WO2023103225A1 - 转子冲片、转子、电机、电动助力转向系统和车辆 - Google Patents
转子冲片、转子、电机、电动助力转向系统和车辆 Download PDFInfo
- Publication number
- WO2023103225A1 WO2023103225A1 PCT/CN2022/082603 CN2022082603W WO2023103225A1 WO 2023103225 A1 WO2023103225 A1 WO 2023103225A1 CN 2022082603 W CN2022082603 W CN 2022082603W WO 2023103225 A1 WO2023103225 A1 WO 2023103225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- permanent magnet
- rotor
- hole
- segment
- magnetic
- Prior art date
Links
- 238000003475 lamination Methods 0.000 title abstract 8
- 238000002955 isolation Methods 0.000 claims abstract description 80
- 238000004080 punching Methods 0.000 claims description 47
- 239000013585 weight reducing agent Substances 0.000 claims description 41
- 230000004907 flux Effects 0.000 abstract description 18
- 230000002829 reductive effect Effects 0.000 abstract description 6
- 230000004888 barrier function Effects 0.000 abstract 4
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 238000013461 design Methods 0.000 description 44
- 230000000875 corresponding effect Effects 0.000 description 25
- 238000010586 diagram Methods 0.000 description 10
- 230000009286 beneficial effect Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 238000005452 bending Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present application relates to the technical field of electrical equipment, in particular, to a rotor punch, a rotor, a motor, an electric power steering system and a vehicle.
- motors can generate driving torque as a power source for electrical appliances or various machinery, thus gaining more and more attention and developing towards high power density and high speed.
- This application aims to solve at least one of the technical problems existing in the prior art or related art.
- a first aspect of the present application consists in proposing a rotor blanking.
- a second aspect of the present application consists in proposing a rotor.
- the third aspect of the present application is to provide an electric motor.
- the fourth aspect of the present application is to provide an electric power steering system.
- a fifth aspect of the present application is to provide a vehicle.
- a rotor stamping including a stamping body and a plurality of permanent magnet slots, the stamping body is provided with a shaft hole, and the plurality of permanent magnet slots are spaced around the shaft hole Set on the punch body, each permanent magnet slot in the plurality of permanent magnet slots includes a permanent magnet segment and a magnetic isolation segment that communicate with each other.
- the permanent magnet segment is used to accommodate the permanent magnet of the rotor, and is located between the magnetic isolation segment and the punch body.
- Part of the stamping body between the outer periphery of the magnet is a magnetic isolation bridge, wherein the width W1 of the permanent magnet segment, the width W2 of the magnetic isolation bridge and the number of pole pairs P satisfy: 0.5 ⁇ (W2 ⁇ P/W1) ⁇ 0.9.
- the rotor stamping provided in the present application includes a stamping body and a plurality of permanent magnet slots.
- a shaft hole is provided in the middle of the stamping body, and the shaft hole is used to accommodate a rotating shaft.
- a plurality of permanent magnet slots are arranged at intervals around the shaft hole on the punch body, and each permanent magnet slot is arranged axially through, and the permanent magnet slots are used for accommodating the permanent magnets.
- Each permanent magnet slot in the plurality of permanent magnet slots includes a permanent magnet segment and a magnetic isolation segment, the permanent magnet segment and the magnetic isolation segment communicate with each other, the permanent magnet segment is used to accommodate the permanent magnet of the rotor, and the permanent magnet is embedded in the permanent magnet segment Inside, there is no permanent magnet in the magnetic isolation section, that is, the magnetic isolation section is empty.
- the number of magnetic isolation segments is two, and the two magnetic isolation segments are respectively connected to both sides of the permanent magnet segment.
- the part of the punch body located between the magnetic isolation section and the outer periphery of the punch body is called a magnetic isolation bridge
- the width of the magnetic isolation bridge is related to the width of the permanent magnet segment and the number of pole pairs of the motor, so that the isolation
- the width of the magnetic bridge is set within a reasonable range to avoid too small width of the magnetic isolation bridge, which will make the production process too difficult and increase the possibility of deformation of the rotor punch during the operation of the motor, which can significantly inhibit the permanent magnetic field of the rotor from passing through the isolation
- the flux leakage phenomenon of the magnetic bridge reduces the flux leakage density at the magnetic isolation bridge and increases the utilization rate of the permanent magnet, so that the quality of the motor output torque can be improved on the basis of improving the motor performance, and the torque ripple can be suppressed , achieving high power density and high efficiency.
- the permanent magnet slot is provided with opposite first apex and second apex, the first radially extending line passing through the center of the shaft hole intersects or is tangent to the first apex, and the second radially extending line passing through the center of the shaft hole The line intersects or is tangent to the second apex, and the permanent magnet slot is located between the first radially extending line and the second radially extending line, wherein the angle between the first radially extending line and the second radially extending line ⁇ and the angle ⁇ between the centerlines of adjacent poles satisfy: 0.9 ⁇ / ⁇ 0.98.
- the connecting line between the center of each permanent magnet slot and the center of the shaft hole is the pole centerline
- the angle division line between two adjacent pole centerlines is is the center line between poles
- the angle formed between adjacent center lines between poles is the central angle ⁇ occupied by each magnetic pole
- the permanent magnet slot includes a first apex and a second apex, the first apex and the second apex are located at opposite ends of the permanent magnet slot, the first apex and the center of the shaft hole are respectively located on the first radially extending line, the second The two vertices and the center of the shaft hole are respectively located on the second radial extension line, and the angle formed by the first radial extension line and the second radial extension line is the central angle ⁇ corresponding to the permanent magnet slot, that is, the permanent magnet slot is completely located In the area formed by the first radially extending line and the second radially extending line, by defining the ratio of the central angle ⁇ corresponding to each magnetic pole to the central angle ⁇ corresponding to the permanent magnet slot, it can be determined that the permanent magnet slot is in each magnetic pole
- the relative position of the permanent magnet slots makes the arrangement of the permanent magnet slots more reasonable, which in turn helps to improve the performance of the motor.
- part of the punch body between adjacent permanent magnet slots among the plurality of permanent magnet slots is a magnetic rib, wherein the minimum width W3 of the magnetic rib satisfies: W2 ⁇ W3 ⁇ W1.
- part of the stamping body located between two adjacent permanent magnet slots is a magnetic rib
- the specific shape of the magnetic rib is related to the specific shape of the permanent magnet slot
- the width of the magnetic rib is related to the width of the magnetic isolation bridge
- the width of the magnet segment is correlated, which makes the arrangement of various positions on the periphery of the punching body more reasonable, thereby helping to improve the phenomenon of magnetic flux leakage, improve the quality of the output torque of the motor, and then improve the performance of the motor.
- the permanent magnet segment includes opposite straight groove walls and bent groove walls, and the straight groove walls are arranged away from the shaft hole relative to the bent groove walls.
- the permanent magnet segment includes a straight groove wall and a bent groove wall, and the straight groove wall and the bent groove wall are distributed along the radial direction, wherein the straight groove wall is set away from the shaft hole relative to the bent groove wall, that is, the straight groove wall
- the wall is set on the outside, and the wall of the bending groove is set on the inside.
- the wall of the bending groove has a bending angle.
- the outer periphery of the part of the punching body between the adjacent interpolar centerlines includes an outer arc
- the outer arc includes a first The arc segment, the second arc segment and the third arc segment, the second arc segment is connected with the first arc segment and the third arc segment respectively, wherein the radius R2 of the circle where the second arc segment is located, the The maximum outer diameter R1 of the chip body satisfies: 0.3 ⁇ (R1-R2)/R1 ⁇ 0.7.
- the outer periphery of the part of the punch body located between the adjacent interpole centerlines includes an outer arc, that is, for each pole, the punch
- the outer arc line includes a first arc segment, a second arc segment and a third arc segment connected in sequence, and the second arc segment is located at the first arc segment.
- the permanent magnet slot includes a permanent magnet segment and two magnetic isolation segments, which are respectively the first magnetic isolation segment and the second magnetic isolation segment, which are respectively connected to the two ends of the permanent magnet segment. Then, along the circumferential direction , the corresponding relationship between the permanent magnet groove and the outer arc is that the first magnetic isolation segment corresponds to the first arc segment, the permanent magnet segment corresponds to the second arc segment, and the second magnetic isolation segment corresponds to the third arc segment corresponding to the segment. Then there are two magnetic isolation bridges, which are the first magnetic isolation bridge formed by the first arc segment and the second magnetic isolation bridge formed by the second arc segment.
- the first magnetic isolation bridge and the second magnetic isolation bridge have the same structure, so that each magnetic Extremely symmetrical structure, easy to control the quality of the production process.
- the angle ⁇ between the central angle ⁇ corresponding to the second arc segment and the center line between adjacent electrodes satisfies: 0.6 ⁇ / ⁇ 0.8.
- the rotor punch further includes a plurality of weight reduction holes, the plurality of weight reduction holes are provided on the punch body, and the plurality of weight reduction holes are respectively located on the magnetic pole centerline and/or or on the center line between poles.
- a rotor punching piece for a rotor punching piece, it has a magnetic pole centerline and an inter-pole centerline, wherein the center line of the permanent magnet slot and the center of the shaft hole constitutes the magnetic pole centerline, referred to as the d-axis, and two adjacent The bisector of the angle of two magnetic pole centerlines is the interpole centerline, and the interpole centerline is also called the adjacent magnetic pole centerline, referred to as the q axis.
- the plurality of lightening holes are respectively located on the centerline of the magnetic poles and/or the centerline between the poles. Under the premise of ensuring that the performance of the motor is not affected, the setting of the weight-reducing hole can reduce the moment of inertia and reduce the overall weight of the motor.
- the weight-reducing hole is arranged on the centerline of the magnetic pole and/or the centerline between the poles.
- the number of the weight reducing holes is multiple, and the multiple weight reducing holes are all arranged on the centerline of the magnetic poles, or the multiple weight reducing holes are all arranged on the centerline between the poles, or a part of the number of the multiple weight reducing holes
- the weight-reducing holes are located on the centerline of the magnetic poles, and another part of the plurality of weight-reducing holes is located on the centerline between the poles.
- the number of magnetic pole centerlines and the number of interpole centerlines are multiple.
- One weight-reducing hole may be arranged on one magnetic pole centerline, or a plurality of relatively independent weight-reducing holes may be arranged on one magnetic pole centerline.
- a weight-reducing hole it is only located on one of the centerline of the magnetic pole or the centerline between the poles, and there is no situation where a weight-reducing hole is located on the centerline of the magnetic pole and the centerline between the poles at the same time.
- the weight reduction hole is located between the permanent magnet slot and the shaft hole, wherein the minimum distance W4 between the weight reduction hole and the permanent magnet slot, the minimum distance between the weight reduction hole and the shaft hole
- the distance W5 satisfies: 0.8 ⁇ W4/W5 ⁇ 1.2.
- the weight reduction hole is set between the permanent magnet slot and the shaft hole, and the weight reduction hole is set independently from the permanent magnet slot and the shaft hole.
- the center of the weight reduction hole, the center of the permanent magnet slot and the center of the shaft hole are all on the pole centerline.
- the minimum distance W4 between the weight reduction hole and the permanent magnet slot, and the minimum distance W5 between the weight reduction hole and the shaft hole satisfy: 0.8 ⁇ W4/W5 ⁇ 1.2.
- the minimum distance W4 between the weight reduction hole and the permanent magnet slot, the minimum distance W5 between the weight reduction hole and the shaft hole, the maximum radius R1 of the punch body, and the radius of the shaft hole R3 satisfies: 0.4 ⁇ (W4+W5)/(R1-R3) ⁇ 0.6.
- the minimum distance between the weight reduction hole and the permanent magnet slot is W4
- the minimum distance between the weight reduction hole and the shaft hole is W5
- the maximum radius of the punch body is R1
- the radius of the shaft hole is R3.
