WO2023105015A1 - Composition comprenant un précurseur de colorant d'oxydation particulier, un alcool gras oxyalkyléné et un polysaccharide - Google Patents

Composition comprenant un précurseur de colorant d'oxydation particulier, un alcool gras oxyalkyléné et un polysaccharide Download PDF

Info

Publication number
WO2023105015A1
WO2023105015A1 PCT/EP2022/085098 EP2022085098W WO2023105015A1 WO 2023105015 A1 WO2023105015 A1 WO 2023105015A1 EP 2022085098 W EP2022085098 W EP 2022085098W WO 2023105015 A1 WO2023105015 A1 WO 2023105015A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
weight
fatty
chosen
solvates
Prior art date
Application number
PCT/EP2022/085098
Other languages
English (en)
Inventor
Julie BLANC
Anne Sabbagh
Original Assignee
L'oreal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'oreal filed Critical L'oreal
Priority to EP22834961.9A priority Critical patent/EP4444258A1/fr
Publication of WO2023105015A1 publication Critical patent/WO2023105015A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/88Two- or multipart kits

Definitions

  • TITLE Composition comprising a particular oxidation dye precursor, an oxyalkylenated fatty alcohol and a polysaccharide
  • the invention relates to a composition
  • a composition comprising a combination of a particular oxidation coupler with an oxyalkylenated fatty alcohol and a polysaccharide, notably for dyeing keratin fibers.
  • the invention also relates to a process for dyeing keratin fibers, preferably human keratin fibers, notably the hair, using this composition.
  • the invention relates to the use of such a composition for dyeing keratin fibers, preferably human keratin fibers, and notably the hair.
  • oxidation dye precursors such as ortho- or para-phenylenediamines, ortho- or para-aminophenols, or heterocyclic compounds such as pyrazoles, pyrazolinones or pyrazolopyridines.
  • oxidation bases are colorless or weakly colored compounds which, when combined with oxidizing products, can give rise to colored compounds via a process of oxidative condensation.
  • the dyeing power obtained may not be entirely satisfactory, or may even be weak, and lead to a restricted range of colors.
  • the colorings may also be insufficiently persistent with respect to external agents such as light, shampoo or perspiration, and may also be too selective, i.e. the difference in coloring is too great along the same keratin fiber that is differently sensitized between its end and its root.
  • composition preferably a cosmetic composition, notably for dyeing keratin fibers, preferably the hair, comprising:
  • At least one oxidation coupler chosen from 6-hydroxybenzomorpholine of formula (I) below, an addition salt thereof, solvates thereof and/or solvates of the salts thereof:
  • the present invention also relates to a process for dyeing keratin fibers in which the composition according to the invention is applied to said fibers.
  • the composition according to the invention is a composition for dyeing keratin fibers, preferably human keratin fibers, preferably the hair.
  • composition according to the invention may notably lead to chromatic, powerful, intense and sparingly selective colorings, i.e. colorings that are uniform along the length of the fiber. It also allows various shades to be achieved in a very wide range of colors. It also enables good color build-up.
  • This composition also gives particularly good coverage of depigmented keratin fibers such as gray hair.
  • chemical oxidizing agent means an oxidizing agent other than atmospheric oxygen.
  • composition according to the invention comprises at least one particular oxidation coupler (or coupling agent).
  • composition according to the present invention comprises at least one coupler chosen from 6-hydroxybenzomorpholine of formula (I), an addition salt thereof, solvates thereof and/or solvates of the salts thereof and mixtures thereof:
  • the addition salts of the compounds of formula (I) are notably chosen from the addition salts with an acid, such as the hydrochlorides, hydrobromides, sulfates, citrates, succinates, tartrates, lactates, tosylates, benzenesulfonates, phosphates and acetates, and the addition salts with a base such as sodium hydroxide, potassium hydroxide, aqueous ammonia, amines or alkanolamines.
  • an acid such as the hydrochlorides, hydrobromides, sulfates, citrates, succinates, tartrates, lactates, tosylates, benzenesulfonates, phosphates and acetates
  • a base such as sodium hydroxide, potassium hydroxide, aqueous ammonia, amines or alkanolamines.
  • the solvates of the compounds of formula (I) more particularly represent the hydrates of these compounds and/or the combination of these compounds with a linear or branched C1 to C4 alcohol such as methanol, ethanol, isopropanol or n-propanol.
  • a linear or branched C1 to C4 alcohol such as methanol, ethanol, isopropanol or n-propanol.
  • the solvates are hydrates.
  • the total content of coupler(s) chosen from 6-hydroxybenzomorpholine of formula (I), an addition salt thereof, solvates thereof and/or solvates of the salts thereof ranges from 0.001 % to 20% by weight, preferably from 0.005% to 15% by weight, more preferentially from 0.01% to 10% by weight, better still from 0.05% to 5% by weight, and even better still from 0.1 % to 3% by weight, relative to the total weight of the composition.
  • composition according to the invention may optionally also comprise one or more additional couplers, different from the compound of formula (I), addition salts thereof, solvates thereof and/or the solvates of salts thereof, advantageously chosen from those conventionally used in the dyeing of keratin fibers.
  • additional couplers mention may be made in particular of metaphenylenediamines, meta-aminophenols, meta-diphenols, naphthalene-based coupling agents and heterocyclic coupling agents, and also the corresponding addition salts.
  • Examples that may be mentioned include 2-amino-5-ethylphenol, 1 ,3-dihydroxybenzene,
  • the composition according to the invention is free of oxidation couplers chosen from resorcinol, 2-methylresorcinol, 4-chlororesorcinol, addition salts thereof, solvates thereof, and solvates of the salts thereof.
  • addition salts of the couplers that may be used in the context of the invention are chosen in particular from addition salts with an acid, such as hydrochlorides, hydrobromides, sulfates, citrates, succinates, tartrates, lactates, tosylates, benzenesulfonates, phosphates, and acetates, and addition salts with a base, such as sodium hydroxide, potassium hydroxide, ammonia, amines or alkanolamines.
  • an acid such as hydrochlorides, hydrobromides, sulfates, citrates, succinates, tartrates, lactates, tosylates, benzenesulfonates, phosphates, and acetates
  • a base such as sodium hydroxide, potassium hydroxide, ammonia, amines or alkanolamines.
  • the total content of the additional oxidation couplers different from the coupler of formula (I), salts thereof, solvates thereof and solvates of the salts thereof is from 0.001 % to 20% by weight, preferably from 0.005% to 15% by weight, more preferentially from 0.01 % to 10% by weight, better still from 0.05% to 5%, even better still, from 0.1% to 3% by weight, relative to the weight of the composition.
  • the total content of the oxidation couplers, salts thereof, solvates thereof and solvates of the salts thereof is from 0.001% to 20% by weight, preferably from 0.005% to 15% by weight, more preferentially from 0.01 % to 10% by weight, better still from 0.05% to 5%, even better still from 0.1 % to 3% by weight, relative to the weight of the composition.
  • Oxidation bases preferably from 0.005% to 15% by weight, more preferentially from 0.01 % to 10% by weight, better still from 0.05% to 5%, even better still from 0.1 % to 3% by weight, relative to the weight of the composition.
  • composition according to the invention may also comprise at least one oxidation base.
  • the composition according to the invention comprises at least one oxidation base.
  • the oxidation bases are chosen from para-phenylenediamines, bis(phenyl)alkylenediamines, para-aminophenols, ortho-aminophenols, heterocyclic bases and the corresponding addition salts, solvates and/or solvates of the salts.
  • para-phenylenediamines that may be mentioned are, for example, para- phenylenediamine, para-toluenediamine, 2-chloro-para-phenylenediamine, 2,3-dimethyl- para-phenylenediamine, 2,6-dimethyl-para-phenylenediamine, 2,6-diethyl-para- phenylenediamine, 2,5-dimethyl-para-phenylenediamine, N,N-dimethyl-para- phenylenediamine, N,N-diethyl-para-phenylenediamine, N,N-dipropyl-para- phenylenediamine, 4-amino-N,N-diethyl-3-methylaniline, N,N-bis(P-hydroxyethyl)-para- phenylenediamine, 4-N,N-bis(P-hydroxyethyl)amino-2-methylaniline, 4-N,N-bis(P- hydroxy
  • para-phenylenediamine paratoluenediamine, 2-isopropyl-para-phenylenediamine, 2-p-hydroxyethyl-para- phenylenediamine, 2-p-hydroxyethyloxy-para-phenylenediamine, 2-methoxymethyl-para- phenylenediamine and 2-y-hydroxypropyl-para-phenylenediamine, 2,6-dimethyl-para- phenylenediamine, 2,6-diethyl-para-phenylenediamine, 2,3-dimethyl-para- phenylenediamine, N,N-bis(P-hydroxyethyl)-para-phenylenediamine, 2-chloro-para- phenylenediamine and 2-p-acetylaminoethyloxy-para-phenylenediamine, and the corresponding addition salts, solvates, and/or solvates of
  • bis(phenyl)alkylenediamines that may be mentioned are, for example, N,N’- bis(P-hydroxyethyl)-N,N’-bis(4’-aminophenyl)-1 ,3-diaminopropanol, N,N’-bis( - hydroxyethyl)-N,N’-bis(4’-aminophenyl)ethylenediamine, N,N’-bis(4- aminophenyl)tetramethylenediamine, N,N’-bis(P-hydroxyethyl)-N,N’-bis(4- aminophenyl)tetramethylenediamine, N,N’-bis(4- methylaminophenyl)tetramethylenediamine, N,N’-bis(ethyl)-N,N’-bis(4’-amino-3’- methylphenyl)ethylenediamine and 1 ,8-bis(2,5-diaminophenoxy
  • para-aminophenols that are mentioned are, for example, para-aminophenol, 4-amino-3-methylphenol, 4-amino-3-fluorophenol, 4-amino-3-chlorophenol, 4-amino-3- hydroxymethylphenol, 4-amino-2-methylphenol, 4-amino-2-hydroxymethylphenol, 4- amino-2-methoxymethylphenol, 4-amino-2-aminomethylphenol, 4-amino-2-( - hydroxyethylaminomethyl)phenol and 4-amino-2-fluorophenol and the corresponding addition salts, solvates and/or solvates of the salts.
  • ortho-aminophenols that may be mentioned are, for example, 2-aminophenol, 2-amino-5-methylphenol, 2-amino-6-methylphenol and 5-acetamido-2-aminophenol and the corresponding addition salts, solvates and/or solvates of the salts.
  • heterocyclic bases for example, pyridine, pyrimidine and pyrazole derivatives.
  • pyridine derivatives that may be mentioned are the compounds described, for example, in patents GB 1 026 978 and GB 1 153 196, for example 2,5-diaminopyridine, 2-(4-methoxyphenyl)amino-3-aminopyridine and 3,4-diaminopyridine and the corresponding addition salts, solvates and/or solvates of the salts.
  • pyridine oxidation bases that are useful in the present invention are 3- aminopyrazolo[1 ,5-a]pyridine oxidation bases or the corresponding addition salts described, for example, in patent application FR 2 801 308.
  • Examples that may be mentioned include pyrazolo[1 ,5-a]pyrid-3-ylamine, 2-acetylaminopyrazolo[1 ,5-a]pyrid-3- ylamine, 2-morpholin-4-ylpyrazolo[1 ,5-a]pyrid-3-ylamine, 3-aminopyrazolo[1 ,5-a]pyridine- 2-carboxylic acid, 2-methoxypyrazolo[1 ,5-a]pyrid-3-ylamine, (3-aminopyrazolo[1 ,5-a]pyrid- 7-yl)methanol, 2-(3-aminopyrazolo[1 ,5-a]pyrid-5-yl)ethanol, 2-
  • the oxidation bases that are useful in the present invention are chosen from 3-aminopyrazolo-[1 ,5a]pyridines, preferably substituted on the 2-carbon atom with: a) a (di)(Ci-C6)(alkyl)amino group, said alkyl group possibly being substituted with at least one hydroxyl, amino or imidazolium group; b) an optionally cationic, 5- to 7-membered heterocycloalkyl group containing 1 to 3 heteroatoms, optionally substituted with one or more (Ci-C6)alkyl groups, such as a di(C C 4 )alkylpiperazinium group; or c) a (Ci-Ce)alkoxy group optionally substituted with one or more hydroxyl groups, such as a p-hydroxyalkoxy group and the corresponding addition salts, solvates and/or solvates of the salts.
  • pyrimidine derivatives that may be mentioned are the compounds described, for example, in patents DE 2 359 399; JP 88-169 571 ; JP 05-63124; EP 0 770 375 or patent application WO 96/15765, such as 2,4,5,6-tetraaminopyrimidine, 4-hydroxy-2,5,6- triaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 2,4-dihydroxy-5,6- diaminopyrimidine, 2,5,6-triaminopyrimidine and the addition salts thereof and the tautomeric forms thereof, when a tautomeric equilibrium exists.
  • pyrazole derivatives that may be mentioned are, for example, the compounds described in patents DE 3843892 and DE 4133957 and patent applications WO 94/08969, WO 94/08970, FR-A-2 733749 and DE 195 43 988, such as 4,5-diamino-1-methylpyrazole,
  • a 4,5-diaminopyrazole will preferably be used and even more preferentially 4, 5-diamino-1- (P-hydroxyethyl)pyrazole and/or a corresponding salt, solvates and/or solvates of the salts.
  • Pyrazole derivatives that may also be mentioned include diamino-N,N- dihydropyrazolopyrazolones and in particular those described in patent application FR-A-
  • 2 886 136 such as the following compounds and the corresponding addition salts: 2,3- diamino-6,7-dihydro-1 H,5H-pyrazolo[1 ,2-a]pyrazol-1-one, 2-amino-3-ethylamino-6,7- dihydro-1 H,5H-pyrazolo[1 ,2-a]pyrazol-1-one, 2-amino-3-isopropylamino-6,7-dihydro-
  • 2,3-diamino-6,7-dihydro-1 H,5H-pyrazolo[1 ,2-a]pyrazol-1-one and/or a corresponding salt, solvates and/or solvates of the salts are used.
  • 4,5-diamino-1-(p-hydroxyethyl)pyrazole and/or 2,3-diamino-6,7-dihydro- 1 H,5H-pyrazolo[1 ,2-a]pyrazol-1-one and/or 2-p-hydroxyethoxy-3-aminopyrazolo[1 ,5- a]pyridine and/or a corresponding salt are used as heterocyclic bases.
  • the addition salts of the oxidation bases that may be present in the composition according to the invention are notably chosen from the addition salts with an acid, such as the hydrochlorides, hydrobromides, sulfates, citrates, succinates, tartrates, lactates, tosylates, benzenesulfonates, methanesulfonates, phosphates and acetates, and the addition salts with a base such as sodium hydroxide, potassium hydroxide, aqueous ammonia, amines or alkanolamines.
  • an acid such as the hydrochlorides, hydrobromides, sulfates, citrates, succinates, tartrates, lactates, tosylates, benzenesulfonates, methanesulfonates, phosphates and acetates
  • a base such as sodium hydroxide, potassium hydroxide, aqueous ammonia, amines or alkanolamines.
  • the solvates of the additional oxidation bases more particularly represent the hydrates of said oxidation bases and/or the combination of said oxidation bases with a linear or branched Ci to C 4 alcohol such as methanol, ethanol, isopropanol or n-propanol.
  • the solvates are hydrates.
  • the oxidation base(s) are chosen from para-phenylenediamines, bis(phenyl)alkylenediamines, para-aminophenols, ortho-aminophenols, heterocyclic bases, and the corresponding addition salts, solvates and/or solvates of the salts and mixtures thereof; more preferentially from 2-methoxymethyl-para-phenylenediamine, 2-0- hydroxyethyl-para-phenylenediamine, 2-y-hydroxypropyl-para-phenylenediamine, the addition salts thereof, the solvates and/or the solvates of the salts thereof and mixtures thereof.
  • composition according to the invention is free of oxidation bases chosen from para-phenylenediamine, para-toluenediamine, addition salts thereof, solvates thereof and solvates of the salts thereof.
  • the total content of oxidation base(s) preferably ranges from 0.001 to 20% by weight, more preferably from 0.005 to 15% by weight, more preferably from 0.01 to 10% by weight, more preferably from 0.05 to 5%, most preferably from 0.1 to 3%, relative to the weight of the composition.
  • the composition according to the invention comprises one or more oxidation base(s) chosen from 2-methoxymethyl-para- phenylenediamine, 2-0-hydroxyethyl-para-phenylenediamine, 2-y-hydroxypropyl-para- phenylenediamine, their addition salts, their solvates and/or solvates of their salts and mixtures thereof, preferably present in a total content of from 0.001 to 20% by weight, preferably from 0.005 to 15% by weight, more preferably from 0.01 to 10% by weight, better still from 0.05 to 5%, still better still from 0.1 to 3% by weight, relative to the weight of the composition.
