WO2023105572A1 - Base station device, wireless communication system, control method, and non-transitory computer-readable medium - Google Patents

Base station device, wireless communication system, control method, and non-transitory computer-readable medium Download PDF

Info

Publication number
WO2023105572A1
WO2023105572A1 PCT/JP2021/044714 JP2021044714W WO2023105572A1 WO 2023105572 A1 WO2023105572 A1 WO 2023105572A1 JP 2021044714 W JP2021044714 W JP 2021044714W WO 2023105572 A1 WO2023105572 A1 WO 2023105572A1
Authority
WO
WIPO (PCT)
Prior art keywords
enb
base station
terminal
information
terminal device
Prior art date
Application number
PCT/JP2021/044714
Other languages
French (fr)
Japanese (ja)
Inventor
憲治 小柳
進 野中
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2021/044714 priority Critical patent/WO2023105572A1/en
Publication of WO2023105572A1 publication Critical patent/WO2023105572A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/14Interfaces between hierarchically different network devices between access point controllers and backbone network device

Definitions

  • the present invention relates to base station apparatuses, wireless communication systems, control methods, and non-transitory computer-readable media.
  • PS-LTE Public Safety-LTE
  • LTE Long Term Evolution
  • MCA Multi Channel Access
  • Patent Document 1 describes selecting a network selection parameter used by a terminal device based on a priority associated with an application or the like in a PS-LTE system.
  • the PS-LTE system makes it possible to provide stable services in the event of a disaster.
  • communication failures may occur between the base station and the core network.
  • related techniques do not take such situations into account, and there are cases where a terminal device cannot communicate via a wireless network such as a suitable base station or cell.
  • the present disclosure provides a base station device, a wireless communication system, a control method, and a non-transitory computer-readable medium that enable terminal devices to communicate via an appropriate wireless network. for the purpose.
  • a base station apparatus includes detection means for detecting a communication state between the base station apparatus and a core network, and control for controlling selection of a wireless network by a terminal device according to the detected communication state. and means.
  • a wireless communication system includes a base station apparatus and a terminal apparatus, wherein the base station apparatus includes detection means for detecting a communication state between the base station apparatus and a core network; and control means for controlling selection of a wireless network by the terminal according to the state.
  • a control method is a control method in a base station apparatus, detecting a communication state between the base station apparatus and a core network, and controlling a radio network by a terminal apparatus according to the detected communication state. It controls the selection of
  • a non-transitory computer-readable medium storing a control program according to the present disclosure causes a computer in a base station device to detect a communication state between the base station device and a core network, It is a non-transitory computer-readable medium storing a control program for executing processing for controlling selection of a wireless network by a terminal device accordingly.
  • a base station device a wireless communication system, a control method, and a non-transitory computer-readable medium that enable terminal devices to communicate via an appropriate wireless network.
  • FIG. 1 is a diagram showing a schematic configuration of a PS-LTE system according to an embodiment
  • FIG. FIG. 4 is a diagram showing an example of communication during failure of the PS-LTE system according to the embodiment
  • FIG. 4 is a diagram showing an example of communication during failure of the PS-LTE system according to the embodiment
  • FIG. 2 is a diagram for explaining problems in a PS-LTE system before application of an embodiment
  • 1 is a diagram showing a schematic configuration of an eNB according to an embodiment
  • FIG. 1 is a diagram showing a configuration example of a PS-LTE system according to Embodiment 1
  • FIG. 2 is a diagram showing an operation example of the PS-LTE system according to Embodiment 1
  • FIG. 2 is a diagram showing an operation example of the PS-LTE system according to Embodiment 1;
  • FIG. 8 is a diagram showing another operation example of the PS-LTE system according to Embodiment 1;
  • FIG. 8 is a diagram showing another operation example of the PS-LTE system according to Embodiment 1;
  • FIG. 2 is a diagram for explaining the effects of the PS-LTE system according to Embodiment 1;
  • FIG. FIG. 2 is a diagram showing a configuration example of a PS-LTE system according to a modification of Embodiment 1;
  • FIG. 10 is a diagram showing a configuration example of a PS-LTE system according to Embodiment 2;
  • FIG. 10 is a diagram showing an operation example of the PS-LTE system according to Embodiment 2;
  • FIG. 10 is a diagram showing an operation example of the PS-LTE system according to Embodiment 2;
  • FIG. 10 is a diagram showing a configuration example of a PS-LTE system according to a modification of Embodiment 2;
  • FIG. 10 is a diagram showing an operation example of a PS-LTE system according to a modification of Embodiment 2;
  • FIG. 10 is a diagram showing an operation example of a PS-LTE system according to a modification of Embodiment 2;
  • FIG. 10 is a diagram showing a configuration example of a PS-LTE system according to Embodiment 3;
  • FIG. 10 is a diagram showing an operation example of the PS-LTE system according to Embodiment 3;
  • FIG. 10 is a diagram showing an operation example of the PS-LTE system according to Embodiment 3;
  • FIG. 10 is a diagram for explaining the effects of the PS-LTE system according to Embodiment 3;
  • FIG. 10 is a diagram showing a configuration example of a PS-LTE system according to a modification of Embodiment 3;
  • FIG. 12 is a diagram showing an operation example of a PS-LTE system according to a modification of Embodiment 3;
  • FIG. 12 is a diagram showing an operation example of a PS-LTE system according to a modification of Embodiment 3;
  • 1 is a configuration diagram showing an overview of hardware of a computer according to an embodiment;
  • FIG. 1 shows a schematic configuration of a PS-LTE system 1 according to an embodiment.
  • An LTE (PS-LTE) system will be described as an example of an embodiment, but the present invention may be applied to other wireless communication systems such as a 5G system or a hybrid system of LTE and 5G. For example, it may be applied as a method of controlling access of terminals in business wireless systems other than 3GPP-compliant systems such as LTE and 5G.
  • the PS-LTE system 1 includes a base station eNB (evolved Node B: eNodeB) 10 (eg 10A and 10B), terminals 20 such as smartphones (eg 20-1 and 20-2), It has an EPC (Evolved Packet Core) 30 which is a core network.
  • eNB evolved Node B: eNodeB
  • EPC Evolved Packet Core
  • the eNB 10 is connected to the EPC 30 via the S1 interface.
  • a connection via the S1 interface may be called an S1 connection.
  • the terminal 20 wirelessly connects with the eNB 10 within the cell range of the eNB 10 and communicates with other terminals 20 via the EPC 30 .
  • the EPC 30 enables mutual communication even between the terminals 20 that are connected to different eNBs 10 .
  • the PS-LTE system 1 is provided with local EPCs 40 (eg, 40A and 40B), unlike general LTE systems.
  • the local EPC 40 is a smaller-scale core network device than the ECP 30 and is installed in the same office building as the eNB 10 .
  • FIG. 2 and 3 show an example of communication between terminals when a failure occurs between EPC and eNB in the PS-LTE system.
  • eNB 10 connects to local EPC 40 (eg 40A). This enables communication between the terminals 20 via the local EPC 40 within the same eNB area (cell).
  • LTE communication LTE Direct/LTE D2D
  • a plurality of eNBs 10 may be connected to one local EPC 40 (eg 40A).
  • the terminals 20 can communicate with each other via the local EPC 40 within the area of the plurality of eNBs 10 to which the local EPC 40 is connected.
  • FIG. 4 shows problems in the PS-LTE system before the application of the embodiment.
  • the S1 connection between the EPC (eg, 930) and the eNB (eg, 910A and 910B) is broken, between the terminals (eg, 920-1 and 920-2) Communication may not be possible.
  • terminal 920-1 connects to eNB 910A
  • terminal 920-2 determines that eNB 910B is a better connection destination than eNB 910A and connects to eNB 910B
  • the connection via EPC 930 is disconnected. Therefore, communication cannot be performed between terminals.
  • Terminal 920-1 and terminal 920-2 often exist in the area of eNB 910A, and even when the connection between EPC-eNB is disconnected, when it is required to communicate with terminal 920-1 and terminal 920-2 , terminal 920-2 should be controlled to select eNB 910A instead of selecting eNB 910B. Therefore, in the embodiment, in such a situation, the terminal selects an appropriate base station to enable communication between the terminals.
  • FIG. 5 shows a schematic configuration of the eNB 10 (base station device) according to the embodiment.
  • the eNB 10 includes a detection section 11 and a control section 12 .
  • the detection unit 11 detects the communication state of the S1 connection between the eNB 10 and the EPC 30 (core network).
  • the control unit 12 controls selection of a wireless network by the terminal 20 according to the detected communication state.
  • a radio network is an accessed base station or cell in a radio access network.
  • the control unit 12 may transmit control information for selecting a wireless network to the terminal 20 when the communication state of the S1 connection is disconnected or when the communication state of the S1 connection is recovered from disconnection.
  • the control information may be information indicating the communication state of the detected S1 connection, or information instructing switching of the wireless network selection method of the terminal.
  • the control information may be information indicating a wireless network accessible by the terminal 20 or priority information indicating the priority of the accessible wireless network.
  • the control information may be call restriction information that restricts transmission of a specific terminal 20 .
  • selection of a wireless network such as a base station or cell by a terminal is controlled based on the communication state of the S1 connection between the base station and the EPC.
  • the terminal can select an appropriate base station or cell to access the wireless network, enabling communication between the terminals.
  • Embodiment 1 Next, Embodiment 1 will be described. This embodiment will explain an example in which a terminal selects an eNB/cell based on eNB/cell priority information held in advance by the terminal.
  • FIG. 6 shows a configuration example of the PS-LTE system 2 according to this embodiment.
  • PS-LTE system 2 includes eNB 100, terminal 200, EPC 300, and local EPC 400.
  • FIG. 6 shows a configuration example of the PS-LTE system 2 according to this embodiment.
  • PS-LTE system 2 includes eNB 100, terminal 200, EPC 300, and local EPC 400.
  • FIG. 6 shows a configuration example of the PS-LTE system 2 according to this embodiment.
  • PS-LTE system 2 includes eNB 100, terminal 200, EPC 300, and local EPC 400.
  • the EPC 300 constitutes the core network (device) of the LTE (PS-LTE) system.
  • the EPC 300 has core network functions such as MME (Mobility Management Entity), S-GW (Serving Gateway), P-GW (Packet Data Network Gateway), HSS (Home Subscriber Server), PCRF (Policy and Charging Rules Function) and so on.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • HSS Home Subscriber Server
  • PCRF Policy and Charging Rules Function
  • the MME accommodates control signals for the eNB 100 and performs mobility control for the terminal 200 .
  • the S-GW accommodates user data signals of eNB 100 and transfers data packets to and from eNB 100 .
  • the P-GW is connected to an external PDN (Packet Data Network), transfers data packets to and from the S-GW, and assigns an IP address to the terminal 200 .
  • HSS manages subscriber information.
  • the PCRF controls data transfer policies and
  • the EPC 300 may be connected to a PTT server for realizing a PTT call of the terminal 200 when the terminal 200 makes a PTT (Push-to-Talk) call, or the EPC 300 may have a PTT server function. good.
  • the PTT server is a call control server such as a SIP (Session Initiation Protocol) server.
  • the local EPC 400 has core network functions similar to those of the EPC 300.
  • Local EPC 400 is a local core network (device) that provides core network functions to eNB 100 when eNB 100 cannot communicate via EPC 300 .
  • the local EPC 400 may consist of one device, may consist of a plurality of arbitrary devices, or may consist of virtualized devices.
  • the local EPC 400 may be connected to a local PTT server, or the local EPC 400 may have a PTT server function.
  • the eNB 100 is a base station (device) of the LTE (PS-LTE) system and constitutes a radio access network (E-UTRAN: Evolved Universal Terrestrial Radio Access Network).
  • the eNB 100 has a wireless communication function and necessary control functions as basic functions of a base station, and may be configured by one device or by arbitrary plural devices.
  • the eNB 100 is an arbitrary number of RRHs (Remote Radio Heads) that transmit and receive radio signals to and from the terminal 200, and BBUs (Base Band Units) that accommodate RRHs and perform baseband signal processing and interface processing with the core network.
  • RRHs Remote Radio Heads
  • BBUs Base Band Units
  • the eNB 100 mainly includes a terminal communication unit 110, a core communication unit 120, a local core communication unit 130, a detection unit 140, and a notification unit 150 as necessary functions in this embodiment.
  • the terminal communication unit 110 is a wireless communication unit that performs wireless communication with the terminal 200 located within the eNB 100 cell (communication area).
  • the terminal communication unit 110 is an LTE radio communication unit, and transmits and receives data and control signals to and from the terminal 200 using radio signals in a band allocated for PS-LTE, for example.
  • the core communication unit 120 is a backhaul communication unit that communicates with the EPC 300.
  • the core communication unit 120 transmits and receives data and control signals to and from the EPC 300 via the S1 interface, which is a core network interface for backhaul (backhaul interface).
  • the S1 interface is an example of an interface for core connection, and may be connected via other interfaces (lines or transmission lines).
  • the local core communication unit 130 is a local backhaul communication unit that communicates with the local EPC 400.
  • the local core communication unit 130 transmits and receives data and control signals to and from the local EPC 400 via the S1 interface, which is a core network interface for local backhaul (local backhaul interface).
  • the S1 interface is an example of an interface for local core connection, and may be connected via other interfaces.
  • the eNB 100 is connected to the EPC 300 via an S1 interface and is connected to the local EPC 400 via another S1 interface, but may be connected via different types of interfaces.
  • the detection unit 140 detects the communication state (connection state) of the S1 connection (backhaul connection) with the EPC 300 via the S1 interface.
  • the detection unit 140 monitors the communication state of the S1 connection (backhaul line or backhaul link) by the core communication unit 120, and determines whether the S1 connection has been disconnected, or whether the S1 connection has been restored from disconnection.
  • a disconnected (or disconnected) state is a state in which normal communication with the required quality cannot be performed, that is, a state of communication failure.
  • the eNB 100 switches the connection of the core network from the EPC 300 to the local EPC 400. That is, the local core communication unit 130 establishes a connection with the local EPC 400 when the detecting unit 140 detects disconnection of the S1 connection with the EPC 300 . This enables communication between terminals in the cell by the local EPC 400 when a failure occurs in the S1 connection between the eNB 100 and the EPC 300 .
  • the notification unit (control unit) 150 notifies the communication state of the S1 connection with the EPC 300 detected by the detection unit 140 from the terminal communication unit 110 to the terminal 200 in the cell. For example, the notification unit 150 transmits (broadcasts) the communication state of S1 to all terminals 200 in the cell.
  • the notification unit 150 notifies the terminal 200 of the disconnection of the S1 connection (backhaul disconnection).
  • the notification unit 150 notifies the terminal 200 of recovery of the S1 connection (backhaul recovery).
  • the information indicating the disconnection or restoration of the S1 connection notified to the terminal 200 can be said to be information instructing the terminal to switch the eNB/cell selection method.
  • the terminal 200 is a user equipment (UE) of the LTE (PS-LTE) system.
  • the terminal 200 may be a general-purpose terminal such as a smart phone or mobile phone, or may be a dedicated terminal such as a wireless device for business use.
  • the terminal 200 makes a PTT call with the other terminal 200 as communication with the other terminal 200, for example.
  • a call is made with another selected terminal 200 or a plurality of terminals 200 in the set group via the eNB and EPC (PTT server). Therefore, the terminal 200 has, as basic functions, a wireless communication function, a PTT call function, and the like. Note that the terminal 200 may perform arbitrary communication with other terminals 200 without being limited to the PTT call.
  • the terminal 200 mainly includes a communication unit 210, a priority holding unit 220, and a selection unit 230 as necessary functions in this embodiment.
  • the communication unit 210 is a radio communication unit that performs radio communication with the eNB 100 within the cell of the eNB 100 .
  • the communication unit 210 is an LTE radio communication unit, and transmits and receives data and control signals to and from the eNB 100 using radio signals in a band allocated for PS-LTE, for example.
  • the priority holding unit 220 presets and holds (stores) the priority information of the eNB/cell.
  • the priority is the order of priority for selecting eNB 100 or cell (radio access network) to which terminal 200 connects (accesses).
  • the priority information is a list of priorities of eNB 100 or cells to which terminal 200 connects when backhaul connection failure of eNB 100 occurs, and includes priorities of a plurality of eNB 100 or cells to which terminal 200 can connect.
  • the priority information may be information indicating the eNB 100 or the cell to which the terminal 200 should connect when the backhaul connection failure of the eNB 100 (information on eNB/cell with high priority).
  • the same priority information is set for the terminals 200 belonging to the same group.
  • the priority information includes a list of priorities of the eNB 100 or cells in the prefecture and surrounding prefectures, and the priority of the eNB 100 or cells in the prefecture is higher than the priority of the cells in the prefecture. The priority of the eNB 100 or the cell is set higher.
  • the selection unit 230 selects the eNB 100 or cell to be connected based on the eNB/cell priority information held by the priority holding unit 220 .
  • the selection unit 230 switches the eNB/cell selection method according to the communication state of the S1 connection notified from the eNB 100 .
  • the selection method is a selection method based on the priority information of the eNB / cell (first selection method) and a selection method based on the received signal quality (electric field strength) of the signal received from the eNB / cell (second selection method). include. It should be noted that other selection methods may be used instead of the selection method based on the electric field intensity.
  • the selection unit 230 selects the eNB/cell based on the priority information when the disconnection of the S1 connection is notified from the eNB 100, and when the restoration of the S1 connection is notified from the eNB 100, the eNB/based on the electric field strength. Make a cell selection.
  • the eNB 100 notifies the terminal 200 of the disconnection of the S1 connection, thereby controlling the terminal 200 to select an eNB/cell based on the priority information
  • the terminal 200 is controlled to select an eNB/cell based on the electric field strength by notifying the terminal 200 of the restoration of the S1 connection.
  • the selection unit 230 selects an eNB / cell based on the priority information, for example, the electric field strength is a threshold (a threshold such as RSRP (Reference Signal Received Power) held in advance by the terminal) eNB 100 that satisfies the priority may select and connect to the eNB 100 with the highest .
  • the eNB 100 or cell with the highest priority may be selected in order and connection may be tried, and if the attach (registration) fails, the eNB 100 or cell with the next highest priority may be selected and connected.
  • PS-LTE system 2 includes eNBs 100A and 100B, terminals 200A-1 and 200A-2, EPC 300, and local EPCs 400A and 400B.
  • eNB 100A and eNB 100B connected to EPC 300 are adjacent to each other, and part of the cell of eNB 100A and part of the cell of eNB 100B overlap.
  • Terminal 200A-1 is located within the cell of eNB 100A
  • terminal 200A-2 is located near the boundary between the cell of eNB 100B and the cell of eNB 100A.
  • the terminal 200A-1 and the terminal 200A-2 are terminals that communicate with each other (for example, terminals in the same group A). holds low priority information.
  • the eNB 100 notifies the terminal 200 of the disconnection of the S1 connection between the eNB and the EPC when the S1 connection with the EPC 300 is disconnected. Upon receiving this notification, terminal 200 uses the priority information held in terminal 200 to switch to select an eNB/cell. Note that eNB 100 connects to local EPC 400 (switches connection to local EPC 400 ) when the S1 connection with EPC 300 is disconnected, and enables communication between accessed terminals 200 by local EPC 400 .
  • the eNB 100A notifies the terminal 200A-1 in the cell of the disconnection of the S1 connection (S101).
  • the terminal 200A-1 receives the disconnection notification of the S1 connection from the eNB 100B, it selects an eNB based on the priority information and connects to the eNB 100A with a higher priority (S102).
  • the terminal 200A-1 is connected to the eNB 100A even when the eNB is selected based on the electric field strength, so the connection destination of the terminal 200A-1 does not change.
  • the eNB 100B notifies the terminal 200A-2 in the cell of the disconnection of the S1 connection (S103).
  • the terminal 200A-2 receives the S1 connection disconnection notification from the eNB 100B, the terminal 200A-2 selects an eNB based on the priority information and switches to connect to the eNB 100A with a higher priority (S104).
  • the terminal 200A-2 is connected to the eNB 100B when the eNB is selected based on the electric field strength, but is connected to the eNB 100A by using the priority information. This allows the terminals 200A-1 and 200A-2 to communicate via the eNB 100A and the local EPC 400A.
  • the eNB 100 when the disconnection of the S1 connection between the eNB 100 and the EPC 300 is restored, the eNB 100 notifies the terminal 200 of information indicating that the S1 connection between the eNB and the EPC has been restored.
  • the terminal 200 receives this information, the terminal 200 stops the eNB/cell selection based on the priority information and changes to the normal eNB/cell selection based on the electric field strength or the like.
  • the S1 connection with EPC 300 when the connection is normal, eNB 100 switches the connection to EPC 300 and enables communication between accessed terminals 200 by EPC 300 .
  • the eNB 100A notifies the terminal 200A-1 in the cell of the restoration of the S1 connection (S111).
  • the terminal 200A-1 receives the S1 connection restoration notification from the eNB 100A, the terminal 200A-1 selects an eNB based on the electric field strength and continues to connect to the eNB 100A with the higher electric field strength (S112).
  • the eNB 100B notifies the terminal 200A-2 in the cell of the restoration of the S1 connection (S113).
  • the terminal 200A-2 selects an eNB based on the electric field strength, and switches the connection to the eNB 100B with the higher electric field strength (S114). This enables the terminals 200A-1 and 200A-2 to communicate via eNB100A-EPC300-eNB100B.
  • PS-LTE system 2 includes eNBs 100A and 100B, terminals 200A-1 and 200A-2, terminals 200B-1 and 200B-2, EPC 300, and local EPCs 400A and 400B.
  • Terminal 200A-1 is located within the cell of eNB 100A
  • terminal 200A-2 is located near the boundary between the cell of eNB 100A and the cell of eNB 100B.
  • the terminal 200B-2 is located within the cell of the eNB 100B
  • the terminal 200B-1 is located near the boundary between the cell of the eNB 100B and the cell of the eNB 100A.
  • the terminal 200A-1 and the terminal 200A-2 are terminals that communicate with each other (for example, terminals belonging to the same group A), and hold priority information indicating that the eNB 100A has a high priority and the eNB 100B has a low priority.
  • the terminal 200B-1 and the terminal 200B-2 are terminals that communicate with each other (for example, terminals belonging to the same group B), and hold priority information indicating that the eNB 100B has a high priority and the eNB 100A has a low priority.
  • eNB 100A transmits information indicating that the S1 connection between eNB 100A and EPC 300 is disconnected to terminal 200A-1 and terminal 200A-2 in the cell. (S121).
  • the terminal 200A-1 and the terminal 200A-2 that have received the information indicating that the S1 connection between the eNB 100A and the EPC 300 has been disconnected select an eNB/cell based on the eNB/cell priority information held by themselves, It connects to the eNB 100A with a higher priority (S122).
  • the terminal 200A-1 is connected to the eNB 100A even when the eNB is selected based on the electric field strength, so the connection destination of the terminal 200A-1 does not change.
  • the terminal 200A-2 is connected to the eNB 100B when the eNB is selected based on the electric field strength, but is connected to the eNB 100A by using the priority information. This allows the terminals 200A-1 and 200A-2 to communicate via the eNB 100A and the local EPC 400A. The same operation is performed when the terminal 200A-2 receives the S1 disconnection from the eNB 100B.
  • the eNB 100B notifies the terminal 200B-1 and the terminal 200B-2 in the cell of information indicating that the S1 connection between the eNB 100B and the EPC 300 is disconnected ( S123).
  • the terminal 200B-1 and the terminal 200B-2 that have received the information indicating that the S1 connection between the eNB 100B and the EPC 300 has been disconnected select an eNB/cell based on the eNB/cell priority information held by themselves, It connects to the eNB 100B with a higher priority (S124).
  • the terminal 200B-2 is connected to the eNB 100B even when the eNB is selected based on the electric field strength, so the connection destination of the terminal 200B-2 does not change.
  • the terminal 200B-1 is connected to the eNB 100A when the eNB is selected based on the electric field strength, but is connected to the eNB 100B by using the priority information. This enables the terminals 200B-1 and 200B-2 to communicate via the eNB 100B and the local EPC 400B. The same operation is performed when the terminal 200B-1 receives the S1 disconnection from the eNB 100A.
  • the eNB 100A transmits information indicating that the S1 connection between the eNB 100A and the EPC 300 has been restored to the terminal 200A-1 and the terminal 200A in the cell. -2 (S131).
  • the terminal 200A-1 and the terminal 200A-2 that have received the information indicating that the S1 connection between the eNB 100A and the EPC 300 has been restored select an eNB/cell based on the electric field strength without using the eNB/cell priority information. , to the eNB 100A or eNB 100B with a high electric field strength (S132).
  • the terminal 200A-1 when the terminal 200A-1 receives the S1 connection recovery notification from the eNB 100A, the terminal 200A-1 continues to connect to the eNB 100A with the higher electric field strength.
  • the terminal 200A-2 receives the S1 connection restoration notification from the eNB 100A, the terminal 200A-2 switches the connection to the eNB 100B having a higher electric field strength. This enables the terminals 200A-1 and 200A-2 to communicate via eNB100A-EPC300-eNB100B.
  • the eNB 100B notifies the terminals 200B-1 and 200B-2 in the cell of information indicating that the S1 connection between the eNB 100B and the EPC 300 has been restored. (S133).
  • the terminal 200B-1 and the terminal 200B-2 that have received the information indicating that the S1 connection between the eNB 100B and the EPC 300 has been restored select the eNB/cell based on the electric field strength without using the eNB/cell priority information. , to the eNB 100A or eNB 100B with a high electric field strength (S134).
  • the terminal 200B-2 when the terminal 200B-2 receives the S1 connection recovery notification from the eNB 100B, the terminal 200B-2 continues to connect to the eNB 100B with the higher electric field strength.
  • the terminal 200B-2 receives the S1 connection restoration notification from the eNB 100B, the terminal 200B-2 switches the connection to the eNB 100A having a higher electric field strength. This enables the terminals 200B-1 and 200B-2 to communicate via eNB100A-EPC300-eNB100B.
  • terminals 200A-1 and 200A-2 using the same priority information are connected to eNB 100A, communication is possible by eNB 100A and local EPC 400A, and terminals 200B-1 and 200B-2 using the same priority information is connected to the eNB 100B, communication is enabled by the eNB 100B and the local EPC 400B. Therefore, even if the S1 connection between ECP and eNB is cut due to the occurrence of a large-scale disaster, communication between terminals is possible by determining in advance the eNB / cell to which the terminal preferentially connects. , eNB.
  • Embodiment 1 (Modification of Embodiment 1)
  • the eNB notifies the terminal of the communication state of the S1 connection, but the terminal may detect the communication state of the S1 connection between the eNB and the EPC without being limited to the notification from the eNB.
  • FIG. 12 shows a configuration example of a PS-LTE system 2 according to this modification.
  • terminal 200 further includes detection section 240 in contrast to the configuration of Embodiment 1.
  • the detection unit 240 of the terminal 200 detects the communication state of the S1 connection (backhaul connection) between the eNB 100 and the EPC 300.
  • the detection unit 240 detects the communication state of the S1 connection between the eNB 100 and the EPC 300 based on the IP address assigned to the terminal 200, for example.
  • an IP address is assigned by the EPC.
  • the EPC 300 and the local EPC 400 have different IP address systems. Therefore, the terminal 200 can grasp that the core network connected to the eNB 100 has been switched from the EPC 300 to the local EPC 400 (or vice versa) based on the change in the address system of the assigned IP address.
  • Disconnection/restoration of the S1 connection between the eNB 100 and the EPC 300 can be detected. If the address system of the assigned IP address changes, disconnection/restoration of the S1 connection may be detected, or the address system of the IP address assigned by the EPC (or the local EPC) may be stored, and the stored address system may be used. The comparison may detect disconnection/restoration of the S1 connection.
  • the selection unit 230 of the terminal 200 switches the eNB/cell selection method according to the communication state of the S1 connection detected by the detection unit 240 . Specifically, when the disconnection of the S1 connection between the eNB 100 and the EPC 300 is detected due to a change in the assigned IP address, the eNB/cell is selected based on the priority information, and the eNB 100 due to a change in the assigned IP address. eNB/cell selection based on field strength when detecting restoration of S1 connectivity between UE and EPC.
  • the terminal 200 can automatically select an appropriate eNB/cell without notifying the terminal of the communication status of the S1 connection from the eNB.
  • Embodiment 2 Next, Embodiment 2 will be described.
