WO2023103683A1 - 数据传输方法及其装置、存储介质、程序产品 - Google Patents

数据传输方法及其装置、存储介质、程序产品 Download PDF

Info

Publication number
WO2023103683A1
WO2023103683A1 PCT/CN2022/130603 CN2022130603W WO2023103683A1 WO 2023103683 A1 WO2023103683 A1 WO 2023103683A1 CN 2022130603 W CN2022130603 W CN 2022130603W WO 2023103683 A1 WO2023103683 A1 WO 2023103683A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
processing module
identification information
deployment
media processing
Prior art date
Application number
PCT/CN2022/130603
Other languages
English (en)
French (fr)
Inventor
张万春
杜高鹏
吴枫
司伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023103683A1 publication Critical patent/WO2023103683A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to dual connectivity in the communication field, in particular to a data transmission method and its device, storage medium, and program product.
  • NR-DC New Radio-Dual Connectivity, New Radio-Dual Connectivity
  • NR-DC is a dual connection that includes low-frequency and low-frequency from the frequency band, that is, one physical NR station is a low-frequency cell, and the other physical NR station is also a low-frequency cell.
  • NR-DC also includes low-frequency and high-frequency dual connections from the frequency band, that is, one physical NR station is a low-frequency cell, and the other physical NR station is also a high-frequency cell.
  • Different manufacturers will have different deployment methods for low-frequency and high-frequency under the two architectures of NR-DC, which leads to the need for multiple solutions for equipment manufacturers to implement.
  • NR-DC In related technologies, there are mainly three ways to integrate the two architectures of NR-DC. For example, there are three scenarios for dual connections including low-frequency and high-frequency in the frequency band, namely non-co-frame between NR-DC stations and intra-NR-DC stations. There are three scenarios of co-frame and logical station and non-common logical station in the NR-DC station. For the above three scenarios, equipment manufacturers need to perceive the differences of NR-DC in the three deployment scenarios, such as the difference of control signaling and Differences in media data communication lead to complex hardware deployment.
  • the OP (Operation Process) module has a large development workload in the three deployment scenarios, high software version maintenance costs, poor performance, and low efficiency.
  • Embodiments of the present application provide a data transmission method and device thereof, a storage medium, and a program product.
  • the embodiment of the present application provides a data transmission method, which is applied to a first NR base station, and the first NR base station is configured with a first operation processing module, and the data transmission method includes: controlling the first NR base station An operation processing module creates a first media processing module; obtains second identification information of a second NR base station, and determines deployment between the first NR base station and the second NR base station according to the second identification information
  • the second new air interface base station is configured with a second operation processing module; generating target identification information according to the deployment mode, generating control signaling according to the target identification information, and sending the control signaling to the second new air interface
  • the base station is configured to enable the second operation processing module to create a second media processing module according to the control signaling; and control the first media processing module to perform data transmission to the second media processing module according to the deployment manner.
  • the embodiment of the present application provides a data transmission method, which is applied to a second NR base station, and the data transmission method includes: receiving control signaling sent by the first NR base station, the control signaling carrying Target identification information, the target identification information is generated by the first NR base station according to the deployment mode between the first NR base station and the second NR base station; creating a second medium according to the control signaling A processing module; determine a deployment mode between the second NR base station and the first NR base station according to the target identification information; and control the second media processing module to perform data offload processing according to the deployment mode.
  • the embodiment of the present application also provides a data transmission device, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, and the computer program is implemented when the processor executes the computer program. Data transfer method as above.
  • the embodiment of the present application further provides a computer-readable storage medium storing computer-executable instructions, and the computer-executable instructions are used to execute the above data transmission method.
  • the embodiment of the present application also provides a computer program product, including computer programs or computer instructions, the computer programs or computer instructions are stored in a computer-readable storage medium, and the processor of the computer device reads from the computer-readable storage medium Taking the computer program or computer instruction, the processor executes the computer program or computer instruction, so that the computer device executes the above data transmission method.
  • FIG. 1 is a schematic diagram of an NR-DC architecture for performing a data transmission method provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an NR-DC architecture for performing a data transmission method provided by another embodiment of the present application;
  • Fig. 3 is a schematic structural diagram of dual connectivity of a low-frequency NR base station and a high-frequency NR base station provided by an example of the present application in which inter-station non-co-frame deployment is used as the deployment mode;
  • Fig. 4 is a schematic structural diagram of dual connectivity of a low-frequency new air interface base station and a high-frequency new air interface base station provided by an example of the present application in which a common frame and common logic station is deployed as the deployment mode;
  • Fig. 5 is a schematic structural diagram of dual connectivity of a low-frequency new air interface base station and a high-frequency new air interface base station provided by an example of the present application in which a common-frame non-common logical station deployment is used as the deployment mode;
  • FIG. 6 is a flowchart of a data transmission method applied to a first new air interface base station provided by an embodiment of the present application
  • Fig. 7 is a flow chart of a specific method of step S120 in Fig. 6;
  • Fig. 8 is a flow chart of a specific method of step S220 in Fig. 7;
  • Fig. 9 is a flowchart of another specific method of step S220 in Fig. 7;
  • Fig. 10 is a flow chart of the first specific method of step S140 in Fig. 6;
  • Fig. 11 is the flowchart of the second specific method of step S140 in Fig. 6;
  • Fig. 12 is a flowchart of another specific method of step S120 in Fig. 6;
  • Fig. 13 is the flowchart of the third specific method of step S140 in Fig. 6;
  • FIG. 14 is a flowchart of a data transmission method applied to a second new air interface base station provided by an embodiment of the present application.
  • Fig. 15 is a flow chart of the first specific method of step S930 in Fig. 14;
  • Fig. 16 is a flow chart of the second specific method of step S930 in Fig. 14;
  • FIG. 17 is a flowchart of a third specific method of step S930 in FIG. 14;
  • Fig. 18 is a flow chart of the first specific method of step S940 in Fig. 14;
  • Fig. 19 is a flow chart of the second specific method of step S940 in Fig. 14;
  • FIG. 20 is a flowchart of a third specific method of step S940 in FIG. 14;
  • Fig. 21 is a schematic diagram of a dual connection application of a low-frequency new air interface base station and a high-frequency new air interface base station configured to implement a data transmission method in a co-frame deployment scenario provided by an example of the present application;
  • Fig. 22 is a schematic diagram of a non-co-frame deployment scenario in which dual connectivity of a low-frequency NR base station and a high-frequency NR base station configured to implement a data transmission method is provided in an example of the present application;
  • Fig. 23 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • the present application provides a data transmission method and its device, storage medium, and program product, which can determine the deployment mode between the first NR base station and the second NR base station according to the second identification information, and then generate Target identification information, and generate control signaling according to the target identification information, and send the control signaling carrying the target indication information to the second NR base station, so that the second operation processing module of the second NR base station Create a second media processing module based on the target identification information in it, and finally control the first media processing module to transmit data to the second media processing module according to the deployment method.
  • the first operation processing module of the first operation processing module creates the first media processing module and the second operation processing module of the second NR base station creates the second media processing module.
  • both the first operation processing module and the second operation processing module can perform Interaction.
  • the first media processing module and the second media processing module can also interact. Therefore, data transmission can be realized on the basis of ignoring the implementation differences and transmission differences of NR-DC in different deployment scenarios, reducing the complexity and complexity of equipment manufacturers' implementation. The complexity of carrier version upgrades.
  • FIG. 1 is a schematic diagram of an NR-DC architecture configured to execute a data transmission method provided by an embodiment of the present application.
  • UE user equipment, user equipment
  • FIG. 1 is a schematic diagram of an NR-DC architecture configured to execute a data transmission method provided by an embodiment of the present application.
  • UE user equipment, user equipment
  • FIG. 1 is a schematic diagram of an NR-DC architecture configured to execute a data transmission method provided by an embodiment of the present application.
  • UE user equipment, user equipment
  • the first new air interface base station 200 passes through the NG-C (the user plane interface between NG-RAN (Next Generation Radio Access Network, next-generation radio access network) and 5GC100) interface and the NG-U interface (between NG-RAN and 5GC100 The control plane interface between them) is connected to 5GC100 (5th Generation Core Network, 5G core network), and SN is connected to 5GC100 through NG-U interface.
  • NG-C the user plane interface between NG-RAN (Next Generation Radio Access Network, next-generation radio access network) and 5GC100
  • 5GC100 5th Generation Core Network, 5G core network
  • SN is connected to 5GC100 through NG-U interface.
  • NR-DC also has a protocol architecture, as shown in Figure 2, in the example of Figure 2, the UE (not shown in the figure) only communicates with one NR connection, the NR is used as the third new air interface base station 400, the third new air interface base station 400 includes 2 DUs (Distributed Unit, distribution unit), one DU is used as MCG420 (Master Cell group, main cell group), and the other DU is used as SCG430 ( Secondary Cell group), the MCG420 is connected to the CU410 (Centralized Unit) through the F1-C (control plane) interface and the F1-U (user plane) interface, and the SCG430 is connected to the F1-C interface and the F1- U interface is connected with CU410, and CU410 is connected with 5GC100 through NG-C interface and NG-U interface.
  • DUs Distributed Unit, distribution unit
  • MCG420 Master Cell group, main cell group
  • SCG430 Secondary Cell group
  • the MCG420 is connected to the CU410 (Centralized Unit) through the
  • a NR may include a CU and multiple DUs, and a CU may be divided into a control plane part (CU-CP) and a user plane part (CU-UP), and a CU may include a CU-CP and Multiple CU-UPs, where CU-CP is connected to DU through F1-C interface, and CU-UP is connected to DU through F1-U interface.
  • CU-CP control plane part
  • CU-UP user plane part
  • the F1-C (control plane) interface and the F1-U (user plane) interface belong to the F1 interface.
  • the F1 interface supports signaling exchange and data transmission between the CU and the DU, and the F1 interface can separate the wireless network layer. and the transport network layer, exchanging user terminal-related information or non-user terminal-related information, etc.
  • multiple DUs can be centrally controlled by one CU.
  • 3GPP (3rd Generation Partnership Project, The 3rd Generation Partnership Project) standard stipulates that a DU is connected to only one CU, but it does not rule out that multiple CUs are connected to the same DU in order to enhance resilience in actual operation.
  • the CU and DU can be divided according to the protocol layer of the wireless network, such as the packet data convergence protocol layer (packet data convergence protocol, PDCP) and above protocol layers (for example, radio resource control (radio resource control, RRC))
  • the function is set in the CU.
  • Protocol layers below PDCP such as radio link control (radio link control, RLC), media access control layer (medium access control, MAC) and physical layer (Physical layer, PHY) and other functions are set in the DU.
  • NR-DC can include dual connections of low-frequency NR base stations and low-frequency NR base stations in the frequency band, that is, one NR is a low-frequency NR base station, and the other NR is also a low-frequency NR base station; or, NR-DC also It can include dual connections of low-frequency NR base stations and high-frequency NR base stations, that is, one NR is a low-frequency NR base station, and the other NR is a high-frequency NR base station.
  • the deployment mode of the low-frequency NR base station 500 and the high-frequency NR base station 600 is non-co-frame deployment between stations, that is, the low-frequency NR base station 500 and the high-frequency NR base station 600 are two sites in terms of hardware , logically two sites.
  • the first centralized unit 520 of the low-frequency NR base station 500 and the second centralized unit 620 of the high-frequency NR base station 600 are independent of each other, and the first distribution unit 510 of the low-frequency NR base station 500 and the second distribution unit of the high-frequency NR base station 600 610 are independent of each other, and the PLMN (Public Land Mobile Network, public land mobile network) and gNBID (Generation Node Base Identity document, 5G base station identity identification) of the low-frequency new air interface base station 500 and the PLMN and gNBID of the high-frequency new air interface base station 600 are independent of each other , in addition, the IP (Internet Protocol, Internet Protocol) address, NG interface, and XN interface of the low-frequency new air interface base station 500 and the high-frequency new air interface base station 600 are also independent of each other, wherein the NG interface includes the NG-C interface and the NG-U Interface, XN interface is a network interface between NG-RAN nodes.
  • the NG interface
  • the low-frequency new air interface base station 500 is connected to the 5GC100 through the NG-C interface and the NG-U interface
  • the high-frequency new air interface base station 600 is connected to the 5GC100 through the NG-U interface. It should be noted that the low-frequency NR base station 500 and the high-frequency NR base station 600 need to transmit control signaling and perform media data communication through the XN interface in the NR-DC scenario.
  • the low-frequency NR base station 500 and the high-frequency NR base station 600 are deployed in the same frame and common logic station, that is, the low-frequency NR base station 500 and the high-frequency NR base station 600 are one site in hardware, Logically a site.
  • the low-frequency NR base station 500 and the high-frequency NR base station 600 share the first centralized unit 520, the first distribution unit 510 of the low-frequency NR base station 500 and the second distribution unit 610 of the high-frequency NR base station 600 are independent of each other, and the low-frequency NR
  • the base station 500 and the high-frequency new air interface base station 600 share the PLMN, gNBID, IP address and NG interface, wherein the NG interface includes an NG-C interface and an NG-U interface.
  • Both the low-frequency NR base station 500 and the high-frequency NR base station 600 are connected to the 5GC100 through the NG-C interface and the NG-U interface.
  • the first centralized unit 520 has a common protocol layer RRC (Radio Resource Control, Radio Resource Control), GTPU (General Packet Radio Service Tunneling Protocol userplane, General Packet Radio Service Tunneling Protocol userplane) and SDAP (Service Data Adaptation Protocol, service data adaptation protocol), the low-frequency new air interface base station 500 and the high-frequency new air interface base station 600 transmit control signaling and media data communication through the custom logical interface in the frame in the NR-DC scenario.
  • RRC Radio Resource Control, Radio Resource Control
  • GTPU General Packet Radio Service Tunneling Protocol userplane, General Packet Radio Service Tunneling Protocol userplane
  • SDAP Service Data Adaptation Protocol, service data adaptation protocol
  • the low-frequency NR base station 500 and the high-frequency NR base station 600 are deployed in the same frame and non-common logic station deployment, that is, the low-frequency NR base station 500 and the high-frequency NR base station 600 are one site in hardware , logically two sites.
  • the first centralized unit 520 of the low-frequency NR base station 500 and the second centralized unit 620 of the high-frequency NR base station 600 are independent of each other, and the first distribution unit 510 of the low-frequency NR base station 500 and the second distribution unit of the high-frequency NR base station 600 610 are independent of each other, and the PLMN and gNBID of the low-frequency NR base station 500 and the PLMN, gNBID, IP, address, and NG interface of the high-frequency NR base station 600 are also independent of each other, and the NG interface includes the NG-C interface and the NG-U interface.
  • Both the low-frequency NR base station 500 and the high-frequency NR base station 600 are connected to the 5GC100 through the NG-C interface and the NG-U interface.
  • the low-frequency NR base station 500 and the high-frequency NR base station 600 transmit control signaling and perform media data communication through a logical XN interface in an NR-DC scenario.
  • the frequency range corresponding to the low-frequency NR base station 500 may be 450MHZ to 6000MHZ, and the frequency range corresponding to the high-frequency NR base station 600 may be 24250MHZ to 52600MHZ, and there is no specific limitation here.
  • the dual connection principle of the low frequency NR base station 500 and the low frequency NR base station 500 is consistent with the dual connection principle of the low frequency NR base station 500 and the high frequency NR base station 600 .
  • the NR-DC architecture and application scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • Those skilled in the art know that as With the evolution of the NR-DC architecture and the emergence of new application scenarios, the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
  • NR-DC architecture shown in Figures 1 and 2 and the NR-DC deployment scenarios shown in Figures 3 to 5 do not constitute a limitation on the embodiments of the present application, and may include More or fewer components than shown, or combinations of certain components, or different arrangements of components.
  • FIG. 6 is a flow chart of a data transmission method provided by an embodiment of the present application.
  • the data transmission method can be applied to a first new air interface base station, such as the first new air base station in the NR-DC architecture shown in FIG. Air base station.
  • the first new air interface base station is configured with a first operation processing module, and the data transmission method may include but not limited to step S110, step S120, step S130 and step S140.
  • Step S110 Control the first operation processing module to create a first media processing module.
  • the first NR base station controls the first operation processing module to create the first media processing module, which is not specifically limited in this embodiment.
  • the first NR base station can be a low-frequency NR base station or a high-frequency NR base station, and the frequency range corresponding to the low-frequency NR base station 500 can be 450MHZ to 6000MHZ, while the high-frequency NR base station 600 corresponds to The frequency range can be 24250MHZ to 52600MHZ, and there is no specific limitation here.
  • Step S120 Obtain second identification information of the second NR base station, and determine a deployment mode between the first NR base station and the second NR base station according to the second identification information.
  • the first NR base station can obtain the second identification information of the second NR base station.
  • the first NR base station can obtain the OAM (operations, administration and maintenance, operation, maintenance and management) of the first NR base station. ) to obtain the second identification information of the second new air interface base station, which may also be obtained in other ways, which are not specifically limited here.
  • the second NR base station is configured with a second operation processing module.
  • the second NR base station can be a low-frequency NR base station or a high-frequency NR base station, and the frequency range corresponding to the low-frequency NR base station 500 can be 450MHZ to 6000MHZ, and the frequency range corresponding to the high-frequency NR base station 600 can be 24250MHZ to 52600MHZ, no specific limitation here.
  • the second identification information may include the gNBID and the PLMN, which is not specifically limited in this embodiment.
  • Step S130 Generate target identification information according to the deployment mode, generate control signaling according to the target identification information, and send the control signaling to the second new air interface base station, so that the second operation processing module creates a second media processing module according to the control signaling.