  • oxidation base(s) chosen from 2-methoxymethyl-para- phenylenediamine, 2-0-hydroxyethyl-para-phenylenediamine, 2-y-hydroxypropyl-para- phenylenediamine, their addition salts, their solvates and/or solvates of their salts and mixtures thereof, preferably present
  • the weight ratio between the total content of the oxidation base(s) and the total content of couplers chosen from 6-hydroxy benzomorpholine of formula (I), one of its addition salts, its solvates and/or the solvates of its salts is between 0.1 and 10, preferably between 0.5 and 5.
  • the weight ratio between the total content of the oxidation base(s) and the total content of the couplers is from 0.1 to 10, preferably from 0.3 to 3.
  • composition according to the invention comprises at least one oxyalkylenated C 8 to C40 fatty alcohol comprising from 50 to 300 alkylene oxide groups.
  • fatty alcohol means a long-chain aliphatic alcohol comprising from 8 to 40 carbon atoms and comprising at least one hydroxyl group OH.
  • the oxyalkylenated fatty alcohols may be saturated or unsaturated, linear or branched, and may contain from 8 to 40 carbon atoms.
  • the oxyalkylenated fatty alcohols have the structure:
  • - R denoting a linear alkyl group, optionally substituted with one or more hydroxyl groups, comprising from 8 to 40, preferably from 10 to 30, or even from 12 to 24 atoms, better still from 14 to 22 carbon atoms,
  • - Aik represents a divalent alkylene radical comprising from 1 to 6 carbon atom(s), preferably 1 to 4 carbon atom(s), preferentially 2 to 3 carbon atoms,
  • - p represents a number ranging from 50 to 300, preferably from 80 to 250.
  • Aik is a -CH2CH2- radical.
  • the oxyalkylenated C 8 to C 4 o fatty alcohols comprising 50 to 300 alkylene oxide groups comprise 50 to 300 alkylene oxide groups chosen from ethylene oxide and propylene oxide groups, preferably from ethylene oxide groups.
  • the oxyalkylenated C8-C40 fatty alcohols comprising from 50 to 300 alkylene oxide groups may be chosen from oxyethylenated C 8 -C 4 o fatty alcohols comprising from 50 to 300 ethylene oxide groups, preferably from oxyethylenated C 8 -C2 4 fatty alcohols comprising from 50 to 300 ethylene oxide groups, more preferably from oxyethylenated C 8 - C 24 fatty alcohols comprising from 80 to 250 ethylene oxide groups.
  • oxyethylenated C14-C22 fatty alcohols comprising from 80 to 250 ethylene oxide groups are used.
  • the oxyalkylenated C 8 to C40 fatty alcohols comprising from 50 to 300 alkylene oxide groups, preferably oxyethylenated comprising from 50 to 300 ethylene oxide groups, may be chosen from oxyethylenated cetyl alcohol, oxyethylenated oleyl alcohol, oxyethylenated oleocetyl alcohol, oxyethylenated behenyl alcohol, oxyethylenated cetearyl alcohol, oxyethylenated stearyl alcohol, and mixtures thereof, and more preferably from oxyethylenated stearyl alcohol, oxyethylenated cetyl alcohol and oxyethylenated cetearyl alcohol.
  • the oxyalkylenated C 8 to C 40 fatty alcohol comprising from 50 to 300 alkylene oxide groups is chosen from stearyl alcohol comprising 80 ethylene oxide groups (CTFA name steareth-80), stearyl alcohol comprising 100 ethylene oxide groups (CTFA name steareth-100), stearyl alcohol comprising 200 ethylene oxide groups (CTFA name steareth- 200), cetearyl alcohol with 80 ethylene oxide groups (CTFA name ceteareth-80), cetearyl alcohol with 100 ethylene oxide groups (CTFA name ceteareth-100, more preferentially stearyl alcohol with 100 ethylene oxide groups (CTFA name steareth-100), stearyl alcohol with 200 ethylene oxide groups (CTFA name steareth-200).
  • CTFA name steareth-80 cetaryl alcohol comprising 100 ethylene oxide groups
  • CTFA name ceteareth-200 cetearyl alcohol with 80 ethylene oxide groups
  • CTFA name ceteareth-200 cetearyl alcohol with 100
  • oxyalkylenated C 8 to C 48 fatty alcohol compounds comprising from 50 to 300 alkylene oxide groups
  • the composition according to the invention preferably comprises one or more oxyalkylenated C 8 to C 4 Q fatty alcohols comprising from 50 to 300 alkylene oxide groups in a content ranging from 0.1 % to 5% by weight, preferably from 0.2% to 4% by weight, preferentially from 0.3% to 3% by weight, better still from 0.5% to 2% by weight relative to the weight of the composition.
  • the composition according to the invention preferably comprises one or more oxyalkylenated C 4 to C 22 fatty alcohols comprising 50 to 300 alkylene oxide groups in a content ranging from 0.1% to 5% by weight, preferably from 0.2% to 4% by weight, preferentially from 0.3% to 3% by weight, better still from 0.5% to 2% by weight relative to the weight of the composition.
  • composition according to the invention also comprises at least one polysaccharide.
  • polysaccharide means polymers which include at least 11 monosaccharide units. Preferentially, the polysaccharides of the invention include between 20 and 100 000 monosaccharide units.
  • the polysaccharides that may be used in the composition according to the invention may be cationic, nonionic, anionic or amphoteric polysaccharides, preferably associative or non- associative cationic, nonionic or anionic polysaccharides.
  • sociative polymers are polymers that are capable of reversibly associating with each other or with other molecules.
  • Their chemical structure more particularly comprises at least one hydrophilic zone and at least one hydrophobic zone.
  • hydrophobic group means a radical or polymer with a saturated or unsaturated, linear or branched hydrocarbon-based chain, comprising at least 10 carbon atoms, preferably from 10 to 30 carbon atoms, in particular from 12 to 30 carbon atoms and more preferentially from 18 to 30 carbon atoms.
  • the hydrocarbon-based group is derived from a monofunctional compound.
  • the hydrophobic group may be derived from a fatty alcohol such as stearyl alcohol, dodecyl alcohol or decyl alcohol. It may also denote a hydrocarbon-based polymer, for instance polybutadiene.
  • Non-associative polysaccharide thickening polymers that may be mentioned include non- associative thickening polymers bearing sugar units.
  • sucrose unit means a unit derived from a carbohydrate of formula C n (H2O) n -i or (CH2O) n , which may be optionally modified by substitution and/or by oxidation and/or by dehydration.
  • sugar units that may be included in the composition of the thickening polymers of the invention are preferably derived from the following sugars: glucose, galactose, arabinose, rhamnose, mannose, xylose, fucose, anhydrogalactose, galacturonic acid, glucuronic acid, mannuronic acid, galactose sulfate, anhydrogalactose sulfate and fructose.
  • Saccharide thickening polymers that may notably be mentioned include those of native gums such as: a) tree or shrub exudates, including: gum arabic (branched polymer of galactose, arabinose, rhamnose and glucuronic acid); ghatti gum (polymer derived from arabinose, galactose, mannose, xylose and glucuronic acid); karaya gum (polymer derived from galacturonic acid, galactose, rhamnose and glucuronic acid); and gum tragacanth (or tragacanth) (polymer of galacturonic acid, galactose, fucose, xylose and arabinose); b) gums derived from algae, including: agar (polymer derived from galactose and anhydrogalactose); alginates (polymers of mannuronic acid and of glucuronic acid); and carrageenans and furcellerans (poly
  • These polymers may be physically or chemically modified.
  • a physical treatment that may notably be mentioned is the temperature.
  • Chemical treatments that may be mentioned include esterification, etherification, amidation or oxidation reactions. These treatments can lead to polymers that may notably be nonionic, anionic or amphoteric.
  • these chemical or physical treatments are applied to guar gums, locust bean gums, starches and celluloses.
  • the nonionic guar gums that may be used according to the invention may be modified with Ci-Ce (poly)hydroxyalkyl groups.
  • Ci-Ce (poly)hydroxyalkyl groups that may be mentioned, for example, are hydroxymethyl, hydroxyethyl, hydroxypropyl and hydroxybutyl groups.
  • guar gums are well known in the prior art and can be prepared, for example, by reacting the corresponding alkene oxides such as, for example, propylene oxides, with the guar gum so as to obtain a guar gum modified with hydroxypropyl groups.
  • the degree of hydroxyalkylation preferably ranges from 0.4 to 1 .2, and corresponds to the number of alkylene oxide molecules consumed by the number of free hydroxyl functions present on the guar gum.
  • nonionic guar gums optionally modified with hydroxyalkyl groups are sold, for example, under the trade names Jaguar HP8, Jaguar HP60, Jaguar HP105 and Jaguar HP120 by the company Rhodia Chimie.
  • the non-associative saccharide polymers may be cellulose-based polymers not including any fatty chains (more than 8 carbon atoms) in their structure.
  • cellulose-based polymer means any polysaccharide compound bearing in its structure glucose residue sequences linked via p-1 ,4 linkages; besides unsubstituted celluloses, the cellulose derivatives may be anionic, cationic, amphoteric or nonionic.
  • the cellulose-based polymers may be chosen from unsubstituted celluloses, including those in a microcrystalline form, and cellulose ethers.
  • cellulose ethers cellulose esters and cellulose ester ethers are distinguished.
  • cellulose esters are inorganic esters of cellulose, for example cellulose nitrates, sulfates and phosphates, organic cellulose esters, for example cellulose monoacetates, triacetates, amidopropionates, acetatebutyrates, acetatepropionates and acetatetrimellitates, and mixed organic/inorganic esters of cellulose, such as cellulose acetatebutyrate sulfates and cellulose acetatepropionate sulfates.
  • cellulose ester ethers mention may be made of hydroxypropylmethylcellulose phthalates and ethylcellulose sulfates.
  • nonionic cellulose ethers not containing a C10-C30 fatty chain i.e. “non- associative”
  • anionic cellulose ethers not containing a fatty chain mention may be made of (poly)carboxy (C C 4 ) alkylcelluloses and salts thereof. Examples that may be mentioned include carboxymethylcelluloses, carboxymethylmethylcelluloses (for example Blanose 7M from the company Aquaion) and carboxymethylhydroxyethylcelluloses, and the sodium salts thereof.
  • cationic cellulose ethers not containing a fatty chain
  • the commercial products corresponding to this definition are more particularly the products sold under the names Celquat® L 200 and Celquat® H 100 by the company National Starch.
  • saccharide polymers mention may also be made of the associative polymers that are well known to those skilled in the art and notably of nonionic, anionic, cationic or amphoteric nature.
  • associative cationic thickening saccharide polymers mention may be made of quaternized (poly)hydroxyethylcelluloses modified with groups comprising at least one fatty chain, such as alkyl, arylalkyl or alkylaryl groups comprising at least 8 carbon atoms, or mixtures thereof.
  • the alkyl radicals borne by the above quaternized celluloses or hydroxyethylcelluloses preferably comprise from 8 to 30 carbon atoms.
  • the aryl radicals preferably denote phenyl, benzyl, naphthyl or anthryl groups.
  • Examples that may be indicated include quaternized alkylhydroxyethylcelluloses bearing C 8 -C 8 o fatty chains, such as the products Quatrisoft LM 200®, Quatrisoft LM-X 529-18-A®, Quatrisoft LM-X 529-18- B® (C12 alkyl) and Quatrisoft LM-X 529-8® (Ci 8 alkyl) sold by the company Aquaion, the products Crodacel QM®, Crodacel QL® (C12 alkyl) and Crodacel QS® (Cw alkyl) sold by the company Croda and the product Softcat SL 100® sold by the company Aquaion.
  • Quatrisoft LM 200® Quatrisoft LM-X 529-18-A®, Quatrisoft LM-X 529-18- B® (C12 alkyl) and Quatrisoft LM-X 529-8® (Ci 8 alkyl) sold by the company Aquaion
  • associative nonionic saccharide polymers mention may be made of:
  • alkyl groups are Cs- and in particular:
  • nonionic alkylhydroxyethylcelluloses such as the products Natrosol Plus Grade 330 CS and Polysurf 67 (Ci6 alkyl) sold by the company Aquaion;
  • nonionic nonoxynylhydroxyethylcelluloses such as the product Amercell HM-1500 sold by the company Amerchol;
  • nonionic alkylcelluloses such as the product Bermocoll EHM 100 sold by the company Berol Nobel;
  • - associative guar derivatives such as hydroxypropyl guars modified with a fatty chain, such as the product Esaflor HM 22 (modified with a C22 alkyl chain) sold by the company Lamberti; the product Miracare XC 95-3 (modified with a C14 alkyl chain) and the product RE 205-146 (modified with a C20 alkyl chain) sold by Rhodia Chimie.
  • the polysaccharide(s) are chosen from xanthan gums, guar gums and cellulose polymers, preferentially from xanthan gums, and guar gums, and better still xanthan gums.
  • the polysaccharide(s) may be present in the composition according to the invention in a content ranging from 0.001 % to 5% by weight, preferably from 0.01 % to 3% and more preferentially from 0.05% to 2% by weight relative to the total weight of the composition.
  • composition according to the present invention may comprise one or more additional surfactants other than oxyalkylenated C 8 -C 4 o fatty alcohols comprising from 50 to 300 alkylene oxide groups.
  • additional surfactants may be chosen from anionic surfactants, amphoteric surfactants, nonionic surfactants and cationic surfactants and/or mixtures thereof.
  • anionic surfactant means a surfactant including, as ionic or ionizable groups, only anionic groups. These anionic groups are preferably chosen from the following groups: CO 2 H, CO 2 -, SO 3 H, SO3 , OSO 3 H, OSO3-, H2PO3, HPOy, PO3 2 -, H2PO2, HPO2-, PO2 2 -, POH and PO-.
  • anionic surfactants that can be used in the composition according to the invention, mention may be made of fatty alcohol phosphates, alkyl sulfates, alkyl ether sulfates, alkylamido ether sulfates, alkylaryl polyether sulfates, monoglyceride sulfates, alkyl sulfonates, alkylamide sulfonates, alkylaryl sulfonates, a-olefin sulfonates, paraffin sulfonates, alkyl sulfosuccinates, alkyl ether sulfosuccinates, alkylamide sulfosuccinates, alkyl sulfoacetates, acyl sarcosinates, acyl glutamates, alkyl sulfosuccinamates, acyl isethionates and N-(C1-C4)alkyl-N-acyl-
  • These compounds may be oxyethylenated and then preferably include from 1 to 50 ethylene oxide units.
  • the fatty alcohol phosphates may be chosen from polyoxyalkylenated fatty alcohol phosphates containing from 12 to 20 carbon atoms and from 1 to 50 mol of alkylene oxide, chosen from ethylene oxide and propylene oxide, and non-polyoxyalkylenated fatty alcohol dialkyl phosphates containing from 12 to 22 carbon atoms, and mixtures thereof.
  • the alkyl group of the polyoxyalkylenated fatty alcohol or non-polyoxyalkylenated fatty alcohol may be linear or branched, and saturated or unsaturated.
  • the fatty alcohol phosphate(s) are chosen from polyoxyethylenated fatty alcohol phosphates containing from 12 to 20 carbon atoms and from 1 to 50 mol of ethylene oxide.
  • the fatty alcohol phosphate(s) are chosen from ceteth-10 phosphate, dicetyl phosphate, ceteth-20 phosphate, oleth-5 phosphate, dioleyl phosphate, salts thereof, and mixtures thereof, and preferably from ceteth-10 phosphate, ceteth-20 phosphate, oleth-5 phosphate, salts thereof, and mixtures thereof; and even better still from ceteth-10 phosphate, salts thereof, and mixtures thereof.
  • the salts of Ce-C 2 4 alkyl monoesters of polyglycoside-polycarboxylic acids may be chosen from C6-C 2 4 alkyl polyglycoside-citrates, Ce-C 24 alkyl polyglycoside-tartrates and Ce-C 2 4 alkyl polyglycoside-sulfosuccinates.
  • the anionic surfactant(s) when they are in salt form, they may be chosen from alkali metal salts, such as the sodium or potassium and preferably sodium salt, ammonium salts, amine salts and in particular amino alcohol salts, or alkaline- earth metal salts, such as the magnesium salt.
