WO2023105610A1 - 情報処理装置、情報処理方法、およびプログラム - Google Patents

情報処理装置、情報処理方法、およびプログラム Download PDF

Info

Publication number
WO2023105610A1
WO2023105610A1 PCT/JP2021/044858 JP2021044858W WO2023105610A1 WO 2023105610 A1 WO2023105610 A1 WO 2023105610A1 JP 2021044858 W JP2021044858 W JP 2021044858W WO 2023105610 A1 WO2023105610 A1 WO 2023105610A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
learning data
classification
information processing
data elements
Prior art date
Application number
PCT/JP2021/044858
Other languages
English (en)
French (fr)
Inventor
ディネシュ ドルタニ
満 中澤
Original Assignee
楽天グループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天グループ株式会社 filed Critical 楽天グループ株式会社
Priority to PCT/JP2021/044858 priority Critical patent/WO2023105610A1/ja
Priority to JP2022561532A priority patent/JP7445782B2/ja
Priority to EP21943318.2A priority patent/EP4216114A4/en
Priority to US18/009,831 priority patent/US20240135693A1/en
Publication of WO2023105610A1 publication Critical patent/WO2023105610A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06F18/2148Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the process organisation or structure, e.g. boosting cascade
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/771Feature selection, e.g. selecting representative features from a multi-dimensional feature space
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/7715Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06V10/7747Organisation of the process, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks

Definitions

  • the present invention relates to an information processing device, an information processing method, and a program, and particularly to a technique for learning a learning model.
  • E-commerce/e-commerce which sells products using the Internet
  • EC Electronic Commerce
  • Non-Patent Document 1 discloses a technique for hierarchically classifying images using a convolutional neural network model.
  • Non-Patent Document 1 discloses a learning model for hierarchically classifying objects contained in images. There is a problem that the efficiency of
  • the present invention has been made in view of the above problems, and aims to provide a learning model learning method that effectively prevents a decrease in accuracy even in learning a learning model for increasingly complex tasks.
  • one aspect of an information processing apparatus selects one or more learning data elements from a data group including a plurality of learning data elements to which different correct labels are assigned, and generating means for generating a plurality of learning data sets so that the number of learning data elements changes in order; and applying the plurality of learning data sets to a learning model for machine learning in the order in which they were generated, and learning means for repeatedly learning the learning model.
  • the generating means may generate the plurality of learning data sets from the plurality of learning data elements so that the learning data elements change randomly.
  • the generating means may generate the plurality of learning data sets from the plurality of learning data elements such that the number of the learning data elements increases or decreases in order.
  • the generating means randomly selects one or more learning data elements from the data group to generate an initial learning data set, and uses the initial learning data set as a starting point to generate the data
  • the plurality of training data sets may be generated by adding and deleting one or more training data elements randomly selected from the group.
  • the learning model can be configured including a convolutional neural network.
  • the learning model includes a main network that receives an object image including an object as input, extracts a plurality of feature amounts for hierarchical classification of the object based on the object image, and a main network that extracts a plurality of feature amounts for hierarchical classification of the object based on the object image;
  • the main network is composed of a plurality of extractors that extract each of the plurality of features, and the sub-network is configured from each of the plurality of features It may comprise a plurality of classifiers outputting classifications for said object, and a higher level classifier may be configured to have connections to one or more lower level classifiers.
  • Each of the plurality of extractors in the main network may be configured including a plurality of convolution layers.
  • Each of the plurality of classifiers in the sub-network may be composed of a fully-connected neural network.
  • the label can indicate a classification with a hierarchical structure for the object.
  • the information processing apparatus may further include output means for outputting the two or more hierarchical classifications determined by the classification means.
  • one aspect of an information processing method selects one or more learning data elements from a data group including a plurality of learning data elements assigned with different correct labels, A generation step of generating a plurality of learning data sets so that the number of learning data elements changes in order, and applying the plurality of learning data sets to a learning model for machine learning in the order in which they were generated, and a learning step of repeatedly learning the learning model.
  • one aspect of an information processing program is an information processing program for causing a computer to execute information processing, wherein the computer is provided with different correct labels.
  • FIG. 1 is a block diagram showing an example of the functional configuration of an information processing apparatus according to an embodiment of the invention.
  • FIG. 2 shows an example of the architecture of a classification prediction model.
  • FIG. 3 shows another example of the architecture of a classification prediction model.
  • FIG. 4 shows a conceptual diagram of hierarchical classification for commodities.
  • FIG. 5 shows examples of multiple training datasets for a classification prediction model.
  • FIG. 6 is a block diagram showing an example of the hardware configuration of the information processing device according to the embodiment of the present invention.
  • FIG. 7 shows a flow chart of the classification prediction phase.
  • FIG. 8 shows a flow chart of the learning phase.
  • FIG. 9 shows an example of classification results.
  • the information processing apparatus 100 acquires an image (product image) including a product and applies the product image to a learning model to classify the product image (product included in the product image). is predicted and output.
  • an example of predicting a hierarchical classification (a classification having a hierarchical structure) for products will be described.
  • the classification prediction target is not limited to products, and may be any object. Therefore, the present embodiment can also be applied to the case of predicting a hierarchical classification of an object from an image (object image) containing an arbitrary object.
  • FIG. 1 shows an example of the functional configuration of an information processing apparatus 100 according to this embodiment.
  • Information processing apparatus 100 shown in FIG. 1 shows an example of the functional configuration of an information processing apparatus 100 according to this embodiment.
  • Information processing apparatus 100 shown in FIG. 1 shows an example of the functional configuration of an information processing apparatus 100 according to this embodiment.
  • the acquisition unit 101 acquires product images.
  • the acquisition unit 101 may acquire the product image by an input operation by the user (operator) via the input unit 605 (FIG. 6), or by the user's operation from the storage unit (ROM 602 or RAM 603 in FIG. 6). You may The acquisition unit 101 may also acquire product images received from an external device via the communication interface (I/F) 607 (FIG. 6).
  • the product image may be an image expressing colors with three colors, red (R), green (G), and blue (B).
  • the acquisition unit 101 outputs the acquired product image to the classification prediction unit 102 .
  • the classification prediction unit 102 applies the product image acquired by the acquisition unit 101 to the classification prediction model 107, and predicts the classification of the product included in the product image.
  • the classification prediction model 107 will be described later.
  • the data set generation unit 103 generates a learning data set used for learning the classification prediction model 107 from a plurality of learning data elements (learning data) included in the learning data group 106 .
  • the data set generation unit 103 generates a plurality of learning data sets, and the learning unit 104 uses the plurality of learning data sets sequentially (in chronological order) to generate the classification prediction model 107. let them learn
  • the classification prediction model 107 is a learning model that receives as input a product image including a product and predicts the classification of the product.
  • the taxonomy may be a hierarchical taxonomy.
  • the classification prediction model 107 shown in FIG. 2 includes a main network 201 including multiple subparts (first subpart 211 to fifth subpart 215) and multiple classification blocks (first classification block 221 to third classification block 223). It consists of a neural network including a sub-network 202 . A subpart is also called an extractor. Note that the classification block is also called a classifier.
  • the output of first classification block 221 is input to second classification block 222 and third classification block 223, and the output of second classification block 222 is input to third classification block 223. It is configured.
  • a skip connection (shortcut connection), which is a configuration in which the output of one block in a neural network model is input to another block that is not adjacent, is known in neural network models such as ResNet. In ResNet, skip connections are used in feature quantity extraction.
  • the upper classifier in a plurality of classifiers such as the first classification block 211 to the third classification block 223, the upper classifier has a connection to one or more lower classifiers. different from That is, in the model shown in FIG. 2, the output of the classifier on the upper side is input to one or more classifiers on the lower side.
  • the main network 201 shown in FIG. 2 is a neural network based on a 16-layer version of the well-known VGG network (VGGNet), which is one of the convolutional neural network (CNN) models.
  • VGGNet VGG network
  • the first subpart 211 and the second subpart 212 consist of two convolution layers (Conv) and one pooling layer (Pooling)
  • the third subpart 213 and the fourth subpart 214 consist of three convolution layers and Consisting of one pooling layer
  • the fifth subpart 215 has three convolutional layers.
  • convolution with a kernel size of 3 ⁇ 3 is performed, while the number of filters (number of channels) differs in each subpart.
  • the number of filters is 64 in the first subpart 211 , 128 in the second subpart 212 , 256 in the third subpart 213 , and 512 in the fourth subpart 214 and the fifth subpart 215 .
  • 2 ⁇ 2 size maximum pooling MaxPooling
  • stride 2 2 ⁇ 2 size maximum pooling
  • a product image is input to the main network 201 as an input image, and the first subpart 211 to the fifth subpart 215 extract the feature amount of the product image and output it as an output of the main network 201 .
  • the feature amount may be a feature amount for hierarchical classification.
  • product classification is learned in order from top to bottom. Therefore, the plurality of feature quantities output from the first subpart 211 to the fifth subpart 215 show the features of the lower (subdivided) classification in order from the feature quantity showing the features of the higher (coarse) classification of the product. It becomes a feature quantity (a plurality of feature quantities for hierarchical classification of products).
  • the output of main network 201 is input to sub-network 202 .
  • the sub-network 202 predicts hierarchical classification from each of the plurality of features from the main network 201 .
  • Each of the first classification block 221 to the third classification block 223 shown in FIG. 2 is composed of a fully-connected neural network.
  • a classification label (class) for the product is output, and the classification (classification name) is determined from the label.
  • the classifications (first classification to third classification) output from the first classification block 221 to the third classification block 223 are the higher (coarse) classification of the product and the lower (subdivided) classification in order. An example of such hierarchical classification will be described later with reference to FIG.
  • the operations of the first classification block 221 to the third classification block 223 will be described more specifically.
  • the first classification block 221 outputs the label of the first classification from the feature quantity output from the third subpart 213 of the main network 201 and determines the first classification.
  • the second classification block 222 outputs a second classification label from the feature quantity output from the fourth subpart 214 of the main network 201 and the first classification label output from the first classification block 221. , determines the second classification.
  • the third classification block 223 combines the feature quantity output from the fifth subpart 215 of the main network 201 with the first classification label output from the first classification block 221 and the first classification block 222 output from the second classification block 222 . From the labels of the second classification, the label of the third classification is output to determine the third classification.
  • the configuration is not limited to that shown in FIG. 2, and may be configured such that the classification result of a higher classifier is input to one or more lower classifiers.
  • the classification label output from the first classification block 221 may be configured to be input to the third classification block 223 without being input to the second classification block 223 .
  • sub-network 202 may be configured to output the second and/or third classification without the first classification.
  • the classification prediction model 107 shown in FIG. 3 includes a main network 301 including multiple subparts (first subpart 311 to fifth subpart 315) and multiple classification blocks (first classification block 321 to third classification block 323). It consists of a neural network including a sub-network 302 . In sub-network 302 , the output of first classification block 321 is input to second classification block 322 and third classification block 323 , and the output of second classification block 322 is configured to input to third classification block 323 . .
  • the main network 301 is a neural network based on the 19-layer version of the VGG network.
  • first subpart 311 and second subpart 312 are common to first subpart 211 and second subpart 212
  • third subpart 313 to fifth subpart 315 are common to third subpart 213.
  • ⁇ 5 subpart 215 includes one more convolutional layer. This may result in a more accurate prediction of the resulting output classification as compared to the model shown in FIG. Since other configurations are the same as those of the model shown in FIG. 2, description thereof is omitted.
  • the learning unit 103 sequentially applies a plurality of learning data sets generated by the data set generation unit 103 to the classification prediction model 107 configured as shown in FIGS. 2 and 3 to learn the model. That is, the learning unit 103 repeats learning of the classification prediction model 107 using the plurality of learning data sets. Then, the learning unit 103 stores the learned classification prediction model 107 in a storage unit such as the RAM 603 (FIG. 6).
  • the classification prediction unit 102 applies the product image acquired by the acquisition unit 101 to the learned classification prediction model 107 stored in a storage unit such as the RAM 603 (FIG. 6), and predicts the classification of the product image for the product. .
  • FIG. 4 shows a conceptual diagram of hierarchical classification as an example of product classification predicted by the classification prediction unit 102 .
  • FIG. 4 shows an example of hierarchical classification of products 42 included in product images 41 .
  • the product image 41 By applying the product image 41 to the classification prediction model 107, the first Classification to third classification are estimated hierarchically.
  • the classification indicated in bold is predicted. That is, it is predicted that the first category is "men's fashion", the second category is “tops”, and the third category is "T-shirts".
  • the main network 201 or the main network 301 in the classification prediction model 107, as a classification result, from the upper (coarse) first classification to the lower (subdivided) Three classification predictions are possible.
  • the data set generation unit 103 generates a plurality of learning data sets used for learning the classification prediction model 107 from a plurality of learning data elements included in the learning data group 106. do.
  • the learning unit 104 learns the classification prediction model 107 by sequentially using the plurality of learning data sets (in chronological order).
  • the learning data group 106 is composed of learning data elements to which 10 different correct labels (classes) from "0" to "9" are assigned.
  • Each data element for learning is composed of a plurality of sets each including a product image including the product and the same label (correct data) indicating the classification of the product. Therefore, one learning data element is given the same label.
  • the labels are configured to indicate a classification having a hierarchical structure, and correspond to, for example, the labels attached to the third classification associated with the first and second classifications described above. do. Therefore, referring to FIG.
