WO2023104159A1 - Calcium channel blocker and screening method thereof - Google Patents

Calcium channel blocker and screening method thereof Download PDF

Info

Publication number
WO2023104159A1
WO2023104159A1 PCT/CN2022/137596 CN2022137596W WO2023104159A1 WO 2023104159 A1 WO2023104159 A1 WO 2023104159A1 CN 2022137596 W CN2022137596 W CN 2022137596W WO 2023104159 A1 WO2023104159 A1 WO 2023104159A1
Authority
WO
WIPO (PCT)
Prior art keywords
iib
disease
compound
formula
diabetic
Prior art date
Application number
PCT/CN2022/137596
Other languages
French (fr)
Inventor
Mingqi XIE
Hui Wang
Martin Fussenegger
Original Assignee
Xie Mingqi
Hui Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xie Mingqi, Hui Wang filed Critical Xie Mingqi
Publication of WO2023104159A1 publication Critical patent/WO2023104159A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/10Natural spices, flavouring agents or condiments; Extracts thereof
    • A23L27/12Natural spices, flavouring agents or condiments; Extracts thereof from fruit, e.g. essential oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/047Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/22Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system
    • C07C35/23Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system with hydroxy on a condensed ring system having two rings
    • C07C35/36Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system with hydroxy on a condensed ring system having two rings the condensed ring system being a (4.4.0) system, e.g. naphols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/20Unsaturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/255Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • C07C2602/26All rings being cycloaliphatic the ring system containing ten carbon atoms
    • C07C2602/28Hydrogenated naphthalenes