- the dimensional relationship among the four satisfies the above relationship, so that the moment of inertia and the weight of the motor can be reduced without affecting the performance of the motor.
- the moment of inertia of the motor is at a low level.
- the ratio of moment of inertia increases Low, that is, within the above range, the moment of inertia of the motor can be stably at a low level.
- the lightening hole includes an arc-shaped hole wall
- the arc-shaped hole wall includes an arc line on the axial end surface, the radius R4 of the circle where the arc line is located and the maximum radius of the punch body R1 satisfies: 0.05 ⁇ R4/R1 ⁇ 0.3.
- the lightening hole includes at least one arc-shaped hole wall, the arc-shaped hole wall has an arc line on the axial end surface perpendicular to the axial direction, the radius R4 of the circle where the arc line is located and the maximum radius of the punch body R1 satisfies the above relationship, so that the shape of the weight-reducing hole is associated with the punch body, making the size and shape of the weight-reducing hole more reasonable, and then optimizing the overall structural arrangement of the rotor punch, which helps to improve the performance of the motor.
- the weight-reducing hole is provided with a third vertex and a fourth vertex opposite to each other, and a third radially extending line passing through the center of the shaft hole intersects or is tangent to the third vertex, passing through The fourth radially extending line passing through the center of the shaft hole intersects or is tangent to the fourth vertex, and the lightening hole is located between the third radially extending line and the fourth radially extending line, wherein the third radially extending line and The included angle ⁇ between the fourth radially extending lines and the included angle ⁇ between the center lines between adjacent poles satisfies: 0.6 ⁇ / ⁇ 0.8.
- the weight reducing hole includes a third vertex and a fourth vertex, the third vertex and the fourth vertex are located at opposite ends of the weight reducing hole, and the center of the third vertex and the shaft hole are respectively located on the third radial extension line , the fourth vertex and the center of the shaft hole are respectively located on the fourth radial extension line, the angle formed by the third radial extension line and the fourth radial extension line is the central angle ⁇ corresponding to the weight reduction hole, that is, the weight reduction hole It is completely located in the area formed by the third radial extension line and the fourth radial extension line, and is defined by the ratio of the central angle ⁇ corresponding to each magnetic pole to the central angle ⁇ corresponding to the weight reduction hole, so that it can be determined that the weight reduction hole is in each
- the relative positions within the magnetic poles make the arrangement of the lightening holes more rational, which in turn helps to improve the performance of the motor.
- the number of weight reducing holes is 4, 6, 8, 12, 16 or 20.
- the weight-reducing holes can only be arranged on the centerline between poles.
- the weight reducing holes are only provided on the centerline of the magnetic poles, or at least one of the plurality of weight reducing holes is located on the centerline between poles, and at least one of the plurality of weight reducing holes is located on the centerline of the magnetic poles.
- the lightening holes include 8 first lightening holes and 8 second lightening holes, and the 8 first lightening holes are arranged at intervals in the circumferential direction, and each One weight-reducing hole is located on the pole center line of each magnetic pole, eight second weight-reducing holes are arranged at intervals along the circumference, and can be arranged on the outside or inside of the first weight-reducing hole, and one second weight-reducing hole is located on one pole on the center line.
- the opening area of the first weight reducing hole is different from the opening area of the second weight reducing hole.
- the first weight reducing hole is arranged away from the shaft hole relative to the second weight reducing hole, the first weight reducing hole The opening area is greater than the opening area of the second lightening hole.
- first lightening hole and the shape of the second lightening hole may be the same or different.
- the rotor punching piece further includes a riveting part, the riveting part is provided on the punching body, and the riveting part is located on the centerline of the magnetic poles or the centerline between the poles.
- each stamping body is also provided with a riveting part, and multiple rotor punchings are stacked in the axial direction to form a rotor core, and the riveting parts on adjacent rotor punchings can be matched to make multiple rotors
- the punching pieces are connected to each other in the axial direction, thus forming the rotor core as a whole.
- the weight-reducing hole and the riveting part are relatively independently opened on the punch body without interfering with each other.
- the present application arranges the riveting part and the weight-reducing hole on the punch body, and at the same time makes the setting position of the riveting part and the weight-reducing hole correlate with the position of the centerline of the magnetic pole and the centerline between the poles, thereby improving the performance of the motor.
- improving the quality of the motor output torque improving the magnetic flux leakage phenomenon and suppressing the torque ripple, realizing high power density and high efficiency, reducing the moment of inertia and reducing the weight of the motor.
- the number of magnetic pole centerlines and the number of interpole centerlines are multiple.
- the number of rivet parts is half of the number of permanent magnet slots; or, the number of rivet parts is equal to the number of permanent magnet slots.
- the number of rivet parts is related to the number of permanent magnet slots, and the number of rivet parts can be half of the number of permanent magnet slots, or the number of rivet parts is equal to the number of permanent magnet slots. Wherein, when the number of permanent magnet slots is 8, the number of rivet parts can be 4 or 8. Regardless of whether the number of rivet parts is a multiple or equal to the number of permanent magnet slots, the rivet parts need to be arranged on the centerline between poles and/or the centerline of magnetic poles.
- the weight-reducing holes and riveting parts need to follow the principle of being arranged on the centerline between poles and the centerline of the magnetic poles.
- the weight-reducing holes and riveting parts Relatively independent, each forms its own reasonable arrangement position.
- the weight-reducing holes and the rivet parts are arranged alternately along the circumferential direction.
- the arrangement of the two follows an alternate interval arrangement. Specifically, when the number of rivet parts and the number of weight-reducing holes are both 4, the 4 rivet parts and 4 weight-reducing holes are alternately arranged at intervals, and the centers of the 4 rivet parts and the 4 The centers of the lightening holes are located in the same circle.
- the weight-reducing hole is set closer to the shaft hole than the riveting part. This is because during the high-speed rotation of the rotor punching, the periphery of the rotor punching is subjected to a large centrifugal force, so that the riveting part is set outside, which can be more It can ensure that the rotor punching plate is not deformed, and the reliability of the structure is improved.
- a rotor including the rotor punch provided by any of the above-mentioned designs.
- the rotor provided by the present application includes the rotor punch provided by any of the above-mentioned designs, so it has all the beneficial effects of the rotor punch, and will not be repeated here.
- the number of rotor punches is multiple, and multiple rotor punches are stacked in the axial direction to form a rotor core.
- the permanent magnet slots of the multiple rotor punches penetrate in the axial direction to form a magnetic slot, and the permanent magnets penetrate the magnetic slot.
- a motor including the rotor provided by any of the above-mentioned designs.
- the motor provided by the present application includes the rotor provided by any of the above-mentioned designs, so it has all the beneficial effects of the rotor, and will not be repeated here.
- the motor is a permanent magnet motor.
- an electric power steering system including the motor provided by any of the above-mentioned designs.
- the electric power steering system provided by the present application includes the motor provided by any of the above-mentioned designs, so it has all the beneficial effects of the motor, and will not be repeated here.
- EPS Electric Power Steering
- HPS Hydraulic Power Steering
- ECU electronice control unit
- a vehicle including the rotor plate, rotor, motor or electric power steering system provided by any of the above designs.
- the vehicle provided by this application includes the rotor plate, rotor, motor or electric power steering system provided by any of the above-mentioned designs, so it has all the beneficial effects of the rotor plate, rotor, motor or electric power steering system, and is not here Let me repeat.
- the vehicle can be a traditional fuel vehicle or a new energy vehicle.
- new energy vehicles include pure electric vehicles, extended-range electric vehicles, hybrid vehicles, fuel cell electric vehicles, hydrogen engine vehicles, etc.
- Fig. 1 shows a schematic structural diagram of a rotor punch according to a first embodiment of the present application
- Fig. 2 shows one of the partial structural schematic diagrams of the rotor punching plate according to the first embodiment of the present application
- Fig. 3 shows the second partial structural schematic diagram of the rotor punching plate according to the first embodiment of the present application
- Fig. 4 shows the schematic diagram of the variation of the torque of the motor and the stress at the magnetic isolation bridge with the variable (W2 * P/W1) according to one embodiment of the present application;
- Fig. 5 shows a schematic diagram of the variation of the torque and torque ripple of the motor with the variable (R1-R2)/R1 according to an embodiment of the present application;
- Fig. 6 shows the schematic diagram of the variation of the moment of inertia of the motor with the variable (W4+W5)/(R1-R3) according to one embodiment of the present application;
- Fig. 7 shows a schematic structural view of the rotor punching plate according to the second embodiment of the present application.
- Fig. 8 shows a schematic structural diagram of a rotor punching plate according to a third embodiment of the present application.
- Fig. 9 shows a schematic structural diagram of a rotor punching plate according to a fourth embodiment of the present application.
- Fig. 10 shows a schematic structural diagram of a rotor punching plate according to a fifth embodiment of the present application.
- Fig. 11 shows a schematic structural diagram of an electric power steering system according to an embodiment of the present application.
- the following describes a rotor punch 100 , a rotor, a motor, an electric power steering system 200 and a vehicle according to some embodiments of the present application with reference to FIGS. 1 to 11 .
- a rotor stamping 100 including a stamping body 110 and a plurality of permanent magnet slots 130, the stamping
- the body 110 is provided with a shaft hole 120, and a plurality of permanent magnet slots 130 are spaced on the punch body 110 around the shaft hole 120, and each permanent magnet slot 130 in the plurality of permanent magnet slots 130 includes a permanent magnet segment 131 and a The magnetic isolation segment 132 and the permanent magnet segment 131 are used to accommodate the permanent magnet of the rotor.
- the part of the punching body 110 between the magnetic isolation segment 132 and the outer periphery of the punching body 110 is a magnetic isolation bridge 111, wherein the permanent magnet segment
- the width W1 of 131, the width W2 of the magnetic isolation bridge 111, and the number of pole pairs P satisfy: 0.5 ⁇ (W2 ⁇ P/W1) ⁇ 0.9.
- the rotor punch 100 provided in this application includes a punch body 110, a plurality of permanent magnet slots 130, a riveting portion 140, and a weight-reducing hole 150.
- a shaft hole 120 is provided in the middle of the punch body 110, and the shaft hole 120 is used to accommodate a rotating shaft. .
- a plurality of permanent magnet slots 130 are arranged at intervals on the punch body 110 around the shaft hole 120 , and each permanent magnet slot 130 is arranged axially through, and the permanent magnet slots 130 are used for accommodating permanent magnets.
- Each permanent magnet slot 130 in the plurality of permanent magnet slots 130 includes a permanent magnet segment 131 and a magnetic isolation segment 132, the permanent magnet segment 131 and the magnetic isolation segment 132 communicate with each other, the permanent magnet segment 131 is used to accommodate the permanent magnet of the rotor, and the permanent magnet segment 131 is used to accommodate the permanent magnet of the rotor.
- the magnet is embedded in the permanent magnet segment 131 , and no permanent magnet is provided in the magnetic isolation segment 132 , that is, the magnetic isolation segment 132 is empty.
- the number of the magnetic isolation segments 132 is two, and the two magnetic isolation segments 132 communicate with the two sides of the permanent magnet segment 131 respectively.
- the part of the punching body 110 located between the magnetic isolation section 132 and the outer periphery of the punching body 110 is called the magnetic isolation bridge 111
- the width of the magnetic isolation bridge 111 is related to the width of the permanent magnet segment 131 and the number of pole pairs of the motor. so that the width of the magnetic isolation bridge 111 can be set within a reasonable range, avoiding that the width of the magnetic isolation bridge 111 is too small, the production and preparation process is too difficult, and the possibility of deformation of the rotor punch 100 during the operation of the motor is aggravated.
- the quality of the output torque of the motor improves the magnetic flux leakage phenomenon and suppresses the torque ripple to achieve high power density and high efficiency.