  • amino alcohol salts examples include monoethanolamine, diethanolamine and triethanolamine salts, monoisopropanolamine, diisopropanolamine or triisopropanolamine salts, 2-amino-2-methyl-1 -propanol salts, 2- amino-2-methyl-1 ,3-propanediol salts and tris(hydroxymethyl)aminomethane salts.
  • Alkali metal or alkaline-earth metal salts and in particular the sodium or magnesium salts are preferably used.
  • the anionic surfactants that may be present may be mild anionic surfactants, i.e. anionic surfactants not bearing a sulfate function.
  • mild anionic surfactants mention may be made in particular of the following compounds and salts thereof, and also mixtures thereof: polyoxyalkylenated alkyl ether carboxylic acids, polyoxyalkylenated alkylaryl ether carboxylic acids, polyoxyalkylenated alkylamido ether carboxylic acids, in particular those including 2 to 50 ethylene oxide groups, alkyl D-galactoside uronic acids, acyl sarcosinates, acyl glutamates and alkylpolyglycoside carboxylic esters.
  • Use may be made most particularly of polyoxyalkylenated alkyl ether carboxylic acids, for instance lauryl ether carboxylic acid (4.5 OE) sold, for example, under the name Akypo RLM 45 CA from Kao.
  • lauryl ether carboxylic acid 4.5 OE
  • sulfate-based surfactants such as alkyl sulfates or alkyl ether sulfates, and fatty alcohol phosphates, more preferentially alkyl sulfates and/or alkyl ether sulfates, polyoxyethylenated fatty alcohol phosphates containing from 12 to 20 carbon atoms and from 1 to 50 mol of ethylene oxide.
  • amphoteric or zwitterionic surfactants that may be used in the composition according to the invention are preferably non-silicone surfactants and may notably be optionally quaternized secondary or tertiary aliphatic amine derivatives, in which the aliphatic group is a linear or branched chain including from 8 to 22 carbon atoms, said amine derivatives containing at least one anionic group, for instance a carboxylate, sulfonate, sulfate, phosphate or phosphonate group.
  • R a represents a Cw to C30 alkyl or alkenyl group derived from an acid R a COOH preferably present in hydrolyzed coconut kernel oil; preferably, R a represents a heptyl, nonyl or undecyl group;
  • R b represents a 0-hydroxyethyl group
  • R c represents a carboxymethyl group
  • - M + represents a cationic counterion derived from an alkali metal or alkaline-earth metal, such as sodium, an ammonium ion or an ion derived from an organic amine;
  • - X- represents an organic or mineral anionic counterion, such as that chosen from halides, acetates, phosphates, nitrates, (C 1 -C 4 )alkyl sulfates, (Ci-C 4 )alkyl- or (C 1 -C 4 )alkylaryl- sulfonates, in particular methyl sulfate and ethyl sulfate; or alternatively M + and X- are absent;
  • - B represents the group -CH 2 CH 2 OX’
  • - X’ represents the group -CH2COOH, -CH2-COOZ’, -CH2CH2COOH or CH2CH2-COOZ’, or a hydrogen atom;
  • - Y’ represents the group -COOH, -COOZ’ or -CH2CH(OH)SO3H or the group CH 2 CH(OH)SO 3 -Z’;
  • - Z’ represents a cationic counterion derived from an alkali metal or alkaline-earth metal, such as sodium, an ammonium ion or an ion derived from an organic amine;
  • - Ra’ represents a Cw to C30 alkyl or alkenyl group of an acid R a -COOH which is preferably present in coconut kernel oil or in hydrolyzed linseed oil, preferably R a ’ an alkyl group, notably a C 17 group, and its iso form, an unsaturated C17 group.
  • cocoamphodiacetate sold by the company Rhodia under the trade name Miranol® C2M Concentrate.
  • - Y represents the group -COCH, -COOZ” or -CH2-CH(OH)SO3H or the group CH 2 CH(OH)SO 3 -Z”;
  • Rd and Re independently of each other, represent a Ci to C 4 alkyl or hydroxyalkyl radical
  • - Z represents a cationic counterion derived from an alkali metal or alkaline-earth metal, such as sodium, an ammonium ion or an ion derived from an organic amine;
  • Ra- represents a C10 to C30 alkyl or alkenyl group of an acid R a -COOH which is preferably present in coconut kernel oil or in hydrolyzed linseed oil;
  • - n and n’ denote, independently of each other, an integer ranging from 1 to 3.
  • amphoteric or zwitterionic surfactants use is advantageously made of (C8-C 2 o)alkylbetaines, such as cocoyl betaine, (C8-C 2 o)alkylamido(C3- C 8 )alkylbetaines, such as cocamidopropylbetaine, (C8-C 2 o)alkylamphoacetates, (Cs- C 20 )alkylamphodiacetates and mixtures thereof; and preferably (C 8 -C 2 o)alkylbetaines, (Cs- C 20 )alkylamido(C3-C8)alkylbetaines and mixtures thereof.
  • (C8-C 2 o)alkylbetaines such as cocoyl betaine
  • (C8-C 2 o)alkylamido(C3- C 8 )alkylbetaines such as cocamidopropylbetaine, (C8-C 2 o)alkylamphoacetate
  • amphoteric or zwitterionic surfactants are chosen from (C 8 - C 20 )alkylbetaines, (C8-C2o)alkylamido(C3-C8)alkylbetaines, and mixtures thereof.
  • nonionic surfactants that may be used in the composition of the present invention are notably described, for example, in the “Handbook of Surfactants” by M.R. Porter, published by Blackie & Son (Glasgow and London), 1991 , pages 116-178.
  • nonionic surfactants other than oxyalkylenated C8-C40 fatty alcohols comprising from 50 to 300 alkylene oxide groups include the following compounds, alone or as a mixture:
  • They are notably chosen from alcohols other than oxyalkylenated fatty alcohols comprising from 50 to 300 alkylene oxide groups, a-diols and (Ci-C 2 o)alkylphenols, these compounds being ethoxylated, propoxylated or glycerolated and bearing at least one fatty chain including, for example, from 8 to 24 carbon atoms and preferably from 8 to 18 carbon atoms, the number of ethylene oxide or propylene oxide groups possibly ranging notably from 1 to 200, and the number of glycerol groups possibly ranging notably from 1 to 30.
  • the glycerol esters of saturated or unsaturated, linear or branched C8-C30 fatty acids may be chosen from glycerol esters of C8-C24, preferably C12-C22 and preferentially C14-C20 fatty acid(s).
  • the glycerol ester(s) of C8-C30 fatty acids may be chosen from monoesters, diesters, and mixtures thereof, preferably from monoesters.
  • the C8-C30 fatty acid ester(s) are chosen from linear, saturated C12-C22, preferably C14-C20, fatty acid esters of glycerol, more preferentially from linear, saturated C12-C22, preferably C14-C20, fatty acid monoesters of glycerol.
  • glyceryl monostearate Use will be made more particularly of glyceryl monostearate.
  • glyceryl monostearate mention may be made of the following commercial products: Cutina GMS V and Cutina MD from Cognis; Lipo GMS 450 V from Lipo Chemicals; Tegin ISO from Goldschmidt; Lexemul 55 G from Index; Witconol MST from CK Witco; Tegin 6070 from Evonik Goldschmidt; Tegin 515, Tegin 90 Pellets and Tegin M Pellets from Evonik Goldschmidt; Estol 1473 from Croda; DUB GMS 50/50 from Stearinerie Dubois.
  • the C8-C30 and preferably C12-C22 fatty acid esters (notably monoesters, diesters and triesters) of sorbitan may be chosen from: sorbitan caprylate; sorbitan cocoate; sorbitan isostearate; sorbitan laurate; sorbitan oleate; sorbitan palmitate; sorbitan stearate; sorbitan diisostearate; sorbitan dioleate; sorbitan distearate; sorbitan sesquicaprylate; sorbitan sesquiisostearate; sorbitan sesquioleate; sorbitan sesquistearate; sorbitan triisostearate; sorbitan trioleate; and sorbitan tristearate.
  • esters notably monoesters, diesters, triesters
  • C8-C30 fatty acids and of polyoxyethylenated sorbitan are preferably chosen from C8-C30 fatty acid ester(s) of oxyethylenated sorbitan containing from 1 to 30 ethylene oxide units, preferably from 2 to 20 ethylene oxide units, more preferably from 2 to 10 ethylene oxide units.
  • the Cs-Cso fatty acid ester(s) of oxyethylenated sorbitan are chosen from esters of C12-C18 fatty acids and of oxyethylenated sorbitan, in particular from oxyethylenated esters of lauric acid, of myristic acid, of cetylic acid and of stearic acid and of sorbitan.
  • the Cs-Cao fatty acid ester(s) of oxyethylenated sorbitan are chosen from oxyethylenated (4 OE) sorbitan monolaurate (Polysorbate-21), oxyethylenated (20 OE) sorbitan monolaurate (Polysorbate-20), oxyethylenated (20 OE) sorbitan monopalmitate (Polysorbate-40), oxyethylenated (20 OE) sorbitan monostearate (Polysorbate-60), oxyethylenated (4 OE) sorbitan monostearate (Polysorbate-61), oxyethylenated (20 OE) sorbitan monooleate (Polysorbate-80), oxyethylenated (5 OE) sorbitan monooleate (Polysorbate-81 ), oxyethylenated (20 OE) sorbitan tristearate (Polysorbate-65),
  • the nonionic surfactant(s) are preferably chosen from ethoxylated C 8 -C24 fatty alcohols comprising less than 50 ethylene oxide groups, preferably from 1 to 45 ethylene oxide groups, (C 6 -C 24 alkyl)polyglycosides, glycerol esters of saturated or unsaturated, linear or branched C8-C30 fatty acids, oxyethylenated C8-C30 fatty acid esters of sorbitan, and mixtures thereof, preferentially from ethoxylated C8-C24 fatty alcohols comprising less than 50 ethylene oxide groups, (C6-C 24 alkyl)polyglycosides, and glycerol esters of saturated or unsaturated, linear or branched C8-C30 fatty acids.
  • the cationic surfactants that may be used in the composition according to the invention are generally chosen from optionally polyoxyalkylenated primary, secondary or tertiary fatty amines, quaternary ammonium salts, and mixtures thereof.
  • the fatty amines generally comprise at least one C 8 -C 3 o hydrocarbon-based chain.
  • examples that may be mentioned include stearylamidopropyldimethylamine and distearylamine.
  • quaternary ammonium salts examples include:
  • the groups R 8 to Rn which may be identical or different, represent a linear or branched aliphatic group including from 1 to 30 carbon atoms, or an aromatic group such as aryl or alkylaryl, at least one of the groups R 8 to Rn including from 8 to 30 carbon atoms and preferably from 12 to 24 carbon atoms.
  • the aliphatic groups may include heteroatoms notably such as oxygen, nitrogen, sulfur and halogens.
  • the aliphatic groups are chosen, for example, from C1-C30 alkyl, C1-C30 alkoxy, polyoxy(C 2 - C6)alkylene, C1-C30 alkylamide, (Ci2-C22)alkylamido(C2-C6)alkyl, (C12-C22) alkyl acetate and C1-C30 hydroxyalkyl groups;
  • X- is an anion chosen from the group of halides, phosphates, acetates, lactates, (Ci-C 4 )alkyl sulfates and (Ci-C 4 )alkylsulfonates or (C C 4 )al ky I a ry Is u Ifon ates .
  • quaternary ammonium salts of formula (V) preference is given, firstly, to tetraalkylammonium chlorides, for instance dialkyldimethylammonium or alkyltrimethylammonium chlorides in which the alkyl group includes from about 12 to 22 carbon atoms, in particular behenyltrimethylammonium chloride, distearyldimethylammonium chloride, cetyltrimethylammonium chloride or benzyldimethylstearylammonium chloride, or, secondly, to distearoylethylhydroxyethylmethylammonium methosulfate, dipalmitoylethylhydroxyethylammonium methosulfate or distearoylethylhydroxyethylammonium methosulfate, or also, finally, to palmitylamidopropyltrimethylammonium chloride or stearamidopropyldimethyl(myristyl acetate)ammonium
  • R12 represents an alkenyl or alkyl group including from 8 to 30 carbon atoms, for example tallow fatty acid derivatives
  • R13 represents a hydrogen atom, a C1-C4 alkyl group or an alkenyl or alkyl group including from 8 to 30 carbon atoms
  • R14 represents a Ci-C 4 alkyl group
  • R15 represents a hydrogen atom or a C1-C4 alkyl group
  • X- is an anion chosen from the group of halides, phosphates, acetates, lactates, (Ci-C 4 )alkyl sulfates, and (Ci-C 4 )alkylsulfonates or (Ci-C 4 )alkylarylsulfonates.
  • R12 and R13 denote a mixture of alkenyl or alkyl groups including from 12 to 21 carbon atoms, for example tallow fatty acid derivatives, R14 denotes a methyl group and R15 denotes a hydrogen atom.
  • R12 and R13 denote a mixture of alkenyl or alkyl groups including from 12 to 21 carbon atoms, for example tallow fatty acid derivatives
  • R14 denotes a methyl group
  • R15 denotes a hydrogen atom.
  • Such a product is sold, for example, under the name Rewoquat® W 75 by the company Rewo,
  • R16 denotes an alkyl group including from about 16 to 30 carbon atoms, which is optionally hydroxylated and/or interrupted with one or more oxygen atoms
  • R17 is chosen from hydrogen, an alkyl group including from 1 to 4 carbon atoms or a group -(CH 2 )3- N + (R16a)(R17a)(R18a), R16a, R17a, R18a, R18, R19, R20 and R21, which may be identical or different, are chosen from hydrogen or an alkyl group including from 1 to 4 carbon atoms
  • X- is an anion chosen from the group of halides, acetates, phosphates, nitrates, (Ci-C 4 )alkyl sulfates, (Ci-C4)alkylsulfonates or (Ci-C4)alkylarylsulfonates,
  • Such compounds are, for example, Finquat CT-P, sold by the company Finetex (Quaternium 89), and Finquat CT, sold by the company Finetex (Quaternium 75);
  • R22 is chosen from Ci-Ca alkyl groups and Ci-Cs hydroxyalkyl or di hydroxyalkyl groups
  • R23 is chosen from: the group -C(O)R26, linear or branched, saturated or unsaturated C1-C22 hydrocarbon-based groups R27, or a hydrogen atom
  • R25 is chosen from: the group -C(O)R28, linear or branched, saturated or unsaturated Ci-C 6 hydrocarbon-based groups R29, or a hydrogen atom
  • R24, R26 and R28 which may be identical or different, are chosen from linear or branched, saturated or unsaturated C7-C21 hydrocarbon-based groups
  • r, s and t which may be identical or different, are integers from 2 to 6
  • r1 and t1 which may be identical or different, are 0 or 1
  • the alkyl groups R22 may be linear or branched, and more particularly linear.
  • R22 denotes a methyl, ethyl, hydroxyethyl or di hydroxy propyl group, and more particularly a methyl or ethyl group.
  • the sum x + y + z is from 1 to 10.
  • R23 is a hydrocarbon-based group R27, it may be long and may contain 12 to 22 carbon atoms, or may be short and may contain from 1 to 3 carbon atoms.
  • R25 is a hydrocarbon-based group R29, it preferably contains 1 to 3 carbon atoms.
  • R24, R26 and R28 which may be identical or different, are chosen from linear or branched, saturated or unsaturated C11-C21 hydrocarbon-based groups, and more particularly from linear or branched, saturated or unsaturated C11-C21 alkyl and alkenyl groups.
  • x and z which may be identical or different, are equal to 0 or 1.
  • y is equal to 1 .
  • r, s and t which may be identical or different, are equal to 2 or 3, and even more particularly are equal to 2.
  • the anion X is preferably a halide, preferably chloride, bromide or iodide, a (C1-C4)alkyl sulfate or a (C1-C4)alkyl- or (C1-C4)alkylaryl-sulfonate.
  • a halide preferably chloride, bromide or iodide
  • a (C1-C4)alkyl sulfate or a (C1-C4)alkyl- or (C1-C4)alkylaryl-sulfonate preferably a halide, preferably chloride, bromide or iodide, a (C1-C4)alkyl sulfate or a (C1-C4)alkyl- or (C1-C4)alkylaryl-sulfonate.
  • methanesulfonate phosphate, nitrate, tosylate
  • an anion derived from an organic acid such as acetate
  • the anion X- is even more particularly chloride, methyl sulfate or ethyl sulfate.
  • R22 denotes a methyl or ethyl group, x and y are equal to 1 , z is equal to 0 or 1 , r, s and t are equal to 2;
  • R23 is chosen from: the group -C(O)R26, methyl, ethyl or C14-C22 hydrocarbon-based groups, or a hydrogen atom,
  • R25 is chosen from: the group -C(O)R28, or a hydrogen atom,
  • R24, R26 and R28 which may be identical or different, are chosen from linear or branched, saturated or unsaturated CISCI? hydrocarbon-based groups, and preferably from linear or branched, saturated or unsaturated C13-C17 alkyl and alkenyl groups.
  • the hydrocarbon-based groups are linear.
  • acyl groups preferably contain 14 to 18 carbon atoms and are derived more particularly from a plant oil such as palm oil or sunflower oil. When the compound contains several acyl groups, these groups may be identical or different.
  • alkylating agent such as an alkyl halide, preferably a methyl or ethyl halide, a dialkyl sulfate, preferably dimethyl or diethyl sulfate, methyl methanesulfonate, methyl para-toluenesulfonate, glycol chlorohydrin or glycerol chlorohydrin.
  • alkylating agent such as an alkyl halide, preferably a methyl or ethyl halide, a dialkyl sulfate, preferably dimethyl or diethyl sulfate, methyl methanesulfonate, methyl para-toluenesulfonate, glycol chlorohydrin or glycerol chlorohydrin.