Definitions

  • the present invention relates to compounds as calcium channel blocker, a composition comprising thereof, use of said compounds and a method for treating diseases or disorders associated with calcium ion channel using said compounds.
  • the present invention also relates to an in vitro screening method of calcium channel blocker compounds.
  • Calcium channel blockers are defined as a class of clinically used molecules, peptides or proteins that selectively block the entry of Ca 2+ into cells through inhibition of calcium-permeable ion channels, resulting in decrease of intracellular Ca 2+ concentration.
  • Currently known calcium channel blockers include phenylalkylamines such as verapamil, or dihydropyridines (DHP) such as amlodipine, felodipine, isradipine, lacidipine, nicardipine, nifedipine, niguldipine, niludipine, nimodipine, nisoldipine, nitrendipine, nivaldipine, and the like.
  • CCBs are used alone or in combiantion with other drugs such as angiotensin receptor blocker (ARB) and/or diuretics, for the treatment of hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac myopathy, supraventricular and ventricular arrhythmias, atrial fibrillation, atrial flutter, detrimental vascular remodeling, myocardial infarction, atherosclerosis, renal insufficiency (diabetic and non-diabetic) , diabetes, primary and secondary pulmonary hypertension, renal failure, diabetic nephropathy, glomerulonephritis, scleroderma, glomerular sclerosis, proteinuria of primary renal disease, and also renal vascular hypertension, diabetic retinopathy, the management of other vascular disorders, such as migraine, peripheral vascular disease, Raynaud's disease, luminal hyper
  • Parkinson’s disease is an age-related neurodegenerative disorder characterized by progressive motor impairments such as tremors, rigidity and bradykinesia (Daniels et al. 2019, Gao et al. 2003, Sarkar, Raymick and Imam 2016) . These symptoms are primarily driven by the selective loss of mesencephalic dopamine-producing neurons in the pars compacta of the substantia nigra (SNc) of the midbrain (Daniels et al. 2019, Gao et al. 2003, Izumi et al. 2007, Sarkar et al. 2016, Singh et al. 2016) .
  • SNc substantia nigra
  • Defective dopaminergic (DA) neurons are characterized by the formation of Lewy bodies consisting of ubiquitin and ⁇ -synuclein aggregates, are highly sensitive to stress, and show markedly impaired mitochondrial functions, which lead to reduced ATP production and poor calcium homeostasis (Crocker et al. 2003, Sarkar et al. 2016) . Excessive-activity-related Ca 2+ oscillations contribute to the generation of reactive oxygen species (ROS) , resulting in excitotoxicity and apoptosis (Ilijic, Guzman and Surmeier 2011, Singh et al. 2016) .
  • ROS reactive oxygen species
  • LTCC L-type voltage-gated calcium channels
  • DHP dihydropyridine
  • DHP channel blockers are generally non-selective, blocking both Ca V 1.2 and Ca V 1.3 channel isoforms in most cases (Ortner and Striessnig 2016) . Because Ca V 1.2 channels are expressed at very high levels in cardiac tissues, cross-antagonism to these channels severely limits the dose of DHPs that can be used for neuroprotective purposes (Ilijic et al. 2011, Ortner and Striessnig 2016) . Therefore, Ca V 1.3-selective blockers without Ca V 1.2-mediated cardiovascular side effects are currently considered elusive candidates for PD drug discovery (Ortner et al. 2017) . Hence, there is still need for blockers that have high selectivity towards Ca V 1.3 channel with minimal crosstalk to Ca V 1.2 channel to solve the above-mentioned problem.
  • FLIPR fluorescent imaging plate reader
  • FLIPR is also limited to snapshot-recordings of single ion-influx events of cells harvested in non-physiological buffer solutions, it is not applicable to the identification of use-dependent CCBs such as antiarrhythmics that require methods for assessing repetitive channel activation (Zamponi 2016) .
  • Conventional patch clamp platforms are more accurate and most information-rich, but are primarily constrained by low throughput and poor cost-efficiency in a drug screening context.
  • an ideal asset of high-throughput drug discovery is multiplexed drug screening, allowing simultaneous assessment of multiple disease-specific drug targets within a single experiment (Bachovchin et al. 2014) .
  • CB-A assay an antagonist-inducible reporter system
  • the present invention provides compounds as CCB.
  • the present invention provides the compound of formula (I) , having the following structure:
  • X is C 1-2 alkylene, and each of R 1 and R 2 is independently selected from C 1-4 alkyl, C 2-4 alkenyl, or C 2-4 alkynyl, which is optionally substituted with one or more halogen atoms,
  • the compound of formula (I) has the structure of formula (Ia) :
  • X is C 1-2 alkylene
  • R 1 is independently selected from C 1-4 alkyl, C 2-4 alkenyl, or C 2-4 alkynyl, which is optionally substituted with one or more halogen atoms
  • the compound of formula (I) has the structure of formula (Ib) :
  • the compound of formula (Ib) is either (1R, 2R, 4aS, 8aS) -1- [ (3R) -3-hydroxy-3-methylpent-4-enyl] -2, 5, 5, 8a-tetramethyl-3, 4, 4a, 6, 7, 8-hexahydro-1H-naphthalen-2-ol or (1R, 2R, 4aS, 8aS) -1- ( (R) -3-hydroxy-3-methylpent-4-enyl) -2, 5, 5, 8a-tetramethyl-decahydronaphthalen-2-ol, and any enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
  • the present invention also provides the compound of formula (II) as CCB, having the following structure:
  • R 3 is C 1-10 alkyl, which is optionally substituted with one or more hydroxy groups, preferably is substituted with one hydroxy group,
  • the compound of formula (II) has the structure of formula (IIa) :
  • R 4 is C 1-8 alkyl, preferably C 1-6 alkyl, more preferably C 1-4 alkyl,
  • the compound of formula (II) has the following structures:
  • the compound of formula (IIb-1) is (5S) -5-hydroxy-1- (4-hydroxy-3-methoxyphenyl) octan-3-one, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
  • the compound of formula (IIb-2) is (5S) -5-hydroxy-1- (4-hydroxy-3-methoxyphenyl) decan-3-one, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
  • the compound of formula (IIb-3) is (5S) -5-hydroxy-1- (4-hydroxy-3-methoxyphenyl) dodecan-3-one, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
  • the compound of formula (IIb-4) is (5S) -5-hydroxy-1- (4-hydroxy-3-methoxyphenyl) tetradecan-3-one, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
  • the present invention provides an essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) .
  • the present invention also provides a composition comprising an essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) .
  • the composition is a pharmaceutical composition comprising the essential oil and pharmaceutically acceptable carrier or diluent.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising an effective amount of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) .
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising an effective amount of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , for use in the treatment of diseases or disorders selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac my
  • the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
  • CAD coronary heart disease
  • angina pectoris whether unstable or stable
  • Parkinson disease is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
  • the present invention provides a method of treating diseases or disorders, comprising the administration of effective amount of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or the composition comprising the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb
  • the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
  • CAD coronary heart disease
  • angina pectoris whether unstable or stable
  • Parkinson disease is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
  • the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof has high selectivity to Ca V 1.3 channel compared with Ca V 1.2 channel.
  • the present invention provides use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof as calcium channel blocker (CCB) .
  • CCA calcium channel blocker
  • the present invention provides use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof as selective calcium channel blockers.
  • the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof has high selectivity to Ca V 1.3 channel compared with Ca V 1.2 channel.
  • the present invention provides use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or the composition comprising the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb
  • the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
  • CAD coronary heart disease
  • angina pectoris whether unstable or stable
  • Parkinson disease is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
  • the present invention provides use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof in manufacture of a medicament for the treatment of diseases or disorders which can be benefited from blockade of calcium channels.
  • the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof is used as selective calcium channel blockers.
  • the present invention provides use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof in manufacture of a medicament for the treatment of the disease or disorder which can be benefited from selective blockade of Ca V 1.3 channel compared with Ca V 1.2 channel.
  • the present invention provides use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or the composition comprising the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb
  • the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
  • CAD coronary heart disease
  • angina pectoris whether unstable or stable
  • Parkinson disease is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
  • the present invention provides a method of screening compound as calcium channel blocker, especially having high selectivity to Ca V 1.3 channel compared with Ca V 1.2 channel, said method comprising the following steps:
  • the suitable host cell is of mammalian or amphibian origin.
  • the selected host cell is derived from human embryonic kidney cells, patient-specific tumors or Chinese hamster ovary cells, such as HEK-293, HeLa or CHO-K1 cells.
  • the selected host cell is derived from Xenopus oocytes.
  • nucleic acid segments that encode one or more calcium channel subunits are one or more nucleic acid sequences comprising a mRNA sequence that can translate into any one of the protein subunits selected from ⁇ 1, ⁇ 2, ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ , ⁇ or ⁇ 2 ⁇ domains of voltage-gated calcium channels.
  • nucleic acid segments that encode one or more calcium channel subunits are one or more nucleic acid sequences comprising a DNA sequence that can transcribe into a RNA sequence that produces any one of the protein subunits selected from ⁇ 1, ⁇ 2, ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ , ⁇ or ⁇ 2 ⁇ domains of voltage-gated calcium channels.
  • the nucleic acid segment (s) that encode (s) one or more calcium channel subunits is (are) a nucleic acid sequence comprising one or more gene sequences selected from CACNA1S, CACNA1C, CACNA1D, CACNA1F, CACNA1A, CACNA1B, CACNA1E, CACNA1G, CACNA1H, CACNA1I, CACNA2D1, CACNA2D2, CACNA2D3, CACNA2D4, CACNB1, CACNB2, CACNB3, CACNB4, CACNG1, CACNG2, CACNG3, CACNG4, CACNG5, CACNG6, CACNG7 or CACNG8 or any homologue thereof.
  • the calcium-responsive reporter system is a protein whose activity and/or integrity is naturally evolved or engineered to depend on local concentrations of calcium ions.
  • the calcium-responsive reporter system is an RNA molecule whose stability and/or translation is naturally evolved or engineered to depend on local concentrations of calcium ions.
  • the calcium-responsive reporter system is a natural or synthetic promoter whose activation is naturally evolved or engineered to depend on intracellular concentrations of calcium ions.
  • the calcium-responsive reporter system is any combination of a calcium-dependent protein, calcium-dependent RNA and calcium-dependent promoter described above.
  • the calcium-responsive reporter system consists of a synthetic promoter that contains DNA segments bound by the calcium-responsive transcription factor NFAT (nuclear factor of activated T cells) .
  • the term “subject” refers to a mammal, for example, a human.
  • halogen signifies fluorine, chlorine, bromine or iodine, particularly fluorine or chlorine.
  • Preventing refers to a reduction in risk of acquiring a disease or disorder (i.e., causing at least one of the clinical symptoms of the disease not to develop in a subject that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease) .
  • preventing refers to reducing symptoms of the disease by taking the compound in a preventative fashion.
  • Treating” or “treatment” of a disease or disorder refers to arresting or ameliorating a disease or at least one of the clinical symptoms of a disease or disorder, reducing the risk of acquiring a disease or at least one of the clinical symptoms of a disease, reducing the development of a disease or at least one of the clinical symptoms of the disease or reducing the risk of developing a disease or at least one of the clinical symptoms of a disease.
  • Treating” or “treatment” also refers to inhibiting the disease, either physically, (e.g., stabilization of a discernible symptom) , physiologically, (e.g., stabilization of a physical parameter) , or both, and to inhibiting at least one physical parameter or manifestation that may or may not be discernible to the subject.
  • Treating” or “treatment” also refers to delaying the onset of the disease, or at least one or more symptoms thereof in a subject who may be exposed to or predisposed to a disease or disorder even though that subject does not yet experience or display symptoms of the disease.
  • the term “effective amount” as used herein refers to an amount of the compound of the present invention effective for “treating” or “preventing” a disease or disorder in a subject.
  • the effective amount may cause any changes observable or measurable in a subject as described in the definition of “treating” , “treatment” , “preventing” , or “prevention” above.
  • the “effective amount” may vary depending, for example, on the compound, the disease and/or symptoms of the disease, severity of the disease and/or symptoms of the disease or disorder, the age, weight, and/or health of the subject to be treated, and the judgment of the prescribing physician. An appropriate amount in any given instance may be ascertained by those skilled in the art or capable of determination by routine experimentation.
  • alkyl means a straight or branched chain saturated hydrocarbon moieties, such as those containing from 1 to 10 carbon atoms (C 1-10 ) , 1 to 8 carbon atoms (C 1-8 ) , 1 to 6 carbon atoms (C 1-6 ) , 1-4 carbon atoms (C 1-4 ) or 1-3 carbon atoms (C 1-3 ) .
  • C 1-6 alkyl refers to the alkyl having 1-6 (including 1, 2, 3, 4, 5 or 6) carbon atoms.
  • C 1-4 alkyl refers to the alkyl having 1-4 (including 1, 2, 3, or 4) carbon atoms.
  • Representative C 1-6 alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl and the like.
  • alkenyl means a straight or branched chain saturated hydrocarbon moieties comprising at least one double bond, such as those containing from 2 to 6 carbon atoms (C 2-6 ) , 2-4 carbon atoms (C 2-4 ) or 2-3 carbon atoms (C 2-3 ) .
  • C 2-4 alkenyl refers to the alkenyl having 2-4 (including 2, 3, or 4) carbon atoms.
  • Representative C 2-4 alkenyl groups include ethenyl, propenyl, allyl, butenyl, and the like.
  • alkynyl means a straight or branched chain saturated hydrocarbon moieties comprising at least one triple bond, such as those containing from 2 to 6 carbon atoms (C 2-6 ) , 2-4 carbon atoms (C 2-4 ) or 2-3 carbon atoms (C 2-3 ) .
  • C 2-4 alkynyl refers to the alkynyl having 2-4 (including 2, 3, or 4) carbon atoms.
  • Representative C 2-4 alkynyl groups include ethynyl, propynyl, propargyl, butynyl, and the like.
  • alkylene means a straight or branched chain saturated divalent hydrocarbon moieties, such as those containing from 1 to 4 carbon atoms (C 1-4 ) , 1-3 carbon atoms (C 1-3 ) or 1-2 carbon atoms (C 1-2 ) .
  • C 1-2 alkylene refers to the alkyl having 1 or 2 carbon atoms.
  • Representative C 1-2 alkylene groups include methylene or ethylene.
  • diastereomer denotes a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another.
  • pharmaceutically acceptable salt refers to conventional acid-addition salts or base-addition salts that retain the biological effectiveness and properties of the compounds of formula I and are formed from suitable non-toxic organic or inorganic acids or organic or inorganic bases.
  • Acid-addition salts include for example those derived from inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, sulfamic acid, phosphoric acid and nitric acid, and those derived from organic acids such as p-toluenesulfonic acid, salicylic acid, methanesulfonic acid, oxalic acid, succinic acid, citric acid, malic acid, lactic acid, fumaric acid, and the like.
  • Base-addition salts include those derived from ammonium, potassium, sodium and, quaternary ammonium hydroxides, such as for example, tetramethyl ammonium hydroxide.
  • the chemical modification of a pharmaceutical compound into a salt is a technique well known to pharmaceutical chemists in order to obtain improved physical and chemical stability, hygroscopicity, flow ability and solubility of compounds. It is for example described in Bastin R.J., et al., Organic Process Research &Development 2000, 4, 427-435; or in Ansel, H., et al., In: Pharmaceutical Dosage Forms and Drug Delivery Systems, 6th ed. (1995) , pp. 196 and 1456-1457.
  • essential oil refers to volatile oil naturally produced by plants as defensive metabolites for the protection against diseases, parasite, fungal, bacterial and viral infections, extreme temperature fluctuations and dehydration.
  • essential oils isolated from plants are used as additives in cosmetics, drugs, detergents and foods in order to ameliorate the aromatic, antioxidant and antimicrobial effects of the respective products [Chamorro et al. 2012; Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications; Chapter 15] .
  • essential oils are also used as major components of medical formulations within the field of aromatherapy, which is a clinically approved branch of phytotherapy.
  • essential oil is derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) .
  • CBs Calcium channel blockers activate reporter protein expression by inhibiting depolarization-dependent L7Ae expression.
  • C, D Optimization of CaB-A for use-dependent CCB analysis.
  • C Ca V 1.2 (pCa V 1.2/pKK56) -or
  • Ca V 1.3 (pCa V 1.3/pKK56) -transgenic HEK-293 cells were co-transfected with a NFAT-controlled L7Ae expression vector (pMX125; P NFAT4 -L7Ae-pA) and different reporter vectors containing one (pMX195; P SV40 - (C/D-box) 1 -SEAP-pA) or two tandem C/D-box aptamer repeats (pMX199; P SV40 - (C/D-box) 2 -SEAP-pA) .
  • a NFAT-controlled L7Ae expression vector pMX125; P NFAT4 -L7Ae-pA
  • E HEK-293 cells transfected with Ca V 1.2 (pCa V 1.2/pKK56/pMX125/pMX199) -or
  • Ca V 1.3 pCa V 1.3/pKK56/pMX125/pMX199
  • FIG. 3 Identification of active constituents that selectively inhibit Ca V 1.3.
  • A Ligand-based virtual screening. Representative pharmacophore model for Ca V 1.3 inhibitors created with LigandScout using the positive and negative reference compounds listed in Table S3. This illustration exemplifies the alignment of (6) -gingerol to the Ca V 1.3-blocking pharmacophore.
  • B Structure clustering analysis of candidate compounds. All 13 hits from the virtual screening experiment using 198 candidate molecules derived from GC-MS data of essential oils (Table S3) were clustered based on structure similarity using the ChemMine tool. Right panel: chemical structures of the five compounds selected as representatives of the clusters.
  • C Assessment of putative Ca V 1.3 antagonism by the PD drug candidates.
  • D Quantification of Ca V 1 antagonism by sclareol using CaB-R.
  • HEK-293 cells transfected with Ca V 1.2-or Ca V 1.3-dependent CaB-R were depolarized with 30 mM KCl and immediately seeded into culture wells containing different concentrations of sclareol.
  • HEK-293 cells transfected with a constitutive SEAP-expression vector (pSEAP2-Control; P SV40 -SEAP-pA) were used as a reference for putative cytotoxicity caused by drug exposure.
  • E Quantification of Ca V 1 antagonism by sclareol and nifedipine on different Ca V 1.3 mutants.
  • HEK-293 cells transfected with CaB-R regulated by different synthetic Ca V 1.3 mutants (WT, pCa V 1.3/pKK56/pMX57; Ca V 1.3 Y1048A , pWH154/pKK56/pMX57; Ca V 1.3 Y1365A, A1369S, I1372A , pWH155/pKK56/pMX57) were depolarized with 30 mM KCl and immediately seeded into culture wells containing different concentrations of sclareol or nifedipine.
  • Fig. S Principles of Ca V 1-specific designer cell-based screening assays.
  • A Synthetic excitation-transcription coupling.
  • HEK-293 membrane depolarization activates L-type voltage-gated calcium channels (Ca V 1) and triggers Ca 2+ influx, activation of endogenous calcium-responsive transcriptional factors (CTFs) and initiation of reporter gene transcription from synthetic cognate calcium-specific promoters (CSPs) containing CTF-specific response elements.
  • CTFs endogenous calcium-responsive transcriptional factors
  • CSPs calcium-specific promoters
  • B, C Selection of synthetic CSPs to quantify depolarization-dependent Ca V 1 signaling.
  • Fig. S2. Depolarization-inducible reporter gene expression.
  • KCl-triggered SEAP expression HEK-293 cells were co-transfected with pMX57 (P NFAT3 -SEAP-pA) , pKK56 (P hEF1 ⁇ -Cacna2d1-P2A-Cacnb3-pA) and either Ca V 1.2 (pCa V 1.2; P hCMV -Cacna1c-pA) , Ca V 1.3 (pCa V 1.3: ⁇ 42; P hCMV -Cacna1d: ⁇ 42-pA) or no Ca V (pcDNA3.1 (+) ; P hCMV -MCS-pA) , and depolarized with KCl (0-70 mM) .
  • KCl-triggered GLuc expression Isogenic HEK-293 cells to (A) were transfected with a GLuc-expressing reporter vector (pWH29; P NFAT3 -Gluc-pA) instead of pMX57 and cultivated in cell culture medium containing different levels of KCl (0-60 mM) . GLuc levels in culture supernatants were scored after 48 h.
  • C KCl-triggered expression of GFP and DsRed.
  • Fig. S3. Design and validation of a calcium channel blocker-repressible (CaB-R) reporter assay.
  • A Design principle. The presence of calcium channel blockers (CCBs) prevents reporter protein expression by inhibiting depolarization-dependent activation of endogenous NFAT (nuclear factor of activated T-cells) signaling.
  • B, C Validation of dose-dependent CaB-R with clinically approved CCBs.
  • (D) Ca V 1.2 (pCa V 1.2/pKK56/pMX57) -or (E) Ca V 1.3 (pCa V 1.3: ⁇ 42/pKK56/pMX57) -transgenic HEK-293 cells were depolarized with different levels of KCl (0, 20, 40 mM) and immediately added to culture wells containing different concentrations of nicardipine.
  • SEAP levels in (B-E) were scored at 48 h after exposure to CCBs. Data are shown as mean percentage of relative blocking activity, normalized to maximal depolarization-dependent SEAP levels (0%; 40 mM KCl, no CCB) and maximal CCB blocking activity (100%; 10 ⁇ M nicardipine) .
  • A Depolarization-repressible reporter protein expression.
  • HEK-293 cells were co-transfected with pWH5 (P PMS -SEAP-pA) , pWH75 (P NFAT4 -PMS-pA) , pKK56 (P hEF1 ⁇ -Cacna2d1-P2A-Cacnb3-pA) and either Ca V 1.2 (pCa V 1.2; P hCMV -Cacna1c-pA) , Ca V 1.3 (pCa V 1.3; P hCMV -Cacna1d-pA) or no Ca V (pcDNA3.1 (+) ; P hCMV -MCS-pA) , and depolarized with KCl (0-70 mM) and SEAP levels in culture supernatants were scored after 48 h
  • C Ca V 1.2 (pCa V 1.2/pKK56/pWH75/pWH5) -or
  • E Cytotoxicity control of CCBs.
  • F, G Splice variant-dependent CaB-A activity.
  • Fig. S5. Control experiments of the translation-based (CaB-A) reporter assay.
  • HEK-293 cells were co-transfected with pCa V 1.2, pKK56, pMX199 and different L7Ae expression vectors containing five (pMX124; P NFAT3 -L7Ae-pA) , seven (pMX125; P NFAT4 -L7Ae-pA) or nine (pMX126; P NFAT5 -L7Ae-pA) tandem repeats of NFAT response elements, depolarized with 20 mM KCl and immediately placed in culture wells containing 0 or 10 ⁇ M nicardipine.
  • pWH145/pMX199-transgenic HEK-293 cells were cultivated for 48 h in cell culture medium containing different concentrations of CCBs.
  • Fig. S6 Identification of putative anti-Parkinson drug candidates.
  • C Validation of CaB-A for multiplexed drug screening.
  • E Quantification of Ca V 1 antagonism by (6) -gingerol using CaB-R.
  • HEK-293 cells transfected with Ca V 1.2-or Ca V 1.3-dependent CaB-R were depolarized with 30 mM KCl and immediately seeded into culture wells containing different concentrations of (6) -gingerol.
  • HEK-293 cells transfected with Ca V 1.2-or Ca V 1.3-dependent CaB-A were depolarized with 30 mM KCl and immediately seeded into culture wells containing different concentrations of sclareol.
  • HEK-293 cells transfected with a bacterial expression vector (pViM41; P T7 -mCherry-MCS) or Ca V 2.2 (pCa V 2.2; P hCMV -Cacna1b-pA) instead of Ca V 1.2-or Ca V 1.3 were used as negative controls indicating Ca V -unrelated or L-type Ca V -unrelated assay readouts, respectively.
  • Fig. S7 describes IC 50 values of FDA-approved calcium channel blockers (CCBs) on Ca v 1.2 and Ca v 1.3.
  • Fig. S8 describes essential oils used in this study.
  • Fig. S9 describes reference compounds for the generation of Ca V 1.3-inhibiting pharmacophores.
  • Fig. S10 describes FDA-approved drugs used in this study.
  • Mouse Ca V 1.2 ⁇ 1C (GenBank accession number AY728090, Addgene plasmid #26572)
  • rat Ca V 1.3 ⁇ 1D (GenBank accession number: AF370009, Addgene plasmid #49333)
  • rat Ca V 1.3 ⁇ 1D ⁇ 42a
  • rat Ca V ⁇ 3 (GenBank accession number: M88751, Addgene plasmid #26574)
  • rat Ca V ⁇ 2 ⁇ -1 (GenBank accession number: AF286488, Addgene plasmid #26575) were provided by Prof. Diane Lipscombe (Brown University) .
  • HEK-293T Human embryonic kidney cells
  • DMEM Dulbecco’s modified Eagle’s medium
  • FBS fetal bovine serum
  • F7524 fetal bovine serum
  • PenStrep penicillin/streptomycin solution
  • HEK-293T cells were transfected using a polyethyleneimine (PEI) -based protocol.
  • PEI polyethyleneimine
  • 2 x 10 5 cells/ml cells were seeded into 48-well plates (225 ⁇ l medium per well) , 6-well plates (1800 ⁇ l medium per well) , or 10 cm petri dishes (9 mL medium) .
  • cells were incubated for 12 h with 50 ⁇ l, 100 ⁇ l or 400 ⁇ l of a 10: 3 PEI: DNA mixture (w/w) , containing 0.3-0.4 ⁇ g (48-well plate) , 2.4-3 ⁇ g (6-well plate) , or 11-13 ⁇ g of total DNA (10 cm petri dish) , respectively.
  • the culture medium was exchanged to PEI-free medium containing defined concentrations of control compounds after 12 h.
  • transfected cells were detached with 0.05%trypsin-EDTA, re-seeded into 96-well plates (15000-40000 cells/well) , and cultured in medium containing defined concentrations of control compounds.
  • Analytical reporter assays were performed at 48 h after medium exchange.
  • Ethanol (EtOH; cat. no. 02860)
  • sclareol (cat. no. 357995)
  • linalool oxide (cat. no. 62141)
  • zingerone (cat. no. 88787)
  • Cremophor (cat. no. C5135)
  • DMSO dimethyl sulfoxide
  • PEI Polyethyleneimine
  • sc-201519 and diethyl phthalate (cat. no.sc-239738) were purchased from Santa Cruz Biotechnology (Heidelberg, Germany) .
  • Calcium channel blocker (CCB) drugs (Fig. S10) and plant essential oils (Fig. S8) were stored in DMSO and diluted with DMEM to final working concentrations. Final DMSO levels in the cell culture medium were kept below 0.4%.
  • Fluorescence imaging Fluorescence microscopy was performed with an inverted fluorescence microscope (Nikon Ti-E; Nikon) equipped with an incubation chamber, an Orca Flash-4 digital camera (Hamamatsu) , a pE-100-LED (CoolLED) as the transmission light source, a Spectra X (Lumencor) as the fluorescent light source and a 4 ⁇ objective, an excitation and emission filter set (TurboGFP: 475/525 nm; dsRed-Express 549/593 nm) and NIS Elements AR software (version 4.3.0) .
  • CCB-activity in CaB-R assays was calculated as “percentage of control” , with reporter protein levels normalized to maximum average counts (100%; 40 mM KCl addition) and minimum average counts (0%; 10 ⁇ M nicardipine) . Normalization calculations and nonlinear regression curve-fittings (log (inhibitor) normalized response–variable slope) , and statistical analysis were all conducted in Prism 7.0 (Graph Pad Software, San Diego, CA, USA) . For statistical analysis, an extra sum-of-squares F test was performed to determine the significance of differences in Log (IC 50 ) among the data sets of Fig. 2D, E.
  • the Z’ value was calculated between the positive (10 ⁇ M nicardipine) and negative (0.1%DMSO) controls according to the reported equation (Zhang et al., 1999) . All values for in vitro experiments are expressed as the mean ⁇ SD.
  • CCB-R assay In a genetic configuration enabling CCB-repressible reporter expression (CaB-R assay) (Fig. S3A) , the presence of CCBs blocking Ca V 1.2 and Ca V 1.3 inhibits NFAT signalling and causes a dose-dependent decrease of SEAP production (Figs. S3B and S3C) .
  • the IC 50 values determined in this study generally lay within the reference ranges reported for both Ca V 1-channel isoforms (Fig. S7) .
  • CaB-R allowed for use-dependent analysis of repetitive CCB-mediated channel inhibition and activation, which is a critical but often elusive screening requirement in ion channel drug discovery (Zamponi 2016) .
  • CCB-activated gene expression results from inhibition of NFAT-repressible gene expression of a synthetic transcription factor, which binds to and silences synthetic cognate promoters driving constitutive expression of the reporter gene.
  • synthetic transcription factors especially those having a TetR-family repressor domain –are inherently under allosteric control by particular ligands (Cuthbertson and Nodwell 2013, Vargas et al. 2011) .
  • PMS paraben-dependent mammalian trans-silencer
  • PmeR-KRAB Wang et al.
  • CCBs prevents NFAT-dependent L7Ae expression (pMX125, P NFAT4 -L7Ae-pA; P NFAT4, (NFAT IL4 ) 7- P min ; Fig. S5A) and de-represses translation of reporter mRNA engineered to contain cognate C/D-box motifs in the 5’-UTR (Fig. 1B) .
  • Depolarization-dependent production of L7Ae could knock down translation of SEAP mRNA harboring either one (pMX195, P SV40 - (C/D box) 1 -SEAP-pA) or two C/D-box repeats (pMX199, P SV40 - (C/D box) 2 -SEAP-pA) , with the vector combination of pMX125/pMX199 affording optimal nicardipine-inducible SEAP expression characterized by low background signals and high induction profiles for use-dependent Ca V 1-inhibition (Fig. 1, C and D) .
  • this modified CaB-A assay is no longer influenced by potential crosstalk between CCBs and the L7Ae-C/D box interaction (Figs. S5B-S5D) , and thus it enables accurate assessment of dose-dependent CCB-channel antagonism (Fig. 1, E and F) .
  • the CaB-A assay identified five oils (i.e.; rose flower, cistrus ladanifer, pinus sylvestris, ginger, clary sage) that most effectively inhibited Ca V 1.2 and Ca V 1.3 (Fig. 2A) . All five essential oils dose-dependently activated SEAP expression in the CaB-A assay (Fig. 2, B and C) , and control experiments confirmed that none of these essential oils interfered with L7Ae activity or intracellular calcium signaling (Fig. S6A) .
  • PD Parkinson’s disease
  • treatment of Parkinson’s disease (PD) requires a compound that can maximally inhibit Ca V 1.3 but not Ca V 1.2 (Ilijic et al. 2011) .
  • To quantify the antagonistic activities towards Ca V 1.3 (PD drug target) and Ca V 1.2 (PD anti-target) simultaneously i.e.; in a multiplexed
  • sclareol (8.8 ⁇ 1.0 ⁇ M; Figure 3D) had a more than three-fold lower IC 50 value for Ca V 1.3 than (6) -gingerol (30.5 ⁇ 6.3 ⁇ M; Figure S6E) and is also structurally divergent to all currently known CCB compounds (Fig. S9, Fig. S10) , such as dihydropyridines (DHP) represented by nifedipine ( Figure 3B) .
  • DHP dihydropyridines
  • Figure 3B nifedipine
  • Oligonucleotides Restriction endonuclease-recognition sites are underlined and annealing nucleotides are shown in capital letters.
  • BFP blue fluorescent protein
  • Ca V 1.2 member 2 of the Ca V 1 family of L-type voltage-gated Ca 2+ channels
  • Cacna1c ⁇ 1-subunit of mouse Ca V 1.2
  • Cav1.3 member 3 of the Cav1 family of L-type voltage-gated Ca 2+ channels
  • Cav1.3 AXB synthetic Cav1.3 mutant where amino acid A at position X of the ⁇ 1-subunit was exchanged to amino acid B
  • Cav2.2 N-type voltage-gated Ca 2+ channel
  • Cacna1d ⁇ 1-subunit of rat Cav1.3
  • Cacna1d AXB mutant ⁇ 1-subunit of Cav1.3 where amino acid A at position X was exchanged to amino acid B
  • Cacna1d ⁇ 42a, Cacna1d-isoform lacking exon 42
  • Cacna1b ⁇ 1-subunit of rat Cav2.2
  • ChemMine tools an online service for analyzing and clustering small molecules. Nucleic Acids Res, 39, W486-91.
  • Cyclized NDGA modifies dynamic alpha-synuclein monomers preventing aggregation and toxicity. Sci Rep, 9, 2937.
  • Nimodipine an L-type calcium channel blocker attenuates mitochondrial dysfunctions to protect against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinsonism in mice. Neurochem Int, 99, 221-232.
  • beta-cell-mimetic designer cells provide closed-loop glycemic control. Science, 354, 1296-1301.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention relates to compounds as calcium channel blocker, a composition comprising thereof, use of said compounds and a method for treating diseases or disorders associated with calcium ion channel using said compounds. The present invention also relates to an in vitro screening method of calcium channel blocker compounds.