  • step S120 since the deployment mode of the first NR base station and the second NR base station are determined in step S120, target identification information can be generated according to the deployment mode, and then control signaling can be generated according to the target identification information, and then The first operation processing module sends the control signaling to the second operation processing module of the second NR base station, so that the second operation processing module of the second NR base station creates a second media processing module according to the control signaling, so that the subsequent The step is to control the first media processing module to transmit data to the second media processing module according to the deployment mode.
  • Step S140 Control the first media processing module to transmit data to the second media processing module according to the deployment mode.
  • step S120 since the deployment mode of the first NR base station and the second NR base station are determined in step S120, and the second media processing module is created in step S130, the first media processing can be controlled according to the deployment mode The module transmits data to the second media processing module.
  • the data transmission may be data reverse transmission, or other transmission methods, which are not specifically limited here.
  • the first NR base station controls the first operation processing module to create the first media processing module, and then acquires the second identification information of the second NR base station, Determine the deployment mode between the first NR base station and the second NR base station according to the second identification information, generate target identification information according to the deployment mode, and then generate control signaling according to the target identification information, and then the first operation processing module will The control signaling is sent to the second operation processing module of the second new air interface base station, so that the second operation processing module of the second new air interface base station creates a second media processing module according to the control signaling, and finally can control the first media processing module according to the deployment mode.
  • the media processing module transmits data to the second media processing module, that is to say, in the solution of the embodiment of this application, the first media processing module and the second operation processing module of the second NR base station are created through the first operation processing module of the first NR base station.
  • the second operation processing module creates the second media processing module.
  • the first operation processing module and the second operation processing module can interact, and the first media processing module and the second media processing module can also interact. Therefore, Data transmission can be realized on the basis of ignoring the implementation differences and transmission differences of NR-DC in different deployment scenarios, reducing the complexity of equipment manufacturers' implementation and the complexity of operator version upgrades.
  • the first NR base station may be a low-frequency NR base station or a high-frequency NR base station, which is not specifically limited here.
  • the second NR base station may be a low-frequency NR base station or a high-frequency NR base station, and no specific limitation is set here.
  • the frequency range corresponding to the low frequency NR base station 500 may be 450MHZ to 6000MHZ
  • the frequency range corresponding to the high frequency NR base station 600 may be 24250MHZ to 52600MHZ, no specific limitation is set here.
  • step S120 may include but not limited to step S210 and step S220 .
  • Step S210 Obtain a configuration list, and determine whether the second identification information exists in the configuration list.
  • the first NR base station obtains its own configuration list, and checks whether the second identification information exists in the configuration list.
  • Step S220 When the second identification information exists in the configuration list, obtain the first identification information of the first NR base station, compare the first identification information with the second identification information, and determine the first NR according to the comparison result A deployment mode between the base station and the second NR base station.
  • step S210 since it is checked in step S210 whether the second identification information exists in the configuration list, if the second identification information exists in the configuration list, the first identification information of the first new air interface base station is obtained, and the first identification information and A comparison process is performed on the second identification information, and a deployment mode between the first NR base station and the second NR base station is determined according to a result of the comparison process.
  • the first identification information may include the gNBID and PLMN of the first NR base station, or may be other information.
  • the second identification information may include the gNBID and PLMN of the second NR base station, or other information, which is not specifically limited here.
  • the first new air interface base station obtains its own configuration list, and determines whether the second identification information exists in the configuration list. If there is a second identification in the configuration list information, then obtain the first identification information of the first NR base station, compare the first identification information with the second identification information, and determine the distance between the first NR base station and the second NR base station according to the result of the comparison process. Deployment method.
  • the first NR base station obtains its own configuration list, and when the gNBID and PLMN of the second NR base station exist in the configuration list, it means that the first NR base station and the second NR base station are in the same frame, otherwise , the first NR base station and the second NR base station are framed, which is not specifically limited in this embodiment.
  • step S220 is described, and step S220 may include but not limited to step S310 .
  • Step S310 When the first identification information is consistent with the second identification information, determine that the deployment mode between the first NR base station and the second NR base station is co-frame co-logic station deployment.
  • the first NR base station since it has been determined in step S220 that the second identification information exists in the configuration list of the first NR base station, the first NR base station obtains its own first identification information, and compares the first identification information with the second The identification information is compared, and when the first identification information is consistent with the second identification information, it is determined that the deployment mode between the first NR base station and the second NR base station is co-frame co-logic station deployment.
  • the first identification information includes the gNBID and PLMN of the first NR base station
  • the second identification information includes the gNBID and PLMN of the second NR base station. If the gNBID of the base station is consistent, and the PLMN of the first NR base station is consistent with the PLMN of the second NR base station, it means that the first identification information and the second identification information are consistent, and the relationship between the first NR base station and the second NR base station is determined.
  • the deployment mode among them is the deployment of common frames and common logic stations, otherwise, it means that the first identification information and the second identification information are inconsistent, which is not specifically limited in this embodiment.
  • step S220 is described, and step S220 may include but not limited to step S410 .
  • Step S410 When the first identification information is inconsistent with the second identification information, determine that the deployment mode between the first NR base station and the second NR base station is co-frame non-co-logic station deployment.
  • the first NR base station since it has been determined in step S220 that the second identification information exists in the configuration list of the first NR base station, the first NR base station obtains its own first identification information, and compares the first identification information with the second The identification information is compared, and when the first identification information is inconsistent with the second identification information, it is determined that the deployment mode between the first NR base station and the second NR base station is co-frame non-co-logic station deployment.
  • FIG. 9 and the embodiment shown in FIG. 8 belong to parallel embodiments, and respectively correspond to different deployment modes.
  • the first identification information includes the gNBID and PLMN of the first NR base station
  • the second identification information includes the gNBID and PLMN of the second NR base station. If the gNBID of the base station is the same, and the PLMN of the first NR base station is inconsistent with the PLMN of the second NR base station, it means that the first identification information and the second identification information are inconsistent, and determine the distance between the first NR base station and the second NR base station.
  • the deployment mode is a common frame non-common logical station deployment; or, when the gNBID of the first NR base station is inconsistent with the gNBID of the second NR base station, and the PLMN of the first NR base station is consistent with the PLMN of the second NR base station, then It indicates that the first identification information is inconsistent with the second identification information, and it is determined that the deployment mode between the first NR base station and the second NR base station is co-frame non-common logic station deployment; or, when the gNBID of the first NR base station is the same as that of the second NR base station The gNBIDs of the two NR base stations are inconsistent, and the PLMN of the first NR base station is inconsistent with the PLMN of the second NR base station, it means that the first identification information and the second identification information are inconsistent, and the first NR base station and the second NR base station are determined.
  • the deployment mode between the base stations is a common-frame non-common logical station deployment, which is not
  • this step S140 may include but not limited to step S510 and step S520.
  • Step S510 Configure the IP address and MAC address of the second media processing module to the first media processing module.
  • the first operation processing module configures the IP address and MAC address of the second media processing module, and sets The IP address and MAC address of the second media processing module are sent to the first media processing module, so that the subsequent steps control the first media processing module to transmit data to the second media processing module according to the IP address and MAC address of the second media processing module .
  • Step S520 Control the first media processing module to transmit data to the second media processing module according to the IP address and the MAC address of the second media processing module.
  • the data transmission may be data reverse transmission, or other transmission methods, which are not specifically limited here.
  • the first new air base station can control the first media processing module to The second media processing module performs data transmission.
  • the first operation processing The module configures the IP address and MAC address of the second media processing module, and sends the IP address and MAC address of the second media processing module to the first media processing module, and controls the second media processing module according to the IP address and MAC address of the second media processing module A media processing module transmits data to a second media processing module.
  • the MAC address Media Access Control Address, Media Access Control Address
  • LAN Address LAN Address
  • Ethernet Address Ethernet Address
  • Physical Address Physical Address
  • Step S140 when it is determined that the deployment mode between the first NR base station and the second NR base station is a co-frame non-common logical station deployment, the Step S140 may include but not limited to step S610 and step S620.
  • Step S610 Control the first operation processing module to create the first transmission platform.
  • the first NR base station can control the first operation processing module to create the first transmission platform, so that In subsequent steps, the first media processing module transmits data to the second media processing module through the internal network port of the first transmission platform.
  • Step S620 Control the first media processing module to transmit data to the second media processing module through the internal network port of the first transmission platform.
  • step S610 since the first transmission platform is created in step S610, the first media processing module is controlled to transmit data to the second media processing module through the internal network port of the first transmission platform.
  • the data transmission may be data reverse transmission, or other transmission methods, which are not specifically limited here.
  • the first NR The air interface base station can control the first operation processing module to create the first transmission platform, and then the first media processing module can transmit data to the second media processing module through the internal network port of the first transmission platform.
  • step S120 is described, and step S120 may include but not limited to step S710 .
  • Step S710 When the second identification information does not exist in the configuration list, determine that the deployment mode between the first NR base station and the second NR base station is inter-station non-co-frame deployment.
  • the first NR base station obtains its own configuration list, checks whether the configuration list contains the second identification information, and if the second identification information does not exist in the configuration list, then determine the first NR base station and the second
  • the deployment mode between the new air interface base stations is non-co-frame deployment between stations, which is not specifically limited in this embodiment.
  • the second identification information may include the gNBID and PLMN of the second NR base station, and may also include other information, which is not specifically limited here.
  • FIG. 12 and the embodiment shown in FIG. 9 and the embodiment shown in FIG. 8 belong to parallel embodiments and correspond to different deployment modes respectively.
  • step S140 in the case where it is determined that the deployment mode between the first NR base station and the second NR base station is inter-station non-co-frame deployment, this step S140 may include but not limited to step S810 and step S820.
  • Step S810 Control the first operation processing module to create the first transmission platform.
  • the first NR base station can control the first operation processing module to create the first transmission platform for subsequent
  • the first media processing module transmits data to the second transmission platform of the second new air interface base station through the external network port of the first transmission platform, so as to transmit data to the second media processing module through the second transmission platform.
  • Step S820 Control the first media processing module to transmit data to the second transmission platform of the second NR base station through the external network port of the first transmission platform, so as to transmit data to the second media processing module through the second transmission platform.
  • the first media processing module is controlled to transmit data to the second transmission platform of the second new air interface base station through the external network port of the first transmission platform, so as to transmit data through the second transmission platform of the second new air interface base station
  • the second transmission platform performs data transmission to the second media processing module.
  • the data transmission may be data reverse transmission, or other transmission methods, which are not specifically limited here.
  • the first NR The base station can control the first operation processing module to create the first transmission platform, and then the first media processing module can transmit data to the second transmission platform of the second new air interface base station through the external network port of the first transmission platform, so as to pass through the second transmission platform Data transmission is performed to the second media processing module.
  • FIG. 14 is a flowchart of a data transmission method provided by another embodiment of the present application.
  • the data transmission method can be applied to a second new air interface base station, such as the second NR-DC architecture shown in FIG.
  • the data transmission method may include but not limited to step S910, step S920, step S930 and step S940.
  • Step S910 Receive the control signaling sent by the first NR base station, the control signaling carries target identification information, and the target identification information is sent by the first NR base station according to the deployment mode between the first NR base station and the second NR base station generate.
  • the target identification information may be the ID of the first operation processing module of the first new air interface base station, or may be a message related to virtual SCTP (Stream Control Transmission Protocol, stream control transmission protocol), or may be a message related to SCTP
  • SCTP Stream Control Transmission Protocol, stream control transmission protocol
  • the relevant message may also be other messages, which are not specifically limited here.
  • the second new air interface base station may receive the control instruction through an XN interface, a logical XN interface or an internal interface, and no specific limitation is set here.
  • Step S920 Create a second media processing module according to the control signaling.
  • step S910 since the control signaling sent by the first NR base station was received in step S910, after receiving the control signaling, the second NR base station creates a second media processing module according to the control control signaling, so that In the subsequent steps, the second media processing module is used to perform data splitting.
  • the second media processing module is created after the second operation processing module of the second new air interface base station receives the control signaling, and no specific limitation is set here.
  • Step S930 Determine the deployment mode between the second NR base station and the first NR base station according to the target identification information.
  • Step S940 Control the second media processing module to perform data splitting processing according to the deployment mode.
  • the data offload processing is related to the bearer type, and the bearer type is closely related to the service type.
  • the bearer type is divided into split bearer (Split Bearer) and radio bearer (Radio Bearer).
  • the data offload processing object performed by the second media processing module may be the first NR base station or the second NR base station, which is not specifically limited here.
  • the core network first sends data to the second media processing module, and the second media processing module sends part of the data to the first media processing module after receiving the data, and performs data offloading on the other part of the data inside the second new air interface base station , which is not specifically limited in this embodiment.
  • the second NR base station receives the control signaling sent by the first NR base station, and the control signaling carries the
  • the target identification information generated by the deployment mode between the base station and the second NR base station, the deployment mode between the second NR base station and the first NR base station is determined according to the target identification information, and the second media can be created according to the control signaling
  • the processing module finally controls the second media processing module to perform data splitting processing according to the deployment mode.
  • the first NR base station may be a low-frequency NR base station or a high-frequency NR base station, which is not specifically limited here.
  • the second NR base station may be a low-frequency NR base station or a high-frequency NR base station, and no specific limitation is set here.
  • step S930 is described, and step S930 may include but not limited to step S1010 .
  • Step S1010 When the target identification information is the flow control transmission protocol, determine that the deployment mode between the second NR base station and the first NR base station is inter-station non-co-frame deployment.
  • the second NR base station when the second NR base station receives the control command sent by the first NR base station, the second NR base station will create a second media processing module according to the control command, and because the control command carries a stream Control transmission protocol, the second NR base station determines the deployment mode between the second NR base station and the first NR base station as inter-station non-co-frame deployment according to the flow control transmission protocol, which is not specifically limited in this embodiment.
  • step S930 is described, and step S930 may also include but not limited to step S1110 .
  • Step S1110 When the target identification information is the virtual flow control transmission protocol, determine that the deployment mode between the second NR base station and the first NR base station is co-frame non-co-logic station deployment.
  • the second NR base station when the second NR base station receives the control command sent by the first NR base station, the second NR base station will create the second media processing module according to the control command, and because the control command carries virtual Flow control transmission protocol, the second NR base station determines that the deployment mode between the second NR base station and the first NR base station is co-frame non-common logical station deployment according to the virtual flow control transmission protocol, which is not done in this embodiment Specific restrictions.
  • this step S930 may also include but not limited to step S1210.
  • Step S1210 When the target identification information is the identification information of the first operation processing module of the first NR base station, determine that the deployment mode between the second NR base station and the first NR base station is co-frame co-logic station deployment.
