される燃料噴射装置1Bでは、タイミングt10において噴射口Hが閉じるように、駆動部A1が第1弁V1を動かし始める。駆動部A1が第1弁V1を動かし始めることをトリガーとして、当該燃料噴射装置1Bでは、タイミングt8からタイミングt10までの間の期間内において、第1弁V1のリフト量が減少するとともに、燃料の噴射圧及び噴射率が下降し始める。そして、タイミングt10において、当該燃料噴射装置1Bでは、第1弁V1のリフト量が0[mm]となり、燃料の噴射圧が0[MPa]となり、燃料の噴射率が0[mm/s]となる。なお、タイミングt9からタイミングt10までの間の期間において、空間S内の燃料は、第1流路F1を介して高圧源4から空間Sへ燃料が供給されないため、時間の経過とともに減っていく。その結果、空間S内の圧力も、タイミングt9からタイミングt10に近づくほど、下降していく。図8に示した例では、タイミングt10において、空間S内の圧力は、所定の圧力P0となっている。このように、タイミングt9からタイミングt10の間に期間内において、空間S内の圧力が下降していくため、当該燃料噴射装置1Bでも、曲線FN4A及び曲線FN5Aが示すように、逆デルタ噴射が実現されている。 After timing t8, in the fuel injection device 1B controlled by the fourth control, the driving section A1 starts moving the first valve V1 so that the injection port H is closed at timing t10. Triggered by the drive unit A1 starting to move the first valve V1, the fuel injection device 1B reduces the lift amount of the first valve V1 and increases the amount of fuel during the period from timing t8 to timing t10. Injection pressure and injection rate begin to drop. Then, at timing t10, in the fuel injection device 1B, the lift amount of the first valve V1 becomes 0 [mm], the fuel injection pressure becomes 0 [MPa], and the fuel injection rate becomes 0 [mm 3 /s]. becomes. During the period from timing t9 to timing t10, the amount of fuel in the space S decreases with the lapse of time because fuel is not supplied from the high pressure source 4 to the space S through the first flow path F1. As a result, the pressure in the space S also decreases as the timing t9 approaches the timing t10. In the example shown in FIG. 8, at timing t10, the pressure in the space S is the predetermined pressure P0. As described above, the pressure in the space S decreases during the period from the timing t9 to the timing t10, so that the fuel injection device 1B also realizes reverse delta injection as indicated by the curves FN4A and FN5A. It is
 タイミングt10の後、第4制御によって制御される燃料噴射装置1Bは、燃料の次の噴射を行い始めるまで、噴射口H、第1流路F1、第2流路F2のそれぞれを閉じたまま待機する。このため、当該燃料噴射装置1Bでは、第1流路F1内の圧力は、燃料の次の噴射を行い始めるまでの間において、所定の圧力Pbに戻る。また、当該燃料噴射装置1Bでは、空間S内の圧力は、燃料の次の噴射を行い始めるまでの間において、所定の圧力P0のまま保持される。 After timing t10, the fuel injection device 1B controlled by the fourth control waits with the injection port H, the first flow path F1, and the second flow path F2 closed until the next injection of fuel is started. do. Therefore, in the fuel injection device 1B, the pressure in the first flow path F1 returns to the predetermined pressure Pb until the next injection of fuel is started. Further, in the fuel injection device 1B, the pressure in the space S is maintained at the predetermined pressure P0 until the next injection of fuel is started.
 ここで、第3制御によって制御される燃料噴射装置1は、前述したように、タイミングt8からの燃料の燃焼室CC内への噴射を、所定の圧力Pbより高い圧力によって行い始める。このように所定の圧力Pbよりも高い圧力、すなわち、高圧源4の圧力よりも高い圧力で燃料を噴射し始めることは、第4制御によって制御される燃料噴射装置1にできないことである。換言すると、このように所定の圧力Pbよりも高い圧力、すなわち、高圧源4の圧力よりも高い圧力で燃料を噴射し始めることは、従来の燃料噴射装置にできないことである。そして、グラフG2A~グラフG5Aのそれぞれが示すように、所定の圧力Pbよりも高い圧力で燃料を噴射し始める結果として、曲線FN2Aの立ち上がりが曲線FX2Aの立ち上がりよりも急峻化且つ先鋭化しており、曲線FN3Aの立ち上がりが曲線FX3Aの立ち上がりよりも急峻化且つ先鋭化しており、曲線FN4Aの立ち上がりが曲線FX4Aの立ち上がりよりも急峻化且つ先鋭化しており、曲線FN5Aの立ち上がりが曲線FX5Aの立ち上がりよりも急峻化且つ先鋭化している。 Here, as described above, the fuel injection device 1 controlled by the third control starts injecting fuel into the combustion chamber CC from timing t8 at a pressure higher than the predetermined pressure Pb. It is impossible for the fuel injection device 1 controlled by the fourth control to start injecting fuel at a pressure higher than the predetermined pressure Pb, that is, at a pressure higher than the pressure of the high-pressure source 4 . In other words, it is impossible for the conventional fuel injection device to start injecting fuel at a pressure higher than the predetermined pressure Pb, that is, at a pressure higher than the pressure of the high-pressure source 4 . As each of the graphs G2A to G5A shows, as a result of starting to inject fuel at a pressure higher than the predetermined pressure Pb, the rise of the curve FN2A is steeper and sharper than the rise of the curve FX2A. The rise of curve FN3A is steeper and sharper than the rise of curve FX3A, the rise of curve FN4A is steeper and sharper than the rise of curve FX4A, and the rise of curve FN5A is steeper than the rise of curve FX5A. are becoming sharper and sharper.
 これはすなわち、燃料噴射装置1Bでは、第3弁V3の開閉を伴う制御を行った場合であっても、第1弁V1のリフト量の立ち上がりが従来と比べて急峻化且つ先鋭化し、燃料の噴射圧の立ち上がりが従来と比べて急峻化且つ先鋭化し、燃料の噴射率の立ち上がりが従来と比べて急峻化且つ先鋭化していることを示している。換言すると、燃料噴射装置1Bでは、従来の燃料噴射装置よりも速く噴射口Hを開くことができ、従来の燃料噴射装置よりも速く燃料の噴射圧及び噴射率のそれぞれを上昇させることができ、更に、従来の燃料噴射装置よりも高く燃料の噴射圧及び噴射率のそれぞれを上昇させることができる。その結果、燃料噴射装置1Bは、従来の燃料噴射装置と比較して、燃料の燃焼効率をより向上させることができる。また、燃料噴射装置1Bは、タイミングt8からの燃料の噴射圧の立ち上がりの急峻化を、ピエゾ素子のような応答性の高い高価なアクチュエーターを用いなくても実現することができる。これは、燃料噴射装置1が製造コストの増大を抑制することも可能であることを示している。当然ながら、燃料噴射装置1Bは、応答性の高いアクチュエーターとの組み合わせにより、タイミングt8からの燃料の噴射圧の立ち上がりを、更に急峻化することができる。 That is, in the fuel injection device 1B, even when control is performed with the opening and closing of the third valve V3, the rise of the lift amount of the first valve V1 becomes steeper and sharper than in the conventional art, and the fuel is injected. It shows that the rise of the injection pressure is steeper and sharper than before, and the rise of the fuel injection rate is steeper and sharper than before. In other words, in the fuel injection device 1B, the injection port H can be opened faster than the conventional fuel injection device, and the injection pressure and injection rate of the fuel can be increased faster than the conventional fuel injection device. Furthermore, it is possible to raise the injection pressure and the injection rate of the fuel more than the conventional fuel injection device. As a result, the fuel injection device 1B can further improve the fuel combustion efficiency as compared with the conventional fuel injection device. Further, the fuel injection device 1B can realize a sharp rise of the fuel injection pressure from the timing t8 without using an expensive actuator with high response such as a piezo element. This indicates that the fuel injection device 1 can also suppress an increase in manufacturing costs. Naturally, the fuel injection device 1B can further sharpen the rising of the fuel injection pressure from the timing t8 by combining with the highly responsive actuator.
 なお、前述の第3時間~第6時間のそれぞれは、例えば、事前の試験、実験等によるトライアンドエラーによって燃料の燃焼効率が所望の燃焼効率(例えば、最も高い燃焼効率等)に近づくように決められるが、理論計算に基づいて決められてもよく、シミュレーションによって決められてもよく、他の方法によって決められてもよい。ただし、第6時間の長さに応じて、所定の圧力P0の大きさが決まる。第6時間を長くするほど、所定の圧力P0は、低くなる。一方、第6時間を短くするほど、所定の圧力P0は、高くなる。 In addition, each of the above-mentioned 3rd time to 6th time is set so that the combustion efficiency of the fuel approaches the desired combustion efficiency (for example, the highest combustion efficiency, etc.) by trial and error in advance tests, experiments, etc. Although it is determined, it may be determined based on theoretical calculation, may be determined by simulation, or may be determined by other methods. However, the magnitude of the predetermined pressure P0 is determined according to the length of the sixth time. The longer the sixth time, the lower the predetermined pressure P0. On the other hand, the shorter the sixth time, the higher the predetermined pressure P0.
 <実施形態の変形例3>
 以下、実施形態の変形例3について説明する。実施形態の変形例3は、実施形態の変形例2の変形例である。なお、実施形態の変形例3では、実施形態の変形例2と同様な構成部に対して同じ符号を付して説明を省略する。以下では、説明の便宜上、実施形態の変形例3に係る燃料噴射装置1Bを、実施形態の変形例2に係る燃料噴射装置1Bと区別するため、燃料噴射装置1Cと称して説明する。
<Modification 3 of Embodiment>
Modification 3 of the embodiment will be described below. Modification 3 of the embodiment is a modification of Modification 2 of the embodiment. In addition, in Modification 3 of the embodiment, the same reference numerals are given to the same components as in Modification 2 of the embodiment, and the description thereof is omitted. Hereinafter, for convenience of explanation, the fuel injection device 1B according to Modification 3 of the embodiment will be referred to as fuel injection device 1C in order to distinguish it from the fuel injection device 1B according to Modification 2 of the embodiment.
 燃料噴射装置1Cでは、燃料噴射装置1Bと比較して、第1流路F1から第2流路F2を通って排出口へ流れる燃料の流速を変えずに、当該燃料の流量が増やされている。以下では、一例として、燃料噴射装置1Cが備える第2流路F2の直径が、燃料噴射装置1Bが備える第2流路F2の直径よりも大きい場合について説明する。この場合、燃料噴射装置1Cが備える第2弁V2も、燃料噴射装置1Bが備える第2弁V2と比較して、大きくなる。その結果、燃料噴射装置1Cでは、タイミングt6において第2弁V2により堰き止められる燃料の流量が増え、水撃作用によって第1流路F1内の圧力が所定の圧力Pbを超え続ける時間の長さが長くなる。 Compared with the fuel injection device 1B, the fuel injection device 1C increases the flow rate of the fuel without changing the flow velocity of the fuel flowing from the first flow path F1 to the discharge port through the second flow path F2. . Below, as an example, a case where the diameter of the second flow path F2 provided in the fuel injection device 1C is larger than the diameter of the second flow path F2 provided in the fuel injection device 1B will be described. In this case, the second valve V2 provided in the fuel injection device 1C also becomes larger than the second valve V2 provided in the fuel injection device 1B. As a result, in the fuel injection device 1C, the flow rate of the fuel dammed up by the second valve V2 increases at timing t6, and the length of time during which the pressure in the first flow path F1 continues to exceed the predetermined pressure Pb due to the water hammer action. becomes longer.