Description

CALCIUM CHANNEL BLOCKER AND SCREENING METHOD THEREOF FIELD OF THE INVENTION
The present invention relates to compounds as calcium channel blocker, a composition comprising thereof, use of said compounds and a method for treating diseases or disorders associated with calcium ion channel using said compounds. The present invention also relates to an in vitro screening method of calcium channel blocker compounds.
BACKGROUND OF THE INVENTION
Calcium channel blockers (CCBs) are defined as a class of clinically used molecules, peptides or proteins that selectively block the entry of Ca 2+ into cells through inhibition of calcium-permeable ion channels, resulting in decrease of intracellular Ca 2+ concentration. Currently known calcium channel blockers include phenylalkylamines such as verapamil, or dihydropyridines (DHP) such as amlodipine, felodipine, isradipine, lacidipine, nicardipine, nifedipine, niguldipine, niludipine, nimodipine, nisoldipine, nitrendipine, nivaldipine, and the like. In general, CCBs are used alone or in combiantion with other drugs such as angiotensin receptor blocker (ARB) and/or diuretics, for the treatment of hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac myopathy, supraventricular and ventricular arrhythmias, atrial fibrillation, atrial flutter, detrimental vascular remodeling, myocardial infarction, atherosclerosis, renal insufficiency (diabetic and non-diabetic) , diabetes, primary and secondary pulmonary hypertension, renal failure, diabetic nephropathy, glomerulonephritis, scleroderma, glomerular sclerosis, proteinuria of primary renal disease, and also renal vascular hypertension, diabetic retinopathy, the management of other vascular disorders, such as migraine, peripheral vascular disease, Raynaud's disease, luminal hyperplasia, cognitive dysfunction (such as Alzheimer's diseases) , glaucoma and stroke (see, e.g. WO03097045) .
Parkinson’s disease (PD) is an age-related neurodegenerative disorder characterized by progressive motor impairments such as tremors, rigidity and bradykinesia (Daniels et al. 2019, Gao et al. 2003, Sarkar, Raymick and Imam 2016) . These symptoms are primarily driven by the selective loss of mesencephalic dopamine-producing neurons in the pars compacta of the substantia nigra (SNc) of the midbrain (Daniels et al. 2019, Gao et al. 2003, Izumi et al. 2007, Sarkar et al. 2016, Singh et al. 2016) . Defective dopaminergic (DA) neurons are characterized by  the formation of Lewy bodies consisting of ubiquitin and α-synuclein aggregates, are highly sensitive to stress, and show markedly impaired mitochondrial functions, which lead to reduced ATP production and poor calcium homeostasis (Crocker et al. 2003, Sarkar et al. 2016) . Excessive-activity-related Ca 2+ oscillations contribute to the generation of reactive oxygen species (ROS) , resulting in excitotoxicity and apoptosis (Ilijic, Guzman and Surmeier 2011, Singh et al. 2016) . Although a plethora of putative therapeutics have been proposed to relieve PD symptoms, including DA receptor agonists, anti-inflammatory drugs, inhibitors of α-synuclein aggregates, neurotrophic growth factors and calpain inhibitors, none of them affords fully effective neuroprotection –a term that, strictly defined, refers to any treatment strategy that protects the integrity of DA neurons (Sarkar et al. 2016) .
In recent years, strategies based on inhibition of L-type voltage-gated calcium channels (LTCC) with dihydropyridine (DHP) blockers have gained increased attention for neuroprotective therapy of PD (Biglan et al. 2017, Ortner et al. 2017) . Specifically, Ca V1.3 is a LTCC isoform primarily expressed in neurons and pancreatic endocrine cells, and opens at subthreshold membrane potentials due to its negative activation voltage range (Xu and Lipscombe 2001, Yang and Berggren 2006) . DA neurons exhibit Ca V1.3-dependent pacemaking activity, which is a major contributor to excitotoxicity during PD progression (Ortner et al. 2017, Singh et al. 2016) . However, DHP channel blockers are generally non-selective, blocking both Ca V1.2 and Ca V1.3 channel isoforms in most cases (Ortner and Striessnig 2016) . Because Ca V1.2 channels are expressed at very high levels in cardiac tissues, cross-antagonism to these channels severely limits the dose of DHPs that can be used for neuroprotective purposes (Ilijic et al. 2011, Ortner and Striessnig 2016) . Therefore, Ca V1.3-selective blockers without Ca V1.2-mediated cardiovascular side effects are currently considered elusive candidates for PD drug discovery (Ortner et al. 2017) . Hence, there is still need for blockers that have high selectivity towards Ca V1.3 channel with minimal crosstalk to Ca V1.2 channel to solve the above-mentioned problem.
DISCLOSURE OF THE INVENTION
Ion channel drug discovery is primarily limited by the scarcity of technologies that allow high-throughput screening of candidate compounds. The state-of-the art technology for high-throughput screening of ion channel modulators is the fluorescent imaging plate reader (FLIPR) assay, which is based on calcium-activated fluorescent dyes (Zamponi 2016) . However, FLIPR experiments require proprietary instruments, is inherently prone to signal fluctuation (Inglese et al. 2007, Heusinkveld and Westerink 2011) , and therefore necessitates integrated patch-clamp platforms to provide secondary validation (Dunlop et al. 2008) . Because FLIPR is also limited to  snapshot-recordings of single ion-influx events of cells harvested in non-physiological buffer solutions, it is not applicable to the identification of use-dependent CCBs such as antiarrhythmics that require methods for assessing repetitive channel activation (Zamponi 2016) . Conventional patch clamp platforms are more accurate and most information-rich, but are primarily constrained by low throughput and poor cost-efficiency in a drug screening context. Furthermore, an ideal asset of high-throughput drug discovery is multiplexed drug screening, allowing simultaneous assessment of multiple disease-specific drug targets within a single experiment (Bachovchin et al. 2014) .
By capitalizing on synthetic biology-inspired gene circuits that can flexibly program cells to perform application-specific biological tasks with high robustness and precision (Xie and Fussenegger 2018) , the inventors have custom-designed a mammalian cell-based drug discovery platform for high-throughput screening of isoform-specific calcium channel blockers (CCB) . Specifically, deflection of Ca V-dependent NFAT-activation to the repression of reporter protein translation allowed for the engineering of an antagonist-inducible reporter system (CaB-A assay) that effectively reduced the susceptibility to false-negatives associated to cytotoxicity-mediated signal decrease. After validating this technology with a selection of clinically approved CCB drugs, the inventors identified five plant-derived essential oils that could effectively block Ca v1.2 and Ca v1.3. Further integration of in silico virtual screening and deep-learning technology eventually enabled the identification of sclareol and gingerol as natural bioactive compounds that inhibits Ca v1.3 stronger than Ca v1.2. Finally, using whole cell patch-clamp recordings and a PD mouse model, the inventors revealed strong neuroprotective activities of sclareol both in vitro and in vivo with comparable efficacy but higher safety than currently known CCB drugs in the clinics, rendering sclareol and gingerol promising candidate drugs for neuroprotection in PD patients. Furthermore, the inventors believe the combined application of synthetic-biology-inspired technology, advanced computational methods and molecular medicine, as exemplified here, represents an efficient platform that could help to set the stage for next-generation drug discovery in a variety of contexts.
In a first aspect, the present invention provides compounds as CCB. In particular, the present invention provides the compound of formula (I) , having the following structure:
Figure PCTCN2022137596-appb-000001
wherein X is C 1-2 alkylene, and each of R 1 and R 2 is independently selected from C 1-4 alkyl, C 2-4 alkenyl, or C 2-4 alkynyl, which is optionally substituted with one or more halogen atoms,
or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
In a preferred embodiment, the compound of formula (I) has the structure of formula (Ia) :
Figure PCTCN2022137596-appb-000002
wherein X is C 1-2 alkylene, and R 1 is independently selected from C 1-4 alkyl, C 2-4 alkenyl, or C 2-4 alkynyl, which is optionally substituted with one or more halogen atoms,
or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
In a further preferred embodiment, the compound of formula (I) has the structure of formula (Ib) :
Figure PCTCN2022137596-appb-000003
In a particular embodiment, the compound of formula (Ib) is either (1R, 2R, 4aS, 8aS) -1- [ (3R) -3-hydroxy-3-methylpent-4-enyl] -2, 5, 5, 8a-tetramethyl-3, 4, 4a, 6, 7, 8-hexahydro-1H-naphthalen-2-ol or (1R, 2R, 4aS, 8aS) -1- ( (R) -3-hydroxy-3-methylpent-4-enyl) -2, 5, 5, 8a-tetramethyl-decahydronaphthalen-2-ol, and any enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
The present invention also provides the compound of formula (II) as CCB, having the following structure:
Figure PCTCN2022137596-appb-000004
wherein R 3 is C 1-10 alkyl, which is optionally substituted with one or more hydroxy groups, preferably is substituted with one hydroxy group,
or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
In a preferred embodiment, the compound of formula (II) has the structure of formula (IIa) :
Figure PCTCN2022137596-appb-000005
wherein R 4 is C 1-8 alkyl, preferably C 1-6 alkyl, more preferably C 1-4 alkyl,
or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
In a further preferred embodiment, the compound of formula (II) has the following structures:
Figure PCTCN2022137596-appb-000006
or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
In a particular embodiment, the compound of formula (IIb-1) is (5S) -5-hydroxy-1- (4-hydroxy-3-methoxyphenyl) octan-3-one, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
In another particular embodiment, the compound of formula (IIb-2) is (5S) -5-hydroxy-1- (4-hydroxy-3-methoxyphenyl) decan-3-one, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
In another particular embodiment, the compound of formula (IIb-3) is (5S) -5-hydroxy-1- (4-hydroxy-3-methoxyphenyl) dodecan-3-one, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
In another particular embodiment, the compound of formula (IIb-4) is (5S) -5-hydroxy-1- (4-hydroxy-3-methoxyphenyl) tetradecan-3-one, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
In a second aspect, the present invention provides an essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) . The present invention also provides a composition comprising an essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) . Preferably, the composition is a pharmaceutical composition comprising the essential oil and pharmaceutically acceptable carrier or diluent.
In a third aspect, the present invention provides a pharmaceutical composition comprising an effective amount of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) .
In a preferred embodiment, the present invention provides a pharmaceutical composition comprising an effective amount of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , for use in the treatment of diseases or disorders selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac myopathy, supraventricular and ventricular arrhythmias, atrial fibrillation, atrial flutter, detrimental vascular remodeling, myocardial infarction, atherosclerosis, renal insufficiency (diabetic and non-diabetic) , diabetes, primary and secondary pulmonary hypertension, renal failure, diabetic nephropathy, glomerulonephritis, scleroderma, glomerular sclerosis, proteinuria of primary renal disease, and also renal vascular hypertension, diabetic retinopathy, the management of other vascular disorders, such as migraine, peripheral vascular disease, Raynaud's disease, luminal hyperplasia, cognitive dysfunction (such as Alzheimer's diseases) , glaucoma, stroke and Parkinson disease.
Preferably, the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
In a fourth aspect, the present invention provides a method of treating diseases or disorders, comprising the administration of effective amount of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or the composition comprising the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , to a subject, wherein the diseases or disorders is the disease or disorder which can be benefited from blockade of calcium channel, preferably the disease or disorder which can be benefited from selective blockade of Ca V1.3 channel compared with Ca V1.2 channel, more preferably the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac myopathy, supraventricular and ventricular arrhythmias, atrial fibrillation, atrial flutter, detrimental vascular remodeling, myocardial infarction, atherosclerosis, renal insufficiency (diabetic and non-diabetic) , diabetes, primary and secondary pulmonary hypertension, renal failure, diabetic nephropathy, glomerulonephritis, scleroderma, glomerular sclerosis, proteinuria of primary renal disease, and also renal vascular hypertension, diabetic retinopathy, the management of other vascular disorders, such as migraine, peripheral vascular disease, Raynaud's disease, luminal hyperplasia, cognitive dysfunction (such as Alzheimer's diseases) , glaucoma, stroke and Parkinson disease.
Preferably, the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
More preferably, the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof has high selectivity to Ca V1.3 channel compared with Ca V1.2 channel.
In a fifth aspect, the present invention provides use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof as calcium channel blocker (CCB) . Preferably, the present invention provides use of the compound of formula (I) , (Ia) , (Ib) , (II) ,  (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof as selective calcium channel blockers. Particularly, the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof has high selectivity to Ca V1.3 channel compared with Ca V1.2 channel. More particularly, the present invention provides use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or the composition comprising the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , for the treatment of diseases or disorders selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac myopathy, supraventricular and ventricular arrhythmias, atrial fibrillation, atrial flutter, detrimental vascular remodeling, myocardial infarction, atherosclerosis, renal insufficiency (diabetic and non-diabetic) , diabetes, primary and secondary pulmonary hypertension, renal failure, diabetic nephropathy, glomerulonephritis, scleroderma, glomerular sclerosis, proteinuria of primary renal disease, and also renal vascular hypertension, diabetic retinopathy, the management of other vascular disorders, such as migraine, peripheral vascular disease, Raynaud's disease, luminal hyperplasia, cognitive dysfunction (such as Alzheimer's diseases) , glaucoma, stroke and Parkinson disease.
Preferably, the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
In a sixth aspect, the present invention provides use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof in manufacture of a medicament for the treatment of diseases or disorders which can be benefited from blockade of calcium channels. Preferably, the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof is used as selective calcium channel blockers. Particularly, the present invention provides use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt  thereof in manufacture of a medicament for the treatment of the disease or disorder which can be benefited from selective blockade of Ca V1.3 channel compared with Ca V1.2 channel. More particularly, the present invention provides use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or the composition comprising the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , in manufacture of a medicament for the treatment of diseases or disorders selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac myopathy, supraventricular and ventricular arrhythmias, atrial fibrillation, atrial flutter, detrimental vascular remodeling, myocardial infarction, atherosclerosis, renal insufficiency (diabetic and non-diabetic) , diabetes, primary and secondary pulmonary hypertension, renal failure, diabetic nephropathy, glomerulonephritis, scleroderma, glomerular sclerosis, proteinuria of primary renal disease, and also renal vascular hypertension, diabetic retinopathy, the management of other vascular disorders, such as migraine, peripheral vascular disease, Raynaud's disease, luminal hyperplasia, cognitive dysfunction (such as Alzheimer's diseases) , glaucoma, stroke and Parkinson disease.
Preferably, the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
In a seventh aspect, the present invention provides a method of screening compound as calcium channel blocker, especially having high selectivity to Ca V1.3 channel compared with Ca V1.2 channel, said method comprising the following steps:
(1) selection of a suitable host cell that weakly expresses or does not express Ca V1.3 or Ca V1.2 channel endogenously;
(2) delivery of (i) nucleic acid segments that encode one or more calcium channel subunits alongside (ii) any calcium-responsive reporter system into the host cell described in (1) ;
(3) depolarization of cells described in (1-2) through electrical stimulation or by treatment of aqueous salt solutions such as potassium chloride;
(4) incubation of depolarized cells described in (1-3) with candidate calcium channel blocker compounds for at least 1 minute; and
(5) quantification of signals produced by the calcium-responsive reporter system described in (1) .
In a preferred embodiment, the suitable host cell is of mammalian or amphibian origin. In a further preferred embodiment, the selected host cell is derived from human embryonic kidney cells, patient-specific tumors or Chinese hamster ovary cells, such as HEK-293, HeLa or CHO-K1 cells. In another preferred embodiment, the selected host cell is derived from Xenopus oocytes.