  • identification information of the first operation processing module of the first new air interface base station may be the ID of the first operation processing module, or may be other information, which is not specifically limited here.
  • the second NR base station when the second NR base station receives the control command sent by the first NR base station, the second NR base station will create a second media processing module according to the control command, and because the control command carries the first An ID of an operation processing module, and the second NR base station determines that the deployment mode between the second NR base station and the first NR base station is co-frame and logical station deployment according to the ID of the first operation processing module.
  • the second NR base station determines that the deployment mode between the second NR base station and the first NR base station is co-frame and logical station deployment according to the ID of the first operation processing module.
  • FIG. 15 the embodiment shown in FIG. 16 , and the embodiment shown in FIG. 17 belong to parallel embodiments, and correspond to different deployment modes.
  • step S940 is described.
  • step S940 may also include but not limited to step S1310 and step S1320.
  • Step S1310 Control the second operation processing module to create a second transmission platform.
  • Step S1320 Control the second media processing module to perform data distribution processing through the external network port of the second transmission platform.
  • the second NR base station when the deployment mode of the first NR base station and the second NR base station is inter-station non-co-frame deployment, the second NR base station will control the second operation processing module to create the second transmission platform, and the second media processing The module performs data distribution processing through the external network port of the second transmission platform.
  • step S940 is described.
  • step S940 may also include but not limited to step S1410 and step S1420.
  • Step S1410 Configure the destination IP address and destination MAC address for data distribution to the second media processing module.
  • the destination IP address and destination MAC address may be of the first media processing module of the first NR base station, or of equipment in the second NR base station, which is not specifically limited in this embodiment.
  • Step S1420 Control the second media processing module to perform data splitting processing according to the destination IP address and destination MAC address.
  • the second NR base station when the deployment mode of the first NR base station and the second NR base station is a common frame and common logic station deployment, the second NR base station will control the second operation processing module to configure the destination IP address and destination The MAC address controls the second media processing module to perform data distribution processing according to the destination IP address and the destination MAC address.
  • the second operation processing module configures the destination IP address and destination MAC address for data offloading, and sends the The destination IP address and destination MAC address are filled in the header of data to be distributed, and the second media processing module is controlled to perform data distribution processing according to the destination IP address and destination MAC address, which is not specifically limited in this embodiment.
  • step S940 is described, and in the case that the deployment mode is a common-frame non-common logical station deployment, this step S940 may also include but not limited to step S1510.
  • Step S1510 Control the second media processing module to perform data offload processing through the internal network port of the first transmission platform of the first new air interface base station.
  • the second NR base station when the deployment mode of the first NR base station and the second NR base station is co-frame non-co-logic station deployment, the second NR base station will control the second operation processing module to pass through the first NR base station of the first NR base station.
  • the internal network port of the transmission platform performs data distribution processing.
  • FIG. 18 and the embodiment shown in FIG. 19 and the embodiment shown in FIG. 20 belong to parallel embodiments, and correspond to different deployment modes respectively.
  • the first NR base station is a low-frequency NR base station 500
  • the second NR base station is a high-frequency NR base station 600
  • the low-frequency NR base station 500 includes a first distribution unit 510 and a first concentration unit 520
  • the high frequency new air interface base station 600 includes a second distribution unit 610 and a second concentration unit 620
  • the first distribution unit 510 and the first concentration unit 520 are connected in communication
  • the second distribution unit 610 is connected in communication with the second concentration unit 620 .
  • the low-frequency NR base station 500 After receiving the measurement report from the UE, the low-frequency NR base station 500 performs dual connection addition with the high-frequency NR base station 600 .
  • the low-frequency NR base station 500 creates a first operation processing module 521, the first operation processing module 521 is located in the first centralized unit 520, the first operation processing module 521 obtains the configuration list of the low-frequency NR base station 500 according to the low-frequency OAM, and judges the configuration list Whether there is a gNBID and PLMN of the high-frequency NR base station 600 in the medium, and if so, compare whether the gNBID of the low-frequency NR base station 500 is consistent with the gNBID of the high-frequency NR base station 600, the PLMN of the low-frequency NR base station 500 and the high-frequency NR Whether the PLMN of the base station 600 is consistent, if the gNBID of the low-frequency NR base station 500 and the gNBID of the high-frequency NR base station 600, and the PLMN of the low-frequency NR base station 500 and the PLMN of the high-frequency NR base station 600 are all the same, then determine the low-frequency
  • the first operation processing module 521 configures the IP address and the MAC address of the second media processing module 622 to the first media processing module 522, and then the first media processing module 522
  • the IP address and MAC address are directly filled in the data header of the reverse data, and sent to the second media processing module 622 through the first transmission platform 530 .
  • This example starts from the user's point of view. Since the solution of dual masters and dual instances is adopted, and different deployment scenarios adopt different transmission methods, the process of NR-DC and the delay of data transmission are reduced, and the user's perception experience is improved. promote.
  • both the first operation processing module 521 and the second operation processing module 621 send a message through the XN interface, and the message will be ASN.1 (Abstract Syntax Notation Number one, Abstract Syntax Description 1) encoding.
  • the first NR base station is a low-frequency NR base station 500
  • the second NR base station is a high-frequency NR base station 600
  • the low-frequency NR base station 500 Including the first distribution unit 510 and the first concentration unit 520
  • the high-frequency new air interface base station 600 includes the second distribution unit 610 and the second concentration unit 620
  • the first distribution unit 510 and the first concentration unit 520 are connected by communication
  • the second distribution The unit 610 is communicatively connected with the second centralized unit 620 .
  • the low-frequency NR base station 500 After receiving the measurement report from the UE, the low-frequency NR base station 500 performs dual connection addition with the high-frequency NR base station 600 .
  • the low-frequency NR base station 500 creates a first operation processing module 521, the first operation processing module 521 is located in the first centralized unit 520, the first operation processing module 521 obtains the configuration list of the low-frequency NR base station 500 according to the low-frequency OAM, and judges the configuration list Whether there is a gNBID and PLMN of the high-frequency NR base station 600 in the medium, and if so, compare whether the gNBID of the low-frequency NR base station 500 is consistent with the gNBID of the high-frequency NR base station 600, the PLMN of the low-frequency NR base station 500 and the high-frequency NR Whether the PLMN of the base station 600 is consistent, if the gNBID of the low-frequency NR base station 500 is inconsistent with the gNBID of the high-
  • the first operation processing module 521 configures the first transmission platform 530, and creates the first media processing module 522, the first media processing module 522 is located in the first centralized unit 520, and passes through the first transmission platform 530
  • the internal network port of the high-frequency new air interface base station 600 sends an SN Addition Request request message to the second operation processing module 621 of the high-frequency new air interface base station 600.
  • the SN Addition Request request message is attached with control signaling carrying a virtual flow control transmission protocol and sent to the logical XN interface and then send it to the second operation processing module 621 of the high-frequency new air interface base station 600 through the logical XN interface.
  • the second operation processing module 621 After the second operation processing module 621 receives the control signaling, it creates a second media processing module 622.
  • the second media processing module 622 Located in the second centralized unit 620, and reply the SN Addition Request Response message to the first operation processing module 521, the second operation processing module 621 obtains the virtual flow control transmission protocol from the control signaling, and the second operation processing module 621 According to the virtual flow control transmission protocol, it can be judged that the high-frequency NR base station 600 and the low-frequency NR base station 500 are deployed in the same frame and non-common logic station. After that, the first operation processing module 521 and the second operation processing module 621 can pass the virtual Stream Control Transmission Protocol for communication.
  • the first operation processing module 521 configures the IP address of the second media processing module 622 to the first media processing module 522, and then the first media processing module 522 directly transmits the Fill in the IP address in the data header of the transmitted data, and send it to the second media processing module 622 through the internal network port of the first transmission platform 530 .
  • this example saves physical resources for the operator. Among them, half of the SCTP link between transmission resources and IP resources and 5GC is saved, which greatly reduces the maintenance cost of the operator and improves the efficiency of the base station. performance; from the user's point of view, due to the adoption of the dual-master dual-instance solution, and different deployment scenarios adopt different transmission methods, the process of NR-DC and the delay of data transmission are reduced, and the user's perception experience is improved. promoted.
  • both the first operation processing module 521 and the second operation processing module 621 send a message through the XN interface, and the message will be ASN.1 (Abstract Syntax Notation Number one, Abstract Syntax Description 1) encoding.
  • the first NR base station is a low-frequency NR base station 500
  • the second NR base station is a high-frequency NR base station 600
  • the low-frequency NR base station 500 includes a first distribution unit 510 and a first concentration unit 520
  • the high frequency new air interface base station 600 includes a second distribution unit 610 and a second concentration unit 620
  • the first distribution unit 510 and the first concentration unit 520 are connected in communication
  • the second distribution unit 610 is connected in communication with the second concentration unit 620 .
  • the low-frequency NR base station 500 After receiving the measurement report from the UE, the low-frequency NR base station 500 performs dual connection addition with the high-frequency NR base station 600 .
  • the low-frequency NR base station 500 creates a first operation processing module 521, the first operation processing module 521 is located in the first centralized unit 520, the first operation processing module 521 obtains the configuration list of the low-frequency NR base station 500 according to the low-frequency OAM, and judges the configuration list Whether there is a gNBID and PLMN of the high-frequency NR base station 600, if not, determine that the low-frequency NR base station 500 and the high-frequency NR base station 600 are deployed in a non-co-frame between stations, and then the first operation processing module 521 configures the first The transmission platform 530, and create the first media processing module 522, the first media processing module 522 is located in the first centralized unit 520, and the second operation to the high-frequency new air interface base station 600 through the external network port of the first transmission platform 530
  • the processing module 621 sends an SN Addition Request request message, the SN Addition Request request message is attached with the control signaling carrying the flow control transmission protocol and sent to the
  • the first operation processing module 521 and the second operation processing module 621 can pass the Control transfer protocol for communication.
  • the first operation processing module 521 configures the IP address of the second media processing module 622 to the first media processing module 522, and then the first media processing module 522 directly transmits the Fill in the IP address in the data header of the transmitted data, send it to the second transmission platform 630 through the external network port of the first transmission platform 530 , and send it to the second media processing module 622 through the second transmission platform 630 . From the perspective of the operator, this example saves physical resources for the operator.
  • both the first operation processing module 521 and the second operation processing module 621 send a message through the XN interface, and the message will be ASN.1 (Abstract Syntax Notation Number one, Abstract Syntax Description 1) encoding.
  • ASN.1 there are many encoding formats of ASN.1, such as BER (Basic Encoding Rules, basic encoding rules), CER (Canonical Encoding Rules, regular encoding rules), DER (Distinguished Encoding Rules, atypical encoding rules) etc.
  • BER Basic Encoding Rules, basic encoding rules
  • CER Canonical Encoding Rules, regular encoding rules
  • DER Distinguished Encoding Rules, atypical encoding rules
  • the NR-DC passes through the CU side (the first centralized unit or the second centralized unit) to set different operation processing modules, such as the first operation processing module 521 and the second operation processing module 621, the first operation processing module 521 and the second operation processing module 621 can be deployed in non-co-frame between stations, Under the three deployment scenarios of common frame and common logical station deployment and common frame and non-common logical station deployment, the implementation method of transplanting the first operation processing module 521 and the second operation processing module 621 directly does not need to be redeveloped, and the media plane adopts an independent The media plane instance method does not need to be reopened in the three deployment scenarios, and can be directly transplanted, which greatly reduces the complexity of implementation, and can flexibly match the three deployment scenarios on the same software version, saving manpower and maintenance cost.
  • the implementation method of transplanting the first operation processing module 521 and the second operation processing module 621 directly does not need to be redeveloped, and the media plane adopts an independent
  • the media plane instance method does not need to be
  • Example 1 Example 2 shown in FIG. 21 and Example 3 shown in FIG.
  • the frequency range corresponding to the new air interface base station 600 may be 24250 MHZ to 52600 MHZ, which is not specifically limited here.
  • the embodiment of the present application also provides a data transmission device 700, as shown in Figure 23, the data transmission device 700 includes but is not limited to:
  • memory 702 configured to store programs
  • the processor 701 is configured to execute the program stored in the memory 702, and when the processor 701 executes the program stored in the memory 702, the processor 701 is configured to execute the above data transmission method.
  • the processor 701 and the memory 702 may be connected through a bus or in other ways.
  • the memory 702 may be configured to store non-transitory software programs and non-transitory computer-executable programs, such as the data transmission method described in the embodiment of the present application.
  • the processor 701 implements the above-mentioned data transmission method by running the non-transitory software programs and instructions stored in the memory 702 .
  • the memory 702 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store and execute the above-mentioned data transmission method.
  • the memory 702 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 702 may include memory 702 remotely located relative to the processor 701, and these remote memories may be connected to the processor 701 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transitory software programs and instructions required to realize the above-mentioned data transmission method are stored in the memory 702, and when executed by one or more processors 701, the above-mentioned data transmission method is executed, for example, the execution of the above-described FIG. 6 Method step S110 to step S140, method step S210 and step S220 in Fig. 7, method step S310 in Fig. 8, method step S410 in Fig. 9, method step S510 in Fig. 10 to step S520, Fig. 11 Method step S610 and step S620, method step S710 in FIG. 12 , method step S810 and step S820 in FIG. 13 , method step S910 to step S940 in FIG. 14 , method step S1010 in FIG.
  • An embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by a processor or a controller, for example, implemented by the above-mentioned device Execution by a processor in the example can cause the above-mentioned processor to execute the method steps S110 to S140 in FIG. 6 described above, the method steps S210 and S220 in FIG. 7 , the method step S310 in FIG. Method step S410, method step S510 to step S520 among Fig. 10, method step S610 and step S620 among Fig. 11, method step S710 among Fig. 12, method step S810 and step S820 among Fig. 13, Fig.
  • Method step S910 to step S940 Method step S1010 in FIG. 15 , method step S1110 in FIG. 16 , method step S1210 in FIG. 17 , method step S1310 and step S1320 in FIG. 18 , method step S1410 and Step S1420 and method step S1510 in FIG. 20 .
  • an embodiment of the present application also provides a computer program product, including computer programs or computer instructions, where the computer programs or computer instructions are stored in a computer-readable storage medium, and the processor of the computer device reads the computer program from the computer-readable storage medium.
  • the processor executes the computer program or computer instruction, so that the computer device executes the data transmission method in the above-mentioned embodiment, for example, executes the method step S110 to step S140 in Fig. 6 described above, the method in Fig. 7 Method step S210 and step S220, method step S310 in FIG. 8 , method step S410 in FIG. 9 , method step S510 to step S520 in FIG. 10 , method step S610 and step S620 in FIG.
  • the embodiment of the present application includes: controlling the first operation processing module to create the first media processing module; acquiring the second identification information of the second NR base station, and determining the distance between the first NR base station and the second NR base station according to the second identification information
  • the second new air interface base station is configured with a second operation processing module; generate target identification information according to the deployment mode, generate control signaling according to the target identification information, and send the control signaling to the second new air interface base station, so that the second The operation processing module creates the second media processing module according to the control signaling; and controls the first media processing module to transmit data to the second media processing module according to the deployment mode.
  • the deployment mode between the first NR base station and the second NR base station can be determined according to the second identification information, and then the target identification information is generated according to the deployment mode, and the target identification information is generated according to the target identification information.
  • Control signaling sending the control signaling carrying the target indication information to the second NR base station, so that the second operation processing module of the second NR base station creates a second media processing module according to the target identification information in the control signaling , and finally control the first media processing module to transmit data to the second media processing module according to the deployment method, that is to say, in the solution of the embodiment of this application, the first media processing module is created by the first operation processing module of the first new air interface base station module and the second operation processing module of the second NR base station to create a second media processing module.
  • the first operation processing module and the second operation processing module can interact.
  • the first media processing module and the second media processing module The processing modules can also interact. Therefore, data transmission can be realized on the basis of ignoring the implementation and transmission differences of NR-DC in different deployment scenarios, reducing the complexity of implementation by equipment manufacturers and the complexity of operator version upgrades.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium configured to store desired information and accessible by a computer.
  • Computer storage media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输方法及其装置、存储介质、程序产品。该数据传输方法应用于第一新空口基站,方法包括:控制第一操作处理模块创建第一媒体处理模块(S110);获取第二新空口基站的第二识别信息,根据第二识别信息确定第一新空口基站与第二新空口基站之间的部署方式(S120);根据部署方式生成目标标识信息,根据目标标识信息生成控制信令,将控制信令发送至第二新空口基站,以使第二操作处理模块根据控制信令创建第二媒体处理模块(S130);根据部署方式控制第一媒体处理模块向第二媒体处理模块进行数据传输(S140)。