  • Such compounds are sold, for example, under the names Dehyquart® by the company Henkel, Stepanquat® by the company Stepan, Noxamium® by the company CECA or Rewoquat® WE 18 by the company Rewo-Witco.
  • composition according to the invention may contain, for example, a mixture of quaternary ammonium monoester, diester and triester salts with a weight majority of diester salts.
  • ammonium salts containing at least one ester function that are described in patents US-A-4 874 554 and US-A-4 137 180.
  • ammonium salts containing at least one ester function contain two ester functions.
  • cetyltrimethylammonium behenyltrimethylammonium and dipalmitoylethylhydroxyethylmethylammonium salts, and mixtures thereof, and more particularly behenyltrimethylammonium chloride, cetyltrimethylammonium chloride, and dipalmitoylethylhydroxyethylammonium methosulfate, and mixtures thereof.
  • the composition according to the invention comprises one or more surfactants other than oxyalkylenated C8-C40 fatty alcohols comprising 50 to 300 alkylene oxide groups chosen from anionic surfactants, nonionic surfactants, and mixtures thereof, preferably from sulfate-based surfactants such as alkyl sulfates or alkyl ether sulfates, fatty alcohol phosphates and ethoxylated C8-C24 fatty alcohols comprising less than 50 ethylene oxide groups, preferably from 1 to 45 ethylene oxide groups, and mixtures thereof, more preferentially alkyl sulfates and/or alkyl ether sulfates, polyoxyethylenated fatty alcohol phosphates containing from 12 to 20 carbon atoms and from 1 to 50 mol of ethylene oxide, and mixtures thereof.
  • surfactants other than oxyalkylenated C8-C40 fatty alcohols comprising 50 to 300 alkylene oxide groups chosen from anionic surfactants,
  • the composition according to the invention comprises one or more surfactants other than oxyalkylenated C8-C40 fatty alcohols comprising 50 to 300 alkylene oxide groups chosen from anionic surfactants, more preferably from alkyl sulfates and/or alkyl ether sulfates, polyoxyethylenated fatty alcohol phosphates containing from 12 to 20 carbon atoms and from 1 to 50 mol of ethylene oxide, and mixtures thereof.
  • surfactants other than oxyalkylenated C8-C40 fatty alcohols comprising 50 to 300 alkylene oxide groups chosen from anionic surfactants, more preferably from alkyl sulfates and/or alkyl ether sulfates, polyoxyethylenated fatty alcohol phosphates containing from 12 to 20 carbon atoms and from 1 to 50 mol of ethylene oxide, and mixtures thereof.
  • the total content of surfactant(s) other than oxyalkylenated C 8 -C 4 o fatty alcohols comprising 50 to 300 alkylene oxide groups in the composition preferably ranges from 0.01% to 30% by weight, more preferentially from 0.1 % to 20% by weight, better still from 0.5% to 15% by weight, even better still from 1 % to 10% by weight, relative to the total composition weight.
  • the total content of anionic surfactant(s) other than oxyalkylenated C 8 -C 4 o fatty alcohols comprising 50 to 300 alkylene oxide groups in the composition preferably ranges from 0.01% to 30% by weight, more preferentially from 0.1 % to 20% by weight, better still from 0.5% to 15% by weight, even better still from 1 % to 10% by weight relative to the total weight of the composition.
  • composition according to the invention may also comprise one or more fatty substances.
  • fatty substance means an organic compound that is insoluble in water at 25°C and at atmospheric pressure (1.013x10 5 Pa) (solubility of less than 5% by weight, preferably less than 1 % by weight, even more preferentially less than 0.1 % by weight). They bear in their structure at least one hydrocarbon-based chain including at least 6 carbon atoms and/or a sequence of at least two siloxane groups.
  • the fatty substances are generally soluble in organic solvents under the same temperature and pressure conditions, for instance chloroform, dichloromethane, carbon tetrachloride, ethanol, benzene, toluene, tetrahydrofuran (THF), liquid petroleum jelly or decamethylcyclopentasiloxane.
  • the fatty substances that may be used in the present invention are neither (poly)oxyalkylenated nor (poly)glycerolated.
  • the fatty substances that are useful according to the invention are nonsilicone fatty substances.
  • nonsilicone fatty substance refers to a fatty substance not containing any Si-0 bonds and the term “silicone fatty substance” refers to a fatty substance containing at least one Si-0 bond.
  • the fatty substances that are useful according to the invention may be liquid fatty substances (or oils) and/or solid fatty substances.
  • liquid fatty substance means a fatty substance having a melting point of less than or equal to 25°C at atmospheric pressure (1.013X10 5 Pa).
  • solid fatty substance means a fatty substance having a melting point of greater than 25°C at atmospheric pressure (1.013X10 5 Pa).
  • the melting point corresponds to the temperature of the most endothermic peak observed on thermal analysis (differential scanning calorimetry or DSC) as described in the standard ISO 11357-3; 1999.
  • the melting point may be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name MDSC 2920 by the company TA Instruments.
  • DSC differential scanning calorimeter
  • all the melting points are determined at atmospheric pressure (1.013x10 5 Pa).
  • liquid fatty substance(s) according to the invention are chosen from C6 to C16 liquid hydrocarbons, liquid hydrocarbons comprising more than 16 carbon atoms, nonsilicone oils of animal origin, oils of triglyceride type of plant or synthetic origin, fluoro oils, liquid fatty alcohols, liquid fatty acid and/or fatty alcohol esters other than triglycerides, and silicone oils, and mixtures thereof.
  • the fatty alcohols, esters and acids more particularly contain at least one saturated or unsaturated, linear or branched hydrocarbon-based group comprising from 6 to 40 and better still from 8 to 30 carbon atoms, which is optionally substituted, in particular with one or more hydroxyl groups (in particular 1 to 4). If they are unsaturated, these compounds may comprise one to three conjugated or unconjugated carbon-carbon double bonds.
  • C6 to C16 liquid hydrocarbons they may be linear, branched, or optionally cyclic, and are preferably chosen from alkanes. Examples that may be mentioned include hexane, cyclohexane, undecane, dodecane, isododecane, tridecane or isoparaffins, such as isohexadecane or isodecane, and mixtures thereof.
  • the liquid hydrocarbons comprising more than 16 carbon atoms may be linear or branched, and of mineral or synthetic origin, and are preferably chosen from liquid paraffins or liquid petroleum jelly (INCI name: mineral oil or paraffinum liquidum), polydecenes, hydrogenated polyisobutene such as Parleam®, and mixtures thereof.
  • a hydrocarbon-based oil of animal origin that may be mentioned is perhydrosqualene.
  • the triglyceride oils of plant or synthetic origin are preferably chosen from liquid fatty acid triglycerides including from 6 to 30 carbon atoms, for instance heptanoic or octanoic acid triglycerides, or alternatively, for example, sunflower oil, corn oil, soybean oil, marrow oil, grapeseed oil, sesame seed oil, hazelnut oil, apricot oil, macadamia oil, arara oil, castor oil, avocado oil, caprylic/capric acid triglycerides, for instance those sold by the company Stearinerie Dubois or those sold under the names Miglyol® 810, 812 and 818 by the company Dynamit Nobel, jojoba oil and shea butter oil, and mixtures thereof.
  • liquid fatty acid triglycerides including from 6 to 30 carbon atoms, for instance heptanoic or octanoic acid triglycerides, or alternatively, for example, sunflower oil, corn oil,
  • fluoro oils they may be chosen from perfluoromethylcyclopentane and perfluoro-1 ,3-dimethylcyclohexane, sold under the names Flutec® PC1 and Flutec® PC3 by the company BNFL Fluorochemicals; perfluoro-1 ,2-dimethylcyclobutane; perfluoroalkanes such as dodecafluoropentane and tetradecafluorohexane, sold under the names PF 5050® and PF 5060® by the company 3M, or bromoperfluorooctyl sold under the name Foralkyl® by the company Atochem; nonafluoromethoxybutane and nonafluoroethoxyisobutane; perfluoromorpholine derivatives such as 4- trifluoromethylperfluoromorpholine sold under the name PF 5052® by the company 3M.
  • the liquid fatty alcohols that are suitable for use in the invention are more particularly chosen from linear or branched, saturated or unsaturated alcohols, preferably unsaturated or branched alcohols, including from 6 to 40 carbon atoms and preferably from 8 to 30 carbon atoms. Examples that may be mentioned include octyldodecanol, 2-butyloctanol, 2- hexyldecanol, 2-undecylpentadecanol, isostearyl alcohol, oleyl alcohol, linolenyl alcohol, ricinoleyl alcohol, undecylenyl alcohol and linoleyl alcohol, and mixtures thereof.
  • liquid esters of fatty acids and/or of fatty alcohols other than the triglycerides mentioned previously, mention may be made notably of esters of saturated or unsaturated, linear C1 to C26 or branched C3 to C26 aliphatic mono- or polyacids and of saturated or unsaturated, linear C1 to C26 or branched C3 to C26 aliphatic mono- or polyalcohols, the total carbon number of the esters being greater than or equal to 6 and more advantageously greater than or equal to 10.
  • At least one from among the alcohol and the acid from which the esters of the invention are derived is branched.
  • dihydroabietyl behenate octyldodecyl behenate; isocetyl behenate; isostearyl lactate; lauryl lactate; linoleyl lactate; oleyl lactate; isostearyl octanoate; isocetyl octanoate; octyl octanoate; decyl oleate; isocetyl isostearate; isocetyl laurate; isocetyl stearate; isodecyl octanoate; isodecyl oleate; isononyl isononanoate; isostearyl palmitate; methyl acetyl ricinoleate; octyl isononanoate; 2- ethylhexyl isononanoate; octyldodec
  • ethyl palmitate and isopropyl palmitate alkyl myristates such as isopropyl myristate or ethyl myristate, isocetyl stearate, 2-ethylhexyl isononanoate, isodecyl neopentanoate and isostearyl neopentanoate, and mixtures thereof.
  • esters of C4-C22 dicarboxylic or tricarboxylic acids and of C1-C22 alcohols and esters of monocarboxylic, dicarboxylic or tricarboxylic acids and of C2-C26 dihydroxy, trihydroxy, tetrahydroxy or pentahydroxy alcohols may also be used.
  • composition may also comprise, as fatty ester, sugar esters and diesters of C6 to C30 and preferably C12 to C22 fatty acids.
  • sugar esters refers to oxygenbearing hydrocarbon-based compounds bearing several alcohol functions, with or without aldehyde or ketone functions, and which include at least 4 carbon atoms. These sugars may be monosaccharides, oligosaccharides or polysaccharides.
  • suitable sugars include sucrose, glucose, galactose, ribose, fucose, maltose, fructose, mannose, arabinose, xylose and lactose, and derivatives thereof, notably alkyl derivatives, such as methyl derivatives, for instance methylglucose.
  • the sugar esters of fatty acids may be chosen notably from the group comprising the esters or mixtures of esters of sugars described above and of linear or branched, saturated or unsaturated C6 to C30 and preferably C12 to C22 fatty acids. If they are unsaturated, these compounds may comprise one to three conjugated or unconjugated carbon-carbon double bonds.
  • esters according to this variant may also be chosen from mono-, di-, tri- and tetraesters, polyesters, and mixtures thereof.
  • esters may be, for example, oleates, laurates, palmitates, myristates, behenates, cocoates, stearates, linoleates, linolenates, caprates, arachidonates or mixtures thereof notably such as the mixed oleo-palmitate, oleo-stearate and palmito-stearate esters.
  • monoesters and diesters and notably sucrose, glucose or methylglucose mono- or di-oleates, -stearates, -behenates, -oleopalmitates, -linoleates, -linolenates and -oleostearates, and mixtures thereof.
  • An example that may be mentioned is the product sold under the name Glucate® DO by the company Amerchol, which is a methylglucose dioleate.
  • liquid ester of a monoacid and of a monoalcohol Preferably, use will be made of a liquid ester of a monoacid and of a monoalcohol.
  • the silicone oils that may be used in the composition according to the present invention may be volatile or nonvolatile, cyclic, linear or branched silicone oils, which are unmodified or modified with organic groups, and preferably have a viscosity from 5x10- 6 to 2.5 m 2 /s at 25°C, and preferably 1 xW- 5 to 1 m 2 /s.
  • the silicone oils are chosen from polydialkylsiloxanes, notably polydimethylsiloxanes (PDMS), and liquid polyorganosiloxanes including at least one aryl group.
  • PDMS polydimethylsiloxanes
  • liquid polyorganosiloxanes including at least one aryl group.
  • silicone oils may also be organomodified.
  • organomodified silicone oils that may be used in accordance with the invention are preferably liquid silicones as defined previously and including in their structure one or more organofunctional groups attached via a hydrocarbon-based group, chosen, for example, from amine groups and alkoxy groups.
  • Organopolysiloxanes are defined in greater detail in Walter Noll’s Chemistry and Technology of Silicones (1968), Academic Press. They may be volatile or nonvolatile.
  • silicone oils are more particularly chosen from those with a boiling point of between 60°C and 260°C, and even more particularly from:
  • cyclic polydialkylsiloxanes including from 3 to 7 and preferably from 4 to 5 silicon atoms.
  • cyclic polydialkylsiloxanes including from 3 to 7 and preferably from 4 to 5 silicon atoms.
  • octamethylcyclotetrasiloxane sold notably under the name Volatile Silicone® 7207 by Union Carbide or Silbione® 70045 V2 by Rhodia
  • decamethylcyclopentasiloxane sold under the name Volatile Silicone® 7158 by Union Carbide
  • Silbione® 70045 V5 by Rhodia
  • cyclocopolymers of the dimethylsiloxane/methylalkylsiloxane type such as Volatile Silicone® FZ 3109 sold by the company Union Carbide.
  • linear volatile polydialkylsiloxanes containing 2 to 9 silicon atoms and having a viscosity of less than or equal to 5x10 6 m 2 /s at25°C.
  • An example is decamethyltetrasiloxane notably sold under the name SH 200 by the company Toray Silicone. Silicones falling within this category are also described in the article published in Cosmetics and Toiletries, Vol. 91 , Jan. 76, pages 27-32, Todd & Byers Volatile Silicone Fluids for Cosmetics.
  • Nonvolatile polydialkylsiloxanes are preferably used.
  • silicone oils are more particularly chosen from polydialkylsiloxanes, among which mention may be made mainly of polydimethylsiloxanes bearing trimethylsilyl end groups.
  • the viscosity of the silicones is measured at 25°C according to the standard ASTM 445 Appendix C.
  • oils of the 200 series from the company Dow Corning, such as DC200 with a viscosity of 60 000 mm 2 /s;
  • CTFA dimethiconol
  • organomodified silicones that may be used in accordance with the invention are silicones as defined previously and including in their structure one or more organofunctional groups attached via a hydrocarbon-based group.
  • liquid polyorganosiloxanes including at least one aryl group may notably be polydiphenylsiloxanes, and polyalkylarylsiloxanes functionalized with the organofunctional groups mentioned previously.
  • the polyalkylarylsiloxanes are chosen particularly from linear and/or branched polydimethyl/methylphenylsiloxanes and polydimethyl/diphenylsiloxanes with a viscosity ranging from 1 X10 5 to 5X10 2 m 2 /s at 25°C.
  • oils of the SF series from General Electric such as SF 1023, SF 1154, SF 1250 and SF 1265.
  • organomodified silicones mention may be made of polyorganosiloxanes including:
  • substituted or unsubstituted amine groups such as the products sold under the names GP 4 Silicone Fluid and GP 7100 by the company Genesee or the products sold under the names Q2 8220 and Dow Corning 929 or 939 by the company Dow Corning.
  • the substituted amine groups are in particular C1 to C4 aminoalkyl groups;
  • the solid fatty substances according to the invention preferably have a viscosity of greater than 2 Pa.s, measured at 25°C and at a shear rate of 1 s 1 .
  • the solid fatty substance(s) are preferably chosen from solid fatty acids, solid fatty alcohols, solid esters of fatty acids and/or of fatty alcohols, waxes, ceramides and mixtures thereof.
  • fatty acid means a long-chain carboxylic acid comprising from 6 to 40 carbon atoms, preferably from 8 to 30 carbon atoms.
  • the solid fatty acids according to the invention preferentially comprise from 10 to 30 carbon atoms and better still from 14 to 22 carbon atoms. They may optionally be hydroxylated. These fatty acids are neither oxyalkylenated nor glycerolated.
  • the solid fatty acids that may be used in the present invention are notably chosen from myristic acid, cetylic acid (or palmitic acid), stearylic acid, arachidic acid, stearic acid, lauric acid, behenic acid, 12-hydroxystearic acid, and mixtures thereof.
  • the solid fatty acid(s) are chosen from stearic acid, myristic acid and cetylic acid (or palmitic acid).
  • fatty alcohol means a long-chain aliphatic alcohol comprising from 6 to 40 carbon atoms, preferably from 8 to 30 carbon atoms, and comprising at least one hydroxyl group OH. These fatty alcohols are neither oxyalkylenated nor glycerolated.
  • the solid fatty alcohols may be saturated or unsaturated, and linear or branched, and include from 8 to 40 carbon atoms, preferably from 10 to 30 carbon atoms.
  • the solid fatty alcohols have the structure R-OH with R denoting a linear alkyl group, optionally substituted with one or more hydroxyl groups, comprising from 8 to 40, preferentially from 10 to 30 carbon atoms, better still from 10 to 30, or even from 12 to 24 atoms and even better still from 14 to 22 carbon atoms.
  • the solid fatty alcohols that may be used are preferably chosen from saturated or unsaturated, linear or branched, preferably linear and saturated, (mono)alcohols including from 8 to 40 carbon atoms, better still from 10 to 30, or even from 12 to 24 and even better still from 14 to 22 carbon atoms.
  • the solid fatty alcohols that may be used may be chosen, alone or as a mixture, from: myristyl alcohol (or 1 -tetradecanol); cetyl alcohol (or 1 -hexadecanol); stearyl alcohol (or 1- octadecanol); arachidyl alcohol (or 1-eicosanol); behenyl alcohol (or 1 -docosanol); lignoceryl alcohol (or 1-tetracosanol); ceryl alcohol (or 1-hexacosanol); montanyl alcohol (or 1-octacosanol); myricyl alcohol (or 1-triacontanol).
  • the solid fatty alcohol is chosen from cetyl alcohol, stearyl alcohol, behenyl alcohol, myristyl alcohol, arachidyl alcohol, and mixtures thereof, such as cetylstearyl alcohol or cetearyl alcohol.
  • the solid fatty alcohol is chosen from cetylstearyl alcohol or cetearyl alcohol and cetyl alcohol.
  • the solid esters of a fatty acid and/or of a fatty alcohol that may be used are preferably chosen from esters derived from a C9-C26 carboxylic fatty acid and/or from a C9-C26 fatty alcohol.
  • these solid fatty esters are esters of a linear or branched, saturated carboxylic acid including at least 10 carbon atoms, preferably from 10 to 30 carbon atoms and more particularly from 12 to 24 carbon atoms, and of a linear or branched, saturated monoalcohol, including at least 10 carbon atoms, preferably from 10 to 30 carbon atoms and more particularly from 12 to 24 carbon atoms.
  • the saturated carboxylic acids may optionally be hydroxylated, and are preferably monocarboxylic acids.
  • Esters of C4-C22 dicarboxylic or tricarboxylic acids and of C1-C22 alcohols and esters of monocarboxylic, dicarboxylic or tricarboxylic acids and of C2-C26 dihydroxy, trihydroxy, tetrahydroxy or pentahydroxy alcohols may also be used.
  • the solid esters of a fatty acid and/or of a fatty alcohol are chosen from C9-C26 alkyl palmitates, notably myristyl palmitate, cetyl palmitate or stearyl palmitate; C9-C26 alkyl myristates, such as cetyl myristate, stearyl myristate and myristyl myristate; and C9- C26 alkyl stearates, notably myristyl stearate, cetyl stearate and stearyl stearate; and mixtures thereof.
  • C9-C26 alkyl palmitates notably myristyl palmitate, cetyl palmitate or stearyl palmitate
  • C9-C26 alkyl myristates such as cetyl myristate, stearyl myristate and myristyl myristate
  • C9- C26 alkyl stearates notably myristyl stearate, cety
  • a wax is a lipophilic compound, which is solid at 25°C and atmospheric pressure, with a reversible solid/liquid change of state, having a melting point greater than about 40°C, which may be up to 200°C, and having in the solid state anisotropic crystal organization.
  • the size of the wax crystals is such that the crystals diffract and/or scatter light, giving the composition that comprises them a more or less opaque cloudy appearance.
  • the waxes that are suitable for use in the invention may be chosen from waxes of animal, plant or mineral origin, nonsilicone synthetic waxes, and mixtures thereof.
  • hydrocarbon-based waxes for instance beeswax, notably of organic origin, lanolin wax and Chinese insect waxes; rice bran wax, carnauba wax, candelilla wax, ouricury wax, esparto grass wax, berry wax, shellac wax, Japan wax and sumac wax; montan wax, orange wax and lemon wax, microcrystalline waxes, paraffins and ozokerite; polyethylene waxes, the waxes obtained by Fischer-Tropsch synthesis and waxy copolymers, and also esters thereof.
  • beeswax notably of organic origin, lanolin wax and Chinese insect waxes
  • rice bran wax carnauba wax, candelilla wax, ouricury wax, esparto grass wax, berry wax, shellac wax, Japan wax and sumac wax
  • montan wax orange wax and lemon wax
  • microcrystalline waxes microcrystalline waxes
  • polyethylene waxes the waxes obtained
  • Mention may also be made of C20 to C60 microcrystalline waxes, such as Microwax HW. Mention may also be made of the MW 500 polyethylene wax sold under the reference Permalen 50-L Polyethylene.
  • waxes obtained by catalytic hydrogenation of animal or plant oils containing linear or branched C8 to C32 fatty chains may also be made of the waxes obtained by catalytic hydrogenation of animal or plant oils containing linear or branched C8 to C32 fatty chains.
  • isomerized jojoba oil such as trans-isomerized partially hydrogenated jojoba oil, notably the product manufactured or sold by the company Desert Whale under the commercial reference Iso-Jojoba-50®, hydrogenated sunflower oil, hydrogenated castor oil, hydrogenated coconut kernel oil, hydrogenated lanolin oil and bis(1 , 1 ,1 -trimethylolpropane) tetrastearate, notably the product sold under the name Hest 2T-4S® by the company Heterene.
  • the waxes obtained by hydrogenation of castor oil esterified with cetyl alcohol such as those sold under the names Phytowax Castor 16L64® and 22L73® by the company Sophim, may also be used.
  • a wax that may also be used is a C20-C40 alkyl (hydroxystearyloxy)stearate (the alkyl group comprising from 20 to 40 carbon atoms), alone or as a mixture.
  • a wax is notably sold under the names Kester Wax K 82 P®, Hydroxypolyester K 82 P® and Kester Wax K 80 P® by the company Koster Keunen.
  • microwaxes in the compositions of the invention; mention may notably be made of carnauba microwaxes, such as the product sold under the name MicroCare 350® by the company Micro Powders, synthetic-wax microwaxes, such as the product sold under the name MicroEase 114S® by the company Micro Powders, microwaxes constituted of a mixture of carnauba wax and polyethylene wax, such as the products sold under the names Micro Care 300® and 310® by the company Micro Powders, microwaxes constituted of a mixture of carnauba wax and of synthetic wax, such as the product sold under the name Micro Care 325® by the company Micro Powders, polyethylene microwaxes, such as the products sold under the names Micropoly 200®, 220®, 220L® and 250S® by the company Micro Powders, and polytetrafluoroethylene microwaxes, such as the products sold under the names Microslip 519® and 519 L® by the company Micro Powders.
  • the waxes are preferably chosen from mineral waxes, for instance paraffin, petroleum jelly, lignite or ozokerite wax; plant waxes, for instance cocoa butter or cork fiber or sugar cane waxes, olive tree wax, rice wax, hydrogenated jojoba wax, ouricury wax, carnauba wax, candelilla wax, esparto grass wax, or absolute waxes of flowers, such as the essential wax of blackcurrant blossom sold by the company Bertin (France); waxes of animal origin, for instance beeswaxes or modified beeswaxes (cera bellina), spermaceti, lanolin wax and lanolin derivatives; microcrystalline waxes; and mixtures thereof.
  • mineral waxes for instance paraffin, petroleum jelly, lignite or ozokerite wax
  • plant waxes for instance cocoa butter or cork fiber or sugar cane waxes, olive tree wax, rice wax, hydrogenated jojoba wax, ouricury wax, carnauba wax
  • ceramides or ceramide analogs such as glycoceramides, which may be used in the compositions according to the invention, are known; mention may be made in particular of ceramides of classes I, II, III and V according to the Dawning classification.
  • ceramides or analogs thereof that may be used preferably correspond to the following formula: R 3 CH(OH)CH(CH 2 OR 2 )(NHCOR 1 ), in which:
  • R 1 denotes a linear or branched, saturated or unsaturated alkyl group, derived from C14- C30 fatty acids, this group possibly being substituted with a hydroxyl group in the alpha position, or a hydroxyl group in the omega position, esterified with a saturated or unsaturated C16-C30 fatty acid;
  • R 2 denotes a hydrogen atom, a (glycosyl)n group, a (galactosyl)m group or a sulfogalactosyl group, in which n is an integer ranging from 1 to 4 and m is an integer ranging from 1 to 8;
  • R 3 denotes a C15-C26 hydrocarbon-based group, saturated or unsaturated in the alpha position, this group possibly being substituted with one or more C1-C14 alkyl groups; it being understood that in the case of natural ceramides or glycoceramides, R 3 may also denote a C15-C26 alpha-hydroxyalkyl group, the hydroxyl group being optionally esterified with a C16- C30 alpha-hydroxy acid.
  • the ceramides that are more particularly preferred are the compounds for which R 1 denotes a saturated or unsaturated alkyl derived from Ci6-C 22 fatty acids; R 2 denotes a hydrogen atom and R 3 denotes a saturated linear C15 group.
  • R 1 denotes a saturated or unsaturated alkyl radical derived from C12-C22 fatty acids
  • R 2 denotes a galactosyl or sulfogalactosyl radical
  • the solid fatty substances are preferably chosen from solid fatty acids, solid fatty alcohols and mixtures thereof.
  • the composition according to the invention comprises at least one liquid fatty substance, preferentially chosen from liquid hydrocarbons containing more than 16 carbon atoms, plant oils, liquid fatty alcohols, liquid fatty esters, silicone oils and mixtures thereof.
  • the composition according to the invention comprises at least one liquid fatty substance chosen from liquid hydrocarbons comprising more than 16 carbon atoms, in particular liquid petroleum jelly, liquid fatty alcohols, and mixtures thereof.
  • the composition according to the invention comprises at least one solid fatty substance, preferentially chosen from solid fatty alcohols.
  • the total content of the fatty substance(s) preferably ranges from 5% to 80% by weight, more preferentially from 8% to 70% by weight and better still from 10% to 65% by weight, relative to the total weight of the composition.
  • the composition according to the invention comprises one or more fatty substances, the total content of the fatty substance(s) preferably ranging from 30% to 80% by weight, more preferentially from 35% to 70% by weight and better still from 40% to 65% by weight, relative to the total weight of the composition.
  • the composition according to the invention comprises one or more liquid fatty substances, the total content of the liquid fatty substance(s) preferably ranging from 30% to 80% by weight, more preferentially from 35% to 70% by weight and better still from 40% to 65% by weight, relative to the total weight of the composition.
  • composition according to the invention may comprise a sequestrant (or chelating agent).
  • a “sequestrant” (or “chelating agent”) is well known to those skilled in the art and refers to a compound or a mixture of compounds that are capable of forming a chelate with a metal ion.
  • a chelate is an inorganic complex in which a compound (the sequestrant or chelating agent) is coordinated to a metal ion, i.e. it forms one or more bonds with the metal ion (formation of a ring including the metal ion).
  • a sequestrant (or chelating agent) generally comprises at least two electron-donating atoms which enable the formation of bonds with the metal ion.
  • the sequestrant(s) may be chosen from carboxylic acids, preferably aminocarboxylic acids, phosphonic acids, preferably aminophosphonic acids, polyphosphoric acids, preferably linear polyphosphoric acids, salts thereof, and derivatives thereof.
  • the salts are notably alkali metal, alkaline-earth metal, ammonium and substituted ammonium salts.
  • DTPA diethylenetriaminepentaacetic acid
  • EDDS ethylenediaminedisuccinic acid
  • trisodium ethylenediaminedisuccinate such as Octaquest E30 from Octel
  • EDTA ethylenediaminetetraacetic acid
  • salts thereof such as disodium EDTA, tetrasodium EDTA, ethylenediamine-N,N’-diglutaric acid (EDDG), glycinamide-N,N’- disuccinic acid (GADS), 2-hydroxypropylenediamine-N,N’-disuccinic acid (HPDDS), ethylenediamine-N,N’-bis(ortho-hydroxyphenylacetic acid) (EDDHA), N,N’-bis(2- hydroxybenzyl)ethylenediamine-N,N’-diacetic acid (HBED), nitrilotriacetic acid (NTA
  • chelating agents based on mono- or polyphosphonic acid diethylenetriaminepenta(methylenephosphonic acid) (DTPMP), ethane-1 -hydroxy-1 , 1 ,2-triphosphonic acid (E1 HTP), ethane-2-hydroxy- 1 ,1 ,2- triphosphonic acid (E2HTP), ethane-1-hydroxy-1 ,1-triphosphonic acid (EHDP), ethane- 1 ,1 ,2-triphosphonic acid (ETP), ethylenediaminetetramethylenephosphonic acid (EDTMP), hydroxyethane-1 ,1-diphosphonic acid (HEDP, or etidronic acid), and salts such as disodium etidronate, tetrasodium etidronate.
  • DTPMP diethylenetriaminepenta(methylenephosphonic acid)
  • E1 HTP ethane-1 -hydroxy-1 , 1 ,2-triphosphonic acid
  • E2HTP ethane-2
  • chelating agents based on polyphosphoric acid sodium tripolyphosphate (STP), tetrasodium diphosphate, hexametaphosphoric acid, sodium metaphosphate, phytic acid.
  • STP sodium tripolyphosphate
  • tetrasodium diphosphate tetrasodium diphosphate
  • hexametaphosphoric acid sodium metaphosphate
  • phytic acid sodium tripolyphosphate
  • the sequestrant(s) that are useful according to the invention are phosphorus-based sequestrants, i.e. sequestrants which comprise one or more phosphorus atoms, preferably at least two phosphorus atoms.
  • the phosphorus-based sequestrant(s) used in the composition according to the invention are preferably chosen from:
  • alkali metal or alkaline- earth metal preferably alkali metal, phosphates and pyrophosphates, such as sodium pyrophosphate, potassium pyrophosphate, sodium pyrophosphate decahydrate; and alkali metal or alkaline-earth metal, preferably alkali metal, polyphosphates, such as sodium hexametaphosphate, sodium polyphosphate, sodium tripolyphosphate, sodium trimetaphosphate; which are optionally hydrated, and mixtures thereof;
  • organic phosphorus-based derivatives such as organic (poly)phosphates and (poly)phosphonates, for instance etidronic acid and/or alkali metal or alkaline-earth metal salts thereof, for instance tetrasodium etidronate, disodium etidronate, and mixtures thereof.
  • the phosphorus-based sequestrant(s) are chosen from linear or cyclic compounds comprising at least two phosphorus atoms bonded together covalently via at least one linker L comprising at least one oxygen atom and/or at least one carbon atom.
  • the phosphorus-based sequestrant(s) may be chosen from inorganic phosphorus-based derivatives, preferably comprising at least two phosphorus atoms. More preferentially, the phosphorus-based sequestrant(s) are chosen from alkali metal or alkaline-earth metal pyrophosphates, better still from alkali metal pyrophosphates, in particular sodium pyrophosphate (also known as tetrasodium pyrophosphate).
  • the phosphorus-based sequestrant(s) may be chosen from organic phosphorus-based derivatives, preferably comprising at least two phosphorus atoms. More preferentially, the phosphorus-based sequestrant(s) are chosen from etidronic acid (also known as 1- hydroxyethane-1 ,1-diphosphonic acid) and/or alkali metal or alkaline-earth metal, preferably alkali metal, salts thereof, for instance tetrasodium etidronate and disodium etidronate.
  • etidronic acid also known as 1- hydroxyethane-1 ,1-diphosphonic acid
  • alkali metal or alkaline-earth metal preferably alkali metal, salts thereof, for instance tetrasodium etidronate and disodium etidronate.
  • the phosphorus-based sequestrant(s) are chosen from alkali metal pyrophosphates, etidronic acid and/or alkali metal salts thereof, and a mixture of these compounds.
  • the phosphorus-based sequestrant(s) are chosen from tetrasodium etidronate, disodium etidronate, etidronic acid, tetrasodium pyrophosphate, and a mixture of these compounds.
  • the sequestrants are preferably chosen from diethylenetriaminepentaacetic acid (DTPA) and salts thereof, diethylenediaminetetraacetic acid (EDTA) and salts thereof, ethylenediaminedisuccinic acid (EDDS) and salts thereof, etidronic acid and salts thereof, N,N-dicarboxymethylglutamic acid and salts thereof (GLDA), and mixtures thereof.
  • DTPA diethylenetriaminepentaacetic acid
  • EDTA diethylenediaminetetraacetic acid
  • EDDS ethylenediaminedisuccinic acid
  • etidronic acid and salts thereof etidronic acid and salts thereof, N,N-dicarboxymethylglutamic acid and salts thereof (GLDA), and mixtures thereof.
  • the alkali metal salts and notably the sodium or potassium salts are preferred.
  • the total content of the sequestrant(s) preferably ranges from 0.001 % to 15% by weight, more preferentially from 0.05% to 10% by weight, better still from 0.01% to 8% by weight, even better still from 0.05% to 5% by weight, relative to the total weight of the composition.
  • composition according to the present invention may comprise one or more mineral, organic or hybrid alkaline agents.
  • composition according to the present invention comprises one or more mineral, organic or hybrid alkaline agents.
  • alkaline agent and “basifying agent' are used interchangeably.
  • the mineral basifying agent(s) are preferably chosen from aqueous ammonia, alkali metal carbonates or bicarbonates such as sodium (hydrogen)carbonate and potassium (hydrogen)carbonate, alkali metal or alkaline-earth metal phosphates such as sodium phosphates or potassium phosphates, sodium or potassium hydroxides, and mixtures thereof.
  • the organic basifying agent(s) are preferably chosen from alkanolamines, amino acids, organic amines, oxyethylenated and/or oxypropylenated ethylenediamines, 1 ,3- diaminopropane, 1 ,3-diamino-2-propanol, spermine, spermidine and mixtures thereof.
  • alkanolamine means an organic amine comprising a primary, secondary or tertiary amine function, and one or more linear or branched Ci-C 8 alkyl groups bearing one or more hydroxyl radicals.
  • Organic amines chosen from alkanolamines such as monoalkanolamines, dialkanolamines or trialkanolamines comprising one to three identical or different C1-C4 hydroxyalkyl radicals are in particular suitable for performing the invention.
  • the alkanolamine(s) are chosen from monoethanolamine (MEA), diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, N,N- dimethylethanolamine, 2-amino-2-methyl-1 -propanol, triisopropanolamine, 2-amino-2- methyl-1 ,3-propanediol, 3-amino-1 ,2-propanediol, 3-dimethylamino-1 ,2-propanediol, tris(hydroxymethyl)aminomethane and mixtures thereof.
  • MEA monoethanolamine
  • diethanolamine triethanolamine
  • monoisopropanolamine diisopropanolamine
  • N,N- dimethylethanolamine 2-amino-2-methyl-1 -propanol
  • 2-amino-2-methyl-1 -propanol triisopropanolamine
  • 2-amino-2- methyl-1 ,3-propanediol 3-
  • the amino acids are basic amino acids comprising an additional amine function.
  • Such basic amino acids are preferably chosen from histidine, lysine, arginine, ornithine and citrulline.
  • the organic amine may also be chosen from organic amines of heterocyclic type. Besides histidine that has already been mentioned in the amino acids, mention may in particular be made of pyridine, piperidine, imidazole, triazole, tetrazole and benzimidazole.
  • the organic amine may also be chosen from amino acid dipeptides. As amino acid dipeptides that may be used in the present invention, mention may notably be made of carnosine, anserine and balenine.
  • the organic amine may also be chosen from compounds including a guanidine function.
  • amines of this type other than arginine that may be used in the present invention, mention may notably be made of creatine, creatinine, 1 ,1-dimethylguanidine, 1 ,1 -diethylguanidine, glycocyamine, metformin, agmatine, n-amidoalanine, 3- guanidinopropionic acid, 4-guanidinobutyric acid and 2- ([amino(imino)methyl]amino)ethane-1-sulfonic acid.
  • Use may be made in particular of guanidine carbonate or monoethanolamine hydrochloride as hybrid compounds.
  • the alkaline agent(s) that are useful according to the invention are preferably chosen from alkanolamines such as monoethanolamine, diethanolamine or triethanolamine; aqueous ammonia, carbonates or bicarbonates such as sodium (hydrogen) carbonate and potassium (hydrogen) carbonate, and mixtures thereof, more preferentially from aqueous ammonia and alkanolamines.
  • alkanolamines such as monoethanolamine, diethanolamine or triethanolamine
  • aqueous ammonia, carbonates or bicarbonates such as sodium (hydrogen) carbonate and potassium (hydrogen) carbonate, and mixtures thereof, more preferentially from aqueous ammonia and alkanolamines.
  • the total content of the alkaline agent(s) preferably ranges from 0.1 % to 40% by weight, more preferentially from 0.5% to 30% by weight, better still from 1 % to 20% by weight, even better still from 2% to 10% by weight relative to the total weight of the composition.
  • the pH of the composition is between 8 and 13, preferably between 9 and 12.
  • the pH of the composition may be adjusted to the desired value by means of acidic or alkaline agent(s) commonly used in the dyeing of keratin fibers, such as those described previously, or alternatively using buffer systems that are known to those skilled in the art.
  • composition according to the invention may also comprise at least one organic solvent.
  • organic solvents examples include linear or branched C 2 to C 4 alkanols, such as ethanol and isopropanol; polyols and polyol ethers, for instance glycerol, 2-butoxyethanol, propylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether and monoethyl ether, and also aromatic alcohols or ethers, such as benzyl alcohol or phenoxyethanol, and mixtures thereof.
  • alkanols such as ethanol and isopropanol
  • polyols and polyol ethers for instance glycerol, 2-butoxyethanol, propylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether and monoethyl ether
  • aromatic alcohols or ethers such as benzyl alcohol or phenoxyethanol, and mixtures thereof.
  • the organic solvent(s) may be present in a total amount ranging from 0.01 % to 30% by weight, preferably ranging from 2% to 25% by weight, relative to the total weight of the composition.
  • the composition according to the invention is preferably an aqueous composition.
  • the composition preferably comprises water in an amount of greater than or equal to 5% by weight, preferably greater than or equal to 10% by weight, and better still greater than or equal to 15% by weight, relative to the total weight of the composition.
  • composition according to the invention may optionally comprise one or more additives, other than the compounds of the invention, and among which mention may be made of anionic, nonionic, amphoteric or cationic polymers, other than polysaccharides, or mixtures thereof, mineral thickeners, antidandruff agents, anti-seborrhoeic agents, agents for preventing hair loss and/or for promoting hair regrowth, vitamins and provitamins including panthenol, sunscreens, mineral or organic pigments, plasticizers, solubilizers, opacifiers or nacreous agents, antioxidants, hydroxy acids, fragrances, and preserving agents.
  • anionic, nonionic, amphoteric or cationic polymers other than polysaccharides, or mixtures thereof
  • mineral thickeners such as mineral thickeners, antidandruff agents, anti-seborrhoeic agents, agents for preventing hair loss and/or for promoting hair regrowth
  • vitamins and provitamins including pantheno
  • the above additives may generally be present in an amount, for each of them, of between 0 and 20% by weight relative to the total weight of the composition.
  • composition according to the invention does not comprise any chemical oxidizing agents.
  • composition according to the invention comprises:
  • At least one oxidation coupler chosen from 6-hydroxybenzomorpholine of formula (I) below, an addition salt thereof, solvates thereof and/or solvates of the salts thereof:
  • composition according to the invention comprises:
  • At least one oxidation coupler chosen from 6-hydroxybenzomorpholine of formula (I) below, an addition salt thereof, solvates thereof and/or solvates of the salts thereof:
  • At least one surfactant other than oxyalkylenated Cs to C40 fatty alcohols comprising from 50 to 300 alkylene oxide groups
  • the present invention also relates to a process for dyeing keratin fibers, preferably human keratin fibers, notably the hair, which comprises the step of applying to said keratin fibers an effective amount of a composition as defined previously.
  • the composition may be applied to wet or dry keratin fibers.
  • the keratin fibers are optionally rinsed with water, optionally washed with a shampoo and then rinsed with water, before being dried or left to dry.
  • the process according to the invention comprises a step of mixing the composition according to the invention with an oxidizing composition comprising at least one chemical oxidizing agent.
  • This mixing step is preferably performed at the time of use, just before applying to the hair the composition resulting from the mixing.
  • the chemical oxidizing agent(s) are chosen from hydrogen peroxide, urea peroxide, alkali metal bromates or ferricyanides, peroxygenated salts, for instance persulfates, perborates, peracids and precursors thereof and percarbonates of alkali metals or alkaline-earth metals, and mixtures thereof.
  • the chemical oxidizing agent is preferably chosen from hydrogen peroxide.
  • the oxidizing composition is preferably an aqueous composition. In particular, it comprises more than 5% by weight of water, preferably more than 10% by weight of water and even more advantageously more than 20% by weight of water.
  • It may also comprise one or more organic solvents chosen from those listed previously; these solvents more particularly representing, when they are present, from 1 % to 40% by weight and preferably from 5% to 30% by weight, relative to the weight of the oxidizing composition.
  • the oxidizing composition also preferably comprises one or more acidifying agents.
  • acidifying agents examples that may be mentioned include mineral or organic acids, for instance hydrochloric acid, orthophosphoric acid, sulfuric acid, carboxylic acids, for instance acetic acid, tartaric acid, citric acid or lactic acid, and sulfonic acids.
  • the oxidizing composition may also comprise fatty substances such as those described previously, preferably chosen from fatty alcohols, liquid hydrocarbons comprising more than 16 carbon atoms and mixtures thereof, surfactants and polymers.
  • the pH of the oxidizing composition when it is aqueous, is less than 7, preferably between 1 and 5, preferentially between 1.5 and 4.5.
  • the oxidizing composition comprises hydrogen peroxide as oxidizing agent, in aqueous solution, the concentration of which ranges, more particularly, from 0.1 % to 50%, more particularly between 0.5% and 20% and even more preferentially between 1% and 15% by weight, relative to the weight of the oxidizing composition.
  • At least one of the compositions is aqueous.
  • the process according to the invention comprises a step of applying to the hair a composition resulting from the mixing, at the time of use, of at least two compositions: a) a dye composition comprising:
  • an oxidizing composition comprising one or more chemical oxidizing agents, preferably hydrogen peroxide.
  • the process according to the invention comprises the step of applying to the hair a composition resulting from the mixing, at the time of use, of at least two compositions: a) a dye composition comprising:
  • At least one oxidation coupler chosen from 6-hydroxybenzomorpholine of formula (I) below, an addition salt thereof, solvates thereof and/or solvates of the salts thereof:
  • At least one surfactant other than oxyalkylenated C 8 to C 40 fatty alcohols comprising from 50 to 300 alkylene oxide groups
  • an oxidizing composition comprising one or more chemical oxidizing agents, preferably hydrogen peroxide.
  • the invention also relates to a composition
  • a composition comprising: - at least one oxidation coupler chosen from 6-hydroxybenzomorpholine of formula (I) below, an addition salt thereof, solvates thereof and/or solvates of the salts thereof:
  • this composition being a ready-to-use composition.
  • This ready-to-use composition may comprise one or more ingredients among those described above.
  • the pH of the ready-to-use composition is between 8 and 11 , preferentially between 9 and 10.5.
  • Another subject of the invention is a multi-compartment device for dyeing keratin fibers, comprising at least a first compartment containing the dye composition according to the invention and at least a second compartment containing an oxidizing composition as described above.
  • compositions of the device according to the invention are packaged in separate compartments, optionally accompanied by suitable application means, which may be identical or different, such as fine brushes, coarse brushes or sponges.
  • the device mentioned above may also be equipped with a means for dispensing the desired mixture onto the hair, for instance the devices described in patent FR 2 586 913.
  • the present invention relates to the use of a composition as described above, for dyeing keratin fibers, and in particular the hair.
  • composition A according to the invention and comparative composition C were prepared using the ingredients whose contents are indicated in the table below:
  • the oxidizing composition B was prepared from the ingredients whose contents are indicated in the table below:
  • the dye compositions A and C are each respectively mixed with the oxidizing composition B in a 1+1 weight ratio.
  • Each of the mixtures is applied to locks of hair containing 90% natural white hairs (NW) and moderately sensitized hair (20% alkaline solubility, (AS20) at a rate of 5 g of mixture per 1 g of hair.
  • NW natural white hairs
  • AS20 moderately sensitized hair (20% alkaline solubility,
  • the hair is rinsed, washed with a standard shampoo and dried.
  • the coloring of the hair is evaluated in the L*a*b* system, using a Konica Minolta CM- 3600A spectrocolorimeter (illuminant D65, angle 10°, specular component included) in the Cl ELab system.
  • L* represents the lightness
  • a* represents the red/green axis
  • b* represents the yellow/blue axis.
  • the selectivity is represented by the color difference AE between the locks of dyed natural hair (NW) and dyed sensitized hair (AS20), AE being obtained from the formula: where L* represents the intensity, a* and b*, the chromaticity of the natural dyed hair and Lo* represents the intensity and ao* and bo* the chromaticity of the dyed sensitized hair.
  • L* represents the intensity, a* and b*
  • Lo* represents the intensity and ao* and bo* the chromaticity of the dyed sensitized hair.
  • Composition A according to the invention leads to a lower AE value, and thus to better selectivity, relative to the comparative composition C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Cosmetics (AREA)

