WO2023105733A1 - Method for grinding gear and gear grinding device - Google Patents

Method for grinding gear and gear grinding device Download PDF

Info

Publication number
WO2023105733A1
WO2023105733A1 PCT/JP2021/045442 JP2021045442W WO2023105733A1 WO 2023105733 A1 WO2023105733 A1 WO 2023105733A1 JP 2021045442 W JP2021045442 W JP 2021045442W WO 2023105733 A1 WO2023105733 A1 WO 2023105733A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
grinding
angle
crossed
threaded grindstone
Prior art date
Application number
PCT/JP2021/045442
Other languages
French (fr)
Japanese (ja)
Inventor
克仁 吉永
滉明 吉田
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to PCT/JP2021/045442 priority Critical patent/WO2023105733A1/en
Publication of WO2023105733A1 publication Critical patent/WO2023105733A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F19/00Finishing gear teeth by other tools than those used for manufacturing gear teeth

Definitions

  • the present disclosure relates to a gear grinding method and gear grinding apparatus.
  • Patent Document 1 describes that noise is generated due to the influence of minute steps formed on the tooth flanks of the gears when the gears are meshed.
  • a minute step on the tooth flank of the gear is produced, for example, by grinding the tooth flank of the gear with a grindstone.
  • fine groove-like grinding streaks are formed on the tooth surface of the gear in the direction in which the abrasive grains advance at the grinding point on the tooth surface. be done.
  • fine groove-like grinding streaks are formed in a direction parallel to the tooth trace direction of the tooth surface of the gear. That is, due to the plurality of grinding streaks, steps are formed in the tooth depth direction on the tooth flank of the gear.
  • Patent Document 1 describes that after grinding the tooth flank of the gear with a grindstone, honing or processing with a dressing gear is performed in order to reduce the step on the tooth flank.
  • the present disclosure has been made in view of such problems, and provides a gear grinding method and a gear grinding apparatus that can reduce noise due to the influence of steps on the tooth flanks of the gears in meshing the gears without performing additional processing. is trying to provide.
  • One aspect of the present disclosure is a gear grinding method for grinding a tooth surface of a gear using a threaded grindstone,
  • the crossed axes angle between the rotation axis of the workpiece and the rotation axis of the threaded grindstone is set to a composite crossed axes angle obtained by synthesizing the reference crossed axes angle and the corrected crossed axes angle, and the threaded grindstone and the workpiece are rotated synchronously.
  • the reference crossed axis angle is a crossed axis angle determined based on the torsion angle on the reference circle of the gear and the torsion angle on the reference circle of the threaded grindstone,
  • the correction crossed axis angle is a crossed axis angle for forming grinding streaks formed on the tooth surface of the gear by the threaded grindstone in a direction inclined at a predetermined angle with respect to the tooth trace direction. It is in the gear grinding method.
  • Another aspect of the present disclosure is a gear grinding device that grinds the tooth surface of a gear using a threaded grindstone,
  • the crossed axes angle between the rotation axis of the workpiece and the rotation axis of the threaded grindstone is set to a composite crossed axes angle obtained by synthesizing the reference crossed axes angle and the corrected crossed axes angle, and the threaded grindstone and the workpiece are rotated synchronously.
  • the reference crossed axis angle is a crossed axis angle determined based on the torsion angle on the reference circle of the gear and the torsion angle on the reference circle of the threaded grindstone
  • the correction crossed axis angle is a crossed axis angle for forming grinding streaks formed on the tooth surface of the gear by the threaded grindstone in a direction inclined at a predetermined angle with respect to the tooth trace direction. It is in the gear grinding machine.
  • the crossed axis angle between the rotation axis of the workpiece and the rotation axis of the threaded grindstone is set.
  • the crossed axes angle obtained by the torsion angle on the reference circle of the gear and the torsion angle on the reference circle of the threaded grindstone is defined as the reference crossed axes angle.
  • the reference crossed axis angle matches the torsion angle on the reference circle of the threaded grindstone.
  • the reference crossed axis angle is an angle that takes into consideration the torsion angle of the gear on the reference circle with respect to the torsion angle on the reference circle of the threaded grindstone.
  • the crossed axes angle between the rotation axis of the workpiece and the rotation axis of the threaded grindstone is a synthetic crossed axes obtained by synthesizing the reference crossed axes angle and the corrected crossed axes angle. It is angled.
  • the corrected crossed axis angle is the crossed axis angle for forming the grinding streaks formed on the tooth surface of the gear by the threaded grindstone in a direction inclined at a predetermined angle with respect to the tooth trace direction. That is, by setting the crossed axes angle during grinding to a combined crossed axes angle obtained by combining the reference crossed axes angle and the corrected crossed axes angle, the grinding streaks are not parallel to the tooth trace direction, but are direction.
  • the grinding streaks can be formed in a direction inclined to the tooth trace direction, for example, when the gear to be ground and the mating gear are meshed, the grinding streaks are formed in the direction of engagement on the tooth surface of the gear to be ground.
  • the extending directions can be matched. If the two directions are the same, the mating gear will not move over the grinding streaks on the tooth flanks during the progress of the meshing of the gears. Since the grinding striations are not driven over, the noise generated in the meshing of the gears can be reduced.
  • FIG. 4 is a diagram for explaining the mechanism of meshing noise generation, in which (a) shows a case in which the grinding streaks are aligned with the direction in which the meshing progresses, and (b) shows a case in which the grinding streaks are inclined in the direction in which the meshing progresses. It is a figure which shows.
  • FIG. 4 is a flow chart showing processing by a grinding condition determination unit that constitutes the gear grinding apparatus according to Embodiment 1.
  • FIG. FIG. 6 is a diagram for explaining the reference crossed axis angle determination step S3 in FIG. 5 , (a) shows the state of the threaded grindstone and the workpiece, and (b) is grinding of the gear of the threaded grindstone and the workpiece. (c) shows a view of the threaded grindstone and the workpiece viewed from the rotation axis of the threaded grindstone.
  • FIG. 6 is a diagram for explaining the reference crossed axis angle determination step S3 in FIG.
  • FIG. 6 is a diagram for explaining the corrected crossed axis angle determination step S4 in FIG. 5 , (a) shows the state of the threaded grindstone and the workpiece, and (b) is grinding of the gears of the threaded grindstone and the workpiece. (c) shows a view of the threaded grindstone and the workpiece viewed from the rotation axis of the threaded grindstone.
  • FIG. 6 is a diagram for explaining the correction crossed axis angle determination step S4 of FIG.
  • FIG. 4 is a diagram showing a grinding point on the tooth surface, a velocity vector, and a tooth surface normal component vector on the tooth surface of the gear of the workpiece;
  • FIG. 4 is a diagram showing a grindstone velocity vector, a grindstone normal component vector, and a tangential vector in a convex blade of a threaded grindstone.
  • FIG. 2 is a diagram showing grinding points on the tooth surface of the gear of the workpiece and grinding wheel shape points of the threaded grinding wheel in Embodiment 1;
  • FIG. 1 is a diagram showing grinding points on the tooth surface of the gear of the workpiece and grinding wheel shape points of the threaded grinding wheel in Embodiment 1;
  • FIG. 4 is a diagram showing a grinding point of a tooth surface of a gear of a workpiece and a grindstone shape point of a threaded grindstone in a reference example.
  • FIG. 10 is a perspective view showing the direction of engagement and grinding streaks in the case of a spur gear in Embodiment 2;
  • FIG. 10 is a diagram showing a threaded grindstone in Embodiment 3;
  • Gear grinding device 1 The configuration of the gear grinding machine 1 will be described with reference to FIGS. 1 and 2.
  • FIG. The gear grinding device 1 uses a threaded grindstone T to grind the tooth flanks of gears. Specifically, the gear grinding apparatus 1 grinds the tooth flanks of a gear-shaped workpiece W using a threaded grindstone T to form desired gear tooth flanks.
  • the gear grinding machine 1 sets the crossed axes angle between the rotation axis B of the workpiece W and the rotation axis C of the threaded grindstone T to the combined crossed axes angle ⁇ 2.
  • the combined crossed axes angle ⁇ 2 is an angle obtained by combining the reference crossed axes angle ⁇ 1 and the corrected crossed axes angle ⁇ .
  • the reference crossed axis angle ⁇ 1 and the corrected crossed axis angle ⁇ will be described later.
  • the gear grinding machine 1 rotates the threaded grindstone T around the C axis, which is the central axis of the threaded grindstone T, and rotates the workpiece W around the B axis, which is the central axis of the workpiece W.
  • the gear-shaped tooth flanks of the workpiece W are ground by relatively moving the threaded grindstone T in the central axis direction of the workpiece W. As shown in FIG.
  • the gear grinding machine 1 is configured so that the workpiece W and the threaded grindstone T can be moved relative to each other in the directions of the three orthogonal axes. Further, in the gear grinding machine 1, the workpiece W is rotatably provided around the B axis, the threaded grindstone T is provided rotatably about the C axis, and the relative posture between the workpiece W and the threaded grindstone T is changed. For this purpose, the workpiece W or the threaded grindstone T is rotatably provided.
  • a 6-axis processing machine that is, a processing machine having 3 straight axes and 3 rotating axes is applied.
  • the gear grinding machine 1 enables the workpiece W to rotate about the B axis, the threaded grindstone T to rotate about the A axis and the C axis, and the threaded grindstone T to rotate in the X axis direction and the Y axis direction. It is movable in the axial direction and the Z-axis direction.
  • the A-axis is an axis perpendicular to the rotation axis B of the workpiece W and the rotation axis C of the threaded grindstone T.
  • the B-axis coincides with the center axis of the workpiece W.
  • the C-axis coincides with the central axis of the threaded grindstone T.
  • the mechanical configuration of the gear grinding machine 1 is not limited to the above, and various configurations can be applied.
  • the gear grinding machine 1 can apply a horizontal machining center having another configuration, a vertical machining center, or the like.
  • the gear grinding machine 1 includes, for example, a bed 2, a column 3, a Y-axis slide 4, a rotating member 5, a grindstone support member 6, a threaded grindstone T, a workpiece support member 7, a grinding condition determination unit 8, and a grinding processing unit 9.
  • the bed 2 is installed on the installation surface.
  • the column 3 is guided by an X-axis guide provided on the upper surface of the bed 2 so as to be movable in the X-axis direction (horizontal direction in FIG. 1) with respect to the bed 2 .
  • the column 3 is driven by a ball screw mechanism, a linear motor, or the like.
  • the Y-axis slide 4 is provided movably in the Y-axis direction (vertical direction in FIG. 1) with respect to the column 3 by being guided by a Y-axis guide provided on the side surface of the column 3 extending in the vertical direction.
  • the rotary member 5 is provided on the Y-axis slide 4 and is provided rotatably around the A-axis, which is the horizontal axis.
  • the rotating member 5 is provided rotatably within a range of 360°, for example.
  • the grindstone support member 6 is guided by a Z-axis guide provided on the rotating member 5 and provided so as to be movable in the Z-axis direction.
  • the Z-axis direction changes as the rotary member 5 rotates around the A-axis.
  • the Z-axis direction in the initial state is, for example, a horizontal direction perpendicular to the X-axis direction and the Y-axis direction.
  • the grindstone support member 6 supports the threaded grindstone T so as to be rotatable around the C axis.
  • the C-axis is aligned with the central axis of the threaded grindstone T and parallel to the Z-axis direction.
  • the threaded grindstone T has a helical convex blade protruding radially outward.
  • the threaded grindstone T may have a single thread or may have multiple threads.
  • the threaded grindstone T has a plurality of helical convex blades in the case of a multi-threaded thread.
  • the workpiece support member 7 is provided on the bed 2 and supports the workpiece W rotatably around the B axis.
  • the grinding condition determination unit 8 is configured with at least a processor (arithmetic processing unit).
  • the grinding condition determination unit 8 determines grinding conditions including the convex shape of the threaded grindstone T and the combined crossed axis angle ⁇ 2 (grinding condition determination step Sa).
  • the combined crossed axes angle ⁇ 2 is an angle obtained by combining the reference crossed axes angle ⁇ 1 and the corrected crossed axes angle ⁇ . A method for determining the grinding conditions will be described later.
  • the grinding processing unit 9 includes at least a processor (arithmetic processing unit).
  • the grinding processing unit 9 uses the threaded grindstone T to grind the tooth surface of the gear of the workpiece W based on the determined grinding conditions (grinding step Sb).
  • a method of grinding the tooth surface of the gear on the workpiece W by the grinding processing section 9 of the gear grinding apparatus 1 is performed as follows.
  • the rotating member 5 is rotated about the A axis by a predetermined angle in order to obtain a grinding posture in which the crossed axis angle between the rotation axis B of the workpiece W and the rotation axis C of the threaded grindstone T is ⁇ 2.
  • the grinding processing section 9 rotates the workpiece W and the threaded grindstone T synchronously. Specifically, the workpiece W is rotated around the B-axis and the threaded grindstone T is rotated around the C-axis, and both rotations are synchronized.
  • the column 3 is moved in the X-axis direction, the Y-axis slide 4 is moved in the Y-axis direction, and the grindstone support member 6 is moved in the Z-axis direction, thereby moving the threaded grindstone T to the initial grinding position.
  • the threaded grindstone T is moved in the direction of the center axis of the workpiece W (in the direction parallel to the rotation axis B), and the gear tooth surface of the workpiece W is ground.
  • the gear grinding method by the gear grinding apparatus 1 performs processing (grinding condition determination step Sa) by the grinding condition determination unit 8, and then performs processing (grinding step Sb) by the grinding processing unit 9. It's about.
  • Gear engagement advancing direction D_La The mesh advancing direction D_La will be described with reference to FIG. As shown in FIG. 3(a), the drive gear Ga and the driven gear Gb are brought into mesh. Also, the driving gear Ga and the driven gear Gb are gears having a helix angle.
  • the contact line (engagement line) La with the driving gear Ga is is sloping. Specifically, first, the tooth flank corner Ea, which is one end in the tooth addendum and tooth trace direction D_Tr, of the tooth surface of the driven gear Gb is engaged, and the tooth flank, which is the other end in the tooth root and tooth trace direction D_Tr, is engaged. A contact line (engagement line) La moves toward the corner Eb.
  • FIG. 4(a) shows a case where the grinding streak Gr1 formed on the tooth surface of the driven gear Gb1 extends in an oblique direction with respect to the tooth trace direction D_Tr and the tooth depth direction D_Hi.
  • FIG. 4B shows a case where the grinding streak Gr2 formed on the tooth surface of the driven gear Gb2 extends in a direction parallel to the tooth trace direction D_Tr.
  • the grinding streaks Gr1 and Gr2 are fine grooves formed by grinding the tooth flanks of the driven gears Gb1 and Gb2 with the threaded grindstone T shown in FIG.
  • the extending direction of the grinding streaks Gr1 and Gr2 coincides with the direction in which the contact abrasive grains, among the abrasive grains constituting the threaded grindstone T, which contact the tooth flanks of the driven gears Gb1 and Gb2 travel.
  • the contact abrasive grains of the threaded grindstone T advance in a direction oblique to the tooth trace direction D_Tr and the tooth depth direction D_Hi.
  • the extending direction of the grinding streaks Gr1 coincides with the mesh advancing direction D_La.
  • the grinding streaks Gr1 are formed in a direction inclined at a predetermined angle ⁇ with respect to the tooth trace direction D_Tr.
  • the grinding streak Gr1 is not linear, but is composed of arcs with a large number of small angles, so the predetermined angle ⁇ has an angle range.
  • the extending direction of the grinding streaks Gr1 is set to coincide with the mesh advancing direction D_La. ) can be suppressed. Even if the extending direction of the grinding streaks Gr1 does not completely match the direction of progress of meshing D_La, the occurrence of meshing noise is suppressed as the direction of extending of the grinding streaks Gr1 approaches the direction of progress of meshing D_La. can be done. Therefore, even if the direction in which the grinding streaks Gr1 extend does not completely match the meshing direction D_La, meshing noise can be reduced by bringing the extending direction of the grinding streaks Gr1 closer to the meshing direction D_La. Works effectively.
  • grinding condition determination section 8 determines the grinding conditions including the convex edge shape of the threaded grindstone T and the crossed axis angle ⁇ 2. In particular, as shown in FIG. 4(a), the grinding condition determination unit 8 determines the grinding conditions such that the extending direction of the grinding streak Gr1 can be matched with the target direction.
  • the grinding condition determination unit 8 performs a gear specification acquisition step S1, a threaded grindstone specification step S2, a reference crossed axes angle determination step S3, a corrected crossed axes angle determination step S4, a combined crossed axes angle determination step S5, and a convex edge shape.
  • a determination step S6 is executed.
  • the grinding condition determining unit 8 first acquires the specifications of the gear Gb to be ground (S1).
  • the specifications of the gear Gb include the module, normal pressure angle, helix angle ⁇ w on the reference circle, number of teeth, shift coefficient, reference pitch circle diameter, base circle diameter, tip circle diameter, and root circle diameter.
  • the grinding condition determination unit 8 determines the specifications of the threaded grindstone T (S2).
  • the specification of the threaded grindstone T is determined as follows.
  • the grinding condition determination unit 8 determines the pressure angle of the threaded grindstone T based on the acquired specifications of the gear Gb (S21). Subsequently, the grinding condition determination unit 8 determines the grindstone module and pitch (S22). Subsequently, the grinding condition determination unit 8 calculates the torsion angle ⁇ t on the reference circle corresponding to the grindstone diameter (S23).