- the permanent magnet slot 130 is provided with opposite first apex and second apex, the first radial extension line passing through the center of the shaft hole 120 intersects or is tangent to the first apex, and the second line passing through the center of the shaft hole 120
- the radially extending line intersects or is tangent to the second vertex
- the permanent magnet slot 130 is located between the first radially extending line and the second radially extending line, wherein, between the first radially extending line and the second radially extending line
- the angle ⁇ between the poles and the angle ⁇ between the centerlines of adjacent poles satisfy: 0.9 ⁇ / ⁇ 0.98.
- the line between the center of each permanent magnet slot 130 and the center of the shaft hole 120 is the center line of the magnetic pole, and the center line of two adjacent magnetic poles
- the permanent magnet slot 130 includes a first apex and a second apex, the first apex and the second apex are located at opposite ends of the permanent magnet slot 130, and the first apex and the center of the shaft hole 120 are respectively located on the first radial extension line
- the second vertex and the center of the shaft hole 120 are respectively located on the second radially extending line
- the angle formed by the first radially extending line and the second radially extending line is the central angle ⁇ corresponding to the permanent magnet slot 130, namely
- the permanent magnet slot 130 is completely located in the area formed by the first radial extension line and the second radial extension line, and is defined by the ratio of the central angle ⁇ corresponding to each magnetic pole to the central angle ⁇ corresponding to the permanent magnet slot 130, so that the permanent magnet slot 130 can be determined.
- the relative position of the magnet slots 130 in each magnetic pole makes the arrangement of the permanent magnet slots 130 more rational, which in turn helps to improve the performance of the motor.
- part of the stamping body 110 between adjacent permanent magnet slots 130 among the plurality of permanent magnet slots 130 is a magnetic rib 112 , wherein the minimum width W3 of the magnetic rib 112 is Satisfy: W2 ⁇ W3 ⁇ W1.
- part of the punch body 110 located between two adjacent permanent magnet slots 130 is a magnetic rib 112
- the specific shape of the magnetic rib 112 is related to the specific shape of the permanent magnet slot 130
- the width of the magnetic rib 112 is related to the specific shape of the permanent magnet slot 130.
- the width of the magnetic isolation bridge 111 is related to the width of the permanent magnet segment 131, which makes the arrangement of various positions on the periphery of the punching body 110 more reasonable, thereby helping to improve the phenomenon of magnetic flux leakage, improve the quality of the output torque of the motor, and then improve the motor. performance.
- the permanent magnet segment 131 includes opposite straight groove walls 1311 and bent groove walls 1312 , and the straight groove walls 1311 are arranged away from the shaft hole 120 relative to the bent groove walls 1312 .
- the permanent magnet segment 131 includes a straight groove wall 1311 and a bent groove wall 1312, and the straight groove wall 1311 and the bent groove wall 1312 are distributed along the radial direction, wherein the straight groove wall 1311 is opposite to the bent groove wall 1312 It is set away from the shaft hole 120, that is, the straight groove wall 1311 is set on the outside, and the bent groove wall 1312 is set on the inside.
- the bent groove wall 1312 has a bending angle.
- the wall 1312 ensures the positional stability of the permanent magnet in the permanent magnet segment 131 , and the straight groove wall 1311 is arranged outside, so as to facilitate the size processing of the magnetic isolation bridge 111 and reduce the processing difficulty of the rotor punch 100 .
- the outer periphery of the part of the punching body 110 located between adjacent interpolar centerlines includes an outer arc
- the outer arc includes a first Arc segment 113, the second arc segment 114 and the third arc segment 115, the second arc segment 114 is connected with the first arc segment 113 and the third arc segment 115 respectively, wherein the second arc segment 114
- the radius R2 of the circle and the maximum outer diameter R1 of the punch body 110 satisfy: 0.3 ⁇ (R1-R2)/R1 ⁇ 0.7.
- the outer periphery of the part of the punching body 110 between adjacent interpole centerlines includes an outer arc, that is, for each magnetic pole
- the outer periphery of the die body 110 has an outer arc corresponding to the magnetic pole
- the outer arc includes a first arc segment 113, a second arc segment 114, and a third arc segment 115 connected in sequence.
- the arc segment 114 is located between the first arc segment 113 and the third arc segment 115, wherein the radius R3 of the circle where the second arc segment 114 is located and the maximum outer diameter R1 of the punch body 110 satisfy: 0.3 ⁇ (R1- R2)/R1 ⁇ 0.7.
- the permanent magnet slot 130 includes a permanent magnet segment 131 and two magnetic isolation segments 132, which are respectively a first magnetic isolation segment 132a and a second magnetic isolation segment 132b, which are respectively connected to the two ends of the permanent magnet segment 131, Then, along the circumferential direction, the corresponding relationship between the permanent magnet slot 130 and the outer arc is that the first magnetic isolation segment 132a corresponds to the first arc segment 113, and the permanent magnet segment 131 corresponds to the second arc segment 114. , the second magnetic isolation segment 132b corresponds to the third arc segment 115 .
- each magnetic pole has a symmetrical structure, which is easy to control the quality of the production process.
- the angle ⁇ between the central angle ⁇ corresponding to the second arc segment 114 and the center line between adjacent poles satisfies: 0.6 ⁇ / ⁇ 0.8.
- the approximate shape of the outer circumference of the sheet body 110 can be punched.
- the rational design of the curvature distribution of the outer periphery makes the structure of the stamping body 110 more rational, thereby helping to improve the performance of the motor.
- the rotor punch further includes a plurality of weight reduction holes 150, the plurality of weight reduction holes 150 are provided on the punch body 110, and the plurality of weight reduction holes 150 are respectively located on the punch body 110. pole centerline and/or interpole centerline.
- a rotor punching plate 100 for a rotor punching plate 100, it has a magnetic pole centerline and an inter-pole centerline, wherein the line connecting the center of the permanent magnet slot 130 and the center of the shaft hole 120 constitutes the magnetic pole centerline, referred to as the d-axis , the angle bisector of two adjacent magnetic pole centerlines is the interpole centerline, and the interpole centerline is also called the adjacent magnetic pole centerline, referred to as the q axis.
- a plurality of lightening holes 150 are respectively provided on the pole centerline and/or the interpole centerline of the punch body 110 . Under the premise of ensuring that the performance of the motor is not affected, the setting of the weight reduction hole 150 can reduce the moment of inertia and reduce the overall weight of the motor.
- the number of weight reducing holes 150 is multiple, and a plurality of weight reducing holes 150 are all arranged on the pole centerline, or, a plurality of weight reducing holes 150 are all arranged on the centerline between poles, or, a plurality of weight reducing holes Some of the weight reducing holes 150 in 150 are located on the pole centerline, and another part of the weight reducing holes 150 are located on the interpole centerline.
- one weight-reducing hole 150 may be arranged on one magnetic pole centerline, or a plurality of relatively independent weight-reducing holes 150 may be arranged on one magnetic pole centerline. But for a weight reducing hole 150, it will only be located on one of the centerline of the magnetic pole or the centerline between the poles, and there is no situation that a weight reducing hole 150 is located on the centerline of the magnetic pole and the centerline between the poles at the same time.
- the weight reduction hole 150 is located between the permanent magnet slot 130 and the shaft hole 120, wherein the minimum distance W4 between the weight reduction hole 150 and the permanent magnet slot 130, the weight reduction The minimum distance W5 between the heavy hole 150 and the shaft hole 120 satisfies: 0.8 ⁇ W4/W5 ⁇ 1.2.
- the weight reducing hole 150 is provided between the permanent magnet groove 130 and the shaft hole 120, the weight reducing hole 150 is independently arranged relative to the permanent magnet groove 130 and the shaft hole 120, the center of the weight reducing hole 150, the permanent magnet groove Both the center of 130 and the center of the shaft hole 120 are located on the pole centerline.
- the minimum distance W4 between the weight reduction hole 150 and the permanent magnet slot 130, and the minimum distance W5 between the weight reduction hole 150 and the shaft hole 120 satisfy: 0.8 ⁇ W4/W5 ⁇ 1.2, by making the position of the weight reduction hole 150 The choice is reasonable, while reducing the moment of inertia and reducing the weight of the motor, it will not affect the performance of the motor.
- the radius R3 of the hole 120 satisfies: 0.4 ⁇ (W4+W5)/(R1-R3) ⁇ 0.6.
- the minimum distance between the lightening hole 150 and the permanent magnet slot 130 is W4
- the minimum distance between the lightening hole 150 and the shaft hole 120 is W5
- the maximum radius of the punch body 110 is R1
- the shaft The radius of the hole 120 is R3, and the size relationship among the four satisfies the above relationship, so that the moment of inertia and the weight of the motor can be reduced without affecting the performance of the motor.
- the lightening hole 150 includes an arc-shaped hole wall, and the arc-shaped hole wall includes an arc line on the axial end surface, and the radius R4 of the circle where the arc line is located and the punch
- the maximum radius R1 of the sheet body 110 satisfies: 0.05 ⁇ R4/R1 ⁇ 0.3.
- the lightening hole 150 includes at least one arc-shaped hole wall, the arc-shaped hole wall has an arc line on the axial end surface perpendicular to the axial direction, the radius R4 of the circle where the arc line is located and the punch body 110
- the maximum radius R1 of the rotor satisfies the above relationship, so that the shape of the weight reduction hole 150 is associated with the punch body 110, making the selection of the size and shape of the weight reduction hole 150 more reasonable, thereby optimizing the overall structural arrangement of the rotor punch 100, Helps improve motor performance.
- the weight-reducing hole 150 is provided with a third vertex and a fourth vertex opposite to each other, and the third radially extending line passing through the center of the shaft hole 120 and the third vertex Intersect or tangent, the fourth radially extending line passing through the center of the shaft hole 120 intersects or is tangent to the fourth vertex, the lightening hole 150 is located between the third radially extending line and the fourth radially extending line, wherein , the angle ⁇ between the third radially extending line and the fourth radially extending line and the angle ⁇ between the centerlines between adjacent poles satisfy: 0.6 ⁇ / ⁇ 0.8.
- the weight reducing hole 150 includes a third vertex and a fourth vertex, the third vertex and the fourth vertex are located at opposite ends of the weight reducing hole 150, and the third vertex and the center of the shaft hole 120 are respectively located on the third diameter.
- the fourth vertex and the center of the shaft hole 120 are respectively located on the fourth radial extending line, and the angle formed by the third radial extending line and the fourth radial extending line is the central angle corresponding to the weight reducing hole 150 ⁇ , that is, the lightening hole 150 is completely located in the area formed by the third radially extending line and the fourth radially extending line, and is defined by the ratio of the central angle ⁇ corresponding to each magnetic pole to the central angle ⁇ corresponding to the lightening hole 150, so that The relative position of the weight reduction holes 150 in each magnetic pole can be determined, so that the arrangement of the weight reduction holes 150 can be more rationalized, thereby helping to improve the performance of the motor.
- the number of lightening holes 150 is 4, 6, 8, 12, 16 or 20.
- the number of lightening holes 150 is four. Alternatively, the number of lightening holes 150 is six. Alternatively, the number of lightening holes 150 is eight. Alternatively, the number of lightening holes 150 is twelve. Alternatively, the number of lightening holes 150 is sixteen. Alternatively, the number of lightening holes 150 is twenty. Regardless of the number of the lightening holes 150, the lightening holes 150 all need to be arranged on the interpole centerline and/or the magnetic pole centerline.
- the lightening holes 150 include 8 first lightening holes and 8 second lightening holes, and the 8 first lightening holes are arranged at intervals along the circumferential direction, each One first lightening hole is located on the pole center line of each magnetic pole, eight second lightening holes are arranged at intervals in the circumferential direction, and can be arranged on the outside or inside of the first lightening hole, and one second lightening hole is located on the An interpolar centerline.