In another embodiment, the nucleic acid segments that encode one or more calcium channel subunits are one or more nucleic acid sequences comprising a mRNA sequence that can translate into any one of the protein subunits selected from α1, α2, β1, β2, β3, β4, γ, δ or α2δdomains of voltage-gated calcium channels. In another embodiment, the nucleic acid segments that encode one or more calcium channel subunits are one or more nucleic acid sequences comprising a DNA sequence that can transcribe into a RNA sequence that produces any one of the protein subunits selected from α1, α2, β1, β2, β3, β4, γ, δ or α2δ domains of voltage-gated calcium channels. In a preferred embodiment, the nucleic acid segment (s) that encode (s) one or more calcium channel subunits is (are) a nucleic acid sequence comprising one or more gene sequences selected from CACNA1S, CACNA1C, CACNA1D, CACNA1F, CACNA1A, CACNA1B, CACNA1E, CACNA1G, CACNA1H, CACNA1I, CACNA2D1, CACNA2D2, CACNA2D3, CACNA2D4, CACNB1, CACNB2, CACNB3, CACNB4, CACNG1, CACNG2, CACNG3, CACNG4, CACNG5, CACNG6, CACNG7 or CACNG8 or any homologue thereof.
In another embodiment, the calcium-responsive reporter system is a protein whose activity and/or integrity is naturally evolved or engineered to depend on local concentrations of calcium ions. In another embodiment, the calcium-responsive reporter system is an RNA molecule whose stability and/or translation is naturally evolved or engineered to depend on local concentrations of calcium ions. In another embodiment, the calcium-responsive reporter system is a natural or synthetic promoter whose activation is naturally evolved or engineered to depend on intracellular concentrations of calcium ions. In another embodiment, the calcium-responsive reporter system is any combination of a calcium-dependent protein, calcium-dependent RNA and calcium-dependent promoter described above. In a preferred embodiment, the calcium-responsive reporter system consists of a synthetic promoter that contains DNA segments bound by the calcium-responsive transcription factor NFAT (nuclear factor of activated T cells) .
DEFINITIONS
As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
As used herein, the term “subject” refers to a mammal, for example, a human.
As used herein, the term “halogen” signifies fluorine, chlorine, bromine or iodine, particularly fluorine or chlorine.
“Preventing” or “prevention” refers to a reduction in risk of acquiring a disease or disorder (i.e., causing at least one of the clinical symptoms of the disease not to develop in a subject that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease) . In some embodiments, “preventing” or “prevention” refers to reducing symptoms of the disease by taking the compound in a preventative fashion.
“Treating” or “treatment” of a disease or disorder refers to arresting or ameliorating a disease or at least one of the clinical symptoms of a disease or disorder, reducing the risk of acquiring a disease or at least one of the clinical symptoms of a disease, reducing the development of a disease or at least one of the clinical symptoms of the disease or reducing the risk of developing a disease or at least one of the clinical symptoms of a disease. “Treating” or “treatment” also refers to inhibiting the disease, either physically, (e.g., stabilization of a discernible symptom) , physiologically, (e.g., stabilization of a physical parameter) , or both, and to inhibiting at least one physical parameter or manifestation that may or may not be discernible to the subject. “Treating” or “treatment” also refers to delaying the onset of the disease, or at least one or more symptoms thereof in a subject who may be exposed to or predisposed to a disease or disorder even though that subject does not yet experience or display symptoms of the disease.
The term “effective amount” as used herein refers to an amount of the compound of the present invention effective for “treating” or “preventing” a disease or disorder in a subject. The effective amount may cause any changes observable or measurable in a subject as described in the definition of “treating” , “treatment” , “preventing” , or “prevention” above. The “effective amount” may vary depending, for example, on the compound, the disease and/or symptoms of the disease, severity of the disease and/or symptoms of the disease or disorder, the age, weight, and/or health of the subject to be treated, and the judgment of the prescribing physician. An appropriate amount in any given instance may be ascertained by those skilled in the art or capable of determination by routine experimentation.
As used herein, “alkyl” means a straight or branched chain saturated hydrocarbon moieties, such as those containing from 1 to 10 carbon atoms (C 1-10) , 1 to 8 carbon atoms (C 1-8) , 1 to 6 carbon atoms (C 1-6) , 1-4 carbon atoms (C 1-4) or 1-3 carbon atoms (C 1-3) . For example, “C 1-6alkyl”  refers to the alkyl having 1-6 (including 1, 2, 3, 4, 5 or 6) carbon atoms. “C 1-4alkyl” refers to the alkyl having 1-4 (including 1, 2, 3, or 4) carbon atoms. Representative C 1-6 alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl and the like.
As used herein, “alkenyl” means a straight or branched chain saturated hydrocarbon moieties comprising at least one double bond, such as those containing from 2 to 6 carbon atoms (C 2-6) , 2-4 carbon atoms (C 2-4) or 2-3 carbon atoms (C 2-3) . For example, “C 2-4 alkenyl” refers to the alkenyl having 2-4 (including 2, 3, or 4) carbon atoms. Representative C 2-4 alkenyl groups include ethenyl, propenyl, allyl, butenyl, and the like.
As used herein, “alkynyl” means a straight or branched chain saturated hydrocarbon moieties comprising at least one triple bond, such as those containing from 2 to 6 carbon atoms (C 2-6) , 2-4 carbon atoms (C 2-4) or 2-3 carbon atoms (C 2-3) . For example, “C 2-4 alkynyl” refers to the alkynyl having 2-4 (including 2, 3, or 4) carbon atoms. Representative C 2-4 alkynyl groups include ethynyl, propynyl, propargyl, butynyl, and the like.
As used herein, “alkylene” means a straight or branched chain saturated divalent hydrocarbon moieties, such as those containing from 1 to 4 carbon atoms (C 1-4) , 1-3 carbon atoms (C 1-3) or 1-2 carbon atoms (C 1-2) . For example, “C 1-2alkylene” refers to the alkyl having 1 or 2 carbon atoms. Representative C 1-2 alkylene groups include methylene or ethylene.
The term “diastereomer” denotes a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another.
The term “pharmaceutically acceptable salt” refers to conventional acid-addition salts or base-addition salts that retain the biological effectiveness and properties of the compounds of formula I and are formed from suitable non-toxic organic or inorganic acids or organic or inorganic bases. Acid-addition salts include for example those derived from inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, sulfamic acid, phosphoric acid and nitric acid, and those derived from organic acids such as p-toluenesulfonic acid, salicylic acid, methanesulfonic acid, oxalic acid, succinic acid, citric acid, malic acid, lactic acid, fumaric acid, and the like. Base-addition salts include those derived from ammonium, potassium, sodium and, quaternary ammonium hydroxides, such as for example, tetramethyl ammonium hydroxide. The chemical modification of a pharmaceutical compound into a salt is a technique well known to pharmaceutical chemists in order to obtain improved physical and chemical stability, hygroscopicity, flow ability and solubility of compounds. It is for example described in Bastin R.J., et al., Organic  Process Research &Development  2000, 4, 427-435; or in Ansel, H.,  et al., In: Pharmaceutical Dosage Forms and Drug Delivery Systems, 6th ed. (1995) , pp. 196 and 1456-1457.
As used herein, the term “essential oil” refers to volatile oil naturally produced by plants as defensive metabolites for the protection against diseases, parasite, fungal, bacterial and viral infections, extreme temperature fluctuations and dehydration. In many countries, essential oils isolated from plants are used as additives in cosmetics, drugs, detergents and foods in order to ameliorate the aromatic, antioxidant and antimicrobial effects of the respective products [Chamorro et al. 2012; Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications; Chapter 15] . In France and Germany, essential oils are also used as major components of medical formulations within the field of aromatherapy, which is a clinically approved branch of phytotherapy. Common extraction methods of essential oil include distillation, freezing compression, chemical solvent extraction, oil separation, carbon dioxide extraction, soaking and so on. Steam distillation extraction is the most commonly used method. Preferably, essential oil is derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) .
BRIEF DESCRIPTION OF FIGURES
Figure 1. Development of a cell-based assay for multiplexed drug screening.
(A) Experimental setup. For multiplexed screening of anti-Parkinson drugs, Ca V1.3 (target) -specific and Ca V1.2 (anti-target) -specific cell populations –each controlling the expression of a flexibly chosen reporter protein –are placed in the same reaction well to enable simultaneous assessment of inhibitory potency and specificity in potassium chloride (KCl) -mediated cell depolarization. (B) Design of a calcium channel blocker-activated (CaB-A) reporter assay. Synthetic NFAT-specific promoters control the production of L7Ae, which inhibits the translation of reporter mRNA by binding to specific C/D-box aptamers in the 5’-UTR. Calcium channel blockers (CCBs) activate reporter protein expression by inhibiting depolarization-dependent L7Ae expression. (C, D) Optimization of CaB-A for use-dependent CCB analysis. (C) Ca V1.2 (pCa V1.2/pKK56) -or (D) Ca V1.3 (pCa V1.3/pKK56) -transgenic HEK-293 cells were co-transfected with a NFAT-controlled L7Ae expression vector (pMX125; P NFAT4-L7Ae-pA) and different reporter vectors containing one (pMX195; P SV40- (C/D-box)  1-SEAP-pA) or two tandem C/D-box aptamer repeats (pMX199; P SV40- (C/D-box)  2-SEAP-pA) . The cells were depolarized with different levels of KCl (0, 20, 30 mM) and cultivated for 48 h in the absence or presence (10 μM) of nicardipine. SEAP levels in culture supernatants were scored. Data points are presented as mean ± SD (n = 3 independent experiments) . Numeric values displayed on top of each column-group represent induction-folds as calculated by SEAP values resulting from 10μM  nicardipine divided by SEAP values resulting from 0μM nicardipine. (E, F) Validation of CaB-A with clinically approved CCBs. (E) HEK-293 cells transfected with Ca V1.2 (pCa V1.2/pKK56/pMX125/pMX199) -or (F) Ca V1.3 (pCa V1.3/pKK56/pMX125/pMX199) -dependent CaB-A systems were depolarized with 20 mM KCl and immediately seeded into culture wells containing different concentrations of CCBs. Data are mean ± SD of SEAP levels scored at 48 h after exposure to CCBs (n = 3 independent experiments) .
Figure 2. Identification of putative Ca V1.2-and Ca V1.3-antagonizing essential oil products.
(A) High-throughput analysis. Independent Ca V1.2-and Ca V1.3-specific CaB-A systems (pCa V/pKK56/pMX125/pMX199) were depolarized with 20 mM KCl and immediately seeded into culture wells supplemented with 4x10 -5 v/v of different plant essential oils. Data are mean FOC (fold of DMSO control) ± SD of SEAP levels scored at 48 h after exposure to essential oils (n = 3 independent experiments) . (B, C) Dose-dependent validation of the most active essential oil hits. (B) Ca V1.2-and (C) Ca V1.3-specific CaB-A systems were depolarized with 20 mM KCl and added to culture wells containing different essential oil dilutions (v/v) . Data in (B-C) are mean ± SD of SEAP levels scored at 48 h after exposure to essential oils (n = 3 independent experiments) . DMSO (solvent) levels in cell culture medium were kept below 0.4%.
Figure 3. Identification of active constituents that selectively inhibit Ca V1.3. (A) Ligand-based virtual screening. Representative pharmacophore model for Ca V1.3 inhibitors created with LigandScout using the positive and negative reference compounds listed in Table S3. This illustration exemplifies the alignment of (6) -gingerol to the Ca V1.3-blocking pharmacophore. (B) Structure clustering analysis of candidate compounds. All 13 hits from the virtual screening experiment using 198 candidate molecules derived from GC-MS data of essential oils (Table S3) were clustered based on structure similarity using the ChemMine tool. Right panel: chemical structures of the five compounds selected as representatives of the clusters. (C) Assessment of putative Ca V1.3 antagonism by the PD drug candidates. HEK-293 cells transfected with the Ca V1.3-dependent CaB-A system were depolarized with 30 mM KCl and immediately seeded into culture wells containing different drug candidates supplemented at 10 μM or 100 μM. Data points are presented as mean FOC (fold of DMSO control) of SEAP levels scored at 48 h after exposure to nicardipine (n = 3 independent experiments) . (D) Quantification of Ca V1 antagonism by sclareol using CaB-R. HEK-293 cells transfected with Ca V1.2-or Ca V1.3-dependent CaB-R were depolarized with 30 mM KCl and immediately seeded into culture wells containing different concentrations of sclareol. HEK-293 cells transfected with a constitutive  SEAP-expression vector (pSEAP2-Control; P SV40-SEAP-pA) were used as a reference for putative cytotoxicity caused by drug exposure. HEK-293 cells transfected with a bacterial expression vector (pViM41; P T7-mCherry-MCS) was used as negative control indicating Ca V-unrelated assay readouts. Data are mean ± SD of SEAP levels scored at 48 h after drug exposure (n = 3 independent experiments) . (E) Quantification of Ca V1 antagonism by sclareol and nifedipine on different Ca V1.3 mutants. HEK-293 cells transfected with CaB-R regulated by different synthetic Ca V1.3 mutants (WT, pCa V1.3/pKK56/pMX57; Ca V1.3 Y1048A, pWH154/pKK56/pMX57; Ca V1.3 Y1365A, A1369S, I1372A, pWH155/pKK56/pMX57) were depolarized with 30 mM KCl and immediately seeded into culture wells containing different concentrations of sclareol or nifedipine. HEK-293 cells transfected with a constitutive SEAP-expression vector (pSEAP2-Control; P SV40-SEAP-pA) were used as a reference for putative cytotoxicity caused by drug exposure. Data are mean ± SD of SEAP levels scored at 48 h after drug exposure (n = 3 independent experiments) .
Fig. S1. Principles of Ca V1-specific designer cell-based screening assays.
(A) Synthetic excitation-transcription coupling. In human embryonic kidney (HEK-293) cells, membrane depolarization activates L-type voltage-gated calcium channels (Ca V1) and triggers Ca 2+ influx, activation of endogenous calcium-responsive transcriptional factors (CTFs) and initiation of reporter gene transcription from synthetic cognate calcium-specific promoters (CSPs) containing CTF-specific response elements. Inhibition of Ca V1 by specific calcium channel blockers (CCBs) antagonizes membrane depolarization and attenuates Ca 2+-dependent gene regulation. (B, C) Selection of synthetic CSPs to quantify depolarization-dependent Ca V1 signaling. (B) Ca V1.2 (pCa V1.2/pKK56) -or (C) Ca V1.3 (pCa V1.3: Δ42/pKK56) -transgenic HEK-293 cells were co-transfected with pWH31 (P cFOS-SEAP-pA) , pHY30 (P NFAT1-SEAP-pA) , pMX57 (P NFAT3-SEAP-pA) or pWH90 (P CRE2-SEAP-pA) and cultivated in the presence or absence of 60 mM potassium chloride (KCl) . SEAP levels in culture supernatants were scored after 48 h. Data are shown as mean ± SD (n=3 independent experiments) .
Fig. S2. Depolarization-inducible reporter gene expression.
(A) KCl-triggered SEAP expression. HEK-293 cells were co-transfected with pMX57 (P NFAT3-SEAP-pA) , pKK56 (P hEF1α-Cacna2d1-P2A-Cacnb3-pA) and either Ca V1.2 (pCa V1.2; P hCMV-Cacna1c-pA) , Ca V1.3 (pCa V1.3: Δ42; P hCMV-Cacna1d: Δ42-pA) or no Ca V (pcDNA3.1 (+) ; P hCMV-MCS-pA) , and depolarized with KCl (0-70 mM) . SEAP levels in culture supernatants were scored after 48 h. (B) KCl-triggered GLuc expression. Isogenic HEK-293 cells to (A) were  transfected with a GLuc-expressing reporter vector (pWH29; P NFAT3-Gluc-pA) instead of pMX57 and cultivated in cell culture medium containing different levels of KCl (0-60 mM) . GLuc levels in culture supernatants were scored after 48 h. (C) KCl-triggered expression of GFP and DsRed. Isogenic HEK-293 cells to (A) were transfected with reporter vectors expressing DsRed (pWH37; P NFAT3-DsRed-Express-pA) or tGFP (pFS119; P NFAT3-TurboGFP: dest1-pA) instead of pMX57, and depolarized with KCl (0-60 mM) . Fluorescence levels were recorded after 48 h by quantitative microplate reading (left; a. u., arbitrary unit) or microscopy (right) . All data are presented as mean± SD (n=3 independent experiments) .
Fig. S3. Design and validation of a calcium channel blocker-repressible (CaB-R) reporter assay. (A) Design principle. The presence of calcium channel blockers (CCBs) prevents reporter protein expression by inhibiting depolarization-dependent activation of endogenous NFAT (nuclear factor of activated T-cells) signaling. (B, C) Validation of dose-dependent CaB-R with clinically approved CCBs. (B) Ca V1.2 (pCa V1.2/pKK56/pMX57) -or (C) Ca V1.3 (pCa V1.3: Δ42/pKK56/pMX57) -transgenic HEK-293 cells were depolarized with 40 mM KCl and immediately placed in culture wells containing different concentrations of CCBs. (D, E) Validation of CaB-R for analysis of use-dependent CCBs. (D) Ca V1.2 (pCa V1.2/pKK56/pMX57) -or (E) Ca V1.3 (pCa V1.3: Δ42/pKK56/pMX57) -transgenic HEK-293 cells were depolarized with different levels of KCl (0, 20, 40 mM) and immediately added to culture wells containing different concentrations of nicardipine. SEAP levels in (B-E) were scored at 48 h after exposure to CCBs. Data are shown as mean percentage of relative blocking activity, normalized to maximal depolarization-dependent SEAP levels (0%; 40 mM KCl, no CCB) and maximal CCB blocking activity (100%; 10 μM nicardipine) . Statistics of (D-E) were analyzed by means of an extra-sum-of-squares F test (n=3 independent experiments) .