  • the reference axis crossing angle ⁇ 1 is determined (S3).
  • the reference axis crossing angle ⁇ 1 will be described with reference to FIGS. 6 and 7.
  • the workpiece W1 and the rotation axis B1 are used separately from the workpiece W2 and the rotation axis B2 in determining the corrected crossed axis angle ⁇ , which will be described later.
  • FIGS. 6(a) and 6(b) are views seen from a direction orthogonal to the rotation axis B1 of the workpiece W1 and orthogonal to the rotation axis C of the threaded grindstone T.
  • FIG. As shown in FIGS. 6A and 6B, the reference crossed axes angle ⁇ 1 is the crossed axes angle between the rotation axis B1 of the workpiece W1 and the rotation axis C of the threaded grindstone T.
  • the reference crossed axis angle ⁇ 1 is a crossed axis angle determined based on the torsion angle ⁇ w of the gear of the workpiece W1 on the reference circle and the torsion angle ⁇ t of the threaded grindstone T on the reference circle.
  • the rotational axis B1 of the workpiece W1 and The crossed-axis angle between the threaded grindstone T and the rotation axis C is the reference crossed-axis angle ⁇ 1.
  • the tooth flank of the gear of the workpiece W1 is ground by the threaded grindstone T in a state where the reference axis crossing angle ⁇ 1 is set, as shown in FIGS.
  • a grinding point P1a on one tooth flank and a grinding point P1b on the other tooth flank are ground by the threaded grindstone T.
  • the grinding points P1a and P1b are positioned on the rotational axis C of the threaded grindstone T when projected in the direction shown in FIG. Also, when projected in the direction shown in FIG. 6(c), the grinding points P1a and P1b are positioned on Xt and Xw.
  • the threaded grindstone T rotates around the C-axis at the grinding points P1a and P1b, so the abrasive grains of the convex edge of the threaded grindstone T rotate around the C-axis. Therefore, at the grinding points P1a and P1b, the abrasive grains of the convex blade of the threaded grindstone T move upward in FIG. 6(c).
  • the moving direction vectors of the abrasive grains of the convex blade of the threaded grindstone T are expressed as V1a and V1b.
  • the tooth trace direction D_Tr of the gear of the workpiece W1 when viewed from the axial direction of the threaded grindstone T (when projected in the axial direction of the threaded grindstone T), the tooth trace direction D_Tr of the gear of the workpiece W1, The velocity vectors (components of V1a and V1b on the paper in FIG. 6(c)) due to the rotation of the threaded grindstone T at the grinding points P1a and P1b on the convex blade of the threaded grindstone T match.
  • FIG. 7(a) which is enlarged, shows the movement direction vector V1a of the abrasive grains of the convex blade of the threaded grindstone T at the grinding point P1a on one tooth surface of the workpiece W1.
  • grinding streaks Gr_W1 are formed by the abrasive grains of the convex edge of the threaded grindstone T on one tooth surface of the workpiece W1. That is, the grinding streak Gr_W1 is formed substantially parallel to the tooth trace direction D_Tr of the tooth surface of the workpiece W1.
  • the grinding streak Gr_W1 is not linear, but is composed of a large number of small-angle arcs, but as a whole, it is substantially parallel to the tooth trace direction D_Tr. Therefore, the reference crossed axis angle ⁇ 1 can be said to be the crossed axis angle for forming the grinding streak Gr_W1 formed on the tooth surface of the gear of the workpiece W1 by the threaded grindstone T in a direction parallel to the tooth trace direction D_Tr. .
  • the corrected crossed axis angle ⁇ is determined (S4). As shown in FIG. 4A, the corrected crossed axis angle ⁇ is such that the grinding streak Gr1 formed on the tooth flank of the gear of the workpiece W by the threaded grindstone T is set at a predetermined angle with respect to the tooth trace direction D_Tr. It is the crossed axis angle for forming ⁇ in the tilted direction.
  • the corrected axis crossing angle ⁇ will be described with reference to FIGS. 8 and 9.
  • FIG. 8A and 8B the corrected crossed axes angle ⁇ is an additional crossed axes angle to the reference crossed axes angle ⁇ 1.
  • the crossed axes angle between the rotation axis B2 of the workpiece W2 and the rotation axis C of the threaded grinding wheel T becomes equal to the reference crossed axes angle ⁇ 1 and the corrected crossed axes angle ⁇ .
  • the corrected axis crossing angle ⁇ may be a positive value or a negative value.
  • FIG. 8B When projected in the direction shown in FIG. 8B, the grinding point P2a is positioned above the rotation axis C of the threaded grindstone T, and the grinding point P2b is positioned below the rotation axis C of the threaded grindstone T. do.
  • FIG. 8C When projected in the direction shown in FIG. 8C, the grinding point P2a is located above Xt and Xw, and the grinding point P2b is located below Xt and Xw.
  • the threaded grindstone T rotates around the C-axis at the grinding points P2a and P2b, so the abrasive grains on the convex edge of the threaded grindstone T rotate around the C-axis. Therefore, at the grinding point P2a, the abrasive grains of the convex edge of the threaded grindstone T move in the upper right direction in FIG. 8(c). On the other hand, at the grinding point P2b, the abrasive grains of the convex edge of the threaded grindstone T move leftward in FIG. 8(c).
  • the moving direction vectors of the abrasive grains of the convex blade of the threaded grindstone T are expressed as V2a and V2b.
  • FIG. 8C when viewed from the axial direction of the threaded grindstone T (when projected in the axial direction of the threaded grindstone T), the tooth trace direction D_Tr of the gear of the workpiece W2 and the threaded grindstone
  • the velocity vectors (components of V2a and V2b on the paper surface of FIG. 8(c)) due to the rotation of the threaded grindstone T at the grinding points P2a and P2b on the convex edge of T have angles ⁇ and ⁇ .
  • FIG. 9(a) which is enlarged, shows the movement direction vector V2a of the abrasive grains of the convex edge of the threaded grindstone T at the grinding point P2a on one tooth surface of the workpiece W2.
  • grinding streaks Gr_W2 are formed by the abrasive grains of the convex edge of the threaded grindstone T on one tooth surface of the workpiece W2. That is, the grinding streaks Gr_W2 are formed in a direction inclined by a predetermined angle ⁇ with respect to the tooth trace direction D_Tr of the tooth surface of the workpiece W2.
  • the grinding streaks Gr_W2 are not straight lines but consist of arcs with a large number of small angles, as a whole they are formed in a direction inclined at a predetermined angle ⁇ with respect to the tooth trace direction D_Tr. be done. Therefore, the corrected crossed axis angle ⁇ forms grinding streaks Gr_W2 formed on the tooth surface of the gear of the workpiece W1 by the threaded grindstone T in a direction inclined by a predetermined angle ⁇ with respect to the tooth trace direction D_Tr. It can be said that it is the crossed axis angle for
  • the grinding streak Gr_W2 on one tooth surface of the gear of the workpiece W2 is formed in a direction inclined by a predetermined positive angle ⁇ with respect to the tooth trace direction D_Tr.
  • the grinding streak Gr_W2 on the other tooth surface of the gear of the workpiece W2 is formed in a direction inclined at a predetermined negative angle ( ⁇ ) with respect to the tooth trace direction D_Tr.
  • FIG. 5 a provisional corrected crossed axis angle ⁇ ' is determined (S41).
  • the temporarily corrected crossed-axis angle ⁇ ' that is determined first is an arbitrary value, and serves as an initial value for determining the corrected crossed-axis angle ⁇ .
  • the velocity vector Gm of the grinding point P2 on the tooth surface of the gear of the workpiece W2 is calculated (S42).
  • the grinding points P2 are set as a plurality of discrete points on a cross section perpendicular to the tooth trace direction D_Tr on the tooth surface of the workpiece W2.
  • the plurality of grinding points P2 are points indicated by white circles and black circles in FIG.
  • the velocity vector Gm and the normal component vector Gv are for the grinding point P2 indicated by the black circle.
  • a provisional corrected crossed axes angle ⁇ ' is given as the corrected crossed axes angle ⁇ .
  • a state is set in which the provisional composite crossed axes angle ⁇ 2′ is obtained by adding the provisional corrected crossed axes angle ⁇ ′ to the reference crossed axes angle ⁇ 1.
  • the velocity vector referred to as grindstone velocity vector
  • a component Tv′ in the direction of the line component vector Gv (referred to as a grindstone normal component vector) is calculated.
  • the direction of the tooth surface normal component vector Gv in the workpiece W2 and the direction of the grindstone normal component vector Tv' in the threaded grindstone T match.
  • a point Pt' on the convex edge of the threaded grindstone T when the magnitude of the tooth surface normal vector Gv on the workpiece W2 and the grindstone normal vector Tv' on the threaded grindstone T match is determined as follows: demand.
  • the obtained point Pt' on the protruding edge is set as the temporary grindstone point Pt' (S43).
  • the tangent vector Th' of the convex blade of the threaded grindstone T is calculated (S44). Specifically, the normal cross-sectional shape of the convex edge of the threaded grindstone T is determined by obtaining the temporary grindstone point Pt' in S43, as indicated by the chain double-dashed line in FIG. Then, out of the grinding wheel speed vector Tm' at the temporary grinding wheel point Pt' on the convex edge of the threaded grinding wheel T, the tangential vector Th', which is the vector in the direction orthogonal to the perpendicular cross section of the convex edge, is calculated. This tangential vector Th' corresponds to the moving direction vector V2a of the abrasive grains of the convex blade of the threaded grindstone T shown in FIG. 9(a).
  • the provisional wheel point Pt' is determined as the wheel shape point Pt, and the provisional correction crossed axis angle when they match.
  • ⁇ ' is determined as the corrected crossed axis angle ⁇ (S46).
  • the process returns to S41 to determine a new provisional correction crossed axis angle ⁇ ', and the processing from S42 onwards is performed. conduct.
  • the tangent vector Th' of the threaded grindstone T at a predetermined grinding point P2 (for example, the central point of the tooth depth) on the tooth surface of the workpiece W2 is the target grinding streak Gr_W2.
  • the temporary corrected crossed axis angle ⁇ ' that will match the direction.
  • the same process is performed for a plurality of grinding points P2 on the tooth surface of the workpiece W2, and the grindstone shape corresponding to all the grinding points P2 is determined.
  • a point Pt is determined.
  • a combined crossed axes angle ⁇ 2 is determined by combining the reference crossed axes angle ⁇ 1 determined in S3 and the corrected crossed axes angle ⁇ determined in S4 (S5).
  • the corrected crossed axes angle ⁇ is zero, that is, the crossed axes angle between the rotation axis B1 of the workpiece W1 and the rotation axis C of the threaded grindstone T as shown in FIGS.
  • the angle is ⁇ 1
  • the cross-sectional shape of the convex edge of the threaded grindstone T becomes the shape shown in FIG. That is, the grindstone shape point Pt corresponding to each grinding point P1 on the tooth surface of the gear of the workpiece W1 is determined, and the cross-sectional shape of the convex blade of the threaded grindstone T is determined based on the grindstone shape point Pt.
  • the grinding condition determining section 8 determines the reference crossed axis angle ⁇ 1 and the corrected crossed axis angle ⁇ , and combines the determined reference crossed axis angle ⁇ 1 and the corrected crossed axis angle ⁇ to obtain the synthetic axis.
  • the intersection angle ⁇ 2 is determined as one of the grinding conditions.
  • the grinding condition determination unit 8 determines the convex blade shape of the threaded grindstone T as one of the grinding conditions. Then, the determined convex blade of the threaded grindstone T is configured so as to be able to grind both tooth flanks of the gear on the workpiece W2 at the same time.
  • grinding processing unit 9 Processing by the grinding processing unit 9 (grinding process Sb) will be described.
  • the grinding processing unit 9 applies the grinding conditions determined by the grinding condition determination unit 8 and grinds the tooth flank of the gear of the workpiece W with the threaded grindstone T. As shown in FIG.
  • the grinding processing unit 9 positions the workpiece W2, which is a helical gear, and the threaded grindstone T, as shown in FIGS.
  • the crossed-axis angle between the rotation axis B2 of the workpiece W2 and the rotation axis C of the threaded grindstone T is set to the combined crossed-axis angle ⁇ 2. Then, the workpiece W2 and the threaded grindstone T are rotated synchronously, and the threaded grindstone T is relatively moved in a direction parallel to the rotation axis B2 of the workpiece W2.
  • grinding streaks Gr_W2 are formed by the threaded grindstone T on the tooth surface of the ground workpiece W2. Grinding streaks Gr_W2 to be formed are formed in a direction inclined by a predetermined angle ⁇ with respect to the tooth trace direction D_Tr.
  • the extending direction of the grinding streak Gr_W2 that is formed coincides with the mesh advancing direction D_La on the tooth surface of the workpiece W2. That is, the predetermined angle ⁇ is set to the angle formed by the tooth trace direction D_Tr of the tooth surface of the driven gear Gb (shown in FIG. 3) serving as the workpiece W2 and the mesh advancing direction D_La of the drive gear Ga serving as the mating gear. ing. As a result, meshing noise can be reduced.
  • the crossed axis angle between the rotation axis B2 of the workpiece W2 and the rotation axis C of the threaded grindstone T is set.
  • the crossed axes angle obtained by the torsion angle ⁇ w of the gear of the workpiece W2 on the reference circle and the torsion angle ⁇ t on the reference circle of the threaded grindstone T is defined as the reference crossed axes angle ⁇ 1.
  • the gear of workpiece W2 is a helical gear. Therefore, the helix angle ⁇ w on the reference circle of the gear of the workpiece W2 is not 0°.
  • the reference axis crossing angle ⁇ 1 is an angle that takes into account the torsion angle ⁇ w of the gear of the workpiece W2 with respect to the torsion angle ⁇ t of the threaded grindstone T on the reference circle.
  • the crossed axes angle between the rotation axis B2 of the workpiece W2 and the rotation axis C of the threaded grindstone T is defined as a reference crossed axes angle .theta.1 and a corrected crossed axes angle .DELTA..theta. is defined as a combined crossed axis angle ⁇ 2.
  • the corrected crossed axis angle ⁇ is for forming the grinding streaks Gr_W2 formed on the tooth surface of the gear of the workpiece W2 by the threaded grindstone T in a direction inclined at a predetermined angle ⁇ with respect to the tooth trace direction D_Tr. is the crossed axis angle. That is, by setting the crossed axes angle during grinding to a synthetic crossed axes angle ⁇ 2 obtained by synthesizing the reference crossed axes angle ⁇ 1 and the corrected crossed axes angle ⁇ , the grinding streaks Gr_W2 are aligned in a direction parallel to the tooth trace direction D_Tr. Instead, the direction is inclined toward the tooth trace direction D_Tr.
  • the grinding streaks Gr_W2 can be formed in a direction inclined in the tooth trace direction D_Tr, for example, in the meshing between the gear to be ground and the mating gear, the grinding is performed in the direction D_La of engagement on the tooth surface of the gear to be ground.
  • the direction in which the streak Gr_W2 extends can be matched. When the two directions match, the mating gear Ga does not move over the grinding streak Gr_W2 on the tooth surface during the progress of gear meshing. Since the grinding streak Gr_W2 is not driven over, it is possible to reduce the noise generated in the meshing of the gears.
  • the threaded grindstone T is configured to be able to grind both tooth flanks of the gear on the workpiece W2 at the same time. Both tooth flanks of the gear on the workpiece W2 are ground simultaneously by the shaped grindstone T. Then, as shown in FIG. 9, the grinding streaks Gr_W2 on one tooth surface of the gear of the workpiece W2 are formed in a direction inclined at a predetermined positive angle ⁇ with respect to the tooth trace direction D_Tr. On the other hand, the grinding streaks Gr_W2 on the other tooth surface of the gear of the workpiece W2 are formed in a direction inclined at a predetermined negative angle ( ⁇ ) with respect to the tooth trace direction D_Tr. In this way, when the direction of the grinding streak Gr_W2 satisfies the above conditions, both tooth flanks can be ground at the same time, and the number of grinding steps can be reduced.
  • the workpiece W is described as a helical gear having a helix angle ⁇ w.
  • the workpiece W can be a spur gear as shown in FIG.
  • the torsion angle on the reference circle is 0°.
  • the meshing advancing direction D_La of the mating gear coincides with the tooth depth direction D_Hi.
  • the extending direction of the grinding streaks Gr_W is set at an angle inclined with respect to the tooth trace direction D_Tr and at an angle inclined with respect to the tooth depth direction D_Hi. That is, the extending direction of the grinding streaks Gr_W is inclined with respect to the mesh advancing direction D_La, but has a smaller angle than orthogonal.
  • the noise caused by the meshing points overcoming the grinding streaks Gr_W can be greatly reduced. can be reduced.
  • the grinding streak Gr_W cannot be formed in a direction parallel to the tooth depth direction D_Hi. Therefore, the grinding streak Gr_W is set in a direction as close as possible to the mesh advancing direction D_La.
  • Embodiment 1 when the extending direction of the grinding streak Gr_W2 on one tooth flank is determined by grinding both tooth flanks of the workpiece W at the same time, the grinding streak Gr_W2 on the other tooth flank is inevitably ground.
  • the extending direction of Gr_W2 is determined. Therefore, in order to freely set the extending direction of the grinding streak Gr_W2 on each tooth surface, it is preferable to use a threaded grindstone T as shown in FIG. In this case, one tooth flank is ground by a threaded grindstone T shown in FIG. 15, and the other tooth flank is ground by a threaded grindstone (not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

This method for grinding a gear comprises a grinding step (Sb) for grinding a tooth flank of a gear (Gb1) by: making an axial intersection angle between a rotational axis (B2) of a workpiece (W2) and a rotational axis (C) of a thread-shaped grinding wheel (T) a combined axial intersection angle (θ2) obtained by combining a reference axial intersection angle (θ1) with a corrected axial intersection angle (Δθ); rotating the thread-shaped grinding wheel (T) and the workpiece (W2) in a synchronized manner; and relatively moving the thread-shaped grinding wheel (T) in a direction parallel to the rotational axis (B2) of the workpiece (W2). The reference axial intersection angle (θ1) is an axial intersection angle determined on the basis of a torsion angle (ϕw) on a reference circle of the gear (Gb1) and a torsion angle (ϕt) on a reference circle of the thread-shaped grinding wheel (T). The corrected axial intersection angle (Δθ) is an axial intersection angle for forming a grinding mark (Gr_W2), which is formed on the tooth flank of the gear (Gb1) by the thread-shaped grinding wheel (T), in a direction inclined at a predetermined angle (Σ) with respect to a tooth trace direction (D_Tr).