- the opening area of the first weight reducing hole is different from the opening area of the second weight reducing hole. For example, when the first weight reducing hole is arranged away from the shaft hole 120 relative to the second weight reducing hole, the first weight reducing hole The opening area of the hole is larger than the opening area of the second lightening hole.
- first lightening hole and the shape of the second lightening hole may be the same or different.
- the rotor punch 100 further includes a riveting portion 140 , the riveting portion 140 is provided on the punching body 110 , and the riveting portion 140 is located on the magnetic pole centerline or pole of the punching body 110 on the center line.
- each punch body 110 is further provided with a riveting portion 140, and a plurality of rotor punches 100 are stacked in the axial direction to form a rotor core, and the riveting portions 140 on adjacent rotor punches 100 can Matched and matched so that the plurality of rotor punches 100 are connected to each other in the axial direction, so as to form a whole rotor core.
- the weight reducing hole 150 and the rivet portion 140 are relatively independently opened on the punch body 110 without interfering with each other.
- the lightening hole 150 is provided on the pole centerline and/or the interpole centerline.
- the riveting portion 140 and the weight-reducing hole 150 are provided on the punching body 110, and the positions of the riveting portion 140 and the weight-reducing hole 150 are related to the positions of the centerline of the magnetic pole and the centerline between the poles, thereby
- it can improve the quality of the motor output torque, improve the magnetic flux leakage phenomenon and suppress the torque ripple, realize high power density and high efficiency, reduce the moment of inertia and reduce the weight of the motor.
- the number of magnetic pole centerlines and the number of interpole centerlines are multiple.
- the number of rivet parts 140 is half of the number of permanent magnet slots 130; equal in number.
- the quantity of the rivet parts 140 is related to the quantity of the permanent magnet slots 130, and the quantity of the rivet parts 140 can be half of the quantity of the permanent magnet slots 130, or the quantity of the rivet parts 140 is related to the number of the permanent magnet slots. 130 are equal in number. Wherein, when the number of permanent magnet slots 130 is 8, the number of rivet parts 140 can be 4 or 8. Regardless of whether the number of rivet portions 140 is a multiple or equal to the number of permanent magnet slots 130 , the rivet portions 140 must be arranged on the inter-pole centerline and/or the magnetic pole centerline.
- the weight-reducing holes 150 and the riveting parts 140 need to follow the principle of being arranged on the centerline between poles and the centerline of the magnetic poles to reduce weight.
- the hole 150 and the rivet portion 140 are relatively independent, each forming its own reasonable arrangement position.
- FIG. 1 FIG. 7, FIG. 8, FIG. 9 and FIG.
- the circumferential direction is arranged alternately.
- the quantity of the rivet portion 140 is equal to the quantity of the lightening hole 150, for example, the quantity of the two is half of the quantity of the permanent magnet slot 130, or the quantity of the two is equal to that of the permanent magnet slot 130.
- the arrangement of the two follows the arrangement of alternating intervals. Specifically, when the number of rivet parts 140 and the number of weight-reducing holes 150 are both 4, the 4 rivet parts 140 and the 4 weight-reducing holes 150 are alternately arranged at intervals, and the 4 rivet parts 140 The center of and the centers of the four lightening holes 150 are located in the same circle.
- the weight reducing holes 150 and the rivet parts 140 When the number of rivet parts 140 and the number of weight reducing holes 150 are 8, one of the weight reducing holes 150 and the rivet parts 140 is located on the pole centerline, and the weight reducing holes 150 and the rivet parts 140 The other is located on the center line between the poles, and the two are respectively arranged along the circumferential direction to form concentric circles with different radii.
- the weight-reducing hole 150 is arranged close to the shaft hole 120 relative to the riveting portion 140. This is because during the high-speed rotation of the rotor punching 100, the periphery of the rotor punching 100 is subject to a relatively large centrifugal force, so that the riveting portion 140 The outer arrangement can better ensure that the rotor punch 100 does not deform and improve the reliability of the structure.
- a rotor including the rotor punching plate 100 provided by any of the above-mentioned designs.
- the rotor provided in the present application includes the rotor punching plate 100 provided by any of the above-mentioned designs, and therefore has all the beneficial effects of the rotor punching plate 100 , which will not be repeated here.
- rotor punches 100 there are multiple rotor punches 100, and the plurality of rotor punches 100 are stacked axially to form a rotor core. Set in the magnetic groove.
- a motor including the rotor provided by any of the above-mentioned designs.
- the motor provided by the present application includes the rotor provided by any of the above-mentioned designs, so it has all the beneficial effects of the rotor, and will not be repeated here.
- the motor is a permanent magnet motor.
- an electric power steering system 200 is provided, including the motor provided by any of the above designs.
- the electric power steering system 200 provided in the present application includes the motor provided by any of the above-mentioned designs, so it has all the beneficial effects of the motor, and will not be repeated here.
- the electric power steering system 200 (Electric Power Steering, EPS for short) is a power steering system that directly relies on the motor to provide auxiliary torque.