Fig. S4. Design and validation of a calcium channel blocker-activated (CaB-A) reporter assay. (A) Depolarization-repressible reporter protein expression. HEK-293 cells were co-transfected with pWH5 (P PMS-SEAP-pA) , pWH75 (P NFAT4-PMS-pA) , pKK56 (P hEF1α-Cacna2d1-P2A-Cacnb3-pA) and either Ca V1.2 (pCa V1.2; P hCMV-Cacna1c-pA) , Ca V1.3 (pCa V1.3; P hCMV-Cacna1d-pA) or no Ca V (pcDNA3.1 (+) ; P hCMV-MCS-pA) , and depolarized with KCl (0-70 mM) and SEAP levels in culture supernatants were scored after 48 h. Data are presented as mean ± SD (n=3 independent experiments) . (B) Transcription-based CaB-A. Synthetic NFAT-promoters control the production of the synthetic mammalian trans-silencer (PMS) , which silences reporter gene transcription controlled by binding to synthetic cognate promoters (P PMS) . Calcium channel  blockers (CCBs) activate reporter protein expression by inhibiting depolarization-dependent PMS-expression. (C, D) Dose-dependent CaB-A activity. (C) Ca V1.2 (pCa V1.2/pKK56/pWH75/pWH5) -or (D) Ca V1.3 (pCa V1.3/pKK56/pWH75/pWH5) -transgenic HEK-293 cells were depolarized with 30 mM KCl and immediately placed in culture wells containing different concentrations of CCBs. Data are shown as mean ± SD of SEAP levels scored at 48 h after exposure to CCBs (n=3 independent experiments) . (E) Cytotoxicity control of CCBs. HEK-293 cells were transfected with pSEAP2-Control (P SV40-SEAP-pA) and cultivated for 48 h in cell culture medium containing 1 μM or 10 μM CCBs. Data are shown as mean ± SD (n=3 independent experiments) . (F, G) Splice variant-dependent CaB-A activity. (F) Ca V1.3: Δ42-transgenic HEK-293 cells (pCa V1.3: Δ42/pKK56/pWH75/pWH5) were depolarized with 30 mM KCl and immediately placed in culture wells containing different concentrations of CCBs. (G) HEK-293 cells expressing Ca V1.3 (pCa V1.3/pKK56/pWH75/pWH5) , Ca V1.3: Δ42 (pCa V1.3: Δ42/pKK56/pWH75/pWH5) or no Ca V (pcDNA3.1 (+) ; P hCMV-MCS-pA) were cultivated in cell culture medium containing different KCl levels (0-70 mM) . Data in (F, G) are shown as mean ± SD of SEAP levels scored at 48 h after addition of KCl (n=3 independent experiments) . (H) Impact of CCBs on PMS activity. HEK-293 cells were co-transfected with pWH9 (P SV40-PMS-pA) and pWH5 (P PMS-SEAP-pA) , and cultivated in culture medium containing different concentration of nicardipine or benidipine. Data are shown as mean ± SD of SEAP levels scored at 48 h after exposure to CCBs (n=3 independent experiments) .
Fig. S5. Control experiments of the translation-based (CaB-A) reporter assay.
(A) Promoter optimization for NFAT-dependent L7Ae expression. HEK-293 cells were co-transfected with pCa V1.2, pKK56, pMX199 and different L7Ae expression vectors containing five (pMX124; P NFAT3-L7Ae-pA) , seven (pMX125; P NFAT4-L7Ae-pA) or nine (pMX126; P NFAT5-L7Ae-pA) tandem repeats of NFAT response elements, depolarized with 20 mM KCl and immediately placed in culture wells containing 0 or 10 μM nicardipine. Data points are presented as mean FOC (fold of control, DMSO) of SEAP levels scored at 48 h after exposure to nicardipine (n=3 independent experiments) . (B-D) Impact of CCBs on NFAT-controlled repressors. (B) Transcription- (PMS-P PMS; pWH9/pWH5) or translation-based (L7Ae-C/D box; pWH145/pMX199; pWH145, P hCMV-L7Ae-pA) control systems were cultivated for 48 h in cell culture medium containing 0 μM (DMSO control) or 10 μM CCBs. (C) pWH145/pMX199-transgenic HEK-293 cells were cultivated for 48 h in cell culture medium containing different concentrations of CCBs. (D) pMX125/pMX199-transgenic HEK-293 cells were cultivated for 48  h in cell culture medium containing 1 μM or 10 μM CCBs. Data in (B-D) are shown as mean ±SD of SEAP levels scored at 48 h after exposure to CCBs (n=3 independent experiments) .
Fig. S6. Identification of putative anti-Parkinson drug candidates.
(A) Impact of plant essential oils on L7Ae-dependent control systems. pWH145/pMX199 (P hCMV-L7Ae) -or pMX125/pMX199 (P NFAT4-L7Ae) -transgenic HEK-293 cells were depolarized with 20 mM KCl and cultivated for 48 h in cell culture medium containing different levels of plant essential oils (4 x 10 -5 or 8 x 10 -5 v/v) . (B) Cytotoxicity control of plant essential oils. HEK-293 cells were transfected with pSEAP2-Control (P SV40-SEAP-pA) and cultivated for 48 h in cell culture medium containing different levels of plant essential oils (4 x 10 -5 or 8 x 10 -5 v/v) . All data are shown as mean ± SD of SEAP levels scored at 48 h after exposure to essential oils (n=3 independent experiments) . (C) Validation of CaB-A for multiplexed drug screening. Independent Ca V1.2-specific CaB-R (pCa V1.2/pKK56/pWH29) and Ca V1.3-specific CaB-A (pCa V1.3/pKK56/pMX125/pMX199) systems were mixed, depolarized with 30 mM KCl, and added to culture wells supplemented with different plant essential oils (4x10 -5 v/v) or CCBs (10 μM) . Data are shown as mean ± SD of reporter proteins scored at 48 h after exposure to antagonists (n=3 independent experiments) . Levels of the DMSO solvent (control) in cell culture medium were kept below 0.4%. (D) Quantification of Ca V1 antagonism by (6) -gingerol using CaB-A. HEK-293 cells transfected with Ca V1.2-or Ca V1.3-dependent CaB-A were depolarized with 30 mM KCl and immediately seeded into culture wells containing different concentrations of (6) -gingerol. Data are shown as mean ± SD of SEAP levels scored at 48 h after drug exposure (n = 3 independent experiments) . (E) Quantification of Ca V1 antagonism by (6) -gingerol using CaB-R. HEK-293 cells transfected with Ca V1.2-or Ca V1.3-dependent CaB-R were depolarized with 30 mM KCl and immediately seeded into culture wells containing different concentrations of (6) -gingerol. HEK-293 cells transfected with a constitutive SEAP-expression vector (pSEAP2-Control; P SV40-SEAP-pA) were used as a reference for putative cytotoxicity caused by drug exposure. Data are mean ± SD of SEAP levels scored at 48 h after drug exposure (n = 3 independent experiments) . (F) Quantification of Ca V1 antagonism by sclareol using CaB-A. HEK-293 cells transfected with Ca V1.2-or Ca V1.3-dependent CaB-A were depolarized with 30 mM KCl and immediately seeded into culture wells containing different concentrations of sclareol. HEK-293 cells transfected with a bacterial expression vector (pViM41; P T7-mCherry-MCS) or Ca V2.2 (pCa V2.2; P hCMV-Cacna1b-pA) instead of Ca V1.2-or Ca V1.3 were used as negative controls indicating Ca V-unrelated or L-type Ca V-unrelated assay readouts, respectively.  Data are shown as mean ± SD of SEAP levels scored at 48 h after drug exposure (n = 3 independent experiments) .
Fig. S7 describes IC 50 values of FDA-approved calcium channel blockers (CCBs) on Ca v1.2 and Ca v1.3.
Fig. S8 describes essential oils used in this study.
Fig. S9 describes reference compounds for the generation of Ca V1.3-inhibiting pharmacophores. Fig. S10 describes FDA-approved drugs used in this study.
EXAMPLES
Methods
Vector Design. Comprehensive design and construction details for all expression plasmids are provided in Table 2. Mouse Ca V1.2 α1C (GenBank accession number AY728090, Addgene plasmid #26572) , rat Ca V1.3α1D (GenBank accession number: AF370009, Addgene plasmid #49333) , rat Ca V1.3α1D: Δ42a (GenBank accession number: AF370010, Addgene plasmid # 49332) , rat Ca Vβ3 (GenBank accession number: M88751, Addgene plasmid #26574) and rat Ca Vα2δ-1 (GenBank accession number: AF286488, Addgene plasmid #26575) were provided by Prof. Diane Lipscombe (Brown University) .
Cell culture and transfection. Human embryonic kidney cells (HEK-293T, ATCC: CRL-11268) were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen, Basel, Switzerland; cat. no. 52100–39) supplemented with 10% (v/v) fetal bovine serum (FBS; Sigma-Aldrich, Buchs, Switzerland; cat. no. F7524, lot no. 022M3395) and 1% (v/v) penicillin/streptomycin solution (PenStrep; Biowest, Nuaillé, France; cat. no. L0022-100) . Cells were cultured at 37℃ in a humidified atmosphere of 5%CO 2 in air. For passaging, cells of pre-confluent cultures were detached by incubation in 0.05%trypsin-EDTA (Life Technologies, CA, USA; cat. no. 25300-054) for 3 min at 37℃, collected in 10 ml of cell culture medium, centrifuged for 3 min at 290 g, and resuspended in fresh culture medium at 1.5 x 10 5 cells/mL, before seeding into new tissue culture plates. Cell number and viability were quantified using an electric field multichannel cell counting device (Casy Cell Counter and Analyzer Model TT, Roche Diagnostics GmbH) . HEK-293T cells were transfected using a polyethyleneimine (PEI) -based protocol. In brief, 2 x 10 5 cells/ml cells were seeded into 48-well plates (225 μl medium  per well) , 6-well plates (1800 μl medium per well) , or 10 cm petri dishes (9 mL medium) . At 24 h after seeding, cells were incubated for 12 h with 50 μl, 100 μl or 400 μl of a 10: 3 PEI: DNA mixture (w/w) , containing 0.3-0.4 μg (48-well plate) , 2.4-3 μg (6-well plate) , or 11-13 μg of total DNA (10 cm petri dish) , respectively. For experiments performed in 24-well plates, the culture medium was exchanged to PEI-free medium containing defined concentrations of control compounds after 12 h. For experiments performed in 6-well plates or 10-cm dishes, transfected cells were detached with 0.05%trypsin-EDTA, re-seeded into 96-well plates (15000-40000 cells/well) , and cultured in medium containing defined concentrations of control compounds. Analytical reporter assays were performed at 48 h after medium exchange.
Chemicals and drugs. Ethanol (EtOH; cat. no. 02860) , sclareol (cat. no. 357995) , linalool oxide (cat. no. 62141) , zingerone (cat. no. 88787) , Cremophor (cat. no. C5135) and dimethyl sulfoxide (DMSO; cat. no. D8418) were purchased from Sigma-Aldrich (Buchs, Switzerland) . Polyethyleneimine (PEI; cat. no. 24765-2; stock solution 1 mg/ml in ddH 2O) was purchased from Polysciences (Eppelheim, Germany) . (6) -Gingerol (cat. no. sc-201519) and diethyl phthalate (cat. no.sc-239738) were purchased from Santa Cruz Biotechnology (Heidelberg, Germany) . Potassium chloride (KCl; cat. no. A3582; stock solution 4 M in ddH 2O) was purchased from AppliChem (Darmstadt, Germany) . Calcium channel blocker (CCB) drugs (Fig. S10) and plant essential oils (Fig. S8) were stored in DMSO and diluted with DMEM to final working concentrations. Final DMSO levels in the cell culture medium were kept below 0.4%.
Quantification of target gene expression. Expression levels of human placental secreted alkaline phosphatase (SEAP) in culture supernatants were quantified based on p-nitrophenyl phosphate-derived light absorbance at 415 nm (Wang et al. 2015) . Gaussia Luciferase (GLuc) levels in culture supernatants were profiled using the 
Figure PCTCN2022137596-appb-000007
Gaussia luciferase assay kit (New England Biolabs, Ipswich, MA; cat. no. E3300) . Fluorescence levels of HEK-293T cells grown in a black 96-well plate with a transparent bottom (Greiner Bio-one; cat. no. 655090) and cultivated in phenol red-free DMEM (ThermoFisher Scientific, cat. no. 21063029) were quantified with a microplate reader (Infinite M1000 PRO plate reader, Tecan Group Ltd) . TurboGFP levels were recorded at excitation 460/9 nm, emission 502/20 nm. dsRed-Express levels were recorded at excitation 554/9 nm, emission 586/20 nm.
Fluorescence imaging. Fluorescence microscopy was performed with an inverted fluorescence microscope (Nikon Ti-E; Nikon) equipped with an incubation chamber, an Orca Flash-4 digital camera (Hamamatsu) , a pE-100-LED (CoolLED) as the transmission light source, a Spectra X (Lumencor) as the fluorescent light source and a 4× objective, an excitation and  emission filter set (TurboGFP: 475/525 nm; dsRed-Express 549/593 nm) and NIS Elements AR software (version 4.3.0) .
Data Analysis. CCB-activity in CaB-R assays was calculated as “percentage of control” , with reporter protein levels normalized to maximum average counts (100%; 40 mM KCl addition) and minimum average counts (0%; 10 μM nicardipine) . Normalization calculations and nonlinear regression curve-fittings (log (inhibitor) normalized response–variable slope) , and statistical analysis were all conducted in Prism 7.0 (Graph Pad Software, San Diego, CA, USA) . For statistical analysis, an extra sum-of-squares F test was performed to determine the significance of differences in Log (IC 50) among the data sets of Fig. 2D, E. Fold of control (FOC) values were calculated as FOC = Xi/avg (c +) ×100, where Xi is the measurement of the i th compound and avg(c +) is the average measurement of the DMSO-treated samples. The Z’ value was calculated between the positive (10 μM nicardipine) and negative (0.1%DMSO) controls according to the reported equation (Zhang et al., 1999) . All values for in vitro experiments are expressed as the mean ± SD.
Computer-aided drug screening. Representative pharmacophore models were created with LigandScout software (Wolber and Langer 2005) based on the reference ion channel blockers listed in Fig. S9. To perform alignments to the pharmacophore, all constituents of rose flower, cistus ladanifer, pinus sylvestris, ginger and clary sage obtained from GC-MS data kindly provided by Welfine Beijing Science &Technology Development Co. Ltd (Beijing, China) were assigned with a chemical SMILES (Simplified Molecular-Input Line-Entry System) language. Suggested hits of virtual screening were refined by structure similarity analysis using the free ChemMine software (http: //chemmine. ucr. edu/) (Backman, Cao and Girke 2011) . Drug-likeness properties of candidate Ca V-blocker drugs, including pharmacokinetics, Lipinski’s Rule of Five criteria (Lipinski et al. 2001) , and blood-brain barrier permeability, were evaluated using the ADME toxicity predictor SwissADME ( https: //www. click2drug. org/directory_ADMET. html) .
Results
Engineering of a cell-based drug screening platform for multiplexed and use-dependent analysis of Ca V1 channel blockers. PD drug discovery would greatly benefit from multiplexed drug screening, allowing simultaneous assessment of multiple disease-specific drug targets within a single experiment (Bachovchin et al. 2014) (Fig. 1A) . In cell-based assay designs, secreted reporter proteins such as human placental secreted alkaline phosphatase (SEAP) or Gaussia princeps luciferase (GLuc) are advantageous for qualitative, non-disruptive and high-throughput recording of gene expression, while on the other hand, intracellular reporter systems  such as fluorescent proteins facilitate resource-efficient and simple experimental setups (Muller et al. 2012) . To design a CCB-regulated reporter protein assay, we created a synthetic excitation-transcription coupling system (Xie et al. 2016) . Activation of Ca V1 channels by membrane depolarization triggers a surge in cytosolic [Ca 2+i, initiating different signal-transduction pathways that modulate endogenous calcium-specific promoters (D'Arco and Dolphin 2012) (Fig. S1A) . Among different calcium-specific promoters (CSP) known to respond to Ca V1-dependent cell signaling (Chawla 2002, Doerks et al. 2002, Dolmetsch 2003) , the synthetic NFAT promoter P NFAT3 (pMX57, P NFAT3-SEAP-pA; P NFAT3, (NFAT IL45-P min) showed the most suitable Ca V1.2-and Ca V1.3-dependent SEAP induction profiles triggered by potassium chloride (KCl) -mediated depolarization (Figs. S1B and S1C) . After validating dose-dependent excitation-transcription coupling with different secreted (Figs. S2A and S2B) and fluorescent reporter systems (Fig. S2C) , we tested the potential of the cell-based SEAP assay for CCB drug discovery. In a genetic configuration enabling CCB-repressible reporter expression (CaB-R assay) (Fig. S3A) , the presence of CCBs blocking Ca V1.2 and Ca V1.3 inhibits NFAT signalling and causes a dose-dependent decrease of SEAP production (Figs. S3B and S3C) . When we validated CaB-R with a selection of clinically approved CCB drugs, the IC 50 values determined in this study generally lay within the reference ranges reported for both Ca V1-channel isoforms (Fig. S7) . In addition, CaB-R allowed for use-dependent analysis of repetitive CCB-mediated channel inhibition and activation, which is a critical but often elusive screening requirement in ion channel drug discovery (Zamponi 2016) . Following prolonged depolarization of cells loaded with Ca V1.2 or Ca V1.3-dependent CaB-R systems, the representative CCB nicardipine showed a typical use-dependent channel antagonism profile characterized by stronger inhibition at hyperactive channel states (KCl = 20, 40 mM) as compared to the degree of inhibition at baseline channel activities (KCl = 0 mM) (Figs. S3D and S3E) (Colella et al. 2008, He et al. 2011) .
Engineering of an antagonist-inducible reporter assay to reduce false-positive results. In many drug-screening studies that involve the use of living cells, cytotoxicity-mediated signal decrease often interferes with antagonist-associated reporter signals, thus generating false-positives (Didiot et al. 2011, Zhang and Xie 2012) . To overcome this limitation, we engineered a CCB-activated reporter assay (CaB-A) that operates in a reversed configuration, allowing depolarization-dependent NFAT signaling to repress reporter protein expression (Fig. S4A) . The presence of CCBs antagonizes Ca V1-mediated NFAT activation and triggers de-repression of reporter gene transcription (Fig. S4B) . Not only did CaB-A reveal all CCB-mediated drug effects in the expected dose-dependent manner (Figs. S4C and S4D) , but it also effectively reduced the  risk of obtaining false-positives, as expected. For example, cytotoxicity control experiments might have led to classification of the CCB-repressible effect of flunarizine as a false positive in CaB-R (Fig. S4E) , but the potency of flunarizine in activating gene expression in CaB-A corroborated the true channel-blocking efficacy of this drug (Figs. S4C and S4D) . Baseline signal levels of CaB-A assays could be further fine-tuned by choosing different splice-variants of each channel isoform (Fig. S4F) , as we demonstrated with two alternatively spliced Ca V1.3 α1-domains characterized by different basal channel activities (Xu and Lipscombe 2001) (Fig. S4G) .
In CaB-A (Fig. S4B) , CCB-activated gene expression results from inhibition of NFAT-repressible gene expression of a synthetic transcription factor, which binds to and silences synthetic cognate promoters driving constitutive expression of the reporter gene. However, most synthetic transcription factors –especially those having a TetR-family repressor domain –are inherently under allosteric control by particular ligands (Cuthbertson and Nodwell 2013, Vargas et al. 2011) . Indeed, when we used a paraben-dependent mammalian trans-silencer (PMS, PmeR-KRAB (Wang et al. 2015) ) as the NFAT-driven repressor, we found that nicardipine and benidipine interfered with de-repression of PMS-specific promoters at high concentrations (>1 μM) (Fig. S4H) , which would likely cause erroneous interpretation of the CaB-A results (Figs. S4C and S4D) . To improve screening accuracy, we designed an optimized CaB-A configuration in which the synthetic NFAT promoter controls the expression of L7Ae (an archaeal ribosome-derived RNA-binding protein with high affinity for a C/D box-aptamer motif) (Auslander et al. 2014, Saito et al. 2010) (Fig. 1B) . The presence of CCBs prevents NFAT-dependent L7Ae expression (pMX125, P NFAT4-L7Ae-pA; P NFAT4, (NFAT IL47-P min; Fig. S5A) and de-represses translation of reporter mRNA engineered to contain cognate C/D-box motifs in the 5’-UTR (Fig. 1B) . Depolarization-dependent production of L7Ae could knock down translation of SEAP mRNA harboring either one (pMX195, P SV40- (C/D box)  1-SEAP-pA) or two C/D-box repeats (pMX199, P SV40- (C/D box)  2-SEAP-pA) , with the vector combination of pMX125/pMX199 affording optimal nicardipine-inducible SEAP expression characterized by low background signals and high induction profiles for use-dependent Ca V1-inhibition (Fig. 1, C and D) . Importantly, this modified CaB-A assay is no longer influenced by potential crosstalk between CCBs and the L7Ae-C/D box interaction (Figs. S5B-S5D) , and thus it enables accurate assessment of dose-dependent CCB-channel antagonism (Fig. 1, E and F) .