Description

歯車研削方法および歯車研削装置GEAR GRINDING METHOD AND GEAR GRINDING APPARATUS
 本開示は、歯車研削方法および歯車研削装置に関する。 The present disclosure relates to a gear grinding method and gear grinding apparatus.
 特許文献1には、歯車の噛み合いにおいて、歯車の歯面に形成された微小な段差の影響により、ノイズを発生することについて記載されている。歯車の歯面における微小な段差は、例えば、歯車の歯面を砥石により研削することにより生じる。具体的には、歯車の歯面が砥石の砥粒により研削されることにより、歯車の歯面には、歯面上の研削点における砥粒の進行方向に微細溝状の研削条痕が形成される。一般に、微細溝状の研削条痕は、歯車の歯面の歯すじ方向に平行な方向に形成される。つまり、複数の研削条痕により、歯車の歯面には、歯たけ方向に段差が形成される。そして、特許文献1には、歯面の段差を小さくするために、砥石による歯車の歯面の研削の後に、ホーニングやドレッシング歯車による加工などを行うことが記載されている。 Patent Document 1 describes that noise is generated due to the influence of minute steps formed on the tooth flanks of the gears when the gears are meshed. A minute step on the tooth flank of the gear is produced, for example, by grinding the tooth flank of the gear with a grindstone. Specifically, when the tooth surface of the gear is ground by the abrasive grains of the grindstone, fine groove-like grinding streaks are formed on the tooth surface of the gear in the direction in which the abrasive grains advance at the grinding point on the tooth surface. be done. In general, fine groove-like grinding streaks are formed in a direction parallel to the tooth trace direction of the tooth surface of the gear. That is, due to the plurality of grinding streaks, steps are formed in the tooth depth direction on the tooth flank of the gear. Patent Document 1 describes that after grinding the tooth flank of the gear with a grindstone, honing or processing with a dressing gear is performed in order to reduce the step on the tooth flank.
特開2000-52145号公報JP-A-2000-52145
 しかし、従来の方法では、砥石による研削の後に、歯車の歯面の段差を小さくするために、ホーニングやドレッシング歯車による加工などの追加加工が必要となる。追加加工により、加工工数の増大、加工コストの増大を招来する。 However, with conventional methods, after grinding with a grindstone, additional processing such as honing or processing with a dressing gear is required in order to reduce the step on the tooth surface of the gear. Additional processing causes an increase in processing man-hours and an increase in processing costs.
 本開示は、かかる課題に鑑みてなされたものであり、追加加工を行うことなく、歯車の噛み合いにおいて歯車の歯面の段差の影響によるノイズを低減することができる歯車研削方法および歯車研削装置を提供しようとするものである。 The present disclosure has been made in view of such problems, and provides a gear grinding method and a gear grinding apparatus that can reduce noise due to the influence of steps on the tooth flanks of the gears in meshing the gears without performing additional processing. is trying to provide.
 本開示の一態様は、ねじ状砥石を用いて歯車の歯面を研削する歯車研削方法であって、
 工作物の回転軸線と前記ねじ状砥石の回転軸線との軸交差角を基準軸交差角と補正軸交差角とを合成した合成軸交差角とし、前記ねじ状砥石および前記工作物を同期回転させ、前記ねじ状砥石を前記工作物の回転軸線に平行な方向に相対移動することにより前記歯車の歯面を研削する研削工程を備え、
 前記基準軸交差角は、前記歯車の基準円上ねじれ角および前記ねじ状砥石の基準円上ねじれ角に基づいて決定された軸交差角であり、
 前記補正軸交差角は、前記ねじ状砥石により前記歯車の歯面に形成される研削条痕を、歯すじ方向に対して所定角度を傾斜させた方向に形成するための軸交差角である、歯車研削方法にある。
One aspect of the present disclosure is a gear grinding method for grinding a tooth surface of a gear using a threaded grindstone,
The crossed axes angle between the rotation axis of the workpiece and the rotation axis of the threaded grindstone is set to a composite crossed axes angle obtained by synthesizing the reference crossed axes angle and the corrected crossed axes angle, and the threaded grindstone and the workpiece are rotated synchronously. , a grinding step of grinding the tooth surface of the gear by relatively moving the threaded grindstone in a direction parallel to the rotation axis of the workpiece;
The reference crossed axis angle is a crossed axis angle determined based on the torsion angle on the reference circle of the gear and the torsion angle on the reference circle of the threaded grindstone,
The correction crossed axis angle is a crossed axis angle for forming grinding streaks formed on the tooth surface of the gear by the threaded grindstone in a direction inclined at a predetermined angle with respect to the tooth trace direction. It is in the gear grinding method.
 本開示の他の態様は、ねじ状砥石を用いて歯車の歯面を研削する歯車研削装置であって、
 工作物の回転軸線と前記ねじ状砥石の回転軸線との軸交差角を基準軸交差角と補正軸交差角とを合成した合成軸交差角とし、前記ねじ状砥石および前記工作物を同期回転させ、前記ねじ状砥石を前記工作物の回転軸線に平行な方向に相対移動することにより前記歯車の歯面を研削する研削処理部を備え、
 前記基準軸交差角は、前記歯車の基準円上ねじれ角および前記ねじ状砥石の基準円上ねじれ角に基づいて決定された軸交差角であり、
 前記補正軸交差角は、前記ねじ状砥石により前記歯車の歯面に形成される研削条痕を、歯すじ方向に対して所定角度を傾斜させた方向に形成するための軸交差角である、歯車研削装置にある。
Another aspect of the present disclosure is a gear grinding device that grinds the tooth surface of a gear using a threaded grindstone,
The crossed axes angle between the rotation axis of the workpiece and the rotation axis of the threaded grindstone is set to a composite crossed axes angle obtained by synthesizing the reference crossed axes angle and the corrected crossed axes angle, and the threaded grindstone and the workpiece are rotated synchronously. , a grinding processing unit that grinds the tooth surface of the gear by relatively moving the threaded grindstone in a direction parallel to the rotation axis of the workpiece,
The reference crossed axis angle is a crossed axis angle determined based on the torsion angle on the reference circle of the gear and the torsion angle on the reference circle of the threaded grindstone,
The correction crossed axis angle is a crossed axis angle for forming grinding streaks formed on the tooth surface of the gear by the threaded grindstone in a direction inclined at a predetermined angle with respect to the tooth trace direction. It is in the gear grinding machine.
 ねじ状砥石を用いて歯車の歯面を研削する場合において、工作物の回転軸線とねじ状砥石の回転軸線との軸交差角が設定される。歯車の基準円上ねじれ角とねじ状砥石の基準円上ねじれ角とにより得られる軸交差角を基準軸交差角とする。例えば、歯車の基準円上ねじれ角が0°である場合において、基準軸交差角は、ねじ状砥石の基準円上ねじれ角に一致する。歯車の基準円上ねじれ角が0°でない場合には、基準軸交差角は、ねじ状砥石の基準円上ねじれ角に対して、歯車の基準円上ねじれ角を考慮した角度となる。 When grinding the tooth flank of a gear using a threaded grindstone, the crossed axis angle between the rotation axis of the workpiece and the rotation axis of the threaded grindstone is set. The crossed axes angle obtained by the torsion angle on the reference circle of the gear and the torsion angle on the reference circle of the threaded grindstone is defined as the reference crossed axes angle. For example, when the torsion angle on the reference circle of the gear is 0°, the reference crossed axis angle matches the torsion angle on the reference circle of the threaded grindstone. If the torsion angle of the gear on the reference circle is not 0°, the reference crossed axis angle is an angle that takes into consideration the torsion angle of the gear on the reference circle with respect to the torsion angle on the reference circle of the threaded grindstone.
 仮に、軸交差角を基準軸交差角に設定して歯車の歯面の研削を行うと、ねじ状砥石により歯車の歯面に形成される研削条痕は、歯面の歯すじ方向に平行な方向となる。そこで、上記の歯車研削方法および歯車研削装置によれば、工作物の回転軸線とねじ状砥石の回転軸線との軸交差角を、基準軸交差角と補正軸交差角とを合成した合成軸交差角としている。 If the crossed axes angle is set to the reference crossed axes angle and the gear tooth flank is ground, the grinding streaks formed on the gear tooth flank by the threaded grindstone are parallel to the tooth trace direction of the tooth flank. direction. Therefore, according to the above-described gear grinding method and gear grinding apparatus, the crossed axes angle between the rotation axis of the workpiece and the rotation axis of the threaded grindstone is a synthetic crossed axes obtained by synthesizing the reference crossed axes angle and the corrected crossed axes angle. It is angled.
 補正軸交差角は、ねじ状砥石により歯車の歯面に形成される研削条痕を、歯すじ方向に対して所定角度を傾斜させた方向に形成するための軸交差角である。つまり、研削の際の軸交差角が、基準軸交差角に補正軸交差角を合成させた合成軸交差角とすることにより、研削条痕が、歯すじ方向に平行な方向ではなく、歯すじ方向に傾斜した方向となる。 The corrected crossed axis angle is the crossed axis angle for forming the grinding streaks formed on the tooth surface of the gear by the threaded grindstone in a direction inclined at a predetermined angle with respect to the tooth trace direction. That is, by setting the crossed axes angle during grinding to a combined crossed axes angle obtained by combining the reference crossed axes angle and the corrected crossed axes angle, the grinding streaks are not parallel to the tooth trace direction, but are direction.
 研削条痕が歯すじ方向に傾斜した方向に形成することができるため、例えば、研削対象の歯車と相手歯車との噛み合いにおいて、研削対象の歯車の歯面における噛み合い進行方向に、研削条痕の延在する方向を一致させることができる。両方向が一致する場合には、歯車の噛み合いの進行において、相手歯車が歯面の研削条痕を乗り越える動作が生じることはない。研削条痕の乗り越え動作が生じないことにより、歯車の噛み合いにおいて生じるノイズを低減することができる。 Since the grinding streaks can be formed in a direction inclined to the tooth trace direction, for example, when the gear to be ground and the mating gear are meshed, the grinding streaks are formed in the direction of engagement on the tooth surface of the gear to be ground. The extending directions can be matched. If the two directions are the same, the mating gear will not move over the grinding streaks on the tooth flanks during the progress of the meshing of the gears. Since the grinding striations are not driven over, the noise generated in the meshing of the gears can be reduced.
 また、研削条痕の延在する方向を噛み合い進行方向に一致させなくても、研削条痕の延在する方向を噛み合い進行方向に近づけることにより、研削条痕の乗り越え動作を低減させることができる。その結果、歯車の噛み合いにおいて生じるノイズを低減することができる。 Further, even if the direction in which the grinding streaks extend does not coincide with the direction in which the meshing advances, it is possible to reduce the movement of riding over the grinding streaks by bringing the extending direction of the grinding streaks closer to the direction in which the meshing advances. . As a result, it is possible to reduce the noise generated in the meshing of the gears.
 以上のごとく、上記態様によれば、追加加工を行うことなく、歯車の噛み合いにおいて歯車の歯面の段差の影響によるノイズを低減することができる歯車研削方法および歯車研削装置を提供することができる。 As described above, according to the above aspect, it is possible to provide a gear grinding method and a gear grinding apparatus capable of reducing noise due to the influence of steps on the tooth flanks of the gears in meshing the gears without performing additional processing. .
 なお、特許請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。 It should be noted that the symbols in parentheses described in the claims indicate the correspondence with specific means described in the embodiments described later, and do not limit the technical scope of the present invention.
歯車研削装置を示す図である。It is a figure which shows a gear grinding apparatus. 図1の歯車研削装置を左から見た図である。It is the figure which looked at the gear grinding apparatus of FIG. 1 from the left. (a)は、駆動歯車と従動歯車の噛み合い状態を示す図であり、(b)は、はすば歯車の場合における噛み合い線および噛み合い進行方向を説明する図である。(a) is a diagram showing a meshing state of a drive gear and a driven gear, and (b) is a diagram for explaining a meshing line and a meshing advancing direction in the case of a helical gear. 噛み合いノイズの発生メカニズムを説明する図であって、(a)は、研削条痕が噛み合い進行方向に一致する場合を示し、(b)は、研削条痕が噛み合い進行方向に傾斜している場合を示す図である。FIG. 4 is a diagram for explaining the mechanism of meshing noise generation, in which (a) shows a case in which the grinding streaks are aligned with the direction in which the meshing progresses, and (b) shows a case in which the grinding streaks are inclined in the direction in which the meshing progresses. It is a figure which shows. 実施形態1における歯車研削装置を構成する研削条件決定部による処理を示すフローチャートである。4 is a flow chart showing processing by a grinding condition determination unit that constitutes the gear grinding apparatus according to Embodiment 1. FIG. 図5の基準軸交差角決定工程S3について説明する図であって、(a)は、ねじ状砥石と工作物との状態を示し、(b)は、ねじ状砥石と工作物の歯車における研削対象の歯とを示し、(c)は、ねじ状砥石と工作物とをねじ状砥石の回転軸線から見た図を示す。FIG. 6 is a diagram for explaining the reference crossed axis angle determination step S3 in FIG. 5 , (a) shows the state of the threaded grindstone and the workpiece, and (b) is grinding of the gear of the threaded grindstone and the workpiece. (c) shows a view of the threaded grindstone and the workpiece viewed from the rotation axis of the threaded grindstone. 図5の基準軸交差角決定工程S3について説明する図であって、(a)は、ねじ状砥石の凸刃の一部および工作物の歯車の歯の一部を示す斜視図であり、(b)は、工作物の歯面における研削条痕の一部を示す図であり、(c)は、工作物の歯車の歯面において研削条痕を示す斜視図である。FIG. 6 is a diagram for explaining the reference crossed axis angle determination step S3 in FIG. (b) is a view showing part of the grinding streaks on the tooth surface of the workpiece, and (c) is a perspective view showing the grinding streaks on the tooth surface of the gear of the workpiece. 図5の補正軸交差角決定工程S4について説明する図であって、(a)は、ねじ状砥石と工作物との状態を示し、(b)は、ねじ状砥石と工作物の歯車における研削対象の歯とを示し、(c)は、ねじ状砥石と工作物とをねじ状砥石の回転軸線から見た図を示す。FIG. 6 is a diagram for explaining the corrected crossed axis angle determination step S4 in FIG. 5 , (a) shows the state of the threaded grindstone and the workpiece, and (b) is grinding of the gears of the threaded grindstone and the workpiece. (c) shows a view of the threaded grindstone and the workpiece viewed from the rotation axis of the threaded grindstone. 図5の補正軸交差角決定工程S4について説明する図であって、(a)は、ねじ状砥石の凸刃の一部および工作物の歯車の歯の一部を示す斜視図であり、(b)は、工作物の歯面における研削条痕の一部を示す図であり、(c)は、工作物の歯車の歯面において研削条痕を示す斜視図である。FIG. 6 is a diagram for explaining the correction crossed axis angle determination step S4 of FIG. (b) is a view showing part of the grinding streaks on the tooth surface of the workpiece, and (c) is a perspective view showing the grinding streaks on the tooth surface of the gear of the workpiece. 工作物の歯車の歯面において、歯面上の研削点、速度ベクトルおよび歯面法線成分ベクトルを示す図である。FIG. 4 is a diagram showing a grinding point on the tooth surface, a velocity vector, and a tooth surface normal component vector on the tooth surface of the gear of the workpiece; ねじ状砥石の凸刃において、砥石速度ベクトル、砥石法線成分ベクトルおよび接線ベクトルを示す図である。FIG. 4 is a diagram showing a grindstone velocity vector, a grindstone normal component vector, and a tangential vector in a convex blade of a threaded grindstone. 実施形態1における工作物の歯車の歯面の研削点、および、ねじ状砥石の砥石形状点を示す図である。FIG. 2 is a diagram showing grinding points on the tooth surface of the gear of the workpiece and grinding wheel shape points of the threaded grinding wheel in Embodiment 1; 参考例における工作物の歯車の歯面の研削点、および、ねじ状砥石の砥石形状点を示す図である。FIG. 4 is a diagram showing a grinding point of a tooth surface of a gear of a workpiece and a grindstone shape point of a threaded grindstone in a reference example. 実施形態2における平歯車の場合の噛み合い進行方向と研削条痕を示す斜視図である。FIG. 10 is a perspective view showing the direction of engagement and grinding streaks in the case of a spur gear in Embodiment 2; 実施形態3におけるねじ状砥石を示す図である。FIG. 10 is a diagram showing a threaded grindstone in Embodiment 3;
(実施形態1)
1.歯車研削装置1
 歯車研削装置1の構成について、図1および図2を参照して説明する。歯車研削装置1は、ねじ状砥石Tを用いて歯車の歯面を研削する。詳細には、歯車研削装置1は、ねじ状砥石Tを用いて歯車形状の工作物Wにおける歯面を研削することで、所望の歯車の歯面を形成する。
(Embodiment 1)
1. Gear grinding device 1
The configuration of the gear grinding machine 1 will be described with reference to FIGS. 1 and 2. FIG. The gear grinding device 1 uses a threaded grindstone T to grind the tooth flanks of gears. Specifically, the gear grinding apparatus 1 grinds the tooth flanks of a gear-shaped workpiece W using a threaded grindstone T to form desired gear tooth flanks.
 詳細には、図2に示すように、歯車研削装置1は、工作物Wの回転軸線Bとねじ状砥石Tの回転軸線Cとの軸交差角を合成軸交差角θ2に設定する。合成軸交差角θ2は、基準軸交差角θ1と補正軸交差角Δθとを合成した角である。基準軸交差角θ1および補正軸交差角Δθについては、後述する。 Specifically, as shown in FIG. 2, the gear grinding machine 1 sets the crossed axes angle between the rotation axis B of the workpiece W and the rotation axis C of the threaded grindstone T to the combined crossed axes angle θ2. The combined crossed axes angle θ2 is an angle obtained by combining the reference crossed axes angle θ1 and the corrected crossed axes angle Δθ. The reference crossed axis angle θ1 and the corrected crossed axis angle Δθ will be described later.
 そして、歯車研削装置1は、ねじ状砥石Tをねじ状砥石Tの中心軸線であるC軸回りに回転し、工作物Wを工作物Wの中心軸線であるB軸回りに回転した状態において、ねじ状砥石Tを工作物Wの中心軸方向に相対移動することにより、工作物Wにおける歯車形状の歯面を研削する。 Then, the gear grinding machine 1 rotates the threaded grindstone T around the C axis, which is the central axis of the threaded grindstone T, and rotates the workpiece W around the B axis, which is the central axis of the workpiece W. The gear-shaped tooth flanks of the workpiece W are ground by relatively moving the threaded grindstone T in the central axis direction of the workpiece W. As shown in FIG.
 そこで、歯車研削装置1は、工作物Wとねじ状砥石Tとを直交3軸のそれぞれの方向に相対移動可能に構成される。さらに、歯車研削装置1は、工作物WをB軸回りに回転可能に設け、ねじ状砥石TをC軸回りに回転可能に設け、工作物Wとねじ状砥石Tとの相対姿勢を変更するために工作物Wまたはねじ状砥石Tを回転可能に設けられる。 Therefore, the gear grinding machine 1 is configured so that the workpiece W and the threaded grindstone T can be moved relative to each other in the directions of the three orthogonal axes. Further, in the gear grinding machine 1, the workpiece W is rotatably provided around the B axis, the threaded grindstone T is provided rotatably about the C axis, and the relative posture between the workpiece W and the threaded grindstone T is changed. For this purpose, the workpiece W or the threaded grindstone T is rotatably provided.