Description

数据传输方法及其装置、存储介质、程序产品
相关申请的交叉引用
本申请基于申请号为202111498509.X、申请日为2021年12月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域的双连接,尤其是一种数据传输方法及其装置、存储介质、程序产品。
背景技术
NR-DC(New Radio-Dual Connectivity,新空口双连接)是从频段上包含低频和低频的双连接,即一个物理NR站是低频小区,另一个物理NR站也是低频小区。NR-DC从频段上也包含低频和高频的双连接,即一个物理NR站是低频小区,另一个物理NR站也是高频小区。不同的厂家对于低频、高频在NR-DC的两种架构下部署的方式会不一致,导致设备厂商实现需要多种方案。
相关技术中,NR-DC的两种架构融合方式主要有三种,比如从频段上包含低频和高频的双连接就存在三种场景,分别是NR-DC站间非共框、NR-DC站内共框共逻辑站以及NR-DC站内共框非共逻辑站三种场景,针对上述三种场景,设备厂商实现需要感知NR-DC在三种部署场景下的差异,如控制信令的差异和媒体数据通信差异,从而导致硬件部署复杂,OP(Operation Process,操作处理)模块在三种部署场景下开发工作量大,软件版本维护成本高,性能差,效率低。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种数据传输方法及其装置、存储介质、程序产品。
第一方面,本申请实施例提供了一种数据传输方法,应用于第一新空口基站,所述第一新空口基站配置有第一操作处理模块,所述数据传输方法包括:控制所述第一操作处理模块创建第一媒体处理模块;获取第二新空口基站的第二识别信息,根据所述第二识别信息确定所述第一新空口基站与所述第二新空口基站之间的部署方式,所述第二新空口基站配置有第二操作处理模块;根据所述部署方式生成目标标识信息,根据所述目标标识信息生成控制信令,将控制信令发送至所述第二新空口基站,以使所述第二操作处理模块根据所述控制信令创建第二媒体处理模块;根据所述部署方式控制所述第一媒体处理模块向所述第二媒体处理模块进行数据传输。
第二方面,本申请实施例提供了一种数据传输方法,应用于第二新空口基站,所述数据传输方法包括:接收第一新空口基站发送的控制信令,所述控制信令携带有目标标识信息,所述目标标识信息由所述第一新空口基站根据所述第一新空口基站与所述第二新空口基站之间的部署方式生成;根据所述控制信令创建第二媒体处理模块;根据所述目标标识信息确定所述第二新空口基站与所述第一新空口基站之间的部署方式;根据所述部署方式控制所述第二媒体处理模块进行数据分流处理。
第三方面,本申请实施例还提供了一种数据传输装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上的数据传输方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行如上的数据传输方法。
第五方面,本申请实施例还提供了一种计算机程序产品,包括计算机程序或计算机指令,计算机程序或计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取计算机程序或计算机指令,处理器执行计算机程序或计算机指令,使得计算机设备执行如上的数据传输方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的用于执行数据传输方法的NR-DC架构的示意图;
图2是本申请另一个实施例提供的用于执行数据传输方法的NR-DC架构的示意图;
图3是本申请一个示例提供的以站间非共框部署为部署方式的低频新空口基站和高频新空口基站的双连接的结构示意图;
图4是本申请一个示例提供的以共框共逻辑站部署为部署方式的低频新空口基站和高频新空口基站的双连接的结构示意图;
图5是本申请一个示例提供的以共框非共逻辑站部署为部署方式的低频新空口基站和高频新空口基站的双连接的结构示意图;
图6是本申请一个实施例提供的应用于第一新空口基站的数据传输方法的流程图;
图7是图6中步骤S120的一种具体方法的流程图;
图8是图7中步骤S220的一种具体方法的流程图;
图9是图7中步骤S220的另一种具体方法的流程图;
图10是图6中步骤S140的第一种具体方法的流程图;
图11是图6中步骤S140的第二种具体方法的流程图;
图12是图6中步骤S120的另一种具体方法的流程图;
图13是图6中步骤S140的第三种具体方法的流程图;
图14是本申请一个实施例提供的应用于第二新空口基站的数据传输方法的流程图;
图15是图14中步骤S930的第一种具体方法的流程图;
图16是图14中步骤S930的第二种具体方法的流程图;
图17是图14中步骤S930的第三种具体方法的流程图;
图18是图14中步骤S940的第一种具体方法的流程图;
图19是图14中步骤S940的第二种具体方法的流程图;
图20是图14中步骤S940的第三种具体方法的流程图;
图21是本申请一个示例提供的被设置为执行数据传输方法的低频新空口基站和高频新空口基站的双连接应用于共框部署场景的示意图;
图22是本申请一个示例提供的被设置为执行数据传输方法的低频新空口基站和高频新空口基站的双连接应用于非共框部署场景的示意图;
图23是本申请一个实施例提供的数据传输装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请提供了一种数据传输方法及其装置、存储介质、程序产品,可以根据第二识别信息确定第一新空口基站和第二新空口基站之间的部署方式,接着又根据该部署方式生成目标标识信息,并根据该目标标识信息生成控制信令,将该携带目标表示信息的控制信令发送给第二新空口基站,使第二新空口基站的第二操作处理模块根据该控制信令里的目标标识信息创建第二媒体处理模块,最后根据该部署方式控制第一媒体处理模块向第二媒体处理模块进行数据传输,即是说,本申请实施例的方案,通过第一新空口基站的第一操作处理模块创建第一媒体处理模块以及第二新空口基站的第二操作处理模块创建第二媒体处理模块,在不同部署方式下第一操作处理模块与第二操作处理模块都可以进行交互,第一媒体处理模块和第二媒体处理模块也可以进行交互,因此,能够在忽略不同部署场景NR-DC的实现差异和传输差异的基础上实现数据传输,减少设备厂家实现的复杂度和运营商版本升级的复杂度。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的被设置为执行数据传输方法的NR-DC架构的示意图。在图1的示例中UE(user equipment,用户设备)(图中未示出)分别连接到两个NR,其中一个NR作为第一新空口基站200,另一个NR作为第二新空口基站300。第一新空口基站200通过NG-C(NG-RAN(Next Generation Radio Access Network,下一代无线接入网络)与5GC100之间的用户面接口)接口和NG-U接口(NG-RAN和5GC100之间的控制面接口)与5GC100(5th Generation Core Network,5G核心网)连接,SN通过NG-U接口与5GC100连接。
需要说明的是,除了如图1所示的NR-DC架构,NR-DC还有一种协议架构,如图2所示,在图2的示例中UE(图中未示出)只与一个NR连接,该NR作为第三新空口基站400,第三新空口基站400包含2个DU(Distributed Unit,分布单元),一个DU作为MCG420(Master Cell group,主小区组),另一个DU作为SCG430(Secondary Cell group,辅小区组),该MCG420通过F1-C(控制面)接口和F1-U(用户面)接口与CU410(Centralized Unit,集中单元)连接,该SCG430通过F1-C接口和F1-U接口与CU410连接,而CU410通过NG-C接口和NG-U接口与5GC100连接。
需要说明的是,一个NR可能包括一个CU和多个DU,而一个CU可以分为控制面部分(CU-CP)和用户面部分(CU-UP),而一个CU可以包括一个CU-CP和多个CU-UP,其中CU-CP通过F1-C接口与DU连接,CU-UP通过F1-U接口与DU连接。
需要说明的是,F1-C(控制面)接口和F1-U(用户面)接口属于F1接口,F1接口支持CU和DU之间的信令交换和数据传输,并且F1接口能够分离无线网络层和传输网络层,交换用户终端相关信息或非用户终端相关信息等。
还需要说明的是,多个DU可以由一个CU集中控制,理论上,一个CU可以连接的DU的最大数量没有限制,该数量仅受具体实施时的现实限制,虽然3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)标准规定一个DU只与一个CU连接,但并不排除在实际操作中为了增强弹性,将多个CU连接到同一个DU上。
需要说明的是,CU和DU可以根据无线网络的协议层划分,例如分组数据汇聚层协议层(packet data convergence protocol,PDCP)及以上协议层(例如,无线资源控制(radio resource control,RRC))的功能设置在CU。PDCP以下的协议层,例如无线链路控制(radio link control,RLC)、媒体接入控制层(medium access control,MAC)和物理层(Physical layer,PHY)等的功能设置在DU。
值得注意的是,NR-DC从频段上可以包含低频新空口基站和低频新空口基站的双连接,即一个NR是低频新空口基站,另一个NR也是低频新空口基站;或者,NR-DC也可以包含低频新空口基站和高频新空口基站的双连接,即一个NR是低频新空口基站,另一个NR是高频新空口基站。NR-DC的两种架构融合方式主要有三种部署场景,以低频新空口基站和高频新空口基站的双连接为例,如图3至图5所示。
在图3的示例中,低频新空口基站500和高频新空口基站600的部署方式是站间非共框部署,即低频新空口基站500和高频新空口基站600在硬件上是两个站点,逻辑上是两个站点。低频新空口基站500的第一集中单元520和高频新空口基站600的第二集中单元620相互独立,低频新空口基站500的第一分布单元510和高频新空口基站600的第二分布单元610相互独立,以及低频新空口基站500的PLMN(Public  Land Mobile Network,公用陆地移动网)和gNBID(Generation Node Base Identity document,5G基站身份标识)与高频新空口基站600的PLMN和gNBID相互独立,除此之外,低频新空口基站500和高频新空口基站600的IP(Internet Protocol,互联网协议)地址、NG接口、XN接口也相互独立,其中NG接口包括NG-C接口和NG-U接口,XN接口是NG-RAN节点之间的网络接口。低频新空口基站500通过NG-C接口和NG-U接口与5GC100连接,高频新空口基站600通过NG-U接口与5GC100连接。需要说明的是,低频新空口基站500和高频新空口基站600在NR-DC场景下需要通过XN接口传输控制信令和进行媒体数据通信。
在图4的示例中,低频新空口基站500和高频新空口基站600的部署方式是共框共逻辑站部署,即低频新空口基站500和高频新空口基站600在硬件上是一个站点,逻辑上是一个站点。低频新空口基站500和高频新空口基站600共用第一集中单元520,低频新空口基站500的第一分布单元510和高频新空口基站600的第二分布单元610相互独立,以及低频新空口基站500和高频新空口基站600共用PLMN、gNBID、IP地址和NG接口,其中NG接口包括NG-C接口和NG-U接口。低频新空口基站500和高频新空口基站600均通过NG-C接口和NG-U接口与5GC100连接。需要说明的是,第一集中单元520具有公共的协议层RRC(Radio Resource Control,无线资源控制)、GTPU(General Packet Radio Service Tunnelling Protocol userplane,通用分组无线服务隧道协议用户面)和SDAP(Service Data Adaptation Protocol,服务数据自适应协议),低频新空口基站500和高频新空口基站600在NR-DC场景下通过框内自定义逻辑接口传输控制信令和进行媒体数据通信。
在图5的示例中,低频新空口基站500和高频新空口基站600的部署方式是共框非共逻辑站部署,即低频新空口基站500和高频新空口基站600在硬件上是一个站点,逻辑上是两个站点。低频新空口基站500的第一集中单元520和高频新空口基站600的第二集中单元620相互独立,低频新空口基站500的第一分布单元510和高频新空口基站600的第二分布单元610相互独立,以及低频新空口基站500的PLMN和gNBID与高频新空口基站600的PLMN、gNBID、IP、地址、NG接口也相互独立,其中NG接口包括NG-C接口和NG-U接口。低频新空口基站500和高频新空口基站600均通过NG-C接口和NG-U接口与5GC100连接。低频新空口基站500和高频新空口基站600在NR-DC场景下通过逻辑XN接口传输控制信令和进行媒体数据通信。
需要说明的是,低频新空口基站500对应的频率范围可以是450MHZ到6000MHZ,而高频新空口基站600对应的频率范围可以是24250MHZ到52600MHZ,在此不做具体限制。
还需要说明的是,低频新空口基站500和低频新空口基站500的双连接原理与低频新空口基站500和高频新空口基站600的双连接的原理一致。
本申请实施例描述的NR-DC架构以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着NR-DC架构的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图1和图2中示出的NR-DC架构以及图3至图5中示出的NR-DC的部署场景并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述NR-DC架构,下面提出数据传输方法的各个实施例。
如图6所示,图6是本申请一个实施例提供的数据传输方法的流程图,该数据传输方法可以应用于第一新空口基站,例如图1所示NR-DC架构中的第一新空口基站。该第一新空口基站配置有第一操作处理模块,该数据传输方法可以包括但不限于有步骤S110、步骤S120、步骤S130和步骤S140。
步骤S110:控制第一操作处理模块创建第一媒体处理模块。
需要说明的是,第一新空口基站接收到UE的检测报告后,第一新空口基站控制第一操作处理模块创建第一媒体处理模块,本实施例对此不作具体限制。
需要说明的是,第一新空口基站可以是低频新空口基站,也可以是高频新空口基站,并且低频新空口基站500对应的频率范围可以是450MHZ到6000MHZ,而高频新空口基站600对应的频率范围可以是 24250MHZ到52600MHZ,在此不做具体限制。
步骤S120:获取第二新空口基站的第二识别信息,根据第二识别信息确定第一新空口基站与第二新空口基站之间的部署方式。
本步骤中,第一新空口基站获取第二新空口基站的第二识别信息的方式有很多,比如第一新空口基站可以根据第一新空口基站的OAM(operations,administration and maintenance,操作维护管理)获取第二新空口基站的第二识别信息,也可以以其他方式获取,在此不作具体限制。
需要说明的是,第二新空口基站配置有第二操作处理模块。第二新空口基站可以是低频新空口基站,也可以是高频新空口基站,并且低频新空口基站500对应的频率范围可以是450MHZ到6000MHZ,而高频新空口基站600对应的频率范围可以是24250MHZ到52600MHZ,在此不做具体限制。
还需要说明的是,第二识别信息可以包括gNBID和PLMN,本实施例对此不作具体限制。
步骤S130:根据部署方式生成目标标识信息,根据目标标识信息生成控制信令,将控制信令发送至第二新空口基站,以使第二操作处理模块根据控制信令创建第二媒体处理模块。
本步骤中,由在步骤S120中确定了第一新空口基站和第二新空口基站的部署方式,因此,可以根据该部署方式生成目标识别信息,然后根据该目标识别信息生成控制信令,接着第一操作处理模块将该控制信令发送给第二新空口基站的第二操作处理模块,以使第二新空口基站的第二操作处理模块根据控制信令创建第二媒体处理模块,以便后续步骤根据部署方式控制第一媒体处理模块向第二媒体处理模块进行数据传输。
步骤S140:根据部署方式控制第一媒体处理模块向第二媒体处理模块进行数据传输。
本步骤中,由在步骤S120中确定了第一新空口基站和第二新空口基站的部署方式,并且在步骤S130中创建了第二媒体处理模块,因此,可以根据部署方式控制第一媒体处理模块向第二媒体处理模块进行数据传输。
需要说明的是,该数据传输可以是数据反传,也可以是其他传输方式,在此不做具体限制。