 図9は、燃料噴射装置1Cにおける噴射口H、第1流路F1、第2流路F2それぞれの開閉のタイミングと、第1流路F1内の圧力の時間的な変化と、空間S内の圧力の時間的な変化と、第1弁V1のリフト量の時間的な変化と、燃料の噴射圧の時間的な変化と、燃料の噴射率の時間的な変化とのそれぞれの一例を示す図である。 FIG. 9 shows the opening and closing timings of the injection port H, the first flow path F1, and the second flow path F2 in the fuel injection device 1C, the temporal change in the pressure in the first flow path F1, and the pressure in the space S. FIG. 5 is a diagram showing an example of temporal changes in pressure, temporal changes in the lift amount of the first valve V1, temporal changes in fuel injection pressure, and temporal changes in fuel injection rate; is.
 図9に示したグラフG1Aは、曲線FN1Aに代えて、曲線FN11Aがプロットされている以外、図8に示したグラフG1Aと同じグラフである。何故なら、第4制御によって制御される燃料噴射装置1Cにおける第1流路F1内の圧力の時間的な変化は、第4制御によって制御される燃料噴射装置1Bにおける第1流路F1内の圧力の時間的な変化と同じだからである。以下では、説明の便宜上、図9に示したグラフG1Aを、グラフG11Aと称して説明する。ここで、曲線FN11Aは、第3制御によって燃料噴射装置1Cを制御した場合における第1流路F1内の圧力の時間的な変化の他の例を示す。 The graph G1A shown in FIG. 9 is the same graph as the graph G1A shown in FIG. 8 except that the curve FN11A is plotted instead of the curve FN1A. This is because the temporal change in the pressure in the first flow path F1 in the fuel injection device 1C controlled by the fourth control changes the pressure in the first flow path F1 in the fuel injection device 1B controlled by the fourth control. This is because it is the same as the temporal change of Below, for convenience of explanation, the graph G1A shown in FIG. 9 will be referred to as a graph G11A. Here, the curve FN11A shows another example of the temporal change in the pressure inside the first flow path F1 when the fuel injection device 1C is controlled by the third control.
 図9に示したグラフG2Aは、曲線FN2Aに代えて、曲線FN21Aがプロットされている以外、図8に示したグラフG2Aと同じグラフである。何故なら、第4制御によって制御される燃料噴射装置1Cにおける空間S内の圧力の時間的な変化は、第4制御によって制御される燃料噴射装置1Bにおける空間S内の圧力の時間的な変化と同じだからである。以下では、説明の便宜上、図9に示したグラフG2Aを、グラフG21Aと称して説明する。ここで、曲線FN21Aは、第3制御によって燃料噴射装置1Cを制御した場合における空間Sの圧力の時間的な変化の他の例を示す。 The graph G2A shown in FIG. 9 is the same graph as the graph G2A shown in FIG. 8 except that the curve FN21A is plotted instead of the curve FN2A. This is because the temporal change in the pressure in the space S in the fuel injection device 1C controlled by the fourth control is the same as the temporal change in the pressure in the space S in the fuel injection device 1B controlled by the fourth control. because they are the same. Below, for convenience of explanation, the graph G2A shown in FIG. 9 will be referred to as a graph G21A. Here, curve FN21A shows another example of temporal change in pressure in space S when fuel injection device 1C is controlled by the third control.
 図9に示したグラフG3Aは、曲線FN3Aに代えて、曲線FN31Aがプロットされている以外、図8に示したグラフG3Aと同じグラフである。何故なら、第4制御によって制御される燃料噴射装置1Cにおける第1弁V1のリフト量の時間的な変化は、第4制御によって制御される燃料噴射装置1Bにおける第1弁V1のリフト量の時間的な変化と同じだからである。以下では、説明の便宜上、図9に示したグラフG3Aを、グラフG31Aと称して説明する。ここで、曲線FN31Aは、第3制御によって燃料噴射装置1Cを制御した場合における第1弁V1のリフト量の時間的な変化の他の例を示す。 The graph G3A shown in FIG. 9 is the same graph as the graph G3A shown in FIG. 8 except that the curve FN31A is plotted instead of the curve FN3A. This is because the temporal change in the lift amount of the first valve V1 in the fuel injection device 1C controlled by the fourth control is the same as the lift amount of the first valve V1 in the fuel injection device 1B controlled by the fourth control. This is because it is the same as a physical change. Below, for convenience of explanation, the graph G3A shown in FIG. 9 will be referred to as a graph G31A. Here, a curve FN31A shows another example of temporal change in the lift amount of the first valve V1 when the fuel injection device 1C is controlled by the third control.
 図9に示したグラフG4Aは、曲線FN4Aに代えて、曲線FN41Aがプロットされている以外、図8に示したグラフG4Aと同じグラフである。何故なら、第4制御によって制御される燃料噴射装置1Cにおける燃料の噴射圧の時間的な変化は、第4制御によって制御される燃料噴射装置1Bにおける燃料の噴射圧の時間的な変化と同じだからである。以下では、説明の便宜上、図9に示したグラフG4Aを、グラフG41Aと称して説明する。ここで、曲線FN41Aは、第3制御によって燃料噴射装置1Cを制御した場合における燃料の噴射圧の時間的な変化の他の例を示す。 Graph G4A shown in FIG. 9 is the same graph as graph G4A shown in FIG. 8 except that curve FN41A is plotted instead of curve FN4A. This is because the temporal change in the fuel injection pressure in the fuel injection device 1C controlled by the fourth control is the same as the temporal change in the fuel injection pressure in the fuel injection device 1B controlled by the fourth control. is. Below, for convenience of explanation, the graph G4A shown in FIG. 9 will be referred to as a graph G41A. Here, the curve FN41A shows another example of temporal changes in the fuel injection pressure when the fuel injection device 1C is controlled by the third control.
 図9に示したグラフG5Aは、曲線FN5Aに代えて、曲線FN51Aがプロットされている以外、図8に示したグラフG5Aと同じグラフである。何故なら、第4制御によって制御される燃料噴射装置1Cにおける燃料の噴射率の時間的な変化は、第4制御によって制御される燃料噴射装置1Bにおける燃料の噴射率の時間的な変化と同じだからである。以下では、説明の便宜上、図9に示したグラフG5Aを、グラフG51Aと称して説明する。ここで、曲線FN51Aは、第3制御によって燃料噴射装置1Cを制御した場合における燃料の噴射率の時間的な変化の他の例を示す。 The graph G5A shown in FIG. 9 is the same graph as the graph G5A shown in FIG. 8 except that the curve FN51A is plotted instead of the curve FN5A. This is because the temporal change in the fuel injection rate in the fuel injection device 1C controlled by the fourth control is the same as the temporal change in the fuel injection rate in the fuel injection device 1B controlled by the fourth control. is. Below, for convenience of explanation, the graph G5A shown in FIG. 9 will be referred to as a graph G51A. Here, the curve FN51A shows another example of temporal changes in the fuel injection rate when the fuel injection device 1C is controlled by the third control.
 曲線FN11Aが示すように、燃料噴射装置1Cでは、タイミングt8からタイミングt10までの間の期間内において、第1流路F1内の圧力は、上昇してから下降するのみであり、振動していない。そして、当該期間内のほぼ全域において、第1流路F1の圧力は、所定の圧力Pbより高い圧力になっている。なお、燃料噴射装置1Cでは、第1流路F1が閉じられている場合、空間S内、燃焼室CC内のそれぞれには、第1流路F1内の圧力の影響は、伝わらない。このため、燃料噴射装置1Cにおける空間S内の圧力、第1弁V1のリフト量、燃料の噴射圧、燃料の噴射率それぞれの時間的な変化の仕方は、燃料噴射装置1Bにおける空間S内の圧力、第1弁V1のリフト量、燃料の噴射圧、燃料の噴射率それぞれの時間的な変化の仕方と変わらない。ただし、燃料噴射装置1Cでは、第2流路F2に流す燃料の流速、流量等を調整することにより、第1流路F1内の圧力の瞬間(耐圧性に影響のない程度の瞬間)的な上昇幅を更に大きくすることができる。その結果、燃料噴射装置1Cは、スモークレスで大量の燃料を噴射することができ、内燃機関EGのトルク、出力を増大させることができる。例えば、燃料噴射装置1Cは、自動車用エンジンに適用した場合、追い越し時の加速局面での超高圧噴射により、スモークレスで大きなトルクを発生させることができる。また、例えば、燃料噴射装置1Cは、発電用エンジンに適用した場合、電機需要急増時において、スモークレスで大量の燃料を噴射することができ、発電用エンジンの回転数の低下を抑制することができる。なお、このような第1流路F1内の圧力の瞬間的な上昇幅は、この一例において示したように、燃料噴射装置1Cが備える第2流路F2の直径を大きくするほど、大きくすることができる。すなわち、燃料噴射装置1Cは、燃料噴射装置1Bと比べて第2流路F2の直径が大きいので、第2流路F2に流す燃料の流速、流量等を調整することにより、第1流路F1内の圧力の瞬間的な上昇幅を、燃料噴射装置1Bよりも更に大きくすることができる。 As indicated by the curve FN11A, in the fuel injection device 1C, the pressure in the first flow path F1 only increases and then decreases during the period from timing t8 to timing t10, and does not vibrate. . The pressure in the first flow path F1 is higher than the predetermined pressure Pb over substantially the entire period. In the fuel injection device 1C, when the first flow path F1 is closed, the pressure inside the first flow path F1 does not affect the space S and the combustion chamber CC. Therefore, how the pressure in the space S in the fuel injection device 1C, the lift amount of the first valve V1, the injection pressure of the fuel, and the injection rate of the fuel change with time varies depending on the pressure in the space S in the fuel injection device 1B. This is the same as how the pressure, the lift amount of the first valve V1, the fuel injection pressure, and the fuel injection rate change over time. However, in the fuel injection device 1C, by adjusting the flow rate, flow rate, etc. of the fuel flowing through the second flow path F2, the pressure in the first flow path F1 can be instantaneously increased (instantaneous to the extent that pressure resistance is not affected). The range of increase can be further increased. As a result, the fuel injection device 1C can inject a large amount of fuel without smoke, and can increase the torque and output of the internal combustion engine EG. For example, when the fuel injection device 1C is applied to an automobile engine, it is possible to generate a large amount of torque without smoke by ultra-high pressure injection during an acceleration phase during overtaking. Further, for example, when the fuel injection device 1C is applied to an engine for power generation, it is possible to inject a large amount of fuel without smoke when the demand for electric power surges, thereby suppressing a decrease in the rotation speed of the engine for power generation. can. It should be noted that such an instantaneous rise width of the pressure in the first flow path F1 increases as the diameter of the second flow path F2 provided in the fuel injection device 1C increases, as shown in this example. can be done. That is, in the fuel injection device 1C, the diameter of the second flow path F2 is larger than that of the fuel injection device 1B. The instantaneous rise width of the internal pressure can be made even larger than that of the fuel injection device 1B.