Multiplexed and high-throughput screen of plant essential oils to identify Ca V1.2 and Ca V1.3 antagonism. Next, we used CaB-A and performed a pilot test of high-throughput screening with a random selection of plant essential oils. Each essential oil is a complex mixture  of volatile and aromatic organic compounds produced as part of a plant’s protective system, and can be regarded as a naturally selected package of biocompatible, bioavailable and bioactive substances (Reichling et al. 2009) . Among 42 essential oil products tested (Fig. S8) , the CaB-A assay identified five oils (i.e.; rose flower, cistrus ladanifer, pinus sylvestris, ginger, clary sage) that most effectively inhibited Ca V1.2 and Ca V1.3 (Fig. 2A) . All five essential oils dose-dependently activated SEAP expression in the CaB-A assay (Fig. 2, B and C) , and control experiments confirmed that none of these essential oils interfered with L7Ae activity or intracellular calcium signaling (Fig. S6A) . Notably, the results obtained with clary sage (Salvia sclarea) essential oil corroborated the advantage of CaB-A; although high concentrations of this oil were cytotoxic according to a reporter-based assay determining protein production capacity (Fig. S6B) , the unique antagonism-inducible gene expression readout of CaB-A (Fig. 2, B and C) ensured that the clary sage data was not excluded as false-negative. In terms of assay quality, both CaB-R and CaB-A assays have excellent Z’ screening windows (Z’ factor (CaB-R) = 0.68 ±0.14; Z’ factor (CaB-A) = 0.73 ± 0.07, n = 12 independent experiments) , and therefore should be suitable for rapid, robust and resource-efficient high-throughput screening (HTS) . As already mentioned, treatment of Parkinson’s disease (PD) requires a compound that can maximally inhibit Ca V1.3 but not Ca V1.2 (Ilijic et al. 2011) . To quantify the antagonistic activities towards Ca V1.3 (PD drug target) and Ca V1.2 (PD anti-target) simultaneously (i.e.; in a multiplexed screening configuration; Fig. 1A) , we mixed individual cell populations of Ca V1.2-specific CaB-R and Ca V1.3-specific CaB-A systems, each driving a different reporter protein. This cell mixture was exposed to clinically approved CCB drugs (positive control) , negative control compounds (i.e.; amitriptyline, tetracaine, lidocaine) and the five essential oil hits, in order to determine their impact on the depolarization-dependent expression of SEAP (reflecting Ca V1.3 activity) and GLuc (reflecting Ca V1.2 activity) (Fig. S6C) . The experimental results confirmed the multiplexed screening capability of our system. All five essential oils showed the required basic selectivity profile of maximal Ca V1.3 inhibition (highest CaB-A score vs. control) and minimal Ca v1.2 inhibition (closest CaB-R score to the control) .
Integration of in silico virtual screening and deep learning enables the discovery of (6) -gingerol and sclareol as novel Ca V1.3-antagonists. To identify the putative active constituents of the five essential oils accounting for inhibition of Ca V1.3, we used the LigandScout software to perform ligand-based virtual screening (Barreca et al. 2007, Wolber and Langer 2005) . First, we generated 3D pharmacophore models of putative Ca V1.3 blockers (Fig. 3A) based on a series of Ca V1 blockers (Kang et al. 2012) (positive reference) , as well as Ca V-independent ion channel  modulators found in the multiplexed screening experiment (negative reference; fig. S6C) (Fig. S9) . Using these pharmacophores, we performed in silico analysis of all constituents of rose flower, cistus ladanifer, pinus sylvestris, ginger, and clary sage essential oils by computing the similarity of each chemical structure to a theoretically ideal pharmacologically active moiety. From a total of 198 different candidate molecules, this virtual screening experiment suggested 13 hits as the most promising Ca V1.3-antagonists (Table 1) , and structure clustering analysis enabled us to select the five chemicals diethyl phthalate, linalool oxide, zingerone, (6) -gingerol and sclareol as representative structures (Fig. 3B) . Experimental testing of these 5 candidate compounds with the CaB-A assay confirmed that (6) -gingerol and sclareol showed Ca V1.3-antagonistic activity (Fig. 3C) . Notably, both compounds showed a stronger inhibitory effect on Ca V1.3-mediated reporter gene expression than on the Ca V1.2-dependent CaB system (Fig. 3, D and E; Figs. S6D and S6E) , and were also predicted to have optimal drug-likeness properties according to Lipinski’s Rule of Five criteria (Lipinski et al. 2001) . Importantly, sclareol (8.8 ± 1.0 μM; Figure 3D) had a more than three-fold lower IC 50 value for Ca V1.3 than (6) -gingerol (30.5 ±6.3 μM; Figure S6E) and is also structurally divergent to all currently known CCB compounds (Fig. S9, Fig. S10) , such as dihydropyridines (DHP) represented by nifedipine (Figure 3B) . Indeed, when we created putative DHP-insensitive Ca V1.3 mutants based on amino acid alterations that were previously shown to be critical for CCB-sensitivity of the related L-type Ca V1.1 channel (Zhao et al. 2019, Peterson, Tanada and Catterall 1996) , we found that our synthetic Ca V1.3 Y1365A, A1369S, I1372A mutant was no longer inhibited by nifedipine but still retained full sensitivity to sclareol (Figure 3E) , indicating potential differences in the binding modes between sclareol and DHPs to Ca V1.3. These features render sclareol a promising lead compound for PD pharmacotherapy.
Table 1. Virtual Screening Experiment.
(A) 309 compounds from 5 essential oils.
Figure PCTCN2022137596-appb-000008
Figure PCTCN2022137596-appb-000009
Figure PCTCN2022137596-appb-000010
Figure PCTCN2022137596-appb-000011
Figure PCTCN2022137596-appb-000012
Figure PCTCN2022137596-appb-000013
Figure PCTCN2022137596-appb-000014
Figure PCTCN2022137596-appb-000015
Figure PCTCN2022137596-appb-000016
(B) LigandScout result.
Screening Results:  
CC (=O) CCC1=CC (=C (C=C1) O) OC VANILLYLACETONE
CCCC (CC (=O) CCC1=CC (=C (C=C1) O) OC) O  (4) -Gingerol
CCCCCC=CC (=O) CCC1=CC (=C (C=C1) O) OC 6-Shogaol
CCCCCC (CC (=O) CCC1=CC (=C (C=C1) O) OC) O 6-Gingerol
CCCCCCCC (CC (=O) CCC1=CC (=C (C=C1) O) OC) O  (8) -Gingerol
CCOC (=O) C1=CC=CC=C1C (=O) OCC DIETHYL PHTHALATE
CCCCCCCCCC (CC (=O) CCC1=CC (=C (C=C1) O) OC) O  (10) -Gingerol
CC1 (CCCC2 (C1CCC (C2CCC (C) (C=C) O) (C) O) C) C SCLAREOL
CC1=C (C=CC (=C1) C (=O) C) O 4-Hydroxy-3-methylacetophenone
CC1 (CCC (O1) C (C) (C) O) C=C LINALOOL OXIDE
CC=CC1=CC (=C (C=C1) OC) OC METHYL ISOEUGENOL
COC1=C (C=CC (=C1) CC=C) O EUGENOL
COC1=C (C=C (C=C1) CC=C) OC METHYLEUGENOL
Table 2. Plasmids and oligonucleotides designed and used in this study
Figure PCTCN2022137596-appb-000017
Figure PCTCN2022137596-appb-000018
Figure PCTCN2022137596-appb-000019
Figure PCTCN2022137596-appb-000020
Figure PCTCN2022137596-appb-000021
Oligonucleotides: Restriction endonuclease-recognition sites are underlined and annealing nucleotides are shown in capital letters.
Abbreviations: BFP, blue fluorescent protein; Ca V1.2, member 2 of the Ca V1 family of L-type voltage-gated Ca 2+ channels; Cacna1c, α1-subunit of mouse Ca V1.2 (NCBI Gene ID: 12288) ; Cav1.3, member 3 of the Cav1 family of L-type voltage-gated Ca 2+ channels; Cav1.3 AXB, synthetic Cav1.3 mutant where amino acid A at position X of the α1-subunit was exchanged to amino acid B; Cav2.2, N-type voltage-gated Ca 2+ channel; Cacna1d, α1-subunit of rat Cav1.3 (NCBI Gene ID: 29716) ; Cacna1d  AXB, mutant α1-subunit of Cav1.3 where amino acid A at position X was exchanged to amino acid B; Cacna1d: Δ42a, Cacna1d-isoform lacking exon 42;Cacna1b, α1-subunit of rat Cav2.2 (NCBI Gene ID: 257648) ; Cacnb3, β3-subunit of rat Cav1.3 (NCBI Gene ID: 25297) ; Cacna2d1, α2δ-subunit of rat Cav1.3 (NCBI Gene ID: 25399) ; C/D-box, L7Ae-specific RNA aptamer (sequence: 5’-GGGCGUGAUCCGAAAGGUGACCC-3’) ; c-fos, human proto-oncogene from the Fos family of transcription factors; CRE, cAMP-response element (CREB1 binding site) ; d2YFP, destabilized variant of yellow fluorescent protein; DsRed-Express, destabilized variant of Discosoma sp. red fluorescent protein; GLuc, Gaussia princeps luciferase; IL4, murine interleukin 4; KRAB, Krueppel-associated box protein of the human kox-1 gene; L7Ae, archaeal ribosomal protein; MCS, multiple cloning site; NFAT, nuclear factor of activated T-cells; O PmeR2, tandem PmeR-specific operator; P2A, picornavirus-derived ribosome skipping sequence (N'-GATNFSLLKQAGDVEENPGP-C') optimized for bicistronic expression in mammalian cells; pA, polyadenylation signal; PCR, polymerase chain reaction; P CRE2, synthetic mammalian promoter containing six CRE repeats; P CREm, modified P CRE variant; P cFOS, synthetic mammalian promoter containing three c-fos tandem repeats; PEST, peptide sequence rich in proline, glutamic acid, serine and threonine; P ETR2, erythromycin-responsive promoter; P hCMV, human cytomegalovirus immediate early promoter; P hCMV*-1, tetracycline-responsive promoter (tetO 7-P hCMVmin) ; P hEF1α, human elongation factor 1αpromoter; PmeR, Pseudomonas syringae pathovar tomato DC3000-derived multidrug efflux pump repressor; PMS, PmeR-derived paraben-mediated mammalian transsilencer (PmeR-KRAB) ; P PMS, paraben-inducible  promoter (P SV40-O PmeR2) ; P NFAT1, synthetic mammalian promoter containing three tandem repeats of a human IL2 NFAT-binding site ( (NFAT IL23-P min; P NFAT3, synthetic mammalian promoter containing five tandem repeats of a IL4-derived NFAT-binding site; P NFAT4, synthetic mammalian promoter containing seven tandem repeats of a IL4-derived NFAT-binding site P NFAT5, synthetic mammalian promoter containing nine tandem repeats of a IL4-derived NFAT-binding site; P SV40, simian virus 40 promoter; P T7, promoter activated by the T7 bacteriophage RNA polymerase; PuroR, gene conferring puromycin resistance; SB100X, optimized Sleeping Beauty transposase; SEAP, human placental secreted alkaline phosphatase; TetR, Escherichia coli Tn10-derived tetracycline-dependent repressor of the tetracycline resistance gene; tetO 7, TetR-specific heptameric operator sequence; TurboGFP: dest1, PEST-tagged TurboGFP variant (Evrogen) 
References
Auslander, S., P. Stucheli, C. Rehm, D. Auslander, J.S. Hartig &M. Fussenegger (2014) A general design strategy for protein-responsive riboswitches in mammalian cells. Nat Methods, 11, 1154-60.
Bachovchin, D.A., L.W. Koblan, W. Wu, Y. Liu, Y. Li, P. Zhao, I. Woznica, Y. Shu, J.H. Lai, S.E. Poplawski, C.P. Kiritsy, S.E. Healey, M. DiMare, D.G. Sanford, R.S. Munford, W.W. Bachovchin &T.R. Golub (2014) A high-throughput, multiplexed assay for superfamily-wide profiling of enzyme activity. Nat Chem Biol, 10, 656-63.
Backman, T.W., Y. Cao &T. Girke (2011) ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Res, 39, W486-91.
Barreca, M.L., L. De Luca, N. Iraci, A. Rao, S. Ferro, G. Maga &A. Chimirri (2007) Structure-based pharmacophore identification of new chemical scaffolds as non-nucleoside reverse transcriptase inhibitors. J Chem Inf Model, 47, 557-62.
Biglan, K.M., D. Oakes, A.E. Lang, R.A. Hauser, K. Hodgeman, B. Greco, J. Lowell, R. Rockhill, I. Shoulson, C. Venuto, D. Young, T. Simuni &S. -P. D.I.I.I.I. Parkinson Study Group (2017) A novel design of a Phase III trial of isradipine in early Parkinson disease (STEADY-PD III) . Ann Clin Transl Neurol, 4, 360-368.
Chawla, S. (2002) Regulation of gene expression by Ca2+ signals in neuronal cells. Eur J Pharmacol, 447, 131-40.
Colella, M., F. Grisan, V. Robert, J.D. Turner, A.P. Thomas &T. Pozzan (2008) Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: role of calcineurin/NFAT as Ca2+ signal integrators. Proc Natl Acad Sci U S A, 105, 2859-64.
Crocker, S.J., P.D. Smith, V. Jackson-Lewis, W.R. Lamba, S.P. Hayley, E. Grimm, S.M. Callaghan, R. S. Slack, E. Melloni, S. Przedborski, G.S. Robertson, H. Anisman, Z. Merali &D.S. Park (2003) Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson's disease. J Neurosci, 23, 4081-91.
Cuthbertson, L. &J.R. Nodwell (2013) The TetR family of regulators. Microbiol Mol Biol Rev, 77, 440-75.
D'Arco, M. &A.C. Dolphin (2012) L-type calcium channels: on the fast track to nuclear signaling. Sci Signal, 5, pe34.
Daniels, M.J., J.B. Nourse, Jr., H. Kim, V. Sainati, M. Schiavina, M.G. Murrali, B. Pan, J.J. Ferrie, C.M. Haney, R. Moons, N.S. Gould, A. Natalello, R. Grandori, F. Sobott, E.J. Petersson, E. Rhoades, R. Pierattelli, I. Felli, V.N. Uversky, K.A. Caldwell, G.A. Caldwell, E.S. Krol &H. Ischiropoulos (2019) Cyclized NDGA modifies dynamic alpha-synuclein monomers preventing aggregation and toxicity. Sci Rep, 9, 2937.
Didiot, M.C., S. Serafini, M.J. Pfeifer, F.J. King &C.N. Parker (2011) Multiplexed reporter gene assays: monitoring the cell viability and the compound kinetics on luciferase activity. J Biomol Screen, 16, 786-93.
Doerks, T., R.R. Copley, J. Schultz, C.P. Ponting &P. Bork (2002) Systematic identification of novel protein domain families associated with nuclear functions. Genome Res, 12, 47-56.
Dolmetsch, R. (2003) Excitation-transcription coupling: signaling by ion channels to the nucleus. Sci STKE, 2003, PE4.
Dunlop, J., M. Bowlby, R. Peri, D. Vasilyev &R. Arias (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov, 7, 358-68.
Gao, H.M., B. Liu, W. Zhang &J. S. Hong (2003) Novel anti-inflammatory therapy for Parkinson's disease. Trends Pharmacol Sci, 24, 395-401.
He, X.B., S.H. Yi, Y.H. Rhee, H. Kim, Y.M. Han, S.H. Lee, H. Lee, C.H. Park, Y.S. Lee, E. Richardson, B.W. Kim &S. H. Lee (2011) Prolonged membrane depolarization enhances midbrain dopamine neuron differentiation via epigenetic histone modifications. Stem Cells, 29, 1861-73.
Heusinkveld, H.J. &R.H. Westerink (2011) Caveats and limitations of plate reader-based high-throughput kinetic measurements of intracellular calcium levels. Toxicol Appl Pharmacol, 255, 1-8.
Ilijic, E., J.N. Guzman &D.J. Surmeier (2011) The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson's disease. Neurobiol Dis, 43, 364-71.
Inglese, J., R.L. Johnson, A. Simeonov, M. Xia, W. Zheng, C.P. Austin &D.S. Auld (2007) High-throughput screening assays for the identification of chemical probes. Nat Chem Biol, 3, 466-79.
Izumi, Y., H. Sawada, N.Yamamoto, T. Kume, H. Katsuki, S. Shimohama &A. Akaike (2007) Novel neuroprotective mechanisms of pramipexole, an anti-Parkinson drug, against endogenous dopamine-mediated excitotoxicity. Eur J Pharmacol, 557, 132-40.
Kang, S., G. Cooper, S.F. Dunne, B. Dusel, C.H. Luan, D.J. Surmeier &R.B. Silverman (2012) CaV1.3-selective L-type calcium channel antagonists as potential new therapeutics for Parkinson's disease. Nat Commun, 3, 1146.
Lipinski, C.A., F. Lombardo, B.W. Dominy &P.J. Feeney (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 46, 3-26.
Muller, M., S. Auslander, D. Auslander, C. Kemmer &M. Fussenegger (2012) A novel reporter system for bacterial and mammalian cells based on the non-ribosomal peptide indigoidine. Metab Eng, 14, 325-35.
Ortner, N.J., G. Bock, A. Dougalis, M. Kharitonova, J. Duda, S. Hess, P. Tuluc, T. Pomberger, N. Stefanova, F. Pitterl, T. Ciossek, H. Oberacher, H.J. Draheim, P. Kloppenburg, B. Liss &J. Striessnig (2017)  Lower Affinity of Isradipine for L-Type Ca (2+) Channels during Substantia Nigra Dopamine Neuron-Like Activity: Implications for Neuroprotection in Parkinson's Disease. J Neurosci, 37, 6761-6777.
Ortner, N.J. &J. Striessnig (2016) L-type calcium channels as drug targets in CNS disorders. Channels (Austin) , 10, 7-13.
Peterson, B.Z., T.N. Tanada &W.A. Catterall (1996) Molecular determinants of high affinity dihydropyridine binding in L-type calcium channels. J Biol Chem, 271, 5293-6.
Reichling, J., P. Schnitzler, U. Suschke &R. Saller (2009) Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties--an overview. Forsch Komplementmed, 16, 79-90.
Rohrer, S.G. &K. Baumann (2009) Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data. J Chem Inf Model, 49, 169-84.
Saito, H., T. Kobayashi, T. Hara, Y. Fujita, K. Hayashi, R. Furushima &T. Inoue (2010) Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nat Chem Biol, 6, 71-8.
Sarkar, S., J. Raymick &S. Imam (2016) Neuroprotective and Therapeutic Strategies against Parkinson's Disease: Recent Perspectives. Int J Mol Sci, 17.
Singh, A., P. Verma, G. Balaji, S. Samantaray &K. P. Mohanakumar (2016) Nimodipine, an L-type calcium channel blocker attenuates mitochondrial dysfunctions to protect against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinsonism in mice. Neurochem Int, 99, 221-232.
Stokes, J. M., K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N.M. Donghia, C.R. MacNair, S. French, L.A. Carfrae, Z. Bloom-Ackermann, V.M. Tran, A. Chiappino-Pepe, A.H. Badran, I.W. Andrews, E.J. Chory, G.M. Church, E.D. Brown, T.S. Jaakkola, R. Barzilay &J.J. Collins (2020) A Deep Learning Approach to Antibiotic Discovery. Cell, 180, 688-702 e13.
Vargas, P., A. Felipe, C. Michan &M.T. Gallegos (2011) Induction of Pseudomonas syringae pv. tomato DC3000 MexAB-OprM multidrug efflux pump by flavonoids is mediated by the repressor PmeR. Mol Plant Microbe Interact, 24, 1207-19.
Wang, H., H. Ye, M. Xie, M. Daoud El-Baba &M. Fussenegger (2015) Cosmetics-triggered percutaneous remote control of transgene expression in mice. Nucleic Acids Res, 43, e91.
Wolber, G. &T. Langer (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model, 45, 160-9.
Xie, M. &M. Fussenegger (2018) Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat Rev Mol Cell Biol, 19, 507-525.
Xie, M., H. Ye, H. Wang, G. Charpin-El Hamri, C. Lormeau, P. Saxena, J. Stelling &M. Fussenegger (2016) beta-cell-mimetic designer cells provide closed-loop glycemic control. Science, 354, 1296-1301.
Xu, W. &D. Lipscombe (2001) Neuronal Ca (V) 1.3alpha (1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci, 21, 5944-51.
Yang, K., K. Swanson, W. Jin, C. Coley, P. Eiden, H. Gao, A. Guzman-Perez, T. Hopper, B. Kelley, M. Mathea, A. Palmer, V. Settels, T. Jaakkola, K. Jensen &R. Barzilay (2019) Analyzing Learned Molecular Representations for Property Prediction. J Chem Inf Model, 59, 3370-3388.
Yang, S.N. &P.O. Berggren (2006) The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev, 27, 621-76.
Zamponi, G.W. (2016) Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov, 15, 19-34.
Zhang, R. &X. Xie (2012) Tools for GPCR drug discovery. Acta Pharmacol Sin, 33, 372-84.
Zhao, Y., G. Huang, J. Wu, Q. Wu, S. Gao, Z. Yan, J. Lei &N. Yan (2019) Molecular Basis for LigandModulation of a Mammalian Voltage-Gated Ca (2+) Channel. Cell, 177, 1495-1506 e12.