- HPS Hydraulic Power Steering
- the EPS system The structure is simple and the assembly is flexible, which can save energy and protect the environment. Most models of modern vehicles are basically equipped with EPS systems.
- the EPS system of the present embodiment has a steering system and an assist torque mechanism that generates assist torque.
- the EPS system generates assist torque that assists the steering torque of the steering system generated by the driver's operation of the steering wheel.
- the assist torque reduces the driver's operational burden.
- the steering system specifically includes a steering wheel 211 , a steering shaft 212 , a universal joint 213 , a rotating shaft 214 , a rack and pinion mechanism 215 , a rack shaft 216 , and left and right steering wheels 217 .
- the auxiliary torque mechanism specifically includes a steering torque sensor 221 , an electronic control unit (ECU) 222 for a vehicle, a motor, a reduction mechanism 223 and the like.
- the steering torque sensor 221 detects the steering torque of the steering system.
- the control unit 222 generates a drive signal based on the detection signal of the steering torque sensor 221 .
- the electric motor generates assist torque corresponding to the steering torque according to the drive signal.
- the electric motor transmits the generated assist torque to the steering system via the reduction mechanism 223 .
- a vehicle including the rotor plate 100 provided by any of the above designs, a rotor, a motor or an electric power steering system.
- the vehicle provided by this application includes the rotor punch 100, rotor, motor or electric power steering system provided by any of the above designs, and therefore has all the beneficial effects of the rotor punch 100, rotor, motor or electric power steering system. This will not be repeated here.
- the vehicle can be a traditional fuel vehicle or a new energy vehicle.
- new energy vehicles include pure electric vehicles, extended-range electric vehicles, hybrid vehicles, fuel cell electric vehicles, hydrogen engine vehicles, etc.
- connection means two or more, unless otherwise clearly defined.
- connection can be fixed connection, detachable connection, or integral connection; “connection” can be directly or indirectly through an intermediary.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
本申请提供了一种转子冲片、转子、电机、电动助力转向系统和车辆,转子冲片包括冲片本体和多个永磁体槽,冲片本体上设有轴孔,多个永磁体槽围绕轴孔间隔设置在冲片本体上,多个永磁体槽中每个永磁体槽包括相互连通的永磁体段和隔磁段,永磁体段用于容置转子的永磁体,位于隔磁段与冲片本体的外周沿之间的部分冲片本体为隔磁桥,其中,永磁体段的宽度W1、隔磁桥的宽度W2和极对数P满足:0.5≤(W2×P/W1)≤0.9。本申请能够显著抑制转子永磁磁场通过隔磁桥的漏磁现象,减小了隔磁桥处的漏磁磁密,增大了永磁体的利用率,从而能够在提高电机性能的基础上提升电机输出转矩的品质,抑制转矩脉动,实现高功率密度和高效率。
Description
本申请要求于2021年12月08日提交到中国国家知识产权局的申请号为202111491567.X、发明名称为“转子冲片、转子、电机、电动助力转向系统和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电机设备技术领域,具体而言,涉及一种转子冲片、一种转子、一种电机、一种电动助力转向系统和一种车辆。
目前,随着社会的快速发展,电机可以产生驱动转矩,作为电器或各种机械的动力源,从而收获了越来越多的关注并朝向高功率密度和高速化发展。
然而,现有冲片的结构布局并不合理,导致电机的转矩输出品质不高,存在漏磁现象,转矩脉动较高,电机性能有待改善。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一个方面在于,提出一种转子冲片。
本申请的第二个方面在于,提出一种转子。
本申请的第三个方面在于,提出一种电机。
本申请的第四个方面在于,提出一种电动助力转向系统。
本申请的第五个方面在于,提出一种车辆。
有鉴于此,根据本申请的第一个方面,提供了一种转子冲片,包括冲片本体和多个永磁体槽,冲片本体上设有轴孔,多个永磁体槽围绕轴孔间隔设置在冲片本体上,多个永磁体槽中每个永磁体槽包括相互连通的永磁体段和隔磁段,永磁体段用于容置转子的永磁体,位于隔磁段与冲片本体 的外周沿之间的部分冲片本体为隔磁桥,其中,永磁体段的宽度W1、隔磁桥的宽度W2和极对数P满足:0.5≤(W2×P/W1)≤0.9。
本申请提供的转子冲片包括冲片本体和多个永磁体槽,冲片本体的中部设有轴孔,轴孔用于容纳转轴。多个永磁体槽围绕轴孔间隔排布在冲片本体上,每个永磁体槽沿轴向贯穿设置,永磁体槽用于容纳永磁体。多个永磁体槽中每个永磁体槽包括永磁体段和隔磁段,永磁体段和隔磁段相互连通,永磁体段用于容置转子的永磁体,永磁体嵌设在永磁体段内,隔磁段内不设有永磁体,即隔磁段空置。隔磁段的数量为两个,两个隔磁段分别连通在永磁体段的两侧。其中,位于隔磁段和冲片本体的外周沿之间的部分冲片本体被称为隔磁桥,隔磁桥的宽度与永磁体段的宽度、电机极对数相关联,从而可以令隔磁桥的宽度设置在合理的范围内,避免隔磁桥的宽度过小,生产制备过程难度过大且加剧电机运行过程中转子冲片发生形变的可能性,能够显著抑制转子永磁磁场通过隔磁桥的漏磁现象,减小了隔磁桥处的漏磁磁密,增大了永磁体的利用率,从而能够在提高电机性能的基础上提升电机输出转矩的品质,抑制转矩脉动,实现高功率密度和高效率。
在一种可能的设计中,进一步地,在冲片本体的轴向端面上,多个永磁体槽中相邻永磁体槽之间具有极间中心线。永磁体槽上设有相对的第一顶点和第二顶点,穿过轴孔的中心的第一径向延伸线与第一顶点相交或相切,穿过轴孔的中心的第二径向延伸线与第二顶点相交或相切,永磁体槽位于第一径向延伸线和第二径向延伸线之间,其中,第一径向延伸线与第二径向延伸线之间的夹角β、相邻极间中心线之间的夹角α满足:0.9≤β/α≤0.98。
在该设计中,在冲片本体的轴向端面上,每个永磁体槽的中心与轴孔的圆心之间的连线即为磁极中心线,相邻两个磁极中心线的角分线即为极间中心线,相邻的极间中心线之间形成的夹角即为每个磁极所占的圆心角α,圆心角α表示了每个磁极所占冲片本体的比例,α=360°/2P。
进一步地,永磁体槽包括第一顶点和第二顶点,第一顶点和第二顶点位于永磁体槽相对的两端,第一顶点与轴孔的中心分别位于第一径向延伸 线上,第二顶点与轴孔的中心分别位于第二径向延伸线,第一径向延伸线和第二径向延伸线形成的夹角即为永磁体槽对应的圆心角β,即永磁体槽完全位于第一径向延伸线和第二径向延伸线形成的区域内,通过对每个磁极对应圆心角α和永磁体槽对应圆心角β的比值限定,从而能够确定永磁体槽在每个磁极内的相对位置,令永磁体槽的位置排布更加合理化,进而有助于提升电机性能。
在一种可能的设计中,进一步地,多个永磁体槽中相邻永磁体槽之间的部分冲片本体为磁肋,其中,磁肋的最小宽度W3满足:W2≤W3≤W1。
在该设计中,位于相邻两个永磁体槽之间的部分冲片本体为磁肋,磁肋的具体形状与永磁体槽的具体形状相关,磁肋的宽度与隔磁桥的宽度和永磁体段的宽度相关联,令冲片本体的外围处的各个位置布置更加合理化,从而有利于改善漏磁现象,改善电机输出转矩的品质,进而提升电机性能。
在一种可能的设计中,进一步地,永磁体段包括相对的直槽壁和折弯槽壁,直槽壁相对于折弯槽壁远离轴孔设置。
在该设计中,永磁体段包括直槽壁和折弯槽壁,直槽壁和折弯槽壁沿径向分布,其中,直槽壁相对于折弯槽壁远离轴孔设置,即直槽壁靠外设置,折弯槽壁靠内设置,折弯槽壁具有折弯角度,永磁体与折弯槽壁接触时,会受到折弯槽壁的限制,进而确保永磁体在永磁体段内的位置稳定性,直槽壁靠外设置,从而能够方便隔磁桥的尺寸加工,降低转子冲片的加工难度。
在一种可能的设计中,进一步地,在冲片本体的轴向端面上,位于相邻的极间中心线之间的部分冲片本体的外周沿包括外弧线,外弧线包括第一圆弧段、第二圆弧段和第三圆弧段,第二圆弧段分别与第一圆弧段和第三圆弧段相连,其中,第二圆弧段所在圆的半径R2、冲片本体的最大外径R1满足:0.3≤(R1-R2)/R1≤0.7。
在该设计中,在冲片本体的轴向端面上,位于相邻的极间中心线之间的部分冲片本体的外周沿包括外弧线,也就是说,对于每个磁极而言,冲片本体的外周沿上具有与磁极对应的外弧线,外弧线包括依次连接的第一圆弧段、第二圆弧段和第三圆弧段,第二圆弧段位于第一圆弧段和第三圆 弧段之间,其中,第二圆弧段所在圆的半径R2、冲片本体的最大外径R1满足:0.3≤(R1-R2)/R1≤0.7。当(R1-R2)/R1的值处于上述范围内时,电机的转矩脉动处于较低水平,且随着(R1-R2)/R1的值的增长,转矩脉动还呈降低趋势。与此同时,电机的输出转矩处于平稳状态下,并未呈现出明显的波动起伏,也就是说,当(R1-R2)/R1的值处于一个合理范围内时,对电机的输出转矩不会造成影响的同时,会令转矩脉动处于较低水平,同时也能够有一定程度的降低,通过削弱转矩脉动,从而改善电机的噪声振动的情况,提升电机性能。
其中,值得说明的,永磁体槽包括永磁体段和两个隔磁段,分别为第一隔磁段和第二隔磁段,分别连通在永磁体段的两端,那么,沿周向方向,永磁体槽和外弧线之间具有的对应关系为,第一隔磁段与第一圆弧段对应,永磁体段与第二圆弧段对应,第二隔磁段与第三圆弧段对应。那么隔磁桥的数量即为两个,分别为第一圆弧段形成的第一隔磁桥、第二圆弧段形成的第二隔磁桥。当第一隔磁段和第二隔磁段结构相同,第一圆弧段和第三圆弧段曲率相同时,则第一隔磁桥与第二隔磁桥的结构相同,使得每个磁极为对称结构,易于生产过程的品质控制。
在一种可能的设计中,进一步地,第二圆弧段对应的圆心角γ与相邻极间中心线之间的夹角α满足:0.6≤γ/α≤0.8。
在该设计中,通过对每个磁极对应圆心角α和第二圆弧段对应的圆心角γ的比值限定,从而能够冲片本体的外周圆的大致形状,对于每个磁极对应的外周沿的曲率分布进行合理化设计,使得令冲片本体的结构更加合理化,进而有助于提升电机性能。
在一种可能的设计中,进一步地,转子冲片上还包括多个减重孔,多个减重孔设在冲片本体上,多个减重孔分别位于冲片本体的磁极中心线和/或极间中心线上。
在该设计中,对于一个转子冲片而言,其具有磁极中心线和极间中心线,其中,永磁体槽的中心与轴孔的中心连线构成磁极中心线,简称d轴,相邻两个磁极中心线的角平分线为极间中心线,极间中心线也称为相邻磁极中心线,简称q轴。多个减重孔分别位于磁极中心线和/或极间中心线上。 在确保电机性能不受影响的前提下,减重孔的设置能够降低转动惯量,减轻电机的整体重量,减重孔设在磁极中心线和/或极间中心线上。