 また、グラフG21A~グラフG51Aが示すように、第3制御によって制御される燃料噴射装置1Cも、タイミングt8からの燃料の燃焼室CC内への噴射を、所定の圧力Pbより高い圧力によって行い始めることができる。そして、グラフG41A及びグラフG51Aのそれぞれが示すように、所定の圧力Pbよりも高い圧力で燃料を噴射し始める結果として、曲線FN31Aの立ち上がりが曲線FX3Aの立ち上がりよりも急峻化且つ先鋭化しており、曲線FN41Aの立ち上がりが曲線FX4Aの立ち上がりよりも急峻化且つ先鋭化しており、曲線FN51Aの立ち上がりが曲線FX5Aの立ち上がりよりも急峻化且つ先鋭化している。 Further, as shown by the graphs G21A to G51A, the fuel injection device 1C controlled by the third control also starts injecting fuel into the combustion chamber CC from timing t8 at a pressure higher than the predetermined pressure Pb. be able to. As shown by graphs G41A and G51A, as a result of starting to inject fuel at a pressure higher than the predetermined pressure Pb, the rise of curve FN31A is steeper and sharper than the rise of curve FX3A. The rise of curve FN41A is steeper and sharper than the rise of curve FX4A, and the rise of curve FN51A is steeper and sharper than the rise of curve FX5A.
 これはすなわち、燃料噴射装置1Cでも、第1弁V1のリフト量の立ち上がりが従来と比べて急峻化且つ先鋭化し、燃料の噴射圧の立ち上がりが従来と比べて急峻化且つ先鋭化し、燃料の噴射率の立ち上がりが従来と比べて急峻化且つ先鋭化していることを示している。換言すると、燃料噴射装置1Cでも、従来の燃料噴射装置よりも速く噴射口Hを開くことができ、従来の燃料噴射装置よりも速く燃料の噴射圧及び噴射率のそれぞれを上昇させることができ、更に、従来の燃料噴射装置よりも高く燃料の噴射圧及び噴射率のそれぞれを上昇させることができる。その結果、燃料噴射装置1Cは、従来の燃料噴射装置と比較して、燃料の燃焼効率をより向上させることができることに加えて、水撃作用によって生じる第1流路F1内の圧力の振動の影響が、燃焼室CC内に伝わってしまうことを抑制することができる。 That is, in the fuel injection device 1C as well, the rise of the lift amount of the first valve V1 is steeper and sharper than the conventional one, the rise of the fuel injection pressure is steeper and sharper than the conventional one, and the fuel is injected. This indicates that the rise in rate is steeper and sharper than in the past. In other words, even with the fuel injection device 1C, the injection port H can be opened faster than the conventional fuel injection device, and the fuel injection pressure and injection rate can be increased faster than the conventional fuel injection device. Furthermore, it is possible to raise the injection pressure and the injection rate of the fuel more than the conventional fuel injection device. As a result, the fuel injection device 1C can further improve the fuel combustion efficiency as compared with the conventional fuel injection device, and in addition, the pressure fluctuation in the first flow path F1 caused by the water hammer action can be reduced. It is possible to suppress the influence from being transmitted to the inside of the combustion chamber CC.
 以上説明したように、燃料噴射装置1B、及び燃料噴射装置1Cは、燃料を内燃機関EGの燃焼室CC内に噴射する燃料噴射装置であって、燃料を燃焼室CC内に噴射する噴射口Hと、燃料を所定の圧力Pbによって供給する高圧源4と噴射口Hとを接続し、高圧源4から燃料が供給される第1流路F1と、第1流路F1に設けられ、噴射口Hの開閉を行う第1弁V1と、第1流路F1に接続され、第1流路F1から燃料が供給される第2流路F2と、第2流路F2に設けられ、第2流路F2の開閉を行う第2弁V2と、第1流路F1に設けられ、第1流路F1が有する部分のうち第1流路F1において第1弁V1よりも上流側に位置する部分であり、且つ、第1流路F1が有する部分のうち第1流路F1において第1流路F1と第2流路F2との接続部分よりも下流側に位置する部分の開閉を行う第3弁V3と、を備え、第1流路F1には、第1弁V1が噴射口Hを閉じた状態であり、且つ、第3弁V3が第1流路F1を閉じた状態である場合、燃料が保持される空間Sが形成される。これにより、燃料噴射装置1B、及び燃料噴射装置1Cは、第1流路F1内の圧力が所定の圧力Pbよりも高くなっている期間内において、第1弁V1により噴射口Hを開き、所定の圧力Pbよりも高い圧力で燃料を燃焼室CC内に噴射することができる。その結果、燃料噴射装置1B、及び燃料噴射装置1Cは、燃料の燃焼効率をより向上させることができる。 As described above, the fuel injection device 1B and the fuel injection device 1C are fuel injection devices that inject fuel into the combustion chamber CC of the internal combustion engine EG, and have injection ports H that inject fuel into the combustion chamber CC. , a high-pressure source 4 that supplies fuel at a predetermined pressure Pb and an injection port H are connected, and a first flow path F1 to which fuel is supplied from the high-pressure source 4, and the injection port is provided in the first flow path F1. a first valve V1 that opens and closes H; a second flow path F2 that is connected to the first flow path F1 and to which fuel is supplied from the first flow path F1; A second valve V2 that opens and closes the passage F2, and a portion that is provided in the first passage F1 and located upstream of the first valve V1 in the first passage F1 among the portions of the first passage F1. and a third valve that opens and closes a portion of the first flow path F1 located downstream of the connecting portion between the first flow path F1 and the second flow path F2 in the first flow path F1. V3, and in the first flow path F1, when the first valve V1 closes the injection port H and the third valve V3 closes the first flow path F1, fuel is formed. As a result, the fuel injection device 1B and the fuel injection device 1C open the injection port H by the first valve V1 within a period in which the pressure in the first flow path F1 is higher than the predetermined pressure Pb. Fuel can be injected into the combustion chamber CC at a pressure higher than the pressure Pb of . As a result, the fuel injection device 1B and the fuel injection device 1C can further improve the fuel combustion efficiency.
 <実施形態の変形例4>
 以下、実施形態の変形例4について説明する。なお、実施形態の変形例4では、実施形態と同様な構成部に対して同じ符号を付して説明を省略する。以下では、一例として、内燃機関EGが、燃焼室CCに代えて、互いに異なる複数の燃焼室CC2を備える場合について説明する。
<Modification 4 of Embodiment>
Modification 4 of the embodiment will be described below. In addition, in the modification 4 of the embodiment, the same reference numerals are assigned to the same components as in the embodiment, and the description thereof is omitted. In the following, as an example, a case where the internal combustion engine EG is provided with a plurality of different combustion chambers CC2 instead of the combustion chambers CC will be described.
 図10は、燃料噴射システム10の構成の一例を示す図である。燃料噴射システム10は、複数の燃料噴射装置を備える。これら複数の燃料噴射装置のそれぞれは、複数の燃焼室CC2のいずれかの室内へ燃料を噴射する。そして、これら複数の燃料噴射装置には、燃料噴射装置1、燃料噴射装置1A、燃料噴射装置1B、燃料噴射装置1Cのうちの一部又は全部が含まれる。以下では、一例として、燃料噴射システム10が、4つの燃料噴射装置を備える場合について説明する。この場合、内燃機関EGは、4つの燃焼室CC2を備える。そして、これら4つの燃料噴射装置のそれぞれは、燃料噴射装置1、燃料噴射装置1A、燃料噴射装置1B、燃料噴射装置1Cのいずれであってもよい。このため、図10では、4つの燃料噴射装置1のそれぞれが、燃料噴射装置1A、燃料噴射装置1B、燃料噴射装置1Cのいずれかであってもよいことを示す符号として、4つの燃料噴射装置1のそれぞれに「1、1A、1B、1C」という符号が付されている。なお、これら4つの燃料噴射装置のうちの一部は、燃料噴射装置1、燃料噴射装置1A、燃料噴射装置1B、燃料噴射装置1Cのすべてと異なる燃料噴射装置であってもよい。 FIG. 10 is a diagram showing an example of the configuration of the fuel injection system 10. As shown in FIG. The fuel injection system 10 includes multiple fuel injectors. Each of these multiple fuel injection devices injects fuel into one of the multiple combustion chambers CC2. These multiple fuel injection devices include some or all of fuel injection device 1, fuel injection device 1A, fuel injection device 1B, and fuel injection device 1C. Below, as an example, a case where the fuel injection system 10 includes four fuel injection devices will be described. In this case, the internal combustion engine EG comprises four combustion chambers CC2. Each of these four fuel injection devices may be fuel injection device 1, fuel injection device 1A, fuel injection device 1B, or fuel injection device 1C. For this reason, in FIG. 10, four fuel injection devices 1 are labeled "1, 1A, 1B, 1C". Some of these four fuel injection devices may be fuel injection devices different from all of fuel injection device 1, fuel injection device 1A, fuel injection device 1B, and fuel injection device 1C.
 以下では、説明の便宜上、4つの燃焼室CC2のそれぞれを、燃焼室CC2-1~燃焼室CC2-4と称して説明する。また、以下では、説明の便宜上、燃料噴射システム10が備える4つの燃料噴射装置のそれぞれを、第1燃料噴射装置1D1~第4燃料噴射装置1D4と称して説明する。第1燃料噴射装置1D1は、燃料噴射装置1、燃料噴射装置1A、燃料噴射装置1B、燃料噴射装置1Cのいずれかであり、且つ、燃焼室CC2-1内に燃料を噴射する燃料噴射装置である。第2燃料噴射装置1D2は、燃料噴射装置1、燃料噴射装置1A、燃料噴射装置1B、燃料噴射装置1Cのいずれかであり、且つ、燃焼室CC2-2内に燃料を噴射する燃料噴射装置である。第3燃料噴射装置1D3は、燃料噴射装置1、燃料噴射装置1A、燃料噴射装置1B、燃料噴射装置1Cのいずれかであり、且つ、燃焼室CC2-3内に燃料を噴射する燃料噴射装置である。第4燃料噴射装置1D4は、燃料噴射装置1、燃料噴射装置1A、燃料噴射装置1B、燃料噴射装置1Cのいずれかであり、且つ、燃焼室CC2-4内に燃料を噴射する燃料噴射装置である。また、以下では、説明の便宜上、第1燃料噴射装置1D1、第2燃料噴射装置1D2、第3燃料噴射装置1D3、第4燃料噴射装置1D4のそれぞれを区別する必要がない限り、燃料噴射装置1Dと称して説明する。 For convenience of explanation, the four combustion chambers CC2 are hereinafter referred to as combustion chambers CC2-1 to CC2-4. Further, in the following, for convenience of explanation, the four fuel injection devices included in the fuel injection system 10 will be referred to as a first fuel injection device 1D1 to a fourth fuel injection device 1D4. The first fuel injection device 1D1 is one of the fuel injection device 1, the fuel injection device 1A, the fuel injection device 1B, and the fuel injection device 1C, and is a fuel injection device that injects fuel into the combustion chamber CC2-1. be. The second fuel injection device 1D2 is one of the fuel injection device 1, the fuel injection device 1A, the fuel injection device 1B, and the fuel injection device 1C, and is a fuel injection device that injects fuel into the combustion chamber CC2-2. be. The third fuel injection device 1D3 is one of the fuel injection device 1, the fuel injection device 1A, the fuel injection device 1B, and the fuel injection device 1C, and is a fuel injection device that injects fuel into the combustion chamber CC2-3. be. The fourth fuel injection device 1D4 is one of the fuel injection device 1, the fuel injection device 1A, the fuel injection device 1B, and the fuel injection device 1C, and is a fuel injection device that injects fuel into the combustion chamber CC2-4. be. Further, in the following, for convenience of explanation, the fuel injection device 1D will be referred to as the first fuel injection device 1D1, the second fuel injection device 1D2, the third fuel injection device 1D3, and the fourth fuel injection device 1D4 unless it is necessary to distinguish between them. will be described.