Claims (27)

  1. A compound of formula (I) , having the following structure:
    Figure PCTCN2022137596-appb-100001
    wherein X is C 1-2 alkylene, and each of R 1 and R 2 is independently selected from C 1-4 alkyl, C 1-4 alkenyl, or C 1-4 alkynyl, which is optionally substituted with one or more halogen atoms,
    or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
  2. The compound of formula (I) according to claim 1, which has the following structure:
    Figure PCTCN2022137596-appb-100002
    wherein X is C 1-2 alkylene, and R 1 is independently selected from C 1-4 alkyl, C 1-4 alkenyl, or C 1-4 alkynyl, which is optionally substituted with one or more halogen atoms,
    or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
  3. The compound of formula (I) according to claim 1, which has the following structure:
    Figure PCTCN2022137596-appb-100003
    or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
  4. A compound of formula (II) , having the following structure:
    Figure PCTCN2022137596-appb-100004
    wherein R 3 is C 1-10 alkyl, which is optionally substituted with one or more hydroxy groups, preferably is substituted with one hydroxy group,
    or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
  5. The compound of formula (II) according to claim 4, having the structure of formula (IIa) :
    Figure PCTCN2022137596-appb-100005
    wherein R 4 is C 1-8 alkyl, preferably C 1-6 alkyl, more preferably C 1-4 alkyl,
    or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
  6. The compound of formula (II) according to claim 4, having the following structures:
    Figure PCTCN2022137596-appb-100006
    or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof.
  7. A essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) .
  8. A composition comprising the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) .
  9. A pharmaceutical composition comprising an effective amount of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to any one of claims 1-6, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to claim 7, or the composition comprising the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to claim 8.
  10. A pharmaceutical composition comprising an effective amount of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to any one of claims 1-6, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to claim 7, or the composition comprising the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to claim 8, for use in the treatment of diseases or disorders selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac myopathy, supraventricular and ventricular arrhythmias, atrial fibrillation, atrial flutter, detrimental vascular remodeling, myocardial infarction, atherosclerosis, renal insufficiency (diabetic and non-diabetic) , diabetes, primary and secondary pulmonary hypertension, renal failure, diabetic nephropathy, glomerulonephritis, scleroderma, glomerular sclerosis, proteinuria of primary renal disease, and also renal vascular hypertension, diabetic retinopathy, the management of other vascular disorders, such as migraine, peripheral vascular disease, Raynaud's disease, luminal hyperplasia, cognitive dysfunction (such as Alzheimer's diseases) , glaucoma, stroke and Parkinson disease.
  11. The pharmaceutical composition according to claim 10, wherein the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
  12. A method of treating diseases or disorders, comprising the administration of effective amount of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4)  according to any one of claims 1-6, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof, or the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to claim 7, or the composition comprising the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to claim 8, to a subject, wherein the diseases or disorders is the disease or disorder which can be benefited from blockade of calcium channel, preferably the disease or disorder which can be benefited from selective blockade of Ca V1.3 channel compared with Ca V1.2 channel.
  13. The method according to claim 12, wherein the diseases or disorders is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac myopathy, supraventricular and ventricular arrhythmias, atrial fibrillation, atrial flutter, detrimental vascular remodeling, myocardial infarction, atherosclerosis, renal insufficiency (diabetic and non-diabetic) , diabetes, primary and secondary pulmonary hypertension, renal failure, diabetic nephropathy, glomerulonephritis, scleroderma, glomerular sclerosis, proteinuria of primary renal disease, and also renal vascular hypertension, diabetic retinopathy, the management of other vascular disorders, such as migraine, peripheral vascular disease, Raynaud's disease, luminal hyperplasia, cognitive dysfunction (such as Alzheimer's diseases) , glaucoma, stroke and Parkinson disease.
  14. The method according to claim 13, wherein the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
  15. Use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to any one of claims 1-6, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof as calcium channel blocker (CCB) .
  16. Use according to claim 15, wherein the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof is used as selective calcium channel blockers, preferably having high selectivity to Ca V1.3 channel compared with Ca V1.2 channel.
  17. Use according to claim 15, wherein the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) , or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof is used for the treatment of diseases or disorders selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac myopathy, supraventricular and ventricular arrhythmias, atrial fibrillation, atrial flutter, detrimental vascular remodeling, myocardial infarction, atherosclerosis, renal insufficiency (diabetic and non-diabetic) , diabetes, primary and secondary pulmonary hypertension, renal failure, diabetic nephropathy, glomerulonephritis, scleroderma, glomerular sclerosis, proteinuria of primary renal disease, and also renal vascular hypertension, diabetic retinopathy, the management of other vascular disorders, such as migraine, peripheral vascular disease, Raynaud's disease, luminal hyperplasia, cognitive dysfunction (such as Alzheimer's diseases) , glaucoma, stroke and Parkinson disease.
  18. Use of the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to claim 7, or the composition comprising the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to claim 8, for the treatment of diseases or disorders selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac myopathy, supraventricular and ventricular arrhythmias, atrial fibrillation, atrial flutter, detrimental vascular remodeling, myocardial infarction, atherosclerosis, renal insufficiency (diabetic and non-diabetic) , diabetes, primary and secondary pulmonary hypertension, renal failure, diabetic nephropathy, glomerulonephritis, scleroderma, glomerular sclerosis, proteinuria of primary renal disease, and also renal vascular hypertension, diabetic retinopathy, the management of other vascular disorders, such as migraine, peripheral vascular disease, Raynaud's disease, luminal hyperplasia, cognitive dysfunction (such as Alzheimer's diseases) , glaucoma, stroke and Parkinson disease.
  19. The use according to claim 17 or 18, wherein the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
  20. Use of the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to any one of claims 1-6, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof in manufacture of a medicament for the treatment of diseases or disorders which can be benefited from blockade of calcium channel, preferably the disease or disorder which can be benefited from selective blockade of Ca V1.3 channel compared with Ca V1.2 channel.
  21. Use according to claim 20, wherein the compound of formula (I) , (Ia) , (Ib) , (II) , (IIa) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to any one of claims 1-6, or its enantiomer, diastereomer, tautomer or a mixture thereof, or pharmaceutically acceptable salt thereof is used in manufacture of a medicament for the treatment of diseases or disorders selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac myopathy, supraventricular and ventricular arrhythmias, atrial fibrillation, atrial flutter, detrimental vascular remodeling, myocardial infarction, atherosclerosis, renal insufficiency (diabetic and non-diabetic) , diabetes, primary and secondary pulmonary hypertension, renal failure, diabetic nephropathy, glomerulonephritis, scleroderma, glomerular sclerosis, proteinuria of primary renal disease, and also renal vascular hypertension, diabetic retinopathy, the management of other vascular disorders, such as migraine, peripheral vascular disease, Raynaud's disease, luminal hyperplasia, cognitive dysfunction (such as Alzheimer's diseases) , glaucoma, stroke and Parkinson disease.
  22. Use of the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to claim 7, or the composition comprising the essential oil derived from ginger (Zingiber officinale) or clary sage (Salvia sclarea) which comprises the compound of formula (Ib) , (IIb-1) , (IIb-2) , (IIb-3) or (IIb-4) according to claim 8, in manufacture of a medicament for the treatment of diseases or disorders selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , heart failure such as congestive heart failure, left ventricular dysfunction and hypertrophic cardiomyopathy, diabetic cardiac myopathy, supraventricular and ventricular arrhythmias, atrial fibrillation, atrial flutter, detrimental vascular remodeling, myocardial infarction, atherosclerosis, renal insufficiency (diabetic and non-diabetic) , diabetes, primary and secondary pulmonary hypertension, renal failure, diabetic  nephropathy, glomerulonephritis, scleroderma, glomerular sclerosis, proteinuria of primary renal disease, and also renal vascular hypertension, diabetic retinopathy, the management of other vascular disorders, such as migraine, peripheral vascular disease, Raynaud's disease, luminal hyperplasia, cognitive dysfunction (such as Alzheimer's diseases) , glaucoma, stroke and Parkinson disease
  23. The use according to claim 21 or 22, wherein the disease or disorder is selected from hypertension, coronary heart disease (CAD) , angina pectoris (whether unstable or stable) , and Parkinson disease.
  24. A method of screening compound as calcium channel blocker, especially having high selectivity to Ca V1.3 channel compared with Ca V1.2 channel, said method comprising the following steps:
    (1) selection of a suitable host cell that weakly expresses or does not express Ca V1.3 or Ca V1.2 channel endogenously;
    (2) delivery of (i) nucleic acid segments that encode one or more calcium channel subunits alongside (ii) any calcium-responsive reporter system into the host cell described in (1) ;
    (3) depolarization of cells described in (1-2) through electrical stimulation or by treatment of aqueous salt solutions such as potassium chloride;
    (4) incubation of depolarized cells described in (1-3) with candidate calcium channel blocker compounds for at least 1 minute; and
    (5) quantification of signals produced by the calcium-responsive reporter system described in (1) .
  25. The method according to claim 24, wherein the suitable host cell is of mammalian or amphibian origin, preferably, the host cell is derived from human embryonic kidney cells, patient-specific tumors or Chinese hamster ovary cells, such as HEK-293, HeLa or CHO-K1 cells, or the host cell is derived from Xenopus oocytes.
  26. The method according to claim 24, wherein the nucleic acid segments that encode one or more calcium channel subunits are one or more nucleic acid sequences comprising a mRNA sequence that can translate into any one of the protein subunits selected from α1, α2, β1, β2, β3, β4, γ, δ or α2δ domains of voltage-gated calcium channels, or the nucleic acid segments that encode one or more calcium channel subunits are one or more nucleic acid sequences comprising  a DNA sequence that can transcribe into a RNA sequence that produces any one of the protein subunits selected from α1, α2, β1, β2, β3, β4, γ, δ or α2δ domains of voltage-gated calcium channels, or the nucleic acid segment (s) that encode (s) one or more calcium channel subunits is (are) a nucleic acid sequence comprising one or more gene sequences selected from CACNA1S, CACNA1C, CACNA1D, CACNA1F, CACNA1A, CACNA1B, CACNA1E, CACNA1G, CACNA1H, CACNA1I, CACNA2D1, CACNA2D2, CACNA2D3, CACNA2D4, CACNB1, CACNB2, CACNB3, CACNB4, CACNG1, CACNG2, CACNG3, CACNG4, CACNG5, CACNG6, CACNG7 or CACNG8 or any homologue thereof.
  27. The method according to claim 24, wherein the calcium-responsive reporter system is a protein whose activity and/or integrity is naturally evolved or engineered to depend on local concentrations of calcium ions, or the calcium-responsive reporter system is an RNA molecule whose stability and/or translation is naturally evolved or engineered to depend on local concentrations of calcium ions, or the calcium-responsive reporter system is a natural or synthetic promoter whose activation is naturally evolved or engineered to depend on intracellular concentrations of calcium ions, or the calcium-responsive reporter system is any combination of a calcium-dependent protein, calcium-dependent RNA and calcium-dependent promoter described above, or the calcium-responsive reporter system consists of a synthetic promoter that contains DNA segments bound by the calcium-responsive transcription factor NFAT (nuclear factor of activated T cells) .
PCT/CN2022/137596 2021-12-09 2022-12-08 Calcium channel blocker and screening method thereof WO2023104159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2021/136796 2021-12-09
CN2021136796 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023104159A1 true WO2023104159A1 (en) 2023-06-15