  • a terminal selects an eNB/cell based on eNB/cell priority information notified to the terminal by an eNB.
  • FIG. 13 shows a configuration example of the PS-LTE system 2 according to this embodiment.
  • eNB 100 further includes management unit 160 in contrast to the configuration of the first embodiment.
  • the management unit 160 manages (stores) priority information to be notified to the terminal 200 .
  • the priority information is, for example, a list of priorities of eNB 100 or cells to which terminal 200 connects when backhaul connection failure of eNB 100 occurs.
  • the management unit 160 manages priority information for each terminal 200 . It is preferable to manage so that terminals communicating with each other or terminals performing group communication have the same priority information.
  • the management unit 160 manages priority information used by all terminals 200 that may connect to the eNB 100 .
  • the management unit 160 may acquire priority information from the outside. Moreover, the management unit 160 may acquire information on terminals that communicate with each other and terminals that perform group communication from the outside. For example, when the PTT server (or other call control server) has information on terminals that perform group communication, the management unit 160 acquires information on terminals that perform group communication from the PTT server, thereby enabling You may manage the priority information of a terminal.
  • the notification unit 150 notifies the terminal 200 in the cell of priority information based on the communication state of the S1 connection with the EPC 300 detected by the detection unit 140 .
  • the notification unit 150 individually notifies each terminal 200 of the priority information managed by the management unit 160 for each terminal 200 .
  • the priority information may be collectively notified to the terminals 200 in the same group (multicast or the like).
  • the notification unit 150 When the disconnection of the S1 connection with the EPC is detected, the notification unit 150 notifies the terminal 200 of the priority information of the corresponding terminal 200 . Moreover, the notification unit 150 notifies the terminal 200 of predetermined information when recovery of the S1 connection with the EPC 300 is detected. In this case, all eNBs/cells signal priority information with the same priority or information indicating deselection by priority. That is, the notification unit 150 notifies the terminal 200 of the priority information for the terminal 200 when the S1 connection with the EPC is disconnected, so that the terminal 200 selects the eNB/cell based on the priority information. When the S1 connection with the EPC 300 is restored, the terminal 200 is notified of priority information of the same priority or information indicating cancellation of selection by priority. Control eNB/cell selection based on field strength.
  • the terminal 200 includes a priority acquisition unit 250 instead of the priority holding unit 220 in contrast to the configuration of the first embodiment.
  • the priority acquisition unit 250 acquires priority information notified from the eNB 100 via the communication unit 210 .
  • the selection unit 230 selects an eNB/cell based on the priority information acquired by the priority acquisition unit 250 . It can be said that the eNB/cell selection method is switched according to the priority information notified from the eNB. For example, when priority information for the terminal 200 (priority information with different priority for each eNB) is notified from the eNB, the selection unit 230 selects the eNB/cell based on the notified priority information. When priority information of the same priority or information indicating cancellation of selection by priority is notified from the eNB, the eNB/cell is selected based on the electric field strength.
  • PS-LTE system 2 includes eNBs 100A and 100B, terminals 200A-1 and 200A-2, EPC 300, and local EPCs 400A and 400B, as in FIGS.
  • Terminal 200A-1 is located within the cell of eNB 100A
  • terminal 200A-2 is located near the boundary between the cell of eNB 100B and the cell of eNB 100A.
  • eNB 100A and eNB 100B as priority information to be transmitted to terminals 200A-1 and 200A-2, eNB 100A has a high priority (to be connected when the eNB has a backhaul connection failure), and eNB 100B has a low priority. is managing
  • the eNB 100 notifies the terminal 200 of eNB/cell priority information when the S1 connection with the EPC 300 is disconnected.
  • Terminal 200 connects to the eNB/cell with the best electric field strength until it receives notification of priority information, but when it receives notification of priority information, it connects to the eNB/cell based on the priority information.
  • the eNB 100A notifies the terminal 200A-1 in the cell of priority information for the terminal 200A-1 (S201).
  • terminal 200A-1 selects an eNB based on the received priority information and connects to eNB 100A with a higher priority (S202).
  • the terminal 200A-1 is connected to the eNB 100A even when the eNB is selected based on the electric field strength, so the connection destination of the terminal 200A-1 does not change.
  • the eNB 100B notifies the terminal 200A-2 in the cell of priority information for the terminal 200A-2 (S203).
  • the terminal 200A-2 selects an eNB based on the received priority information and switches to connect to the eNB 100A with a higher priority (S204).
  • the terminal 200A-2 is connected to the eNB 100B when the eNB is selected based on the electric field strength, but is connected to the eNB 100A by using the priority information. This allows the terminals 200A-1 and 200A-2 to communicate via the eNB 100A and the local EPC 400A.
  • the eNB 100 may notify the terminal 200 of priority information in which all eNBs/cells have the same priority, The terminal 200 may be notified of information that can control the terminal 200 so as not to follow the priority information.
  • the eNB 100A when the S1 connection between the eNB 100A and the EPC 300 is restored, the eNB 100A notifies the terminal 200A-1 in the cell of priority information of the same priority, for example (S211). Upon receiving the priority information from eNB 100A, terminal 200A-1 selects an eNB based on the received priority information, and continues to connect to eNB 100A with the same priority and high electric field strength (S212). Also, when the eNB 100A instructs the terminal 200A-1 not to follow the priority, the terminal 200A-1 selects an eNB based on the electric field strength without using the priority information, and continues to connect to the eNB 100A.
  • priority information of the same priority for example (S211).
  • terminal 200A-1 selects an eNB based on the received priority information, and continues to connect to eNB 100A with the same priority and high electric field strength (S212). Also, when the eNB 100A instructs the terminal 200A-1 not to follow the priority, the terminal 200A-1 selects
  • the eNB 100B notifies the terminal 200A-2 in the cell of priority information of the same priority, for example (S213).
  • the terminal 200A-2 selects an eNB based on the received priority information, and switches connection to the eNB 100B with the same priority and higher electric field strength (S214).
  • the terminal 200A-2 selects an eNB based on the received electric field without using the priority information, and connects to the eNB 100B with the higher electric field strength. switch. This enables the terminals 200A-1 and 200A-2 to communicate via eNB100A-EPC300-eNB100B.
  • the terminals that are communication partners can appropriately connect to the same eNB based on the priority information, and can communicate with each other.
  • the eNB that detects the disconnection of the S1 connection notifies the terminal of the priority information, but the eNB notifies the terminal of the priority information in response to an instruction from another device such as a system monitoring and control device.
  • FIG. 16 shows a configuration example of a PS-LTE system 2 according to this modification.
  • the PS-LTE system 2 has a system monitoring control device 500 in contrast to the configuration of the second embodiment.
  • the system monitoring control device 500 is a device that monitors and controls the PS-LTE system 2 as a whole.
  • the system monitoring control device 500 may be an EMS (Element Management System) that manages network equipment or an NMS (Network Management System) that manages a network.
  • EMS Event Management System
  • NMS Network Management System
  • the system monitoring control device 500 includes a monitoring section 510, a management section 520, and a control section 530.
  • the monitoring unit 510 monitors the status of each device in the PS-LTE system 2, the connection status between devices, and the like. For example, the monitoring unit 510 monitors the communication status of the S1 connection (backhaul connection) between each eNB 100 and the EPC 300 .
  • the management unit 520 manages (stores) setting information and the like of each device in the PS-LTE system 2 . For example, the management unit 520 manages the priority information of the eNB 100 that the eNB 100 notifies the terminal 200 for each terminal 200 . The management unit 520 manages priority information used by terminals 200 that may connect to all eNBs 100 .
  • the control unit 530 controls the operation of each device in the PS-LTE system 2.
  • Control unit 530 sets (instructs) priority information to other eNB 100 normally connected to EPC 300 according to the communication state of the S1 connection between eNB 100 and EPC 300 .
  • Other eNBs 100 to be set are eNBs connected to the same EPC 300, adjacent to the eNB 100, and having cells partially overlapping.
  • the other eNBs configured may be multiple eNBs. That is, when the S1 connection between the eNB 100 and the EPC 300 is disconnected, the control unit 530 sets the priority information for each terminal 200 managed by the management unit 520 to another eNB 100 that is normally connected to the EPC 300.
  • the control unit 530 may set priority information used by each terminal 200 connected (accommodated) to another eNB 100, or all terminals 200 that may be connected to another eNB 100 Priority information to be used may be set.
  • the notification unit 150 of the eNB 100 notifies the terminal 200 of the priority information acquired from the system monitoring control device 500 when the priority information is set (instructed) by the system monitoring control device 500 . That is, the notification unit 150 acquires the priority information of the terminal 200 according to the communication state between the EPC 300 and other eNBs 100 . Note that the notification unit 150 may notify the terminal 200 of the priority information managed by the eNB 100 when the S1 disconnection of another eNB 100 is notified from the system monitoring control device 500 .
  • ⁇ Action> 17 and 18 show an operation example of the PS-LTE system 2 according to this modification.
  • the system monitoring control device 500 connected to the eNB 100B via the EPC 300 It automatically controls notification of priority information in the eNB 100B.
  • the system monitoring and control device 500 monitors the connection status between the EPC 300 and the eNB 100A and eNB 100B, and when detecting disconnection of the S1 connection between the eNB 100A and the EPC 300, the connection between the eNB 100B and the EPC 300 If the S1 connection is established normally, priority information for terminal 200A-2 in the cell of eNB 100B is set (instructed) to eNB 100B via EPC 300 (S221). The eNB 100B notifies the terminal 200A-2 of the priority information for the terminal 200A-2 set by the system monitoring control device 500 (S222).
  • the system monitoring control device that connects to the eNB 100A via the EPC 300 500 automatically controls notification of priority information in eNB 100A.
  • the system monitoring and control device 500 monitors the connection status between the EPC 300 and the eNB 100A and the eNB 100B, and when detecting disconnection of the S1 connection between the eNB 100B and the EPC 300, If the S1 connection is established normally, priority information for terminal 200A-1 in the cell of eNB 100A is set (instructed) to eNB 100A via EPC 300 (S231). The eNB 100A notifies the terminal 200A-1 of the priority information for the terminal 200A-1 set by the system monitoring control device 500 (S232).
  • the priority information can be notified to the terminal from the other eNB, and the terminal can be reliably enable communication between
  • Embodiment 3 Next, Embodiment 3 will be described.
  • call restriction which is a function of LTE.
  • AC Access Class Barring
  • USIM Universal Subscriber Identity Module card
  • AC values are assigned from 0 to 9 for general terminals, 10 for emergency calls, and 11 to 15 for dedicated use (for example, 14 for police and fire departments, 13 for infrastructure operators such as gas and water). 12 for private security).
  • radio resources of the eNB are expected to increase and congestion is expected, outgoing calls from the eNB are restricted for each AC.
  • the eNB broadcasts the information of the AC to be restricted, and the terminal in which the corresponding AC is set suppresses the connection to the eNB.
  • this access class control is used to control the eNB/cell selected by the terminal.
  • FIG. 19 shows a configuration example of the PS-LTE system 2 according to this embodiment.
  • eNB 100 is provided with call restriction section 170 instead of notification section 150 in the configurations of the first and second embodiments.
  • the call restriction unit (control unit) 170 notifies the terminal 200 in the cell of call restriction information based on the communication state of the S1 connection with the EPC 300 detected by the detection unit 140 .
  • the call restriction unit 170 transmits (broadcasts) the call restriction information to all the terminals 200 within the cell.
  • the call restriction information is information for restricting (prohibiting) the call of a specific terminal 200 (access to an eNB/cell). It can be said that call restriction section 170 controls eNB/cell selection by terminal 200 by notifying terminal 200 of call restriction information. That is, by restricting connection to the eNB by a specific terminal using the call restriction information, the specific terminal is encouraged to connect to another eNB.
  • LTE access class control is used to restrict the transmission of terminal 200 as described above.
  • the eNB 100 periodically notifies the terminal 200 of notification information SIB (System Information Block).
  • SIB System Information Block
  • the call barring unit 170 sets the call barring information (AC-BarringInfo) of the notification information SIB2 so as to bar the call of the terminal 200 of a specific access class (AC). change.
  • the call restriction information is information indicating call restriction or call permission for the access class set in terminal 200 .
  • the call regulation unit 170 When the S1 connection is disconnected, the call regulation unit 170 notifies the AC of the specific terminal 200 that is not desired to be connected to its own eNB (is desired to be connected to another eNB) as call regulation information.
  • the call restriction information (AC) to be notified may be set in advance or may be acquired from the outside. Further, when recovery of disconnection of S1 connection with EPC 300 is detected, call restriction information (AC- BarringInfo).
  • the terminal 200 does not require the priority holding unit 220 and the priority acquisition unit 250 in contrast to the first and second embodiments.
  • the terminal 200 is set with an access class to be used for the mounted USIM. The same access class is set in the USIMs of terminals that communicate with each other and terminals that perform group communication.
  • selection unit 230 determines whether or not call to eNB 100 is restricted, and selects an eNB/cell to be connected. The selection unit 230 does not select an eNB/cell whose call is restricted for its own access class, but selects an eNB/cell whose call is not restricted.
  • the PS-LTE system 2 includes eNBs 100A and 100B, terminals 200A-1 and 200A-2, terminals 200B-1 and 200B-2, EPC 300, local EPCs 400A and 400B are provided.
  • Terminal 200A-1 is located within the cell of eNB 100A
  • terminal 200A-2 is located near the boundary between the cell of eNB 100A and the cell of eNB 100B.
  • the terminal 200B-2 is located within the cell of the eNB 100B
  • the terminal 200B-1 is located near the boundary between the cell of the eNB 100B and the cell of the eNB 100A.
  • the connection destination of the terminal is controlled using the call restriction. Specifically, one of 11 to 15 is selected and set as the access class in USIM of the terminal 200 to be connected to the eNB 100 when the S1 connection between the EPC and the eNB is broken. Then, when the S1 connection between the EPC and the eNB is disconnected, the eNB 100 sets the access class in the USIM of a terminal that is not desired to be connected to the eNB 100 to the call restriction information and notifies it.
  • the eNB 100B uses AC11 (for example, of the terminals 200A-1 and 200A-2) in the call barring information (AC-BarringInfo) notified by the broadcast information SIB2.
  • the eNB 100B triggered by the disconnection of the S1 connection between the eNB 100B and the EPC 300 and the switching of the S1 connection with the eNB 100B from the EPC 300 to the local EPC 400B, copies the call regulation information in the notification information SIB2 transmitted by the eNB 100B to all Change the terminal from permitted (Bit string 00000) to the terminal of AC11 that cannot be connected (Bit string 10000).
  • the terminal set to AC11 does not connect to the eNB100B, that is, the terminal 200A-2 that receives the call restriction information (AC11) from the eNB100B does not connect to the eNB100B because the AC is set to 11. .
  • the eNB 100A when the S1 connection between the eNB 100A and the EPC 300 is disconnected, the eNB 100A includes AC12 other than AC11 (for example, the terminals 200B-1 and 200B-2) in the call barring information (AC-BarringInfo) notified by the notification information SIB2. ) to regulation (barring: Bit string01111) (S302).
  • AC-BarringInfo the call barring information notified by the notification information SIB2.
  • the eNB 100A triggered by the fact that the S1 connection between the eNB 100A and the EPC 300 is disconnected and the S1 connection with the eNB 100A is switched from the EPC 300 to the local EPC 400A, copies the call regulation information in the notification information SIB2 transmitted by the eNB 100A to all Change the terminal from permitted (Bit string 00000) to the terminal of AC12-15 that cannot be connected (Bit string 011111).
  • terminals set to other than AC 11 are not connected to eNB 100A. That is, the terminal 200B-1 that has received the call restriction information (other than AC11) from the eNB 100A does not connect to the eNB 100A because AC is set to 12.
  • terminal 200A-2 which has received call restriction information from eNB 100A and eNB 100B, cannot make calls to eNB 100B but can make calls to eNB 100A. Since it is possible to make a call to eNB 100A, it connects to eNB 100A (S303). This allows the terminals 200A-1 and 200A-2 to communicate via the eNB 100A and the local EPC 400A.
  • terminal 200B-1 which has received the call restriction information from eNB100A and eNB100B, cannot make a call to eNB100A but can make a call to eNB100B. Since it is possible to make a call to the eNB 100B (S304). This enables the terminals 200B-1 and 200B-2 to communicate via the eNB 100B and the local EPC 400B.
  • the transmission control information is set to allow connection of all terminals. Specifically, when the S1 connection between the eNB 100B and the EPC 300 is restored, the eNB 100B transmits the call barring information (AC-BarringInfo) in the notification information SIB2 transmitted by the eNB 100B to the AC 11 so that all terminals can connect. It changes from no connection (Bit string 10000) to all permission for AC 11-15 (not barring: Bit string 00000) (S311). As a result, the terminal set to AC11 becomes connectable to eNB100B.
  • AC-BarringInfo call barring information
  • the eNB 100A transmits the call barring information (AC-BarringInfo) in the notification information SIB2 transmitted by the eNB 100A so that all the terminals can connect to the terminals of the ACs 12-15. is changed from prohibiting connection (Bit string 011111) to permitting all of AC 11-15 (not barring: Bit string 00000) (S312). As a result, terminals set to other than AC 11 can be connected to eNB 100A.
  • AC-BarringInfo call barring information in the notification information SIB2 transmitted by the eNB 100A
  • the terminals 200A-1 and 200A-2 that have received the call restriction information (all permitted) are able to connect to all eNBs, and therefore connect to the eNB 100A or eNB 100B based on the electric field strength (S313).
  • terminal 200A-1 connects to eNB 100A
  • terminal 200A-2 connects to eNB 100B. This enables the terminals 200A-1 and 200A-2 to communicate via eNB100A-EPC300-eNB100B.
  • terminals 200B-1 and 200B-2 that have received the call restriction information (all permitted) connect to the eNB 100A or eNB 100B based on the electric field strength, since they are now able to connect to all eNBs (S314).
  • terminal 200B-1 connects to eNB 100A
  • terminal 200B-2 connects to eNB 100B. This enables the terminals 200B-1 and 200B-2 to communicate via eNB100A-EPC300-eNB100B.
  • eNB regulates the transmission of a specific access class when the S1 connection with the EPC is disconnected, and the terminal is based on the restricted access class. Select the eNB/cell to connect to.
  • terminals set to the same access class can be appropriately connected to the same eNB and can communicate with each other. For example, since terminals 200A-1 and 200A-2 of the same access class are connected to eNB 100A, communication is enabled by eNB 100A and local EPC 400A, and terminals 200B-1 and 200B-2 of the same access class are connected to eNB 100B. Therefore, communication is possible by the eNB 100B and the local EPC 400B.
  • the connection destination of the terminal By controlling the eNB that becomes the terminal, communication between terminals can be performed via the eNB.
  • the eNB that detects the disconnection of the S1 connection notifies the terminal of the call restriction information.
  • FIG. 23 shows a configuration example of a PS-LTE system 2 according to this modification.
  • the PS-LTE system 2 has a system monitoring control device 500 similar to that of the modified example of the second embodiment in contrast to the configuration of the third embodiment.
  • the management unit 520 of the system monitoring control device 500 manages notification information of the eNB 100.
  • the management unit 520 manages call restriction information (AC) that the eNB 100 notifies to the terminal 200 for each eNB 100 .
  • AC call restriction information
  • the control unit 530 sets (instructs) call restriction information to the other eNB 100 normally connected to the EPC 300 according to the communication state of the S1 connection between the eNB 100 and the EPC 300 . That is, when the S1 connection between the eNB 100 and the EPC 300 is disconnected, the control unit 530 sets the call restriction information managed by the management unit 520 to the other eNB 100 normally connected to the EPC 300, and the other eNB 100 notifies control to change the transmission restriction information of the notification information to be sent.
  • the call regulation unit 170 of the eNB 100 When the call regulation information is set (instructed to change) by the system monitoring and control device 500, the call regulation unit 170 of the eNB 100 notifies the terminal 200 of notification information including the call regulation information acquired from the system monitoring and control device 500. . In other words, call restriction unit 170 acquires call restriction information according to the communication state between EPC 300 and other eNB 100 . Note that the call restriction unit 170 may notify the terminal 200 of predetermined call restriction information when the S1 disconnection of another eNB 100 is notified from the system monitoring control device 500 .
  • ⁇ Action> 24 and 25 show an operation example of the PS-LTE system 2 according to this modification.
  • the system monitoring control device 500 connected to the eNB 100B via the EPC 300 automatically , changes the broadcast information SIB2 in the eNB 100B.
  • the system monitoring and control device 500 monitors the connection status between the EPC 300 and the eNB 100A and eNB 100B, and when detecting disconnection of the S1 connection between the eNB 100A and the EPC 300, the connection between the eNB 100B and the EPC 300
  • the eNB 100B is set (instructed) via the EPC 300 to transmit restriction information (for example, AC11 connection disabled: Bit string 10000) to be notified by the eNB 100B (S321).
  • restriction information for example, AC11 connection disabled: Bit string 10000
  • the system monitoring control device 500 connected to the eNB 100A via the EPC 300 automatically , changes the broadcast information SIB2 in the eNB 100A.
  • the system monitoring and control device 500 monitors the connection status between the EPC 300 and the eNB 100A and the eNB 100B, and when detecting disconnection of the S1 connection between the eNB 100B and the EPC 300, When the S1 connection is normally connected, the eNB 100B is set (instructed) via the EPC 300 to transmit restriction information (for example, AC12-15 connection disabled: Bit string 011111) for notification by the eNB 100A (S331). The eNB 100A sets the set call restriction information in the notification information SIB2, and notifies the terminal 200A-1 of it (S332).
  • restriction information for example, AC12-15 connection disabled: Bit string 011111
  • the other eNB can notify the terminal of the call restriction information, and the terminal can reliably enable communication between
  • Each configuration in the above-described embodiments is configured by hardware or software, or both, and may be configured from one piece of hardware or software, or may be configured from multiple pieces of hardware or software.
  • Each device and each function (process) may be implemented by a computer 50 having a processor 51 such as a CPU (Central Processing Unit) and a memory 52 as a storage device, as shown in FIG.
  • a program for performing the method (control method) in the embodiment may be stored in the memory 52 and each function may be realized by executing the program stored in the memory 52 with the processor 51 .
  • These programs contain instructions (or software code) that, when read into a computer, cause the computer to perform one or more of the functions described in the embodiments.
  • the program may be stored in a non-transitory computer-readable medium or tangible storage medium.
  • computer readable media or tangible storage media may include random-access memory (RAM), read-only memory (ROM), flash memory, solid-state drives (SSD) or other memory technology, CDs - ROM, digital versatile disc (DVD), Blu-ray disc or other optical disc storage, magnetic cassette, magnetic tape, magnetic disc storage or other magnetic storage device.
  • the program may be transmitted on a transitory computer-readable medium or communication medium.
  • transitory computer readable media or communication media include electrical, optical, acoustic, or other forms of propagated signals.
  • a base station device detection means for detecting a communication state between the base station apparatus and a core network; a control means for controlling selection of a wireless network by a terminal device according to the detected communication state; A base station device.
  • the selection of the wireless network is selection of a base station device or a cell to be accessed by the terminal device, The base station device according to appendix 1.
  • the control means transmits control information for selecting the wireless network to the terminal device when the communication state is disconnected or when the communication state is restored from the disconnection.
  • the base station apparatus according to appendix 1 or 2.
  • the control information is information indicating the detected communication state, The base station device according to appendix 3.
  • the control information is information for instructing switching of the wireless network selection method of the terminal device, The base station device according to appendix 3 or 4.
  • the wireless network selection method includes a selection method based on the priority of the wireless network and a selection method based on received signal quality of a signal received from the wireless network.
  • the control means controls the terminal device to select the wireless network by the selection method based on the priority when the communication state is disconnected, and controls the terminal device when the communication state is restored from the disconnection.
  • the base station device according to appendix 6.
  • the control information is information indicating a wireless network accessible by the terminal device, The base station device according to appendix 3.
  • the control information is priority information indicating the priority of a wireless network accessible by the terminal device, The base station device according to appendix 8.
  • the priority information to be transmitted to the terminal device is the same as the priority information of another terminal device with which the terminal device communicates.
  • the base station device according to appendix 9. (Appendix 11) comprising management means for managing the priority information for each of the terminal devices;
  • the base station apparatus according to appendix 9 or 10.
  • the control device is a system monitoring control device for a system including the base station device and the core network, The control means acquires priority information of the terminal device from the system monitoring and control device according to a communication state between the core network and another base station device.
  • the base station device according to supplementary note 12.
  • the control information is call regulation information that regulates call origination of a specific terminal device, The base station device according to appendix 3.
  • the call restriction information indicates call restriction or call permission of the access class set in the terminal device; 14.
  • the base station apparatus according to appendix 14.
  • the access class set in the terminal device is the same as the access class set in another terminal device with which the terminal device communicates.
  • the base station device according to supplementary note 15.
  • the control means transmits, to the terminal device, call restriction information for restricting transmission of the specific terminal device when the communication state is disconnected, and when the communication state is restored from the disconnection, all the terminal devices transmitting to the terminal device call restriction information that permits the call of 17.
  • the base station apparatus according to any one of appendices 14 to 16.
  • the control means acquires the call restriction information from a control device and transmits the acquired call restriction information to the terminal device. 18.
  • the base station apparatus according to any one of appendices 14 to 17.
  • the control device is a system monitoring control device for a system including the base station device and the core network, The control means acquires the call restriction information from the system monitoring control device according to a communication state between the core network and another base station device. 18.
  • the base station apparatus according to appendix 18.
  • (Appendix 20) comprising a base station device and a terminal device, The base station device detection means for detecting a communication state between the base station apparatus and a core network; a control means for controlling selection of a wireless network by a terminal device according to the detected communication state;
  • a wireless communication system comprising: (Appendix 21) A control method in a base station device, detecting a communication state between the base station device and a core network; controlling selection of a wireless network by a terminal device according to the detected communication state; control method. (Appendix 22) to the computer in the base station equipment, detecting a communication state between the base station device and a core network; controlling selection of a wireless network by a terminal device according to the detected communication state; Control program for executing processing.
  • a wireless communication system comprising a base station device and a terminal device, detection means for detecting a communication state between the base station apparatus and a core network; Control means for controlling selection of a wireless network by the terminal device according to the detected communication state;
  • a wireless communication system comprising:

Abstract

Provided are, for example, a base station device, a wireless communication system, and a control method that enable a terminal device to perform communication via an appropriate wireless network. According to the present invention, a PS-LTE system comprises an eNB (10) serving as a base station device, and a terminal device. The eNB (10) comprises: a detection unit (11) which detects a communication state between the eNB (10) and a core network; and a control unit (12) which controls selection of a wireless network by the terminal device, according to the communication state detected by the detection unit (11).

Description

基地局装置、無線通信システム、制御方法、及び非一時的なコンピュータ可読媒体Base station apparatus, wireless communication system, control method, and non-transitory computer-readable medium
 本発明は、基地局装置、無線通信システム、制御方法、及び非一時的なコンピュータ可読媒体に関する。 The present invention relates to base station apparatuses, wireless communication systems, control methods, and non-transitory computer-readable media.
 近年、公共安全のための専用のLTE(Long Term Evolution)であるPS-LTE(Public Safety-LTE)の導入が進められている。PS-LTEは、警察や消防、自治体などの公共安全組織が共同で利用する無線ネットワークである。PS-LTEは、MCA(Multi Channel Access)アドバンスと呼ばれる場合もある。PS-LTEは、災害時等において一般公衆網よりも安定したサービスを提供することができ、また、LTEを共同利用するため導入コストを抑えることが可能である。 In recent years, PS-LTE (Public Safety-LTE), a dedicated LTE (Long Term Evolution) for public safety, has been introduced. PS-LTE is a wireless network shared by public safety organizations such as police, fire departments, and local governments. PS-LTE is sometimes called MCA (Multi Channel Access) Advanced. PS-LTE can provide a more stable service than general public networks in the event of a disaster or the like, and can reduce introduction costs because LTE is shared.
 関連する技術として、例えば、特許文献1が知られている。特許文献1には、PS-LTEシステムにおいて、アプリケーションなどに関連付けられた優先度に基づいて端末装置により使用されるネットワーク選択パラメータを選択することが記載されている。 As a related technology, for example, Patent Document 1 is known. Patent Document 1 describes selecting a network selection parameter used by a terminal device based on a priority associated with an application or the like in a PS-LTE system.
国際公開第2020/194940号WO2020/194940
 上記のように、PS-LTEシステムは、災害時において安定したサービスを提供することを可能とする。例えば、災害時には、基地局とコアネットワークとの間の通信に障害が発生する恐れがある。しかしながら、関連する技術では、このような状況が考慮されていないため、端末装置が適切な基地局やセルなどの無線ネットワークを介して通信を行うことができない場合がある。 As described above, the PS-LTE system makes it possible to provide stable services in the event of a disaster. For example, in the event of a disaster, communication failures may occur between the base station and the core network. However, related techniques do not take such situations into account, and there are cases where a terminal device cannot communicate via a wireless network such as a suitable base station or cell.
 本開示は、このような課題に鑑み、端末装置が適切な無線ネットワークを介して通信を行うことが可能な基地局装置、無線通信システム、制御方法、及び非一時的なコンピュータ可読媒体を提供することを目的とする。 In view of such problems, the present disclosure provides a base station device, a wireless communication system, a control method, and a non-transitory computer-readable medium that enable terminal devices to communicate via an appropriate wireless network. for the purpose.
 本開示に係る基地局装置は、前記基地局装置とコアネットワークとの間の通信状態を検出する検出手段と、前記検出された通信状態に応じて、端末装置による無線ネットワークの選択を制御する制御手段と、を備えるものである。 A base station apparatus according to the present disclosure includes detection means for detecting a communication state between the base station apparatus and a core network, and control for controlling selection of a wireless network by a terminal device according to the detected communication state. and means.
 本開示に係る無線通信システムは、基地局装置と端末装置とを備え、前記基地局装置は、前記基地局装置とコアネットワークとの間の通信状態を検出する検出手段と、前記検出された通信状態に応じて、端末装置による無線ネットワークの選択を制御する制御手段と、を備えるものである。 A wireless communication system according to the present disclosure includes a base station apparatus and a terminal apparatus, wherein the base station apparatus includes detection means for detecting a communication state between the base station apparatus and a core network; and control means for controlling selection of a wireless network by the terminal according to the state.
 本開示に係る制御方法は、基地局装置における制御方法であって、前記基地局装置とコアネットワークとの間の通信状態を検出し、前記検出された通信状態に応じて、端末装置による無線ネットワークの選択を制御するものである。 A control method according to the present disclosure is a control method in a base station apparatus, detecting a communication state between the base station apparatus and a core network, and controlling a radio network by a terminal apparatus according to the detected communication state. It controls the selection of
 本開示に係る制御プログラムが格納された非一時的なコンピュータ可読媒体は、基地局装置におけるコンピュータに、前記基地局装置とコアネットワークとの間の通信状態を検出し、前記検出された通信状態に応じて、端末装置による無線ネットワークの選択を制御する、処理を実行させるための制御プログラムが格納された非一時的なコンピュータ可読媒体である。 A non-transitory computer-readable medium storing a control program according to the present disclosure causes a computer in a base station device to detect a communication state between the base station device and a core network, It is a non-transitory computer-readable medium storing a control program for executing processing for controlling selection of a wireless network by a terminal device accordingly.
 本開示によれば、端末装置が適切な無線ネットワークを介して通信を行うことが可能な基地局装置、無線通信システム、制御方法、及び非一時的なコンピュータ可読媒体を提供することができる。 According to the present disclosure, it is possible to provide a base station device, a wireless communication system, a control method, and a non-transitory computer-readable medium that enable terminal devices to communicate via an appropriate wireless network.
実施の形態に係るPS-LTEシステムの概要構成を示す図である。1 is a diagram showing a schematic configuration of a PS-LTE system according to an embodiment; FIG. 実施の形態に係るPS-LTEシステムの障害時の通信例を示す図である。FIG. 4 is a diagram showing an example of communication during failure of the PS-LTE system according to the embodiment; 実施の形態に係るPS-LTEシステムの障害時の通信例を示す図である。FIG. 4 is a diagram showing an example of communication during failure of the PS-LTE system according to the embodiment; 実施の形態適用前のPS-LTEシステムにおける課題を説明するための図である。FIG. 2 is a diagram for explaining problems in a PS-LTE system before application of an embodiment; 実施の形態に係るeNBの概要構成を示す図である。1 is a diagram showing a schematic configuration of an eNB according to an embodiment; FIG. 実施の形態1に係るPS-LTEシステムの構成例を示す図である。1 is a diagram showing a configuration example of a PS-LTE system according to Embodiment 1; FIG. 実施の形態1に係るPS-LTEシステムの動作例を示す図である。2 is a diagram showing an operation example of the PS-LTE system according to Embodiment 1; FIG. 実施の形態1に係るPS-LTEシステムの動作例を示す図である。2 is a diagram showing an operation example of the PS-LTE system according to Embodiment 1; FIG. 実施の形態1に係るPS-LTEシステムの他の動作例を示す図である。FIG. 8 is a diagram showing another operation example of the PS-LTE system according to Embodiment 1; 実施の形態1に係るPS-LTEシステムの他の動作例を示す図である。FIG. 8 is a diagram showing another operation example of the PS-LTE system according to Embodiment 1; 実施の形態1に係るPS-LTEシステムの効果を説明するための図である。FIG. 2 is a diagram for explaining the effects of the PS-LTE system according to Embodiment 1; FIG. 実施の形態1の変形例に係るPS-LTEシステムの構成例を示す図である。FIG. 2 is a diagram showing a configuration example of a PS-LTE system according to a modification of Embodiment 1; FIG. 実施の形態2に係るPS-LTEシステムの構成例を示す図である。FIG. 10 is a diagram showing a configuration example of a PS-LTE system according to Embodiment 2; 実施の形態2に係るPS-LTEシステムの動作例を示す図である。FIG. 10 is a diagram showing an operation example of the PS-LTE system according to Embodiment 2; 実施の形態2に係るPS-LTEシステムの動作例を示す図である。FIG. 10 is a diagram showing an operation example of the PS-LTE system according to Embodiment 2; 実施の形態2の変形例に係るPS-LTEシステムの構成例を示す図である。FIG. 10 is a diagram showing a configuration example of a PS-LTE system according to a modification of Embodiment 2; 実施の形態2の変形例に係るPS-LTEシステムの動作例を示す図である。FIG. 10 is a diagram showing an operation example of a PS-LTE system according to a modification of Embodiment 2; 実施の形態2の変形例に係るPS-LTEシステムの動作例を示す図である。FIG. 10 is a diagram showing an operation example of a PS-LTE system according to a modification of Embodiment 2; 実施の形態3に係るPS-LTEシステムの構成例を示す図である。FIG. 10 is a diagram showing a configuration example of a PS-LTE system according to Embodiment 3; 実施の形態3に係るPS-LTEシステムの動作例を示す図である。FIG. 10 is a diagram showing an operation example of the PS-LTE system according to Embodiment 3; 実施の形態3に係るPS-LTEシステムの動作例を示す図である。FIG. 10 is a diagram showing an operation example of the PS-LTE system according to Embodiment 3; 実施の形態3に係るPS-LTEシステムの効果を説明するための図である。FIG. 10 is a diagram for explaining the effects of the PS-LTE system according to Embodiment 3; 実施の形態3の変形例に係るPS-LTEシステムの構成例を示す図である。FIG. 10 is a diagram showing a configuration example of a PS-LTE system according to a modification of Embodiment 3; 実施の形態3の変形例に係るPS-LTEシステムの動作例を示す図である。FIG. 12 is a diagram showing an operation example of a PS-LTE system according to a modification of Embodiment 3; 実施の形態3の変形例に係るPS-LTEシステムの動作例を示す図である。FIG. 12 is a diagram showing an operation example of a PS-LTE system according to a modification of Embodiment 3; 実施の形態に係るコンピュータのハードウェアの概要を示す構成図である。1 is a configuration diagram showing an overview of hardware of a computer according to an embodiment; FIG.
 以下、図面を参照して実施の形態について説明する。各図面においては、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略される。 Embodiments will be described below with reference to the drawings. In each drawing, the same elements are denoted by the same reference numerals, and redundant description will be omitted as necessary.
(実施の形態の概要)
 図1は、実施の形態に係るPS-LTEシステム1の概要構成を示している。なお、実施の形態の一例として、LTE(PS-LTE)システムについて説明するが、5GのシステムやLTEと5Gのハブリッドシステムなど他の無線通信システムに適用してもよい。例えば、LTEや5Gなどの3GPP準拠のシステム以外の他の業務用無線システムにおいて、端末のアクセスを制御する方法として適用してもよい。
(Overview of Embodiment)
FIG. 1 shows a schematic configuration of a PS-LTE system 1 according to an embodiment. An LTE (PS-LTE) system will be described as an example of an embodiment, but the present invention may be applied to other wireless communication systems such as a 5G system or a hybrid system of LTE and 5G. For example, it may be applied as a method of controlling access of terminals in business wireless systems other than 3GPP-compliant systems such as LTE and 5G.
 図1に示すように、PS-LTEシステム1は、基地局であるeNB(evolved Node B:eNodeB)10(例えば10A及び10B)、スマートフォンなどの端末20(例えば20-1及び20-2)、コアネットワークであるEPC(Evolved Packet Core)30を備えている。 As shown in FIG. 1, the PS-LTE system 1 includes a base station eNB (evolved Node B: eNodeB) 10 ( eg 10A and 10B), terminals 20 such as smartphones (eg 20-1 and 20-2), It has an EPC (Evolved Packet Core) 30 which is a core network.
 eNB10は、EPC30とS1インタフェースを介して接続される。なお、S1インタフェースを介した接続をS1接続と呼ぶ場合がある。端末20は、eNB10のセルの範囲でeNB10と無線接続し、EPC30を介して他の端末20との間で通信を行う。EPC30により、接続先のeNB10が異なる端末20間であっても、互いに通信を行うことができる。 The eNB 10 is connected to the EPC 30 via the S1 interface. A connection via the S1 interface may be called an S1 connection. The terminal 20 wirelessly connects with the eNB 10 within the cell range of the eNB 10 and communicates with other terminals 20 via the EPC 30 . The EPC 30 enables mutual communication even between the terminals 20 that are connected to different eNBs 10 .
 さらに、PS-LTEシステム1では、一般的なLTEシステムとは異なり、ローカルEPC40(例えば40A及び40B)を備えている。ローカルEPC40は、ECP30に比べ小規模のコアネットワーク装置であり、eNB10と同じ局舎などに設置される。 Furthermore, the PS-LTE system 1 is provided with local EPCs 40 (eg, 40A and 40B), unlike general LTE systems. The local EPC 40 is a smaller-scale core network device than the ECP 30 and is installed in the same office building as the eNB 10 .
 図2及び図3は、PS-LTEシステムにおいて、EPC-eNB間に障害が発生した場合の端末間の通信例を示している。図2に示すように、EPC30とeNB10(例えば10A)間のS1接続が切れた場合、eNB10はローカルEPC40(例えば40A)に接続する。これにより、同一eNBのエリア(セル)内において、ローカルEPC40を介して、端末20間で通信を行うことができる。なお、端末20間で直接LTE通信(LTE Direct/LTE D2D)を行うことも可能である。  Figures 2 and 3 show an example of communication between terminals when a failure occurs between EPC and eNB in the PS-LTE system. As shown in FIG. 2, when the S1 connection between EPC 30 and eNB 10 (eg 10A) is broken, eNB 10 connects to local EPC 40 (eg 40A). This enables communication between the terminals 20 via the local EPC 40 within the same eNB area (cell). Note that it is also possible to directly perform LTE communication (LTE Direct/LTE D2D) between the terminals 20 .
 また、図3に示すように、1つのローカルEPC40(例えば40A)に複数のeNB10(例えば10A-1及び10A-2)を接続してもよい。この場合、EPC30とeNB10間のS1接続が切れた時には、ローカルEPC40が接続する複数のeNB10のエリア内では、ローカルEPC40を介して端末20間で通信可能である。 Also, as shown in FIG. 3, a plurality of eNBs 10 (eg 10A-1 and 10A-2) may be connected to one local EPC 40 (eg 40A). In this case, when the S1 connection between the EPC 30 and the eNB 10 is disconnected, the terminals 20 can communicate with each other via the local EPC 40 within the area of the plurality of eNBs 10 to which the local EPC 40 is connected.
 図4は、実施の形態適用前のPS-LTEシステムにおける課題を示している。図4に示すように、実施の形態適用前では、EPC(例えば930)とeNB(例えば910A及び910B)間のS1接続が切れた状況において、端末間(例えば920-1及び920-2)で通信を行うことができない場合がある。具体的には、端末920-1がeNB910Aに接続し、端末920-2が、eNB910AよりもeNB910Bを良好な接続先と判断し、eNB910Bに接続する場合、EPC930を経由した接続が切断されているため、端末間で通信を行うことができない。 FIG. 4 shows problems in the PS-LTE system before the application of the embodiment. As shown in FIG. 4, before applying the embodiment, in a situation where the S1 connection between the EPC (eg, 930) and the eNB (eg, 910A and 910B) is broken, between the terminals (eg, 920-1 and 920-2) Communication may not be possible. Specifically, when terminal 920-1 connects to eNB 910A and terminal 920-2 determines that eNB 910B is a better connection destination than eNB 910A and connects to eNB 910B, the connection via EPC 930 is disconnected. Therefore, communication cannot be performed between terminals.
 端末920-1と端末920-2がeNB910Aのエリアに存在することが多く、EPC-eNB間の接続切断時でも、端末920-1と端末920-2で通信を行うことが求められる場合には、端末920-2が、eNB910Bを選択しないようにして、eNB910Aを選択するように制御することが必要である。そこで、実施の形態では、このような状況において、端末が適切な基地局を選択し、端末間の通信を可能とする。 Terminal 920-1 and terminal 920-2 often exist in the area of eNB 910A, and even when the connection between EPC-eNB is disconnected, when it is required to communicate with terminal 920-1 and terminal 920-2 , terminal 920-2 should be controlled to select eNB 910A instead of selecting eNB 910B. Therefore, in the embodiment, in such a situation, the terminal selects an appropriate base station to enable communication between the terminals.
 図5は、実施の形態に係るeNB10(基地局装置)の概要構成を示している。図5に示すようにeNB10は、検出部11と制御部12を備えている。検出部11は、eNB10とEPC30(コアネットワーク)との間のS1接続の通信状態を検出する。 FIG. 5 shows a schematic configuration of the eNB 10 (base station device) according to the embodiment. As shown in FIG. 5 , the eNB 10 includes a detection section 11 and a control section 12 . The detection unit 11 detects the communication state of the S1 connection between the eNB 10 and the EPC 30 (core network).
 制御部12は、検出された通信状態に応じて端末20による無線ネットワークの選択を制御する。無線ネットワークは、無線アクセスネットワークにおけるアクセス先の基地局またはセルである。制御部12は、S1接続の通信状態が切断となった場合、または、S1接続の通信状態が切断から復旧した場合、無線ネットワークの選択のための制御情報を端末20へ送信してもよい。例えば、制御情報は、検出されたS1接続の通信状態を示す情報や、端末の無線ネットワークの選択方法の切り替えを指示する情報でもよい。また、制御情報は、端末20がアクセス可能な無線ネットワークを示す情報や、アクセス可能な無線ネットワークの優先度を示す優先度情報でもよい。さらに、制御情報は、特定の端末20の発信を規制する発信規制情報でもよい。 The control unit 12 controls selection of a wireless network by the terminal 20 according to the detected communication state. A radio network is an accessed base station or cell in a radio access network. The control unit 12 may transmit control information for selecting a wireless network to the terminal 20 when the communication state of the S1 connection is disconnected or when the communication state of the S1 connection is recovered from disconnection. For example, the control information may be information indicating the communication state of the detected S1 connection, or information instructing switching of the wireless network selection method of the terminal. Also, the control information may be information indicating a wireless network accessible by the terminal 20 or priority information indicating the priority of the accessible wireless network. Furthermore, the control information may be call restriction information that restricts transmission of a specific terminal 20 .
 このように、実施の形態では、基地局とEPC間のS1接続の通信状態に基づいて、端末による基地局やセルなどの無線ネットワークの選択を制御する。これにより、S1接続が切断した場合や切断から復旧した場合等に、端末が適切な基地局やセルを選択して無線ネットワークにアクセスすることができ、端末間の通信が可能となる。 Thus, in the embodiment, selection of a wireless network such as a base station or cell by a terminal is controlled based on the communication state of the S1 connection between the base station and the EPC. As a result, when the S1 connection is disconnected or restored after disconnection, the terminal can select an appropriate base station or cell to access the wireless network, enabling communication between the terminals.
(実施の形態1)
 次に、実施の形態1について説明する。本実施の形態では、端末が予め保持するeNB/セルの優先度情報に基づいて、端末がeNB/セルを選択する例について説明する。
(Embodiment 1)
Next, Embodiment 1 will be described. This embodiment will explain an example in which a terminal selects an eNB/cell based on eNB/cell priority information held in advance by the terminal.
<システム構成>
 図6は、本実施の形態に係るPS-LTEシステム2の構成例を示している。図6に示すように、PS-LTEシステム2は、eNB100、端末200、EPC300、ローカルEPC400を備えている。
<System configuration>
FIG. 6 shows a configuration example of the PS-LTE system 2 according to this embodiment. As shown in FIG. 6, PS-LTE system 2 includes eNB 100, terminal 200, EPC 300, and local EPC 400. FIG.
 EPC300は、LTE(PS-LTE)システムのコアネットワーク(装置)を構成する。例えば、EPC300は、コアネットワーク機能として、MME(Mobility Management Entity)、S-GW(Serving Gateway)、P-GW(Packet Data Network Gateway)、HSS(Home Subscriber Server)、PCRF(Policy and Charging Rules Function)などを含む。MMEは、eNB100の制御信号を収容し、端末200のモビリティ制御を行う。S-GWは、eNB100のユーザデータ信号を収容し、eNB100との間でデータパケットを転送する。P-GWは、外部のPDN(Packet Data Network)に接続され、S-GWとの間のデータパケットの転送や、端末200へのIPアドレスの割り当てを行う。HSSは、加入者情報を管理する。PCRFは、データ転送のポリシーや課金を制御する。EPC300は、1つの装置により構成されてもよいし、任意の複数の装置により構成されてもよく、また、仮想化された装置により構成されてもよい。 The EPC 300 constitutes the core network (device) of the LTE (PS-LTE) system. For example, the EPC 300 has core network functions such as MME (Mobility Management Entity), S-GW (Serving Gateway), P-GW (Packet Data Network Gateway), HSS (Home Subscriber Server), PCRF (Policy and Charging Rules Function) and so on. The MME accommodates control signals for the eNB 100 and performs mobility control for the terminal 200 . The S-GW accommodates user data signals of eNB 100 and transfers data packets to and from eNB 100 . The P-GW is connected to an external PDN (Packet Data Network), transfers data packets to and from the S-GW, and assigns an IP address to the terminal 200 . HSS manages subscriber information. The PCRF controls data transfer policies and billing. The EPC 300 may be composed of one device, may be composed of a plurality of arbitrary devices, or may be composed of virtualized devices.
 また、EPC300は、端末200がPTT(Push-to-Talk)通話を行う場合に端末200のPTT通話を実現するためのPTTサーバに接続されてもよいし、EPC300がPTTサーバ機能を備えてもよい。PTTサーバは、SIP(Session Initiation Protocol)サーバなどの呼制御サーバである。 Also, the EPC 300 may be connected to a PTT server for realizing a PTT call of the terminal 200 when the terminal 200 makes a PTT (Push-to-Talk) call, or the EPC 300 may have a PTT server function. good. The PTT server is a call control server such as a SIP (Session Initiation Protocol) server.
 ローカルEPC400は、EPC300と同様のコアネットワーク機能を有する。ローカルEPC400は、eNB100がEPC300を介して通信できない場合に、eNB100へコアネットワーク機能を提供するローカルコアネットワーク(装置)である。ローカルEPC400は、EPC300と同様に、1つの装置により構成されてもよいし、任意の複数の装置により構成されてもよく、また、仮想化された装置により構成されてもよい。また、ローカルEPC400はローカル用のPTTサーバに接続されてもよいし、ローカルEPC400がPTTサーバ機能を備えてもよい。 The local EPC 400 has core network functions similar to those of the EPC 300. Local EPC 400 is a local core network (device) that provides core network functions to eNB 100 when eNB 100 cannot communicate via EPC 300 . Like the EPC 300, the local EPC 400 may consist of one device, may consist of a plurality of arbitrary devices, or may consist of virtualized devices. Also, the local EPC 400 may be connected to a local PTT server, or the local EPC 400 may have a PTT server function.
 eNB100は、LTE(PS-LTE)システムの基地局(装置)であり、無線アクセスネットワーク(E-UTRAN:Evolved Universal Terrestrial Radio Access Network)を構成する。eNB100は、基地局の基本的な機能として、無線通信機能や必要な制御機能を有しており、1つの装置により構成されてもよいし、任意の複数の装置により構成されてもよい。例えばeNB100は、端末200との間で無線信号を送受信する任意の数のRRH(Remote Radio Head)、RRHを収容しベースバンド信号処理やコアネットワークとのインタフェース処理などを行うBBU(Base Band Unit)を含んでもよい。 The eNB 100 is a base station (device) of the LTE (PS-LTE) system and constitutes a radio access network (E-UTRAN: Evolved Universal Terrestrial Radio Access Network). The eNB 100 has a wireless communication function and necessary control functions as basic functions of a base station, and may be configured by one device or by arbitrary plural devices. For example, the eNB 100 is an arbitrary number of RRHs (Remote Radio Heads) that transmit and receive radio signals to and from the terminal 200, and BBUs (Base Band Units) that accommodate RRHs and perform baseband signal processing and interface processing with the core network. may include
 また、eNB100は、本実施の形態で必要な機能として、主に、端末通信部110、コア通信部120、ローカルコア通信部130、検出部140、通知部150を備えている。 In addition, the eNB 100 mainly includes a terminal communication unit 110, a core communication unit 120, a local core communication unit 130, a detection unit 140, and a notification unit 150 as necessary functions in this embodiment.
 端末通信部110は、eNB100のセル(通信エリア)内に位置する端末200との間で無線通信を行う無線通信部である。端末通信部110は、LTE無線通信部であり、例えば、PS-LTE用に割り当てられた帯域の無線信号を用いて端末200との間でデータや制御信号を送受信する。 The terminal communication unit 110 is a wireless communication unit that performs wireless communication with the terminal 200 located within the eNB 100 cell (communication area). The terminal communication unit 110 is an LTE radio communication unit, and transmits and receives data and control signals to and from the terminal 200 using radio signals in a band allocated for PS-LTE, for example.
 コア通信部120は、EPC300との間で通信を行うバックホール通信部である。コア通信部120は、バックホール用のコアネットワークインタフェース(バックホールインタフェース)であるS1インタフェースを介して、EPC300との間でデータや制御信号を送受信する。なお、S1インタフェースはコア接続用のインタフェースの一例であり、その他のインタフェース(回線や伝送路)を介して接続してもよい。 The core communication unit 120 is a backhaul communication unit that communicates with the EPC 300. The core communication unit 120 transmits and receives data and control signals to and from the EPC 300 via the S1 interface, which is a core network interface for backhaul (backhaul interface). Note that the S1 interface is an example of an interface for core connection, and may be connected via other interfaces (lines or transmission lines).
 ローカルコア通信部130は、ローカルEPC400との間で通信を行うローカルバックホール通信部である。ローカルコア通信部130は、ローカルバックホール用のコアネットワークインタフェース(ローカルバックホールインタフェース)であるS1インタフェースを介して、ローカルEPC400との間でデータや制御信号を送受信する。なお、S1インタフェースはローカルコア接続用のインタフェースの一例であり、その他のインタフェースを介して接続してもよい。つまり、eNB100は、EPC300とS1インタフェースを介して接続し、ローカルEPC400と別のS1インタフェースを介して接続されるが、それぞれ別の種類のインタフェースにより接続されてもよい。 The local core communication unit 130 is a local backhaul communication unit that communicates with the local EPC 400. The local core communication unit 130 transmits and receives data and control signals to and from the local EPC 400 via the S1 interface, which is a core network interface for local backhaul (local backhaul interface). The S1 interface is an example of an interface for local core connection, and may be connected via other interfaces. In other words, the eNB 100 is connected to the EPC 300 via an S1 interface and is connected to the local EPC 400 via another S1 interface, but may be connected via different types of interfaces.
 検出部140は、EPC300との間のS1インタフェースを介したS1接続(バックホール接続)の通信状態(接続状態)を検出する。検出部140は、コア通信部120によるS1接続(バックホール回線またはバックホールリンク)の通信状態を監視し、S1接続が切断されたか否か、または、S1接続が切断から復旧したか否かを検出する。接続が切断(または切れた)状態とは、必要な品質の通信を正常に行うことができない状態、すなわち通信障害となっている状態である。 The detection unit 140 detects the communication state (connection state) of the S1 connection (backhaul connection) with the EPC 300 via the S1 interface. The detection unit 140 monitors the communication state of the S1 connection (backhaul line or backhaul link) by the core communication unit 120, and determines whether the S1 connection has been disconnected, or whether the S1 connection has been restored from disconnection. To detect. A disconnected (or disconnected) state is a state in which normal communication with the required quality cannot be performed, that is, a state of communication failure.
 eNB100は、EPC300との間のS1接続が切れた場合、コアネットワークの接続をEPC300からローカルEPC400に切り替える。すなわち、ローカルコア通信部130は、検出部140によりEPC300との間のS1接続の切断が検出された場合、ローカルEPC400との接続を確立する。これにより、eNB100とEPC300の間のS1接続に障害が発生した場合に、ローカルEPC400によりセル内における端末間の通信を可能とする。 When the S1 connection with the EPC 300 is disconnected, the eNB 100 switches the connection of the core network from the EPC 300 to the local EPC 400. That is, the local core communication unit 130 establishes a connection with the local EPC 400 when the detecting unit 140 detects disconnection of the S1 connection with the EPC 300 . This enables communication between terminals in the cell by the local EPC 400 when a failure occurs in the S1 connection between the eNB 100 and the EPC 300 .
 通知部(制御部)150は、検出部140により検出されたEPC300との間のS1接続の通信状態を、端末通信部110からセル内の端末200へ通知する。例えば、通知部150は、セル内の全ての端末200へS1の通信状態を送信(ブロードキャスト)する。通知部150は、EPC300と間のS1接続の切断が検出された場合、端末200へS1接続の切断(バックホール切断)を通知する。また、通知部150は、EPC300との間のS1接続の復旧が検出された場合、端末200へS1接続の復旧(バックホール復旧)を通知する。端末200へ通知するS1接続の切断や復旧を示す情報は、端末によるeNB/セルの選択方法の切り替えを指示する情報であるとも言える。 The notification unit (control unit) 150 notifies the communication state of the S1 connection with the EPC 300 detected by the detection unit 140 from the terminal communication unit 110 to the terminal 200 in the cell. For example, the notification unit 150 transmits (broadcasts) the communication state of S1 to all terminals 200 in the cell. When the disconnection of the S1 connection with the EPC 300 is detected, the notification unit 150 notifies the terminal 200 of the disconnection of the S1 connection (backhaul disconnection). Further, when recovery of the S1 connection with the EPC 300 is detected, the notification unit 150 notifies the terminal 200 of recovery of the S1 connection (backhaul recovery). The information indicating the disconnection or restoration of the S1 connection notified to the terminal 200 can be said to be information instructing the terminal to switch the eNB/cell selection method.
 端末200は、LTE(PS-LTE)システムのユーザ機器(User Equipment:UE)である。端末200は、スマートフォンや携帯電話などの汎用端末でもよいし、業務用無線機などの専用端末でもよい。端末200は、他の端末200との通信として、例えば、他の端末200とPTT通話を行う。ユーザが端末200の通話ボタンを押下することにより、eNB及びEPC(PTTサーバ)を介して、選択されている他の端末200や設定されているグループ内の複数の端末200と通話を行う。このため、端末200は、基本的な機能として、無線通信機能やPTT通話機能等を有している。なお、端末200は、PTT通話に限らず、他の端末200と任意の通信を行ってもよい。 The terminal 200 is a user equipment (UE) of the LTE (PS-LTE) system. The terminal 200 may be a general-purpose terminal such as a smart phone or mobile phone, or may be a dedicated terminal such as a wireless device for business use. The terminal 200 makes a PTT call with the other terminal 200 as communication with the other terminal 200, for example. When the user presses the call button of the terminal 200, a call is made with another selected terminal 200 or a plurality of terminals 200 in the set group via the eNB and EPC (PTT server). Therefore, the terminal 200 has, as basic functions, a wireless communication function, a PTT call function, and the like. Note that the terminal 200 may perform arbitrary communication with other terminals 200 without being limited to the PTT call.