其中,减重孔的数量为多个,多个减重孔均设在磁极中心线上,或者,多个减重孔均设在极间中心线上,或者,多个减重孔中一部分数量的减重孔位于磁极中心线上,多个减重孔中另一部分数量的减重孔位于极间中心线上。
可以想到地,对于冲片本体而言,磁极中心线的数量和极间中心线的数量均为多个。一条磁极中心线上可以设置一个减重孔,或者一条磁极中心线上设置多个相对独立的减重孔。但是对于一个减重孔而言,其仅会位于磁极中心线或极间中心线中的一者上,不存在一个减重孔同时位于磁极中心线和极间中心线上的情况。
在一种可能的设计中,进一步地,减重孔位于永磁体槽和轴孔之间,其中,减重孔和永磁体槽之间的最小距离W4、减重孔和轴孔之间的最小距离W5满足:0.8≤W4/W5≤1.2。
在该设计中,减重孔开设在永磁体槽和轴孔之间,减重孔相对于永磁体槽、轴孔独立设置,减重孔的中心、永磁体槽的中心和轴孔的中心均位于磁极中心线上。其中,减重孔和永磁体槽之间的最小距离W4、减重孔和轴孔之间的最小距离W5满足:0.8≤W4/W5≤1.2,通过令减重孔的位置选择合理,在降低转动惯量,减轻电机重量的同时,还不会影响到电机的性能。
在一种可能的设计中,进一步地,减重孔和永磁体槽之间的最小距离W4、减重孔和轴孔之间的最小距离W5、冲片本体的最大半径R1、轴孔的半径R3满足:0.4≤(W4+W5)/(R1-R3)≤0.6。
在该设计中,减重孔和永磁体槽之间的最小距离为W4,减重孔和轴孔之间的最小距离为W5,冲片本体的最大半径为R1,轴孔的半径为R3,四者的尺寸关系满足上述关系,从而可以实现在降低转动惯量、减轻电机重量的同时,不会对电机的性能造成影响。当(W4+W5)/(R1-R3)的值处于上述范围内时,电机的转动惯量处于较低水平,随着(W4+W5)/(R1-R3)的增加,转动惯量的增加比例较低,即在上述范围内,电机的转动惯量能 够平稳处于较低水平。
在一种可能的设计中,进一步地,减重孔包括弧形孔壁,弧形孔壁包括位于轴向端面上的圆弧线,圆弧线所在圆的半径R4和冲片本体的最大半径R1满足:0.05≤R4/R1≤0.3。
在该设计中,减重孔包括至少一个弧形孔壁,弧形孔壁在垂直于轴向的轴向端面上具有圆弧线,圆弧线所在圆的半径R4和冲片本体的最大半径R1满足上述关系式,从而令减重孔的形状与冲片本体相关联,令减重孔的尺寸、形状选择更加合理,进而优化转子冲片的整体结构排布,有助于提升电机性能。
在一种可能的设计中,进一步地,减重孔上设有相对的第三顶点和第四顶点,穿过轴孔的中心的第三径向延伸线与第三顶点相交或相切,穿过轴孔的中心的第四径向延伸线与第四顶点相交或相切,减重孔位于第三径向延伸线和第四径向延伸线之间,其中,第三径向延伸线与第四径向延伸线之间的夹角θ与相邻极间中心线之间的夹角α满足:0.6≤θ/α≤0.8。
在该设计中,减重孔包括第三顶点和第四顶点,第三顶点和第四顶点位于减重孔相对的两端,第三顶点与轴孔的中心分别位于第三径向延伸线上,第四顶点与轴孔的中心分别位于第四径向延伸线,第三径向延伸线和第四径向延伸线形成的夹角即为减重孔对应的圆心角θ,即减重孔完全位于第三径向延伸线和第四径向延伸线形成的区域内,通过对每个磁极对应圆心角α和减重孔对应圆心角θ的比值限定,从而能够确定减重孔在每个磁极内的相对位置,令减重孔的位置排布更加合理化,进而有助于提升电机性能。
在一种可能的设计中,进一步地,减重孔的数量为4、6、8、12、16或20。
在该设计中,减重孔的数量有多种可能性,根据实际需求设置,但是,无论减重孔的数量是多少,减重孔可以仅设在极间中心线。或者,减重孔仅设在磁极中心线上,或者,多个减重孔中至少一个减重孔位于极间中心线上,多个减重孔中至少一个减重孔位于磁极中心线上。
比如,当减重孔的数量为16时,则减重孔包括8个第一减重孔和8个 第二减重孔,8个第一减重孔沿周向间隔排布,每个第一减重孔位于每个磁极的磁极中心线上,8个第二减重孔沿周向间隔排布,可以设在第一减重孔的外侧或内侧,一个第二减重孔位于一个极间中心线上。其中,第一减重孔的开孔面积与第二减重孔的开孔面积不同,比如,当第一减重孔相对于第二减重孔远离轴孔设置时,则第一减重孔的开孔面积大于第二减重孔的开孔面积。
需要说明的是,第一减重孔的形状与第二减重孔的形状可以相同也可以不相同。
在一种可能的设计中,进一步地,转子冲片还包括铆扣部,铆扣部设在冲片本体上,铆扣部位于磁极中心线或极间中心线上。
在该设计中,每个冲片本体上还设有铆扣部,多个转子冲片沿轴向堆叠以构成转子铁芯,相邻转子冲片上的铆扣部能够相配配合以使得多个转子冲片在轴向上相互连接,从而形成转子铁芯整体。减重孔和铆扣部相对独立开设在冲片本体上,互不干扰。本申请通过在冲片本体上设置铆扣部和减重孔,同时令铆扣部和减重孔的设置位置,与磁极中心线和极间中心线的位置相互关联,从而能够在提高电机性能的基础上提升电机输出转矩的品质,改善漏磁现象并抑制转矩脉动,实现高功率密度和高效率,降低转动惯量和减轻电机重量。
其中,需要说明的是,对于冲片本体而言,磁极中心线的数量和极间中心线的数量均为多个。铆扣部的数量为多个,一个铆扣部对应地设在一个磁极中心线或一个极间中心线上。在一种可能的设计中,进一步地,铆扣部的数量为永磁体槽的数量的一半;或,铆扣部的数量与永磁体槽的数量相等。
在该设计中,铆扣部的数量与永磁体槽的数量相关,铆扣部的数量可以为永磁体槽数量的一半,或者是,铆扣部的数量与永磁体槽的数量相等。其中,当永磁体槽的数量为8时,则铆扣部的数量可以为4、8。无论铆扣部的数量与永磁体槽的数量是倍数关系还是相等的关系,铆扣部都需要设置在极间中心线和/或磁极中心线上。
当多个减重孔和多个铆扣部设在冲片本体上,减重孔和铆扣部均需要 遵循排布在极间中心线、磁极中心线上原则,减重孔和铆扣部相对独立,各自形成自有的合理排布位置。
在一种可能的设计中,进一步地,在铆扣部的数量和减重孔的数量相等的情况下,减重孔和铆扣部沿圆周方向交替设置。
在该设计中,在铆扣部的数量和减重孔的数量相等时,比如二者的数量均为永磁体槽数量的一半,或者,二者的数量与永磁体槽的数量相同时,则二者的排布遵循交替间隔排布。具体而言,当铆扣部的数量和减重孔的数量均为4个时,则4个铆扣部和4个减重孔间隔交替排布设置,4个铆扣部的中心和4个减重孔的中心位于同一圆内。当铆扣部的数量和减重孔的数量均为8个时,减重孔和铆扣部中的一者位于磁极中心线上,减重孔和铆扣部中的另一者位于极间中心线上,二者分别沿周向设置形成不同半径的同心圆。其中,减重孔相对铆扣部而言靠近轴孔设置,这是由于在转子冲片高转速旋转过程中,转子冲片的外围受到的离心力较大,令铆扣部靠外设置,能够更好地保证转子冲片不发生变形,提升结构的可靠性。
根据本申请的第二个方面,提供了一种转子,包括上述任一设计所提供的转子冲片。
本申请提供的转子,包括上述任一设计所提供的转子冲片,因此具有该转子冲片的全部有益效果,在此不再赘述。
其中,转子冲片的数量为多个,多个转子冲片沿轴向堆叠以形成转子铁芯,多个转子冲片的永磁体槽沿轴向贯通构成磁槽,永磁体穿设于磁槽内。
根据本申请的第三个方面,提供了一种电机,包括上述任一设计所提供的转子。
本申请提供的电机,包括上述任一设计所提供的转子,因此具有该转子的全部有益效果,在此不再赘述。
值得说明的是,电机为永磁电机。
根据本申请的第四个方面,提供了一种电动助力转向系统,包括上述任一设计所提供的电机。
本申请提供的电动助力转向系统,包括上述任一设计所提供的电机, 因此具有该电机的全部有益效果,在此不再赘述。
需要说明的是,电动助力转向系统(Electric Power Steering,缩写EPS)是一种直接依靠电机提供辅助扭矩的动力转向系统,与传统的液压助力转向系统HPS(Hydraulic Power Steering)相比,EPS系统具有很多优点。EPS主要由扭矩传感器、车速传感器、电机、减速机构和电子控制单元(ECU)等组成。
根据本申请的第五个方面,提供了一种车辆,包括上述任一设计所提供的转子冲片、转子、电机或电动助力转向系统。
本申请提供的车辆,包括上述任一设计所提供的转子冲片、转子、电机或电动助力转向系统,因此具有该转子冲片、转子、电机或电动助力转向系统的全部有益效果,在此不再赘述。
需要说明的是,车辆可以为传统的燃油车,也可以为新能源汽车。其中,新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车等。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的第一个实施例中转子冲片的结构示意图;
图2示出了根据本申请的第一个实施例中转子冲片的部分结构示意图之一;
图3示出了根据本申请的第一个实施例中转子冲片的部分结构示意图之二;
图4示出了根据本申请的一个实施例中电机的转矩和隔磁桥处应力随变量(W2×P/W1)的变化示意图;
图5示出了根据本申请的一个实施例中电机的转矩和转矩脉动随变量(R1-R2)/R1的变化示意图;
图6示出了根据本申请的一个实施例中电机的转动惯量随变量(W4+W5)/(R1-R3)的变化示意图;
图7示出了根据本申请的第二个实施例中转子冲片的结构示意图;
图8示出了根据本申请的第三个实施例中转子冲片的结构示意图;
图9示出了根据本申请的第四个实施例中转子冲片的结构示意图;
图10示出了根据本申请的第五个实施例中转子冲片的结构示意图;
图11示出了根据本申请的一个实施例中电动助力转向系统的结构示意图。
附图标记:
100转子冲片,
110冲片本体,
111隔磁桥,111a第一隔磁桥,111b第二隔磁桥,
112磁肋,
113第一圆弧段,114第二圆弧段,115第三圆弧段,
120轴孔,
130永磁体槽,
131永磁体段,1311直槽壁,1312折弯槽壁,
132隔磁段,132a第一隔磁段,132b第二隔磁段,
140铆扣部,
150减重孔,
200电动助力转向系统,
211方向盘,212转向轴,213万向联轴器,214旋转轴,215齿条齿轮机构,216齿条轴,217车轮,
221转向扭矩传感器,222控制单元,223减速机构。
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图11描述根据本申请一些实施例所提供的转子冲片100、转子、电机、电动助力转向系统200和车辆。
根据本申请第一个方面的实施例,如图1、图2、图3和图4所示,提供了一种转子冲片100,包括冲片本体110和多个永磁体槽130,冲片本体110上设有轴孔120,多个永磁体槽130围绕轴孔120间隔设置在冲片本体110上,多个永磁体槽130中每个永磁体槽130包括相互连通的永磁体段131和隔磁段132,永磁体段131用于容置转子的永磁体,位于隔磁段132与冲片本体110的外周沿之间的部分冲片本体110为隔磁桥111,其中,永磁体段131的宽度W1、隔磁桥111的宽度W2、极对数P满足:0.5≤(W2×P/W1)≤0.9。
本申请提供的转子冲片100包括冲片本体110、多个永磁体槽130、铆扣部140和减重孔150,冲片本体110的中部设有轴孔120,轴孔120用于容纳转轴。多个永磁体槽130围绕轴孔120间隔排布在冲片本体110上,每个永磁体槽130沿轴向贯穿设置,永磁体槽130用于容纳永磁体。多个永磁体槽130中每个永磁体槽130包括永磁体段131和隔磁段132,永磁体段131和隔磁段132相互连通,永磁体段131用于容置转子的永磁体,永磁体嵌设在永磁体段131内,隔磁段132内不设有永磁体,即隔磁段132空置。隔磁段132的数量为两个,两个隔磁段132分别连通在永磁体段131的两侧。其中,位于隔磁段132和冲片本体110的外周沿之间的部分冲片本体110被称为隔磁桥111,隔磁桥111的宽度与永磁体段131的宽度、电机极对数相关联,从而可以令隔磁桥111的宽度设置在合理的范围内,避免隔磁桥111的宽度过小,生产制备过程难度过大且加剧电机运行过程中转子冲片100发生形变的可能性,能够显著抑制转子永磁磁场通过隔磁桥111的漏磁现象,减小了隔磁桥111处的漏磁磁密,增大了永磁体的利用率,从而能够在保证电机性能的基础上提升电机输出转矩的品质,改善漏磁现象并抑制转矩脉动,实现高功率密度和高效率。
如图4所示,当(W2×P/W1)小于0.5时,隔磁桥处所承受的应力较大,在电机运行过程中容易发生形变。当(W2×P/W1)大于0.9时,尽管隔磁桥处所的应力呈现出减小趋势,但是电机的输出转矩也减小,导致无法保证电机的输出品质。而当(W2×P/W1)的取值范围位于[0.5,0.9]之间时,隔磁桥处的应力处于较低水平,与此同时转矩处于较为平稳的水平,即并未出现明显的降低,因此,在该范围内能够保证隔磁桥处的应力和电机的输出转矩均处于优选范围内,从而能够保证电机性能的基础上提升电机输出转矩的品质,改善漏磁现象并抑制转矩脉动,实现高功率密度和高效率。
进一步地,如图1、图2和图3所示,在冲片本体110的轴向端面上,多个永磁体槽130中相邻永磁体槽130之间具有极间中心线。永磁体槽130上设有相对的第一顶点和第二顶点,穿过轴孔120的中心的第一径向延伸线与第一顶点相交或相切,穿过轴孔120的中心的第二径向延伸线与第二顶点相交或相切,永磁体槽130位于第一径向延伸线和第二径向延伸线之间,其中,第一径向延伸线与第二径向延伸线之间的夹角β、相邻极间中心线之间的夹角α满足:0.9≤β/α≤0.98。
在该实施例中,在冲片本体110的轴向端面上,每个永磁体槽130的中心与轴孔120的圆心之间的连线即为磁极中心线,相邻两个磁极中心线的角分线即为极间中心线,相邻的极间中心线之间形成的夹角即为每个磁极所占的圆心角α,圆心角α表示了每个磁极所占冲片本体110的比例,α=360°/2P。
进一步地,永磁体槽130包括第一顶点和第二顶点,第一顶点和第二顶点位于永磁体槽130相对的两端,第一顶点与轴孔120的中心分别位于第一径向延伸线上,第二顶点与轴孔120的中心分别位于第二径向延伸线,第一径向延伸线和第二径向延伸线形成的夹角即为永磁体槽130对应的圆心角β,即永磁体槽130完全位于第一径向延伸线和第二径向延伸线形成的区域内,通过对每个磁极对应圆心角α和永磁体槽130对应圆心角β的比值限定,从而能够确定永磁体槽130在每个磁极内的相对位置,令永磁体槽130的位置排布更加合理化,进而有助于提升电机性能。