Family

ID=86729667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137596 WO2023104159A1 (en) 2021-12-09 2022-12-08 Calcium channel blocker and screening method thereof

Country Status (1)

Country Link
WO (1) WO2023104159A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081472A (en) * 2006-09-28 2008-04-10 Kao Corp Skin care preparation
US20080248040A1 (en) * 2003-10-02 2008-10-09 Menghang Xia Nucleic Acid Molecules Encoding Novel Human Low-Voltage Activated Calcium Channel Proteins, Designed-Alpha 1I-1 and Alpha 1I-2, Encoded Proteins and Methods of Use Thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080248040A1 (en) * 2003-10-02 2008-10-09 Menghang Xia Nucleic Acid Molecules Encoding Novel Human Low-Voltage Activated Calcium Channel Proteins, Designed-Alpha 1I-1 and Alpha 1I-2, Encoded Proteins and Methods of Use Thereof
JP2008081472A (en) * 2006-09-28 2008-04-10 Kao Corp Skin care preparation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAWSON RM, GODFREY IM, HOGG RW, KNOX JR: "Synthetic Routes to Some Isotopically Labeled Intermediates for Diterpenoid Biosynthesis", AUSTRALIAN JOURNAL OF CHEMISTRY, C S I R O PUBLISHING, AU, vol. 42, no. 4, 1 January 1989 (1989-01-01), AU , pages 561 - 579, XP093071749, ISSN: 0004-9425, DOI: 10.1071/CH9890561 *
JIANG SU-ZHEN, MI SUI-QING, WANG NING-SHENG: "A Review on Cardiovascular Pharmacological Actions of Gingerol", LISHIZHEN MEDICINE AND MATERIA MEDICA RESEARCH., vol. 18, no. 1, 1 January 2007 (2007-01-01), pages 219 - 221, XP093071750 *
YUJI IMAIZUMI, KAZUHO SAKAMOTO, AKI YAMADA, AYA HOTTA, SUSUMU OHYA, KATSUHIKO MURAKI, MASANOBU UCHIYAMA AND TOMOHIKO OHWADA: "Molecular basis of pimarane compounds as novel activators of large-conductance Ca<2+>-activated K<+> channel [alpha]-subunit", MOLECULAR PHARMACOLOGY, AMERICAN SOCIETY FOR PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, US, vol. 62, no. 4, 1 October 2002 (2002-10-01), US , pages 836 - 846, XP002497289, ISSN: 0026-895X, DOI: 10.1124/mol.62.4.836 *

Similar Documents

Publication Publication Date Title
Heller et al. Emery‐Dreifuss muscular dystrophy
Hay et al. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains
US9662314B2 (en) Compounds and methods for the treatment of muscular disease, and related screening methods
Goswami et al. Viral degradasome hijacks mitochondria to suppress innate immunity
JP4599292B2 (en) Identification of therapeutic compounds based on physical-chemical properties
US9737525B2 (en) Small molecule activators of NRF2 pathway
WO2005087217A1 (en) Compositions and methods for modulating interaction between polypeptides
Actis et al. Identification of the first small-molecule inhibitor of the REV7 DNA repair protein interaction
de Andrade et al. 1, 2, 3-Triazole-based analogue of benznidazole displays remarkable activity against Trypanosoma cruzi
Prudent et al. Azaindole derivatives are inhibitors of microtubule dynamics, with anti‐cancer and anti‐angiogenic activities
Atkin et al. A comprehensive approach to identifying repurposed drugs to treat SCN 8A epilepsy
US8846932B2 (en) Small molecules modulator of epigenetic regulation and their therapeutic applications
US20100190807A1 (en) CDKI Pathway inhibitors and uses thereof to regulate expression to TAU protein
Liu et al. Discovery of novel macrocyclic hedgehog pathway inhibitors acting by suppressing the Gli-mediated transcription
WO2023104159A1 (en) Calcium channel blocker and screening method thereof
Volpatti et al. X-linked myotubular myopathy is associated with epigenetic alterations and is ameliorated by HDAC inhibition
JP7360106B2 (en) Endoplasmic reticulum stress regulator containing benzothiazoimidazolyl compound
EP3280404B1 (en) Methods for selecting phosphatase selective and non-selective phosphatase inhibitors
Reyes Gaido et al. An improved reporter identifies ruxolitinib as a potent and cardioprotective CaMKII inhibitor
WO2011139636A1 (en) Small molecule inhibitors of functions of the hiv-1 matrix protein
KR101604434B1 (en) A Composition for Preventing or Treating X-linked Adrenoleukodystrophy
US20230002344A1 (en) Novel benzothiophene derivatives and use thereof for stimulating mitochondrial turnover
Kumar et al. Campaign to identify novel modulators of the Retinoic acid receptor-related Orphan Receptors (ROR)
Frkic Shooting three inflammatory targets with a single bullet: Novel multi-targeting anti-inflammatory glitazones
Gaido et al. Novel Biosensor Identifies Ruxolitinib as a Potent and Cardioprotective CaMKII Inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903577

Country of ref document: EP

Kind code of ref document: A1