本实施例中,通过采用包括上述步骤S110至步骤S140的数据传输方法,第一新空口基站控制第一操作处理模块创建第一媒体处理模块,接着获取第二新空口基站的第二识别信息,根据第二识别信息确定第一新空口基站与第二新空口基站之间的部署方式,根据该部署方式生成目标识别信息,然后根据该目标识别信息生成控制信令,接着第一操作处理模块将该控制信令发送给第二新空口基站的第二操作处理模块,以使第二新空口基站的第二操作处理模块根据控制信令创建第二媒体处理模块,最后可以据部署方式控制第一媒体处理模块向第二媒体处理模块进行数据传输,即是说,本申请实施例的方案,通过第一新空口基站的第一操作处理模块创建第一媒体处理模块以及第二新空口基站的第二操作处理模块创建第二媒体处理模块,在不同部署方式下第一操作处理模块与第二操作处理模块都可以进行交互,第一媒体处理模块和第二媒体处理模块也可以进行交互,因此,能够在忽略不同部署场景NR-DC的实现差异和传输差异的基础上实现数据传输,减少设备厂家实现的复杂度和运营商版本升级的复杂度。
需要说明的是,第一新空口基站可以是低频新空口基站,也可以是高频新空口基站,在此不做具体限制。同样地,第二新空口基站可以是低频新空口基站,也可以是高频新空口基站,在此不做具体限制。除此之外,低频新空口基站500对应的频率范围可以是450MHZ到6000MHZ,而高频新空口基站600对应的频率范围可以是24250MHZ到52600MHZ,在此不做具体限制。
在一实施例中,如图7所示,对步骤S120的说明,该步骤S120可以包括但不限于有步骤S210和步骤S220。
步骤S210:获取配置列表,确定第二识别信息是否存在于配置列表中。
本步骤中,第一新空口基站获取自身的配置列表,查看配置列表中是否存在第二识别信息。
步骤S220:当第二识别信息存在于配置列表中,获取第一新空口基站的第一识别信息,对第一识别信息与第二识别信息进行对比处理,根据对比处理的结果确定第一新空口基站与第二新空口基站之间的部署方式。
本步骤中,由于在步骤S210中查看配置列表中是否存在第二识别信息,若配置列表中存在第二识别 信息,则获取第一新空口基站的第一识别信息,并对第一识别信息与第二识别信息进行对比处理,根据对比处理的结果确定第一新空口基站与第二新空口基站之间的部署方式。
需要说明的是,第一识别信息可以包括第一新空口基站的gNBID和PLMN,也可以是其他信息。同样地,第二识别信息可以包括第二新空口基站的gNBID和PLMN,或者是其他信息,在此不做具体限制。
在本实施例中,通过采用上述步骤S210和步骤S220的数据传输方法,第一新空口基站获取自身的配置列表,确定第二识别信息是否存在于配置列表中,若配置列表中存在第二识别信息,则获取第一新空口基站的第一识别信息,并对第一识别信息与第二识别信息进行对比处理,根据对比处理的结果确定第一新空口基站与第二新空口基站之间的部署方式。
在一实施例中,第一新空口基站获取自身的配置列表,当配置列表中存在第二新空口基站的gNBID和PLMN,则说明第一新空口基站与第二新空口基站是共框,否则,第一新空口基站与第二新空口基站是分框,本实施例对此不作具体限制。
在一实施例中,如图8所示,对步骤S220进行的说明,该步骤S220可以包括但不限于有步骤S310。
步骤S310:当第一识别信息和第二识别信息相一致,确定第一新空口基站与第二新空口基站之间的部署方式为共框共逻辑站部署。
本实施例中,由于步骤S220中已经确定了第一新空口基站的配置列表中存在第二识别信息,因此,第一新空口基站获取自身的第一识别信息,对第一识别信息与第二识别信息进行对比处理,当第一识别信息和第二识别信息相一致,确定第一新空口基站与第二新空口基站之间的部署方式为共框共逻辑站部署。
在一实施例中,假设第一识别信息包括第一新空口基站的gNBID和PLMN,第二识别信息包括第二新空口基站的gNBID和PLMN,当第一新空口基站的gNBID与第二新空口基站的gNBID一致,并且第一新空口基站的PLMN与第二新空口基站的PLMN一致,则说明第一识别信息和第二识别信息相一致,确定第一新空口基站与第二新空口基站之间的部署方式为共框共逻辑站部署,否则,则说明第一识别信息和第二识别信息不一致,本实施例对此不作具体限制。
在另一实施例中,如图9所示,对步骤S220进行的说明,该步骤S220可以包括但不限于有步骤S410。
步骤S410:当第一识别信息和第二识别信息不一致,确定第一新空口基站与第二新空口基站之间的部署方式为共框非共逻辑站部署。
本实施例中,由于步骤S220中已经确定了第一新空口基站的配置列表中存在第二识别信息,因此,第一新空口基站获取自身的第一识别信息,对第一识别信息与第二识别信息进行对比处理,当第一识别信息和第二识别信息不一致,确定第一新空口基站与第二新空口基站之间的部署方式为共框非共逻辑站部署。
需要说明的是,如图9所示的实施例与如图8所示的实施例属于并列的实施例,并且分别对应于不同的部署方式。
在一实施例中,假设第一识别信息包括第一新空口基站的gNBID和PLMN,第二识别信息包括第二新空口基站的gNBID和PLMN,当第一新空口基站的gNBID与第二新空口基站的gNBID一致,第一新空口基站的PLMN与第二新空口基站的PLMN不一致,则说明第一识别信息和第二识别信息不一致,确定第一新空口基站与第二新空口基站之间的部署方式为共框非共逻辑站部署;或者,当第一新空口基站的gNBID与第二新空口基站的gNBID不一致,第一新空口基站的PLMN与第二新空口基站的PLMN相一致,则说明第一识别信息和第二识别信息不一致,确定第一新空口基站与第二新空口基站之间的部署方式为共框非共逻辑站部署;或者,当第一新空口基站的gNBID与第二新空口基站的gNBID不一致,并且第一新空口基站的PLMN与第二新空口基站的PLMN不一致,则说明第一识别信息和第二识别信息不一致,确定第一新空口基站与第二新空口基站之间的部署方式为共框非共逻辑站部署,本实施例对此不作具体限制。
在一实施例中,如图10所示,对步骤S140进行的说明,在确定第一新空口基站与第二新空口基站之间的部署方式为共框共逻辑站部署的情况下,该步骤S140可以包括但不限于有步骤S510和步骤S520。
步骤S510:向第一媒体处理模块配置第二媒体处理模块的IP地址和MAC地址。
本步骤中,当确定第一新空口基站与第二新空口基站之间的部署方式为共框共逻辑站部署,第一操作处理模块配置第二媒体处理模块的IP地址和MAC地址,并将该第二媒体处理模块的IP地址和MAC地址 发给第一媒体处理模块,以便后续步骤根据第二媒体处理模块的IP地址和MAC地址控制第一媒体处理模块向第二媒体处理模块进行数据传输。
步骤S520:根据第二媒体处理模块的IP地址和MAC地址控制第一媒体处理模块向第二媒体处理模块进行数据传输。
需要说明的是,该数据传输可以是数据反传,也可以是其他传输方式,在此不做具体限制。
本步骤中,由于在步骤S510中得到了第二媒体处理模块的IP地址和MAC地址,因此,第一新空口基站可以根据第二媒体处理模块的IP地址和MAC地址控制第一媒体处理模块向第二媒体处理模块进行数据传输。
本实施例中,通过采用包括有上述步骤S510至步骤S520的数据传输方法,当确定第一新空口基站与第二新空口基站之间的部署方式为共框共逻辑站部署,第一操作处理模块配置第二媒体处理模块的IP地址和MAC地址,并将该第二媒体处理模块的IP地址和MAC地址发给第一媒体处理模块,根据第二媒体处理模块的IP地址和MAC地址控制第一媒体处理模块向第二媒体处理模块进行数据传输。
需要说明的是,MAC地址(Media Access Control Address,媒体访问控制地址),也称为局域网地址(LAN Address),以太网地址(Ethernet Address)或物理地址(Physical Address),它是可以确认网上设备位置的地址,例如第二媒体处理模块的MAC地址可以确定第二媒体处理模块的物理地址。
在一实施例中,如图11所示,对步骤S140进行的说明,在确定第一新空口基站与第二新空口基站之间的部署方式为共框非共逻辑站部署的情况下,该步骤S140可以包括但不限于有步骤S610和步骤S620。
步骤S610:控制第一操作处理模块创建第一传输平台。
本步骤中,当确定第一新空口基站与第二新空口基站之间的部署方式为共框非共逻辑站部署,第一新空口基站可以控制第一操作处理模块创建第一传输平台,以便后续步骤中第一媒体处理模块通过第一传输平台的内网口向第二媒体处理模块进行数据传输。
步骤S620:控制第一媒体处理模块通过第一传输平台的内网口向第二媒体处理模块进行数据传输。
本步骤中,由于在步骤S610中创建了第一传输平台,因此,控制第一媒体处理模块通过第一传输平台的内网口向第二媒体处理模块进行数据传输。
需要说明的是,该数据传输可以是数据反传,也可以是其他传输方式,在此不做具体限制。
本实施例中,通过采用包括有上述步骤S610至步骤S620的数据传输方法,当确定第一新空口基站与第二新空口基站之间的部署方式为共框非共逻辑站部署,第一新空口基站可以控制第一操作处理模块创建第一传输平台,接着第一媒体处理模块可以通过第一传输平台的内网口向第二媒体处理模块进行数据传输。
在一实施例中,如图12所示,对步骤S120进行的说明,该步骤S120可以包括但不限于有步骤S710。
步骤S710:当第二识别信息不存在于配置列表中,确定第一新空口基站与第二新空口基站之间的部署方式为站间非共框部署。
本实施例中,第一新空口基站获取自身的配置列表,查看该配置列表中是否含有第二识别信息,当第二识别信息不存在于配置列表中,则确定第一新空口基站与第二新空口基站之间的部署方式为站间非共框部署,本实施例对此不作具体限制。
需要说明的是,第二识别信息可以包括第二新空口基站的gNBID和PLMN,也可以包括其他信息,在此不做具体限制。
需要说明的是,如图12所示的实施例与如图9所示的实施例、如图8所示的实施例属于并列的实施例,并且分别对应于不同的部署方式。
在一实施例中,如图13所示,对步骤S140进行的说明,在确定第一新空口基站与第二新空口基站之间的部署方式为站间非共框部署的情况下,该步骤S140可以包括但不限于有步骤S810和步骤S820。
步骤S810:控制第一操作处理模块创建第一传输平台。
本步骤中,当确定第一新空口基站与第二新空口基站之间的部署方式为站间非共框部署,第一新空口基站可以控制第一操作处理模块创建第一传输平台,以便后续步骤中第一媒体处理模块通过第一传输平台的外网口向第二新空口基站的第二传输平台传输数据,以通过第二传输平台向第二媒体处理模块进行数据 传输。
步骤S820:控制第一媒体处理模块通过第一传输平台的外网口向第二新空口基站的第二传输平台传输数据,以通过第二传输平台向第二媒体处理模块进行数据传输。
本步骤中,由于在步骤S810中创建了第一传输平台,因此,控制第一媒体处理模块通过第一传输平台的外网口向第二新空口基站的第二传输平台传输数据,以通过第二传输平台向第二媒体处理模块进行数据传输。
需要说明的是,该数据传输可以是数据反传,也可以是其他传输方式,在此不做具体限制。
本实施例中,通过采用包括有上述步骤S810至步骤S820的数据传输方法,当确定第一新空口基站与第二新空口基站之间的部署方式为站间非共框部署,第一新空口基站可以控制第一操作处理模块创建第一传输平台,接着第一媒体处理模块可以通过第一传输平台的外网口向第二新空口基站的第二传输平台传输数据,以通过第二传输平台向第二媒体处理模块进行数据传输。
如图14所示,图14是本申请另一个实施例提供的数据传输方法的流程图,该数据传输方法可以应用于第二新空口基站,例如图1所示NR-DC架构中的第二新空口基站,该数据传输方法可以包括但不限于有步骤S910、步骤S920、步骤S930和步骤S940。
步骤S910:接收第一新空口基站发送的控制信令,控制信令携带有目标标识信息,目标标识信息由第一新空口基站根据第一新空口基站与第二新空口基站之间的部署方式生成。
需要说明的是,目标识别信息可以是第一新空口基站的第一操作处理模块的ID,也可以是与虚拟SCTP(Stream Control Transmission Protocol,流控制传输协议)相关的消息,也可以是与SCTP相关的消息,也可以是其他消息,在此不作具体限制。
需要说明的是,第二新空口基站可以通过XN接口、逻辑XN接口或者内部接口接收控制指令,在此不做具体限制。
步骤S920:根据控制信令创建第二媒体处理模块。
本步骤中,由于在步骤S910中接收到了第一新空口基站发送的控制信令,因此,第二新空口基站接收到控制信令后,根据控制控制信令创建了第二媒体处理模块,以便后续步骤中利用第二媒体处理模块进行数据分流。
需要说明的是,第二媒体处理模块是第二新空口基站的第二操作处理模块接收到控制信令后创建的,在此不做具体限制。
步骤S930:根据目标标识信息确定第二新空口基站与第一新空口基站之间的部署方式。
步骤S940:根据部署方式控制第二媒体处理模块进行数据分流处理。
需要说明的是,数据分流处理跟承载类型有关,而承载类型与业务类型息息相关,承载类型分为分裂承载(Split Bearer)和无线承载(Radio Bearer)。
需要说明的是,第二媒体处理模块进行数据分流处理的对象可以是第一新空口基站,也可以是第二新空口基站,在此不做具体限制。例如,核心网先把数据发送给第二媒体处理模块,第二媒体处理模块接收到数据后把一部分数据发送给第一媒体处理模块,且把另外一部分数据在第二新空口基站内部进行数据分流,本实施例对此不作具体限制。
本实施例中,通过采用包括步骤S910至S940的数据传输方法,第二新空口基站接收第一新空口基站发送的控制信令,控制信令携带有由第一新空口基站根据第一新空口基站与第二新空口基站之间的部署方式生成的目标标识信息,根据目标标识信息确定第二新空口基站与第一新空口基站之间的部署方式,可以又根据控制信令创建第二媒体处理模块,最后根据部署方式控制第二媒体处理模块进行数据分流处理。
需要说明的是,第一新空口基站可以是低频新空口基站,也可以是高频新空口基站,在此不做具体限制。同样地,第二新空口基站可以是低频新空口基站,也可以是高频新空口基站,在此不做具体限制。
在一实施例中,如图15所示,对步骤S930进行的说明,该步骤S930可以包括但不限于有步骤S1010。
步骤S1010:当目标标识信息为流控制传输协议,确定第二新空口基站与第一新空口基站之间的部署方式为站间非共框部署。
在一实施例中,当第二新空口基站接收到的第一新空口基站发送的控制指令时,第二新空口基站会根据该控制指令创建第二媒体处理模块,又因为控制指令中携带流控制传输协议,第二新空口基站根据该流控制传输协议确定第二新空口基站与第一新空口基站之间的部署方式为站间非共框部署,本实施例对此不做具体限制。
在一实施例中,如图16所示,对步骤S930进行的说明,该步骤S930还可以包括但不限于有步骤S1110。
步骤S1110:当目标标识信息为虚拟流控制传输协议,确定第二新空口基站与第一新空口基站之间的部署方式为共框非共逻辑站部署。
在一实施例中,当第二新空口基站接收到的第一新空口基站发送的控制指令时,第二新空口基站会根据该控制指令创建第二媒体处理模块,又因为控制指令中携带虚拟流控制传输协议,第二新空口基站根据该虚拟流控制传输协议确定第二新空口基站与第一新空口基站之间的部署方式为共框非共逻辑站部署,本实施例对此不做具体限制。
在一实施例中,如图17所示,对步骤S930进行的说明,该步骤S930还可以包括但不限于有步骤S1210。
步骤S1210:当目标标识信息为第一新空口基站的第一操作处理模块的标识信息,确定第二新空口基站与第一新空口基站之间的部署方式为共框共逻辑站部署。
需要说明的是,第一新空口基站的第一操作处理模块的标识信息可以是第一操作处理模块的ID,也可以是其他信息,在此不做具体限制。
在一实施例中,当第二新空口基站接收到的第一新空口基站发送的控制指令时,第二新空口基站会根据该控制指令创建第二媒体处理模块,又因为控制指令中携带第一操作处理模块的ID,第二新空口基站根据该第一操作处理模块的ID确定第二新空口基站与第一新空口基站之间的部署方式为共框共逻辑站部署,本实施例对此不做具体限制。
需要说明的是,如图15所示的实施例与如图16所示的实施例、如图17所示的实施例属于并列的实施例,并且分别对应于不同的部署方式。
在一实施例中,如图18所示,对步骤S940进行的说明,在部署方式为站间非共框部署的情况下,该步骤S940还可以包括但不限于有步骤S1310和步骤S1320。
步骤S1310:控制第二操作处理模块创建第二传输平台。
步骤S1320:控制第二媒体处理模块通过第二传输平台的外网口进行数据分流处理。
本实施例中,当第一新空口基站和第二新空口基站的部署方式为站间非共框部署,第二新空口基站将控制第二操作处理模块创建第二传输平台,第二媒体处理模块通过第二传输平台的外网口进行数据分流处理。
在一实施例中,如图19所示,对步骤S940进行的说明,在部署方式为共框共逻辑站部署的情况下,该步骤S940还可以包括但不限于有步骤S1410和步骤S1420。
步骤S1410:向第二媒体处理模块配置进行数据分流的目的IP地址和目的MAC地址。
需要说明的是,该目的IP地址和目的MAC地址可以是第一新空口基站的第一媒体处理模块的,也可以是第二新空口基站中的设备的,本实施例对此不作具体限制。
步骤S1420:根据目的IP地址和目的MAC地址控制第二媒体处理模块进行数据分流处理。
本实施例中,当第一新空口基站和第二新空口基站的部署方式为共框共逻辑站部署,第二新空口基站将控制第二操作处理模块配置进行数据分流的目的IP地址和目的MAC地址,根据目的IP地址和目的MAC地址控制第二媒体处理模块进行数据分流处理。
在一实施例中,当第一新空口基站和第二新空口基站的部署方式为共框共逻辑站部署,第二操作处理模块配置进行数据分流的目的IP地址和目的MAC地址,并将该目的IP地址和目的MAC地址填写在将要数据分流的数据头上,根据目的IP地址和目的MAC地址控制第二媒体处理模块进行数据分流处理,本实施例对此不作具体限制。