 燃料噴射システム10では、4つの燃料噴射装置1Dの第1流路F1は、高圧源4と接続される第0流路F0に接続される。図10に示した例では、4つの燃料噴射装置1Dの第1流路F1のそれぞれは、第0流路F0と1箇所で接続している。しかしながら、4つの燃料噴射装置1Dの第1流路F1のうちの一部又は全部は、第0流路F0と互いに異なる部分で接続する構成であってもよい。 In the fuel injection system 10, the first flow paths F1 of the four fuel injection devices 1D are connected to the 0th flow path F0 connected to the high pressure source 4. In the example shown in FIG. 10, each of the first flow paths F1 of the four fuel injection devices 1D is connected to the 0th flow path F0 at one point. However, some or all of the first flow paths F1 of the four fuel injection devices 1D may be connected to the 0th flow paths F0 at different portions.
 また、燃料噴射システム10では、第2流路F2は、4つの燃料噴射装置1Dの第1流路F1のそれぞれと接続されておらず、第0流路F0と接続される。すなわち、燃料噴射システム10では、1本の第2流路F2が4つの燃料噴射装置1Dのそれぞれに共有されている。なお、図10に示した例では、第2流路F2は、部分PP3に接続されているが、第0流路F0が有する部分のうち部分PP3以外の部分に接続される構成であってもよい。 Also, in the fuel injection system 10, the second flow path F2 is not connected to each of the first flow paths F1 of the four fuel injection devices 1D, but is connected to the 0th flow path F0. That is, in the fuel injection system 10, one second flow path F2 is shared by each of the four fuel injection devices 1D. In the example shown in FIG. 10, the second flow path F2 is connected to the portion PP3. good.
 そして、燃料噴射システム10でも、第2流路F2には、第2弁V2が設けられる。そして、燃料噴射システム10でも、第2弁V2は、駆動部A2によって駆動される。 Also in the fuel injection system 10, the second flow path F2 is provided with the second valve V2. Also in the fuel injection system 10, the second valve V2 is driven by the driving portion A2.
 このように、燃料噴射システム10は、燃料を内燃機関EGの燃焼室CC2内に噴射する4つの燃料噴射装置1Dと、燃料を所定の圧力Pbによって供給する高圧源4と接続され、高圧源4から燃料が供給される第0流路F0と、第0流路F0と接続され、第0流路F0から燃料が供給される第2流路F2と、第2流路F2に設けられ、第2流路F2の開閉を行う第2弁V2と、を備える。 Thus, the fuel injection system 10 is connected to four fuel injection devices 1D for injecting fuel into the combustion chamber CC2 of the internal combustion engine EG, and a high pressure source 4 for supplying fuel at a predetermined pressure Pb. a 0th flow path F0 to which fuel is supplied from, a second flow path F2 connected to the 0th flow path F0 and to which fuel is supplied from the 0th flow path F0; and a second valve V2 for opening and closing the second flow path F2.
 これにより、燃料噴射システム10は、第2弁V2によって第0流路F0を閉じることによって発生する水撃作用により、第1流路F1内の圧力を瞬間的に所定の圧力Pbよりも高い圧力に上げることができる。従って、燃料噴射システム10は、燃料噴射システム10が備える4つの燃料噴射装置1Dのそれぞれを、実施形態、実施形態の変形例1~変形例3のそれぞれにおいて説明したように動作させることができる。その結果、燃料噴射システム10は、第2弁V2による第0流路F0の開閉によって、4つの燃料噴射装置1Dのそれぞれから、4つの燃焼室CC2それぞれの室内へ、高圧源4の圧力よりも高い圧力によって燃料の噴射を行うことができる。これは、内燃機関EGの部品点数を削減しながら、内燃機関EGの燃料の燃焼効率を向上させることに繋がるため、望ましいことである。 As a result, the fuel injection system 10 instantaneously raises the pressure in the first flow path F1 to a pressure higher than the predetermined pressure Pb by the water hammer effect generated by closing the 0th flow path F0 by the second valve V2. can be raised to Therefore, the fuel injection system 10 can operate each of the four fuel injection devices 1D provided in the fuel injection system 10 as described in each of the embodiment and Modifications 1 to 3 of the embodiment. As a result, the fuel injection system 10, by opening and closing the 0th flow path F0 by the second valve V2, from each of the four fuel injection devices 1D into each of the four combustion chambers CC2, the pressure higher than the pressure of the high pressure source 4 Fuel can be injected at high pressure. This is desirable because it leads to improvement in fuel combustion efficiency of the internal combustion engine EG while reducing the number of parts of the internal combustion engine EG.
 ここで、図11は、第2流路F2の開閉のタイミングと、4つの燃料噴射装置1Dそれぞれの噴射口Hの開閉のタイミングと、4つの第1流路F1内の圧力(すなわち、部分PP3内の圧力)の時間的な変化とのそれぞれの一例を示す図である。ここで、これら4つの第1流路F1は、4つの燃料噴射装置1Dそれぞれの第1流路F1のことである。ただし、図11では、説明を簡略化するため、4つの燃料噴射装置1Dのそれぞれが、プレ噴射、パイロット噴射等の噴射を行わず、メイン噴射のみを行う場合について説明する。 Here, FIG. 11 shows the opening/closing timing of the second flow path F2, the opening/closing timing of the injection port H of each of the four fuel injection devices 1D, and the pressure in the four first flow paths F1 (that is, the portion PP3 FIG. 10 is a diagram showing an example of temporal changes in inner pressure). Here, these four first flow paths F1 are the first flow paths F1 of the four fuel injection devices 1D. However, in FIG. 11, in order to simplify the explanation, the case where each of the four fuel injection devices 1D does not perform injection such as pre-injection, pilot injection, etc., but performs only main injection will be described.
 図11に示したグラフの横軸は、経過時間を示す。また、当該グラフの縦軸は、4つの燃料噴射装置1Dそれぞれの第1流路F1内の圧力、すなわち、部分PP3内の圧力を示す。当該グラフ内にプロットされた曲線F10は、4つの燃料噴射装置1Dのそれぞれが順に4つの燃焼室CC2内へ燃料を噴射するように4つの燃料噴射装置1Dを制御した場合における4つの第1流路F1内の圧力の時間的な変化の一例を示す。以下では、説明の便宜上、このような4つの燃料噴射装置1Dの制御を、第10制御と称して説明する。また、当該グラフには、第2流路F2の開閉のタイミングを示すタイミングチャートTC10と、第1燃料噴射装置1D1の噴射口Hの開閉のタイミングを示すタイミングチャートTC11と、第2燃料噴射装置1D2の噴射口Hの開閉のタイミングを示すタイミングチャートTC12と、第3燃料噴射装置1D3の噴射口Hの開閉のタイミングを示すタイミングチャートTC13と、第4燃料噴射装置1D4の噴射口Hの開閉のタイミングを示すタイミングチャートTC14とが重ねられている。また、図10には、内燃機関EGのピストンが1回転する期間が、「エンジン1回転」という文言が付された矢印によって示されている。 The horizontal axis of the graph shown in FIG. 11 indicates elapsed time. Also, the vertical axis of the graph indicates the pressure within the first flow path F1 of each of the four fuel injection devices 1D, that is, the pressure within the portion PP3. The curve F10 plotted in the graph represents the four first flows when the four fuel injectors 1D are controlled so that each of the four fuel injectors 1D injects fuel into the four combustion chambers CC2 in sequence. An example of the temporal change of the pressure in the path F1 is shown. Hereinafter, for convenience of explanation, such control of the four fuel injection devices 1D will be referred to as tenth control. The graph also includes a timing chart TC10 showing the opening/closing timing of the second flow path F2, a timing chart TC11 showing the opening/closing timing of the injection port H of the first fuel injection device 1D1, and a timing chart TC11 showing the opening/closing timing of the injection port H of the first fuel injection device 1D1. A timing chart TC12 showing the opening/closing timing of the injection port H of the third fuel injection device 1D3, a timing chart TC13 showing the opening/closing timing of the injection port H of the fourth fuel injection device 1D4, is superimposed with a timing chart TC14 showing . Further, in FIG. 10, the period in which the piston of the internal combustion engine EG rotates once is indicated by an arrow with the words "engine 1 rotation".
 図11に示した例では、燃料噴射システム10は、タイミングt11において駆動部A2により第2流路F2を開き始める。その結果、曲線F10が示すように、燃料噴射システム10では、4つの燃料噴射装置1Dそれぞれの第1流路F1内の圧力、すなわち、部分PP3の圧力が低下し始める。これは、タイミングt11において、部分PP3から第2流路F2へ燃料が流れ始めるからである。 In the example shown in FIG. 11, the fuel injection system 10 starts opening the second flow path F2 by the driving section A2 at timing t11. As a result, as indicated by the curve F10, in the fuel injection system 10, the pressure in the first flow path F1 of each of the four fuel injection devices 1D, that is, the pressure in the portion PP3 begins to decrease. This is because the fuel begins to flow from the portion PP3 to the second flow path F2 at timing t11.
 その後、第10制御によって制御される燃料噴射システム10では、タイミングt11から所定の第11時間が経過したタイミングt12において第2流路F2が閉じるように、駆動部A2が第2弁V2を動かし始める。その結果、当該燃料噴射システム10では、タイミングt12において、4つの燃料噴射装置1Dそれぞれの第1流路F1内の圧力が上昇し始める。 After that, in the fuel injection system 10 controlled by the tenth control, the drive unit A2 starts moving the second valve V2 so that the second flow path F2 is closed at timing t12 when a predetermined eleventh time has elapsed from timing t11. . As a result, in the fuel injection system 10, the pressure inside the first flow path F1 of each of the four fuel injection devices 1D starts to rise at timing t12.
 そして、第10制御によって制御される燃料噴射装置1では、タイミングt12以降のタイミングにおいて、部分PP3内の圧力が瞬間的に所定の圧力Pbよりも高くなる。これは、部分PP3から第2流路F2を通って排出口へ流れ出ていた燃料が第2弁V2によって堰き止められ、その結果として生じた水撃作用によって部分PP3内の圧力が瞬間的に所定の圧力Pbよりも高くなるために発生する現象である。より具体的には、部分PP3から第2流路F2を通って排出口へ流れていた燃料は、タイミングt12において、第2流路F2内において第2弁V2によって堰き止められる。堰き止められた燃料は、堰き止められる前の燃料の流速に応じて圧縮される。その結果、水撃作用が発生し、部分PP3内の圧力は、上昇し始める。 Then, in the fuel injection device 1 controlled by the tenth control, the pressure in the portion PP3 momentarily becomes higher than the predetermined pressure Pb at the timing after the timing t12. This is because the fuel flowing from the portion PP3 through the second flow path F2 to the discharge port is dammed by the second valve V2, and the resulting water hammer action instantly raises the pressure in the portion PP3 to a predetermined level. is higher than the pressure Pb of . More specifically, the fuel that has flowed from the portion PP3 through the second flow path F2 to the discharge port is dammed in the second flow path F2 by the second valve V2 at timing t12. The dammed fuel is compressed according to the flow velocity of the fuel before dammed. As a result, a water hammer action occurs and the pressure in part PP3 begins to rise.