  • label “0” corresponds to "T-shirt” associated with “men's fashion” and “tops”, and the learning data element with label “0”
  • a set of an image and a label "0" is defined as one set, and a plurality of such sets are included.
  • the data set generation unit 103 generates a plurality of learning data sets by applying predetermined generation rules (selection rules).
  • selection rules generation rules according to this embodiment will be described. Note that this rule is only an example, and a plurality of learning data sets may be generated by another rule or method so that the number of learning data elements changes in order. Also, a plurality of learning data sets may be generated such that the learning data elements change randomly.
  • the learning data elements to be added/deleted in rule (2) are randomly selected. That is, the learning data elements to be added are randomly selected from the learning data elements not included in the learning data set to be added, and the learning data elements to be deleted are selected from the learning data elements to be deleted. Randomly select from the set.
  • FIG. 5 shows an example of a plurality of learning data sets generated by the data set generation unit 103 according to the generation rule.
  • ten learning data sets 1-10 are shown.
  • numbers surrounded by squares correspond to learning data elements labeled with the numbers.
  • Learning data set 1 is an initial learning data set that follows rule (1), and in the example of FIG. 8, labels "1", “2”, “4", “6 , “8”, and “9” are randomly selected and generated.
  • the learning data set 2 is a learning data set randomly selected from learning data elements not selected (not included in the learning data set 1) for the learning data set 1. It is a learning data set to which two learning data elements "3" and "7" are added.
  • the learning data set 3 is a learning data set obtained by deleting one learning data element labeled "8" from the learning data elements included in the learning data set 2 with respect to the learning data set 2. be.
  • Learning data set 4 and subsequent ones are also generated with additions and deletions according to the above generation rules.
  • the number of learning data elements to be added is greater than the number of learning data to be deleted. 10 is generated.
  • the learning data sets 1 to 10 are data sets in which the number of learning data elements increases or decreases in order.
  • the data set generation unit 103 may generate the learning data set by alternately adding and deleting learning data elements. Further, the data set generation unit 103 may generate a learning data set by deleting or adding learning data elements after successive additions or deletions of learning data elements.
  • the learning data sets 1 to 10 generated in this way are used (applied) to the classification prediction model 107 in chronological order to learn the classification prediction model 107. That is, training data set 1 is used at time t to learn the classification prediction model 107, and then training data set 2 is used at time t+1 to learn the classification prediction model 107. FIG. Such a learning process continues until the training data set 10 is used at time t+9 to learn the classification prediction model 107 . In this embodiment, the classification prediction model 107 is learned with different learning data sets in chronological order by such learning processing.
  • the data set generation unit 103 generates the learning data set 1
  • the learning unit 104 uses the data set to learn the classification prediction model 107
  • the data set generation unit 103 generates the learning data set 2.
  • the data may be generated, and the learning unit 104 may learn the classification prediction model 107 using the data, and such processing may be continued up to the training data set 10 .
  • FIG. 6 is a block diagram showing an example of the hardware configuration of the information processing apparatus 100 according to this embodiment.
  • the information processing apparatus 100 according to this embodiment can be implemented on any single or multiple computers, mobile devices, or any other processing platform. Referring to FIG. 6, an example in which information processing apparatus 100 is implemented in a single computer is shown, but information processing apparatus 100 according to the present embodiment is implemented in a computer system including a plurality of computers. good. A plurality of computers may be interconnectably connected by a wired or wireless network.
  • information processing apparatus 100 may include CPU 601 , ROM 602 , RAM 603 , HDD 604 , input section 605 , display section 606 , communication I/F 607 , and system bus 608 .
  • Information processing apparatus 100 may also include an external memory.
  • a CPU (Central Processing Unit) 601 comprehensively controls operations in the information processing apparatus 100, and controls each component (602 to 607) via a system bus 608, which is a data transmission path.
  • a ROM (Read Only Memory) 602 is a non-volatile memory that stores control programs and the like necessary for the CPU 601 to execute processing.
  • the program may be stored in a non-volatile memory such as a HDD (Hard Disk Drive) 604 or an SSD (Solid State Drive) or an external memory such as a removable storage medium (not shown).
  • a RAM (Random Access Memory) 603 is a volatile memory and functions as a main memory, a work area, and the like for the CPU 601 . That is, the CPU 601 loads necessary programs and the like from the ROM 602 to the RAM 603 when executing processing, and executes the programs and the like to realize various functional operations.
  • the HDD 604 stores, for example, various data and information necessary for the CPU 601 to perform processing using programs.
  • the HDD 604 also stores various data, information, and the like obtained by the CPU 601 performing processing using programs and the like, for example.
  • An input unit 605 is configured by a pointing device such as a keyboard and a mouse.
  • a display unit 606 is configured by a monitor such as a liquid crystal display (LCD).
  • the display unit 606 may function as a GUI (Graphical User Interface) by being configured in combination with the input unit 605 .
  • GUI Graphic User Interface
  • a communication I/F 607 is an interface that controls communication between the information processing apparatus 100 and an external device.
  • a communication I/F 607 provides an interface with a network and executes communication with an external device via the network.
  • Various data, various parameters, and the like are transmitted/received to/from an external device via the communication I/F 607 .
  • the communication I/F 607 may perform communication via a wired LAN (Local Area Network) conforming to a communication standard such as Ethernet (registered trademark) or a dedicated line.
  • the network that can be used in this embodiment is not limited to this, and may be configured as a wireless network.
  • This wireless network includes a wireless PAN (Personal Area Network) such as Bluetooth (registered trademark), ZigBee (registered trademark), and UWB (Ultra Wide Band). It also includes a wireless LAN (Local Area Network) such as Wi-Fi (Wireless Fidelity) (registered trademark) and a wireless MAN (Metropolitan Area Network) such as WiMAX (registered trademark). Furthermore, wireless WANs (Wide Area Networks) such as LTE/3G, 4G, and 5G are included. It should be noted that the network may connect each device so as to be able to communicate with each other as long as communication is possible, and the communication standard, scale, and configuration are not limited to the above.
  • At least some of the functions of the elements of the information processing apparatus 100 shown in FIG. 6 can be realized by the CPU 601 executing a program. However, at least some of the functions of the elements of the information processing apparatus 100 shown in FIG. 6 may operate as dedicated hardware. In this case, the dedicated hardware operates under the control of the CPU 601 .
  • FIG. 7 shows a flowchart of the processing (learning phase) for learning the classification prediction model 107
  • FIG. 8 shows classification prediction for product images (products included in product images) using the trained classification prediction model 107
  • 4 shows a flowchart of processing (classification prediction phase).
  • the processing shown in FIGS. 7 and 8 can be realized by the CPU 601 of the information processing apparatus 100 loading a program stored in the ROM 602 or the like into the RAM 603 and executing the program.
  • FIG. 5 will be referred to.
  • the dataset generation unit 103 generates the learning dataset 1 as the initial learning dataset. Subsequently, in S72, the data set generation unit 103 repeats addition and deletion of learning data elements starting from the learning data set 1, and generates learning data sets 2 to 10 in order.
  • the learning unit 104 learns the classification prediction model 107 by sequentially using the learning data sets 1 to 10 generated in S71 and S72 in chronological order. That is, the learning unit 104 learns the classification prediction model 107 by sequentially using a plurality of learning data sets 1 to 10 generated such that the number of learning data elements dynamically changes in order. As a result, the learning data set that has been used for learning once is used again after changing the time, and a new learning data set is also used for learning.
  • learning unit 104 stores classification prediction model 107 learned in S ⁇ b>73 as learned classification prediction model 107 in a storage unit such as RAM 603 .
  • the acquisition unit 101 acquires a product image including a product to be classified and predicted. For example, when the operator of the information processing device 100 operates the information processing device 100 to access an arbitrary EC site and select a product image including an arbitrary product, the acquisition unit 101 acquires the product image. to get Further, the acquisition unit 101 can acquire a product image by acquiring a product image or a URL indicating the product image transmitted from an external device such as a user device.
  • the number of products targeted for classification prediction included in one product image is not limited to one, and the product image may include a plurality of products targeted for classification prediction.
  • the classification prediction unit 102 inputs the product image acquired by the acquisition unit 101 to the classification prediction model 107, predicts and determines the hierarchical classification of the product.
  • An example of the classification prediction model 107 is as shown in FIG. 2 or FIG. is used to output a hierarchical classification for the product.
  • the main network is composed of a plurality of subparts (extractors) that extract each of the plurality of feature values, and the subnetwork includes a plurality of classification blocks that output a classification of the product from each of the plurality of feature values. (classifiers), and a higher classifying block is configured to have connections to one or more lower classifying blocks.
  • the classification prediction unit 102 classifies the products in the product image acquired in S81 as a hierarchical classification as shown in FIG.
  • the 2nd classification and the 3rd classification are predicted and determined.
  • the output unit 105 outputs the classification result (classification result) predicted and determined by the classification prediction unit 102 in S82.
  • the output unit 105 may display the classification result on the display unit 606 of the information processing apparatus 100 or transmit it to an external device such as a user device via the communication I/F 607 .
  • the acquisition unit 101 acquires a plurality of product regions (Region of Interest) including each of the plurality of products by, for example, a known image processing technique, and the classification prediction unit 102 can be output to Then, the classification prediction unit 102 can perform the processing of S82 on each product area (partial image) to predict and determine the classification for each product.
  • the output unit 105 may output the (hierarchical) classification for each product separately as classification results, or may output them as one classification result.
  • FIG. 9 shows an example of the classification result output by the output unit 105 as a classification result 90.
  • the classification result 90 may be displayed on the display unit 606 of the information processing apparatus 100, or may be transmitted to an external device such as a user device via the communication I/F 607 and displayed on the external device.
  • a product image 91 is a product image including a product to be classified and predicted. This is the image selected after Also, the product image 91 may be an image transmitted from an external device such as a user device.
  • the classification prediction unit 102 of the information processing apparatus 100 applies the product image 91 to the learned classification prediction model 107 shown in FIGS. 2 and 3 to predict a hierarchical classification 93 for the product 92 .
  • the hierarchical classification 93 is similar to the classification shown in FIG.
  • the output unit 105 can combine the hierarchical classification 93 and the product image 91 to form a classification result 90 and output it.
  • Table 1 shows simulation results of performance evaluation of classification prediction processing. Specifically, Table 1 shows the correct answer rate (accuracy) for the correct data when the classification prediction process is performed using each of the plurality of learning models. In this simulation, the Fashion-MNIST data set that can be obtained on the Internet or the like was used as the learning data group 106 .
  • the classification prediction model 107 described with reference to FIG. 3 in the first embodiment is learned by sequentially applying the learning data sets 1 to 10 described with reference to FIG. A model was used (present invention model).
  • a learning model composed only of the main network 301, the third classification block 223, and the third output block 243 of the classification prediction model 107 shown in FIG. 3 is shown in FIG. A model trained by once applying the training data set with labels “0” to “9” described above was used as the first comparison model. The learning model can output only the third classification.
  • the classification prediction model 107 described in the first embodiment with reference to FIG. A model trained by sequentially applying the six training data sets generated by the method was used as the second comparison model.
  • the model of the present invention has a high accuracy rate in all of the first to third classifications. Also, it can be seen that the present invention model has a higher accuracy rate in the third classification than the first comparison model. This is due to the synergy of using the classification prediction model 107 described in the first embodiment and learning the classification prediction model 107 using a plurality of time-series learning data sets described in the present embodiment. It is an effect.
  • a plurality of learning data sets are applied to the classification prediction model 107 in chronological order to make the classification prediction model 107 learn.
  • a learning model is constructed, making it possible to accurately predict increasingly complex classifications.
  • the classification prediction model 107 has skip connections for the outputs of the first classification block 211 to the third classification block 223 and the outputs of the first classification block 311 to the third classification block 323. With applied configuration. With such a configuration, high-level classification results are combined with low-level classification results to predict low-level classifications, making it possible to accurately predict hierarchical classification of products.
  • the learning process is performed by applying a plurality of learning data sets described with reference to FIG. 5 to a learning model configured by/including a convolutional neural network (CNN).
  • CNN convolutional neural network
  • the present embodiment it is possible to construct a learning model that targets increasingly complex classification tasks. can be predicted with high accuracy. As a result, for example, the predictability of the trend of products purchased on the EC site and the ease of product selection by the user are improved.
  • 100 Information processing device
  • 101 Acquisition unit
  • 102 Classification prediction unit
  • 103 Data set generation unit
  • 104 Learning unit
  • 105 Output unit
  • 106 Learning data group
  • 107 Classification prediction model