在一实施例中,如图20所示,对步骤S940进行的说明,在部署方式为共框非共逻辑站部署的情况下,该步骤S940还可以包括但不限于有步骤S1510。
步骤S1510:控制第二媒体处理模块通过第一新空口基站的第一传输平台的内网口进行数据分流处理。
本实施例中,当第一新空口基站和第二新空口基站的部署方式为共框非共逻辑站部署,第二新空口基站将控制第二操作处理模块通过第一新空口基站的第一传输平台的内网口进行数据分流处理。
需要说明的是,如图18所示的实施例与如图19所示的实施例、如图20所示的实施例属于并列的实施例,并且分别对应于不同的部署方式。
针对上述实施例所提供的数据传输方法,下面以具体的示例进行详细的描述:
示例一:
参照图21,假设第一新空口基站是低频新空口基站500,第二新空口基站是高频新空口基站600,其中,低频新空口基站500中包括第一分布单元510和第一集中单元520,高频新空口基站600中包括第二分布单元610和第二集中单元620,第一分布单元510和第一集中单元520通信连接,第二分布单元610和第二集中单元620通信连接。低频新空口基站500收到UE的测量报告后,与高频新空口基站600进行双连接添加。首先低频新空口基站500创建第一操作处理模块521,第一操作处理模块521位于第一集中单元520内,第一操作处理模块521根据低频OAM获取低频新空口基站500的配置列表,判断配置列表中是否存在高频新空口基站600的gNBID和PLMN,若存在,则对比低频新空口基站500的gNBID和高频新空口基站600的gNBID是否一致,低频新空口基站500的PLMN和高频新空口基站600的PLMN是否一致,若低频新空口基站500的gNBID和高频新空口基站600的gNBID以及低频新空口基站500的PLMN和高频新空口基站600的PLMN都一致,则确定低频新空口基站500与高频新空口基站600为共框共逻辑站部署,接着第一操作处理模块521配置第一传输平台530,并且创建第一媒体处理模块,第一媒体处理模块位于第一集中单元520内,第一操作处理模块521通过该第一传输平台530向高频新空口基站600的第二操作处理模块621发送SN Addition Request请求消息,该SN Addition Request请求消息中附加有携带第一操作处理模块521的ID信息的控制信令,第二操作处理模块621接收到请求后,创建第二媒体处理模块622,第二媒体处理模块622位于第二集中单元620内,并回复SN Addition Request Response消息给第一操作处理模块521,第二操作处理模块621从该控制信令中获取到第一操作处理模块521的ID信息,第二操作处理模块621可以根据该第一操作处理模块521的ID信息直接发送消息给第一操作处理模块521,并且该消息中携带第二操作处理模块621的ID信息,第一操作处理模块521接收到携带第二操作处理模块621的ID信息的消息后,可以获取该第二操作处理模块621的ID信息,此后,第一操作处理模块521和第二操作处理模块621可以通过对方的ID信息进行通信。当第一媒体处理模块522收到数据反传的通知后,第一操作处理模块521配置第二媒体处理模块622的IP地址和MAC地址给第一媒体处理模块522,接着第一媒体处理模块522直接在反传数据的数据头上填写该IP地址和MAC地址,通过第一传输平台530发送给第二媒体处理模块622。本示例从用户的角度出发,由于采用了双主控双实例的方案,并且不同的部署场景采用不同的传输方式,则缩减NR-DC的流程和数据传输的时延,用户的感知体验有所提升。
需要说明的是,第一操作处理模块521和第二操作处理模块621都通过XN接口发送消息,并且该消息会进行ASN.1(Abstract Syntax Notation Number one,抽象语法描述1)编码。
示例二:
本示例和上述示例一基于相同的结构示意图,参照图21,假设第一新空口基站是低频新空口基站500,第二新空口基站是高频新空口基站600,其中,低频新空口基站500中包括第一分布单元510和第一集中单元520,高频新空口基站600中包括第二分布单元610和第二集中单元620,第一分布单元510和第一集中单元520通信连接,第二分布单元610和第二集中单元620通信连接。低频新空口基站500收到UE的测量报告后,与高频新空口基站600进行双连接添加。首先低频新空口基站500创建第一操作处理模块521,第一操作处理模块521位于第一集中单元520内,第一操作处理模块521根据低频OAM获取低频新空口基站500的配置列表,判断配置列表中是否存在高频新空口基站600的gNBID和PLMN,若存在,则对比低频新空口基站500的gNBID和高频新空口基站600的gNBID是否一致,低频新空口基站500的PLMN和高频新空口基站600的PLMN是否一致,若低频新空口基站500的gNBID和高频新空口基站600 的gNBID不一致,或者低频新空口基站500的PLMN和高频新空口基站600的PLMN不一致,或者低频新空口基站500的gNBID和高频新空口基站600的gNBID以及低频新空口基站500的PLMN和高频新空口基站600的PLMN都不一致,则确定低频新空口基站500与高频新空口基站600为共框非共逻辑站部署,接着第一操作处理模块521配置第一传输平台530,并且创建第一媒体处理模块522,第一媒体处理模块522位于第一集中单元520内,并通过该第一传输平台530的内网口向高频新空口基站600的第二操作处理模块621发送SN Addition Request请求消息,该SN Addition Request请求消息中附加有携带虚拟的流控制传输协议的控制信令发送到逻辑XN接口上,然后通过逻辑XN接口发送给高频新空口基站600的第二操作处理模块621,第二操作处理模块621接收到控制信令后,创建第二媒体处理模块622,第二媒体处理模块622位于第二集中单元620内,并回复SN Addition Request Response消息给第一操作处理模块521,第二操作处理模块621从该控制信令中获取到虚拟的流控制传输协议,第二操作处理模块621可以根据该虚拟的流控制传输协议判断出高频新空口基站600与低频新空口基站500为共框非共逻辑站部署,此后,第一操作处理模块521和第二操作处理模块621可以通过虚拟的流控制传输协议进行通信。当第一媒体处理模块522收到数据反传的通知后,第一操作处理模块521配置第二媒体处理模块622的IP地址给第一媒体处理模块522,接着第一媒体处理模块522直接在反传数据的数据头上填写该IP地址,通过第一传输平台530的内网口发送给第二媒体处理模块622。本示例从运行商的角度出发,为运营商节省了物理资源,其中,节省了传输资源和IP资源与5GC之间的一半的SCTP链路,大大减少了运营商的维护成本,同时提高了基站的性能;从用户的角度出发,由于采用了双主控双实例的方案,并且不同的部署场景采用不同的传输方式,则缩减NR-DC的流程和数据传输的时延,用户的感知体验有所提升。
需要说明的是,第一操作处理模块521和第二操作处理模块621都通过XN接口发送消息,并且该消息会进行ASN.1(Abstract Syntax Notation Number one,抽象语法描述1)编码。
示例三:
参照图22,假设第一新空口基站是低频新空口基站500,第二新空口基站是高频新空口基站600,其中,低频新空口基站500中包括第一分布单元510和第一集中单元520,高频新空口基站600中包括第二分布单元610和第二集中单元620,第一分布单元510和第一集中单元520通信连接,第二分布单元610和第二集中单元620通信连接。低频新空口基站500收到UE的测量报告后,与高频新空口基站600进行双连接添加。首先低频新空口基站500创建第一操作处理模块521,第一操作处理模块521位于第一集中单元520内,第一操作处理模块521根据低频OAM获取低频新空口基站500的配置列表,判断配置列表中是否存在高频新空口基站600的gNBID和PLMN,若不存在,则确定低频新空口基站500与高频新空口基站600为站间非共框部署,接着第一操作处理模块521配置第一传输平台530,并且创建第一媒体处理模块522,第一媒体处理模块522位于第一集中单元520内,并通过该第一传输平台530的外网口向高频新空口基站600的第二操作处理模块621发送SN Addition Request请求消息,该SN Addition Request请求消息中附加有携带流控制传输协议的控制信令发送到XN接口上,然后通过XN接口发送给高频新空口基站600的第二传输平台630,该第二传输平台630将携带流控制传输协议的控制信令发送给第二操作处理模块621,第二操作处理模块621接收到控制信令后,创建第二媒体处理模块622,第二媒体处理模块622位于第二集中单元620内,并回复SN Addition Request Response消息给第一操作处理模块521,第二操作处理模块621从该控制信令中获取到流控制传输协议,第二操作处理模块621可以根据该流控制传输协议判断出高频新空口基站600与低频新空口基站500为站间非共框部署,此后,第一操作处理模块521和第二操作处理模块621可以通过流控制传输协议进行通信。当第一媒体处理模块522收到数据反传的通知后,第一操作处理模块521配置第二媒体处理模块622的IP地址给第一媒体处理模块522,接着第一媒体处理模块522直接在反传数据的数据头上填写该IP地址,通过第一传输平台530的外网口发送到第二传输平台630,通过第二传输平台630发送给第二媒体处理模块622。本示例从运行商的角度出发,为运营商节省了物理资源,其中,节省了传输资源和IP资源与5GC之间的一半的SCTP链路,大大减少了运营商的维护成本,同时提高了基站的性能;从用户的角度出发,由于采用了双主控双实例的方案,并且不同部署场景的采用不同的传输方式,则缩减NR-DC的流程和数据传输的时延,用户的感知体验有所提升。
需要说明的是,第一操作处理模块521和第二操作处理模块621都通过XN接口发送消息,并且该消息会进行ASN.1(Abstract Syntax Notation Number one,抽象语法描述1)编码。
还需要说明的是,ASN.1的编码格式有很多种,比如BER(Basic Encoding Rules,基本编码规则)、CER(Canonical Encoding Rules,正则编码规则)、DER(Distinguished Encoding Rules,非典型编码规则)等,其中,BER、CER、DER,是ASN.1的三种最常用的编码格式。
需要说明的是,上述三个示例,即如图21所示的示例一、示例二和如图22所示的示例三,从设备商的角度出发,NR-DC通过CU侧(第一集中单元或者第二集中单元)设置不同操作处理模块,比如第一操作处理模块521和第二操作处理模块621,该第一操作处理模块521和第二操作处理模块621可以在站间非共框部署、共框共逻辑站部署、共框非共逻辑站部署三种部署场景下,直接进行移植第一操作处理模块521和第二操作处理模块621的实现方式,不需要重新开发,媒体面采用独立的媒体面实例方式,在三种部署场景下也不需要重新开放,直接进行移植,大大减少了实现的复杂度,并且在同一个软件版本上可以灵活匹配这三种部署场景,节省人力成和维护成本。
需要说明的是,上述三个示例,即如图21所示的示例一、示例二和如图22所示的示例三,低频新空口基站500对应的频率范围可以是450MHZ到6000MHZ,而高频新空口基站600对应的频率范围可以是24250MHZ到52600MHZ,在此不做具体限制。
本申请实施例还提供了一种数据传输装置700,如图23所示,该数据传输装置700包括但不限于:
存储器702,被设置为存储程序;
处理器701,被设置为执行存储器702存储的程序,当处理器701执行存储器702存储的程序时,处理器701被设置为执行上述的数据传输方法。
处理器701和存储器702可以通过总线或者其他方式连接。
存储器702作为一种非暂态计算机可读存储介质,可被设置为存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请实施例描述的数据传输方法。处理器701通过运行存储在存储器702中的非暂态软件程序以及指令,从而实现上述的数据传输方法。
存储器702可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的数据传输方法。此外,存储器702可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器702可包括相对于处理器701远程设置的存储器702,这些远程存储器可以通过网络连接至该处理器701。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的数据传输方法所需的非暂态软件程序以及指令存储在存储器702中,当被一个或者多个处理器701执行时,执行上述的数据传输方法,例如,执行以上描述的图6中的方法步骤S110至步骤S140、图7中的方法步骤S210和步骤S220、图8中的方法步骤S310、图9中的方法步骤S410、图10中的方法步骤S510至步骤S520、图11中的方法步骤S610和步骤S620、图12中的方法步骤S710、图13中的方法步骤S810和步骤S820、图14中的方法步骤S910至步骤S940、图15中的方法步骤S1010、图16中的方法步骤S1110、图17中的方法步骤S1210、图18中的方法步骤S1310和步骤S1320、图19中的方法步骤S1410和步骤S1420以及图20中的方法步骤S1510。
以上所描述的装置实施例或者系统实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述装置实施例中的一个处理器执行,可使得上述处理器执行以上描述的图6中的方法步骤S110至步骤S140、图7中的方法步骤S210和步骤S220、图8中的方法步骤S310、图9中的方法步骤S410、图10中的方法步骤S510至步骤S520、图11中的方法步骤S610和步骤S620、图12中的方法步骤S710、图13中的方法步骤S810和步骤S820、图14 中的方法步骤S910至步骤S940、图15中的方法步骤S1010、图16中的方法步骤S1110、图17中的方法步骤S1210、图18中的方法步骤S1310和步骤S1320、图19中的方法步骤S1410和步骤S1420以及图20中的方法步骤S1510。
此外,本申请的一个实施例还提供了一种计算机程序产品,包括计算机程序或计算机指令,计算机程序或计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取计算机程序或计算机指令,处理器执行计算机程序或计算机指令,使得计算机设备执行上述实施例中的数据传输方法,例如,执行以上描述的图6中的方法步骤S110至步骤S140、图7中的方法步骤S210和步骤S220、图8中的方法步骤S310、图9中的方法步骤S410、图10中的方法步骤S510至步骤S520、图11中的方法步骤S610和步骤S620、图12中的方法步骤S710、图13中的方法步骤S810和步骤S820、图14中的方法步骤S910至步骤S940、图15中的方法步骤S1010、图16中的方法步骤S1110、图17中的方法步骤S1210、图18中的方法步骤S1310和步骤S1320、图19中的方法步骤S1410和步骤S1420以及图20中的方法步骤S1510。
本申请实施例包括:控制第一操作处理模块创建第一媒体处理模块;获取第二新空口基站的第二识别信息,根据第二识别信息确定第一新空口基站与第二新空口基站之间的部署方式,第二新空口基站配置有第二操作处理模块;根据部署方式生成目标标识信息,根据目标标识信息生成控制信令,将控制信令发送至第二新空口基站,以使第二操作处理模块根据控制信令创建第二媒体处理模块;根据部署方式控制第一媒体处理模块向第二媒体处理模块进行数据传输。根据本申请实施例的方案,可以根据第二识别信息确定第一新空口基站和第二新空口基站之间的部署方式,接着又根据该部署方式生成目标标识信息,并根据该目标标识信息生成控制信令,将该携带目标表示信息的控制信令发送给第二新空口基站,使第二新空口基站的第二操作处理模块根据该控制信令里的目标标识信息创建第二媒体处理模块,最后根据该部署方式控制第一媒体处理模块向第二媒体处理模块进行数据传输,即是说,本申请实施例的方案,通过第一新空口基站的第一操作处理模块创建第一媒体处理模块以及第二新空口基站的第二操作处理模块创建第二媒体处理模块,在不同部署方式下第一操作处理模块与第二操作处理模块都可以进行交互,第一媒体处理模块和第二媒体处理模块也可以进行交互,因此,能够在忽略不同部署场景NR-DC的实现差异和传输差异的基础上实现数据传输,减少设备厂家实现的复杂度和运营商版本升级的复杂度。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在被设置为存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以被设置为存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的若干实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请本质的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (15)