 しかしながら、曲線F10が示すように、部分PP3内の圧力は、タイミングt12以降において、減衰振動する。このため、第10制御によって制御される燃料噴射システム10は、タイミングt13において、第1燃料噴射装置1D1の噴射口Hを開き始める。タイミングt13は、タイミングt12以降のタイミングのうち、所定の圧力Pb未満の圧力から所定の圧力Pbを超える圧力まで部分PP3内の圧力が上昇し、その後、部分PP3内の圧力が再び下降を開始するまでの間の期間内のタイミングであれば、如何なるタイミングであってもよい。図11に示した例では、タイミングt13は、タイミングt12以降のタイミングのうち、部分PP3内の圧力が所定の圧力Pb未満の圧力から所定の圧力Pbに戻ったタイミングである。 However, as indicated by the curve F10, the pressure in the portion PP3 damps and oscillates after timing t12. Therefore, the fuel injection system 10 controlled by the tenth control starts opening the injection port H of the first fuel injection device 1D1 at timing t13. At timing t13, the pressure in the portion PP3 rises from the pressure less than the predetermined pressure Pb to the pressure exceeding the predetermined pressure Pb among the timings after the timing t12, and then the pressure in the portion PP3 starts falling again. Any timing may be used as long as the timing is within the period between. In the example shown in FIG. 11, the timing t13 is the timing after the timing t12 when the pressure in the portion PP3 returns from the pressure lower than the predetermined pressure Pb to the predetermined pressure Pb.
 タイミングt12とタイミングt13との間の時間差は、例えば、事前の試験、実験等によるトライアンドエラーによって燃料の燃焼効率が所望の燃焼効率(例えば、最も高い燃焼効率等)に近づくように決められるが、理論計算に基づいて決められてもよく、シミュレーションによって決められてもよく、他の方法によって決められてもよい。このようにして決められたタイミングt13において、第1燃料噴射装置1D1の噴射口Hが開き始めるため、部分PP3内の燃料は、タイミングt13において、所定の圧力Pbよりも高い圧力によって、当該噴射口Hから燃焼室CC2-1内へ噴射され始める。 The time difference between the timing t12 and the timing t13 is determined, for example, by trial and error in advance tests, experiments, etc., so that the combustion efficiency of the fuel approaches the desired combustion efficiency (for example, the highest combustion efficiency, etc.). , may be determined based on theoretical calculation, may be determined by simulation, or may be determined by other methods. At the timing t13 thus determined, the injection port H of the first fuel injection device 1D1 begins to open, so the fuel in the portion PP3 is injected at the timing t13 by a pressure higher than the predetermined pressure Pb. H starts to be injected into the combustion chamber CC2-1.
 タイミングt13の後、第10制御によって制御される燃料噴射システム10では、タイミングt13から所定の第12時間が経過したタイミングt14において、第1燃料噴射装置1D1の噴射口Hが閉じるように、第1燃料噴射装置1D1の駆動部A1が第1燃料噴射装置1D1の第1弁V1を動かし始める。そして、タイミングt14において、当該燃料噴射システム10では、当該第1弁V1が当該噴射口Hを閉じる。 After timing t13, in the fuel injection system 10 controlled by the tenth control, at timing t14 when a predetermined twelfth time has elapsed from timing t13, the first injection device 1D1 closes the injection port H. The driving part A1 of the fuel injector 1D1 starts to move the first valve V1 of the first fuel injector 1D1. Then, at timing t14, in the fuel injection system 10, the first valve V1 closes the injection port H.
 タイミングt14の後、第10制御によって制御される燃料噴射システム10は、第1燃料噴射装置1D1による燃料の次の噴射を行い始めるまで、第1燃料噴射装置1D1の噴射口Hを閉じたまま待機する。また、当該燃料噴射システム10では、タイミングt14から所定の第13時間が経過したタイミングt15において、駆動部A2により第2流路F2を再び開き始める。その結果、曲線F10が示すように、燃料噴射システム10では、4つの燃料噴射装置1Dそれぞれの第1流路F1内の圧力、すなわち、部分PP3の圧力が低下し始める。ここで、第13時間は、水撃作用によるタイミングt2からの部分PP3内の圧力の振動が収まったタイミング以降のタイミングがタイミングt15となるように決められる。 After timing t14, the fuel injection system 10 controlled by the tenth control waits with the injection port H of the first fuel injection device 1D1 closed until the next fuel injection by the first fuel injection device 1D1 is started. do. Further, in the fuel injection system 10, at timing t15 when a predetermined thirteenth time has elapsed from timing t14, the second flow path F2 is started to open again by the driving portion A2. As a result, as indicated by the curve F10, in the fuel injection system 10, the pressure in the first flow path F1 of each of the four fuel injection devices 1D, that is, the pressure in the portion PP3 begins to decrease. Here, the thirteenth time is determined so that the timing after the timing at which the pressure oscillation in the portion PP3 from timing t2 due to the water hammer action subsides is timing t15.
 第10制御によって制御される燃料噴射システム10は、このような燃料の噴射を、4つの燃料噴射装置1Dのそれぞれに、予め決められた順で繰り返し行わせる。すなわち、タイミングt15、タイミングt19、タイミングt23、タイミングt27、タイミングt31、タイミングt35のそれぞれは、このような繰り返しの燃料の噴射において第2流路F2が開き始めるタイミングを示す。また、タイミングt16、タイミングt20、タイミングt24、タイミングt28、タイミングt32、タイミングt36のそれぞれは、このような繰り返しの燃料の噴射において第2流路F2が閉じたタイミングを示す。また、タイミングt17は、このような繰り返しの燃料の噴射において第3燃料噴射装置1D3の噴射口Hが開き始めたタイミングを示す。また、タイミングt18は、このような繰り返しの燃料の噴射において第3燃料噴射装置1D3の噴射口Hが閉じたタイミングを示す。また、タイミングt21は、このような繰り返しの燃料の噴射において第4燃料噴射装置1D4の噴射口Hが開き始めたタイミングを示す。また、タイミングt22は、このような繰り返しの燃料の噴射において第4燃料噴射装置1D4の噴射口Hが閉じたタイミングを示す。また、タイミングt25は、このような繰り返しの燃料の噴射において第2燃料噴射装置1D2の噴射口Hが開き始めたタイミングを示す。また、タイミングt26は、このような繰り返しの燃料の噴射において第2燃料噴射装置1D2の噴射口Hが閉じたタイミングを示す。また、タイミングt29は、このような繰り返しの燃料の噴射において第1燃料噴射装置1D1の噴射口Hが再び開き始めたタイミングを示す。また、タイミングt30は、このような繰り返しの燃料の噴射において第1燃料噴射装置1D1の噴射口Hが閉じたタイミングを示す。また、タイミングt33は、このような繰り返しの燃料の噴射において第3燃料噴射装置1D3の噴射口Hが再び開き始めたタイミングを示す。また、タイミングt34は、このような繰り返しの燃料の噴射において第3燃料噴射装置1D3の噴射口Hが閉じたタイミングを示す。また、タイミングt37は、このような繰り返しの燃料の噴射において第4燃料噴射装置1D4の噴射口Hが再び開き始めたタイミングを示す。また、タイミングt38は、このような繰り返しの燃料の噴射において第4燃料噴射装置1D4の噴射口Hが閉じたタイミングを示す。 The fuel injection system 10 controlled by the tenth control causes each of the four fuel injection devices 1D to repeatedly perform such fuel injection in a predetermined order. That is, each of timing t15, timing t19, timing t23, timing t27, timing t31, and timing t35 indicates the timing at which the second flow path F2 starts opening in such repeated fuel injection. Timing t16, timing t20, timing t24, timing t28, timing t32, and timing t36 each indicate the timing at which the second flow path F2 closes in such repeated fuel injection. Timing t17 indicates the timing at which the injection port H of the third fuel injection device 1D3 begins to open in such repeated fuel injection. Timing t18 indicates the timing at which the injection port H of the third fuel injection device 1D3 is closed during such repeated fuel injection. Timing t21 indicates the timing at which the injection port H of the fourth fuel injection device 1D4 begins to open during such repeated fuel injection. Timing t22 indicates the timing at which the injection port H of the fourth fuel injection device 1D4 is closed during such repeated fuel injection. Timing t25 indicates the timing at which the injection port H of the second fuel injection device 1D2 begins to open in such repeated fuel injection. Timing t26 indicates the timing at which the injection port H of the second fuel injection device 1D2 is closed during such repeated fuel injection. Timing t29 indicates the timing at which the injection port H of the first fuel injection device 1D1 begins to open again in such repeated fuel injection. Timing t30 indicates the timing at which the injection port H of the first fuel injection device 1D1 is closed during such repeated fuel injection. Timing t33 indicates the timing at which the injection port H of the third fuel injection device 1D3 begins to open again in such repeated fuel injection. Timing t34 indicates the timing at which the injection port H of the third fuel injection device 1D3 is closed during such repeated fuel injection. Timing t37 indicates the timing at which the injection port H of the fourth fuel injection device 1D4 begins to open again in such repeated fuel injection. Timing t38 indicates the timing at which the injection port H of the fourth fuel injection device 1D4 is closed during such repeated fuel injection.
 燃料噴射システム10は、各燃焼室CC2へのこのような繰り返しの燃料の噴射を4つの燃料噴射装置1Dのそれぞれに繰り返し行わせることにより、内燃機関EGのピストンを回転させる。これにより、燃料噴射システム10は、各燃焼室CC2への燃料の噴射毎に、所定の圧力Pbよりも高い圧力で燃料の噴射を行うことができる。ただし、燃料噴射システム10は、4つの燃料噴射装置1D毎に第2弁V2を備えているわけではなく、1つの共通の第2弁V2を備え、この1つの第2弁V2によって水撃作用を起こしている。このため、燃料噴射システム10は、内燃機関EGの部品点数を削減しながら、内燃機関EGの燃料の燃焼効率を向上させることができる。換言すると、燃料噴射システム10は、製造コストを抑制することができる。 The fuel injection system 10 rotates the piston of the internal combustion engine EG by causing each of the four fuel injection devices 1D to repeatedly inject fuel into each combustion chamber CC2. As a result, the fuel injection system 10 can inject fuel at a pressure higher than the predetermined pressure Pb each time fuel is injected into each combustion chamber CC2. However, the fuel injection system 10 does not have a second valve V2 for each of the four fuel injection devices 1D, but has one common second valve V2. is causing Therefore, the fuel injection system 10 can improve the fuel combustion efficiency of the internal combustion engine EG while reducing the number of parts of the internal combustion engine EG. In other words, the fuel injection system 10 can reduce manufacturing costs.
 なお、上記において説明したECU3は、記憶部32に予め記憶されたタイミングに応じて、第1弁V1~第3弁V3の開閉を行う。ユーザーは、記憶部32に予めユーザーが所望するタイミングを記憶させることにより、燃料噴射装置1にユーザーが所望するタイミングにおいて第1弁V1~第3弁V3それぞれの開閉を行わせる。ここで、記憶部32に予め記憶されたタイミングは、時刻によって表されてもよく、基準となる時間からの経過時間によって表されてもよく、他の既知の方法によって表されてもよく、これから開発される方法によって表されてもよい。 The ECU 3 described above opens and closes the first to third valves V1 to V3 in accordance with the timings stored in the storage unit 32 in advance. A user causes the fuel injection device 1 to open and close each of the first to third valves V1 to V3 at the user's desired timing by pre-storing the user's desired timing in the storage unit 32 . Here, the timing pre-stored in the storage unit 32 may be represented by time, may be represented by elapsed time from a reference time, or may be represented by another known method. It may be represented by a developed method.
 以上説明したように、実施形態に係る燃料噴射装置(上記において説明した例では、燃料噴射装置1、燃料噴射装置1A)は、燃料を内燃機関(上記において説明した例では、内燃機関EG)の燃焼室(上記において説明した例では、燃焼室CC内)内に噴射する燃料噴射装置であって、燃料を燃焼室内に噴射する噴射口(上記において説明した例では、噴射口H)と、燃料を所定の圧力(上記において説明した例では、所定の圧力Pb)によって供給する高圧源(上記において説明した例では、高圧源4)と噴射口とを接続し、高圧源から燃料が供給される第1流路(上記において説明した例では、第1流路F1)と、第1流路に設けられ、噴射口の開閉を行う第1弁(上記において説明した例では、第1弁V1)と、第1流路に接続され、第1流路から燃料が供給される第2流路(上記において説明した例では、第2流路F2)と、第2流路に設けられ、第2流路の開閉を行う第2弁(上記において説明した例では、第2弁V2)と、を備える。これにより、燃料噴射装置は、高圧源の圧力よりも高い圧力によって燃料の噴射を行うことができる。 As described above, the fuel injection device according to the embodiment (the fuel injection device 1 and the fuel injection device 1A in the examples described above) supplies fuel to the internal combustion engine (the internal combustion engine EG in the example described above). A fuel injection device that injects into a combustion chamber (inside the combustion chamber CC in the example described above), and includes an injection port (injection port H in the example described above) that injects fuel into the combustion chamber, and fuel is supplied at a predetermined pressure (predetermined pressure Pb in the example described above) and a high pressure source (high pressure source 4 in the example described above) is connected to the injection port, and fuel is supplied from the high pressure source A first flow path (first flow path F1 in the example described above), and a first valve (first valve V1 in the example described above) provided in the first flow path for opening and closing the injection port. and a second flow path connected to the first flow path and supplied with fuel from the first flow path (in the example described above, the second flow path F2); and a second valve (in the example described above, the second valve V2) that opens and closes the flow path. This allows the fuel injector to inject fuel at a pressure higher than the pressure of the high pressure source.
 また、燃料噴射装置は、第1弁に噴射口の開閉を行わせる第1駆動部(上記において説明した例では、駆動部A1)と、第2弁に第2流路の開閉を行わせる第2駆動部(上記において説明した例では、駆動部A2)と、第1駆動部と第2駆動部とを制御する制御部(上記において説明した例では、ECU3、制御部36)と、を更に備える、構成が用いられてもよい。 Further, the fuel injection device includes a first drive section (drive section A1 in the example described above) that causes the first valve to open and close the injection port, and a second drive section that causes the second valve to open and close the second flow path. 2 drive units (drive unit A2 in the example described above) and a control unit (ECU 3 and control unit 36 in the example described above) that controls the first drive unit and the second drive unit A configuration may be used.
 また、燃料噴射装置では、制御部は、第1駆動部及び第2駆動部を制御し、燃料を噴射口から燃焼室へ噴射させる第1噴射処理を行い、第1噴射処理には、第1弁が噴射口を閉じている状態で第2弁により第2流路を開く第1ステップと、第1ステップにより第2弁が第2流路を開いてから所定の時間が経過した後、第2弁により第2流路を閉じる第2ステップと、第2ステップにより第2弁が第2流路を閉じたタイミング以降のタイミングにおいて第1弁により噴射口を開く第3ステップと、が含まれている、構成が用いられてもよい。 Further, in the fuel injection device, the control unit controls the first drive unit and the second drive unit to perform the first injection process of injecting the fuel from the injection port into the combustion chamber. a first step of opening the second flow passage by the second valve while the valve is closing the injection port; a second step of closing the second flow path by the two valves; and a third step of opening the injection port by the first valve at a timing after the second valve closes the second flow path in the second step. Any configuration may be used.
 また、燃料噴射装置は、燃料を内燃機関の燃焼室内に噴射する燃料噴射装置であって、燃料を燃焼室内に噴射する噴射口と、燃料を所定の圧力によって供給する高圧源と噴射口とを接続し、高圧源から燃料が供給される第1流路と、第1流路に設けられ、噴射口の開閉を行う第1弁と、第1流路に接続され、第1流路から燃料が供給される第2流路と、第2流路に設けられ、第2流路の開閉を行う第2弁と、第1流路に設けられ、第1流路が有する部分のうち第1流路において第1弁よりも上流側に位置する部分であり、且つ、第1流路が有する部分のうち第1流路において第1流路と第2流路との接続部分よりも下流側に位置する部分の開閉を行う第3弁(上記において説明した例では、第3弁V3)と、を備え、第1流路には、第1弁が噴射口を閉じた状態であり、且つ、第3弁が前記第1流路を閉じた状態である場合、燃料が保持される空間(上記において説明した例では、空間S)が形成される。これにより、燃料噴射装置は、高圧源の圧力よりも高い圧力によって燃料の噴射を行うことができる。 A fuel injection device is a fuel injection device for injecting fuel into a combustion chamber of an internal combustion engine, and includes an injection port for injecting fuel into the combustion chamber, a high-pressure source for supplying fuel at a predetermined pressure, and an injection port. A first flow path to which fuel is supplied from a high-pressure source, a first valve provided in the first flow path for opening and closing the injection port, and a first valve connected to the first flow path to supply fuel from the first flow path. a second flow path to which is supplied; a second valve provided in the second flow path for opening and closing the second flow path; A portion located upstream of the first valve in the flow path and downstream of a connection portion between the first flow path and the second flow path in the first flow path among the portions of the first flow path. a third valve (in the example described above, the third valve V3) that opens and closes the portion located in the first flow path, the first valve is in a state where the injection port is closed, and , when the third valve closes the first flow path, a space (space S in the example described above) in which fuel is held is formed. This allows the fuel injector to inject fuel at a pressure higher than the pressure of the high pressure source.
 また、燃料噴射装置は、第1弁に噴射口の開閉を行わせる第1駆動部と、第2弁に第2流路の開閉を行わせる第2駆動部と、第3弁に第1流路の開閉を行わせる第3駆動部(上記において説明した例では、駆動部A3)と、第1駆動部と第2駆動部と第3駆動部とを制御する制御部(上記において説明した例では、ECU3、制御部36)と、を更に備える、構成が用いられてもよい。 In addition, the fuel injection device includes a first drive section that causes the first valve to open and close the injection port, a second drive section that causes the second valve to open and close the second flow path, and a third valve that causes the first flow path to open and close. A third drive section (drive section A3 in the example described above) that opens and closes the path, and a control section (the example described above) that controls the first drive section, the second drive section, and the third drive section. Then, a configuration further including the ECU 3 and the control unit 36) may be used.
 また、燃料噴射装置では、制御部は、第1駆動部、第2駆動部、第3駆動部を制御し、燃料を噴射口から燃焼室へ噴射させる第2噴射処理を行い、第2噴射処理には、第3弁が第1流路を閉じている状態で第2弁により第2流路を開く第11ステップと、第11ステップにより第2弁が第2流路を開いてから所定の第1時間が経過した後、第2弁により第2流路を閉じる第12ステップと、第12ステップにより第2弁が第2流路を閉じたタイミング以降のタイミングにおいて第3弁により第1流路を開く第13ステップと、第13ステップにより第3弁が第1流路を開いてから所定の第2時間が経過した後、第3弁により第1流路を閉じる第14ステップと、第13ステップにより第3弁が第1流路を開いてから、第14ステップにより第3弁が第1流路を閉じるまでの間において、第1弁により噴射口を開く第15ステップと、が含まれている、構成が用いられてもよい。 Further, in the fuel injection device, the control unit controls the first drive unit, the second drive unit, and the third drive unit, performs the second injection process of injecting the fuel from the injection port into the combustion chamber, and performs the second injection process. includes an eleventh step in which the second valve opens the second flow path while the third valve closes the first flow path, and a predetermined After the first time has passed, a twelfth step of closing the second flow path by the second valve; a thirteenth step of opening the passageway; a fourteenth step of closing the first passageway by the third valve after a predetermined second time elapses after the third valve opens the first passageway in the thirteenth step; and a fifteenth step of opening the injection port by the first valve during a period from the time when the third valve opens the first flow path in step 13 to the time when the third valve closes the first flow path in step 14. configuration may be used.
 また、実施形態に係る燃料噴射システム(上記において説明した例では、燃料噴射システム10)は、燃料を内燃機関の燃焼室内に噴射する第1燃料噴射装置(上記において説明した例では、燃料噴射装置1、燃料噴射装置1A、燃料噴射装置1B、燃料噴射装置1C)と、燃料を燃焼室内に噴射する第2燃料噴射装置(上記において説明した例では、燃料噴射装置1、燃料噴射装置1A、燃料噴射装置1B、燃料噴射装置1C)と、燃料を所定の圧力によって供給する高圧源と接続され、高圧源から燃料が供給される第0流路(上記において説明した例では、第0流路F0)と、第0流路と接続され、第0流路から燃料が供給される第2流路と、第2流路に設けられ、第2流路の開閉を行う第2弁と、を備え、第1燃料噴射装置は、燃料を燃焼室内に噴射する第11噴射口(上記において説明した例では、噴射口H)と、第0流路と第11噴射口とを接続し、高圧源から燃料が供給される第11流路(上記において説明した例では、第1流路F1)と、第11流路に設けられ、第11噴射口の開閉を行う第11弁(上記において説明した例では、第1弁V1)と、を備え、第2燃料噴射装置は、燃料を燃焼室内に噴射する第21噴射口(上記において説明した例では、噴射口H)と、第0流路と第21噴射口とを接続し、高圧源から燃料が供給される第21流路(上記において説明した例では、第1流路F1)と、第21流路に設けられ、第21噴射口の開閉を行う第21弁(上記において説明した例では、第1弁V1)と、を備える。これにより、燃料噴射システムは、高圧源4の圧力よりも高い圧力によって燃料の噴射を行うことができる。 Further, the fuel injection system according to the embodiment (the fuel injection system 10 in the example described above) includes a first fuel injection device (the fuel injection device in the example described above) that injects fuel into the combustion chamber of the internal combustion engine. 1, fuel injection device 1A, fuel injection device 1B, fuel injection device 1C) and a second fuel injection device that injects fuel into the combustion chamber (in the example described above, fuel injection device 1, fuel injection device 1A, fuel Injection device 1B, fuel injection device 1C) is connected to a high-pressure source that supplies fuel at a predetermined pressure, and the 0th flow path to which fuel is supplied from the high-pressure source (in the example described above, the 0th flow path F0 ), a second flow path connected to the 0th flow path and supplied with fuel from the 0th flow path, and a second valve provided in the second flow path for opening and closing the second flow path. , the first fuel injection device connects the 11th injection port (the injection port H in the example described above) for injecting fuel into the combustion chamber, the 0th flow path and the 11th injection port, and supplies fuel from the high pressure source. An eleventh flow path (the first flow path F1 in the example described above) to which fuel is supplied, and an eleventh valve (the example described above) that is provided in the eleventh flow path and opens and closes the eleventh injection port. The second fuel injection device includes a 21st injection port (in the example described above, the injection port H) for injecting fuel into the combustion chamber, a 0th flow path and a 1st valve V1). A 21st flow path (the first flow path F1 in the example described above) connected to the 21st injection port and supplied with fuel from a high pressure source, and a 21st flow path provided in the 21st flow path for opening and closing the 21st injection port. and a twenty-first valve (in the example described above, the first valve V1). This allows the fuel injection system to inject fuel at a pressure higher than the pressure of the high pressure source 4 .
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない限り、変更、置換、削除等されてもよい。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. may be
 また、以上に説明した装置(例えば、ECU3)における任意の構成部の機能を実現するためのプログラムを、コンピューター読み取り可能な記録媒体に記録し、そのプログラムをコンピューターシステムに読み込ませて実行するようにしてもよい。なお、ここでいう「コンピューターシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。また、「コンピューター読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD(Compact Disk)-ROM等の可搬媒体、コンピューターシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピューター読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバーやクライアントとなるコンピューターシステム内部の揮発性メモリー(RAM)のように、一定時間プログラムを保持しているものも含むものとする。 Also, a program for realizing the function of any component in the above-described device (e.g., ECU 3) is recorded on a computer-readable recording medium, and the program is read and executed by a computer system. may The term "computer system" as used herein includes hardware such as an OS (Operating System) and peripheral devices. In addition, "computer-readable recording medium" refers to portable media such as flexible disks, magneto-optical disks, ROM, CD (Compact Disk)-ROM, etc., and storage devices such as hard disks built into computer systems. . In addition, "computer-readable recording medium" means a volatile memory (RAM) inside a computer system that acts as a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. , includes those that hold the program for a certain period of time.
 また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピューターシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピューターシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
 また、上記のプログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、上記のプログラムは、前述した機能をコンピューターシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
Moreover, the above program may be transmitted from a computer system storing this program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in a transmission medium. Here, the "transmission medium" for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
Also, the above program may be for realizing part of the functions described above. Furthermore, the above program may be a so-called difference file (difference program) that can realize the functions described above in combination with a program already recorded in the computer system.
1、1A、1B、1C…燃料噴射装置、2…燃料インジェクター、4…高圧源、10…燃料噴射システム、32…記憶部、33…第1弁駆動回路、34…第2弁駆動回路、35…第3弁駆動回路、36…制御部、A1、A2、A3…駆動部、CC…燃焼室、EG…内燃機関、F0…第0流路、F1…第1流路、F2…第2流路、H…噴射口、S…空間、V1…第1弁、V2…第2弁、V3…第3弁 REFERENCE SIGNS LIST 1, 1A, 1B, 1C... fuel injection device, 2... fuel injector, 4... high pressure source, 10... fuel injection system, 32... storage unit, 33... first valve drive circuit, 34... second valve drive circuit, 35 Third valve drive circuit 36 Control section A1, A2, A3 Drive section CC Combustion chamber EG Internal combustion engine F0 0th flow path F1 1st flow path F2 2nd flow Path, H... injection port, S... space, V1... first valve, V2... second valve, V3... third valve

Claims (9)

  1.  燃料を内燃機関の燃焼室内に噴射する燃料噴射装置であって、
     前記燃料を前記燃焼室内に噴射する噴射口と、
     前記燃料を所定の圧力によって供給する高圧源と前記噴射口とを接続し、前記高圧源から前記燃料が供給される第1流路と、
     前記第1流路に設けられ、前記噴射口の開閉を行う第1弁と、
     前記第1流路に接続され、前記第1流路から前記燃料が供給される第2流路と、
     前記第2流路に設けられ、前記第2流路の開閉を行う第2弁と、
     を備える燃料噴射装置。
    A fuel injection device for injecting fuel into a combustion chamber of an internal combustion engine,
    an injection port for injecting the fuel into the combustion chamber;
    a first flow path that connects a high-pressure source that supplies the fuel at a predetermined pressure to the injection port, and that supplies the fuel from the high-pressure source;
    a first valve provided in the first flow path for opening and closing the injection port;
    a second flow path connected to the first flow path and supplied with the fuel from the first flow path;
    a second valve provided in the second flow path for opening and closing the second flow path;
    A fuel injector with a
  2.  前記第1弁に前記噴射口の開閉を行わせる第1駆動部と、
     前記第2弁に前記第2流路の開閉を行わせる第2駆動部と、
     前記第1駆動部と前記第2駆動部とを制御する制御部と、
     を更に備える請求項1に記載の燃料噴射装置。
    a first driving unit that causes the first valve to open and close the injection port;
    a second drive unit that causes the second valve to open and close the second flow path;
    a control unit that controls the first driving unit and the second driving unit;
    2. The fuel injector of claim 1, further comprising:
  3.  前記制御部は、前記第1駆動部及び前記第2駆動部を制御し、前記燃料を前記噴射口から前記燃焼室へ噴射させる第1噴射処理を行い、
     前記第1噴射処理には、
     前記第1弁が前記噴射口を閉じている状態で前記第2弁により前記第2流路を開く第1ステップと、
     前記第1ステップにより前記第2弁が前記第2流路を開いてから所定の時間が経過した後、前記第2弁により前記第2流路を閉じる第2ステップと、
     前記第2ステップにより前記第2弁が前記第2流路を閉じたタイミング以降のタイミングにおいて前記第1弁により前記噴射口を開く第3ステップと、
     が含まれている、
     請求項2に記載の燃料噴射装置。
    The control unit controls the first drive unit and the second drive unit to perform a first injection process of injecting the fuel from the injection port into the combustion chamber,
    In the first injection process,
    a first step of opening the second flow path with the second valve in a state where the first valve closes the injection port;
    a second step of closing the second flow path by the second valve after a predetermined time has elapsed since the second valve opened the second flow path in the first step;
    a third step of opening the injection port by the first valve at a timing after the second valve closes the second flow path in the second step;
    It is included,
    3. A fuel injection system according to claim 2.
  4.  燃料を内燃機関の燃焼室内に噴射する燃料噴射装置であって、
     前記燃料を前記燃焼室内に噴射する噴射口と、
     前記燃料を所定の圧力によって供給する高圧源と前記噴射口とを接続し、前記高圧源から前記燃料が供給される第1流路と、
     前記第1流路に設けられ、前記噴射口の開閉を行う第1弁と、
     前記第1流路に接続され、前記第1流路から前記燃料が供給される第2流路と、
     前記第2流路に設けられ、前記第2流路の開閉を行う第2弁と、
     前記第1流路が有する部分のうち前記第1流路において前記第1弁よりも上流側に位置する部分であり、且つ、前記第1流路が有する部分のうち前記第1流路において前記第1流路と前記第2流路との接続部分よりも下流側に位置する部分に設けられ、前記第1流路の開閉を行う第3弁と、
     を備え、
     前記第1流路には、前記第1弁が前記噴射口を閉じた状態であり、且つ、前記第3弁が前記第1流路を閉じた状態である場合、前記燃料が保持される空間が形成される、
     燃料噴射装置。
    A fuel injection device for injecting fuel into a combustion chamber of an internal combustion engine,
    an injection port for injecting the fuel into the combustion chamber;
    a first flow path that connects a high-pressure source that supplies the fuel at a predetermined pressure to the injection port, and that supplies the fuel from the high-pressure source;
    a first valve provided in the first flow path for opening and closing the injection port;
    a second flow path connected to the first flow path and supplied with the fuel from the first flow path;
    a second valve provided in the second flow path for opening and closing the second flow path;
    A portion of the portion of the first flow path that is positioned upstream of the first valve in the first flow path, and of the portion of the first flow path, the a third valve provided at a portion located downstream of a connection portion between the first flow path and the second flow path, the valve opening and closing the first flow path;
    with
    A space in which the fuel is held in the first flow path when the first valve closes the injection port and the third valve closes the first flow path. is formed,
    fuel injector.
  5.  前記第1弁に前記噴射口の開閉を行わせる第1駆動部と、
     前記第2弁に前記第2流路の開閉を行わせる第2駆動部と、
     前記第3弁に前記第1流路の開閉を行わせる第3駆動部と、
     前記第1駆動部と前記第2駆動部と前記第3駆動部とを制御する制御部と、
     を更に備える請求項4に記載の燃料噴射装置。
    a first driving unit that causes the first valve to open and close the injection port;
    a second drive unit that causes the second valve to open and close the second flow path;
    a third drive unit that causes the third valve to open and close the first flow path;
    a control unit that controls the first driving unit, the second driving unit, and the third driving unit;
    5. The fuel injector of claim 4, further comprising:
  6.  前記制御部は、前記第1駆動部、前記第2駆動部、前記第3駆動部を制御し、前記燃料を前記噴射口から前記燃焼室へ噴射させる第2噴射処理を行い、
     前記第2噴射処理には、
     前記第3弁が前記第1流路を閉じている状態で前記第2弁により前記第2流路を開く第11ステップと、
     前記第11ステップにより前記第2弁が前記第2流路を開いてから所定の第1時間が経過した後、前記第2弁により前記第2流路を閉じる第12ステップと、
     前記第12ステップにより前記第2弁が前記第2流路を閉じたタイミング以降のタイミングにおいて前記第3弁により前記第1流路を開く第13ステップと、
     前記第13ステップにより前記第3弁が前記第1流路を開いてから所定の第2時間が経過した後、前記第3弁により前記第1流路を閉じる第14ステップと、
     前記第13ステップにより前記第3弁が前記第1流路を開いてから、前記第14ステップにより前記第3弁が前記第1流路を閉じるまでの間において、前記第1弁により前記噴射口を開く第15ステップと、
     が含まれている、
     請求項5に記載の燃料噴射装置。
    The control unit controls the first driving unit, the second driving unit, and the third driving unit, and performs a second injection process of injecting the fuel from the injection port into the combustion chamber,
    In the second injection process,
    an eleventh step of opening the second flow path with the second valve in a state where the third valve closes the first flow path;
    a twelfth step of closing the second flow path by the second valve after a predetermined first time has elapsed since the second valve opened the second flow path in the eleventh step;
    a thirteenth step of opening the first flow path by the third valve at a timing after the second valve closes the second flow path in the twelfth step;
    a fourteenth step of closing the first flow path by the third valve after a predetermined second time has elapsed since the third valve opened the first flow path in the thirteenth step;
    During the period from when the third valve opens the first flow path in the thirteenth step to when the third valve closes the first flow path in the fourteenth step, the injection port is a fifteenth step of opening
    It is included,
    6. A fuel injection system according to claim 5.
  7.  燃料を内燃機関が有する複数の燃焼室のうちの第1燃焼室内に噴射する第1燃料噴射装置と、
     前記燃料を前記複数の燃焼室のうちの第2燃焼室内に噴射する第2燃料噴射装置と、 前記燃料を所定の圧力によって供給する高圧源と接続され、前記高圧源から前記燃料が供給される第0流路と、
     前記第0流路と接続され、前記第0流路から燃料が供給される第2流路と、
     前記第2流路に設けられ、前記第2流路の開閉を行う第2弁と、
     を備え、
     前記第1燃料噴射装置は、
     前記燃料を前記第1燃焼室内に噴射する第11噴射口と、
     前記第0流路と前記第11噴射口とを接続し、前記高圧源から前記燃料が供給される第11流路と、
     前記第11流路に設けられ、前記第11噴射口の開閉を行う第11弁と、
     を備え、
     前記第2燃料噴射装置は、
     前記燃料を前記第2燃焼室内に噴射する第21噴射口と、
     前記第0流路と前記第21噴射口とを接続し、前記高圧源から前記燃料が供給される第21流路と、
     前記第21流路に設けられ、前記第21噴射口の開閉を行う第21弁と、
     を備える、
     燃料噴射システム。
    a first fuel injection device that injects fuel into a first combustion chamber of a plurality of combustion chambers of an internal combustion engine;
    a second fuel injection device for injecting the fuel into a second one of the plurality of combustion chambers; and a high-pressure source for supplying the fuel at a predetermined pressure, and the fuel is supplied from the high-pressure source. a 0th flow path;
    a second flow path connected to the 0 flow path and supplied with fuel from the 0 flow path;
    a second valve provided in the second flow path for opening and closing the second flow path;
    with
    The first fuel injection device,
    an eleventh injection port that injects the fuel into the first combustion chamber;
    an 11th flow path connecting the 0th flow path and the 11th injection port and supplied with the fuel from the high pressure source;
    an eleventh valve provided in the eleventh flow path for opening and closing the eleventh injection port;
    with
    The second fuel injection device,
    a twenty-first injection port that injects the fuel into the second combustion chamber;
    a 21st flow path connecting the 0th flow path and the 21st injection port and supplied with the fuel from the high pressure source;
    a 21st valve provided in the 21st flow path for opening and closing the 21st injection port;
    comprising
    fuel injection system.
  8.  燃料を内燃機関の燃焼室内に噴射する燃料噴射装置の制御方法であって、
     前記燃料噴射装置は、
     前記燃料を前記燃焼室内に噴射する噴射口と、
     前記燃料を所定の圧力によって供給する高圧源と前記噴射口とを接続し、前記高圧源から前記燃料が供給される第1流路と、
     前記第1流路に設けられ、前記噴射口の開閉を行う第1弁と、
     前記第1弁に前記噴射口の開閉を行わせる第1駆動部と、
     前記第1流路に接続され、前記第1流路から前記燃料が供給される第2流路と、
     前記第2流路に設けられ、前記第2流路の開閉を行う第2弁と、
     前記第2弁に前記第2流路の開閉を行わせる第2駆動部と、
     を備え、
     前記制御方法は、
     前記第1弁が前記噴射口を閉じている状態で前記第2弁により前記第2流路を開く第1ステップと、
     前記第1ステップにより前記第2弁が前記第2流路を開いてから所定の時間が経過した後、前記第2弁により前記第2流路を閉じる第2ステップと、
     前記第2ステップにより前記第2弁が前記第2流路を閉じたタイミング以降のタイミングにおいて前記第1弁により前記噴射口を開く第3ステップと、
     を有する、
     制御方法。
    A control method for a fuel injection device that injects fuel into a combustion chamber of an internal combustion engine,
    The fuel injection device
    an injection port for injecting the fuel into the combustion chamber;
    a first flow path that connects a high-pressure source that supplies the fuel at a predetermined pressure to the injection port, and that supplies the fuel from the high-pressure source;
    a first valve provided in the first flow path for opening and closing the injection port;
    a first driving unit that causes the first valve to open and close the injection port;
    a second flow path connected to the first flow path and supplied with the fuel from the first flow path;
    a second valve provided in the second flow path for opening and closing the second flow path;
    a second drive unit that causes the second valve to open and close the second flow path;
    with
    The control method is
    a first step of opening the second flow path with the second valve in a state where the first valve closes the injection port;
    a second step of closing the second flow path by the second valve after a predetermined time has elapsed since the second valve opened the second flow path in the first step;
    a third step of opening the injection port by the first valve at a timing after the second valve closes the second flow path in the second step;
    having
    control method.
  9.  燃料を内燃機関の燃焼室内に噴射する燃料噴射装置の制御方法であって、
     前記燃料噴射装置は、
     前記燃料を前記燃焼室内に噴射する噴射口と、
     前記燃料を所定の圧力によって供給する高圧源と前記噴射口とを接続し、前記高圧源から前記燃料が供給される第1流路と、
     前記第1流路に設けられ、前記噴射口の開閉を行う第1弁と、
     前記第1弁に前記噴射口の開閉を行わせる第1駆動部と、
     前記第1流路に接続され、前記第1流路から前記燃料が供給される第2流路と、
     前記第2流路に設けられ、前記第2流路の開閉を行う第2弁と、
     前記第2弁に前記第2流路の開閉を行わせる第2駆動部と、
     前記第1流路が有する部分のうち前記第1流路において前記第1弁よりも上流側に位置する部分であり、且つ、前記第1流路が有する部分のうち前記第1流路において前記第1流路と前記第2流路との接続部分よりも下流側に位置する部分に設けられ、前記第1流路の開閉を行う第3弁と、
     前記第3弁に前記第1流路の開閉を行わせる第3駆動部と、
     を備え、
     前記第1流路には、前記第1弁が前記噴射口を閉じた状態であり、且つ、前記第3弁が前記第1流路を閉じた状態である場合、前記燃料が保持される空間が形成され、
     前記制御方法は、
     前記第3弁が前記第1流路を閉じている状態で前記第2弁により前記第2流路を開く第11ステップと、
     前記第11ステップにより前記第2弁が前記第2流路を開いてから所定の第1時間が経過した後、前記第2弁により前記第2流路を閉じる第12ステップと、
     前記第12ステップにより前記第2弁が前記第2流路を閉じたタイミング以降のタイミングにおいて前記第3弁により前記第1流路を開く第13ステップと、
     前記第13ステップにより前記第3弁が前記第1流路を開いてから所定の第2時間が経過した後、前記第3弁により前記第1流路を閉じる第14ステップと、
     前記第13ステップにより前記第3弁が前記第1流路を開いてから、前記第14ステップにより前記第3弁が前記第1流路を閉じるまでの間において、前記第1弁により前記噴射口を開く第15ステップと、
     を有する、
     制御方法。
    A control method for a fuel injection device that injects fuel into a combustion chamber of an internal combustion engine,
    The fuel injection device
    an injection port for injecting the fuel into the combustion chamber;
    a first flow path that connects a high-pressure source that supplies the fuel at a predetermined pressure to the injection port, and that supplies the fuel from the high-pressure source;
    a first valve provided in the first flow path for opening and closing the injection port;
    a first driving unit that causes the first valve to open and close the injection port;
    a second flow path connected to the first flow path and supplied with the fuel from the first flow path;
    a second valve provided in the second flow path for opening and closing the second flow path;
    a second drive unit that causes the second valve to open and close the second flow path;
    A portion of the portion of the first flow path that is positioned upstream of the first valve in the first flow path, and of the portion of the first flow path, the a third valve provided at a portion located downstream of a connection portion between the first flow path and the second flow path, the valve opening and closing the first flow path;
    a third drive unit that causes the third valve to open and close the first flow path;
    with
    A space in which the fuel is held in the first flow path when the first valve closes the injection port and the third valve closes the first flow path. is formed and
    The control method is
    an eleventh step of opening the second flow path with the second valve in a state where the third valve closes the first flow path;
    a twelfth step of closing the second flow path by the second valve after a predetermined first time has elapsed since the second valve opened the second flow path in the eleventh step;
    a thirteenth step of opening the first flow path by the third valve at a timing after the second valve closes the second flow path in the twelfth step;
    a fourteenth step of closing the first flow path by the third valve after a predetermined second time has elapsed since the third valve opened the first flow path in the thirteenth step;
    During the period from when the third valve opens the first flow path in the thirteenth step to when the third valve closes the first flow path in the fourteenth step, the injection port is a fifteenth step of opening
    having
    control method.
PCT/JP2022/038216 2021-12-08 2022-10-13 Fuel injection device, fuel injection system, and control method WO2023105919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023566114A JPWO2023105919A1 (en) 2021-12-08 2022-10-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021199326 2021-12-08
JP2021-199326 2021-12-08

Publications (1)

Publication Number Publication Date
WO2023105919A1 true WO2023105919A1 (en) 2023-06-15

Family

ID=86730089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038216 WO2023105919A1 (en) 2021-12-08 2022-10-13 Fuel injection device, fuel injection system, and control method

Country Status (2)

Country Link
JP (1) JPWO2023105919A1 (en)
WO (1) WO2023105919A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122581A (en) * 1997-07-02 1999-01-26 Toyota Motor Corp Fuel injection device
JP2013053571A (en) * 2011-09-05 2013-03-21 Isuzu Motors Ltd Fuel injection device of internal combustion engine
JP2015200225A (en) * 2014-04-08 2015-11-12 株式会社デンソー fuel supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122581A (en) * 1997-07-02 1999-01-26 Toyota Motor Corp Fuel injection device
JP2013053571A (en) * 2011-09-05 2013-03-21 Isuzu Motors Ltd Fuel injection device of internal combustion engine
JP2015200225A (en) * 2014-04-08 2015-11-12 株式会社デンソー fuel supply system

Also Published As

Publication number Publication date
JPWO2023105919A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
US7934490B2 (en) Start-up control device and start-up control method for internal combustion engine
RU2717863C2 (en) Method (versions) and system for double fuel injection
JP3885888B2 (en) Common rail system
US7267097B2 (en) Fuel injection system of internal combustion engine
WO2023105919A1 (en) Fuel injection device, fuel injection system, and control method
JPH1150899A (en) Fuel injection control device of pressure accumulating engine
JP3542211B2 (en) Accumulation type fuel injection device
JP2010513782A (en) Injection valve drive method
JP4239401B2 (en) Fuel injection device for internal combustion engine
JP4991196B2 (en) Operation method of injection valve
JPH02191865A (en) Fuel injection device
CN102822496B (en) There is the co-rail ejector of pressure compensated changing valve and additional storage volumes
US20090025684A1 (en) System, method and computer readable media for controlling at least one fuel delivery characteristic during a combustion event within an engine
JP4020048B2 (en) Fuel injection device for internal combustion engine
CN1847641A (en) Engine fuel feed device
US6405710B1 (en) Internal combustion engine high pressure fuel injection system with selectable fuel rail volume
JP2011190773A (en) Internal combustion engine and fuel supply device thereof
Zhang et al. Rotational angle based pressure control of a common rail fuel injection system for internal combustion engines
JP2006523793A (en) Fuel injection device with reduced pressure vibration in return rail
CA2849623C (en) Fuel system for an internal combustion engine
JPH1113583A (en) Fuel injection device for engine
JP2005351144A (en) Fuel supply system of engine
JP2004251149A (en) Fuel injection device
JP2000130284A (en) Fuel injector of diesel engine
Gupta et al. A novel pressure control mechanism for common rail fuel injection systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023566114

Country of ref document: JP