Abstract

L'invention concerne une composition comprenant au moins un coupleur d'oxydation choisi parmi la 6-hydroxybenzomorpholine de formule (I), son sel d'addition, ses solvates et/ou des solvates de ses sels, au moins un alcool gras oxyalkyléné en C8 en C40 comprenant de 50 à 300 groupements oxyde d'alkylène, et au moins un polysaccharide. L'invention concerne également un procédé de coloration de fibres de kératine, de préférence des fibres de kératine humaine, plus précisément les cheveux, qui comprend l'application de la composition sur lesdites fibres de kératine.
PCT/EP2022/085098 2021-12-10 2022-12-09 Composition comprenant un précurseur de colorant d'oxydation particulier, un alcool gras oxyalkyléné et un polysaccharide WO2023105015A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22834961.9A EP4444258A1 (fr) 2021-12-10 2022-12-09 Composition comprenant un précurseur de colorant d'oxydation particulier, un alcool gras oxyalkyléné et un polysaccharide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2113293A FR3130151B1 (fr) 2021-12-10 2021-12-10 Composition comprenant un précurseur de coloration d’oxydation particulier, un alcool gras oxyalkyléné et un polysaccharide.
FR2113293 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023105015A1 true WO2023105015A1 (fr) 2023-06-15

Family

ID=80447205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/085098 WO2023105015A1 (fr) 2021-12-10 2022-12-09 Composition comprenant un précurseur de colorant d'oxydation particulier, un alcool gras oxyalkyléné et un polysaccharide

Country Status (3)

Country Link
EP (1) EP4444258A1 (fr)
FR (1) FR3130151B1 (fr)
WO (1) WO2023105015A1 (fr)