  1. 一种数据传输方法,应用于第一新空口基站,所述第一新空口基站配置有第一操作处理模块,所述数据传输方法包括:
    控制所述第一操作处理模块创建第一媒体处理模块;
    获取第二新空口基站的第二识别信息,根据所述第二识别信息确定所述第一新空口基站与所述第二新空口基站之间的部署方式,所述第二新空口基站配置有第二操作处理模块;
    根据所述部署方式生成目标标识信息,根据所述目标标识信息生成控制信令,将控制信令发送至所述第二新空口基站,以使所述第二操作处理模块根据所述控制信令创建第二媒体处理模块;
    根据所述部署方式控制所述第一媒体处理模块向所述第二媒体处理模块进行数据传输。
  2. 根据权利要求1所述的数据传输方法,其中,所述根据所述第二识别信息确定所述第一新空口基站与所述第二新空口基站之间的部署方式,包括:
    获取配置列表,确定所述第二识别信息是否存在于所述配置列表中;
    当所述第二识别信息存在于所述配置列表中,获取第一新空口基站的第一识别信息,对所述第一识别信息与所述第二识别信息进行对比处理,根据对比处理的结果确定所述第一新空口基站与所述第二新空口基站之间的部署方式。
  3. 根据权利要求2所述的数据传输方法,其中,所述根据对比处理的结果确定所述第一新空口基站与所述第二新空口基站之间的部署方式,包括:
    当所述第一识别信息和所述第二识别信息相一致,确定所述第一新空口基站与所述第二新空口基站之间的部署方式为共框共逻辑站部署;
    或者,
    当所述第一识别信息和所述第二识别信息不一致,确定所述第一新空口基站与所述第二新空口基站之间的部署方式为共框非共逻辑站部署。
  4. 据权利要求1至3任意一项所述的数据传输方法,其中,当确定所述第一新空口基站与所述第二新空口基站之间的部署方式为共框共逻辑站部署,所述根据所述部署方式控制所述第一媒体处理模块向所述第二媒体处理模块进行数据传输,包括:
    向所述第一媒体处理模块配置所述第二媒体处理模块的IP地址和MAC地址;
    根据所述第二媒体处理模块的IP地址和MAC地址控制所述第一媒体处理模块向所述第二媒体处理模块进行数据传输。
  5. 根据权利要求1至3任意一项所述的数据传输方法,其中,当确定所述第一新空口基站与所述第二新空口基站之间的部署方式为共框非共逻辑站部署,所述根据所述部署方式控制所述第一媒体处理模块向所述第二媒体处理模块进行数据传输,包括:
    控制所述第一操作处理模块创建第一传输平台;
    控制所述第一媒体处理模块通过所述第一传输平台的内网口向所述第二媒体处理模块进行数据传输。
  6. 根据权利要求2所述的数据传输方法,其中,所述根据所述第二识别信息确定所述第一新空口基站与所述第二新空口基站之间的部署方式,还包括:
    当所述第二识别信息不存在于所述配置列表中,确定所述第一新空口基站与所述第二新空口基站之间的部署方式为站间非共框部署。
  7. 根据权利要求6所述的数据传输方法,其中,当确定所述第一新空口基站与所述第二新空口基站之间的部署方式为站间非共框部署,所述根据所述部署方式控制所述第一媒体处理模块向所述第二媒体处理模块进行数据传输,包括:
    控制所述第一操作处理模块创建第一传输平台;
    控制所述第一媒体处理模块通过所述第一传输平台的外网口向所述第二新空口基站的第二传输平台传输数据,以通过所述第二传输平台向所述第二媒体处理模块进行数据传输。
  8. 一种数据传输方法,应用于第二新空口基站,所述数据传输方法包括:
    接收第一新空口基站发送的控制信令,所述控制信令携带有目标标识信息,所述目标标识信息由所述第一新空口基站根据所述第一新空口基站与所述第二新空口基站之间的部署方式生成;
    根据所述控制信令创建第二媒体处理模块;
    根据所述目标标识信息确定所述第二新空口基站与所述第一新空口基站之间的部署方式;
    根据所述部署方式控制所述第二媒体处理模块进行数据分流处理。
  9. 根据权利要求8所述的数据传输方法,其中,所述目标识别信息包括流控制传输协议、虚拟流控制传输协议或者所述第一新空口基站的第一操作处理模块的标识信息,所述根据所述目标标识信息确定所述第二新空口基站与所述第一新空口基站之间的部署方式,包括以下至少之一:
    当所述目标标识信息为流控制传输协议,确定所述第二新空口基站与所述第一新空口基站之间的部署方式为站间非共框部署;或
    当所述目标标识信息为虚拟流控制传输协议,确定所述第二新空口基站与所述第一新空口基站之间的部署方式为共框非共逻辑站部署;或
    当所述目标标识信息为所述第一新空口基站的第一操作处理模块的标识信息,确定所述第二新空口基站与所述第一新空口基站之间的部署方式为共框共逻辑站部署。
  10. 根据权利要求9所述的数据传输方法,其中,当所述部署方式为站间非共框部署,所述根据所述部署方式控制所述第二媒体处理模块进行数据分流处理,包括:
    控制所述第二操作处理模块创建第二传输平台;
    控制所述第二媒体处理模块通过所述第二传输平台的外网口进行数据分流处理。
  11. 根据权利要求9所述的数据传输方法,其中,当所述部署方式为共框共逻辑站部署,所述根据所述部署方式控制所述第二媒体处理模块进行数据分流处理,包括:
    向所述第二媒体处理模块配置进行数据分流的目的IP地址和目的MAC地址;
    根据所述目的IP地址和所述目的MAC地址控制所述第二媒体处理模块进行数据分流处理。
  12. 根据权利要求9所述的数据传输方法,其中,当所述部署方式为共框非共逻辑站部署,所述根据所述部署方式控制所述第二媒体处理模块进行数据分流处理,包括:
    控制所述第二媒体处理模块通过所述第一新空口基站的第一传输平台的内网口进行数据分流处理。
  13. 一种数据传输装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至12任意一项所述的数据传输方法。
  14. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至12任意一项所述的数据传输方法。
  15. 一种计算机程序产品,包括计算机程序或计算机指令,其中,所述计算机程序或所述计算机指令存储在计算机可读存储介质中,计算机设备的处理器从所述计算机可读存储介质读取所述计算机程序或所述计算机指令,所述处理器执行所述计算机程序或所述计算机指令,使得所述计算机设备执行如权利要求1至12任意一项所述的数据传输方法。
PCT/CN2022/130603 2021-12-09 2022-11-08 数据传输方法及其装置、存储介质、程序产品 WO2023103683A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111498509.X 2021-12-09
CN202111498509.XA CN116261154A (zh) 2021-12-09 2021-12-09 数据传输方法及其装置、存储介质、程序产品