 また、端末200は、本実施の形態で必要な機能として、主に、通信部210、優先度保持部220、選択部230を備えている。通信部210は、eNB100のセル内でeNB100との間で無線通信を行う無線通信部である。通信部210は、LTE無線通信部であり、例えば、PS-LTE用に割り当てられた帯域の無線信号を用いてeNB100との間でデータや制御信号を送受信する。 In addition, the terminal 200 mainly includes a communication unit 210, a priority holding unit 220, and a selection unit 230 as necessary functions in this embodiment. The communication unit 210 is a radio communication unit that performs radio communication with the eNB 100 within the cell of the eNB 100 . The communication unit 210 is an LTE radio communication unit, and transmits and receives data and control signals to and from the eNB 100 using radio signals in a band allocated for PS-LTE, for example.
 優先度保持部220は、eNB/セルの優先度情報を予め設定し保持(記憶)する。優先度は、端末200が接続(アクセス)するeNB100またはセル(無線アクセスネットワーク)を選択するための優先順位である。例えば、優先度情報は、eNB100のバックホール接続障害時に端末200が接続するeNB100またはセルの優先度のリストであり、端末200が接続可能な複数のeNB100またはセルの優先度を含む。優先度情報は、eNB100のバックホール接続障害時に端末200が接続すべきeNB100またはセルを示す情報(優先度が高いeNB/セルの情報)でもよい。 The priority holding unit 220 presets and holds (stores) the priority information of the eNB/cell. The priority is the order of priority for selecting eNB 100 or cell (radio access network) to which terminal 200 connects (accesses). For example, the priority information is a list of priorities of eNB 100 or cells to which terminal 200 connects when backhaul connection failure of eNB 100 occurs, and includes priorities of a plurality of eNB 100 or cells to which terminal 200 can connect. The priority information may be information indicating the eNB 100 or the cell to which the terminal 200 should connect when the backhaul connection failure of the eNB 100 (information on eNB/cell with high priority).
 通信(例えばPTT通話)を行う端末間で同じ優先度情報を設定することが好ましい。例えば、自治体など同じ組織に属するユーザが使用する端末200間でグループ通信を行う場合、同じグループの端末200に同じ優先度のリストを設定する。例えば、特定の県の自治体用の端末200の場合、優先度情報は当該県内及び周辺の県のeNB100またはセルの優先度のリストを含み、周辺の県のeNB100またはセルの優先度よりも当該県内のeNB100またはセルの優先度の方が高く設定される。 It is preferable to set the same priority information between terminals that communicate (for example, PTT calls). For example, when group communication is performed between terminals 200 used by users belonging to the same organization such as a local government, the same priority list is set for the terminals 200 belonging to the same group. For example, in the case of the terminal 200 for a municipality in a specific prefecture, the priority information includes a list of priorities of the eNB 100 or cells in the prefecture and surrounding prefectures, and the priority of the eNB 100 or cells in the prefecture is higher than the priority of the cells in the prefecture. The priority of the eNB 100 or the cell is set higher.
 選択部230は、優先度保持部220が保持するeNB/セルの優先度情報に基づいて、接続するeNB100またはセルを選択する。この例では、選択部230は、eNB100から通知されるS1接続の通信状態に応じてeNB/セルの選択方法を切り替える。選択方法は、eNB/セルの優先度情報に基づく選択方法(第1の選択方法)とeNB/セルから受信する信号の受信信号品質(電界強度)に基づく選択方法(第2の選択方法)を含む。なお、電界強度に基づく選択方法に限らず他の選択方法を用いてもよい。 The selection unit 230 selects the eNB 100 or cell to be connected based on the eNB/cell priority information held by the priority holding unit 220 . In this example, the selection unit 230 switches the eNB/cell selection method according to the communication state of the S1 connection notified from the eNB 100 . The selection method is a selection method based on the priority information of the eNB / cell (first selection method) and a selection method based on the received signal quality (electric field strength) of the signal received from the eNB / cell (second selection method). include. It should be noted that other selection methods may be used instead of the selection method based on the electric field intensity.
 選択部230は、eNB100からS1接続の切断が通知された場合、優先度情報に基づいてeNB/セルの選択を行い、eNB100からS1接続の復旧が通知された場合、電界強度に基づいてeNB/セルの選択を行う。言い換えると、eNB100は、EPC300と間のS1接続が切れた場合に、端末200へS1接続の切断を通知することで、端末200が優先度情報に基づいてeNB/セルを選択するよう制御し、EPC300との間のS1接続が復旧した場合に、端末200へS1接続の復旧を通知することで、端末200が電界強度に基づいてeNB/セルを選択するよう制御しているとも言える。 The selection unit 230 selects the eNB/cell based on the priority information when the disconnection of the S1 connection is notified from the eNB 100, and when the restoration of the S1 connection is notified from the eNB 100, the eNB/based on the electric field strength. Make a cell selection. In other words, when the S1 connection with the EPC 300 is disconnected, the eNB 100 notifies the terminal 200 of the disconnection of the S1 connection, thereby controlling the terminal 200 to select an eNB/cell based on the priority information, When the S1 connection with the EPC 300 is restored, it can be said that the terminal 200 is controlled to select an eNB/cell based on the electric field strength by notifying the terminal 200 of the restoration of the S1 connection.
 選択部230は、優先度情報に基づいてeNB/セルを選択する場合、例えば、電界強度が閾値(予め端末が保持するRSRP(Reference Signal Received Power)などの閾値)を満たすeNB100の中で優先度が最も高いeNB100を選択し接続してもよい。または、優先度が高いeNB100またはセルから順番に選択して接続を試し、アタッチ(登録)が失敗した場合、次に優先度の高いeNB100またはセルを選択し接続してもよい。 When the selection unit 230 selects an eNB / cell based on the priority information, for example, the electric field strength is a threshold (a threshold such as RSRP (Reference Signal Received Power) held in advance by the terminal) eNB 100 that satisfies the priority may select and connect to the eNB 100 with the highest . Alternatively, the eNB 100 or cell with the highest priority may be selected in order and connection may be tried, and if the attach (registration) fails, the eNB 100 or cell with the next highest priority may be selected and connected.
<動作>
 図7及び図8は、本実施の形態に係るPS-LTEシステム2の動作例を示している。例えば、PS-LTEシステム2は、eNB100A及び100B、端末200A-1及び200A-2、EPC300、ローカルEPC400A及び400Bを備えている。EPC300に接続されるeNB100AとeNB100Bが隣接し、eNB100Aのセルの一部とeNB100Bのセルの一部が重なっている。端末200A-1は、eNB100Aのセル内に位置し、端末200A-2は、eNB100Bのセル及びeNB100Aのセルの境界付近に位置する。端末200A-1及び端末200A-2は、互いに通信を行う端末(例えば同じグループAの端末)であり、(eNBのバックホール接続障害時に接続すべき)eNB100Aの優先度が高く、eNB100Bの優先度が低い優先度情報を保持している。
<Action>
7 and 8 show an operation example of the PS-LTE system 2 according to this embodiment. For example, PS-LTE system 2 includes eNBs 100A and 100B, terminals 200A-1 and 200A-2, EPC 300, and local EPCs 400A and 400B. eNB 100A and eNB 100B connected to EPC 300 are adjacent to each other, and part of the cell of eNB 100A and part of the cell of eNB 100B overlap. Terminal 200A-1 is located within the cell of eNB 100A, and terminal 200A-2 is located near the boundary between the cell of eNB 100B and the cell of eNB 100A. The terminal 200A-1 and the terminal 200A-2 are terminals that communicate with each other (for example, terminals in the same group A). holds low priority information.
 図7に示すように、eNB100は、EPC300との間のS1接続が切れたことを契機に、端末200にeNB-EPC間のS1接続が切れたことを通知する。この通知を受けて、端末200は、端末200内に保持する優先度情報を使って、eNB/セルを選択するように切替える。なお、eNB100は、EPC300との間のS1接続が切れた場合にローカルEPC400と接続し(ローカルEPC400へ接続を切り替え)、アクセスされた端末200間の通信をローカルEPC400により可能とする。 As shown in FIG. 7, the eNB 100 notifies the terminal 200 of the disconnection of the S1 connection between the eNB and the EPC when the S1 connection with the EPC 300 is disconnected. Upon receiving this notification, terminal 200 uses the priority information held in terminal 200 to switch to select an eNB/cell. Note that eNB 100 connects to local EPC 400 (switches connection to local EPC 400 ) when the S1 connection with EPC 300 is disconnected, and enables communication between accessed terminals 200 by local EPC 400 .
 具体的には、eNB100Aは、eNB100AとEPC300間のS1接続が切れた場合、セル内の端末200A-1にS1接続の切断を通知する(S101)。端末200A-1は、eNB100BからS1接続の切断通知を受信すると、優先度情報に基づいてeNBを選択し、優先度が高いeNB100Aに接続する(S102)。この例では、端末200A-1は、電界強度に基づいてeNBを選択した場合もeNB100Aに接続されるため、端末200A-1の接続先は変わらない。 Specifically, when the S1 connection between the eNB 100A and the EPC 300 is disconnected, the eNB 100A notifies the terminal 200A-1 in the cell of the disconnection of the S1 connection (S101). When the terminal 200A-1 receives the disconnection notification of the S1 connection from the eNB 100B, it selects an eNB based on the priority information and connects to the eNB 100A with a higher priority (S102). In this example, the terminal 200A-1 is connected to the eNB 100A even when the eNB is selected based on the electric field strength, so the connection destination of the terminal 200A-1 does not change.
 また、eNB100Bは、eNB100BとEPC300間のS1接続が切れた場合、セル内の端末200A-2にS1接続の切断を通知する(S103)。端末200A-2は、eNB100BからS1接続の切断通知を受信すると、優先度情報に基づいてeNBを選択し、優先度が高いeNB100Aに接続するよう切り替える(S104)。この例では、端末200A-2は、電界強度に基づいてeNBを選択した場合にeNB100Bに接続されるが、優先度情報を用いることでeNB100Aに接続される。これにより、端末200A-1と端末200A-2は、eNB100A及びローカルEPC400Aを介して通信可能となる。 Also, when the S1 connection between the eNB 100B and the EPC 300 is disconnected, the eNB 100B notifies the terminal 200A-2 in the cell of the disconnection of the S1 connection (S103). When the terminal 200A-2 receives the S1 connection disconnection notification from the eNB 100B, the terminal 200A-2 selects an eNB based on the priority information and switches to connect to the eNB 100A with a higher priority (S104). In this example, the terminal 200A-2 is connected to the eNB 100B when the eNB is selected based on the electric field strength, but is connected to the eNB 100A by using the priority information. This allows the terminals 200A-1 and 200A-2 to communicate via the eNB 100A and the local EPC 400A.
 図8に示すように、eNB100は、eNB100とEPC300間のS1接続の切断が復旧した場合、eNB-EPC間のS1接続が復旧したことを示す情報を、端末200に通知する。端末200がこの情報を受信した場合、端末200が優先度情報の基づくeNB/セルの選択を停止し、電界強度等に基づく通常通りのeNB/セルの選択に変更する。なお、eNB100は、EPC300との間のS1接続が復旧した場合(正常に接続されている場合)、EPC300へ接続を切り替え、アクセスされた端末200間の通信をEPC300により可能とする。 As shown in FIG. 8, when the disconnection of the S1 connection between the eNB 100 and the EPC 300 is restored, the eNB 100 notifies the terminal 200 of information indicating that the S1 connection between the eNB and the EPC has been restored. When the terminal 200 receives this information, the terminal 200 stops the eNB/cell selection based on the priority information and changes to the normal eNB/cell selection based on the electric field strength or the like. When the S1 connection with EPC 300 is restored (when the connection is normal), eNB 100 switches the connection to EPC 300 and enables communication between accessed terminals 200 by EPC 300 .
 具体的には、eNB100Aは、eNB100AとEPC300間のS1接続が復旧した場合、セル内の端末200A-1にS1接続の復旧を通知する(S111)。端末200A-1は、eNB100AからS1接続の復旧通知を受信すると、電界強度に基づいてeNBを選択し、電界強度が高いeNB100Aに引き続き接続する(S112)。 Specifically, when the S1 connection between the eNB 100A and the EPC 300 is restored, the eNB 100A notifies the terminal 200A-1 in the cell of the restoration of the S1 connection (S111). When the terminal 200A-1 receives the S1 connection restoration notification from the eNB 100A, the terminal 200A-1 selects an eNB based on the electric field strength and continues to connect to the eNB 100A with the higher electric field strength (S112).
 また、eNB100Bは、eNB100BとEPC300間のS1接続が復旧した場合、セル内の端末200A-2にS1接続の復旧を通知する(S113)。端末200A-2は、eNB100BからS1接続の復旧通知を受信すると、電界強度に基づきeNBを選択し、電界強度が高いeNB100Bに接続を切り替える(S114)。これにより、端末200A-1と端末200A-2は、eNB100A-EPC300-eNB100Bを介して通信可能となる。 Also, when the S1 connection between the eNB 100B and the EPC 300 is restored, the eNB 100B notifies the terminal 200A-2 in the cell of the restoration of the S1 connection (S113). Upon receiving the S1 connection restoration notification from the eNB 100B, the terminal 200A-2 selects an eNB based on the electric field strength, and switches the connection to the eNB 100B with the higher electric field strength (S114). This enables the terminals 200A-1 and 200A-2 to communicate via eNB100A-EPC300-eNB100B.
 図9及び図10は、本実施の形態に係るPS-LTEシステム2の他の動作例を示している。例えば、PS-LTEシステム2は、eNB100A及び100B、端末200A-1及び200A-2、端末200B-1及び200B-2、EPC300、ローカルEPC400A及び400Bを備えている。端末200A-1は、eNB100Aのセル内に位置し、端末200A-2は、eNB100Aのセル及びeNB100Bのセルの境界付近に位置する。端末200B-2は、eNB100Bのセル内に位置し、端末200B-1は、eNB100Bのセル及びeNB100Aのセルの境界付近に位置する。端末200A-1及び端末200A-2は、互いに通信を行う端末(例えば同じグループAの端末)であり、eNB100Aの優先度が高く、eNB100Bの優先度が低い優先度情報を保持している。端末200B-1及び端末200B-2は、互いに通信を行う端末(例えば同じグループBの端末)であり、eNB100Bの優先度が高く、eNB100Aの優先度が低い優先度情報を保持している。 9 and 10 show another operation example of the PS-LTE system 2 according to this embodiment. For example, PS-LTE system 2 includes eNBs 100A and 100B, terminals 200A-1 and 200A-2, terminals 200B-1 and 200B-2, EPC 300, and local EPCs 400A and 400B. Terminal 200A-1 is located within the cell of eNB 100A, and terminal 200A-2 is located near the boundary between the cell of eNB 100A and the cell of eNB 100B. The terminal 200B-2 is located within the cell of the eNB 100B, and the terminal 200B-1 is located near the boundary between the cell of the eNB 100B and the cell of the eNB 100A. The terminal 200A-1 and the terminal 200A-2 are terminals that communicate with each other (for example, terminals belonging to the same group A), and hold priority information indicating that the eNB 100A has a high priority and the eNB 100B has a low priority. The terminal 200B-1 and the terminal 200B-2 are terminals that communicate with each other (for example, terminals belonging to the same group B), and hold priority information indicating that the eNB 100B has a high priority and the eNB 100A has a low priority.
 図9に示すように、eNB100AとEPC300間のS1接続が切れた場合、eNB100Aは、eNB100AとEPC300間のS1接続が切れたことを示す情報を、セル内の端末200A-1及び端末200A-2に通知する(S121)。eNB100AとEPC300間のS1接続が切れたことを示す情報を受信した端末200A-1及び端末200A-2は、自ら保持するeNB/セルの優先度情報をもとにeNB/セルの選択を行い、優先度が高いeNB100Aに接続する(S122)。この例では、端末200A-1は、電界強度に基づいてeNBを選択した場合もeNB100Aに接続されるため、端末200A-1の接続先は変わらない。端末200A-2は、電界強度に基づいてeNBを選択した場合にeNB100Bに接続されるが、優先度情報を用いることでeNB100Aに接続される。これにより、端末200A-1と端末200A-2は、eNB100A及びローカルEPC400Aを介して通信可能となる。なお、端末200A-2がeNB100BからS1切断を受信した場合も同様の動作となる。 As shown in FIG. 9, when the S1 connection between eNB 100A and EPC 300 is disconnected, eNB 100A transmits information indicating that the S1 connection between eNB 100A and EPC 300 is disconnected to terminal 200A-1 and terminal 200A-2 in the cell. (S121). The terminal 200A-1 and the terminal 200A-2 that have received the information indicating that the S1 connection between the eNB 100A and the EPC 300 has been disconnected select an eNB/cell based on the eNB/cell priority information held by themselves, It connects to the eNB 100A with a higher priority (S122). In this example, the terminal 200A-1 is connected to the eNB 100A even when the eNB is selected based on the electric field strength, so the connection destination of the terminal 200A-1 does not change. The terminal 200A-2 is connected to the eNB 100B when the eNB is selected based on the electric field strength, but is connected to the eNB 100A by using the priority information. This allows the terminals 200A-1 and 200A-2 to communicate via the eNB 100A and the local EPC 400A. The same operation is performed when the terminal 200A-2 receives the S1 disconnection from the eNB 100B.
 同様に、eNB100BとEPC300間のS1接続が切れた場合、eNB100Bは、eNB100BとEPC300間のS1接続が切れたことを示す情報を、セル内の端末200B-1及び端末200B-2に通知する(S123)。eNB100BとEPC300間のS1接続が切れたことを示す情報を受信した端末200B-1及び端末200B-2は、自ら保持するeNB/セルの優先度情報をもとにeNB/セルの選択を行い、優先度が高いeNB100Bに接続する(S124)。この例では、端末200B-2は、電界強度に基づいてeNBを選択した場合もeNB100Bに接続されるため、端末200B-2の接続先は変わらない。端末200B-1は、電界強度に基づいてeNBを選択した場合にeNB100Aに接続されるが、優先度情報を用いることでeNB100Bに接続される。これにより、端末200B-1と端末200B-2は、eNB100B及びローカルEPC400Bを介して通信可能となる。なお、端末200B-1がeNB100AからS1切断を受信した場合も同様の動作となる。 Similarly, when the S1 connection between the eNB 100B and the EPC 300 is disconnected, the eNB 100B notifies the terminal 200B-1 and the terminal 200B-2 in the cell of information indicating that the S1 connection between the eNB 100B and the EPC 300 is disconnected ( S123). The terminal 200B-1 and the terminal 200B-2 that have received the information indicating that the S1 connection between the eNB 100B and the EPC 300 has been disconnected select an eNB/cell based on the eNB/cell priority information held by themselves, It connects to the eNB 100B with a higher priority (S124). In this example, the terminal 200B-2 is connected to the eNB 100B even when the eNB is selected based on the electric field strength, so the connection destination of the terminal 200B-2 does not change. The terminal 200B-1 is connected to the eNB 100A when the eNB is selected based on the electric field strength, but is connected to the eNB 100B by using the priority information. This enables the terminals 200B-1 and 200B-2 to communicate via the eNB 100B and the local EPC 400B. The same operation is performed when the terminal 200B-1 receives the S1 disconnection from the eNB 100A.
 図10に示すように、eNB100AとEPC300間のS1接続の切断が復旧した場合、eNB100Aは、eNB100AとEPC300間のS1接続が復旧したことを示す情報を、セル内の端末200A-1及び端末200A-2に通知する(S131)。eNB100AとEPC300間のS1接続が復旧したことを示す情報を受信した端末200A-1及び端末200A-2は、eNB/セルの優先度情報を使用しないで電界強度に基づくeNB/セルの選択を行い、電界強度が高いeNB100AまたはeNB100Bに接続する(S132)。この例では、端末200A-1は、eNB100AからS1接続の復旧通知を受信すると、電界強度が高いeNB100Aに引き続き接続する。端末200A-2は、eNB100AからS1接続の復旧通知を受信すると、電界強度が高いeNB100Bに接続を切り替える。これにより、端末200A-1と端末200A-2は、eNB100A-EPC300-eNB100Bを介して通信可能となる。 As shown in FIG. 10, when the disconnection of the S1 connection between the eNB 100A and the EPC 300 is restored, the eNB 100A transmits information indicating that the S1 connection between the eNB 100A and the EPC 300 has been restored to the terminal 200A-1 and the terminal 200A in the cell. -2 (S131). The terminal 200A-1 and the terminal 200A-2 that have received the information indicating that the S1 connection between the eNB 100A and the EPC 300 has been restored select an eNB/cell based on the electric field strength without using the eNB/cell priority information. , to the eNB 100A or eNB 100B with a high electric field strength (S132). In this example, when the terminal 200A-1 receives the S1 connection recovery notification from the eNB 100A, the terminal 200A-1 continues to connect to the eNB 100A with the higher electric field strength. When the terminal 200A-2 receives the S1 connection restoration notification from the eNB 100A, the terminal 200A-2 switches the connection to the eNB 100B having a higher electric field strength. This enables the terminals 200A-1 and 200A-2 to communicate via eNB100A-EPC300-eNB100B.
 同様に、eNB100BとEPC300間のS1接続の切断が復旧した場合、eNB100Bは、eNB100BとEPC300間のS1接続が復旧したことを示す情報を、セル内の端末200B-1及び端末200B-2に通知する(S133)。eNB100BとEPC300間のS1接続が復旧したことを示す情報を受信した端末200B-1及び端末200B-2は、eNB/セルの優先度情報を使用しないで電界強度に基づくeNB/セルの選択を行い、電界強度が高いeNB100AまたはeNB100Bに接続する(S134)。この例では、端末200B-2は、eNB100BからS1接続の復旧通知を受信すると、電界強度が高いeNB100Bに引き続き接続する。端末200B-2は、eNB100BからS1接続の復旧通知を受信すると、電界強度が高いeNB100Aに接続を切り替える。これにより、端末200B-1と端末200B-2は、eNB100A-EPC300-eNB100Bを介して通信可能となる。 Similarly, when the disconnection of the S1 connection between the eNB 100B and the EPC 300 is restored, the eNB 100B notifies the terminals 200B-1 and 200B-2 in the cell of information indicating that the S1 connection between the eNB 100B and the EPC 300 has been restored. (S133). The terminal 200B-1 and the terminal 200B-2 that have received the information indicating that the S1 connection between the eNB 100B and the EPC 300 has been restored select the eNB/cell based on the electric field strength without using the eNB/cell priority information. , to the eNB 100A or eNB 100B with a high electric field strength (S134). In this example, when the terminal 200B-2 receives the S1 connection recovery notification from the eNB 100B, the terminal 200B-2 continues to connect to the eNB 100B with the higher electric field strength. When the terminal 200B-2 receives the S1 connection restoration notification from the eNB 100B, the terminal 200B-2 switches the connection to the eNB 100A having a higher electric field strength. This enables the terminals 200B-1 and 200B-2 to communicate via eNB100A-EPC300-eNB100B.
<効果>
 以上のように、本実施の形態では、PS-LTEシステムにおいて、eNBがEPCとのS1接続が切れた場合に、S1接続の切断を端末へ通知し、端末が保持するeNB/セルの優先度情報に基づいて接続するeNB/セルを選択する。これにより、図11に示すように、通信相手である端末が優先度情報に基づいて同じeNBに適切に接続でき、互いに通信可能となる。例えば、同じ優先度情報を使用する端末200A-1と端末200A-2はeNB100Aに接続するため、eNB100A及びローカルEPC400Aにより通信可能となり、同じ優先度情報を使用する端末200B-1と端末200B-2はeNB100Bに接続するため、eNB100B及びローカルEPC400Bにより通信可能となる。したがって、大規模災害などの発生により、ECPとeNBのS1接続が切れるような状態に変わった場合でも、端末が優先して接続するeNB/セルを予め決めておくことで、端末間の通信を、eNBを介して行うことができる。
<effect>
As described above, in the present embodiment, in the PS-LTE system, when the eNB disconnects the S1 connection with the EPC, the terminal is notified of the disconnection of the S1 connection, and the priority of the eNB / cell held by the terminal Select eNBs/cells to connect to based on the information. As a result, as shown in FIG. 11, terminals that are communication partners can appropriately connect to the same eNB based on the priority information, and can communicate with each other. For example, since terminals 200A-1 and 200A-2 using the same priority information are connected to eNB 100A, communication is possible by eNB 100A and local EPC 400A, and terminals 200B-1 and 200B-2 using the same priority information is connected to the eNB 100B, communication is enabled by the eNB 100B and the local EPC 400B. Therefore, even if the S1 connection between ECP and eNB is cut due to the occurrence of a large-scale disaster, communication between terminals is possible by determining in advance the eNB / cell to which the terminal preferentially connects. , eNB.
(実施の形態1の変形例)
 実施の形態1では、eNBから端末へS1接続の通信状態を通知したが、eNBからの通知に限らず端末がeNB-EPC間のS1接続の通信状態を検出してもよい。
(Modification of Embodiment 1)
In Embodiment 1, the eNB notifies the terminal of the communication state of the S1 connection, but the terminal may detect the communication state of the S1 connection between the eNB and the EPC without being limited to the notification from the eNB.
<システム構成>
 図12は、本変形例に係るPS-LTEシステム2の構成例を示している。図12に示すように、この例では、実施の形態1の構成に対し、端末200が検出部240をさらに備えている。なお、この例では、eNB100に検出部140及び通知部150は不要である。
<System configuration>
FIG. 12 shows a configuration example of a PS-LTE system 2 according to this modification. As shown in FIG. 12, in this example, terminal 200 further includes detection section 240 in contrast to the configuration of Embodiment 1. FIG. Note that in this example, the eNB 100 does not require the detection unit 140 and the notification unit 150 .
 端末200の検出部240は、eNB100とEPC300間のS1接続(バックホール接続)の通信状態を検出する。検出部240は、例えば、端末200に割り当てられるIPアドレスによりeNB100とEPC300間のS1接続の通信状態を検出する。端末200は、eNB100を介してアタッチ(接続)を要求すると、EPCからIPアドレスが割り当てられる。EPC300とローカルEPC400とでは割り当てられるIPアドレスのアドレス体系が異なる。このため、端末200は、割り当てられたIPアドレスのアドレス体系の変化に基づいて、eNB100に接続されるコアネットワークがEPC300からローカルEPC400へ(またはその逆に)切り替わったことが把握でき、これにより、eNB100とEPC300間のS1接続の切断/復旧を検出できる。割り当てられるIPアドレスのアドレス体系が変化した場合にS1接続の切断/復旧を検出してもよいし、EPC(またはローカルEPC)が割り当てるIPアドレスのアドレス体系を記憶しておき、記憶したアドレス体系と比較することで、S1接続の切断/復旧を検出してもよい。 The detection unit 240 of the terminal 200 detects the communication state of the S1 connection (backhaul connection) between the eNB 100 and the EPC 300. The detection unit 240 detects the communication state of the S1 connection between the eNB 100 and the EPC 300 based on the IP address assigned to the terminal 200, for example. When the terminal 200 requests attachment (connection) via the eNB 100, an IP address is assigned by the EPC. The EPC 300 and the local EPC 400 have different IP address systems. Therefore, the terminal 200 can grasp that the core network connected to the eNB 100 has been switched from the EPC 300 to the local EPC 400 (or vice versa) based on the change in the address system of the assigned IP address. Disconnection/restoration of the S1 connection between the eNB 100 and the EPC 300 can be detected. If the address system of the assigned IP address changes, disconnection/restoration of the S1 connection may be detected, or the address system of the IP address assigned by the EPC (or the local EPC) may be stored, and the stored address system may be used. The comparison may detect disconnection/restoration of the S1 connection.
 この例では、端末200の選択部230は、検出部240が検出したS1接続の通信状態に応じてeNB/セルの選択方法を切り替える。具体的には、割り当てられたIPアドレスの変化によりeNB100とEPC300間のS1接続の切断を検出した場合、優先度情報に基づいてeNB/セルの選択を行い、割り当てられたIPアドレスの変化によりeNB100とEPC間のS1接続の復旧を検出した場合、電界強度に基づいてeNB/セルの選択を行う。 In this example, the selection unit 230 of the terminal 200 switches the eNB/cell selection method according to the communication state of the S1 connection detected by the detection unit 240 . Specifically, when the disconnection of the S1 connection between the eNB 100 and the EPC 300 is detected due to a change in the assigned IP address, the eNB/cell is selected based on the priority information, and the eNB 100 due to a change in the assigned IP address. eNB/cell selection based on field strength when detecting restoration of S1 connectivity between UE and EPC.
 これにより、eNBから端末にS1接続の通信状態を通知することなく、端末200が自動で適切なeNB/セルを選択できる。 As a result, the terminal 200 can automatically select an appropriate eNB/cell without notifying the terminal of the communication status of the S1 connection from the eNB.
(実施の形態2)
 次に、実施の形態2について説明する。本実施の形態では、eNBが端末に通知するeNB/セルの優先度情報に基づいて、端末がeNB/セルを選択する例について説明する。
(Embodiment 2)
Next, Embodiment 2 will be described. In this embodiment, an example will be described in which a terminal selects an eNB/cell based on eNB/cell priority information notified to the terminal by an eNB.
<システム構成>
 図13は、本実施の形態に係るPS-LTEシステム2の構成例を示している。図13に示すように、本実施の形態に係るPS-LTEシステム2では、実施の形態1の構成に対し、eNB100が管理部160をさらに備えている。
<System configuration>
FIG. 13 shows a configuration example of the PS-LTE system 2 according to this embodiment. As shown in FIG. 13, in PS-LTE system 2 according to the present embodiment, eNB 100 further includes management unit 160 in contrast to the configuration of the first embodiment.
 管理部160は、端末200に通知する優先度情報を管理(記憶)する。優先度情報は、実施の形態1と同様に、例えば、eNB100のバックホール接続障害時に端末200が接続するeNB100またはセルの優先度のリストである。管理部160は、端末200ごとに優先度情報を管理する。互いに通信を行う端末間やグループ通信を行う端末間で同じ優先度情報となるように管理することが好ましい。管理部160は、eNB100に接続する可能性のある全ての端末200が使用する優先度情報を管理する。 The management unit 160 manages (stores) priority information to be notified to the terminal 200 . As in the first embodiment, the priority information is, for example, a list of priorities of eNB 100 or cells to which terminal 200 connects when backhaul connection failure of eNB 100 occurs. The management unit 160 manages priority information for each terminal 200 . It is preferable to manage so that terminals communicating with each other or terminals performing group communication have the same priority information. The management unit 160 manages priority information used by all terminals 200 that may connect to the eNB 100 .
 管理部160は、優先度情報を外部から取得してもよい。また、管理部160は、互いに通信を行う端末やグループ通信を行う端末の情報を外部から取得してもよい。例えば、PTTサーバ(もしくはその他の呼制御サーバ)がグループ通信を行う端末の情報を有している場合、管理部160はPTTサーバからグループ通信を行う端末の情報を取得することで、グループ内の端末の優先度情報を管理してもよい。 The management unit 160 may acquire priority information from the outside. Moreover, the management unit 160 may acquire information on terminals that communicate with each other and terminals that perform group communication from the outside. For example, when the PTT server (or other call control server) has information on terminals that perform group communication, the management unit 160 acquires information on terminals that perform group communication from the PTT server, thereby enabling You may manage the priority information of a terminal.