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Image Analysis (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

情報処理装置は、異なる正解ラベルが付与された複数の学習用データエレメントを含むデータ群から1以上の前記学習用データエレメントを選択し、前記学習用データエレメントの数が順に変化するように、複数の学習用データセットを生成する生成手段と、前記複数の学習用データセットを機械学習のための学習モデルに適用して、当該学習モデルを繰り返し学習させる学習手段と、を有する。

Description

情報処理装置、情報処理方法、およびプログラム
 本発明は、情報処理装置、情報処理方法、およびプログラムに関し、特に、学習モデルを学習させるための技術に関する。
 近年、インターネットを使って商品の販売を行う電子商取引(E-commerce/eコマース)が盛んに実施されており、そのような電子商取引の実施のためのEC(Electronic Commerce)サイトがウェブ上に多く構築されている。ECサイトは、世界中の各国の言語を用いて構築されることも多く、多くの国に在住するユーザ(消費者)が商品を購入することを可能にしている。ユーザは、PC(Personal Computer)や、スマートフォンといった携帯端末からECサイトにアクセスすることで、実際の店舗に赴くことなく、また時間に関係なく、所望の商品の選択や購入を行うことが可能となっている。
 ECサイトで扱う商品の種類および数は膨大であるため、一般的に、各商品は、粗い(上位の)分類から細かい(下位の)分類へと階層的に分類して管理されている。このような商品に対する分類は、ECサイトの利用においても活用されている。例えば、ECサイトでは、ユーザによる購買意欲を増進させることを目的に、過去にユーザが購入した商品の分類と同様の分類の商品を、レコメンデーションする商品として、ユーザが閲覧している画面において合わせて表示することがある。また、ユーザも、商品画像(商品を含む画像)における商品の分類を知ることで、所望の商品の発見が容易になりうる。このようなことから、商品画像に対する分類を精度よく行うことは、ECサイトに関して重要な課題の1つである。
 非特許文献1では、畳み込み型ニューラルネットワークモデルを用いて、画像に対する階層的な分類を行うための技術が開示されている。
Seo Yian, and Shin Kyung-shik, "Hierarchical convolutional neural networks for fashion image classification", Exp. Sys. Appl., Vol.116, 2019, 328-329.
 非特許文献1では、画像に含まれるオブジェクトに対する階層的な分類を行うための学習モデルについて開示されているが、各階層の分類数が増加し分類が複雑化するにともない当該学習モデルの学習処理の効率が低下しうるという課題があった。
 本発明は上記課題に鑑みてなされたものであり、複雑化するタスクのための学習モデルの学習においても精度低下を有効に防止する学習モデルの学習手法を提供することを目的とする。
 上記課題を解決するために、本発明による情報処理装置の一態様は、異なる正解ラベルが付与された複数の学習用データエレメントを含むデータ群から1以上の前記学習用データエレメントを選択し、前記学習用データエレメントの数が順に変化するように、複数の学習用データセットを生成する生成手段と、前記複数の学習用データセットを機械学習のための学習モデルに生成された順に適用して、当該学習モデルを繰り返し学習させる学習手段と、を有する。
 前記情報処理装置において、前記生成手段は、前記学習用データエレメントがランダムに変化するように 、前記複数の学習用データエレメントから前記複数の学習用データセットを生成しうる。
 前記情報処理装置において、前記生成手段は、前記学習用データエレメントの数が順に増減するように、前記複数の学習用データエレメントから前記複数の学習用データセットを生成しうる。
 前記情報処理装置において、前記生成手段は、前記データ群から1つ以上の学習用データエレメントをランダムに選択して初期学習用データセットを生成し、前記初期学習用データセットを起点として、前記データ群からランダムに選択した1つ以上の学習用データエレメントの追加および削除を行うことにより、前記複数の学習用データセットを生成しうる。
 前記学習モデルは、畳み込みニューラルネットワーク(Convolutional Neural Network)を含んで構成されうる。
 前記学習モデルは、オブジェクトを含むオブジェクト画像を入力として、前記オブジェクト画像に基づき前記オブジェクトに対する階層的な分類のための複数の特徴量を抽出するメインネットワークと、前記複数の特徴量を用いて前記オブジェクトに対する階層的な分類を出力するサブネットワークから構成され、前記メインネットワークは、前記複数の特徴量のそれぞれを抽出する複数の抽出器で構成され、前記サブネットワークは、前記複数の特徴量のそれぞれから前記オブジェクトに対する分類を出力する複数の分類器で構成され、上位側の分類器は1つ以上の下位側の分類器へのコネクションを有するように構成されうる。
 前記メインネットワークにおける前記複数の抽出器のそれぞれは、複数の畳み込み層を含んで構成されうる。
 前記サブネットワークにおける前記複数の分類器のそれぞれは、全結合型ニューラルネットワークで構成されうる。
 前記ラベルは、前記オブジェクトに対する、階層構造を有する分類を示しうる。
 前記情報処理装置は、前記分類手段により決定された前記2つ以上の階層的な分類を出力する出力手段をさらに有しうる。
 上記課題を解決するために、本発明による情報処理方法の一態様は、異なる正解ラベルが付与された複数の学習用データエレメントを含むデータ群から1以上の前記学習用データエレメントを選択し、前記学習用データエレメントの数が順に変化するように、複数の学習用データセットを生成する生成工程と、前記複数の学習用データセットを機械学習のための学習モデルに生成された順に適用して、当該学習モデルを繰り返し学習させる学習工程と、を有する。
 上記課題を解決するために、本発明による情報処理プログラムの一態様は、情報処理をコンピュータに実行させるための情報処理プログラムであって、該プログラムは、前記コンピュータに、異なる正解ラベルが付与された複数の学習用データエレメントを含むデータ群から1以上の前記学習用データエレメントを選択し、前記学習用データエレメントの数が順に変化するように、複数の学習用データセットを生成する生成処理と、前記複数の学習用データセットを機械学習のための学習モデルに生成された順に適用して、当該学習モデルを繰り返し学習させる学習処理と、を含む処理を実行させる。
 本発明によれば、中長期的な学習においても精度低下を有効に防止する学習モデルの学習手法が提供される。
 上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態から理解できるであろう。
図1は、本発明の実施形態による情報処理装置の機能構成の一例を示すブロック図である。 図2は、分類予測モデルのアーキテクチャの一例を示す。 図3は、分類予測モデルのアーキテクチャの別の例を示す。 図4は、商品に対する階層的分類の概念図を示す。 図5は、分類予測モデルのための複数の学習用データセットの例を示す。 図6は、本発明の実施形態による情報処理装置のハードウェア構成の一例を示すブロック図である。 図7は、分類予測フェーズのフローチャートを示す。 図8は、学習フェーズのフローチャートを示す。 図9は、分類結果の例を示す。
 以下、添付図面を参照して、本発明を実施するための実施形態について詳細に説明する。以下に開示される構成要素のうち、同一機能を有するものには同一の符号を付し、その説明を省略する。なお、以下に開示される実施形態は、本発明の実現手段としての一例であり、本発明が適用される装置の構成や各種条件によって適宜修正または変更されるべきものであり、本発明は以下の実施形態に限定されるものではない。また、本実施形態で説明されている特徴の組み合わせの全てが本発明の解決手段に必須のものとは限らない。
 <第1実施形態>
 第1実施形態による情報処理装置100は、商品が含まれる画像(商品画像)を取得し、当該商品画像を学習モデルに適用することにより、当該商品画像(当該商品画像に含まれる商品)に対する分類を予測して出力する。なお、本実施形態では、商品に対する階層的な分類(階層構造を有する分類)を予測する例を説明する。また、分類予測対象は、商品に限らず、任意のオブジェクトであってよい。よって、任意のオブジェクトが含まれる画像(オブジェクト画像)から当該オブジェクトに対する階層的な分類を予測する場合も、本実施形態を適用可能である。
 [情報処理装置100の機能構成]
 図1に、本実施形態による情報処理装置100の機能構成の一例を示す。
 図1に示す情報処理装置100は、取得部101、分類予測部102、データセット生成部103、学習部104、出力部105を備える。
 取得部101は、商品画像を取得する。取得部101は、商品画像を、ユーザ(オペレータ)による入力部605(図6)を介した入力操作によって取得してもよいし、ユーザの操作により記憶部(図6のROM602やRAM603)から取得してもよい。また、取得部101は、通信インタフェース(I/F)607(図6)を介して外部装置から受信した商品画像を取得してもよい。商品画像は、赤(R)、緑(G)、青(B)の3色で色を表現した画像でありうる。取得部101は、取得した商品画像を、分類予測部102に出力する。