Publications (1)

Publication Number Publication Date
WO2023103683A1 true WO2023103683A1 (zh) 2023-06-15

Family

ID=86686645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130603 WO2023103683A1 (zh) 2021-12-09 2022-11-08 数据传输方法及其装置、存储介质、程序产品

Country Status (2)

Country Link
CN (1) CN116261154A (zh)
WO (1) WO2023103683A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662213A (zh) * 2018-06-29 2020-01-07 中兴通讯股份有限公司 移动性管理方法、融合amf、基站、新空口和存储介质
CN111432419A (zh) * 2019-01-09 2020-07-17 中兴通讯股份有限公司 路测日志信息上报方法及装置
WO2020192387A1 (zh) * 2019-03-28 2020-10-01 华为技术有限公司 一种请求处理方法、相关装置及系统
US20200389531A1 (en) * 2018-07-13 2020-12-10 Samsung Electronics Co., Ltd. Method and electronic device for edge computing service

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662213A (zh) * 2018-06-29 2020-01-07 中兴通讯股份有限公司 移动性管理方法、融合amf、基站、新空口和存储介质
US20200389531A1 (en) * 2018-07-13 2020-12-10 Samsung Electronics Co., Ltd. Method and electronic device for edge computing service
CN111432419A (zh) * 2019-01-09 2020-07-17 中兴通讯股份有限公司 路测日志信息上报方法及装置
WO2020192387A1 (zh) * 2019-03-28 2020-10-01 华为技术有限公司 一种请求处理方法、相关装置及系统

Also Published As

Publication number Publication date
CN116261154A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
EP4106410A1 (en) Sidelink relay communication method and apparatus, device and medium
US20210127319A1 (en) Method for performing relay forwarding on integrated access and backhaul links, information acquisition method, node, and storage medium
US11627628B2 (en) Packet transmission method, apparatus, and system
EP3917272B1 (en) Control methods, apparatus and computer program product for a radio backhaul link
CN114189908B (zh) 通信方法、装置、设备及存储介质
US20240080730A1 (en) Method and apparatus for relay selection
WO2019157985A1 (zh) 一种无线回传通信处理方法和相关设备
US11968694B2 (en) Communication method and apparatus, and device
US20220217505A1 (en) Message transmission method and apparatus
EP4138443A1 (en) Communication method and apparatus
US20230156833A1 (en) Packet Forwarding Method, Apparatus, and System
WO2022052851A1 (zh) 一种服务质量QoS的监测方法
US20230275872A1 (en) Communication method and apparatus, and computer-readable storage medium
WO2021134701A1 (zh) D2d通信方法、装置及系统
WO2021026706A1 (zh) 一种f1接口管理方法及装置
EP3852481A1 (en) Mode switching method and data stream distribution method and apparatus
CN115942464A (zh) 一种通信方法、装置及系统
WO2015070763A1 (zh) X2接口的自建立方法及装置
WO2023103683A1 (zh) 数据传输方法及其装置、存储介质、程序产品
WO2022001483A1 (zh) 信息发送方法、nr小区接入方法、接入网设备、移动终端及存储介质
CN112135329B (zh) 参数传输方法、装置及系统
CN115835184A (zh) 终端设备的管理方法及装置
US20240121201A1 (en) Communication method and apparatus
WO2023011006A1 (zh) 一种通信方法、装置及设备
CN111182656B (zh) 建立x2连接的方法、装置、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903106

Country of ref document: EP

Kind code of ref document: A1