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1026978A (en) 1962-03-30 1966-04-20 Schwarzkopf Verwaltung G M B H Method of dyeing hair
GB1153196A (en) 1965-07-07 1969-05-29 Schwarzkopf Verwaltung G M B H Method of Dyeing Hair
DE2359399A1 (de) 1973-11-29 1975-06-12 Henkel & Cie Gmbh Haarfaerbemittel
US4131576A (en) 1977-12-15 1978-12-26 National Starch And Chemical Corporation Process for the preparation of graft copolymers of a water soluble monomer and polysaccharide employing a two-phase reaction system
US4137180A (en) 1976-07-02 1979-01-30 Lever Brothers Company Fabric treatment materials
FR2575067A1 (fr) * 1984-12-21 1986-06-27 Oreal Composition tinctoriale capillaire a base de colorants d'oxydation et de bio-heteropolysaccharides
FR2586913A1 (fr) 1985-09-10 1987-03-13 Oreal Procede pour former in situ une composition constituee de deux parties conditionnees separement et ensemble distributeur pour la mise en oeuvre de ce procede
EP0317542A2 (fr) 1987-11-13 1989-05-24 The Procter & Gamble Company Composition de nettoyage pour surfaces dures contenant des dérivés de l'acide iminodiacétique
US4874554A (en) 1986-07-10 1989-10-17 Henkel Kommanditgesellschaft Auf Aktien Quaternary ammonium compounds
DE3843892A1 (de) 1988-12-24 1990-06-28 Wella Ag Oxidationshaarfaerbemittel mit einem gehalt an diaminopyrazolderivaten und neue diaminopyrazolderivate
EP0399133A1 (fr) 1989-05-23 1990-11-28 The Procter & Gamble Company Compositions détergentes et de nettoyage contenant agents de chelation
EP0509382A2 (fr) 1991-04-17 1992-10-21 Hampshire Chemical Corporation Stabilisateurs de blanchiment biodégradables pour détergents
EP0516102A1 (fr) 1991-05-31 1992-12-02 The Dow Chemical Company Chélatants dégradable contenant de groupements sulfonate, leur emploi et compositions les contenants
JPH0563124A (ja) 1991-09-03 1993-03-12 Mitsubishi Electric Corp 混成集積回路装置
DE4133957A1 (de) 1991-10-14 1993-04-15 Wella Ag Haarfaerbemittel mit einem gehalt an aminopyrazolderivaten sowie neue pyrazolderivate
WO1994008970A1 (fr) 1992-10-16 1994-04-28 Wella Aktiengesellschaft Colorants d'oxydation pour cheveux, renfermant des derives du 4,5-diaminopyrazole, nouveaux derives du 4,5-diaminopyrazole et leur procede de fabrication
WO1994008969A1 (fr) 1992-10-16 1994-04-28 Wella Aktiengesellschaft Procede de production de derives de 4,5-diaminopyrazole, leur utilisation pour la teinture des cheveux, et nouveaux derives de pyrazole
WO1996015765A1 (fr) 1994-11-17 1996-05-30 Henkel Kommanditgesellschaft Auf Aktien Colorants d'oxydation
FR2733749A1 (fr) 1995-05-05 1996-11-08 Oreal Compositions pour la teinture des fibres keratiniques contenant des diamino pyrazoles, procede de teinture, nouveaux diamino pyrazoles et leur procede de preparation
EP0770375A1 (fr) 1995-10-21 1997-05-02 GOLDWELL GmbH Composition pour la teinture des cheveux
DE19543988A1 (de) 1995-11-25 1997-05-28 Wella Ag Oxidationshaarfärbemittel mit einem Gehalt an 3,4,5-Triaminopyrazolderivaten sowie neue 3,4,5-Triaminopyrazolderivate
FR2801308A1 (fr) 1999-11-19 2001-05-25 Oreal COMPOSITIONS DE TEINTURE DE FIBRES KERATINIQUES CONTENANT DE DES 3-AMINO PYRAZOLO-[1,(-a]-PYRIDINES, PROCEDE DE TEINTURE, NOUVELLES 3-AMINO PYRAZOLO-[1,5-a]-PYRIDINES
FR2886136A1 (fr) 2005-05-31 2006-12-01 Oreal Composition pour la teinture des fibres keratiniques comprenant au moins un derive de diamino-n,n-dihydro- pyrazolone et un colorant d'oxydation cationique
WO2009060334A2 (fr) * 2007-11-05 2009-05-14 The Procter & Gamble Company Compositions de colorant capillaire oxydantes
WO2011034868A1 (fr) * 2009-09-18 2011-03-24 The Procter & Gamble Company Compositions de coloration et de décoloration des cheveux épaissies
JP2013169571A (ja) 2012-02-21 2013-09-02 Nippon Steel & Sumitomo Metal Corp 鍛鋼ロールの製造方法
WO2013144260A2 (fr) * 2012-03-30 2013-10-03 L'oreal Composition comprenant du (2,5-diaminophényl)éthanol, un agent tensioactif alkylpolyglucoside non ionique, un ester de sorbitane oxyéthyléné ou un alcool gras polyalcoxylé ou polyglycérolé dans un milieu riche en substances grasses, procédé et dispositif de teinture associés
WO2016097228A1 (fr) * 2014-12-17 2016-06-23 L'oreal Composition colorante comprenant une base d'oxydation de paraphénylènediamine, un épaississant polysaccharidique dans un milieu riche en corps gras

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1026978A (en) 1962-03-30 1966-04-20 Schwarzkopf Verwaltung G M B H Method of dyeing hair
GB1153196A (en) 1965-07-07 1969-05-29 Schwarzkopf Verwaltung G M B H Method of Dyeing Hair
DE2359399A1 (de) 1973-11-29 1975-06-12 Henkel & Cie Gmbh Haarfaerbemittel
US4137180A (en) 1976-07-02 1979-01-30 Lever Brothers Company Fabric treatment materials
US4131576A (en) 1977-12-15 1978-12-26 National Starch And Chemical Corporation Process for the preparation of graft copolymers of a water soluble monomer and polysaccharide employing a two-phase reaction system
FR2575067A1 (fr) * 1984-12-21 1986-06-27 Oreal Composition tinctoriale capillaire a base de colorants d'oxydation et de bio-heteropolysaccharides
FR2586913A1 (fr) 1985-09-10 1987-03-13 Oreal Procede pour former in situ une composition constituee de deux parties conditionnees separement et ensemble distributeur pour la mise en oeuvre de ce procede
US4874554A (en) 1986-07-10 1989-10-17 Henkel Kommanditgesellschaft Auf Aktien Quaternary ammonium compounds
EP0317542A2 (fr) 1987-11-13 1989-05-24 The Procter & Gamble Company Composition de nettoyage pour surfaces dures contenant des dérivés de l'acide iminodiacétique
DE3843892A1 (de) 1988-12-24 1990-06-28 Wella Ag Oxidationshaarfaerbemittel mit einem gehalt an diaminopyrazolderivaten und neue diaminopyrazolderivate
EP0399133A1 (fr) 1989-05-23 1990-11-28 The Procter & Gamble Company Compositions détergentes et de nettoyage contenant agents de chelation
EP0509382A2 (fr) 1991-04-17 1992-10-21 Hampshire Chemical Corporation Stabilisateurs de blanchiment biodégradables pour détergents
EP0516102A1 (fr) 1991-05-31 1992-12-02 The Dow Chemical Company Chélatants dégradable contenant de groupements sulfonate, leur emploi et compositions les contenants
JPH0563124A (ja) 1991-09-03 1993-03-12 Mitsubishi Electric Corp 混成集積回路装置
DE4133957A1 (de) 1991-10-14 1993-04-15 Wella Ag Haarfaerbemittel mit einem gehalt an aminopyrazolderivaten sowie neue pyrazolderivate
WO1994008970A1 (fr) 1992-10-16 1994-04-28 Wella Aktiengesellschaft Colorants d'oxydation pour cheveux, renfermant des derives du 4,5-diaminopyrazole, nouveaux derives du 4,5-diaminopyrazole et leur procede de fabrication
WO1994008969A1 (fr) 1992-10-16 1994-04-28 Wella Aktiengesellschaft Procede de production de derives de 4,5-diaminopyrazole, leur utilisation pour la teinture des cheveux, et nouveaux derives de pyrazole
WO1996015765A1 (fr) 1994-11-17 1996-05-30 Henkel Kommanditgesellschaft Auf Aktien Colorants d'oxydation
FR2733749A1 (fr) 1995-05-05 1996-11-08 Oreal Compositions pour la teinture des fibres keratiniques contenant des diamino pyrazoles, procede de teinture, nouveaux diamino pyrazoles et leur procede de preparation
EP0770375A1 (fr) 1995-10-21 1997-05-02 GOLDWELL GmbH Composition pour la teinture des cheveux
DE19543988A1 (de) 1995-11-25 1997-05-28 Wella Ag Oxidationshaarfärbemittel mit einem Gehalt an 3,4,5-Triaminopyrazolderivaten sowie neue 3,4,5-Triaminopyrazolderivate
FR2801308A1 (fr) 1999-11-19 2001-05-25 Oreal COMPOSITIONS DE TEINTURE DE FIBRES KERATINIQUES CONTENANT DE DES 3-AMINO PYRAZOLO-[1,(-a]-PYRIDINES, PROCEDE DE TEINTURE, NOUVELLES 3-AMINO PYRAZOLO-[1,5-a]-PYRIDINES
FR2886136A1 (fr) 2005-05-31 2006-12-01 Oreal Composition pour la teinture des fibres keratiniques comprenant au moins un derive de diamino-n,n-dihydro- pyrazolone et un colorant d'oxydation cationique
WO2009060334A2 (fr) * 2007-11-05 2009-05-14 The Procter & Gamble Company Compositions de colorant capillaire oxydantes
WO2011034868A1 (fr) * 2009-09-18 2011-03-24 The Procter & Gamble Company Compositions de coloration et de décoloration des cheveux épaissies
JP2013169571A (ja) 2012-02-21 2013-09-02 Nippon Steel & Sumitomo Metal Corp 鍛鋼ロールの製造方法
WO2013144260A2 (fr) * 2012-03-30 2013-10-03 L'oreal Composition comprenant du (2,5-diaminophényl)éthanol, un agent tensioactif alkylpolyglucoside non ionique, un ester de sorbitane oxyéthyléné ou un alcool gras polyalcoxylé ou polyglycérolé dans un milieu riche en substances grasses, procédé et dispositif de teinture associés
WO2016097228A1 (fr) * 2014-12-17 2016-06-23 L'oreal Composition colorante comprenant une base d'oxydation de paraphénylènediamine, un épaississant polysaccharidique dans un milieu riche en corps gras

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Cosmetics and Toiletries", vol. 91, TODD & BYERS, article "Volatile Silicone Fluids for Cosmetics", pages: 27 - 32
M.R. PORTER: "Handbook of Surfactants", 1991, BLACKIE & SON, pages: 116 - 178
WALTER NOLL'S: "Chemistry and Technology of Silicones", 1968, ACADEMIC PRESS

Also Published As

Publication number Publication date
EP4444258A1 (fr) 2024-10-16
FR3130151B1 (fr) 2024-04-05
FR3130151A1 (fr) 2023-06-16

Similar Documents

Publication Publication Date Title
WO2023105016A1 (fr) Composition comprenant deux précurseurs de colorants d'oxydation particuliers et un tensioactif phosphorique
WO2022129357A1 (fr) Composition cosmétique comprenant une combinaison de deux coupleurs particuliers et au moins une base d'oxydation
WO2022129388A1 (fr) Composition comprenant la combinaison de deux précurseurs particuliers de colorant d'oxydation et d'un (poly)glycoside d'alkyle
EP4262688A1 (fr) Composition comprenant une base de teinture d'oxydation particulière, au moins un coupleur particulier et au moins une substance grasse
EP4262726A1 (fr) Procédé de coloration de fibres kératiniques avec une composition comprenant un précurseur de colorant d'oxydation particulier, un acide carboxylique particulier et un agent oxydant chimique
WO2023105015A1 (fr) Composition comprenant un précurseur de colorant d'oxydation particulier, un alcool gras oxyalkyléné et un polysaccharide
WO2022129369A1 (fr) Composition comprenant deux précurseurs particuliers de colorant d'oxydation, un ester d'acide gras oxyéthyléné de sorbitan et un acide gras
WO2022129373A1 (fr) Composition comprenant la combinaison de deux précurseurs particuliers de colorant d'oxydation et d'un ester d'acide gras oxyéthyléné particulier de sorbitan
WO2022129372A1 (fr) Composition comprenant la combinaison de deux précurseurs particuliers de coloration d'oxydation et d'un alkyl(poly)glycoside
WO2023073136A1 (fr) Composition comprenant un précurseur particulier de colorant d'oxydation et deux acides particuliers
EP4262692A1 (fr) Composition comprenant la combinaison d'au moins un corps gras, d'un acide carboxylique particulier et d'un colorant d'oxydation et/ou d'un agent alcalin
WO2023275210A1 (fr) Composition comprenant du 1,3-propanediol et au moins une substance grasse, un ou plusieurs colorants d'oxydation
WO2022129377A1 (fr) Composition contenant la combinaison de deux précurseurs particuliers de colorant d'oxydation et d'un acide carboxylique particulier
EP4262716A1 (fr) Composition comprenant un précurseur particulier de colorant d'oxydation et un acide carboxylique particulier
WO2022129379A1 (fr) Composition comprenant deux précurseurs particuliers de colorant d'oxydation, et un acide carboxylique particulier
WO2023275168A1 (fr) Composition comprenant au moins un coupleur particulier, au moins une base d'oxydation particulière, au moins une matière grasse et au moins un polysaccharide anionique
WO2023073133A1 (fr) Composition comprenant une combinaison de deux précurseurs de colorant d'oxydation particuliers, un tensioactif amphotère ou zwittérionique et une substance grasse solide
EP4362889A1 (fr) Composition comprenant au moins un colorant d'oxydation, du 1,3-propanediol, au moins un agent alcalin et au moins une matière grasse
EP4422758A1 (fr) Composition comprenant une combinaison de deux précurseurs de colorant d'oxydation particuliers et d'un ester d'acide gras de glycérol
EP4262694A1 (fr) Composition comprenant une base de teinture d'oxydation particulière et au moins deux coupleurs particuliers
WO2022129352A1 (fr) Composition cosmétique comprenant une combinaison de deux coupleurs particuliers et de l'acide n,n-dicarboxyméthylglutamique et/ou de ses sels
WO2022129350A1 (fr) Composition cosmétique comprenant une combinaison de deux coupleurs particuliers et d'un ester d'acide gras oxyéthyléné de sorbitan
WO2023105022A1 (fr) Composition comprenant deux précurseurs particuliers de colorant d'oxydation et une silicone aminée particulière

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22834961

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022834961

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022834961

Country of ref document: EP

Effective date: 20240710