 この例では、通知部150は、検出部140により検出されたEPC300との間のS1接続の通信状態に基づいて、セル内の端末200へ優先度情報を通知する。通知部150は、管理部160が端末200ごとに管理する優先度情報を、各端末200へ個別に通知する。なお、同じグループの端末200へまとめて(マルチキャストなど)優先度情報を通知してもよい。 In this example, the notification unit 150 notifies the terminal 200 in the cell of priority information based on the communication state of the S1 connection with the EPC 300 detected by the detection unit 140 . The notification unit 150 individually notifies each terminal 200 of the priority information managed by the management unit 160 for each terminal 200 . Note that the priority information may be collectively notified to the terminals 200 in the same group (multicast or the like).
 通知部150は、EPCとの間のS1接続の切断が検出された場合、端末200へ該当する端末200の優先度情報を通知する。また、通知部150は、EPC300との間のS1接続の復旧が検出された場合、端末200へ所定の情報を通知する。この場合、全てのeNB/セルが同じ優先度の優先度情報、または、優先度による選択の解除を示す情報を通知する。すなわち、通知部150は、EPCとの間のS1接続が切れた場合に、端末200へ端末200のための優先度情報を通知することで、端末200が優先度情報に基づいてeNB/セルを選択するよう制御し、EPC300との間のS1接続が復旧した場合に、端末200へ同一優先度の優先度情報、または、優先度による選択の解除を示す情報を通知することで、端末200が電界強度に基づいてeNB/セルを選択するよう制御する。 When the disconnection of the S1 connection with the EPC is detected, the notification unit 150 notifies the terminal 200 of the priority information of the corresponding terminal 200 . Moreover, the notification unit 150 notifies the terminal 200 of predetermined information when recovery of the S1 connection with the EPC 300 is detected. In this case, all eNBs/cells signal priority information with the same priority or information indicating deselection by priority. That is, the notification unit 150 notifies the terminal 200 of the priority information for the terminal 200 when the S1 connection with the EPC is disconnected, so that the terminal 200 selects the eNB/cell based on the priority information. When the S1 connection with the EPC 300 is restored, the terminal 200 is notified of priority information of the same priority or information indicating cancellation of selection by priority. Control eNB/cell selection based on field strength.
 また、実施の形態1の構成に対し、端末200は、優先度保持部220の代わりに、優先度取得部250を備えている。優先度取得部250は、eNB100から通知される優先度情報を、通信部210を介して取得する。この例では選択部230は、優先度取得部250が取得した優先度情報に基づいてeNB/セルを選択する。eNBから通知される優先度情報に応じてeNB/セルの選択方法を切り替えているとも言える。例えば、選択部230は、eNBから端末200のための優先度情報(eNBごとに異なる優先度の優先度情報)が通知された場合、通知された優先度情報に基づいてeNB/セルの選択を行い、eNBから同一優先度の優先度情報、または、優先度による選択の解除を示す情報が通知された場合、電界強度に基づいてeNB/セルの選択を行う。 In addition, the terminal 200 includes a priority acquisition unit 250 instead of the priority holding unit 220 in contrast to the configuration of the first embodiment. The priority acquisition unit 250 acquires priority information notified from the eNB 100 via the communication unit 210 . In this example, the selection unit 230 selects an eNB/cell based on the priority information acquired by the priority acquisition unit 250 . It can be said that the eNB/cell selection method is switched according to the priority information notified from the eNB. For example, when priority information for the terminal 200 (priority information with different priority for each eNB) is notified from the eNB, the selection unit 230 selects the eNB/cell based on the notified priority information. When priority information of the same priority or information indicating cancellation of selection by priority is notified from the eNB, the eNB/cell is selected based on the electric field strength.
<動作>
 図14及び図15は、本実施の形態に係るPS-LTEシステム2の動作例を示している。図14及び図15では、図7及び図8と同様に、例えば、PS-LTEシステム2は、eNB100A及び100B、端末200A-1及び200A-2、EPC300、ローカルEPC400A及び400Bを備えている。端末200A-1は、eNB100Aのセル内に位置し、端末200A-2は、eNB100Bのセル及びeNB100Aのセルの境界付近に位置する。eNB100A及びeNB100Bは、端末200A-1及び端末200A-2に送信する優先度情報として、(eNBのバックホール接続障害時に接続すべき)eNB100Aの優先度が高く、eNB100Bの優先度が低い優先度情報を管理している。
<Action>
14 and 15 show an operation example of the PS-LTE system 2 according to this embodiment. 14 and 15, for example, PS-LTE system 2 includes eNBs 100A and 100B, terminals 200A-1 and 200A-2, EPC 300, and local EPCs 400A and 400B, as in FIGS. Terminal 200A-1 is located within the cell of eNB 100A, and terminal 200A-2 is located near the boundary between the cell of eNB 100B and the cell of eNB 100A. eNB 100A and eNB 100B, as priority information to be transmitted to terminals 200A-1 and 200A-2, eNB 100A has a high priority (to be connected when the eNB has a backhaul connection failure), and eNB 100B has a low priority. is managing
 図14に示すように、eNB100は、EPC300との間のS1接続が切れたことを契機に、端末200にeNB/セルの優先度情報を通知する。端末200は優先度情報の通知を受けるまでは、電界強度が最良のeNB/セルに接続するが、優先度情報の通知を受けた場合、優先度情報に基づいてeNB/セルに接続する。 As shown in FIG. 14, the eNB 100 notifies the terminal 200 of eNB/cell priority information when the S1 connection with the EPC 300 is disconnected. Terminal 200 connects to the eNB/cell with the best electric field strength until it receives notification of priority information, but when it receives notification of priority information, it connects to the eNB/cell based on the priority information.
 具体的には、eNB100Aは、eNB100AとEPC300間のS1接続が切れた場合、セル内の端末200A-1に、端末200A-1のための優先度情報を通知する(S201)。端末200A-1は、eNB100Aから優先度情報を受信すると、受信した優先度情報に基づいてeNBを選択し、優先度が高いeNB100Aに接続する(S202)。この例では、端末200A-1は、電界強度に基づいてeNBを選択した場合もeNB100Aに接続されるため、端末200A-1の接続先は変わらない。 Specifically, when the S1 connection between the eNB 100A and the EPC 300 is broken, the eNB 100A notifies the terminal 200A-1 in the cell of priority information for the terminal 200A-1 (S201). Upon receiving the priority information from eNB 100A, terminal 200A-1 selects an eNB based on the received priority information and connects to eNB 100A with a higher priority (S202). In this example, the terminal 200A-1 is connected to the eNB 100A even when the eNB is selected based on the electric field strength, so the connection destination of the terminal 200A-1 does not change.
 また、eNB100Bは、eNB100BとEPC300間のS1接続が切れた場合、セル内の端末200A-2に、端末200A-2のための優先度情報を通知する(S203)。端末200A-2は、eNB100Bから優先度情報を受信すると、受信した優先度情報に基づいてeNBを選択し、優先度が高いeNB100Aに接続するよう切り替える(S204)。この例では、端末200A-2は、電界強度に基づいてeNBを選択した場合にeNB100Bに接続されるが、優先度情報を用いることでeNB100Aに接続される。これにより、端末200A-1と端末200A-2は、eNB100A及びローカルEPC400Aを介して通信可能となる。 Also, when the S1 connection between the eNB 100B and the EPC 300 is disconnected, the eNB 100B notifies the terminal 200A-2 in the cell of priority information for the terminal 200A-2 (S203). Upon receiving the priority information from the eNB 100B, the terminal 200A-2 selects an eNB based on the received priority information and switches to connect to the eNB 100A with a higher priority (S204). In this example, the terminal 200A-2 is connected to the eNB 100B when the eNB is selected based on the electric field strength, but is connected to the eNB 100A by using the priority information. This allows the terminals 200A-1 and 200A-2 to communicate via the eNB 100A and the local EPC 400A.
 図15に示すように、eNB100は、eNB100とEPCとの間のS1接続の切断が復旧した場合、全てのeNB/セルの優先度が同じ優先度情報を端末200に通知しても良いし、優先度情報に従わないように端末200を制御できるような情報を端末200に通知しても良い。 As shown in FIG. 15, when the S1 connection disconnection between the eNB 100 and the EPC is restored, the eNB 100 may notify the terminal 200 of priority information in which all eNBs/cells have the same priority, The terminal 200 may be notified of information that can control the terminal 200 so as not to follow the priority information.
 具体的には、eNB100Aは、eNB100AとEPC300間のS1接続が復旧した場合、例えば同一優先度の優先度情報をセル内の端末200A-1に通知する(S211)。端末200A-1は、eNB100Aから優先度情報を受信すると、受信した優先度情報に基づいてeNBを選択し、同じ優先度で電界強度が高いeNB100Aに引き続き接続する(S212)。また、eNB100Aが優先度に従わないよう端末200A-1に指示した場合、端末200A-1は、優先度情報を使用しないで電界強度に基づきeNBを選択し、eNB100Aに引き続き接続する。 Specifically, when the S1 connection between the eNB 100A and the EPC 300 is restored, the eNB 100A notifies the terminal 200A-1 in the cell of priority information of the same priority, for example (S211). Upon receiving the priority information from eNB 100A, terminal 200A-1 selects an eNB based on the received priority information, and continues to connect to eNB 100A with the same priority and high electric field strength (S212). Also, when the eNB 100A instructs the terminal 200A-1 not to follow the priority, the terminal 200A-1 selects an eNB based on the electric field strength without using the priority information, and continues to connect to the eNB 100A.
 また、eNB100Bは、eNB100BとEPC300間のS1接続が復旧した場合、例えば同一優先度の優先度情報をセル内の端末200A-2に通知する(S213)。端末200A-2は、eNB100Bから優先度情報を受信すると、受信した優先度情報に基づいてeNBを選択し、同じ優先度で電界強度が高いeNB100Bに接続を切り替える(S214)。また、eNB100Bが優先度に従わないよう端末200A-2に指示した場合、端末200A-2は、優先度情報を使用しないで受信電界等に基づきeNBを選択し、電界強度が高いeNB100Bに接続を切り替える。これにより、端末200A-1と端末200A-2は、eNB100A-EPC300-eNB100Bを介して通信可能となる。 Also, when the S1 connection between the eNB 100B and the EPC 300 is restored, the eNB 100B notifies the terminal 200A-2 in the cell of priority information of the same priority, for example (S213). Upon receiving the priority information from the eNB 100B, the terminal 200A-2 selects an eNB based on the received priority information, and switches connection to the eNB 100B with the same priority and higher electric field strength (S214). Also, when the eNB 100B instructs the terminal 200A-2 not to follow the priority, the terminal 200A-2 selects an eNB based on the received electric field without using the priority information, and connects to the eNB 100B with the higher electric field strength. switch. This enables the terminals 200A-1 and 200A-2 to communicate via eNB100A-EPC300-eNB100B.
<効果>
 以上のように、本実施の形態では、PS-LTEシステムにおいて、eNBがEPCとのS1接続が切れた場合に、端末にeNB/セルの優先度情報を通知し、端末が受信した優先度情報に基づいて接続するeNB/セルを選択する。これにより、実施の形態1と同様に、通信相手である端末が優先度情報に基づいて同じeNBに適切に接続でき、互いに通信可能となる。
<effect>
As described above, in the present embodiment, in the PS-LTE system, when the eNB disconnects the S1 connection with the EPC, the eNB / cell priority information is notified to the terminal, and the priority information received by the terminal Select eNB/cell to connect based on As a result, as in Embodiment 1, the terminals that are communication partners can appropriately connect to the same eNB based on the priority information, and can communicate with each other.
(実施の形態2の変形例)
 実施の形態2では、S1接続の切断を検出したeNBが優先度情報を端末へ通知したが、システム監視制御装置などの他の装置からの指示に応じてeNBが優先度情報を端末へ通知してもよい。
(Modification of Embodiment 2)
In the second embodiment, the eNB that detects the disconnection of the S1 connection notifies the terminal of the priority information, but the eNB notifies the terminal of the priority information in response to an instruction from another device such as a system monitoring and control device. may
<システム構成>
 図16は、本変形例に係るPS-LTEシステム2の構成例を示している。図16に示すように、この例では、実施の形態2の構成に対し、PS-LTEシステム2は、システム監視制御装置500を備えている。
<System configuration>
FIG. 16 shows a configuration example of a PS-LTE system 2 according to this modification. As shown in FIG. 16, in this example, the PS-LTE system 2 has a system monitoring control device 500 in contrast to the configuration of the second embodiment.
 システム監視制御装置500は、PS-LTEシステム2の全体を監視及び制御する装置である。例えば、システム監視制御装置500は、ネットワーク機器を管理するEMS(Element Management System)やネットワークを管理するNMS(Network Management System)でもよい。 The system monitoring control device 500 is a device that monitors and controls the PS-LTE system 2 as a whole. For example, the system monitoring control device 500 may be an EMS (Element Management System) that manages network equipment or an NMS (Network Management System) that manages a network.
 システム監視制御装置500は、監視部510、管理部520、制御部530を備えている。監視部510は、PS-LTEシステム2における各装置の状態や装置間の接続状態等を監視する。例えば、監視部510は、各eNB100とEPC300間のS1接続(バックホール接続)の通信状態を監視する。 The system monitoring control device 500 includes a monitoring section 510, a management section 520, and a control section 530. The monitoring unit 510 monitors the status of each device in the PS-LTE system 2, the connection status between devices, and the like. For example, the monitoring unit 510 monitors the communication status of the S1 connection (backhaul connection) between each eNB 100 and the EPC 300 .
 管理部520は、PS-LTEシステム2における各装置の設定情報等を管理(記憶)する。例えば、管理部520は、端末200ごとに、eNB100が端末200に通知するeNB100の優先度情報を管理する。管理部520は、全てのeNB100に接続する可能性のある端末200が使用する優先度情報を管理する。 The management unit 520 manages (stores) setting information and the like of each device in the PS-LTE system 2 . For example, the management unit 520 manages the priority information of the eNB 100 that the eNB 100 notifies the terminal 200 for each terminal 200 . The management unit 520 manages priority information used by terminals 200 that may connect to all eNBs 100 .
 制御部530は、PS-LTEシステム2における各装置の動作を制御する。制御部530は、eNB100とEPC300間のS1接続の通信状態に応じて、EPC300に正常に接続されている他のeNB100へ優先度情報を設定(指示)する。設定される他のeNB100は、同じEPC300に接続され、eNB100に隣接するeNBであり、セルの一部が重なるeNBである。設定される他のeNBは、複数のeNBでもよい。すなわち、制御部530は、eNB100とEPC300間のS1接続が切れた場合、管理部520が管理する端末200ごとの優先度情報を、EPC300に正常に接続されている他のeNB100へ設定し、他のeNB100から端末200へ優先度情報を通知するよう制御する。例えば、制御部530は、他のeNB100に接続(収容)されている各端末200が使用する優先度情報を設定してもよいし、他のeNB100に接続する可能性のある全ての端末200が使用する優先度情報を設定してもよい。 The control unit 530 controls the operation of each device in the PS-LTE system 2. Control unit 530 sets (instructs) priority information to other eNB 100 normally connected to EPC 300 according to the communication state of the S1 connection between eNB 100 and EPC 300 . Other eNBs 100 to be set are eNBs connected to the same EPC 300, adjacent to the eNB 100, and having cells partially overlapping. The other eNBs configured may be multiple eNBs. That is, when the S1 connection between the eNB 100 and the EPC 300 is disconnected, the control unit 530 sets the priority information for each terminal 200 managed by the management unit 520 to another eNB 100 that is normally connected to the EPC 300. eNB 100 to notify terminal 200 of priority information. For example, the control unit 530 may set priority information used by each terminal 200 connected (accommodated) to another eNB 100, or all terminals 200 that may be connected to another eNB 100 Priority information to be used may be set.
 eNB100の通知部150は、システム監視制御装置500から優先度情報が設定(指示)された場合、システム監視制御装置500から取得された優先度情報を端末200へ通知する。すなわち、通知部150は、EPC300と他のeNB100との間の通信状態に応じて、端末200の優先度情報を取得する。なお、通知部150は、システム監視制御装置500から他のeNB100のS1切断が通知された場合に、eNB100が管理する優先度情報を端末200へ通知してもよい。 The notification unit 150 of the eNB 100 notifies the terminal 200 of the priority information acquired from the system monitoring control device 500 when the priority information is set (instructed) by the system monitoring control device 500 . That is, the notification unit 150 acquires the priority information of the terminal 200 according to the communication state between the EPC 300 and other eNBs 100 . Note that the notification unit 150 may notify the terminal 200 of the priority information managed by the eNB 100 when the S1 disconnection of another eNB 100 is notified from the system monitoring control device 500 .
<動作>
 図17及び図18は、本変形例に係るPS-LTEシステム2の動作例を示している。図17に示すように、eNB100AとEPC300との間のS1接続が切れ、eNB100Aとセルが重なるeNB100BがEPC300と正常に接続している場合、EPC300を介してeNB100Bに接続するシステム監視制御装置500が自動で、eNB100Bにおける優先度情報の通知を制御する。
<Action>
17 and 18 show an operation example of the PS-LTE system 2 according to this modification. As shown in FIG. 17 , when the S1 connection between the eNB 100A and the EPC 300 is broken and the eNB 100B overlapping the cell with the eNB 100A is normally connected to the EPC 300, the system monitoring control device 500 connected to the eNB 100B via the EPC 300 It automatically controls notification of priority information in the eNB 100B.
 具体的には、システム監視制御装置500は、EPC300とeNB100A及びeNB100Bの間の接続状態を監視し、eNB100AとEPC300との間のS1接続の切断を検出した場合に、eNB100BとEPC300との間のS1接続が正常に接続している場合、EPC300を介して、eNB100Bのセル内の端末200A-2のための優先度情報をeNB100Bに設定(指示)する(S221)。eNB100Bは、システム監視制御装置500から設定された端末200A-2のための優先度情報を、端末200A-2へ通知する(S222)。 Specifically, the system monitoring and control device 500 monitors the connection status between the EPC 300 and the eNB 100A and eNB 100B, and when detecting disconnection of the S1 connection between the eNB 100A and the EPC 300, the connection between the eNB 100B and the EPC 300 If the S1 connection is established normally, priority information for terminal 200A-2 in the cell of eNB 100B is set (instructed) to eNB 100B via EPC 300 (S221). The eNB 100B notifies the terminal 200A-2 of the priority information for the terminal 200A-2 set by the system monitoring control device 500 (S222).
 また、図18に示すように、eNB100BとEPC300との間のS1接続が切れ、NB100Bとセルが重なるeNB100AがEPC300と正常に接続している場合、EPC300を介してeNB100Aに接続するシステム監視制御装置500が自動で、eNB100Aにおける優先度情報の通知を制御する。 Further, as shown in FIG. 18, when the S1 connection between the eNB 100B and the EPC 300 is disconnected and the eNB 100A overlapping the cell with the NB 100B is normally connected to the EPC 300, the system monitoring control device that connects to the eNB 100A via the EPC 300 500 automatically controls notification of priority information in eNB 100A.
 具体的には、システム監視制御装置500は、EPC300とeNB100A及びeNB100Bの間の接続状態を監視し、eNB100BとEPC300との間のS1接続の切断を検出した場合に、eNB100AとEPC300との間のS1接続が正常に接続している場合、EPC300を介して、eNB100Aのセル内の端末200A-1のための優先度情報をeNB100Aに設定(指示)する(S231)。eNB100Aは、システム監視制御装置500から設定された端末200A-1のための優先度情報を、端末200A-1へ通知する(S232)。 Specifically, the system monitoring and control device 500 monitors the connection status between the EPC 300 and the eNB 100A and the eNB 100B, and when detecting disconnection of the S1 connection between the eNB 100B and the EPC 300, If the S1 connection is established normally, priority information for terminal 200A-1 in the cell of eNB 100A is set (instructed) to eNB 100A via EPC 300 (S231). The eNB 100A notifies the terminal 200A-1 of the priority information for the terminal 200A-1 set by the system monitoring control device 500 (S232).
 これにより、EPCとeNBの間の接続が切れて、EPCと他のeNBの間が正常に接続されている場合に、他のeNBから優先度情報を端末へ通知することができ、確実に端末間の通信を可能とする。 As a result, when the connection between the EPC and the eNB is disconnected and the EPC and another eNB are normally connected, the priority information can be notified to the terminal from the other eNB, and the terminal can be reliably enable communication between
(実施の形態3)
 次に、実施の形態3について説明する。本実施の形態では、LTEの機能である発信規制を利用する例について説明する。
(Embodiment 3)
Next, Embodiment 3 will be described. In this embodiment, an example of using call restriction, which is a function of LTE, will be described.
 3GPPでは、端末の発信規制方法として、eNBごとにアクセスクラス(Access Class:AC)に従い端末の無線接続を制限するアクセスクラス制御(Access Class Barring)が規定されている。ACは端末のUSIM(Universal Subscriber Identity Module card)に保存される値である。ACの値は、0~9が一般端末用、10が緊急呼用、11~15が用途に応じて専用に割り付けられる(例えば14が警察、消防用、13がガスや水道などのインフラ事業者用、12が民間警備用)として規定されている。例えば、eNBの無線リソースが増加し輻輳することが見込まれる場合に、eNBからAC別に発信を規制する。eNBは規制するACの情報を報知し、該当するACが設定されている端末はeNBへの接続を抑止する。本実施の形態では、このアクセスクラス制御を利用して端末が選択するeNB/セルを制御する。  3GPP stipulates Access Class Barring, which restricts wireless connections of terminals according to Access Class (AC) for each eNB, as a method of regulating terminal transmission. AC is a value stored in the terminal's USIM (Universal Subscriber Identity Module card). AC values are assigned from 0 to 9 for general terminals, 10 for emergency calls, and 11 to 15 for dedicated use (for example, 14 for police and fire departments, 13 for infrastructure operators such as gas and water). 12 for private security). For example, when radio resources of the eNB are expected to increase and congestion is expected, outgoing calls from the eNB are restricted for each AC. The eNB broadcasts the information of the AC to be restricted, and the terminal in which the corresponding AC is set suppresses the connection to the eNB. In this embodiment, this access class control is used to control the eNB/cell selected by the terminal.
<システム構成>
 図19は、本実施の形態に係るPS-LTEシステム2の構成例を示している。図19に示すように、本実施の形態に係るPS-LTEシステム2では、実施の形態1及び2の構成に対し、eNB100が通知部150の代わりに発信規制部170を備えている。
<System configuration>
FIG. 19 shows a configuration example of the PS-LTE system 2 according to this embodiment. As shown in FIG. 19, in PS-LTE system 2 according to the present embodiment, eNB 100 is provided with call restriction section 170 instead of notification section 150 in the configurations of the first and second embodiments.
 発信規制部(制御部)170は、検出部140により検出されたEPC300との間のS1接続の通信状態に基づいて、セル内の端末200へ発信規制情報を通知する。例えば、発信規制部170は、セル内の全ての端末200へ発信規制情報を送信(ブロードキャスト)する。発信規制情報は、特定の端末200の発信(eNB/セルへのアクセス)を規制(禁止)するための情報である。発信規制部170は、端末200へ発信規制情報を通知することで、端末200によるeNB/セルの選択を制御しているとも言える。すなわち、発信規制情報により、特定の端末による当該eNBへの接続を規制することで、特定の端末が他のeNBへ接続するよう促す。 The call restriction unit (control unit) 170 notifies the terminal 200 in the cell of call restriction information based on the communication state of the S1 connection with the EPC 300 detected by the detection unit 140 . For example, the call restriction unit 170 transmits (broadcasts) the call restriction information to all the terminals 200 within the cell. The call restriction information is information for restricting (prohibiting) the call of a specific terminal 200 (access to an eNB/cell). It can be said that call restriction section 170 controls eNB/cell selection by terminal 200 by notifying terminal 200 of call restriction information. That is, by restricting connection to the eNB by a specific terminal using the call restriction information, the specific terminal is encouraged to connect to another eNB.
 この例では、上記のように端末200の発信規制のために、LTEのアクセスクラス制御を利用する。eNB100は、定期的に端末200へ報知情報SIB(System Information Block)を報知している。発信規制部170は、EPC300との間のS1接続の切断が検出された場合、特定のアクセスクラス(AC)の端末200の発信を規制するよう報知情報SIB2の発信規制情報(AC-BarringInfo)を変更する。すなわち、発信規制情報は、端末200に設定されたアクセスクラスの発信規制または発信許可を示す情報である。 In this example, LTE access class control is used to restrict the transmission of terminal 200 as described above. The eNB 100 periodically notifies the terminal 200 of notification information SIB (System Information Block). When the disconnection of the S1 connection with the EPC 300 is detected, the call barring unit 170 sets the call barring information (AC-BarringInfo) of the notification information SIB2 so as to bar the call of the terminal 200 of a specific access class (AC). change. That is, the call restriction information is information indicating call restriction or call permission for the access class set in terminal 200 .
 発信規制部170は、S1接続が切れた場合、発信規制情報として、自身のeNBに接続させたくない(他のeNBに接続させたい)特定の端末200のACを報知する。報知する発信規制情報(AC)は、予め設定されていてもよいし、外部から取得してもよい。また、EPC300との間のS1接続の切断の復旧が検出された場合、特定の端末200のACの発信規制を解除(全ての発信規制を解除)するよう報知情報SIB2の発信規制情報(AC-BarringInfo)を変更する。 When the S1 connection is disconnected, the call regulation unit 170 notifies the AC of the specific terminal 200 that is not desired to be connected to its own eNB (is desired to be connected to another eNB) as call regulation information. The call restriction information (AC) to be notified may be set in advance or may be acquired from the outside. Further, when recovery of disconnection of S1 connection with EPC 300 is detected, call restriction information (AC- BarringInfo).
 なお、実施の形態1及び2に対し、端末200では優先度保持部220や優先度取得部250は不要である。端末200は、搭載するUSIMに使用するアクセスクラスが設定されている。互いに通信を行う端末やグループ通信を行う端末のUSIMには同じアクセスクラスが設定される。選択部230は、eNB100から受信する発信規制情報とSIMのアクセスクラスに基づいて、eNB100への発信が規制されているか否か判断し、接続するeNB/セルを選択する。選択部230は、自身のアクセスクラスについて、発信が規制されているeNB/セルは選択せず、発信が規制されていないeNB/セルを選択する。 Note that the terminal 200 does not require the priority holding unit 220 and the priority acquisition unit 250 in contrast to the first and second embodiments. The terminal 200 is set with an access class to be used for the mounted USIM. The same access class is set in the USIMs of terminals that communicate with each other and terminals that perform group communication. Based on the call restriction information received from eNB 100 and the SIM access class, selection unit 230 determines whether or not call to eNB 100 is restricted, and selects an eNB/cell to be connected. The selection unit 230 does not select an eNB/cell whose call is restricted for its own access class, but selects an eNB/cell whose call is not restricted.
<動作>
 図20及び図21は、本実施の形態に係るPS-LTEシステム2の動作例を示している。図20及び図21では、図9及び図10と同様に、例えば、PS-LTEシステム2は、eNB100A及び100B、端末200A-1及び200A-2、端末200B-1及び200B-2、EPC300、ローカルEPC400A及び400Bを備えている。端末200A-1は、eNB100Aのセル内に位置し、端末200A-2は、eNB100Aのセル及びeNB100Bのセルの境界付近に位置する。端末200B-2は、eNB100Bのセル内に位置し、端末200B-1は、eNB100Bのセル及びeNB100Aのセルの境界付近に位置する。
<Action>
20 and 21 show an operation example of the PS-LTE system 2 according to this embodiment. 20 and 21, as in FIGS. 9 and 10, for example, the PS-LTE system 2 includes eNBs 100A and 100B, terminals 200A-1 and 200A-2, terminals 200B-1 and 200B-2, EPC 300, local EPCs 400A and 400B are provided. Terminal 200A-1 is located within the cell of eNB 100A, and terminal 200A-2 is located near the boundary between the cell of eNB 100A and the cell of eNB 100B. The terminal 200B-2 is located within the cell of the eNB 100B, and the terminal 200B-1 is located near the boundary between the cell of the eNB 100B and the cell of the eNB 100A.
 本実施の形態では、EPC-eNB間のS1接続が可能な状態では、発信規制を行わないが、EPC-eNB間の接続が切れた時に、発信規制を使って端末の接続先を制御する。具体的には、EPC-eNB間のS1接続が切れた時にeNB100に接続させたい端末200のUSIMにおけるアクセスクラスに、11~15の中で一つを選択して設定する。そして、EPC-eNB間のS1接続が切れた時に、eNB100に接続させたくない端末のUSIMにおけるアクセスクラスを、eNB100から発信規制情報に設定して報知する。 In this embodiment, when the S1 connection between the EPC-eNB is possible, call restriction is not performed, but when the connection between the EPC-eNB is broken, the connection destination of the terminal is controlled using the call restriction. Specifically, one of 11 to 15 is selected and set as the access class in USIM of the terminal 200 to be connected to the eNB 100 when the S1 connection between the EPC and the eNB is broken. Then, when the S1 connection between the EPC and the eNB is disconnected, the eNB 100 sets the access class in the USIM of a terminal that is not desired to be connected to the eNB 100 to the call restriction information and notifies it.
 例えば、eNB100Aに接続させたい端末200A-1及び端末200A-2のUSIMにおけるAC(アクセスクラス)を11に設定し、eNB100Bに接続させたい端末200B-1及び端末200B-2のUSIMにおけるACを12に設定する。 For example, set the USIM AC (access class) of the terminals 200A-1 and 200A-2 to be connected to the eNB 100A to 11, and set the USIM AC of the terminals 200B-1 and 200B-2 to be connected to the eNB 100B to 12. set to
 図20に示すように、eNB100BとEPC300間のS1接続が切れた場合、eNB100Bは、報知情報SIB2で通知する発信規制情報(AC-BarringInfo)におけるAC11(例えば端末200A-1及び端末200A-2のAC11を含む)を規制(barring:Bit string=10000)に変更する(S301)。すなわち、eNB100Bは、eNB100BとEPC300間のS1接続が切れて、eNB100BとのS1接続がEPC300からローカルEPC400Bに切替わったことをトリガーに、eNB100Bが送信する報知情報SIB2内の発信規制情報を全ての端末を許可(Bit string00000)から、AC11の端末を接続不可(Bit string10000)に変更する。これにより、AC11に設定された端末は、eNB100Bに接続しない、つまり、eNB100Bから発信規制情報(AC11)を受信した端末200A-2は、ACが11に設定されているため、eNB100Bには接続しない。 As shown in FIG. 20, when the S1 connection between the eNB 100B and the EPC 300 is disconnected, the eNB 100B uses AC11 (for example, of the terminals 200A-1 and 200A-2) in the call barring information (AC-BarringInfo) notified by the broadcast information SIB2. AC11) is changed to regulation (barring: Bit string=10000) (S301). That is, the eNB 100B, triggered by the disconnection of the S1 connection between the eNB 100B and the EPC 300 and the switching of the S1 connection with the eNB 100B from the EPC 300 to the local EPC 400B, copies the call regulation information in the notification information SIB2 transmitted by the eNB 100B to all Change the terminal from permitted (Bit string 00000) to the terminal of AC11 that cannot be connected (Bit string 10000). As a result, the terminal set to AC11 does not connect to the eNB100B, that is, the terminal 200A-2 that receives the call restriction information (AC11) from the eNB100B does not connect to the eNB100B because the AC is set to 11. .