 歯車研削装置1は、例えば、6軸加工機、すなわち、直進3軸かつ回転3軸を有する加工機を適用する。本形態においては、歯車研削装置1は、工作物WをB軸回りに回転可能とし、ねじ状砥石TをA軸回りかつC軸回りに回転可能とし、ねじ状砥石TをX軸方向、Y軸方向およびZ軸方向に移動可能とする。A軸は、工作物Wの回転軸線Bおよびねじ状砥石Tの回転軸線Cに対して直交する方向の軸線である。B軸は、工作物Wの中心軸線に一致する。C軸は、ねじ状砥石Tの中心軸線に一致する。なお、歯車研削装置1の機械構成は、上記に限定されず、種々の構成を適用することができる。例えば、歯車研削装置1は、他の構成を有する横型マシニングセンタや、立型マシニングセンタなどを適用することができる。 For the gear grinding device 1, for example, a 6-axis processing machine, that is, a processing machine having 3 straight axes and 3 rotating axes is applied. In this embodiment, the gear grinding machine 1 enables the workpiece W to rotate about the B axis, the threaded grindstone T to rotate about the A axis and the C axis, and the threaded grindstone T to rotate in the X axis direction and the Y axis direction. It is movable in the axial direction and the Z-axis direction. The A-axis is an axis perpendicular to the rotation axis B of the workpiece W and the rotation axis C of the threaded grindstone T. The B-axis coincides with the center axis of the workpiece W. The C-axis coincides with the central axis of the threaded grindstone T. The mechanical configuration of the gear grinding machine 1 is not limited to the above, and various configurations can be applied. For example, the gear grinding machine 1 can apply a horizontal machining center having another configuration, a vertical machining center, or the like.
 歯車研削装置1は、例えば、ベッド2、コラム3、Y軸スライド4、回転部材5、砥石支持部材6、ねじ状砥石T、工作物支持部材7、研削条件決定部8、研削処理部9を備える。ベッド2は、設置面上に設置される。コラム3は、ベッド2の上面に設けられたX軸ガイドに案内されて、ベッド2に対してX軸方向(図1では水平方向)に移動可能に設けられる。図示しないが、コラム3は、ボールねじ機構またはリニアモータなどにより駆動される。 The gear grinding machine 1 includes, for example, a bed 2, a column 3, a Y-axis slide 4, a rotating member 5, a grindstone support member 6, a threaded grindstone T, a workpiece support member 7, a grinding condition determination unit 8, and a grinding processing unit 9. Prepare. The bed 2 is installed on the installation surface. The column 3 is guided by an X-axis guide provided on the upper surface of the bed 2 so as to be movable in the X-axis direction (horizontal direction in FIG. 1) with respect to the bed 2 . Although not shown, the column 3 is driven by a ball screw mechanism, a linear motor, or the like.
 Y軸スライド4は、コラム3の鉛直方向に延びる側面に設けられたY軸ガイドに案内されて、コラム3に対してY軸方向(図1では上下方向)に移動可能に設けられる。回転部材5は、Y軸スライド4に設けられ、水平軸線であるA軸回りに回転可能に設けられる。回転部材5は、例えば、360°の範囲で回転可能に設けられる。 The Y-axis slide 4 is provided movably in the Y-axis direction (vertical direction in FIG. 1) with respect to the column 3 by being guided by a Y-axis guide provided on the side surface of the column 3 extending in the vertical direction. The rotary member 5 is provided on the Y-axis slide 4 and is provided rotatably around the A-axis, which is the horizontal axis. The rotating member 5 is provided rotatably within a range of 360°, for example.
 砥石支持部材6は、回転部材5に設けられたZ軸ガイドに案内されて、Z軸方向に移動可能に設けられる。Z軸方向は、回転部材5がA軸回りに回転することにより方向が異なる。初期状態におけるZ軸方向は、例えば、水平方向であって、X軸方向およびY軸方向に直交する方向である。 The grindstone support member 6 is guided by a Z-axis guide provided on the rotating member 5 and provided so as to be movable in the Z-axis direction. The Z-axis direction changes as the rotary member 5 rotates around the A-axis. The Z-axis direction in the initial state is, for example, a horizontal direction perpendicular to the X-axis direction and the Y-axis direction.
 砥石支持部材6は、ねじ状砥石TをC軸回りに回転可能に支持する。C軸は、ねじ状砥石Tの中心軸線に一致し、かつ、Z軸方向に平行な軸線である。ねじ状砥石Tは、径方向外側に突出する螺旋状の凸刃を有する。ねじ状砥石Tは、1条ねじとしても良いし、多条ねじとしても良い。ねじ状砥石Tは、多条ねじの場合には、複数の螺旋状の凸刃を有することになる。工作物支持部材7は、ベッド2上に設けられ、工作物WをB軸回りに回転可能に支持する。 The grindstone support member 6 supports the threaded grindstone T so as to be rotatable around the C axis. The C-axis is aligned with the central axis of the threaded grindstone T and parallel to the Z-axis direction. The threaded grindstone T has a helical convex blade protruding radially outward. The threaded grindstone T may have a single thread or may have multiple threads. The threaded grindstone T has a plurality of helical convex blades in the case of a multi-threaded thread. The workpiece support member 7 is provided on the bed 2 and supports the workpiece W rotatably around the B axis.
 研削条件決定部8は、少なくともプロセッサ(演算処理装置)を備えて構成される。研削条件決定部8は、ねじ状砥石Tの凸刃形状と合成軸交差角θ2とを含む研削条件を決定する(研削条件決定工程Sa)。合成軸交差角θ2は、基準軸交差角θ1と補正軸交差角Δθとを合成した角である。研削条件の決定方法については、後述する。 The grinding condition determination unit 8 is configured with at least a processor (arithmetic processing unit). The grinding condition determination unit 8 determines grinding conditions including the convex shape of the threaded grindstone T and the combined crossed axis angle θ2 (grinding condition determination step Sa). The combined crossed axes angle θ2 is an angle obtained by combining the reference crossed axes angle θ1 and the corrected crossed axes angle Δθ. A method for determining the grinding conditions will be described later.
 研削処理部9は、少なくともプロセッサ(演算処理装置)を備えて構成される。研削処理部9は、決定された研削条件に基づいて、ねじ状砥石Tを用いて、工作物Wの歯車の歯面を研削する処理を実行する(研削工程Sb)。歯車研削装置1の研削処理部9による工作物Wにおける歯車の歯面の研削方法は、次のように行われる。工作物Wの回転軸線Bとねじ状砥石Tの回転軸線Cとの軸交差角をθ2とする研削姿勢とするために、本形態においては、回転部材5をA軸回りに所定角度回転させる。続いて、研削処理部9は、工作物Wとねじ状砥石Tとを同期回転させる。詳細には、工作物WをB軸回りに回転させ、かつ、ねじ状砥石TをC軸回りに回転させ、両者の回転を同期させる。 The grinding processing unit 9 includes at least a processor (arithmetic processing unit). The grinding processing unit 9 uses the threaded grindstone T to grind the tooth surface of the gear of the workpiece W based on the determined grinding conditions (grinding step Sb). A method of grinding the tooth surface of the gear on the workpiece W by the grinding processing section 9 of the gear grinding apparatus 1 is performed as follows. In this embodiment, the rotating member 5 is rotated about the A axis by a predetermined angle in order to obtain a grinding posture in which the crossed axis angle between the rotation axis B of the workpiece W and the rotation axis C of the threaded grindstone T is θ2. Subsequently, the grinding processing section 9 rotates the workpiece W and the threaded grindstone T synchronously. Specifically, the workpiece W is rotated around the B-axis and the threaded grindstone T is rotated around the C-axis, and both rotations are synchronized.
 続いて、コラム3をX軸方向に移動し、Y軸スライド4をY軸方向に移動し、かつ、砥石支持部材6をZ軸方向に移動することにより、ねじ状砥石Tを研削初期位置に移動する。続いて、Y軸スライド4を移動することにより、ねじ状砥石Tを工作物Wの中心軸方向(回転軸線Bに平行な方向)に移動し、工作物Wにおける歯車の歯面の研削を行う。 Subsequently, the column 3 is moved in the X-axis direction, the Y-axis slide 4 is moved in the Y-axis direction, and the grindstone support member 6 is moved in the Z-axis direction, thereby moving the threaded grindstone T to the initial grinding position. Moving. Subsequently, by moving the Y-axis slide 4, the threaded grindstone T is moved in the direction of the center axis of the workpiece W (in the direction parallel to the rotation axis B), and the gear tooth surface of the workpiece W is ground. .
 なお、本形態において、歯車研削装置1による歯車研削方法は、研削条件決定部8による処理(研削条件決定工程Sa)を行い、その後に、研削処理部9による処理(研削工程Sb)を行う処理のことである。 In the present embodiment, the gear grinding method by the gear grinding apparatus 1 performs processing (grinding condition determination step Sa) by the grinding condition determination unit 8, and then performs processing (grinding step Sb) by the grinding processing unit 9. It's about.
2.歯車の噛み合い進行方向D_La
 噛み合い進行方向D_Laについて、図3を参照して説明する。図3(a)に示すように、駆動歯車Gaおよび従動歯車Gbが、噛み合う状態とする。また、駆動歯車Gaおよび従動歯車Gbは、ねじれ角を有する歯車とする。
2. Gear engagement advancing direction D_La
The mesh advancing direction D_La will be described with reference to FIG. As shown in FIG. 3(a), the drive gear Ga and the driven gear Gb are brought into mesh. Also, the driving gear Ga and the driven gear Gb are gears having a helix angle.
 この場合に、図3(b)の破線にて示すように、従動歯車Gbの歯面において、駆動歯車Gaとの接触線(噛み合い線)Laは、歯すじ方向D_Trおよび歯たけ方向D_Hiに対して傾斜している。詳細には、最初に、従動歯車Gbの歯面における歯先かつ歯すじ方向D_Trの一方端部である歯面角部Eaが噛み合い、歯元かつ歯すじ方向D_Trの他方端部である歯面角部Ebに向かって、接触線(噛み合い線)Laが移動する。 In this case, as shown by the dashed line in FIG. 3B, on the tooth surface of the driven gear Gb, the contact line (engagement line) La with the driving gear Ga is is sloping. Specifically, first, the tooth flank corner Ea, which is one end in the tooth addendum and tooth trace direction D_Tr, of the tooth surface of the driven gear Gb is engaged, and the tooth flank, which is the other end in the tooth root and tooth trace direction D_Tr, is engaged. A contact line (engagement line) La moves toward the corner Eb.
3.噛み合いノイズの発生メカニズムおよび抑制方法
 噛み合いノイズの発生メカニズムおよび抑制方法について図4を参照して説明する。駆動歯車Gaと従動歯車Gbとの噛み合いにおいて発生するノイズは、駆動歯車Gaの歯面および従動歯車Gbの歯面に形成された段差の影響を受ける。ここでは、従動歯車Gbの歯面について説明する。
3. Mechanism of Generation of Mesh Noise and Method of Suppressing Mechanism of generation of mesh noise and method of suppressing it will now be described with reference to FIG. The noise generated when the driving gear Ga and the driven gear Gb are meshed is affected by the steps formed on the tooth flanks of the driving gear Ga and the driven gear Gb. Here, the tooth surface of the driven gear Gb will be described.
 図4(a)は、従動歯車Gb1の歯面に形成される研削条痕Gr1が、歯すじ方向D_Trおよび歯たけ方向D_Hiに対して傾斜方向に延在している場合を示す。図4(b)は、従動歯車Gb2の歯面に形成される研削条痕Gr2が、歯すじ方向D_Trに平行な方向に延在している場合を示す。 FIG. 4(a) shows a case where the grinding streak Gr1 formed on the tooth surface of the driven gear Gb1 extends in an oblique direction with respect to the tooth trace direction D_Tr and the tooth depth direction D_Hi. FIG. 4B shows a case where the grinding streak Gr2 formed on the tooth surface of the driven gear Gb2 extends in a direction parallel to the tooth trace direction D_Tr.
 研削条痕Gr1,Gr2は、図1に示すねじ状砥石Tにより従動歯車Gb1,Gb2の歯面を研削することにより形成される微細溝である。研削条痕Gr1,Gr2の延在方向は、ねじ状砥石Tを構成する砥粒のうち、従動歯車Gb1,Gb2の歯面に接触する接触砥粒が進行する方向に一致する。 The grinding streaks Gr1 and Gr2 are fine grooves formed by grinding the tooth flanks of the driven gears Gb1 and Gb2 with the threaded grindstone T shown in FIG. The extending direction of the grinding streaks Gr1 and Gr2 coincides with the direction in which the contact abrasive grains, among the abrasive grains constituting the threaded grindstone T, which contact the tooth flanks of the driven gears Gb1 and Gb2 travel.
 図4(a)に示す従動歯車Gb1の歯面においては、ねじ状砥石Tの接触砥粒が、歯すじ方向D_Trおよび歯たけ方向D_Hiに対して傾斜方向に進行する。特に、従動歯車Gb1において、研削条痕Gr1の延在方向は、噛み合い進行方向D_Laに一致する。研削条痕Gr1は、歯すじ方向D_Trに対して所定角度Σを傾斜させた方向に形成されている。ただし、研削条痕Gr1は、詳細には、直線状ではなく、多数の微小角度の円弧状により構成されるため、所定角度Σは、角度範囲を有する。 On the tooth flank of the driven gear Gb1 shown in FIG. 4(a), the contact abrasive grains of the threaded grindstone T advance in a direction oblique to the tooth trace direction D_Tr and the tooth depth direction D_Hi. In particular, in the driven gear Gb1, the extending direction of the grinding streaks Gr1 coincides with the mesh advancing direction D_La. The grinding streaks Gr1 are formed in a direction inclined at a predetermined angle Σ with respect to the tooth trace direction D_Tr. However, in detail, the grinding streak Gr1 is not linear, but is composed of arcs with a large number of small angles, so the predetermined angle Σ has an angle range.
 一方、図4(b)に示す従動歯車Gb2の歯面においては、ねじ状砥石Tの接触砥粒が、歯すじ方向D_Trに平行な方向に進行する。従って、従動歯車Gb2において、研削条痕Gr2の延在方向は、噛み合い進行方向D_Laに一致しない。 On the other hand, on the tooth surface of the driven gear Gb2 shown in FIG. 4(b), the contact abrasive grains of the threaded grindstone T advance in a direction parallel to the tooth trace direction D_Tr. Therefore, in the driven gear Gb2, the extending direction of the grinding streaks Gr2 does not match the mesh advancing direction D_La.
 図4(a)に示す従動歯車Gb1において、駆動歯車Gaとの噛み合いが進行する過程において、噛み合い点が、研削条痕Gr1を乗り越えることがない。従って、噛み合い点が研削条痕Gr1を乗り越えることに起因するノイズは、発生しない。一方、図4(b)に示す従動歯車Gb2において、駆動歯車Gaとの噛み合いが進行する過程において、噛み合い点が、研削条痕Gr2を乗り越える。従って、噛み合い点が研削条痕Gr2を乗り越えることに起因するノイズが、発生する。 In the driven gear Gb1 shown in FIG. 4(a), in the process of meshing with the driving gear Ga, the meshing point does not get over the grinding streak Gr1. Therefore, noise caused by the engagement point overcoming the grinding streak Gr1 does not occur. On the other hand, in the process in which the driven gear Gb2 shown in FIG. 4B is engaged with the drive gear Ga, the point of engagement overcomes the grinding streak Gr2. Therefore, noise is generated due to the meshing point crossing over the grinding streak Gr2.
 このように、図4(a)に示すように、研削条痕Gr1の延在方向が、噛み合い進行方向D_Laに一致する状態とすることで、研削条痕Gr1の乗り越えに起因するノイズ(噛み合いノイズ)の発生を抑制することができる。なお、研削条痕Gr1の延在方向が噛み合い進行方向D_Laに完全に一致していないとしても、研削条痕Gr1の延在方向が噛み合い進行方向D_Laに近づくほど、噛み合いノイズの発生を抑制することができる。従って、研削条痕Gr1の延在方向が噛み合い進行方向D_Laに完全に一致していないとしても、研削条痕Gr1の延在方向を噛み合い進行方向D_Laに近づけることが、噛み合いノイズを低減することに有効に作用する。 In this manner, as shown in FIG. 4A, the extending direction of the grinding streaks Gr1 is set to coincide with the mesh advancing direction D_La. ) can be suppressed. Even if the extending direction of the grinding streaks Gr1 does not completely match the direction of progress of meshing D_La, the occurrence of meshing noise is suppressed as the direction of extending of the grinding streaks Gr1 approaches the direction of progress of meshing D_La. can be done. Therefore, even if the direction in which the grinding streaks Gr1 extend does not completely match the meshing direction D_La, meshing noise can be reduced by bringing the extending direction of the grinding streaks Gr1 closer to the meshing direction D_La. Works effectively.
4.研削条件決定部8による処理
 研削条件決定部8による処理(研削条件決定工程Sa)について図5~図12を参照して説明する。研削条件決定部8は、上述したように、ねじ状砥石Tの凸刃形状と軸交差角θ2とを含む研削条件を決定する。特に、研削条件決定部8は、図4(a)に示すように、研削条痕Gr1の延在方向を目標の方向に一致させることができるような研削条件を決定する。
4. Processing by Grinding Condition Determining Unit 8 Processing by the grinding condition determining unit 8 (grinding condition determining step Sa) will be described with reference to FIGS. 5 to 12. FIG. As described above, the grinding condition determination section 8 determines the grinding conditions including the convex edge shape of the threaded grindstone T and the crossed axis angle θ2. In particular, as shown in FIG. 4(a), the grinding condition determination unit 8 determines the grinding conditions such that the extending direction of the grinding streak Gr1 can be matched with the target direction.
 研削条件決定部8は、歯車諸元取得工程S1、ねじ状砥石諸元決定工程S2、基準軸交差角決定工程S3、補正軸交差角決定工程S4、合成軸交差角決定工程S5、凸刃形状決定工程S6を実行する。 The grinding condition determination unit 8 performs a gear specification acquisition step S1, a threaded grindstone specification step S2, a reference crossed axes angle determination step S3, a corrected crossed axes angle determination step S4, a combined crossed axes angle determination step S5, and a convex edge shape. A determination step S6 is executed.
 研削条件決定部8は、まず、研削対象である歯車Gbの諸元を取得する(S1)。歯車Gbの諸元には、モジュール、歯直角圧力角、基準円上ねじれ角φw、歯数、転位係数、基準ピッチ円直径、基礎円直径、歯先円直径、歯底円直径などである。 The grinding condition determining unit 8 first acquires the specifications of the gear Gb to be ground (S1). The specifications of the gear Gb include the module, normal pressure angle, helix angle φw on the reference circle, number of teeth, shift coefficient, reference pitch circle diameter, base circle diameter, tip circle diameter, and root circle diameter.
 続いて、研削条件決定部8は、ねじ状砥石Tの諸元を決定する(S2)。ねじ状砥石Tの諸元の決定は、次のように行われる。研削条件決定部8は、取得した歯車Gbの諸元に基づいて、ねじ状砥石Tの圧力角を決定する(S21)。続いて、研削条件決定部8は、砥石モジュール、ピッチを決定する(S22)。続いて、研削条件決定部8は、砥石径に対応する基準円上ねじれ角φtを算出する(S23)。 Next, the grinding condition determination unit 8 determines the specifications of the threaded grindstone T (S2). The specification of the threaded grindstone T is determined as follows. The grinding condition determination unit 8 determines the pressure angle of the threaded grindstone T based on the acquired specifications of the gear Gb (S21). Subsequently, the grinding condition determination unit 8 determines the grindstone module and pitch (S22). Subsequently, the grinding condition determination unit 8 calculates the torsion angle φt on the reference circle corresponding to the grindstone diameter (S23).
 続いて、基準軸交差角θ1を決定する(S3)。基準軸交差角θ1について、図6および図7を参照して説明する。基準軸交差角θ1の決定において、工作物をW1とし、工作物Wの回転軸線をB1として説明する。工作物W1および回転軸線B1は、後述する補正軸交差角Δθの決定における工作物W2および回転軸線B2と区別して用いる。 Subsequently, the reference axis crossing angle θ1 is determined (S3). The reference axis crossing angle θ1 will be described with reference to FIGS. 6 and 7. FIG. In determining the reference crossed axis angle θ1, the description will be made by assuming that the workpiece is W1 and the rotation axis of the workpiece W is B1. The workpiece W1 and the rotation axis B1 are used separately from the workpiece W2 and the rotation axis B2 in determining the corrected crossed axis angle Δθ, which will be described later.
 図6(a)(b)は、工作物W1の回転軸線B1に直交し、かつ、ねじ状砥石Tの回転軸線Cに直交する方向から見た図である。図6(a)(b)に示すように、基準軸交差角θ1は、工作物W1の回転軸線B1とねじ状砥石Tの回転軸線Cとの軸交差角である。基準軸交差角θ1は、工作物W1の歯車の基準円上ねじれ角φwおよびねじ状砥石Tの基準円上ねじれ角φtに基づいて決定された軸交差角である。詳細には、工作物W1において研削される部位の歯すじ方向D_Trが、ねじ状砥石Tにおいて研削する凸刃の基準円上の刃すじ方向に一致する状態において、工作物W1の回転軸線B1とねじ状砥石Tの回転軸線Cとの軸交差角が、基準軸交差角θ1である。 FIGS. 6(a) and 6(b) are views seen from a direction orthogonal to the rotation axis B1 of the workpiece W1 and orthogonal to the rotation axis C of the threaded grindstone T. FIG. As shown in FIGS. 6A and 6B, the reference crossed axes angle θ1 is the crossed axes angle between the rotation axis B1 of the workpiece W1 and the rotation axis C of the threaded grindstone T. As shown in FIGS. The reference crossed axis angle θ1 is a crossed axis angle determined based on the torsion angle φw of the gear of the workpiece W1 on the reference circle and the torsion angle φt of the threaded grindstone T on the reference circle. Specifically, in a state in which the tooth trace direction D_Tr of the portion to be ground on the workpiece W1 coincides with the blade trace direction on the reference circle of the convex blade ground by the threaded grindstone T, the rotational axis B1 of the workpiece W1 and The crossed-axis angle between the threaded grindstone T and the rotation axis C is the reference crossed-axis angle θ1.
 仮に、基準軸交差角θ1に設定した状態で、工作物W1の歯車の歯面をねじ状砥石Tにより研削した場合には、図6(b)(c)に示すように、工作物W1の一方歯面における研削点P1aおよび他方歯面における研削点P1bが、ねじ状砥石Tにより研削される状態となる。図6(b)に示す方向に投影した場合において、研削点P1a,P1bは、ねじ状砥石Tの回転軸線C上に位置する。また、図6(c)に示す方向に投影した場合において、研削点P1a,P1bは、Xt,Xw上に位置する。 If the tooth flank of the gear of the workpiece W1 is ground by the threaded grindstone T in a state where the reference axis crossing angle θ1 is set, as shown in FIGS. A grinding point P1a on one tooth flank and a grinding point P1b on the other tooth flank are ground by the threaded grindstone T. As shown in FIG. The grinding points P1a and P1b are positioned on the rotational axis C of the threaded grindstone T when projected in the direction shown in FIG. Also, when projected in the direction shown in FIG. 6(c), the grinding points P1a and P1b are positioned on Xt and Xw.
 図6(c)に示すように、研削点P1a,P1bにおいて、ねじ状砥石TはC軸回りに回転するため、ねじ状砥石Tの凸刃の砥粒は、C軸回りに回転する。従って、研削点P1a,P1bにおいて、ねじ状砥石Tの凸刃の砥粒は、図6(c)における真上方向に移動する状態となる。 As shown in FIG. 6(c), the threaded grindstone T rotates around the C-axis at the grinding points P1a and P1b, so the abrasive grains of the convex edge of the threaded grindstone T rotate around the C-axis. Therefore, at the grinding points P1a and P1b, the abrasive grains of the convex blade of the threaded grindstone T move upward in FIG. 6(c).
 研削点P1a,P1bのそれぞれにおいて、ねじ状砥石Tの凸刃の砥粒の移動方向ベクトルをV1a,V1bと表す。そして、図6(c)に示すように、ねじ状砥石Tの軸方向から見た場合(ねじ状砥石Tの軸方向に投影した場合)において、工作物W1の歯車の歯すじ方向D_Trと、ねじ状砥石Tの凸刃上の研削点P1a,P1bにおけるねじ状砥石Tの回転による速度ベクトル(図6(c)のV1a,V1bの紙面上成分)とは、一致する。換言すると、工作物W1の歯面を表す作用平面上に投影した場合に、工作物W1の歯車の歯すじ方向D_Trの当該作用平面上成分と、研削点P1a,P1bにおけるねじ状砥石Tの回転による速度ベクトルの当該作用平面上成分とは、一致する。 At the grinding points P1a and P1b, respectively, the moving direction vectors of the abrasive grains of the convex blade of the threaded grindstone T are expressed as V1a and V1b. Then, as shown in FIG. 6(c), when viewed from the axial direction of the threaded grindstone T (when projected in the axial direction of the threaded grindstone T), the tooth trace direction D_Tr of the gear of the workpiece W1, The velocity vectors (components of V1a and V1b on the paper in FIG. 6(c)) due to the rotation of the threaded grindstone T at the grinding points P1a and P1b on the convex blade of the threaded grindstone T match. In other words, when projected onto the working plane representing the tooth surface of the workpiece W1, the component of the tooth trace direction D_Tr of the gear of the workpiece W1 on the working plane and the rotation of the threaded grindstone T at the grinding points P1a and P1b The component on the plane of action of the velocity vector by
 拡大した図7(a)には、工作物W1の一方歯面における研削点P1aにおいて、ねじ状砥石Tの凸刃の砥粒の移動方向ベクトルV1aを示す。そして、図7(b)(c)に示すように、工作物W1の一方歯面において、ねじ状砥石Tの凸刃の砥粒による研削条痕Gr_W1が形成される。つまり、研削条痕Gr_W1は、工作物W1の歯面の歯すじ方向D_Trにほぼ平行に形成される。ただし、研削条痕Gr_W1は、詳細には、直線状ではなく、多数の微小角度の円弧状により構成されるが、全体として、歯すじ方向D_Trにほぼ平行である。従って、基準軸交差角θ1は、ねじ状砥石Tにより工作物W1の歯車の歯面に形成される研削条痕Gr_W1を、歯すじ方向D_Trに平行な方向に形成するための軸交差角と言える。 FIG. 7(a), which is enlarged, shows the movement direction vector V1a of the abrasive grains of the convex blade of the threaded grindstone T at the grinding point P1a on one tooth surface of the workpiece W1. Then, as shown in FIGS. 7B and 7C, grinding streaks Gr_W1 are formed by the abrasive grains of the convex edge of the threaded grindstone T on one tooth surface of the workpiece W1. That is, the grinding streak Gr_W1 is formed substantially parallel to the tooth trace direction D_Tr of the tooth surface of the workpiece W1. However, in detail, the grinding streak Gr_W1 is not linear, but is composed of a large number of small-angle arcs, but as a whole, it is substantially parallel to the tooth trace direction D_Tr. Therefore, the reference crossed axis angle θ1 can be said to be the crossed axis angle for forming the grinding streak Gr_W1 formed on the tooth surface of the gear of the workpiece W1 by the threaded grindstone T in a direction parallel to the tooth trace direction D_Tr. .
 図5に戻り説明する。基準軸交差角θ1が決定されると(S3)、続いて、補正軸交差角Δθを決定する(S4)。補正軸交差角Δθは、図4(a)に示したように、ねじ状砥石Tにより工作物Wにおける歯車の歯面に形成される研削条痕Gr1を、歯すじ方向D_Trに対して所定角度Σを傾斜させた方向に形成するための軸交差角である。 Return to Figure 5 for explanation. After the reference crossed axis angle θ1 is determined (S3), the corrected crossed axis angle Δθ is determined (S4). As shown in FIG. 4A, the corrected crossed axis angle Δθ is such that the grinding streak Gr1 formed on the tooth flank of the gear of the workpiece W by the threaded grindstone T is set at a predetermined angle with respect to the tooth trace direction D_Tr. It is the crossed axis angle for forming Σ in the tilted direction.
 補正軸交差角Δθについて、図8および図9を参照して説明する。図8(a)(b)に示すように、補正軸交差角Δθは、基準軸交差角θ1に対して、さらに追加で付与する軸交差角である。つまり、補正軸交差角Δθが追加で付与されることで、工作物W2の回転軸線B2とねじ状砥石Tの回転軸線Cとの軸交差角は、基準軸交差角θ1と補正軸交差角Δθとを合成した合成軸交差角θ2となる。なお、補正軸交差角Δθは、正値の場合も、負値の場合もある。 The corrected axis crossing angle Δθ will be described with reference to FIGS. 8 and 9. FIG. As shown in FIGS. 8A and 8B, the corrected crossed axes angle Δθ is an additional crossed axes angle to the reference crossed axes angle θ1. In other words, by additionally providing the corrected crossed axes angle Δθ, the crossed axes angle between the rotation axis B2 of the workpiece W2 and the rotation axis C of the threaded grinding wheel T becomes equal to the reference crossed axes angle θ1 and the corrected crossed axes angle Δθ . Note that the corrected axis crossing angle Δθ may be a positive value or a negative value.
 そして、基準軸交差角θ1に補正軸交差角Δθが付加された合成軸交差角θ2に設定した状態で、工作物W1の歯車の歯面をねじ状砥石Tにより研削した場合には、図8(b)(c)に示すように、工作物W2の一方歯面における研削点P2aおよび他方歯面における研削点P2bが、ねじ状砥石Tにより研削される状態となる。図8(b)に示す方向に投影した場合において、研削点P2aは、ねじ状砥石Tの回転軸線Cより上方に位置し、研削点P2bは、ねじ状砥石Tの回転軸線Cより下方に位置する。また、図8(c)に示す方向に投影した場合において、研削点P2aは、Xt,Xwより上方に位置し、研削点P2bは、Xt,Xwよりも下方に位置する。 Then, when the tooth flank of the gear of the workpiece W1 is ground by the threaded grindstone T in a state where the composite crossed axes angle θ2 obtained by adding the corrected crossed axes angle Δθ to the reference crossed axes angle θ1 is set, FIG. As shown in (b) and (c), the grinding point P2a on one tooth surface and the grinding point P2b on the other tooth surface of the workpiece W2 are ground by the threaded grindstone T. As shown in FIG. When projected in the direction shown in FIG. 8B, the grinding point P2a is positioned above the rotation axis C of the threaded grindstone T, and the grinding point P2b is positioned below the rotation axis C of the threaded grindstone T. do. When projected in the direction shown in FIG. 8C, the grinding point P2a is located above Xt and Xw, and the grinding point P2b is located below Xt and Xw.
 図8(c)に示すように、研削点P2a,P2bにおいて、ねじ状砥石TはC軸回りに回転するため、ねじ状砥石Tの凸刃の砥粒は、C軸回りに回転する。従って、研削点P2aにおいて、ねじ状砥石Tの凸刃の砥粒は、図8(c)における右上方向に移動する状態となる。一方、研削点P2bにおいて、ねじ状砥石Tの凸刃の砥粒は、図8(c)における左上方向に移動する状態となる。 As shown in FIG. 8(c), the threaded grindstone T rotates around the C-axis at the grinding points P2a and P2b, so the abrasive grains on the convex edge of the threaded grindstone T rotate around the C-axis. Therefore, at the grinding point P2a, the abrasive grains of the convex edge of the threaded grindstone T move in the upper right direction in FIG. 8(c). On the other hand, at the grinding point P2b, the abrasive grains of the convex edge of the threaded grindstone T move leftward in FIG. 8(c).
 研削点P2a,P2bのそれぞれにおいて、ねじ状砥石Tの凸刃の砥粒の移動方向ベクトルをV2a,V2bと表す。図8(c)に示すように、ねじ状砥石Tの軸方向から見た場合(ねじ状砥石Tの軸方向に投影した場合)において、工作物W2の歯車の歯すじ方向D_Trとねじ状砥石Tの凸刃上の研削点P2a,P2bにおけるねじ状砥石Tの回転による速度ベクトル(図8(c)のV2a,V2bの紙面上成分)とは、角度α,βを有する。換言すると、工作物W2の歯面を表す作用平面上に投影した場合に、工作物W2の歯車の歯すじ方向D_Trの当該作用平面上成分と、研削点P2a,P2bにおけるねじ状砥石Tの回転による速度ベクトルの当該作用平面上成分とは、角度を有する。 At the grinding points P2a and P2b, respectively, the moving direction vectors of the abrasive grains of the convex blade of the threaded grindstone T are expressed as V2a and V2b. As shown in FIG. 8C, when viewed from the axial direction of the threaded grindstone T (when projected in the axial direction of the threaded grindstone T), the tooth trace direction D_Tr of the gear of the workpiece W2 and the threaded grindstone The velocity vectors (components of V2a and V2b on the paper surface of FIG. 8(c)) due to the rotation of the threaded grindstone T at the grinding points P2a and P2b on the convex edge of T have angles α and β. In other words, when projected onto the working plane representing the tooth surface of the workpiece W2, the component of the tooth trace direction D_Tr of the gear of the workpiece W2 on the working plane and the rotation of the threaded grindstone T at the grinding points P2a and P2b The component on the plane of action of the velocity vector by has an angle.
 拡大した図9(a)には、工作物W2の一方歯面における研削点P2aにおいて、ねじ状砥石Tの凸刃の砥粒の移動方向ベクトルV2aを示す。そして、図9(b)(c)に示すように、工作物W2の一方歯面において、ねじ状砥石Tの凸刃の砥粒による研削条痕Gr_W2が形成される。つまり、研削条痕Gr_W2は、工作物W2の歯面の歯すじ方向D_Trに対して所定角度Σを傾斜させた方向に形成される。ただし、研削条痕Gr_W2は、詳細には、直線状ではなく、多数の微小角度の円弧状により構成されるが、全体として、歯すじ方向D_Trに対して所定角度Σを傾斜させた方向に形成される。従って、補正軸交差角Δθは、ねじ状砥石Tにより工作物W1の歯車の歯面に形成される研削条痕Gr_W2を、歯すじ方向D_Trに対して所定角度Σを傾斜させた方向に形成するための軸交差角と言える。 FIG. 9(a), which is enlarged, shows the movement direction vector V2a of the abrasive grains of the convex edge of the threaded grindstone T at the grinding point P2a on one tooth surface of the workpiece W2. Then, as shown in FIGS. 9B and 9C, grinding streaks Gr_W2 are formed by the abrasive grains of the convex edge of the threaded grindstone T on one tooth surface of the workpiece W2. That is, the grinding streaks Gr_W2 are formed in a direction inclined by a predetermined angle Σ with respect to the tooth trace direction D_Tr of the tooth surface of the workpiece W2. However, although the grinding streaks Gr_W2 are not straight lines but consist of arcs with a large number of small angles, as a whole they are formed in a direction inclined at a predetermined angle Σ with respect to the tooth trace direction D_Tr. be done. Therefore, the corrected crossed axis angle Δθ forms grinding streaks Gr_W2 formed on the tooth surface of the gear of the workpiece W1 by the threaded grindstone T in a direction inclined by a predetermined angle Σ with respect to the tooth trace direction D_Tr. It can be said that it is the crossed axis angle for
 図9(c)に示すように、工作物W2の歯車の一方の歯面における研削条痕Gr_W2は、歯すじ方向D_Trに対して正の所定角度Σを傾斜させた方向に形成される。図示しないが、工作物W2の歯車の他方の歯面における研削条痕Gr_W2は、歯すじ方向D_Trに対して負の所定角度(-Σ)を傾斜させた方向に形成される。 As shown in FIG. 9(c), the grinding streak Gr_W2 on one tooth surface of the gear of the workpiece W2 is formed in a direction inclined by a predetermined positive angle Σ with respect to the tooth trace direction D_Tr. Although not shown, the grinding streak Gr_W2 on the other tooth surface of the gear of the workpiece W2 is formed in a direction inclined at a predetermined negative angle (−Σ) with respect to the tooth trace direction D_Tr.
 補正軸交差角Δθの決定方法、すなわち補正軸交差角決定工程S4の詳細について、図5、図10~図12を参照して説明する。まず、図5に示すように、仮補正軸交差角Δθ’を決定する(S41)。最初に決定される仮補正軸交差角Δθ’は、任意の値であって、補正軸交差角Δθを決定するための初期値となる。 The method of determining the corrected crossed axes angle Δθ, that is, the details of the corrected crossed axes angle determination step S4 will be described with reference to FIGS. 5 and 10 to 12. FIG. First, as shown in FIG. 5, a provisional corrected crossed axis angle Δθ' is determined (S41). The temporarily corrected crossed-axis angle Δθ' that is determined first is an arbitrary value, and serves as an initial value for determining the corrected crossed-axis angle Δθ.
 続いて、図5および図10に示すように、工作物W2をB2軸回りに回転させた場合に、工作物W2の歯車の歯面上の研削点P2の速度ベクトルGmのうち歯面の法線成分ベクトルGv(歯面法線成分ベクトルと称する)を算出する(S42)。ここで、研削点P2は、工作物W2の歯面上の歯すじ方向D_Trに直交する断面において、離散的な複数の点として設定される。複数の研削点P2は、図10において、白丸および黒丸にて示す点である。また、図10において、速度ベクトルGmおよび法線成分ベクトルGvは、黒丸の研削点P2についてのものを示す。 Subsequently, as shown in FIGS. 5 and 10, when the workpiece W2 is rotated around the B2 axis, the velocity vector Gm of the grinding point P2 on the tooth surface of the gear of the workpiece W2, the tooth surface A line component vector Gv (referred to as a tooth surface normal component vector) is calculated (S42). Here, the grinding points P2 are set as a plurality of discrete points on a cross section perpendicular to the tooth trace direction D_Tr on the tooth surface of the workpiece W2. The plurality of grinding points P2 are points indicated by white circles and black circles in FIG. Also, in FIG. 10, the velocity vector Gm and the normal component vector Gv are for the grinding point P2 indicated by the black circle.
 続いて、補正軸交差角Δθとして仮補正軸交差角Δθ’を付与する。つまり、基準軸交差角θ1に仮補正軸交差角Δθ’を加算した仮合成軸交差角θ2’に設定した状態とする。ここで、図11に示すように、工作物W2に対してねじ状砥石Tを相対移動させた場合に、ねじ状砥石Tの凸刃上の点Pt’の速度ベクトル(砥石速度ベクトルと称する)をTm’とする。そして、図10に示す工作物W2の歯面上の研削点P2における歯面法線成分ベクトルGvと、図11に示すねじ状砥石Tの点Pt’の砥石速度ベクトルTm’のうち歯面法線成分ベクトルGvの方向の成分Tv’(砥石法線成分ベクトルと称する)を算出する。つまり、工作物W2における歯面法線成分ベクトルGvの方向と、ねじ状砥石Tにおける砥石法線成分ベクトルTv’の方向とは、一致することになる。そして、工作物W2における歯面法線成分ベクトルGvの大きさと、ねじ状砥石Tにおける砥石法線成分ベクトルTv’の大きさとが一致するときのねじ状砥石Tの凸刃上の点Pt’を求める。求めた凸刃上の点Pt’を仮砥石点Pt’とする(S43)。 Subsequently, a provisional corrected crossed axes angle Δθ' is given as the corrected crossed axes angle Δθ. In other words, a state is set in which the provisional composite crossed axes angle θ2′ is obtained by adding the provisional corrected crossed axes angle Δθ′ to the reference crossed axes angle θ1. Here, as shown in FIG. 11, when the threaded grindstone T is moved relative to the workpiece W2, the velocity vector (referred to as grindstone velocity vector) of the point Pt' on the convex edge of the threaded grindstone T is be Tm'. Then, between the tooth surface normal component vector Gv at the grinding point P2 on the tooth surface of the workpiece W2 shown in FIG. A component Tv′ in the direction of the line component vector Gv (referred to as a grindstone normal component vector) is calculated. In other words, the direction of the tooth surface normal component vector Gv in the workpiece W2 and the direction of the grindstone normal component vector Tv' in the threaded grindstone T match. Then, a point Pt' on the convex edge of the threaded grindstone T when the magnitude of the tooth surface normal vector Gv on the workpiece W2 and the grindstone normal vector Tv' on the threaded grindstone T match is determined as follows: demand. The obtained point Pt' on the protruding edge is set as the temporary grindstone point Pt' (S43).
 続いて、図5および図11に示すように、ねじ状砥石Tの凸刃の接線ベクトルTh’を算出する(S44)。詳細には、S43にて仮砥石点Pt’が求まることにより、図11の二点鎖線にて示すように、ねじ状砥石Tの凸刃の歯直角断面形状が決定される。そして、ねじ状砥石Tの凸刃上の仮砥石点Pt’の砥石速度ベクトルをTm’のうち、凸刃の歯直角断面に直交する方向のベクトルである接線ベクトルTh’を算出する。この接線ベクトルTh’は、図9(a)に示すねじ状砥石Tの凸刃の砥粒の移動方向ベクトルV2aに相当する。 Subsequently, as shown in FIGS. 5 and 11, the tangent vector Th' of the convex blade of the threaded grindstone T is calculated (S44). Specifically, the normal cross-sectional shape of the convex edge of the threaded grindstone T is determined by obtaining the temporary grindstone point Pt' in S43, as indicated by the chain double-dashed line in FIG. Then, out of the grinding wheel speed vector Tm' at the temporary grinding wheel point Pt' on the convex edge of the threaded grinding wheel T, the tangential vector Th', which is the vector in the direction orthogonal to the perpendicular cross section of the convex edge, is calculated. This tangential vector Th' corresponds to the moving direction vector V2a of the abrasive grains of the convex blade of the threaded grindstone T shown in FIG. 9(a).
 続いて、工作物W2の歯面上の所定の研削点P2(例えば、歯たけの中央の点)におけるねじ状砥石Tの接線ベクトルTh’が予め設定した目標研削条痕Gr_W2の方向に一致するか否かを判定する(S45)。このとき、噛み合いの進行方向角度と比較する場合には、工作物W2の歯面を表す作用平面上に接線ベクトルTh’を投影し、作用平面上の角度と比較する。 Next, whether the tangential vector Th' of the threaded grindstone T at a predetermined grinding point P2 (for example, the central point of the tooth depth) on the tooth surface of the workpiece W2 matches the direction of the preset target grinding streak Gr_W2. It is determined whether or not (S45). At this time, when comparing with the advancing direction angle of engagement, the tangential vector Th' is projected onto the action plane representing the tooth surface of the workpiece W2, and compared with the angle on the action plane.
 接線ベクトルTh’が目標研削条痕Gr_W2の方向に一致すると判定された場合(S45:Yes)、仮砥石点Pt’を砥石形状点Ptと決定し、かつ、一致するときの仮補正軸交差角Δθ’を補正軸交差角Δθと決定する(S46)。一方、接線ベクトルTh’が目標研削条痕Gr_W2の方向に一致しないと判定された場合(S45:No)、S41に戻り、新たな仮補正軸交差角Δθ’を決定し、S42以降の処理を行う。 If it is determined that the tangential vector Th' matches the direction of the target grinding streak Gr_W2 (S45: Yes), the provisional wheel point Pt' is determined as the wheel shape point Pt, and the provisional correction crossed axis angle when they match. Δθ' is determined as the corrected crossed axis angle Δθ (S46). On the other hand, if it is determined that the tangential vector Th' does not match the direction of the target grinding streak Gr_W2 (S45: No), the process returns to S41 to determine a new provisional correction crossed axis angle Δθ', and the processing from S42 onwards is performed. conduct.
 つまり、補正軸交差角決定工程S4では、工作物W2の歯面上の所定の研削点P2(例えば、歯たけの中央の点)におけるねじ状砥石Tの接線ベクトルTh’が目標研削条痕Gr_W2の方向に一致することになる仮補正軸交差角Δθ’を見つけ出す。そして、補正軸交差角決定工程S4による処理では、図10に示すように、工作物W2の歯面上における複数の研削点P2について同様の処理を行い、全ての研削点P2に対応する砥石形状点Ptが決定される。 That is, in the correction crossed axis angle determination step S4, the tangent vector Th' of the threaded grindstone T at a predetermined grinding point P2 (for example, the central point of the tooth depth) on the tooth surface of the workpiece W2 is the target grinding streak Gr_W2. Find the temporary corrected crossed axis angle Δθ' that will match the direction. Then, in the process of the corrected crossed axis angle determination step S4, as shown in FIG. 10, the same process is performed for a plurality of grinding points P2 on the tooth surface of the workpiece W2, and the grindstone shape corresponding to all the grinding points P2 is determined. A point Pt is determined.
 続いて、図5に示すように、S3にて決定された基準軸交差角θ1に、S4にて決定された補正軸交差角Δθを合成した合成軸交差角θ2を決定する(S5)。 Subsequently, as shown in FIG. 5, a combined crossed axes angle θ2 is determined by combining the reference crossed axes angle θ1 determined in S3 and the corrected crossed axes angle Δθ determined in S4 (S5).
 続いて、図5に示すように、工作物W2の回転軸線B2とねじ状砥石Tの回転軸線Cとの軸交差角を合成軸交差角θ2とした状態において、複数の砥石形状点Ptに基づいて、ねじ状砥石Tの凸刃形状を決定する(S6)。具体的には、図12に示すように、工作物W2の歯車の歯面の各研削点P2に対応する砥石形状点Ptに基づいて、ねじ状砥石Tの凸刃の断面形状を決定する。 Subsequently, as shown in FIG. 5, in a state where the crossed-axis angle between the rotation axis B2 of the workpiece W2 and the rotation axis C of the threaded grindstone T is set to a combined crossed-axis angle θ2, based on a plurality of grindstone shape points Pt, to determine the shape of the convex edge of the threaded grindstone T (S6). Specifically, as shown in FIG. 12, the cross-sectional shape of the convex blade of the threaded grindstone T is determined based on the grindstone shape points Pt corresponding to the respective grinding points P2 on the tooth surface of the gear of the workpiece W2.
 ところで、仮に、補正軸交差角Δθがゼロの場合、すなわち、図6および図7に示すような工作物W1の回転軸線B1とねじ状砥石Tの回転軸線Cとの軸交差角を基準軸交差角θ1とした場合には、ねじ状砥石Tの凸刃の断面形状は、図13に示す形状となる。つまり、工作物W1の歯車の歯面の各研削点P1に対応する砥石形状点Ptが決定され、砥石形状点Ptに基づいて、ねじ状砥石Tの凸刃の断面形状が決定される。 By the way, if the corrected crossed axes angle Δθ is zero, that is, the crossed axes angle between the rotation axis B1 of the workpiece W1 and the rotation axis C of the threaded grindstone T as shown in FIGS. When the angle is θ1, the cross-sectional shape of the convex edge of the threaded grindstone T becomes the shape shown in FIG. That is, the grindstone shape point Pt corresponding to each grinding point P1 on the tooth surface of the gear of the workpiece W1 is determined, and the cross-sectional shape of the convex blade of the threaded grindstone T is determined based on the grindstone shape point Pt.
 図12に示す補正軸交差角Δθを考慮した場合のねじ状砥石Tの凸刃の断面形状は、図13に示す補正軸交差角Δθを考慮しない場合のねじ状砥石Tの凸刃の断面形状に比べて、幅(図12および図13の左右方向幅)が小さくなり、かつ、突出量(図12および図13の上下方向高さ)が大きくなることが分かる。 The cross-sectional shape of the convex blade of the threaded grindstone T when the corrected crossed axis angle Δθ shown in FIG. 12 and 13) is smaller and the amount of protrusion (vertical height in FIGS. 12 and 13) is larger.
 以上説明したように、研削条件決定部8により、基準軸交差角θ1および補正軸交差角Δθが決定され、決定された基準軸交差角θ1と補正軸交差角Δθとを合成することにより合成軸交差角θ2が研削条件の1つとして決定される。さらに、研削条件決定部8により、ねじ状砥石Tの凸刃形状が研削条件の1つとして決定される。そして、決定されたねじ状砥石Tの凸刃は、工作物W2における歯車の両方の歯面を同時に研削可能に構成されている。 As described above, the grinding condition determining section 8 determines the reference crossed axis angle θ1 and the corrected crossed axis angle Δθ, and combines the determined reference crossed axis angle θ1 and the corrected crossed axis angle Δθ to obtain the synthetic axis. The intersection angle θ2 is determined as one of the grinding conditions. Further, the grinding condition determination unit 8 determines the convex blade shape of the threaded grindstone T as one of the grinding conditions. Then, the determined convex blade of the threaded grindstone T is configured so as to be able to grind both tooth flanks of the gear on the workpiece W2 at the same time.
5.研削処理部9による処理
 研削処理部9による処理(研削工程Sb)について説明する。研削処理部9は、研削条件決定部8により決定された研削条件を適用して、工作物Wの歯車の歯面を、ねじ状砥石Tにより研削する。
5. Processing by Grinding Processing Unit 9 Processing by the grinding processing unit 9 (grinding process Sb) will be described. The grinding processing unit 9 applies the grinding conditions determined by the grinding condition determination unit 8 and grinds the tooth flank of the gear of the workpiece W with the threaded grindstone T. As shown in FIG.
 研削処理部9は、図8(a)(b)(c)に示すように、はすば歯車である工作物W2と、ねじ状砥石Tとを位置決めする。工作物W2の回転軸線B2とねじ状砥石Tの回転軸線Cとの軸交差角は、合成軸交差角θ2に設定される。そして、工作物W2およびねじ状砥石Tを同期回転させて、ねじ状砥石Tを工作物W2の回転軸線B2に平行な方向に相対移動する。 The grinding processing unit 9 positions the workpiece W2, which is a helical gear, and the threaded grindstone T, as shown in FIGS. The crossed-axis angle between the rotation axis B2 of the workpiece W2 and the rotation axis C of the threaded grindstone T is set to the combined crossed-axis angle θ2. Then, the workpiece W2 and the threaded grindstone T are rotated synchronously, and the threaded grindstone T is relatively moved in a direction parallel to the rotation axis B2 of the workpiece W2.
 そうすると、図8(b)に示すように、ねじ状砥石Tにより、工作物W2における歯車の両方の歯面を同時に研削する。図9(b)(c)に示すように、研削された工作物W2の歯面には、ねじ状砥石Tによる研削条痕Gr_W2が形成される。形成される研削条痕Gr_W2は、歯すじ方向D_Trに対して、所定角度Σを傾斜させた方向に形成される。特に、形成される研削条痕Gr_W2の延在方向は、工作物W2の歯面における噛み合い進行方向D_Laに一致する。つまり、所定角度Σは、工作物W2としての従動歯車Gb(図3に示す)の歯面の歯すじ方向D_Trと、相手歯車である駆動歯車Gaによる噛み合い進行方向D_Laとのなす角度に設定されている。これにより、噛み合いノイズを低減することができる。 Then, as shown in FIG. 8(b), the threaded grindstone T simultaneously grinds both tooth flanks of the gear on the workpiece W2. As shown in FIGS. 9B and 9C, grinding streaks Gr_W2 are formed by the threaded grindstone T on the tooth surface of the ground workpiece W2. Grinding streaks Gr_W2 to be formed are formed in a direction inclined by a predetermined angle Σ with respect to the tooth trace direction D_Tr. In particular, the extending direction of the grinding streak Gr_W2 that is formed coincides with the mesh advancing direction D_La on the tooth surface of the workpiece W2. That is, the predetermined angle Σ is set to the angle formed by the tooth trace direction D_Tr of the tooth surface of the driven gear Gb (shown in FIG. 3) serving as the workpiece W2 and the mesh advancing direction D_La of the drive gear Ga serving as the mating gear. ing. As a result, meshing noise can be reduced.
6.効果
 本形態によれば、ねじ状砥石Tを用いて工作物W2の歯車の歯面を研削する場合において、工作物W2の回転軸線B2とねじ状砥石Tの回転軸線Cとの軸交差角が設定される。工作物W2の歯車の基準円上ねじれ角φwとねじ状砥石Tの基準円上ねじれ角φtとにより得られる軸交差角を基準軸交差角θ1とする。本形態では、工作物W2の歯車は、はすば歯車である。従って、工作物W2の歯車の基準円上ねじれ角φwが0°でない。この場合には、基準軸交差角θ1は、ねじ状砥石Tの基準円上ねじれ角φtに対して、工作物W2の歯車の基準円上ねじれ角φwを考慮した角度となる。
6. Effect According to this embodiment, when grinding the tooth surface of the gear of the workpiece W2 using the threaded grindstone T, the crossed axis angle between the rotation axis B2 of the workpiece W2 and the rotation axis C of the threaded grindstone T is set. The crossed axes angle obtained by the torsion angle φw of the gear of the workpiece W2 on the reference circle and the torsion angle φt on the reference circle of the threaded grindstone T is defined as the reference crossed axes angle θ1. In this embodiment, the gear of workpiece W2 is a helical gear. Therefore, the helix angle φw on the reference circle of the gear of the workpiece W2 is not 0°. In this case, the reference axis crossing angle θ1 is an angle that takes into account the torsion angle φw of the gear of the workpiece W2 with respect to the torsion angle φt of the threaded grindstone T on the reference circle.
 仮に、図6および図7に示すように、軸交差角を基準軸交差角θ1に設定して工作物W1の歯車の歯面の研削を行うと、ねじ状砥石Tにより工作物W1の歯車の歯面に形成される研削条痕Gr_W1は、歯面の歯すじ方向D_Trに平行な方向となる。そこで、本形態では、図8および図9に示すように、工作物W2の回転軸線B2とねじ状砥石Tの回転軸線Cとの軸交差角を、基準軸交差角θ1と補正軸交差角Δθとを合成した合成軸交差角θ2としている。 Assuming that the crossed axes angle is set to the reference crossed axes angle θ1 as shown in FIGS. Grinding streaks Gr_W1 formed on the tooth surface are parallel to the tooth trace direction D_Tr of the tooth surface. Therefore, in this embodiment, as shown in FIGS. 8 and 9, the crossed axes angle between the rotation axis B2 of the workpiece W2 and the rotation axis C of the threaded grindstone T is defined as a reference crossed axes angle .theta.1 and a corrected crossed axes angle .DELTA..theta. is defined as a combined crossed axis angle θ2.
 補正軸交差角Δθは、ねじ状砥石Tにより工作物W2の歯車の歯面に形成される研削条痕Gr_W2を、歯すじ方向D_Trに対して所定角度Σを傾斜させた方向に形成するための軸交差角である。つまり、研削の際の軸交差角が、基準軸交差角θ1に補正軸交差角Δθを合成させた合成軸交差角θ2とすることにより、研削条痕Gr_W2が、歯すじ方向D_Trに平行な方向ではなく、歯すじ方向D_Trに傾斜した方向となる。 The corrected crossed axis angle Δθ is for forming the grinding streaks Gr_W2 formed on the tooth surface of the gear of the workpiece W2 by the threaded grindstone T in a direction inclined at a predetermined angle Σ with respect to the tooth trace direction D_Tr. is the crossed axis angle. That is, by setting the crossed axes angle during grinding to a synthetic crossed axes angle θ2 obtained by synthesizing the reference crossed axes angle θ1 and the corrected crossed axes angle Δθ, the grinding streaks Gr_W2 are aligned in a direction parallel to the tooth trace direction D_Tr. Instead, the direction is inclined toward the tooth trace direction D_Tr.
 研削条痕Gr_W2が歯すじ方向D_Trに傾斜した方向に形成することができるため、例えば、研削対象の歯車と相手歯車との噛み合いにおいて、研削対象の歯車の歯面における噛み合い進行方向D_Laに、研削条痕Gr_W2の延在する方向を一致させることができる。両方向が一致する場合には、歯車の噛み合いの進行において、相手歯車Gaが歯面の研削条痕Gr_W2を乗り越える動作が生じることはない。研削条痕Gr_W2の乗り越え動作が生じないことにより、歯車の噛み合いにおいて生じるノイズを低減することができる。 Since the grinding streaks Gr_W2 can be formed in a direction inclined in the tooth trace direction D_Tr, for example, in the meshing between the gear to be ground and the mating gear, the grinding is performed in the direction D_La of engagement on the tooth surface of the gear to be ground. The direction in which the streak Gr_W2 extends can be matched. When the two directions match, the mating gear Ga does not move over the grinding streak Gr_W2 on the tooth surface during the progress of gear meshing. Since the grinding streak Gr_W2 is not driven over, it is possible to reduce the noise generated in the meshing of the gears.
 また、研削条痕Gr_W2の延在する方向を噛み合い進行方向D_Laに一致させなくても、研削条痕Gr_W2の延在する方向を噛み合い進行方向D_Laに近づけることにより、研削条痕Gr_W2の乗り越え動作を低減させることができる。その結果、歯車の噛み合いにおいて生じるノイズを低減することができる。 Further, even if the direction in which the grinding streak Gr_W2 extends does not coincide with the meshing advancing direction D_La, by bringing the extending direction of the grinding streak Gr_W2 closer to the meshing advancing direction D_La, it is possible to overcome the grinding streak Gr_W2. can be reduced. As a result, it is possible to reduce the noise generated in the meshing of the gears.
 特に、工作物W2をはすば歯車とすることにより、研削条痕Gr_W2の延在する方向を噛み合い進行方向D_Laにほぼ一致させることが可能になる。従って、はすば歯車の噛み合いにおいて生じるノイズを低減することができる。 In particular, by using a helical gear as the workpiece W2, it is possible to make the direction in which the grinding streaks Gr_W2 extend substantially coincide with the mesh advancing direction D_La. Therefore, it is possible to reduce the noise generated in the meshing of the helical gears.
 以上より、追加加工を行うことなく、歯車の噛み合いにおいて歯車の歯面の段差の影響によるノイズを低減することができる。 As described above, it is possible to reduce noise due to the influence of the steps on the tooth surfaces of the gears in the meshing of the gears without additional machining.
 また、本形態では、図8に示すように、ねじ状砥石Tは、工作物W2における歯車の両方の歯面を同時に研削可能に構成されており、研削処理部9による研削工程Sbは、ねじ状砥石Tにより工作物W2における歯車の両方の歯面を同時に研削する。そして、図9に示すように、工作物W2の歯車の一方の歯面における研削条痕Gr_W2は、歯すじ方向D_Trに対して正の所定角度Σを傾斜させた方向に形成される。一方、工作物W2の歯車の他方の歯面における研削条痕Gr_W2は、歯すじ方向D_Trに対して負の所定角度(-Σ)を傾斜させた方向に形成される。このように、研削条痕Gr_W2の方向が上記条件を満たす場合には、両方の歯面を同時に研削することができ、研削工数を低減できる。 In this embodiment, as shown in FIG. 8, the threaded grindstone T is configured to be able to grind both tooth flanks of the gear on the workpiece W2 at the same time. Both tooth flanks of the gear on the workpiece W2 are ground simultaneously by the shaped grindstone T. Then, as shown in FIG. 9, the grinding streaks Gr_W2 on one tooth surface of the gear of the workpiece W2 are formed in a direction inclined at a predetermined positive angle Σ with respect to the tooth trace direction D_Tr. On the other hand, the grinding streaks Gr_W2 on the other tooth surface of the gear of the workpiece W2 are formed in a direction inclined at a predetermined negative angle (−Σ) with respect to the tooth trace direction D_Tr. In this way, when the direction of the grinding streak Gr_W2 satisfies the above conditions, both tooth flanks can be ground at the same time, and the number of grinding steps can be reduced.
(実施形態2)
 実施形態1においては、工作物Wが、ねじれ角φwを有するはすば歯車として説明した。この他に、工作物Wは、図14に示すように、平歯車を対象とすることもできる。工作物Wが平歯車の場合には、基準円上ねじれ角が0°となる。そして、図14に示すように、平歯車である工作物Wにおいて、相手歯車の噛み合い進行方向D_Laは、歯たけ方向D_Hiに一致する。
(Embodiment 2)
In Embodiment 1, the workpiece W is described as a helical gear having a helix angle φw. Alternatively, the workpiece W can be a spur gear as shown in FIG. When the workpiece W is a spur gear, the torsion angle on the reference circle is 0°. Then, as shown in FIG. 14, in the workpiece W, which is a spur gear, the meshing advancing direction D_La of the mating gear coincides with the tooth depth direction D_Hi.
 仮に、研削条痕Gr_Wの延在方向が、歯すじ方向D_Trに平行に形成される場合、噛み合い点が研削条痕Gr_Wを乗り越える回数が多数となり、噛み合いノイズの発生の原因となる。そこで、図14に示すように、研削条痕Gr_Wの延在方向が、歯すじ方向D_Trに対して傾斜した角度であり、かつ、歯たけ方向D_Hiに対して傾斜した角度とされている。つまり、研削条痕Gr_Wの延在方向が、噛み合い進行方向D_Laに対して傾斜しているものの、直交よりは小さい角度を有する方向にされている。 If the extending direction of the grinding streaks Gr_W were formed parallel to the tooth trace direction D_Tr, the meshing points would cross over the grinding streaks Gr_W a large number of times, causing meshing noise. Therefore, as shown in FIG. 14, the extending direction of the grinding streaks Gr_W is set at an angle inclined with respect to the tooth trace direction D_Tr and at an angle inclined with respect to the tooth depth direction D_Hi. That is, the extending direction of the grinding streaks Gr_W is inclined with respect to the mesh advancing direction D_La, but has a smaller angle than orthogonal.
 ここで、実施形態1にて説明したように、研削条痕Gr_Wの延在方向が、噛み合い進行方向D_Laに一致させることで、噛み合い点が研削条痕Gr_Wを乗り越えることにより起因するノイズを大幅に低減できる。しかし、研削条痕Gr_Wは、歯たけ方向D_Hiに平行な方向に形成することはできない。そこで、研削条痕Gr_Wを、できるだけ噛み合い進行方向D_Laに近い方向に設定することとした。 Here, as described in the first embodiment, by making the extending direction of the grinding streaks Gr_W coincide with the mesh advancing direction D_La, the noise caused by the meshing points overcoming the grinding streaks Gr_W can be greatly reduced. can be reduced. However, the grinding streak Gr_W cannot be formed in a direction parallel to the tooth depth direction D_Hi. Therefore, the grinding streak Gr_W is set in a direction as close as possible to the mesh advancing direction D_La.
(実施形態3)
 上記実施形態においては、ねじ状砥石Tにより工作物Wにおける歯車の両方の歯面を同時に研削する場合を例に挙げた。この他に、ねじ状砥石Tは、工作物Wにおける歯車の片方の歯面のみを研削するように構成されるようにしても良い。ねじ状砥石Tは、図15に示すように形成される。つまり、ねじ状砥石Tの凸刃は、実施形態1にて決定したねじ状砥石Tの凸刃の片面のみを有する。
(Embodiment 3)
In the above embodiment, the case where both tooth flanks of the gear on the workpiece W are simultaneously ground by the threaded grindstone T is taken as an example. Alternatively, the threaded grindstone T may be configured to grind only one tooth flank of the gear on the workpiece W. The threaded grindstone T is formed as shown in FIG. That is, the convex blade of the threaded grindstone T has only one side of the convex blade of the threaded grindstone T determined in the first embodiment.
 実施形態1においては、工作物Wの両方の歯面を同時に研削することにより、一方の歯面における研削条痕Gr_W2の延在方向を決定すると、必然的に、他方の歯面における研削条痕Gr_W2の延在方向が決まってしまう。そこで、研削条痕Gr_W2の延在方向が、歯面のそれぞれで自由に設定するためには、図15に示すようなねじ状砥石Tを用いると良い。この場合、一方の歯面は、図15に示すねじ状砥石Tにより研削し、他方の歯面は、図示しないねじ状砥石により研削する。 In Embodiment 1, when the extending direction of the grinding streak Gr_W2 on one tooth flank is determined by grinding both tooth flanks of the workpiece W at the same time, the grinding streak Gr_W2 on the other tooth flank is inevitably ground. The extending direction of Gr_W2 is determined. Therefore, in order to freely set the extending direction of the grinding streak Gr_W2 on each tooth surface, it is preferable to use a threaded grindstone T as shown in FIG. In this case, one tooth flank is ground by a threaded grindstone T shown in FIG. 15, and the other tooth flank is ground by a threaded grindstone (not shown).

Claims (12)

  1.  ねじ状砥石(T)を用いて歯車(Gb1)の歯面を研削する歯車研削方法であって、
     工作物(W2)の回転軸線(B2)と前記ねじ状砥石の回転軸線(C)との軸交差角を基準軸交差角(θ1)と補正軸交差角(Δθ)とを合成した合成軸交差角(θ2)とし、前記ねじ状砥石および前記工作物を同期回転させ、前記ねじ状砥石を前記工作物の回転軸線に平行な方向に相対移動することにより前記歯車の歯面を研削する研削工程(Sb)を備え、
     前記基準軸交差角は、前記歯車の基準円上ねじれ角(φw)および前記ねじ状砥石の基準円上ねじれ角(φt)に基づいて決定された軸交差角であり、
     前記補正軸交差角は、前記ねじ状砥石により前記歯車の歯面に形成される研削条痕(Gr_W2)を、歯すじ方向(D_Tr)に対して所定角度(Σ)を傾斜させた方向に形成するための軸交差角である、歯車研削方法。
    A gear grinding method for grinding the tooth surface of a gear (Gb1) using a threaded grindstone (T),
    The crossed axes angle between the rotation axis (B2) of the workpiece (W2) and the rotation axis (C) of the threaded grindstone is a synthetic crossed axes obtained by synthesizing the reference crossed axes angle (θ1) and the corrected crossed axes angle (Δθ). A grinding step of grinding the tooth flank of the gear by setting the angle (θ2), rotating the threaded grindstone and the workpiece synchronously, and relatively moving the threaded grindstone in a direction parallel to the rotation axis of the workpiece. (Sb);
    The reference crossed axis angle is a crossed axis angle determined based on the torsion angle on the reference circle (φw) of the gear and the torsion angle on the reference circle (φt) of the threaded grindstone,
    The corrected crossed-axis angle forms grinding streaks (Gr_W2) formed on the tooth surface of the gear by the threaded grindstone in a direction that is inclined at a predetermined angle (Σ) with respect to the tooth trace direction (D_Tr). gear grinding method, which is the crossed axes angle for
  2.  前記基準軸交差角は、前記ねじ状砥石により前記歯車の歯面に形成される前記研削条痕を、歯すじ方向に平行な方向に形成するための軸交差角である、請求項1に記載の歯車研削方法。 2. The reference crossed axis angle according to claim 1, wherein the crossed axis angle is an angle for forming the grinding streaks formed on the tooth surface of the gear by the threaded grindstone in a direction parallel to the tooth trace direction. gear grinding method.
  3.  前記ねじ状砥石の軸方向から見た場合において、前記歯車の歯すじ方向と前記ねじ状砥石の凸刃上の研削点における前記ねじ状砥石の回転による速度ベクトルとは、角度を有する、請求項1または2に記載の歯車研削方法。 2. A speed vector due to the rotation of the threaded grindstone at a grinding point on the convex edge of the threaded grindstone and a tooth trace direction of the gear form an angle when viewed from the axial direction of the threaded grindstone. 3. The gear grinding method according to 1 or 2.
  4.  前記ねじ状砥石は、前記工作物における前記歯車の両方の歯面を同時に研削可能に構成され、
     前記歯車の一方の歯面における前記研削条痕は、前記歯すじ方向に対して正の所定角度を傾斜させた方向に形成され、
     前記歯車の他方の歯面における前記研削条痕は、前記歯すじ方向に対して負の所定角度を傾斜させた方向に形成され、
     前記研削工程は、前記ねじ状砥石により前記工作物における前記歯車の両方の歯面を同時に研削する、請求項1~3のいずれか1項に記載の歯車研削方法。
    The threaded grindstone is configured to be able to grind both tooth flanks of the gear in the workpiece at the same time,
    The grinding streaks on one tooth surface of the gear are formed in a direction inclined at a predetermined positive angle with respect to the tooth trace direction,
    The grinding streaks on the other tooth surface of the gear are formed in a direction inclined at a predetermined negative angle with respect to the tooth trace direction,
    The gear grinding method according to any one of claims 1 to 3, wherein in the grinding step, both tooth flanks of the gear on the workpiece are ground simultaneously with the threaded grindstone.
  5.  前記ねじ状砥石は、前記工作物における前記歯車の一方の歯面のみを研削可能に構成され、
     前記研削工程は、前記ねじ状砥石により前記工作物における前記歯車の一方の歯面のみを研削する、請求項1~3のいずれか1項に記載の歯車研削方法。
    The threaded grindstone is configured to be able to grind only one tooth surface of the gear in the workpiece,
    The gear grinding method according to any one of claims 1 to 3, wherein in the grinding step, the threaded grindstone grinds only one tooth surface of the gear on the workpiece.
  6.  前記ねじ状砥石の凸刃形状と前記合成軸交差角とを含む研削条件を決定する研削条件決定工程(Sa)と、
     決定された前記研削条件に基づいて、前記ねじ状砥石を用いて前記歯車の歯面を研削する前記研削工程(Sb)と、
     を備える、請求項1~5のいずれか1項に記載の歯車研削方法。
    a grinding condition determination step (Sa) for determining grinding conditions including the convex edge shape of the threaded grindstone and the combined crossed axis angle;
    the grinding step (Sb) of grinding the tooth surface of the gear using the threaded grindstone based on the determined grinding conditions;
    Gear grinding method according to any one of claims 1 to 5, comprising
  7.  前記研削条件決定工程(Sa)は、
      前記歯車の基準円上ねじれ角および前記ねじ状砥石の基準円上ねじれ角に基づいて、前記基準軸交差角を決定する基準軸交差角決定工程(S3)と、
      前記ねじ状砥石により前記工作物における前記歯車の歯面に形成される前記研削条痕を、歯すじ方向に対して前記所定角度を傾斜させた方向に形成するための前記補正軸交差角を決定する補正軸交差角決定工程(S4)と、
      前記工作物の回転軸線と前記ねじ状砥石の回転軸線との軸交差角を前記合成軸交差角とした状態において、前記ねじ状砥石の前記凸刃形状を決定する凸刃形状決定工程(S6)と、
     を備える、請求項6に記載の歯車研削方法。
    The grinding condition determination step (Sa) includes:
    a reference crossed axis angle determination step (S3) of determining the reference crossed axis angle based on the torsion angle on the reference circle of the gear and the torsion angle on the reference circle of the threaded grindstone;
    Determining the corrected crossed axis angle for forming the grinding streaks formed on the tooth surface of the gear in the workpiece by the threaded grindstone in a direction inclined at the predetermined angle with respect to the tooth trace direction. A correction crossed axis angle determination step (S4) for
    A convex blade shape determining step (S6) of determining the convex blade shape of the threaded grindstone in a state where the crossed axes angle between the rotation axis of the workpiece and the rotation axis of the threaded grindstone is the composite crossed axes angle. and,
    The gear grinding method according to claim 6, comprising:
  8.  前記補正軸交差角決定工程は、
      前記工作物を回転させた場合に、前記歯車の歯面上の研削点の速度ベクトルのうち前記歯面の法線成分ベクトルである歯面法線成分ベクトル(Gv)を算出し、
      前記補正軸交差角として仮補正軸交差角を設定し、かつ、前記工作物に対して前記ねじ状砥石を相対移動させた場合に、前記ねじ状砥石の前記凸刃上の仮砥石点(Pt’)の速度ベクトルのうち前記歯面法線成分ベクトルの方向の成分である砥石法線成分ベクトル(Tv’)を算出し、前記歯面法線成分ベクトルの大きさと前記砥石法線成分ベクトルの大きさとが一致するときの前記仮砥石点を決定し、
      決定された前記仮砥石点の速度ベクトルのうち前記凸刃の接線ベクトル(Th’)を算出し、
      前記接線ベクトルが予め設定した前記研削条痕の方向に一致するか否かを判定し、一致するときの前記仮砥石点を砥石形状点(Pt)と決定し、かつ、一致するときの前記仮補正軸交差角を前記補正軸交差角として決定し、
      決定された前記砥石形状点に基づいて、前記ねじ状砥石の前記凸刃形状を決定する、請求項7に記載の歯車研削方法。
    The corrected crossed axis angle determination step includes:
    calculating a tooth surface normal component vector (Gv), which is a normal component vector of the tooth surface of the speed vector of the grinding point on the tooth surface of the gear when the workpiece is rotated;
    When the provisional corrected crossed axes angle is set as the corrected crossed axes angle and the threaded grindstone is moved relative to the workpiece, the provisional grindstone point (Pt '), the grindstone normal component vector (Tv′), which is a component in the direction of the tooth surface normal component vector, is calculated, and the magnitude of the tooth surface normal component vector and the grindstone normal component vector Determine the temporary grinding wheel point when the size matches,
    calculating a tangent vector (Th') of the convex blade out of the velocity vectors of the determined temporary grinding wheel point;
    It is determined whether or not the tangential vector coincides with the direction of the grinding streak set in advance, and the temporary grindstone point when the tangential vector coincides is determined as the grindstone shape point (Pt), determining a corrected crossed axis angle as the corrected crossed axis angle;
    8. The gear grinding method according to claim 7, wherein the convex edge shape of the threaded grindstone is determined based on the determined grindstone shape point.
  9.  前記歯車は、はすば歯車であり、
     前記所定角度は、前記歯車の歯面の歯すじ方向と相手歯車による噛み合い進行方向とのなす角度に設定される、請求項1~8のいずれか1項に記載の歯車研削方法。
    the gear is a helical gear,
    The gear grinding method according to any one of claims 1 to 8, wherein the predetermined angle is set to an angle formed by a tooth trace direction of the tooth surface of the gear and a direction in which the mating gear meshes with the mating gear.
  10.  前記歯車は、平歯車であり、
     前記所定角度は、前記歯車の歯面の歯すじ方向に対して傾斜した角度であり、相手歯車による噛み合い進行方向に対して傾斜した角度に設定される、請求項1~8のいずれか1項に記載の歯車研削方法。
    the gear is a spur gear;
    The predetermined angle is an angle inclined with respect to the tooth trace direction of the tooth flank of the gear, and is set at an angle inclined with respect to the direction in which meshing with the mating gear progresses. Gear grinding method according to.
  11.  ねじ状砥石(T)を用いて歯車(Gb1)の歯面を研削する歯車研削装置(1)であって、
     工作物(W2)の回転軸線(B2)と前記ねじ状砥石の回転軸線(C)との軸交差角を基準軸交差角(θ1)と補正軸交差角(Δθ)とを合成した合成軸交差角(θ2)とし、前記ねじ状砥石および前記工作物を同期回転させ、前記ねじ状砥石を前記工作物の回転軸線に平行な方向に相対移動することにより前記歯車の歯面を研削する研削処理部(9)を備え、
     前記基準軸交差角は、前記歯車の基準円上ねじれ角(φw)および前記ねじ状砥石の基準円上ねじれ角(φt)に基づいて決定された軸交差角であり、
     前記補正軸交差角は、前記ねじ状砥石により前記歯車の歯面に形成される研削条痕(Gr_W2)を、歯すじ方向(D_Tr)に対して所定角度(Σ)を傾斜させた方向に形成するための軸交差角である、歯車研削装置。
    A gear grinding device (1) for grinding the tooth surface of a gear (Gb1) using a threaded grindstone (T),
    The crossed axes angle between the rotation axis (B2) of the workpiece (W2) and the rotation axis (C) of the threaded grindstone is a synthetic crossed axes obtained by synthesizing the reference crossed axes angle (θ1) and the corrected crossed axes angle (Δθ). A grinding process in which the angle (θ2) is set, the threaded grindstone and the workpiece are rotated synchronously, and the tooth surface of the gear is ground by relatively moving the threaded grindstone in a direction parallel to the rotation axis of the workpiece. comprising part (9),
    The reference crossed axis angle is a crossed axis angle determined based on the torsion angle on the reference circle (φw) of the gear and the torsion angle on the reference circle (φt) of the threaded grindstone,
    The corrected crossed-axis angle forms grinding streaks (Gr_W2) formed on the tooth surface of the gear by the threaded grindstone in a direction that is inclined at a predetermined angle (Σ) with respect to the tooth trace direction (D_Tr). gear grinding machine, which is the crossed axes angle for
  12.  前記ねじ状砥石の凸刃形状と前記合成軸交差角とを含む研削条件を決定する研削条件決定部(8)と、
     決定された前記研削条件に基づいて、前記ねじ状砥石を用いて前記歯車の歯面を研削する前記研削処理部(9)と、
     を備える、請求項11に記載の歯車研削装置。
    a grinding condition determination unit (8) that determines grinding conditions including the convex edge shape of the threaded grindstone and the combined crossed axis angle;
    the grinding processing section (9) for grinding the tooth surface of the gear using the threaded grindstone based on the determined grinding conditions;
    12. The gear grinding apparatus of claim 11, comprising:
PCT/JP2021/045442 2021-12-10 2021-12-10 Method for grinding gear and gear grinding device WO2023105733A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045442 WO2023105733A1 (en) 2021-12-10 2021-12-10 Method for grinding gear and gear grinding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045442 WO2023105733A1 (en) 2021-12-10 2021-12-10 Method for grinding gear and gear grinding device

Publications (1)

Publication Number Publication Date
WO2023105733A1 true WO2023105733A1 (en) 2023-06-15

Family

ID=86729944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045442 WO2023105733A1 (en) 2021-12-10 2021-12-10 Method for grinding gear and gear grinding device

Country Status (1)

Country Link
WO (1) WO2023105733A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888588A (en) * 1972-02-23 1973-11-20
US6481307B1 (en) * 1995-05-11 2002-11-19 Klingelnberg Gmbh Bevel gear pair
JP2015199193A (en) * 2014-04-09 2015-11-12 カップ ヴェルクゾイグマシーネン ゲー エム ベー ハーKAPP Werkzeugmaschinen GmbH Method for hard fine machining of workpiece with worm-shaped cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888588A (en) * 1972-02-23 1973-11-20
US6481307B1 (en) * 1995-05-11 2002-11-19 Klingelnberg Gmbh Bevel gear pair
JP2015199193A (en) * 2014-04-09 2015-11-12 カップ ヴェルクゾイグマシーネン ゲー エム ベー ハーKAPP Werkzeugmaschinen GmbH Method for hard fine machining of workpiece with worm-shaped cutting tool

Similar Documents

Publication Publication Date Title
US5823857A (en) Apparatus and method for precision grinding of face gears
JP6487435B2 (en) Method for machining a tooth edge and a machining station designed for this purpose
JP2994753B2 (en) Tool feed method in gear manufacturing process
EP2528705B1 (en) Continuous method for manufacturing face gears
US6602115B2 (en) Tool and method for precision grinding of a conical face gear that meshes with a conical involute pinion
JP6133131B2 (en) Internal gear grinding method
JP2994755B2 (en) How to change the screw type grinding wheel
JP6185615B2 (en) Workpiece machining method, gear manufacturing machine, computer system and power transmission device by oblique generation method
CN105156637B (en) A kind of oblique line flank of tooth gear driving pair and facewidth geometric design method
JP5705567B2 (en) Gear grinding method
JPH10230460A (en) Profile forming method for oblique hob grinding worm, disk profile forming tool for executing this method and device for executing this method
US20110275287A1 (en) Internal gear machining method
US20130260643A1 (en) Device and Method for Machining Bevel Gears Using an Eccentrically Moved Grinding Tool
WO2018039118A1 (en) Power skiving pressure angle correction without tool geometry change
JPH0775917A (en) Method for precision machining of gear surface of gear-like workpiece by tool with internal gear, tool with internal gear suitable for said method and finish working of said tool
CN105246631A (en) Swing motion for manufacturing non-generated bevel gears with end relief
JP5473735B2 (en) Dressing method for threaded grinding wheel for internal gear grinding
WO2023105733A1 (en) Method for grinding gear and gear grinding device
JP7304487B2 (en) GEAR MANUFACTURING DEVICE, GEAR MANUFACTURING METHOD AND THREADED TOOL USED THEREOF
JP2596715B2 (en) How to correct helical gear teeth
US20220402055A1 (en) Method of manufacturing a toothed bevel honing tool for honing a toothed bevel workpiece, a toothed bevel honing tool and method of honing bevel gears
JP3717052B2 (en) How to hob a curved tooth-gear gear
DE4231021A1 (en) Abrasive finishing of gear-teeth using helical rotor drive - involves pendular motion with radius and angle adjusted to determine relative displacement of edges of tool and machining wheel
JP2003266241A (en) Gear processing method, and tool shaping method
JP3321637B2 (en) How to cut pinion of hypoid gear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967229

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023565822

Country of ref document: JP