 分類予測部102は、取得部101により取得された商品画像を分類予測モデル107に適用し、当該商品画像に含まれる商品に対する分類を予測する。分類予測モデル107については、後述する。
 データセット生成部103は、学習用データ群106に含まれる複数の学習用データエレメント(学習用データ)から、分類予測モデル107の学習に使用する学習用データセットを生成する。本実施形態では、データセット生成部103は、複数の学習用データセットを生成し、学習部104は、当該複数の学習用データセットを順次(時系列に変えて)用いて分類予測モデル107を学習させる。分類予測モデル107は、商品を含む商品画像を入力として、当該商品に対する分類を予測する学習モデルである。当該分類は階層的な分類でありうる。
 図2に、分類予測モデル107のアーキテクチャの一例を示す。図2に示す分類予測モデル107は、複数のサブパート(第1サブパート211~第5サブパート215)を含むメインネットワーク201と、複数の分類ブロック(第1分類ブロック221~第3分類ブロック223)を含むサブネットワーク202を含むニューラルネットワークで構成される。なお、サブパートを抽出器とも称する。なお、分類ブロックを分類器とも称する。
 図2に示すサブネットワーク202において、第1分類ブロック221の出力は第2分類ブロック222と第3分類ブロック223に入力され、第2分類ブロック222の出力は第3分類ブロック223に入力するように構成されている。ニューラルネットワークモデルにおける1つのブロックの出力が隣接しない他のブロックへ入力される構成であるスキップコネクション(ショートカットコネクション)は、ResNetといったニューラルネットワークモデルにおいて知られている。ResNetでは、特徴量抽出において、スキップコネクションが使われている。一方、本実施形態では、第1分類ブロック211~第3分類ブロック223といった複数の分類器において、上位側の分類器は1つ以上の下位の分類器へのコネクションを有する点で公知のスキップコネクションと異なる。すなわち、図2に示すモデルでは、上位側の分類器の出力が1つ以上の下位側の分類器に入力される構成となっている。
 図2に示すメインネットワーク201は、畳み込みニューラルネットワーク(Convolutional Neural Network(CNN))モデルの1つである公知のVGGネットワーク(VGGNet)の16層バージョンに基づくニューラルネットワークである。メインネットワーク201において、第1サブパート211と第2サブパート212は、2つの畳み込み層(Conv)と1つのプーリング層(Pooling)から成り、第3サブパート213と第4サブパート214は、3つの畳み込み層と1つのプーリング層から成り、第5サブパート215は、3つの畳み込み層を有する。
 第1サブパート211~第5サブパート215における畳み込み層では、3×3のカーネルサイズの畳み込みが行われる一方、各サブパートではフィルタ数(チャネル数)が異なる。フィルタ数は、第1サブパート211では64、第2サブパート212では128、第3サブパート213では256、第4サブパート214と第5サブパート215では512である。
 第1サブパート211~第4サブパート214におけるプーリング層では、2×2サイズの最大プーリング(MaxPooling)がストライド2で行われる。また、第1サブパート211~第4サブパート214において、畳み込み層とプーリング層の間に、活性化関数としてReLU(Rectified Liner Unit)が適用される。
 メインネットワーク201には入力画像として商品画像が入力され、第1サブパート211~第5サブパート215は、当該商品画像の特徴量を抽出して、メインネットワーク201の出力として出力する。当該特徴量は、階層的な分類のための特徴量でありうる。
 第1サブパート211~第5サブパート215では順に商品の分類を上位から下位へ学習する。よって、第1サブパート211~第5サブパート215から出力される複数の特徴量は、商品に対する上位の(粗い)分類の特徴を示す特徴量から順に下位の(細分化された)分類の特徴を示す特徴量(商品に対する階層的な分類のための複数の特徴量)となる。
 メインネットワーク201の出力は、サブネットワーク202に入力される。サブネットワーク202は、メインネットワーク201からの複数の特徴量のそれぞれの特徴量から、階層的分類を予測する。
 図2に示す第1分類ブロック221~第3分類ブロック223はそれぞれ、全結合型ニューラルネットワーク(Fully-connected Neural Network)で構成され、特徴量を入力として、メインネットワーク201に入力された商品画像の商品に対する分類のラベル(クラス)を出力し、当該ラベルから分類(分類名)を決定する。第1分類ブロック221~第3分類ブロック223から出力される分類(第1分類~第3分類)は、商品に対する上位の(粗い)分類から順に下位の(細分化された)分類となる。このような階層的分類の例は、図4を用いて後述する。
 第1分類ブロック221~第3分類ブロック223の動作をより具体的に説明する。
 第1分類ブロック221は、メインネットワーク201の第3サブパート213から出力された特徴量から、第1分類のラベルを出力し、第1分類を決定する。
 また、第2分類ブロック222は、メインネットワーク201の第4サブパート214から出力された特徴量と、第1分類ブロック221から出力された第1分類のラベルとから、第2分類のラベルを出力し、第2分類を決定する。
 また、第3分類ブロック223は、メインネットワーク201の第5サブパート215から出力された特徴量と、第1分類ブロック221から出力された第1分類のラベルおよび第2分類ブロック222から出力された第2分類のラベルとから、第3分類のラベルを出力し、第3分類を決定する。
 このように、複数の分類器間で相補的に分類結果を用い、複数の下位の分類器は、上位の分類器で出力された分類結果を考慮して分類を行うことにより、階層的分類の精度が向上する。なお、図2のような構成に限定されず、上位の分類器の分類結果を1つ以上の下位の分類器に入力するように構成されてもよい。例えば、第1分類ブロック221から出力された分類のラベルが、第2分類ブロック223に入力されずに、第3分類ブロック223に入力されるように構成されてもよい。
 なお、本実施形態では、第1分類~第3分類が出力される例を示すが、第2分類ブロック221と第3分類ブロック222では上位の分類特徴量を反映することにより分類の精度が上がるため、サブネットワーク202は、第1分類無しで、第2分類および/または第3分類を出力するように構成されてもよい。
 また、図3に、分類予測モデル107のアーキテクチャの別の例を示す。図3に示す分類予測モデル107は、複数のサブパート(第1サブパート311~第5サブパート315)を含むメインネットワーク301と、複数の分類ブロック(第1分類ブロック321~第3分類ブロック323)を含むサブネットワーク302を含むニューラルネットワークで構成される。サブネットワーク302において、第1分類ブロック321の出力は第2分類ブロック322と第3分類ブロック323に入力され、第2分類ブロック322の出力は第3分類ブロック323に入力するように構成されている。
 メインネットワーク301は、VGGネットワークの19層バージョンに基づくニューラルネットワークである。図2に示すモデルと比較して、第1サブパート311と第2サブパート312は、第1サブパート211と第2サブパート212と共通であり、第3サブパート313~第5サブパート315は、第3サブパート213~第5サブパート215と比較して畳み込み層を1つ多く含んで構成されている。これにより、図2に示すモデルと比較して、計算量が増えるがより深く学習するため、結果として出力される分類の予測の精度が高くなりうる。他の構成については、図2に示すモデルと同様のため、説明を省略する。
 学習部103は、データセット生成部103により生成された複数の学習用データセットを、図2や図3のように構成された分類予測モデル107に順に適用して当該モデルを学習させる。すなわち、学習部103は、当該複数の学習用データセットを用いて、分類予測モデル107の学習を繰り返す。そして、学習部103は、学習済みの分類予測モデル107を、RAM603(図6)といった記憶部に記憶する。
 分類予測部102は、取得部101により取得された商品画像を、RAM603(図6)といった記憶部に記憶された学習済みの分類予測モデル107に適用し、当該商品画像の商品に対する分類を予測する。
 図4に、分類予測部102により予測される商品に対する分類の例として階層的分類の概念図を示す。図4では、商品画像41に含まれる商品42に対する階層的分類の例を示している。商品画像41を分類予測モデル107に適用することにより、第1分類ブロック221~第3分類ブロック223(または図3に示す第1分類ブロック321~第3分類ブロック323)からの出力として、第1分類~第3分類が階層的に推定される。
 図4の例では、商品42に対して、太字で示した分類が予測されている。すなわち、第1分類が「メンズファッション」、第2分類が「トップス」、第3分類が「Tシャツ」と予測されている。
 このように、分類予測モデル107におけるメインネットワーク201(またはメインネットワーク301)で階層的に学習されることにより、分類結果として、上位の(粗い)第1分類から下位の(細分化された)第3の分類の予測が可能となる。
 [複数の学習用データセットおよび学習処理]
 前述のように、本実施形態によるデータセット生成部103は、分類予測モデル107を学習させるために用いる複数の学習用データセットを、学習用データ群106に含まれる複数の学習用データエレメントから生成する。学習部104は、当該複数の学習用データセットを順次(時系列に変えて)用いて分類予測モデル107を学習させる。
 本実施形態では、一例として、学習用データ群106は、「0」~「9」の10種類の異なる正解ラベル(クラス)が付与された学習用データエレメントで構成されるものとする。各学習用データエレメントは、商品を含む商品画像と、当該商品に対する分類を示す同じラベル(正解データ)を1セットとして複数のセットで構成される。よって、1つの学習用データエレメントは、同じラベルが付与されている。本実施形態では、ラベルは、階層構造を有する分類を示すように構成され、例えば上記に説明した、第1分類と第2分類に関連付けられた第3分類に付されるラベルに対応するものとする。よって、図4を参照すると、例えば、ラベル「0」は、「メンズファッション」、「トップス」に関連付けられた「Tシャツ」に対応し、ラベル「0」の学習用データエレメントは、Tシャツの画像とラベル「0」のセットを1セットとして、該セットを複数セット含んで構成される。
 本実施形態では、データセット生成部103は、複数の学習用データセットを、所定の生成ルール(選択ルール)を適用して生成する。
 ここで、本実施形態による生成ルールについて説明する。なお、本ルールは一例であり、他のルールや方法により、学習用データエレメントの数が順に変化するように複数の学習用データセットが生成されればよい。また、学習用データエレメントがランダムに変化するように複数の学習用データセットが生成されればよい。
 本実施形態による生成ルールを以下に示す。
 (1)学習用データ群106に含まれる複数の学習用データエレメントのうち6割(60%)をランダムに選択して初期学習用データセットを生成する。すなわち、初期学習用データセットは、ラベル「0」~「9」の10個の学習用データエレメントのうち、ランダムに選択された6個のデータエレメントを含む。
 (2)ルール(1)で生成した当該初期学習データを起点として、学習用データエレメントの追加および削除を行う(例として、追加は1回ごと、削除は1回ごと)。追加するデータエレメントの数は2個、削除するデータエレメントの数は1個とする。ただし、追加するデータ数が2個ない場合は1個とする。
 (3)ルール(2)における追加/削除する学習用データエレメントは、ランダムに選択する。すなわち、追加する学習用データエレメントを、追加の対象となる学習用データセットに含まれていない学習用データエレメントからランダムに選択し、削除する学習用データエレメントを、削除の対象となる学習用データセットからランダムに選択する。
 図5に、当該生成ルールに従ってデータセット生成部103により生成された複数の学習用データセットの例を示す。図5の例では、10個の学習用データセット1~10を示す。図5において、四角で囲まれた数字は、当該数字のラベルの学習用データエレメントに対応する。
 学習用データセット1は、ルール(1)に従う初期学習用データセットであり、図8の例では、10個の学習用データエレメントから、ラベル「1」、「2」、「4」、「6」、「8」、および「9」の6個の学習用データエレメントがランダムに選択されて生成される。
 学習用データセット2は、学習用データセット1に対して、選択されていない(学習用データセット1に含まれていない)学習用データエレメントからランダムに選択された学習用データセットである、ラベル「3」と「7」の2つの学習用データエレメントを追加した学習用データセットである。
 学習用データセット3は、学習用データセット2に対して、該学習用データセット2に含まれる学習用データエレメントから、ラベル「8」の1つの学習用データエレメントを削除した学習用データセットである。 
 学習用データセット4以降も、上記生成ルールに従って、追加と削除が行われて生成される。本生成ルールでは、追加する学習用データエレメントの数が削除する学習用データより多いため、最大数10を上限として、学習用データエレメントの数が増える傾向になるように、学習用データセット1~10が生成される。このように、学習用データセット1~10は、学習用データエレメントの数が順に増減するようなデータセットとなる。なお、データセット生成部103は、学習用データエレメントの追加と削除を交互に行うことで、学習用データセットを生成してよい。また、データセット生成部103は、連続して行われた学習用データエレメントの追加または削除の後に学習用データエレメントの削除または追加を行うことで、学習用データセットを生成してもよい。
 このように生成された学習用データセット1~10を、時系列的に順に分類予測モデル107に使用して(適用して)分類予測モデル107が学習される。すなわち、学習用データセット1がある時間tで使用されて分類予測モデル107が学習され、続いて、学習用データセット2が時間t+1で使用されて分類予測モデル107が学習される。そして、このような学習処理が、学習用データセット10が時間t+9で使用されて分類予測モデル107が学習されるまで続く。本実施形態では、このような学習処理により、分類予測モデル107は時系列的に異なる学習用データセットで学習される。
 なお、本実施形態では、データセット生成部103により生成された複数の学習用データセット1~10を順に分類予測モデル107に適用する例を説明したが、データセット生成部103と学習部104の処理が繰り返されてもよい。すなわち、データセット生成部103が学習用データセット1を生成して学習部104が当該データセットを用いて分類予測モデル107を学習させ、続いて、データセット生成部103が学習用データセット2を生成して学習部104が当該データを用いて分類予測モデル107を学習させ、このような処理を学習用データセット10まで続けてもよい。
[情報処理装置100のハードウェア構成]
 図6は、本実施形態による情報処理装置100のハードウェア構成の一例を示すブロック図である。
 本実施形態による情報処理装置100は、単一または複数の、あらゆるコンピュータ、モバイルデバイス、または他のいかなる処理プラットフォーム上にも実装することができる。
 図6を参照して、情報処理装置100は、単一のコンピュータに実装される例が示されているが、本実施形態による情報処理装置100は、複数のコンピュータを含むコンピュータシステムに実装されてよい。複数のコンピュータは、有線または無線のネットワークにより相互通信可能に接続されてよい。
 図6に示すように、情報処理装置100は、CPU601と、ROM602と、RAM603と、HDD604と、入力部605と、表示部606と、通信I/F607と、システムバス608とを備えてよい。情報処理装置100はまた、外部メモリを備えてよい。
 CPU(Central Processing Unit)601は、情報処理装置100における動作を統括的に制御するものであり、データ伝送路であるシステムバス608を介して、各構成部(602~607)を制御する。
 ROM(Read Only Memory)602は、CPU601が処理を実行するために必要な制御プログラム等を記憶する不揮発性メモリである。なお、当該プログラムは、HDD(Hard Disk Drive)604、SSD(Solid State Drive)等の不揮発性メモリや着脱可能な記憶媒体(不図示)等の外部メモリに記憶されていてもよい。
 RAM(Random Access Memory)603は、揮発性メモリであり、CPU601の主メモリ、ワークエリア等として機能する。すなわち、CPU601は、処理の実行に際してROM602から必要なプログラム等をRAM603にロードし、当該プログラム等を実行することで各種の機能動作を実現する。
 HDD604は、例えば、CPU601がプログラムを用いた処理を行う際に必要な各種データや各種情報等を記憶している。また、HDD604には、例えば、CPU601がプログラム等を用いた処理を行うことにより得られた各種データや各種情報等が記憶される。
 入力部605は、キーボードやマウス等のポインティングデバイスにより構成される。
 表示部606は、液晶ディスプレイ(LCD)等のモニターにより構成される。表示部606は、入力部605と組み合わせて構成されることにより、GUI(Graphical User Interface)として機能してもよい。
 通信I/F607は、情報処理装置100と外部装置との通信を制御するインタフェースである。
 通信I/F607は、ネットワークとのインタフェースを提供し、ネットワークを介して、外部装置との通信を実行する。通信I/F607を介して、外部装置との間で各種データや各種パラメータ等が送受信される。本実施形態では、通信I/F607は、イーサネット(登録商標)等の通信規格に準拠する有線LAN(Local Area Network)や専用線を介した通信を実行してよい。ただし、本実施形態で利用可能なネットワークはこれに限定されず、無線ネットワークで構成されてもよい。この無線ネットワークは、Bluetooth(登録商標)、ZigBee(登録商標)、UWB(Ultra Wide Band)等の無線PAN(Personal Area Network)を含む。また、Wi-Fi(Wireless Fidelity)(登録商標)等の無線LAN(Local Area Network)や、WiMAX(登録商標)等の無線MAN(Metropolitan Area Network)を含む。さらに、LTE/3G、4G、5G等の無線WAN(Wide Area Network)を含む。なお、ネットワークは、各機器を相互に通信可能に接続し、通信が可能であればよく、通信の規格、規模、構成は上記に限定されない。
 図6に示す情報処理装置100の各要素のうち少なくとも一部の機能は、CPU601がプログラムを実行することで実現することができる。ただし、図6に示す情報処理装置100の各要素のうち少なくとも一部の機能が専用のハードウェアとして動作するようにしてもよい。この場合、専用のハードウェアは、CPU601の制御に基づいて動作する。
 [処理の流れ]
 図7と図8を参照して、本実施形態による情報処理装置100により実行される処理の流れを説明する。図7は、分類予測モデル107を学習させる処理(学習フェーズ)のフローチャートを示し、図8は、学習済みの分類予測モデル107を用いた、商品画像(商品画像に含まれる商品)に対する分類の予測処理(分類予測フェーズ)のフローチャートを示す。図7と図8に示す処理は、情報処理装置100のCPU601がROM602等に格納されたプログラムをRAM603にロードして実行することによって実現されうる。図7の説明にあたり、図5を参照する。
 S71では、データセット生成部103は、学習用データセット1を初期学習用データセットとして生成する。続いて、S72では、データセット生成部103は、学習用データセット1を起点として学習データエレメントの追加と削除を繰り返し、学習用データセット2~10を順に生成する。
 S73では、学習部104は、S71とS72で生成された学習用データセット1~10を時系列的に順に用いて分類予測モデル107を学習させる。すなわち、学習部104は、学習用データエレメントの数が順に動的に変化するように生成された複数の学習用データセット1~10を順に用いて分類予測モデル107を学習させる。これにより、1度学習に使用された学習用データセットが時間を変えて再度使用される一方で、新たな学習用データセットも使用されて学習される。
 S74では、学習部104は、S73で学習された分類予測モデル107を、学習済みの分類予測モデル107として、RAM603といった記憶部に格納する。
 続いて、図8を参照して分類予測フェーズの処理について説明する。
 S81では、取得部101は、分類予測対象の商品を含む商品画像を取得する。例えば、取得部101は、情報処理装置100の操作者が、情報処理装置100を操作して、任意のECサイトにアクセスした上で任意の商品を含む商品画像を選択することにより、当該商品画像を取得する。また、取得部101は、ユーザ装置といった外部装置から送信された商品画像または商品画像を示すURLを取得することで、商品画像を取得することができる。1つの商品画像において含まれる分類予測対象の商品は1つに限らず、当該商品画像に複数の分類予測対象の商品が含まれてもよい。
 S82では、分類予測部102は、取得部101により取得された商品画像を分類予測モデル107に入力し、商品に対する階層的分類を予測して決定する。分類予測モデル107の例は図2または図3に示した通りであり、当該商品画像に基づき当該商品に対する階層的な分類のための複数の特徴量を抽出するメインネットワークと、当該複数の特徴量を用いて当該商品に対する階層的な分類を出力するサブネットワークから構成される。当該メインネットワークは、当該複数の特徴量のそれぞれを抽出する複数のサブパート(抽出器)で構成され、当該サブネットワークは、当該複数の特徴量のそれぞれから当該商品に対する分類を出力する複数の分類ブロック(分類器)で構成され、上位側の分類ブロックは1つ以上の下位側の分類ブロックへのコネクションを有するように構成される。
 図2または図3に示す分類予測モデル107の場合、分類予測部102は、S81で取得された商品画像の商品に対する階層的分類として、図4に示すように、上位から、第1分類、第2分類、第3分類を予測して決定する。
 S83では、出力部105は、S82で分類予測部102により予測して決定された分類の結果(分類結果)を出力する。例えば、出力部105は、分類結果を、情報処理装置100の表示部606に表示してもよいし、通信I/F607を介してユーザ装置といった外部装置に送信してもよい。
 なお、商品画像が複数の商品を含む場合は、取得部101は、例えば公知の画像処理技術により、当該複数の商品それぞれを含む複数の商品領域(Region of Interest)を取得し、分類予測部102に出力することができる。そして、分類予測部102は、各商品領域(部分画像)に対して、S82の処理を行い、各商品に対する分類を予測して決定することができる。出力部105は、各商品に対する(階層的)分類を別個に分類結果として出力してもよいし、1つの分類結果として出力してもよい。
 [分類結果の例]
 図9に、出力部105により出力された分類結果の例を分類結果90として示す。分類結果90は、情報処理装置100の表示部606に表示されてもよいし、通信I/F607を介してユーザ装置といった外部装置に送信され、当該外部装置において表示されてもよい。
 分類結果90において、商品画像91は、分類予測対象の商品を含む商品画像であり、例えば、情報処理装置100の操作者が、情報処理装置100を操作して、任意の電子商取引のサイトにアクセスした上で選択された画像である。また、商品画像91は、ユーザ装置といった外部装置から送信された画像であってもよい。
 情報処理装置100の分類予測部102は、商品画像91を、図2や図3に示す学習済みの分類予測モデル107に適用して、商品92に対する階層的分類93を予測する。当該階層的分類93は、図4に示した分類と同様である。出力部105は、階層的分類93と商品画像91とを併せて分類結果90を構成し、出力することができる。
 [性能評価の結果]
 表1に、分類予測処理の性能評価のシミュレーション結果を示す。具体的には、表1は、複数の学習モデルのそれぞれを用いて分類予測処理を行った場合の、正解データに対する正解率(Accuracy)を示す。本シミュレーションでは、学習用データ群106として、インターネット等で取得可能なFashion-MNISTデータセットを用いた。
Figure JPOXMLDOC01-appb-T000001
 本実施形態による学習モデルとして、第1実施形態において図3を参照して説明した分類予測モデル107を、図8を参照して説明した学習用データセット1~10を順に適用することにより学習させたモデルを用いた(本発明モデル)。
 また、比較対象の第1の学習モデルとして、図3に示した分類予測モデル107のメインネットワーク301、第3分類ブロック223、第3出力ブロック243のみで構成された学習モデルを、図8を参照して説明した、ラベル「0」~「9」の学習用データセットを一度適用することにより学習させたモデルを、第1比較モデルとして用いた。当該学習モデルは、第3分類のみを出力することが可能である。
 さらに、比較対象の第2の学習モデルとして、第1実施形態において図3を参照して説明した分類予測モデル107を、学習用データ群106からランダムに複数個(≦10)のデータを選択して生成した6つの学習用データセットを順に適用することにより学習させたモデルを、第2比較モデルとして用いた。
 表1からわかるように、まず、本発明モデルは、第2比較モデルと比較し、第1分類~第3分類の全てにおいて、正解率が高いことがわかる。また、本発明モデルは、第1比較モデルと比較して、第3分類の正解率が高いことがわかる。これは、第1実施形態において説明した分類予測モデル107を用いることと、本実施形態において説明した時系列的に複数の学習用データセット使用して分類予測モデル107を学習させたことの、相乗効果である。
 このように、本実施形態によれば、複数の学習用データセットを、分類予測モデル107に対して時系列的に変えて適用して、分類予測モデル107を学習させる。このような継続的な学習処理により、学習モデルが構築され、複雑化する分類を、精度よく予測することが可能となる。
 また、分類予測モデル107は、図2や図3に示したように、第1分類ブロック211~第3分類ブロック223や第1分類ブロック311~第3分類ブロック323の出力に対してスキップコネクションが適用された構成を有する。このような構成により、上位の分類結果が下位の分類結果と結合されて下位の分類が予測され、商品に対する階層的分類を精度よく予測することが可能となる。
 また、本実施形態では、学習モデルとして分類予測モデル107を用い、入力された商品画像の商品に対する分類を予測する例を説明したが、本実施形態による学習処理は、機械学習のための任意の学習モデルに適用可能である。すなわち、図5を参照して説明した複数の学習用データセットを、畳み込み層ニューラルネットワーク(Convolutional Neural Network(CNN))による/を含んで構成される学習モデルに適用して、学習処理が行われてもよい。
 以上述べたように、本実施形態によれば、複雑化する分類タスクを対象とする学習モデルの構築が可能となり、また、学習モデルとして分類予測モデル107を用いることにより、商品画像から商品に対する分類を精度よく予測することが可能となる。これにより、例えば、ECサイトで購入される商品の動向の予測性やユーザによる商品選択の容易性が向上する。
 なお、上記において特定の実施形態が説明されているが、当該実施形態は単なる例示であり、本発明の範囲を限定する意図はない。本明細書に記載された装置及び方法は上記した以外の形態において具現化することができる。また、本発明の範囲から離れることなく、上記した実施形態に対して適宜、省略、置換及び変更をなすこともできる。かかる省略、置換及び変更をなした形態は、請求の範囲に記載されたもの及びこれらの均等物の範疇に含まれ、本発明の技術的範囲に属する。
100:情報処理装置、101:取得部、102:分類予測部、103:データセット生成部、104:学習部、105:出力部、106:学習用データ群、107:分類予測モデル