 また、eNB100AとEPC300間のS1接続が切れた場合に、eNB100Aは、報知情報SIB2で通知する発信規制情報(AC-BarringInfo)におけるAC11以外(例えば端末200B-1及び端末200B-2のAC12を含む)を規制(barring:Bit string01111)に変更する(S302)。すなわち、eNB100Aは、eNB100AとEPC300間のS1接続が切れて、eNB100AとのS1接続がEPC300からローカルEPC400Aに切替わったことをトリガーに、eNB100Aが送信する報知情報SIB2内の発信規制情報を全ての端末を許可(Bit string00000)から、AC12-15の端末を接続不可(Bit string011111)に変更する。これにより、AC11以外に設定された端末は、eNB100Aには接続しない。つまり、eNB100Aから発信規制情報(AC11以外)を受信した端末200B-1は、ACが12に設定されているため、eNB100Aには接続しない。 Also, when the S1 connection between the eNB 100A and the EPC 300 is disconnected, the eNB 100A includes AC12 other than AC11 (for example, the terminals 200B-1 and 200B-2) in the call barring information (AC-BarringInfo) notified by the notification information SIB2. ) to regulation (barring: Bit string01111) (S302). That is, the eNB 100A, triggered by the fact that the S1 connection between the eNB 100A and the EPC 300 is disconnected and the S1 connection with the eNB 100A is switched from the EPC 300 to the local EPC 400A, copies the call regulation information in the notification information SIB2 transmitted by the eNB 100A to all Change the terminal from permitted (Bit string 00000) to the terminal of AC12-15 that cannot be connected (Bit string 011111). As a result, terminals set to other than AC 11 are not connected to eNB 100A. That is, the terminal 200B-1 that has received the call restriction information (other than AC11) from the eNB 100A does not connect to the eNB 100A because AC is set to 12.
 この結果、発信規制情報をeNB100A及びeNB100Bから受信した端末200A-2は、eNB100Bに発信不可、eNB100Aに発信可となるため、eNB100Aに接続し、発信規制情報をeNB100Aから受信した端末200A-1もeNB100Aに発信可であるため、eNB100Aに接続する(S303)。これにより、端末200A-1と端末200A-2は、eNB100A及びローカルEPC400Aを介して通信可能となる。また、発信規制情報をeNB100A及びeNB100Bから受信した端末200B-1は、eNB100Aに発信不可、eNB100Bに発信可となるため、eNB100Bに接続し、発信規制情報をeNB100Bから受信した端末200B-2もeNB100Bに発信可であるため、eNB100Bに接続する(S304)。これにより、端末200B-1と端末200B-2は、eNB100B及びローカルEPC400Bを介して通信可能となる。 As a result, terminal 200A-2, which has received call restriction information from eNB 100A and eNB 100B, cannot make calls to eNB 100B but can make calls to eNB 100A. Since it is possible to make a call to eNB 100A, it connects to eNB 100A (S303). This allows the terminals 200A-1 and 200A-2 to communicate via the eNB 100A and the local EPC 400A. In addition, terminal 200B-1, which has received the call restriction information from eNB100A and eNB100B, cannot make a call to eNB100A but can make a call to eNB100B. Since it is possible to make a call to the eNB 100B (S304). This enables the terminals 200B-1 and 200B-2 to communicate via the eNB 100B and the local EPC 400B.
 図21に示すように、EPC300がeNB100に接続している時は、全ての端末の接続を許容するよう発信制御情報を設定する。具体的には、eNB100BとEPC300間のS1接続が復旧した場合、eNB100Bは、すべての端末が接続できるように、eNB100Bが送信する報知情報SIB2内の発信規制情報(AC-BarringInfo)を、AC11の接続不可(Bit string10000)から、AC11-15の全て許可(not barring:Bit string00000)に変更する(S311)。これにより、AC11に設定された端末は、eNB100Bに接続可能となる。 As shown in FIG. 21, when the EPC 300 is connected to the eNB 100, the transmission control information is set to allow connection of all terminals. Specifically, when the S1 connection between the eNB 100B and the EPC 300 is restored, the eNB 100B transmits the call barring information (AC-BarringInfo) in the notification information SIB2 transmitted by the eNB 100B to the AC 11 so that all terminals can connect. It changes from no connection (Bit string 10000) to all permission for AC 11-15 (not barring: Bit string 00000) (S311). As a result, the terminal set to AC11 becomes connectable to eNB100B.
 また、eNB100AとEPC300間のS1接続が復旧した場合、eNB100Aは、すべての端末が接続できるように、eNB100Aが送信する報知情報SIB2内の発信規制情報(AC-BarringInfo)を、AC12-15の端末を接続不可(Bit string011111)から、AC11-15の全て許可(not barring:Bit string00000)に変更する(S312)。これにより、AC11以外に設定された端末は、eNB100Aに接続可能となる。 Further, when the S1 connection between the eNB 100A and the EPC 300 is restored, the eNB 100A transmits the call barring information (AC-BarringInfo) in the notification information SIB2 transmitted by the eNB 100A so that all the terminals can connect to the terminals of the ACs 12-15. is changed from prohibiting connection (Bit string 011111) to permitting all of AC 11-15 (not barring: Bit string 00000) (S312). As a result, terminals set to other than AC 11 can be connected to eNB 100A.
 この結果、発信規制情報(全て許可)を受信した端末200A-1及び端末200A-2は、全てのeNBへの接続が可能となったため、電界強度に基づきeNB100AまたはeNB100Bに接続する(S313)。この例では、端末200A-1はeNB100Aに接続し、端末200A-2はeNB100Bに接続する。これにより、端末200A-1と端末200A-2は、eNB100A-EPC300-eNB100Bを介して通信可能となる。 As a result, the terminals 200A-1 and 200A-2 that have received the call restriction information (all permitted) are able to connect to all eNBs, and therefore connect to the eNB 100A or eNB 100B based on the electric field strength (S313). In this example, terminal 200A-1 connects to eNB 100A and terminal 200A-2 connects to eNB 100B. This enables the terminals 200A-1 and 200A-2 to communicate via eNB100A-EPC300-eNB100B.
 同様に、発信規制情報(全て許可)を受信した端末200B-1及び端末200B-2は、全てのeNBへの接続が可能となったため、電界強度に基づきeNB100AまたはeNB100Bに接続する(S314)。この例では、端末200B-1はeNB100Aに接続し、端末200B-2はeNB100Bに接続する。これにより、端末200B-1と端末200B-2は、eNB100A-EPC300-eNB100Bを介して通信可能となる。 Similarly, the terminals 200B-1 and 200B-2 that have received the call restriction information (all permitted) connect to the eNB 100A or eNB 100B based on the electric field strength, since they are now able to connect to all eNBs (S314). In this example, terminal 200B-1 connects to eNB 100A and terminal 200B-2 connects to eNB 100B. This enables the terminals 200B-1 and 200B-2 to communicate via eNB100A-EPC300-eNB100B.
<効果>
 以上のように、本実施の形態では、PS-LTEシステムにおいて、eNBがEPCとのS1接続が切れた場合に特定のアクセスクラスの発信を規制し、端末が発信規制されたアクセスクラスに基づいて接続するeNB/セルを選択する。これにより、図22に示すように、同じアクセスクラスに設定された端末が同じeNBに適切に接続でき、互いに通信可能となる。例えば、同じアクセスクラスである端末200A-1と端末200A-2はeNB100Aに接続するため、eNB100A及びローカルEPC400Aにより通信可能となり、同じアクセスクラスである端末200B-1と端末200B-2はeNB100Bに接続するため、eNB100B及びローカルEPC400Bにより通信可能となる。したがって、大規模災害などの発生により、ECPとeNBのS1接続が切れるような状態に変わった場合でも、eNBが送信するSIB2の発信規制に関連する報知情報を変更することで、端末の接続先となるeNBを制御して、端末間の通信を、eNBを介して行うことが出来る。
<effect>
As described above, in the present embodiment, in the PS-LTE system, eNB regulates the transmission of a specific access class when the S1 connection with the EPC is disconnected, and the terminal is based on the restricted access class. Select the eNB/cell to connect to. As a result, as shown in FIG. 22, terminals set to the same access class can be appropriately connected to the same eNB and can communicate with each other. For example, since terminals 200A-1 and 200A-2 of the same access class are connected to eNB 100A, communication is enabled by eNB 100A and local EPC 400A, and terminals 200B-1 and 200B-2 of the same access class are connected to eNB 100B. Therefore, communication is possible by the eNB 100B and the local EPC 400B. Therefore, even if the S1 connection between the ECP and the eNB changes due to the occurrence of a large-scale disaster, etc., by changing the notification information related to the SIB2 transmission restriction sent by the eNB, the connection destination of the terminal By controlling the eNB that becomes the terminal, communication between terminals can be performed via the eNB.
(実施の形態3の変形例)
 実施の形態3では、S1接続の切断を検出したeNBが発信規制情報を端末へ通知したが、システム監視制御装置などの他の装置からの指示に応じてeNBが発信規制情報を端末へ通知してもよい。
(Modification of Embodiment 3)
In the third embodiment, the eNB that detects the disconnection of the S1 connection notifies the terminal of the call restriction information. may
<システム構成>
 図23は、本変形例に係るPS-LTEシステム2の構成例を示している。図23に示すように、この例では、実施の形態3の構成に対し、PS-LTEシステム2は、実施の形態2の変形例と同様のシステム監視制御装置500を備えている。
<System configuration>
FIG. 23 shows a configuration example of a PS-LTE system 2 according to this modification. As shown in FIG. 23, in this example, the PS-LTE system 2 has a system monitoring control device 500 similar to that of the modified example of the second embodiment in contrast to the configuration of the third embodiment.
 この例では、システム監視制御装置500の管理部520は、eNB100の報知情報を管理する。管理部520は、eNB100ごとに、eNB100が端末200に通知する発信規制情報(AC)を管理する。 In this example, the management unit 520 of the system monitoring control device 500 manages notification information of the eNB 100. The management unit 520 manages call restriction information (AC) that the eNB 100 notifies to the terminal 200 for each eNB 100 .
 制御部530は、eNB100とEPC300間のS1接続の通信状態に応じて、EPC300に正常に接続されている他のeNBの100へ発信規制情報を設定(指示)する。すなわち、制御部530は、eNB100とEPC300間のS1接続が切れた場合、管理部520が管理する発信規制情報を、EPC300に正常に接続されている他のeNB100へ設定し、他のeNB100が報知する報知情報の発信規制情報を変更するよう制御する。 The control unit 530 sets (instructs) call restriction information to the other eNB 100 normally connected to the EPC 300 according to the communication state of the S1 connection between the eNB 100 and the EPC 300 . That is, when the S1 connection between the eNB 100 and the EPC 300 is disconnected, the control unit 530 sets the call restriction information managed by the management unit 520 to the other eNB 100 normally connected to the EPC 300, and the other eNB 100 notifies control to change the transmission restriction information of the notification information to be sent.
 eNB100の発信規制部170は、システム監視制御装置500から発信規制情報が設定(変更が指示)された場合、システム監視制御装置500から取得された発信規制情報を含む報知情報を端末200へ通知する。すなわち、発信規制部170は、EPC300と他のeNB100の間の通信状態に応じて、発信規制情報を取得する。なお、発信規制部170は、システム監視制御装置500から他のeNB100のS1切断が通知された場合に、所定の発信規制情報を端末200へ通知してもよい。 When the call regulation information is set (instructed to change) by the system monitoring and control device 500, the call regulation unit 170 of the eNB 100 notifies the terminal 200 of notification information including the call regulation information acquired from the system monitoring and control device 500. . In other words, call restriction unit 170 acquires call restriction information according to the communication state between EPC 300 and other eNB 100 . Note that the call restriction unit 170 may notify the terminal 200 of predetermined call restriction information when the S1 disconnection of another eNB 100 is notified from the system monitoring control device 500 .
<動作>
 図24及び図25は、本変形例に係るPS-LTEシステム2の動作例を示している。図24に示すように、eNB100AとEPC300との間のS1接続が切れ、eNB100Aとセルが重なるeNB100BがEPC300と接続している場合、EPC300を介してeNB100Bに接続するシステム監視制御装置500が自動で、eNB100Bにおける報知情報SIB2の変更を行う。
<Action>
24 and 25 show an operation example of the PS-LTE system 2 according to this modification. As shown in FIG. 24, when the S1 connection between the eNB 100A and the EPC 300 is broken and the eNB 100B in which the cell overlaps with the eNB 100A is connected to the EPC 300, the system monitoring control device 500 connected to the eNB 100B via the EPC 300 automatically , changes the broadcast information SIB2 in the eNB 100B.
 具体的には、システム監視制御装置500は、EPC300とeNB100A及びeNB100Bの間の接続状態を監視し、eNB100AとEPC300との間のS1接続の切断を検出した場合に、eNB100BとEPC300との間のS1接続が正常に接続している場合、EPC300を介して、eNB100Bが報知するための発信規制情報(例えば、AC11接続不可:Bit string10000)を、eNB100Bに設定(指示)する(S321)。eNB100Bは、設定された発信規制情報を報知情報SIB2に設定し、端末200A-2へ通知する(S322)。 Specifically, the system monitoring and control device 500 monitors the connection status between the EPC 300 and the eNB 100A and eNB 100B, and when detecting disconnection of the S1 connection between the eNB 100A and the EPC 300, the connection between the eNB 100B and the EPC 300 When the S1 connection is normally established, the eNB 100B is set (instructed) via the EPC 300 to transmit restriction information (for example, AC11 connection disabled: Bit string 10000) to be notified by the eNB 100B (S321). The eNB 100B sets the set call restriction information in the notification information SIB2, and notifies the terminal 200A-2 of it (S322).
 図25に示すように、eNB100BとEPC300との間のS1接続が切れ、NB100Bとセルが重なるeNB100AがEPC300と接続している場合、EPC300を介してeNB100Aに接続するシステム監視制御装置500が自動で、eNB100Aにおける報知情報SIB2の変更を行う。 As shown in FIG. 25 , when the S1 connection between the eNB 100B and the EPC 300 is disconnected and the eNB 100A overlapping the cell with the NB 100B is connected to the EPC 300, the system monitoring control device 500 connected to the eNB 100A via the EPC 300 automatically , changes the broadcast information SIB2 in the eNB 100A.
 具体的には、システム監視制御装置500は、EPC300とeNB100A及びeNB100Bの間の接続状態を監視し、eNB100BとEPC300との間のS1接続の切断を検出した場合に、eNB100AとEPC300との間のS1接続が正常に接続している場合、EPC300を介して、eNB100Aが報知するための発信規制情報(例えば、AC12-15接続不可:Bit string011111)を、eNB100Bに設定(指示)する(S331)。eNB100Aは、設定された発信規制情報を報知情報SIB2に設定し、端末200A-1へ通知する(S332)。 Specifically, the system monitoring and control device 500 monitors the connection status between the EPC 300 and the eNB 100A and the eNB 100B, and when detecting disconnection of the S1 connection between the eNB 100B and the EPC 300, When the S1 connection is normally connected, the eNB 100B is set (instructed) via the EPC 300 to transmit restriction information (for example, AC12-15 connection disabled: Bit string 011111) for notification by the eNB 100A (S331). The eNB 100A sets the set call restriction information in the notification information SIB2, and notifies the terminal 200A-1 of it (S332).
 これにより、EPCとeNBの間の接続が切れて、EPCと他のeNBの間が正常に接続されている場合に、他のeNBから発信規制情報を端末へ通知することができ、確実に端末間の通信を可能とする。 As a result, when the connection between the EPC and the eNB is broken and the EPC and another eNB are normally connected, the other eNB can notify the terminal of the call restriction information, and the terminal can reliably enable communication between
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 It should be noted that the present disclosure is not limited to the above embodiments, and can be modified as appropriate without departing from the scope.
 上述の実施形態における各構成は、ハードウェア又はソフトウェア、もしくはその両方によって構成され、1つのハードウェア又はソフトウェアから構成してもよいし、複数のハードウェア又はソフトウェアから構成してもよい。各装置及び各機能(処理)を、図26に示すような、CPU(Central Processing Unit)等のプロセッサ51及び記憶装置であるメモリ52を有するコンピュータ50により実現してもよい。例えば、メモリ52に実施形態における方法(制御方法)を行うためのプログラムを格納し、各機能を、メモリ52に格納されたプログラムをプロセッサ51で実行することにより実現してもよい。 Each configuration in the above-described embodiments is configured by hardware or software, or both, and may be configured from one piece of hardware or software, or may be configured from multiple pieces of hardware or software. Each device and each function (process) may be implemented by a computer 50 having a processor 51 such as a CPU (Central Processing Unit) and a memory 52 as a storage device, as shown in FIG. For example, a program for performing the method (control method) in the embodiment may be stored in the memory 52 and each function may be realized by executing the program stored in the memory 52 with the processor 51 .
 これらのプログラムは、コンピュータに読み込まれた場合に、実施形態で説明された1又はそれ以上の機能をコンピュータに行わせるための命令群(又はソフトウェアコード)を含む。プログラムは、非一時的なコンピュータ可読媒体又は実体のある記憶媒体に格納されてもよい。限定ではなく例として、コンピュータ可読媒体又は実体のある記憶媒体は、random-access memory(RAM)、read-only memory(ROM)、フラッシュメモリ、solid-state drive(SSD)又はその他のメモリ技術、CD-ROM、digital versatile disc(DVD)、Blu-ray(登録商標)ディスク又はその他の光ディスクストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ又はその他の磁気ストレージデバイスを含む。プログラムは、一時的なコンピュータ可読媒体又は通信媒体上で送信されてもよい。限定ではなく例として、一時的なコンピュータ可読媒体又は通信媒体は、電気的、光学的、音響的、またはその他の形式の伝搬信号を含む。 These programs contain instructions (or software code) that, when read into a computer, cause the computer to perform one or more of the functions described in the embodiments. The program may be stored in a non-transitory computer-readable medium or tangible storage medium. By way of example, and not limitation, computer readable media or tangible storage media may include random-access memory (RAM), read-only memory (ROM), flash memory, solid-state drives (SSD) or other memory technology, CDs - ROM, digital versatile disc (DVD), Blu-ray disc or other optical disc storage, magnetic cassette, magnetic tape, magnetic disc storage or other magnetic storage device. The program may be transmitted on a transitory computer-readable medium or communication medium. By way of example, and not limitation, transitory computer readable media or communication media include electrical, optical, acoustic, or other forms of propagated signals.
 以上、実施の形態を参照して本開示を説明したが、本開示は上記実施の形態に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present disclosure has been described above with reference to the embodiments, the present disclosure is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present disclosure within the scope of the present disclosure.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 基地局装置であって、
 前記基地局装置とコアネットワークとの間の通信状態を検出する検出手段と、
 前記検出された通信状態に応じて、端末装置による無線ネットワークの選択を制御する制御手段と、
 を備える、基地局装置。
(付記2)
 前記無線ネットワークの選択は、前記端末装置のアクセス先の基地局装置またはセルの選択である、
 付記1に記載の基地局装置。
(付記3)
 前記制御手段は、前記通信状態が切断となった場合、または、前記通信状態が切断から復旧した場合、前記無線ネットワークの選択のための制御情報を前記端末装置へ送信する、
 付記1または2に記載の基地局装置。
(付記4)
 前記制御情報は、前記検出された通信状態を示す情報である、
 付記3に記載の基地局装置。
(付記5)
 前記制御情報は、前記端末装置の無線ネットワークの選択方法の切り替えを指示する情報である、
 付記3または4に記載の基地局装置。
(付記6)
 前記無線ネットワークの選択方法は、前記無線ネットワークの優先度に基づく選択方法、及び前記無線ネットワークから受信する信号の受信信号品質に基づく選択方法を含む、
 付記5に記載の基地局装置。
(付記7)
 前記制御手段は、前記通信状態が切断となった場合、前記端末装置が前記優先度に基づく選択方法により前記無線ネットワークを選択するよう制御し、前記通信状態が切断から復旧した場合、前記端末装置が前記受信信号品質に基づく選択方法により前記無線ネットワークを選択するよう制御する、
 付記6に記載の基地局装置。
(付記8)
 前記制御情報は、前記端末装置がアクセス可能な無線ネットワークを示す情報である、
 付記3に記載の基地局装置。
(付記9)
 前記制御情報は、前記端末装置がアクセス可能な無線ネットワークの優先度を示す優先度情報である、
 付記8に記載の基地局装置。
(付記10)
 前記端末装置に送信する前記優先度情報は、前記端末装置が通信を行う他の端末装置の前記優先度情報と同じである、
 付記9に記載の基地局装置。
(付記11)
 前記端末装置ごとに前記優先度情報を管理する管理手段を備える、
 付記9または10に記載の基地局装置。
(付記12)
 前記制御手段は、制御装置から前記端末装置の優先度情報を取得し、前記取得した優先度情報を前記端末装置へ送信する、
 付記9乃至11のいずれか一項に記載の基地局装置。
(付記13)
 前記制御装置は、前記基地局装置及び前記コアネットワークを含むシステムのシステム監視制御装置であり、
 前記制御手段は、前記システム監視制御装置から、前記コアネットワークと他の基地局装置との間の通信状態に応じて、前記端末装置の優先度情報を取得する、
 付記12に記載の基地局装置。
(付記14)
 前記制御情報は、特定の端末装置の発信を規制する発信規制情報である、
 付記3に記載の基地局装置。
(付記15)
 前記発信規制情報は、前記端末装置に設定されたアクセスクラスの発信規制または発信許可を示す、
 付記14に記載の基地局装置。
(付記16)
 前記端末装置に設定される前記アクセスクラスは、前記端末装置が通信を行う他の端末装置に設定される前記アクセスクラスと同じである、
 付記15に記載の基地局装置。
(付記17)
 前記制御手段は、前記通信状態が切断となった場合、前記特定の端末装置の発信を規制する発信規制情報を前記端末装置へ送信し、前記通信状態が切断から復旧した場合、全ての端末装置の発信を許可する発信規制情報を前記端末装置へ送信する、
 付記14乃至16のいずれか一項に記載の基地局装置。
(付記18)
 前記制御手段は、制御装置から前記発信規制情報を取得し、前記取得した発信規制情報を前記端末装置へ送信する、
 付記14乃至17のいずれか一項に記載の基地局装置。
(付記19)
 前記制御装置は、前記基地局装置及び前記コアネットワークを含むシステムのシステム監視制御装置であり、
 前記制御手段は、前記システム監視制御装置から、前記コアネットワークと他の基地局装置との間の通信状態に応じて、前記発信規制情報を取得する、
 付記18に記載の基地局装置。
(付記20)
 基地局装置と端末装置とを備え、
 前記基地局装置は、
  前記基地局装置とコアネットワークとの間の通信状態を検出する検出手段と、
  前記検出された通信状態に応じて、端末装置による無線ネットワークの選択を制御する制御手段と、
 を備える、無線通信システム。
(付記21)
 基地局装置における制御方法であって、
 前記基地局装置とコアネットワークとの間の通信状態を検出し、
 前記検出された通信状態に応じて、端末装置による無線ネットワークの選択を制御する、
 制御方法。
(付記22)
 基地局装置におけるコンピュータに、
 前記基地局装置とコアネットワークとの間の通信状態を検出し、
 前記検出された通信状態に応じて、端末装置による無線ネットワークの選択を制御する、
 処理を実行させるための制御プログラム。
(付記23)
 基地局装置とコアネットワークとの間の通信状態を検出する検出手段と、
 前記検出された通信状態に応じて、無線ネットワークの選択を制御する制御手段と、
 を備える、端末装置。
(付記24)
 端末装置における制御方法であって、
 基地局装置とコアネットワークとの間の通信状態を検出し、
 前記検出された通信状態に応じて、無線ネットワークの選択を制御する、
 制御方法。
(付記25)
 端末装置におけるコンピュータに、
 基地局装置とコアネットワークとの間の通信状態を検出し、
 前記検出された通信状態に応じて、無線ネットワークの選択を制御する、
 処理を実行させるための制御プログラム。
(付記26)
 基地局装置と端末装置とを備えた無線通信システムであって、
 前記基地局装置とコアネットワークとの間の通信状態を検出する検出手段と、
 前記検出された通信状態に応じて、前記端末装置による無線ネットワークの選択を制御する制御手段と、
 を備える、無線通信システム。
Some or all of the above-described embodiments can also be described in the following supplementary remarks, but are not limited to the following.
(Appendix 1)
A base station device,
detection means for detecting a communication state between the base station apparatus and a core network;
a control means for controlling selection of a wireless network by a terminal device according to the detected communication state;
A base station device.
(Appendix 2)
The selection of the wireless network is selection of a base station device or a cell to be accessed by the terminal device,
The base station device according to appendix 1.
(Appendix 3)
The control means transmits control information for selecting the wireless network to the terminal device when the communication state is disconnected or when the communication state is restored from the disconnection.
The base station apparatus according to appendix 1 or 2.
(Appendix 4)
The control information is information indicating the detected communication state,
The base station device according to appendix 3.
(Appendix 5)
The control information is information for instructing switching of the wireless network selection method of the terminal device,
The base station device according to appendix 3 or 4.
(Appendix 6)
The wireless network selection method includes a selection method based on the priority of the wireless network and a selection method based on received signal quality of a signal received from the wireless network.
The base station device according to appendix 5.
(Appendix 7)
The control means controls the terminal device to select the wireless network by the selection method based on the priority when the communication state is disconnected, and controls the terminal device when the communication state is restored from the disconnection. to select the wireless network by a selection method based on the received signal quality;
The base station device according to appendix 6.
(Appendix 8)
The control information is information indicating a wireless network accessible by the terminal device,
The base station device according to appendix 3.
(Appendix 9)
The control information is priority information indicating the priority of a wireless network accessible by the terminal device,
The base station device according to appendix 8.
(Appendix 10)
The priority information to be transmitted to the terminal device is the same as the priority information of another terminal device with which the terminal device communicates.
The base station device according to appendix 9.
(Appendix 11)
comprising management means for managing the priority information for each of the terminal devices;
The base station apparatus according to appendix 9 or 10.
(Appendix 12)
wherein the control means acquires priority information of the terminal device from a control device and transmits the acquired priority information to the terminal device;
The base station apparatus according to any one of appendices 9 to 11.
(Appendix 13)
The control device is a system monitoring control device for a system including the base station device and the core network,
The control means acquires priority information of the terminal device from the system monitoring and control device according to a communication state between the core network and another base station device.
The base station device according to supplementary note 12.
(Appendix 14)
The control information is call regulation information that regulates call origination of a specific terminal device,
The base station device according to appendix 3.
(Appendix 15)
the call restriction information indicates call restriction or call permission of the access class set in the terminal device;
14. The base station apparatus according to appendix 14.
(Appendix 16)
The access class set in the terminal device is the same as the access class set in another terminal device with which the terminal device communicates.
The base station device according to supplementary note 15.
(Appendix 17)
The control means transmits, to the terminal device, call restriction information for restricting transmission of the specific terminal device when the communication state is disconnected, and when the communication state is restored from the disconnection, all the terminal devices transmitting to the terminal device call restriction information that permits the call of
17. The base station apparatus according to any one of appendices 14 to 16.
(Appendix 18)
The control means acquires the call restriction information from a control device and transmits the acquired call restriction information to the terminal device.
18. The base station apparatus according to any one of appendices 14 to 17.
(Appendix 19)
The control device is a system monitoring control device for a system including the base station device and the core network,
The control means acquires the call restriction information from the system monitoring control device according to a communication state between the core network and another base station device.
18. The base station apparatus according to appendix 18.
(Appendix 20)
comprising a base station device and a terminal device,
The base station device
detection means for detecting a communication state between the base station apparatus and a core network;
a control means for controlling selection of a wireless network by a terminal device according to the detected communication state;
A wireless communication system comprising:
(Appendix 21)
A control method in a base station device,
detecting a communication state between the base station device and a core network;
controlling selection of a wireless network by a terminal device according to the detected communication state;
control method.
(Appendix 22)
to the computer in the base station equipment,
detecting a communication state between the base station device and a core network;
controlling selection of a wireless network by a terminal device according to the detected communication state;
Control program for executing processing.
(Appendix 23)
detection means for detecting a communication state between the base station device and the core network;
a control means for controlling selection of a wireless network according to the detected communication state;
A terminal device.
(Appendix 24)
A control method in a terminal device,
detecting a communication state between a base station device and a core network;
controlling selection of a wireless network according to the detected communication state;
control method.
(Appendix 25)
to the computer at the terminal,
detecting a communication state between a base station device and a core network;
controlling selection of a wireless network according to the detected communication state;
Control program for executing processing.
(Appendix 26)
A wireless communication system comprising a base station device and a terminal device,
detection means for detecting a communication state between the base station apparatus and a core network;
Control means for controlling selection of a wireless network by the terminal device according to the detected communication state;
A wireless communication system comprising:
1、2 PS-LTEシステム
10  eNB
11  検出部
12  制御部
20  端末
30  EPC
40  ローカルEPC
50  コンピュータ
51  プロセッサ
52  メモリ
100 eNB
110 端末通信部
120 コア通信部
130 ローカルコア通信部
140 検出部
150 通知部
160 管理部
170 発信規制部
200 端末
210 通信部
220 優先度保持部
230 選択部
240 検出部
250 優先度取得部
300 EPC
400 ローカルEPC
500 システム監視制御装置
510 監視部
520 管理部
530 制御部
1, 2 PS-LTE system 10 eNB
11 detection unit 12 control unit 20 terminal 30 EPC
40 Local EPC
50 computer 51 processor 52 memory 100 eNB
110 terminal communication unit 120 core communication unit 130 local core communication unit 140 detection unit 150 notification unit 160 management unit 170 call regulation unit 200 terminal 210 communication unit 220 priority holding unit 230 selection unit 240 detection unit 250 priority acquisition unit 300 EPC
400 Local EPC
500 system monitoring control device 510 monitoring unit 520 management unit 530 control unit

Claims (22)

  1.  基地局装置であって、
     前記基地局装置とコアネットワークとの間の通信状態を検出する検出手段と、
     前記検出された通信状態に応じて、端末装置による無線ネットワークの選択を制御する制御手段と、
     を備える、基地局装置。
    A base station device,
    detection means for detecting a communication state between the base station apparatus and a core network;
    a control means for controlling selection of a wireless network by a terminal device according to the detected communication state;
    A base station device.
  2.  前記無線ネットワークの選択は、前記端末装置のアクセス先の基地局装置またはセルの選択である、
     請求項1に記載の基地局装置。
    The selection of the wireless network is selection of a base station device or a cell to be accessed by the terminal device,
    The base station apparatus according to claim 1.
  3.  前記制御手段は、前記通信状態が切断となった場合、または、前記通信状態が切断から復旧した場合、前記無線ネットワークの選択のための制御情報を前記端末装置へ送信する、
     請求項1または2に記載の基地局装置。
    The control means transmits control information for selecting the wireless network to the terminal device when the communication state is disconnected or when the communication state is restored from the disconnection.
    The base station apparatus according to claim 1 or 2.
  4.  前記制御情報は、前記検出された通信状態を示す情報である、
     請求項3に記載の基地局装置。
    The control information is information indicating the detected communication state,
    The base station apparatus according to claim 3.
  5.  前記制御情報は、前記端末装置の無線ネットワークの選択方法の切り替えを指示する情報である、
     請求項3または4に記載の基地局装置。
    The control information is information for instructing switching of the wireless network selection method of the terminal device,
    The base station apparatus according to claim 3 or 4.
  6.  前記無線ネットワークの選択方法は、前記無線ネットワークの優先度に基づく選択方法、及び前記無線ネットワークから受信する信号の受信信号品質に基づく選択方法を含む、
     請求項5に記載の基地局装置。
    The wireless network selection method includes a selection method based on the priority of the wireless network and a selection method based on received signal quality of a signal received from the wireless network.
    The base station apparatus according to claim 5.
  7.  前記制御手段は、前記通信状態が切断となった場合、前記端末装置が前記優先度に基づく選択方法により前記無線ネットワークを選択するよう制御し、前記通信状態が切断から復旧した場合、前記端末装置が前記受信信号品質に基づく選択方法により前記無線ネットワークを選択するよう制御する、
     請求項6に記載の基地局装置。
    The control means controls the terminal device to select the wireless network by the selection method based on the priority when the communication state is disconnected, and controls the terminal device when the communication state is restored from the disconnection. to select the wireless network by a selection method based on the received signal quality;
    The base station apparatus according to claim 6.
  8.  前記制御情報は、前記端末装置がアクセス可能な無線ネットワークを示す情報である、
     請求項3に記載の基地局装置。
    The control information is information indicating a wireless network accessible by the terminal device,
    The base station apparatus according to claim 3.
  9.  前記制御情報は、前記端末装置がアクセス可能な無線ネットワークの優先度を示す優先度情報である、
     請求項8に記載の基地局装置。
    The control information is priority information indicating the priority of a wireless network accessible by the terminal device,
    The base station apparatus according to claim 8.
  10.  前記端末装置に送信する前記優先度情報は、前記端末装置が通信を行う他の端末装置の前記優先度情報と同じである、
     請求項9に記載の基地局装置。
    The priority information to be transmitted to the terminal device is the same as the priority information of another terminal device with which the terminal device communicates.
    The base station apparatus according to claim 9.
  11.  前記端末装置ごとに前記優先度情報を管理する管理手段を備える、
     請求項9または10に記載の基地局装置。
    comprising management means for managing the priority information for each of the terminal devices;
    The base station apparatus according to claim 9 or 10.
  12.  前記制御手段は、制御装置から前記端末装置の優先度情報を取得し、前記取得した優先度情報を前記端末装置へ送信する、
     請求項9乃至11のいずれか一項に記載の基地局装置。
    wherein the control means acquires priority information of the terminal device from a control device and transmits the acquired priority information to the terminal device;
    The base station apparatus according to any one of claims 9 to 11.
  13.  前記制御装置は、前記基地局装置及び前記コアネットワークを含むシステムのシステム監視制御装置であり、
     前記制御手段は、前記システム監視制御装置から、前記コアネットワークと他の基地局装置との間の通信状態に応じて、前記端末装置の優先度情報を取得する、
     請求項12に記載の基地局装置。
    The control device is a system monitoring control device for a system including the base station device and the core network,
    The control means acquires priority information of the terminal device from the system monitoring and control device according to a communication state between the core network and another base station device.
    The base station apparatus according to claim 12.
  14.  前記制御情報は、特定の端末装置の発信を規制する発信規制情報である、
     請求項3に記載の基地局装置。
    The control information is call regulation information that regulates call origination of a specific terminal device,
    The base station apparatus according to claim 3.
  15.  前記発信規制情報は、前記端末装置に設定されたアクセスクラスの発信規制または発信許可を示す、
     請求項14に記載の基地局装置。
    the call restriction information indicates call restriction or call permission of the access class set in the terminal device;
    The base station apparatus according to claim 14.
  16.  前記端末装置に設定される前記アクセスクラスは、前記端末装置が通信を行う他の端末装置に設定される前記アクセスクラスと同じである、
     請求項15に記載の基地局装置。
    The access class set in the terminal device is the same as the access class set in another terminal device with which the terminal device communicates.
    The base station apparatus according to claim 15.
  17.  前記制御手段は、前記通信状態が切断となった場合、前記特定の端末装置の発信を規制する発信規制情報を前記端末装置へ送信し、前記通信状態が切断から復旧した場合、全ての端末装置の発信を許可する発信規制情報を前記端末装置へ送信する、
     請求項14乃至16のいずれか一項に記載の基地局装置。
    The control means transmits, to the terminal device, call restriction information for restricting transmission of the specific terminal device when the communication state is disconnected, and when the communication state is restored from the disconnection, all the terminal devices transmitting to the terminal device call restriction information that permits the call of
    The base station apparatus according to any one of claims 14 to 16.
  18.  前記制御手段は、制御装置から前記発信規制情報を取得し、前記取得した発信規制情報を前記端末装置へ送信する、
     請求項14乃至17のいずれか一項に記載の基地局装置。
    The control means acquires the call restriction information from a control device and transmits the acquired call restriction information to the terminal device.
    The base station apparatus according to any one of claims 14 to 17.
  19.  前記制御装置は、前記基地局装置及び前記コアネットワークを含むシステムのシステム監視制御装置であり、
     前記制御手段は、前記システム監視制御装置から、前記コアネットワークと他の基地局装置との間の通信状態に応じて、前記発信規制情報を取得する、
     請求項18に記載の基地局装置。
    The control device is a system monitoring control device for a system including the base station device and the core network,
    The control means acquires the call restriction information from the system monitoring control device according to a communication state between the core network and another base station device.
    The base station apparatus according to claim 18.
  20.  基地局装置と端末装置とを備え、
     前記基地局装置は、
      前記基地局装置とコアネットワークとの間の通信状態を検出する検出手段と、
      前記検出された通信状態に応じて、端末装置による無線ネットワークの選択を制御する制御手段と、
     を備える、無線通信システム。
    comprising a base station device and a terminal device,
    The base station device
    detection means for detecting a communication state between the base station apparatus and a core network;
    a control means for controlling selection of a wireless network by a terminal device according to the detected communication state;
    A wireless communication system comprising:
  21.  基地局装置における制御方法であって、
     前記基地局装置とコアネットワークとの間の通信状態を検出し、
     前記検出された通信状態に応じて、端末装置による無線ネットワークの選択を制御する、
     制御方法。
    A control method in a base station device,
    detecting a communication state between the base station device and a core network;
    controlling selection of a wireless network by a terminal device according to the detected communication state;
    control method.
  22.  基地局装置におけるコンピュータに、
     前記基地局装置とコアネットワークとの間の通信状態を検出し、
     前記検出された通信状態に応じて、端末装置による無線ネットワークの選択を制御する、
     処理を実行させるための制御プログラムが格納された非一時的なコンピュータ可読媒体。
    to the computer in the base station equipment,
    detecting a communication state between the base station device and a core network;
    controlling selection of a wireless network by a terminal device according to the detected communication state;
    A non-transitory computer-readable medium storing a control program for executing processing.
PCT/JP2021/044714 2021-12-06 2021-12-06 Base station device, wireless communication system, control method, and non-transitory computer-readable medium WO2023105572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044714 WO2023105572A1 (en) 2021-12-06 2021-12-06 Base station device, wireless communication system, control method, and non-transitory computer-readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044714 WO2023105572A1 (en) 2021-12-06 2021-12-06 Base station device, wireless communication system, control method, and non-transitory computer-readable medium

Publications (1)

Publication Number Publication Date
WO2023105572A1 true WO2023105572A1 (en) 2023-06-15

Family

ID=86729816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044714 WO2023105572A1 (en) 2021-12-06 2021-12-06 Base station device, wireless communication system, control method, and non-transitory computer-readable medium

Country Status (1)

Country Link
WO (1) WO2023105572A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039366A (en) * 2010-08-06 2012-02-23 Nec Corp Communication system, gateway device, communication terminal, and information processing method
JP2012256979A (en) * 2011-06-07 2012-12-27 Ntt Docomo Inc Base station, control signal transmission method, and communication system
WO2015045306A1 (en) * 2013-09-27 2015-04-02 日本電気株式会社 Femto gateway and femto gateway control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039366A (en) * 2010-08-06 2012-02-23 Nec Corp Communication system, gateway device, communication terminal, and information processing method
JP2012256979A (en) * 2011-06-07 2012-12-27 Ntt Docomo Inc Base station, control signal transmission method, and communication system
WO2015045306A1 (en) * 2013-09-27 2015-04-02 日本電気株式会社 Femto gateway and femto gateway control method

Similar Documents

Publication Publication Date Title
JP6394929B2 (en) Reducing interference caused by device-to-device communication
EP3490299B1 (en) Connection try method and user equipment, and connection control method and base station
RU2703512C2 (en) Optimization for relay communication
EP3028531B1 (en) Method of requesting activation of a repeater function and user equipment
EP3165049B1 (en) Methods and devices for providing system information of a cellular communication network
WO2016117940A1 (en) Method for selecting of sidelink grant for a d2d ue in a d2d communication system and device therefor
EP3364676B1 (en) Method for supporting pdn gw selection
JP5484581B2 (en) Emergency service user calling method and calling system
US20150138952A1 (en) Communication system and method for path control
CN113455027B (en) Method and apparatus for mobile roaming service
WO2021066588A1 (en) Apparatus and method for service subscription, using e2 interface in wireless access network communication system
EP4042830B1 (en) Releasing of multiple pdu sessions
US20170094495A1 (en) Method for supporting proximity-based service configuring for ue
WO2021102782A1 (en) Access control at a relay user equipment
EP2930977B1 (en) A method for operating a base station
EP3829220A1 (en) Radio link management for a connected user equipment
US10694476B2 (en) Method for enabling lawful interception in a telecommunications network, user equipment for enabling lawful interception in a telecommunications network, base transceiver station for enabling lawful interception in a telecommunications network, program and computer program product
JP6012331B2 (en) Base station and regulation method in mobile communication system
WO2023105572A1 (en) Base station device, wireless communication system, control method, and non-transitory computer-readable medium
EP3206449B1 (en) Control device and method for inter-terminal direct communication
US20230269713A1 (en) UE Migration Between Networks In Response To Spectrum Grant Suspension
WO2011147362A1 (en) Method and apparatus for selecting public land mobile-communication network access network
KR101990576B1 (en) IOPS operation method under the RAN sharing or S1-FLEX and System and eNB using the IOPS operation
WO2016180477A1 (en) Policy and/or charging control in small cell systems
JP2007259205A (en) Mobile communication network system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967079

Country of ref document: EP

Kind code of ref document: A1