进一步地,如图1、图2和图3所示,多个永磁体槽130中相邻永磁体槽130之间的部分冲片本体110为磁肋112,其中,磁肋112的最小宽度W3满足:W2≤W3≤W1。
在该实施例中,位于相邻两个永磁体槽130之间的部分冲片本体110为磁肋112,磁肋112的具体形状与永磁体槽130的具体形状相关,磁肋112的宽度与隔磁桥111的宽度和永磁体段131的宽度相关联,令冲片本体110的外围处的各个位置布置更加合理化,从而有利于改善漏磁现象,改善电机输出转矩的品质,进而提升电机性能。
进一步地,如图1、图2和图3所示,永磁体段131包括相对的直槽壁1311和折弯槽壁1312,直槽壁1311相对于折弯槽壁1312远离轴孔120设置。
在该实施例中,永磁体段131包括直槽壁1311和折弯槽壁1312,直槽壁1311和折弯槽壁1312沿径向分布,其中,直槽壁1311相对于折弯槽壁1312远离轴孔120设置,即直槽壁1311靠外设置,折弯槽壁1312靠内设置,折弯槽壁1312具有折弯角度,永磁体与折弯槽壁1312接触时,会受到折弯槽壁1312的限制,进而确保永磁体在永磁体段131内的位置稳定性,直槽壁1311靠外设置,从而能够方便隔磁桥111的尺寸加工,降低转子冲片100的加工难度。
进一步地,如图5所示,在冲片本体110的轴向端面上,位于相邻的极间中心线之间的部分冲片本体110的外周沿包括外弧线,外弧线包括第一圆弧段113、第二圆弧段114和第三圆弧段115,第二圆弧段114分别与第一圆弧段113和第三圆弧段115相连,其中,第二圆弧段114所在圆的半径R2、冲片本体110的最大外径R1满足:0.3≤(R1-R2)/R1≤0.7。
在该实施例中,在冲片本体110的轴向端面上,位于相邻的极间中心线之间的部分冲片本体110的外周沿包括外弧线,也就是说,对于每个磁极而言,冲片本体110的外周沿上具有与磁极对应的外弧线,外弧线包括依次连接的第一圆弧段113、第二圆弧段114和第三圆弧段115,第二圆弧段114位于第一圆弧段113和第三圆弧段115之间,其中,第二圆弧段114所在圆的半径R3、冲片本体110的最大外径R1满足:0.3≤(R1-R2)/R1 ≤0.7。如图5所示,当(R1-R2)/R1的值处于上述范围内时,电机的转矩脉动处于较低水平,且随着(R1-R2)/R1的值的增长,转矩脉动还呈降低趋势。与此同时,电机的输出转矩处于平稳状态下,并未呈现出明显的波动起伏,也就是说,当(R1-R2)/R1的值处于一个合理范围内时,对电机的输出转矩不会造成影响的同时,会令转矩脉动处于较低水平,同时也能够有一定程度的降低,通过削弱转矩脉动,从而改善电机的噪声振动的情况,提升电机性能。
其中,值得说明的,永磁体槽130包括永磁体段131和两个隔磁段132,分别为第一隔磁段132a和第二隔磁段132b,分别连通在永磁体段131的两端,那么,沿周向方向,永磁体槽130和外弧线之间具有的对应关系为,第一隔磁段132a与第一圆弧段113对应,永磁体段131与第二圆弧段114对应,第二隔磁段132b与第三圆弧段115对应。那么隔磁桥111的数量即为两个,分别为第一圆弧段113形成的第一隔磁桥111a、第二圆弧段114形成的第二隔磁桥111b。当第一隔磁段132a和第二隔磁段132b结构相同,第一圆弧段113和第三圆弧段115曲率相同时,则第一隔磁桥111a与第二隔磁桥111b的结构相同,使得每个磁极为对称结构,易于生产过程的品质控制。
进一步地,如图1、图2和图3所示,第二圆弧段114对应的圆心角γ与相邻极间中心线之间的夹角α满足:0.6≤γ/α≤0.8。
在该实施例中,通过对每个磁极对应圆心角α和第二圆弧段114对应的圆心角γ的比值限定,从而能够冲片本体110的外周圆的大致形状,对于每个磁极对应的外周沿的曲率分布进行合理化设计,使得令冲片本体110的结构更加合理化,进而有助于提升电机性能。
在本申请的一些实施例中,进一步地,转子冲片上还包括多个减重孔150,多个减重孔150设在冲片本体110上,多个减重孔150分别位于冲片本体110的磁极中心线和/或极间中心线。
在该实施例中,对于一个转子冲片100而言,其具有磁极中心线和极间中心线,其中,永磁体槽130的中心与轴孔120的中心连线构成磁极中心线,简称d轴,相邻两个磁极中心线的角平分线为极间中心线,极间中 心线也称为相邻磁极中心线,简称q轴。多个减重孔150分别设在冲片本体110的磁极中心线和/或极间中心线上。在确保电机性能不受影响的前提下,减重孔150的设置能够降低转动惯量,减轻电机的整体重量。
其中,减重孔150的数量为多个,多个减重孔150均设在磁极中心线上,或者,多个减重孔150均设在极间中心线上,或者,多个减重孔150中一部分数量的减重孔150位于磁极中心线上,多个减重孔150中另一部分数量的减重孔150位于极间中心线上。
可以想到地,对于冲片本体110而言,磁极中心线的数量和极间中心线的数量均为多个。一条磁极中心线上可以设置一个减重孔150,或者一条磁极中心线上设置多个相对独立的减重孔150。但是对于一个减重孔150而言,其仅会位于磁极中心线或极间中心线中的一者上,不存在一个减重孔150同时位于磁极中心线和极间中心线上的情况。
进一步地,如图1、图2和图3所示,减重孔150位于永磁体槽130和轴孔120之间,其中,减重孔150和永磁体槽130之间的最小距离W4、减重孔150和轴孔120之间的最小距离W5满足:0.8≤W4/W5≤1.2。
在该实施例中,减重孔150开设在永磁体槽130和轴孔120之间,减重孔150相对于永磁体槽130、轴孔120独立设置,减重孔150的中心、永磁体槽130的中心和轴孔120的中心均位于磁极中心线上。其中,减重孔150和永磁体槽130之间的最小距离W4、减重孔150和轴孔120之间的最小距离W5满足:0.8≤W4/W5≤1.2,通过令减重孔150的位置选择合理,在降低转动惯量,减轻电机重量的同时,还不会影响到电机的性能。
进一步地,如图6所示,减重孔150和永磁体槽130之间的最小距离W4、减重孔150和轴孔120之间的最小距离W5、冲片本体110的最大半径R1、轴孔120的半径R3满足:0.4≤(W4+W5)/(R1-R3)≤0.6。
在该实施例中,减重孔150和永磁体槽130之间的最小距离为W4,减重孔150和轴孔120之间的最小距离为W5,冲片本体110的最大半径为R1,轴孔120的半径为R3,四者的尺寸关系满足上述关系,从而可以实现在降低转动惯量、减轻电机重量的同时,不会对电机的性能造成影响。如图6所示,当(W4+W5)/(R1-R3)的值处于上述范围内时,电机的转动 惯量处于较低水平,随着(W4+W5)/(R1-R3)的增加,转动惯量的增加比例较低,即在上述范围内,电机的转动惯量能够平稳处于较低水平。
进一步地,如图1、图2和图3所示,减重孔150包括弧形孔壁,弧形孔壁包括位于轴向端面上的圆弧线,圆弧线所在圆的半径R4和冲片本体110的最大半径R1满足:0.05≤R4/R1≤0.3。
在该实施例中,减重孔150包括至少一个弧形孔壁,弧形孔壁在垂直于轴向的轴向端面上具有圆弧线,圆弧线所在圆的半径R4和冲片本体110的最大半径R1满足上述关系式,从而令减重孔150的形状与冲片本体110相关联,令减重孔150的尺寸、形状选择更加合理,进而优化转子冲片100的整体结构排布,有助于提升电机性能。
进一步地,如图1、图2和图3所示,减重孔150上设有相对的第三顶点和第四顶点,穿过轴孔120的中心的第三径向延伸线与第三顶点相交或相切,穿过轴孔120的中心的第四径向延伸线与第四顶点相交或相切,减重孔150位于第三径向延伸线和第四径向延伸线之间,其中,第三径向延伸线与第四径向延伸线之间的夹角θ与相邻极间中心线之间的夹角α满足:0.6≤θ/α≤0.8。
在该实施例中,减重孔150包括第三顶点和第四顶点,第三顶点和第四顶点位于减重孔150相对的两端,第三顶点与轴孔120的中心分别位于第三径向延伸线上,第四顶点与轴孔120的中心分别位于第四径向延伸线,第三径向延伸线和第四径向延伸线形成的夹角即为减重孔150对应的圆心角θ,即减重孔150完全位于第三径向延伸线和第四径向延伸线形成的区域内,通过对每个磁极对应圆心角α和减重孔150对应圆心角θ的比值限定,从而能够确定减重孔150在每个磁极内的相对位置,令减重孔150的位置排布更加合理化,进而有助于提升电机性能。
进一步地,如图1、图7、图8、图9和图10所示,减重孔150的数量为4、6、8、12、16或20。
在该实施例中,减重孔150的数量为4。或者,减重孔150的数量为6。或者,减重孔150的数量为8。或者,减重孔150的数量为12。或者,减重孔150的数量为16。或者,减重孔150的数量为20。无论减重孔150的 数量是多少,减重孔150都需要设置在极间中心线和/或磁极中心线上。
比如,当减重孔150的数量为16时,则减重孔150包括8个第一减重孔和8个第二减重孔,8个第一减重孔沿周向间隔排布,每个第一减重孔位于每个磁极的磁极中心线上,8个第二减重孔沿周向间隔排布,可以设在第一减重孔的外侧或内侧,一个第二减重孔位于一个极间中心线上。其中,第一减重孔的开孔面积与第二减重孔的开孔面积不同,比如,当第一减重孔相对于第二减重孔远离轴孔120设置时,则第一减重孔的开孔面积大于第二减重孔的开孔面积。
需要说明的是,第一减重孔的形状与第二减重孔的形状可以相同也可以不相同。
在本申请的一些实施例中,进一步地,转子冲片100还包括铆扣部140,铆扣部140设在冲片本体110上,铆扣部140位于冲片本体110的磁极中心线或极间中心线上。
在该实施例中,每个冲片本体110上还设有铆扣部140,多个转子冲片100沿轴向堆叠以构成转子铁芯,相邻转子冲片100上的铆扣部140能够相配配合以使得多个转子冲片100在轴向上相互连接,从而形成转子铁芯整体。减重孔150和铆扣部140相对独立开设在冲片本体110上,互不干扰。减重孔150设在磁极中心线和/或极间中心线上。本申请通过在冲片本体110上设置铆扣部140和减重孔150,同时令铆扣部140和减重孔150的设置位置,与磁极中心线和极间中心线的位置相互关联,从而能够在提高电机性能的基础上提升电机输出转矩的品质,改善漏磁现象并抑制转矩脉动,实现高功率密度和高效率,降低转动惯量和减轻电机重量。
其中,需要说明的是,对于冲片本体110而言,磁极中心线的数量和极间中心线的数量均为多个。铆扣部140的数量为多个,一个铆扣部140对应地设在一个磁极中心线或一个极间中心线上。
进一步地,如图1、图7、图8、图9和图10所示,铆扣部140的数量为永磁体槽130的数量的一半;或,铆扣部140的数量与永磁体槽130的数量相等。
在该实施例中,铆扣部140的数量与永磁体槽130的数量相关,铆扣 部140的数量可以为永磁体槽130数量的一半,或者是,铆扣部140的数量与永磁体槽130的数量相等。其中,当永磁体槽130的数量为8时,则铆扣部140的数量可以为4、8。无论铆扣部140的数量与永磁体槽130的数量是倍数关系还是相等的关系,铆扣部140都需要设置在极间中心线和/或磁极中心线上。
当多个减重孔150和多个铆扣部140设在冲片本体110上,减重孔150和铆扣部140均需要遵循排布在极间中心线、磁极中心线上原则,减重孔150和铆扣部140相对独立,各自形成自有的合理排布位置。
进一步地,如图1、图7、图8、图9和图10所示,在铆扣部140的数量和减重孔150的数量相等的情况下,减重孔150和铆扣部140沿圆周方向交替设置。
在该实施例中,在铆扣部140的数量和减重孔150的数量相等时,比如二者的数量均为永磁体槽130数量的一半,或者,二者的数量与永磁体槽130的数量相同时,则二者的排布遵循交替间隔排布。具体而言,当铆扣部140的数量和减重孔150的数量均为4个时,则4个铆扣部140和4个减重孔150间隔交替排布设置,4个铆扣部140的中心和4个减重孔150的中心位于同一圆内。当铆扣部140的数量和减重孔150的数量均为8个时,减重孔150和铆扣部140中的一者位于磁极中心线上,减重孔150和铆扣部140中的另一者位于极间中心线上,二者分别沿周向设置形成不同半径的同心圆。其中,减重孔150相对铆扣部140而言靠近轴孔120设置,这是由于在转子冲片100高转速旋转过程中,转子冲片100的外围受到的离心力较大,令铆扣部140靠外设置,能够更好地保证转子冲片100不发生变形,提升结构的可靠性。
根据本申请的第二个方面的实施例,提供了一种转子,包括上述任一设计所提供的转子冲片100。
本申请提供的转子,包括上述任一设计所提供的转子冲片100,因此具有该转子冲片100的全部有益效果,在此不再赘述。
其中,转子冲片100的数量为多个,多个转子冲片100沿轴向堆叠以形成转子铁芯,多个转子冲片100的永磁体槽130沿轴向贯通构成磁槽, 永磁体穿设于磁槽内。
根据本申请的第三个方面的实施例,提供了一种电机,包括上述任一设计所提供的转子。
本申请提供的电机,包括上述任一设计所提供的转子,因此具有该转子的全部有益效果,在此不再赘述。
值得说明的是,电机为永磁电机。
根据本申请的第四个方面的实施例,如图11所示,提供了一种电动助力转向系统200,包括上述任一设计所提供的电机。
本申请提供的电动助力转向系统200,包括上述任一设计所提供的电机,因此具有该电机的全部有益效果,在此不再赘述。
需要说明的是,电动助力转向系统200(Electric Power Steering,缩写EPS)是一种直接依靠电机提供辅助扭矩的动力转向系统,与传统的液压助力转向系统HPS(Hydraulic Power Steering)相比,EPS系统的结构简单,装配灵活,既能节省能源,又能保护环境,现代车辆大多数的车型基本都配备了EPS系统。
具体地,本实施方式的EPS系统具有转向系统和生成辅助扭矩的辅助扭矩机构。EPS系统生成辅助扭矩,该辅助扭矩对通过驾驶员操作方向盘而产生的转向系统的转向扭矩进行辅助。通过辅助扭矩,减轻了驾驶员的操作的负担。