 

Claims (12)

  1.  異なる正解ラベルが付与された複数の学習用データエレメントを含むデータ群から1以上の前記学習用データエレメントを選択し、前記学習用データエレメントの数が順に変化するように、複数の学習用データセットを生成する生成手段と、
     前記複数の学習用データセットを機械学習のための学習モデルに生成された順に適用して、当該学習モデルを繰り返し学習させる学習手段と、を有することを特徴とする情報処理装置。
  2.  前記生成手段は、前記学習用データエレメントがランダムに変化するように、前記複数の学習用データエレメントから前記複数の学習用データセットを生成することを特徴とする請求項1に記載の情報処理装置。
  3.  前記生成手段は、前記学習用データエレメントの数が順に増減するように、前記複数の学習用データエレメントから前記複数の学習用データセットを生成することを特徴とする請求項1または2に記載の情報処理装置。
  4.  前記生成手段は、前記データ群から1つ以上の学習用データエレメントをランダムに選択して初期学習用データセットを生成し、前記初期学習用データセットを起点として、前記データ群からランダムに選択した1つ以上の学習用データエレメントの追加および削除を行うことにより、前記複数の学習用データセットを生成することを特徴とする請求項1から3のいずれか1項に記載の情報処理装置。
  5.  前記学習モデルは、畳み込みニューラルネットワーク(Convolutional Neural Network)を含んで構成されていることを特徴とする請求項1から4のいずれか1項に記載の情報処理装置。
  6.  前記学習モデルは、オブジェクトを含むオブジェクト画像を入力として、前記オブジェクト画像に基づき前記オブジェクトに対する階層的な分類のための複数の特徴量を抽出するメインネットワークと、前記複数の特徴量を用いて前記オブジェクトに対する階層的な分類を出力するサブネットワークから構成され、
     前記メインネットワークは、前記複数の特徴量のそれぞれを抽出する複数の抽出器で構成され、
     前記サブネットワークは、前記複数の特徴量のそれぞれから前記オブジェクトに対する分類を出力する複数の分類器で構成され、上位側の分類器は1つ以上の下位側の分類器へのコネクションを有するように構成される、ことを特徴とする請求項1から5のいずれか1項に記載の情報処理装置。
  7.  前記メインネットワークにおける前記複数の抽出器のそれぞれは、複数の畳み込み層を含んで構成されることを特徴とする請求項6に記載の情報処理装置。
  8.  前記サブネットワークにおける前記複数の分類器のそれぞれは、全結合型ニューラルネットワークで構成されることを特徴とする請求項6または7に記載の情報処理装置。
  9.  前記ラベルは、前記オブジェクトに対する、階層構造を有する分類を示すことを特徴とする請求項6から8のいずれか1項に記載の情報処理装置。
  10.  前記分類手段により決定された前記2つ以上の階層的な分類を出力する出力手段をさらに有することを特徴とする請求項6から9のいずれか1項に記載の情報処理装置。
  11.  異なる正解ラベルが付与された複数の学習用データエレメントを含むデータ群から1以上の前記学習用データエレメントを選択し、前記学習用データエレメントの数が順に変化するように、複数の学習用データセットを生成する生成工程と、
     前記複数の学習用データセットを機械学習のための学習モデルに生成された順に適用して、当該学習モデルを繰り返し学習させる学習工程と、を有することを特徴とする情報処理方法。
  12.  情報処理をコンピュータに実行させるための情報処理プログラムであって、該プログラムは、前記コンピュータに、
     異なる正解ラベルが付与された複数の学習用データエレメントを含むデータ群から1以上の前記学習用データエレメントを選択し、前記学習用データエレメントの数が順に変化するように、複数の学習用データセットを生成する生成処理と、
     前記複数の学習用データセットを機械学習のための学習モデルに生成された順に適用して、当該学習モデルを繰り返し学習させる学習処理と、を含む処理を実行させることを特徴とする情報処理プログラム。

     
     
PCT/JP2021/044858 2021-12-07 2021-12-07 情報処理装置、情報処理方法、およびプログラム WO2023105610A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/044858 WO2023105610A1 (ja) 2021-12-07 2021-12-07 情報処理装置、情報処理方法、およびプログラム
JP2022561532A JP7445782B2 (ja) 2021-12-07 2021-12-07 情報処理装置、情報処理方法、およびプログラム
EP21943318.2A EP4216114A4 (en) 2021-12-07 2021-12-07 INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD AND PROGRAM
US18/009,831 US20240135693A1 (en) 2021-12-07 2021-12-07 Information processing apparatus, information processing method, and non-transitory computer readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044858 WO2023105610A1 (ja) 2021-12-07 2021-12-07 情報処理装置、情報処理方法、およびプログラム

Publications (1)

Publication Number Publication Date
WO2023105610A1 true WO2023105610A1 (ja) 2023-06-15

Family

ID=86729837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044858 WO2023105610A1 (ja) 2021-12-07 2021-12-07 情報処理装置、情報処理方法、およびプログラム

Country Status (4)

Country Link
US (1) US20240135693A1 (ja)
EP (1) EP4216114A4 (ja)
JP (1) JP7445782B2 (ja)
WO (1) WO2023105610A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231768A (ja) * 2009-03-27 2010-10-14 Mitsubishi Electric Research Laboratories Inc マルチクラス分類器をトレーニングする方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6418211B2 (ja) * 2016-09-15 2018-11-07 オムロン株式会社 識別情報付与システム、識別情報付与装置、識別情報付与方法及びプログラム
JP7357551B2 (ja) * 2020-01-17 2023-10-06 株式会社日立ソリューションズ・クリエイト 画像判定システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231768A (ja) * 2009-03-27 2010-10-14 Mitsubishi Electric Research Laboratories Inc マルチクラス分類器をトレーニングする方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KUZBORSKIJ ILJA, ORABONA FRANCESCO, CAPUTO BARBARA: "Transfer Learning Through Greedy Subset Selection ", ARXIV.ORG, 6 August 2010 (2010-08-06), XP093069973 *
LIU YUANJUN; LUO GAOFENG; DONG FENG: "Convolutional Network Model using Hierarchical Prediction and its Application in Clothing Image Classification", 2019 3RD INTERNATIONAL CONFERENCE ON DATA SCIENCE AND BUSINESS ANALYTICS (ICDSBA), IEEE, 11 October 2019 (2019-10-11), pages 157 - 160, XP033867912, DOI: 10.1109/ICDSBA48748.2019.00041 *
See also references of EP4216114A4
SEO YIANSHIN KYUNG-SHIK: "Hierarchical convolutional neural networks for fashion image classification", EXP. SYS. APPL., vol. 116, 2019, pages 328 - 329

Also Published As

Publication number Publication date
JP7445782B2 (ja) 2024-03-07
US20240135693A1 (en) 2024-04-25
EP4216114A1 (en) 2023-07-26
EP4216114A4 (en) 2024-02-14
JPWO2023105610A1 (ja) 2023-06-15

Similar Documents

Publication Publication Date Title
Zhang et al. A deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertainties
JP6516025B2 (ja) 情報処理方法および情報処理装置
Santos et al. Visus: An interactive system for automatic machine learning model building and curation
US20210117718A1 (en) Entropy Based Synthetic Data Generation For Augmenting Classification System Training Data
US11481553B1 (en) Intelligent knowledge management-driven decision making model
US10540257B2 (en) Information processing apparatus and computer-implemented method for evaluating source code
AU2018319215A1 (en) Electronic apparatus and control method thereof
US20220335293A1 (en) Method of optimizing neural network model that is pre-trained, method of providing a graphical user interface related to optimizing neural network model, and neural network model processing system performing the same
US10846889B2 (en) Color handle generation for digital image color gradients using machine learning
Singla et al. Modelling and analysis of multi-objective service selection scheme in IoT-cloud environment
US11449662B2 (en) Automatic generation of layout variations based on visual flow
WO2023105610A1 (ja) 情報処理装置、情報処理方法、およびプログラム
WO2023105609A1 (ja) 情報処理装置、情報処理方法、プログラム、および学習モデル
Halnaut et al. Compact visualization of DNN classification performances for interpretation and improvement
JPWO2020085114A1 (ja) 情報処理装置、情報処理方法、および、プログラム
US11687591B2 (en) Systems, methods, computing platforms, and storage media for comparing non-adjacent data subsets
DE102022002707A1 (de) Maschinell lernende Konzepte zur Schnittstellenmerkmalseinführung über Zeitzonen oder grafische Bereiche hinweg
Zeng Decision making with the uncertain IMOWAD operator
WO2024201983A1 (ja) 情報処理装置、情報処理方法、および情報処理プログラム
CN109585023B (zh) 数据处理方法和系统
Ignatius et al. Data Analytics and Reporting API–A Reliable Tool for Data Visualization and Predictive Analysis
Mittas et al. Benchmarking effort estimation models using archetypal analysis
Wang Packaging style design based on visual semantic segmentation technology and intelligent cyber physical system
WO2023007544A1 (ja) 情報処理装置、情報処理方法、およびプログラム
WO2023062668A1 (ja) 情報処理装置、情報処理方法、情報処理システム、およびプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022561532

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18009831

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021943318

Country of ref document: EP

Effective date: 20221206

NENP Non-entry into the national phase

Ref country code: DE