其中,转向系统具体包括方向盘211、转向轴212、万向联轴器213、旋转轴214、齿条齿轮机构215、齿条轴216以及左右的转向车轮217等。
其中,辅助扭矩机构具体包括具有转向扭矩传感器221、汽车用电子控制单元(ECU)222、电机以及减速机构223等。具体地,转向扭矩传感器221检测转向系统的转向扭矩。控制单元222根据转向扭矩传感器221的检测信号而生成驱动信号。电机根据驱动信号而生成与转向扭矩对应的辅助扭矩。电机经由减速机构223将所生成的辅助扭矩传递给转向系统。
根据本申请的第五个方面的实施例,提供了一种车辆,包括上述任一设计所提供的转子冲片100、转子、电机或电动助力转向系统。
本申请提供的车辆,包括上述任一设计所提供的转子冲片100、转子、 电机或电动助力转向系统,因此具有该转子冲片100、转子、电机或电动助力转向系统的全部有益效果,在此不再赘述。
需要说明的是,车辆可以为传统的燃油车,也可以为新能源汽车。其中,新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车等。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (19)
- 一种转子冲片,其中,包括:冲片本体,所述冲片本体上设有轴孔;多个永磁体槽,围绕所述轴孔间隔设置在所述冲片本体上;多个所述永磁体槽中每个永磁体槽包括相互连通的永磁体段和隔磁段,所述永磁体段用于容置所述转子的永磁体,位于所述隔磁段与所述冲片本体的外周沿之间的部分冲片本体为隔磁桥,其中,所述永磁体段的宽度W1、所述隔磁桥的宽度W2和极对数P满足:0.5≤(W2×P/W1)≤0.9。
- 根据权利要求1所述的转子冲片,其中,在所述冲片本体的轴向端面上,多个所述永磁体槽中相邻永磁体槽之间具有极间中心线;所述永磁体槽上设有相对的第一顶点和第二顶点,穿过所述轴孔的中心的第一径向延伸线与所述第一顶点相交或相切,穿过所述轴孔的中心的第二径向延伸线与所述第二顶点相交或相切,所述永磁体槽位于所述第一径向延伸线和所述第二径向延伸线之间,其中,相邻所述极间中心线之间的夹角α、所述第一径向延伸线与所述第二径向延伸线之间的夹角β满足:0.9≤β/α≤0.98。
- 根据权利要求2所述的转子冲片,其中,多个所述永磁体槽中相邻永磁体槽之间的部分冲片本体为磁肋,其中,所述磁肋的最小宽度W3满足:W2≤W3≤W1。
- 根据权利要求2所述的转子冲片,其中,所述永磁体段包括相对的直槽壁和折弯槽壁,所述直槽壁相对于所述折弯槽壁远离所述轴孔设置。
- 根据权利要求2所述的转子冲片,其中,在所述冲片本体的轴向端面上,位于相邻的极间中心线之间的部分冲片本体的外周沿包括外弧线,所述外弧线包括第一圆弧段、第二圆弧段和第三圆弧段,所述第二圆弧段分别与所述第一圆弧段和所述第三圆弧段相 连,其中,所述冲片本体的最大外径R1、所述第二圆弧段所在圆的半径R2满足:0.3≤(R1-R2)/R1≤0.7。
- 根据权利要求5所述的转子冲片,其中,所述第二圆弧段对应的圆心角γ与相邻所述极间中心线之间的夹角α满足:0.6≤γ/α≤0.8。
- 根据权利要求1至6中任一项所述的转子冲片,其中,所述转子冲片还包括:多个减重孔,设在所述冲片本体上,多个所述减重孔分别位于所述冲片本体的磁极中心线和/或极间中心线上。
- 根据权利要求7所述的转子冲片,其中,所述减重孔位于所述永磁体槽和所述轴孔之间,其中,所述减重孔和所述永磁体槽之间的最小距离W4、所述减重孔和所述轴孔之间的最小距离W5、所述冲片本体的最大半径R1、所述轴孔的半径R3满足:0.4≤(W4+W5)/(R1-R3)≤0.6。
- 根据权利要求8所述的转子冲片,其中,所述减重孔和所述永磁体槽之间的最小距离W4、所述减重孔和所述轴孔之间的最小距离W5满足:0.8≤W4/W5≤1.2。
- 根据权利要求8所述的转子冲片,其中,所述减重孔包括弧形孔壁,所述弧形孔壁包括位于轴向端面上的圆弧线,所述圆弧线所在圆的半径R4和所述冲片本体的最大半径R1满足:0.05≤R4/R1≤0.3。
- 根据权利要求8所述的转子冲片,其中,所述减重孔上设有相对的第三顶点和第四顶点,穿过所述轴孔的中心的第三径向延伸线与所述第三顶点相交或相切,穿过所述轴孔的中心的第四径向延伸线与所述第四顶点相交或相切,所述减重孔位于所述第三径向延伸线和所述第四径向延伸线之间,其中,所述第三径向延伸线与所述第四径向延伸线之间的夹角θ与相邻所述极间中心线之间的夹角α满足:0.6≤θ/α≤0.8。
- 根据权利要求7所述的转子冲片,其中,所述减重孔的数量为4、6、8、12、16或20。
- 根据权利要求8至12中任一项所述的转子冲片,其中,所述转子冲片还包括:铆扣部,设在所述冲片本体上,所述铆扣部位于所述磁极中心线或所述极间中心线上。
- 根据权利要求13所述的转子冲片,其中,所述铆扣部的数量为所述永磁体槽的数量的一半;或所述铆扣部的数量与所述永磁体槽的数量相等。
- 根据权利要求13所述的转子冲片,其中,在所述铆扣部的数量和所述减重孔的数量相等的情况下,所述减重孔和所述铆扣部沿圆周方向交替设置。
- 一种转子,其中,包括:如权利要求1至15中任一项所述的转子冲片。
- 一种电机,其中,包括:如权利要求16所述的转子。
- 一种电动助力转向系统,其中,包括:如权利要求17所述的电机。
- 一种车辆,其中,包括:如权利要求1至15中任一项所述的转子冲片;或如权利要求16所述的转子;或如权利要求17所述的电机;或如权利要求18所述的电动助力转向系统。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111491567.XA CN116247841A (zh) | 2021-12-08 | 2021-12-08 | 转子冲片、转子、电机、电动助力转向系统和车辆 |
CN202111491567.X | 2021-12-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023103225A1 true WO2023103225A1 (zh) | 2023-06-15 |
Family
ID=86631824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/082603 WO2023103225A1 (zh) | 2021-12-08 | 2022-03-23 | 转子冲片、转子、电机、电动助力转向系统和车辆 |
Country Status (2)
Country | Link |
---|---|
CN (4) | CN116247841A (zh) |
WO (1) | WO2023103225A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118432392A (zh) * | 2024-07-05 | 2024-08-02 | 珠海格力电器股份有限公司 | 永磁同步转子冲片、永磁同步转子和永磁同步电机 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101213720A (zh) * | 2005-06-30 | 2008-07-02 | 斯佩尔汽车有限公司 | 电机的转子 |
JP2009296685A (ja) * | 2008-06-02 | 2009-12-17 | Denso Corp | ロータ |
CN105186816A (zh) * | 2015-07-16 | 2015-12-23 | 博格思众(常州)电机电器有限公司 | 定子和转子的组合结构 |
CN110022044A (zh) * | 2019-04-30 | 2019-07-16 | 浙江博阳压缩机有限公司 | 车载空调压缩机用低转矩波动永磁同步电机 |
CN111756138A (zh) * | 2020-06-12 | 2020-10-09 | 浙江乐歌智能驱动科技有限公司 | 无刷直流电机 |
CN112350473A (zh) * | 2019-08-07 | 2021-02-09 | 安徽威灵汽车部件有限公司 | 转子冲片、转子铁芯、转子、电机及车辆 |
-
2021
- 2021-12-08 CN CN202111491567.XA patent/CN116247841A/zh active Pending
- 2021-12-08 CN CN202310563609.9A patent/CN116488371A/zh active Pending
- 2021-12-08 CN CN202310563617.3A patent/CN116488372A/zh active Pending
- 2021-12-08 CN CN202310563567.9A patent/CN116488370A/zh active Pending
-
2022
- 2022-03-23 WO PCT/CN2022/082603 patent/WO2023103225A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101213720A (zh) * | 2005-06-30 | 2008-07-02 | 斯佩尔汽车有限公司 | 电机的转子 |
JP2009296685A (ja) * | 2008-06-02 | 2009-12-17 | Denso Corp | ロータ |
CN105186816A (zh) * | 2015-07-16 | 2015-12-23 | 博格思众(常州)电机电器有限公司 | 定子和转子的组合结构 |
CN110022044A (zh) * | 2019-04-30 | 2019-07-16 | 浙江博阳压缩机有限公司 | 车载空调压缩机用低转矩波动永磁同步电机 |
CN112350473A (zh) * | 2019-08-07 | 2021-02-09 | 安徽威灵汽车部件有限公司 | 转子冲片、转子铁芯、转子、电机及车辆 |
CN111756138A (zh) * | 2020-06-12 | 2020-10-09 | 浙江乐歌智能驱动科技有限公司 | 无刷直流电机 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118432392A (zh) * | 2024-07-05 | 2024-08-02 | 珠海格力电器股份有限公司 | 永磁同步转子冲片、永磁同步转子和永磁同步电机 |
Also Published As
Publication number | Publication date |
---|---|
CN116488372A (zh) | 2023-07-25 |
CN116488371A (zh) | 2023-07-25 |
CN116247841A (zh) | 2023-06-09 |
CN116488370A (zh) | 2023-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2538523B1 (en) | Rotor and dynamo-electric machine using the rotor | |
EP2579429B1 (en) | Rotary electric machine, and stator for rotary electric machine | |
WO2023103225A1 (zh) | 转子冲片、转子、电机、电动助力转向系统和车辆 | |
CN113224878A (zh) | 一种驱动电机和电动汽车 | |
CN110729827B (zh) | 一种硅钢定子铁芯、定子及电机 | |
CN115378158A (zh) | 电机 | |
US20240120784A1 (en) | Rotor, motor, powertrain, and vehicle | |
CN116470674A (zh) | 转子冲片及电机 | |
CN215071849U (zh) | 一种新能源汽车电机转子冲片 | |
CN113659746A (zh) | 一种转子冲片组、转子铁芯、转子和电机 | |
JP4962280B2 (ja) | 回転電機 | |
CN219875238U (zh) | 转子组件、电机、电动助力转向系统和车辆 | |
CN111082567A (zh) | 一种电机转子及永磁同步电动机 | |
WO2023137862A1 (zh) | 转子冲片、转子、电机、泵和车辆 | |
JP7379196B2 (ja) | 回転電機のロータ | |
CN221177390U (zh) | 带凸起转子冲片、电机转子、电机及动力总成 | |
KR102167732B1 (ko) | 스테이터 코어 및 이를 포함하는 모터 | |
US20240154477A1 (en) | Rotor, permanent magnet motor and powertrain | |
CN221305581U (zh) | 切向电机转子结构和电机 | |
CN218867999U (zh) | 转子冲片、转子铁芯、转子、电机、压缩机和车辆 | |
WO2023103224A1 (zh) | 电机、电动助力转向系统和车辆 | |
WO2024021887A1 (zh) | 转子冲片、转子铁芯、转子、电机和车辆 | |
CN212935592U (zh) | 用于车辆的电机和车辆 | |
CN219107154U (zh) | 一种专用于电动三轮车的永磁同步电机转子 | |
CN212304929U (zh) | 转子冲片、转子铁芯、电机和压缩机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22902667 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |