WO2023103205A1 - 一种软件联合自动驾驶系统仿真方法 - Google Patents
一种软件联合自动驾驶系统仿真方法 Download PDFInfo
- Publication number
- WO2023103205A1 WO2023103205A1 PCT/CN2022/081159 CN2022081159W WO2023103205A1 WO 2023103205 A1 WO2023103205 A1 WO 2023103205A1 CN 2022081159 W CN2022081159 W CN 2022081159W WO 2023103205 A1 WO2023103205 A1 WO 2023103205A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- software
- automatic driving
- information
- module
- Prior art date
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000006870 function Effects 0.000 claims abstract description 23
- 238000012360 testing method Methods 0.000 claims abstract description 13
- 238000012800 visualization Methods 0.000 claims abstract description 12
- 230000008447 perception Effects 0.000 claims description 20
- 230000008859 change Effects 0.000 claims description 9
- 230000006399 behavior Effects 0.000 claims description 8
- 230000000007 visual effect Effects 0.000 claims description 5
- 230000008676 import Effects 0.000 claims description 3
- 206010034719 Personality change Diseases 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005094 computer simulation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Definitions
- the invention belongs to the technical field of automatic driving simulation and system simulation, and in particular relates to a method for simulating a software-integrated automatic driving system.
- the simulation test is to reconstruct the scene and road information required for automatic driving through the computer simulation system to simulate the driving situation of the automatic driving vehicle.
- the simulation test does not require real vehicles to be tested on actual roads, it can reduce research and development costs and eliminate potential safety hazards, and at the same time, a large amount of training data can be obtained through computer simulation.
- the invention aims to solve the problem that the actual traffic flow has no interaction with the automatic driving vehicle and the random traffic flow has no regularity in the current automatic driving simulation system.
- the present invention provides a simulation method for a software-integrated automatic driving system.
- the automatic driving simulation method uses the following software:
- PTV-Vissim software is used to provide traffic flow generated by different driving behaviors in different scenarios.
- Simulink software is a visual simulation tool in MATLAB launched by Mathworks in the United States.
- the software is used to realize the simulation of vehicle automatic driving functions, including perception and environment modules, path planning and control modules, vehicle dynamics modules and visualization modules, perception and environment
- the module is used to provide scenario use cases of different test functions
- the path planning and control module is used to realize the path planning and control of the autonomous vehicle
- the vehicle dynamics module is used to complete the position and attitude change of the autonomous vehicle
- the visualization module is used to realize the automatic driving Visual display of vehicle path planning and control.
- the perception and environment module of Simulink software establishes a communication connection with PTV-Vissim software.
- the simulation method of the software joint automatic driving system disclosed by the present invention includes the following steps:
- S1 traffic flow generation According to different simulation requirements, use Vissim software to generate corresponding traffic flow vehicle information;
- S2 vehicle simulation import the traffic flow vehicle information into the non-autonomous driving vehicle of the Simulink software perception and environment module;
- Simulink software builds different planning and control module functions according to the functional requirements of autonomous vehicles, and realizes automatic driving in virtual scenes;
- the vehicle dynamics module realizes the position and posture change of the vehicle according to the vehicle behavior decision generated by the planning and control module;
- the visualization module displays the current road and vehicle information in real time according to the simulation system.
- the simulation requirements include driving behaviors in different situations, which are determined according to different functions of the current automatic driving simulation test vehicle.
- the described S2 step also include: according to the information of each moment of the traffic participant that Vissim software generates under different simulation situations, give the non-autonomous driving vehicle in the Simulink software perception and environment module.
- the information of the traffic participant includes the id, type, size, color, position, speed, and direction information of the traffic participant.
- the functional design of the planning and control module in Simulink is specifically designed according to the different functions currently tested by the vehicle, including at least one of high-speed lane change and intersection steering.
- S3 includes the following steps:
- the self-driving vehicle invokes the vehicle dynamics module according to the delivery decision realized by the path planning and control module, so as to update the position and posture of the self-driving vehicle.
- the position and attitude information of the vehicle changed by the vehicle dynamics module will be fed back to the Simulink software simulation perception and environment module through the internal interface of the Simulink software, and then transmitted to Vissim by the module through the external interface.
- the visual interface displays two parts, road information and vehicle movement information.
- the visualized content displays richer simulation scenes, including buildings and/or road signs, through the Unity 3D or Unreal engine.
- Fig. 1 is a structural module schematic diagram of the present invention
- Fig. 2 is the detailed emulation method of the present invention
- Fig. 3 is a detailed flowchart of the simulation method of the present invention.
- S1 traffic flow generation According to different simulation requirements, use Vissim software to generate corresponding traffic flow vehicle information; simulation requirements include driving behavior in different situations, determined according to different functions of the current autonomous driving simulation test vehicle.
- step S2 vehicle simulation import the traffic flow vehicle information generated in step S1 into the non-autonomous driving vehicle of the Simulink software perception and environment module;
- Simulink software builds different planning and control module functions according to the functional requirements of autonomous vehicles, and realizes automatic driving in virtual scenes; according to the traffic participants' traffic at each moment generated by Vissim software under different simulation conditions
- the information is assigned to the non-autonomous driving vehicle in the Simulink software perception and environment module.
- the traffic participant's information includes traffic participant's id, type, size, color, position, speed, direction information, etc.
- the functions of the planning and control module in Simulink are designed according to the different functions of the vehicle currently tested, including high-speed lane change and intersection steering.
- the planning and control module obtains traffic participant information, road and sensor information according to the Simulink software simulation perception and environment module, and locates the position of its own vehicle;
- the self-driving vehicle invokes the vehicle dynamics module according to the issued decision made by the path planning and control module to update the position and attitude of the self-driving vehicle.
- the vehicle dynamics module realizes the position and posture change of the vehicle according to the vehicle behavior decision-making produced by the planning and control module; the vehicle position and posture information changed by the vehicle dynamics module will be fed back to the Simulink software through the internal interface of the Simulink software The simulated perception and environment module is then transmitted to Vissim through the external interface.
- the visualization module displays the current road and vehicle information in real time according to the simulation system.
- the visual interface displays two parts, road information and vehicle movement information.
- the visualization content displays a richer simulation scene through the Unity 3D or Unreal engine, including buildings and road signs.
- the software joint automatic driving simulation method proposed by the present invention mainly uses Vissim traffic flow module, perception and environment module, planning and control module, vehicle dynamics module and visualization module.
- the data information of each module can be transmitted to each other, which ensures the accuracy of information transmission and feedback of each module.
- the automatic driving system simulation method of the software combination that the present invention proposes comprises the following steps:
- the Vissim software generates the position and attitude information of the vehicle under the traffic flow according to the autonomous driving road information of the perception and environment module;
- the vehicle dynamics module updates the position and attitude of the vehicle according to the information about the position and attitude of the self-driving vehicle issued by the planning and control module;
- the invention relates to an automatic driving system method combined with Vissim software and Simulink software, which realizes the transmission of data information inside and outside the software through internal and external interfaces.
- Automatic driving simulations in different scenarios require different traffic flows, and Vissim software is based on driving in different scenarios.
- Behavioral generation of vehicle traffic flow enables virtual simulation close to real driving scenarios and improves the accuracy and effectiveness of autonomous vehicle function testing.
- the word "preferred” means serving as an example, instance or illustration. Any aspect or design described herein as “preferred” is not necessarily to be construed as advantageous over other aspects or designs. Rather, use of the word “preferably” is intended to present concepts in a concrete manner.
- the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless otherwise specified or clear from context, "X employs A or B” is meant to naturally include either of the permutations. That is, if X employs A; X employs B; or X employs both A and B, then "X employs A or B" is satisfied in any of the foregoing instances.
- Each functional unit in the embodiment of the present invention may be integrated into one processing module, or each unit may physically exist separately, or multiple or more of the above units may be integrated into one module.
- the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
- the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like.
- Each of the above devices or systems may execute the storage method in the corresponding method embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Automation & Control Theory (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明属于自动驾驶仿真领域,公开了软件联合自动驾驶系统仿真方法,包括以下步骤:根据不同仿真需求,利用Vissim生成对应的交通流汽车信息;将交通流汽车信息导入到感知与环境模块的非自动驾驶车辆中;Simulink根据自动驾驶汽车的功能需求构建规划与控制模块功能,在虚拟场景中实现自动驾驶;汽车动力学模块根据规划与控制模块产生的汽车行为决策实现车辆的位置姿态改变;汽车动力学模块完成自动驾驶车辆位置姿态改变后将信息逐阶回传给感知与环境模块后,再通过外部接口传递给Vissim;可视化模块实时显示当前道路及车辆信息。本发明实现接近真实驾驶场景的虚拟仿真,提高了自动驾驶车辆功能测试的准确性和有效性。
Description
本发明属于自动驾驶仿真和系统仿真技术领域,尤其涉及一种软件联合自动驾驶系统仿真方法。
随着如雷达、相机等感知设备的发展,自动驾驶汽车也进入一个爆发的时期,自动驾驶系统的安全与稳定验证是自动驾驶技术研发的关键内容。
仿真测试即通过计算机仿真系统对自动驾驶所需的场景与道路等信息进行重构,模拟自动驾驶车辆的行驶情况。
鉴于仿真测试不需要真实车辆在实际道路上进行测试,能够降低研发成本、消除安全隐患,同时可以通过计算机仿真得到大量训练数据。
当下,交通参与者大多数是由事先采集的真实道路数据,仿真车辆与实际车流量没有交互作用,或者在仿真测试时随机生成,与真实的交通流有一定的差异,仿真结果的真实性也会低于实际情况。
发明内容
本发明旨在解决当前自动驾驶仿真系统中实际车流与自动驾驶车辆没有交互作用、随机交通流无规律性问题。
为了解决上述问题,提高自动驾驶仿真的真实,本发明提供了一种软件联合自动驾驶系统仿真方法,该自动驾驶仿真方法使用如下软件:
PTV-Vissim软件,用于提供不同场景下不同驾驶行为产生交通流的车辆驾驶行为。
Simulink软件是美国Mathworks公司推出的MATLAB中的一种可视化仿真工具,软件用于实现车辆自动驾驶功能仿真,包括感知与环境模块、路径 规划与控制模块、汽车动力学模块和可视化模块,感知与环境模块用于提供不同测试功能的场景用例,路径规划与控制模块用于实现自动驾驶车辆的路径规划与控制,汽车动力学模块用于完成自动驾驶车辆的位置姿态改变,可视化模块用于实现自动驾驶车辆实现路径规划与控制的直观展示。如图1所示,Simulink软件的感知与环境模块与PTV-Vissim软件建立通信连接。
如图2和图3所示,本发明公开的软件联合自动驾驶系统仿真方法,包括以下步骤:
S1交通流产生:根据不同仿真需求,利用Vissim软件生成对应的交通流汽车信息;
S2车辆仿真:将所述交通流汽车信息导入到Simulink软件感知与环境模块的非自动驾驶车辆中;
S3路径规划与控制:Simulink软件根据自动驾驶汽车的功能需求构建不同的规划与控制模块功能,在虚拟场景中实现自动驾驶;
S4车辆控制:汽车动力学模块根据所述规划与控制模块产生的汽车行为决策实现车辆的位置姿态改变;
S5信息反馈:所述汽车动力学模块完成自动驾驶车辆位置姿态改变后将信息逐阶回传给所述Simulink软件感知与环境模块后,再通过外部接口传递给Vissim软件;
S6自动驾驶仿真可视化:可视化模块根据本仿真系统实时显示当前道路及车辆信息。
进一步的,所述S1步骤中,所述仿真需求包括不同情况下驾驶行为,根据当前自动驾驶仿真测试车辆不同功能决定。
进一步的,所述S2步骤中,还包括:根据Vissim软件在不同仿真情况下 生成的交通参与者的每个时刻的信息赋给Simulink软件感知与环境模块中非自动驾驶车辆。
进一步的,所述交通参与者的信息包括交通参与者的id,类型,大小、颜色,位置,速度,方向信息。
进一步的,所述S3步骤中,Simulink中规划与控制模块的功能设计是根据车辆当前测试的不同功能进行具体设计的,至少包括高速变道、路口转向之一。
进一步的,所述S3包括如下步骤:
根据所述Simulink软件仿真感知与环境模块获取交通参与者信息、道路与传感器信息,对自身车辆位置进行定位;
自动驾驶车辆根据所述路径规划与控制模块实现的下发决策调用汽车动力学模块,实现自动驾驶车辆的位置姿态更新。
进一步的,经汽车动力学模块改变的汽车位置姿态信息会通过Simulink软件的内部接口,反馈给所述Simulink软件仿真感知与环境模块,再由该模块通过外部接口传输给Vissim。
进一步的,所述可视化界面显示两部分内容,道路信息及车辆运动信息。
进一步的,所述可视化内容通过Unity 3D或者Unreal引擎显示更丰富的仿真场景,包括建筑和/或道路标牌。
本发明的有益效果如下:
通过内外部接口实现数据信息在软件内与软件外的传输,不同场景下的自动驾驶仿真需要不同的交通流,Vissim软件生成基于不同场景下驾驶行为生成的车辆交通流,实现接近真实驾驶场景的虚拟仿真,提高了自动驾驶车辆功能测试的准确性和有效性。
图1是本发明的结构模块示意图;
图2是本发明的详细仿真方法;
图3是本发明的仿真方法详细流程图。
下面结合附图对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。
本发明采用的技术方案包括步骤如下:
S1交通流产生:根据不同仿真需求,利用Vissim软件生成对应的交通流汽车信息;仿真需求包括不同情况下驾驶行为,根据当前自动驾驶仿真测试车辆不同功能决定。
S2车辆仿真:将步骤S1中生成的交通流汽车信息导入到Simulink软件感知与环境模块的非自动驾驶车辆中;
S3路径规划与控制:Simulink软件根据自动驾驶汽车的功能需求构建不同的规划与控制模块功能,在虚拟场景中实现自动驾驶;根据Vissim软件在不同仿真情况下生成的交通参与者的每个时刻的信息赋给Simulink软件感知与环境模块中非自动驾驶车辆。交通参与者的信息包括交通参与者的id,类型,大小、颜色,位置,速度,方向信息等。Simulink中规划与控制模块的功能根据车辆当前测试的不同功能进行设计,包括高速变道、路口转向等。
规划与控制模块根据Simulink软件仿真感知与环境模块获取交通参与者信息、道路与传感器信息,对自身车辆位置进行定位;
自动驾驶车辆根据路径规划与控制模块实现的下发决策调用汽车动力学模块,实现自动驾驶车辆的位置姿态更新。
S4车辆控制:汽车动力学模块根据规划与控制模块产生的汽车行为决策实现车辆的位置姿态改变;经汽车动力学模块改变的汽车位置姿态信息会通过Simulink软件的内部接口,反馈给所述Simulink软件仿真感知与环境模块,再由该模块通过外部接口传输给Vissim。
S5信息反馈:所述汽车动力学模块完成自动驾驶车辆位置姿态改变后将信息逐阶回传给所述Simulink软件感知与环境模块后,再通过外部接口传递给Vissim软件;
S6自动驾驶仿真可视化:可视化模块根据本仿真系统实时显示当前道路及车辆信息。可视化界面显示两部分内容,道路信息及车辆运动信息。可视化内容通过Unity 3D或者Unreal引擎显示更丰富的仿真场景,包括建筑和道路标牌等。
实施例
为了使本发明的技术方案和有益效果更加清楚,以下结合实际例子,对本发明进行说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明提出的软件联合自动驾驶仿真方法主要使用Vissim交通流模块、感知与环境模块、规划与控制模块、汽车动力学模块及可视化模块。本发明中,各个模块的数据信息能够互相传输,保证了各模块的信息传输与反馈准确性。如图2和图3所示,本发明提出的软件联合的自动驾驶系统仿真方法,包括如下步骤:
S1:Vissim软件根据感知与环境模块的自动驾驶道路信息生成交通流下车辆的位置姿态信息;
S2:确定自动驾驶车辆id;
S3:根据规划与控制模块的自动驾驶仿真测试功能实现自动驾驶车辆的路径规划;
S4:汽车动力学模块根据规划与控制模块下发有关于自动驾驶车辆的位置姿态信息进行该车辆的位置姿态更新;
S5:将自动驾驶车辆的位置姿态信息通过软件间与外的内外部接口实现车辆位置姿态的反馈,如虚线箭头方向所示,指最后反馈的信息,但信息反馈路径按实心箭头方向传输;
S6:重复上述步骤S1-S5直至自动驾驶功能测试仿真完毕。
本发明的有益效果如下:
本发明涉及Vissim软件与Simulink软件联合自动驾驶系统方法,通过内外部接口实现数据信息在软件内与软件外的传输,不同场景下的自动驾驶仿真需要不同的交通流,Vissim软件基于不同场景下驾驶行为生成车辆交通流,实现接近真实驾驶场景的虚拟仿真,提高自动驾驶车辆功能测试的准确性和有效性。
本文所使用的词语“优选的”意指用作实例、示例或例证。本文描述为“优选的”任意方面或设计不必被解释为比其他方面或设计更有利。相反,词语“优选的”的使用旨在以具体方式提出概念。如本申请中所使用的术语“或”旨在意指包含的“或”而非排除的“或”。即,除非另外指定或从上下文中清楚,“X使用A或B”意指自然包括排列的任意一个。即,如果X使用A;X使用B;或X使用A和B二者,则“X使用A或B”在前述任一示例中得到满足。
而且,尽管已经相对于一个或实现方式示出并描述了本公开,但是本领域技术人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。本公开包括所有这样的修改和变型,并且仅由所附权利要求的范围限制。特 别地关于由上述组件(例如元件等)执行的各种功能,用于描述这样的组件的术语旨在对应于执行所述组件的指定功能(例如其在功能上是等价的)的任意组件(除非另外指示),即使在结构上与执行本文所示的本公开的示范性实现方式中的功能的公开结构不等同。此外,尽管本公开的特定特征已经相对于若干实现方式中的仅一个被公开,但是这种特征可以与如可以对给定或特定应用而言是期望和有利的其他实现方式的一个或其他特征组合。而且,就术语“包括”、“具有”、“含有”或其变形被用在具体实施方式或权利要求中而言,这样的术语旨在以与术语“包含”相似的方式包括。
本发明实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以多个或多个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。上述提到的存储介质可以是只读存储器,磁盘或光盘等。上述的各装置或系统,可以执行相应方法实施例中的存储方法。
综上所述,上述实施例为本发明的一种实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何背离本发明的精神实质与原理下所做的改变、修饰、代替、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (9)
- 一种软件联合自动驾驶系统仿真方法,其特征在于,包括以下步骤:S1交通流产生:根据不同仿真需求,利用Vissim软件生成对应的交通流汽车信息;S2车辆仿真:将所述交通流汽车信息导入到Simulink软件感知与环境模块的非自动驾驶车辆中;S3路径规划与控制:Simulink软件根据自动驾驶汽车的功能需求构建不同的规划与控制模块功能,在虚拟场景中实现自动驾驶;S4车辆控制:汽车动力学模块根据所述规划与控制模块产生的汽车行为决策实现车辆的位置姿态改变;S5信息反馈:所述汽车动力学模块完成自动驾驶车辆位置姿态改变后将信息逐阶回传给所述Simulink软件感知与环境模块后,再通过外部接口传递给Vissim软件;S6自动驾驶仿真可视化:可视化模块实时显示当前道路及车辆信息。
- 根据权利要求1所述的软件联合自动驾驶系统仿真方法,其特征在于,所述S1步骤中,所述仿真需求包括不同情况下驾驶行为,根据当前自动驾驶仿真测试车辆不同功能决定。
- 根据权利要求1所述的软件联合自动驾驶系统仿真方法,其特征在于,所述S2步骤中,还包括:根据Vissim软件在不同仿真情况下生成的交通参与者的每个时刻的信息赋给Simulink软件感知与环境模块中非自动驾驶车辆。
- 根据权利要求3所述的软件联合自动驾驶系统仿真方法,其特征在于,所述交通参与者的信息包括交通参与者的id,类型,大小、颜色,位置,速度,方向信息。
- 根据权利要求1所述的软件联合自动驾驶系统仿真方法,其特征在于,所述S3步骤中,Simulink中规划与控制模块的功能根据车辆当前测试的 不同功能进行设计,至少包括高速变道、路口转向之一。
- 根据权利要求3所述的软件联合自动驾驶系统仿真方法,其特征在于,所述S3包括如下步骤:根据所述Simulink软件仿真感知与环境模块获取交通参与者信息、道路与传感器信息,对自身车辆位置进行定位;自动驾驶车辆根据所述路径规划与控制模块实现的下发决策调用汽车动力学模块,实现自动驾驶车辆的位置姿态更新。
- 根据权利要求1所述的软件联合自动驾驶系统仿真方法,其特征在于,经汽车动力学模块改变的汽车位置姿态信息会通过Simulink软件的内部接口,反馈给所述Simulink软件仿真感知与环境模块,再由该模块通过外部接口传输给Vissim。
- 根据权利要求1所述的软件联合自动驾驶系统仿真方法,其特征在于,所述可视化界面显示两部分内容,道路信息及车辆运动信息。
- 根据权利要求8所述的软件联合自动驾驶系统仿真方法,其特征在于,所述可视化内容通过Unity 3D或者Unreal引擎显示更丰富的仿真场景,包括建筑和/或道路标牌。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111476381.7A CN114297827A (zh) | 2021-12-06 | 2021-12-06 | 一种软件联合自动驾驶系统仿真方法 |
CN202111476381.7 | 2021-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023103205A1 true WO2023103205A1 (zh) | 2023-06-15 |
Family
ID=80966397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/081159 WO2023103205A1 (zh) | 2021-12-06 | 2022-03-16 | 一种软件联合自动驾驶系统仿真方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114297827A (zh) |
WO (1) | WO2023103205A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117852246A (zh) * | 2023-11-27 | 2024-04-09 | 广州汽车集团股份有限公司 | 车辆动力学仿真方法、装置及电子设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107403038A (zh) * | 2017-07-05 | 2017-11-28 | 同济大学 | 一种智能汽车虚拟快速测试方法 |
CN109765803A (zh) * | 2019-01-24 | 2019-05-17 | 同济大学 | 一种自动驾驶汽车多icu共时空的硬件仿真测试系统及方法 |
CN110160804A (zh) * | 2019-05-31 | 2019-08-23 | 中国科学院深圳先进技术研究院 | 一种自动驾驶车辆的测试方法、装置及系统 |
US20210318691A1 (en) * | 2020-04-09 | 2021-10-14 | The Regents Of The University Of Michigan | Multi-range vehicle speed prediction using vehicle connectivity for enhanced energy efficiency of vehicles |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109213126B (zh) * | 2018-09-17 | 2020-05-19 | 安徽江淮汽车集团股份有限公司 | 自动驾驶汽车测试系统和方法 |
CN110785718B (zh) * | 2019-09-29 | 2021-11-02 | 驭势科技(北京)有限公司 | 一种车载自动驾驶测试系统及测试方法 |
CN112100856B (zh) * | 2020-09-17 | 2022-08-19 | 上汽大众汽车有限公司 | 一种基于多平台的自动驾驶联合仿真方法 |
-
2021
- 2021-12-06 CN CN202111476381.7A patent/CN114297827A/zh active Pending
-
2022
- 2022-03-16 WO PCT/CN2022/081159 patent/WO2023103205A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107403038A (zh) * | 2017-07-05 | 2017-11-28 | 同济大学 | 一种智能汽车虚拟快速测试方法 |
CN109765803A (zh) * | 2019-01-24 | 2019-05-17 | 同济大学 | 一种自动驾驶汽车多icu共时空的硬件仿真测试系统及方法 |
CN110160804A (zh) * | 2019-05-31 | 2019-08-23 | 中国科学院深圳先进技术研究院 | 一种自动驾驶车辆的测试方法、装置及系统 |
US20210318691A1 (en) * | 2020-04-09 | 2021-10-14 | The Regents Of The University Of Michigan | Multi-range vehicle speed prediction using vehicle connectivity for enhanced energy efficiency of vehicles |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117852246A (zh) * | 2023-11-27 | 2024-04-09 | 广州汽车集团股份有限公司 | 车辆动力学仿真方法、装置及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN114297827A (zh) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108319259A (zh) | 一种测试系统及测试方法 | |
Caird et al. | Twelve practical and useful questions about driving simulation | |
CN102982703B (zh) | 一种汽车驾驶仿真器与虚拟交通环境仿真系统的交互方法 | |
WO2020229841A1 (en) | A metaverse data fusion system | |
Zofka et al. | Testing and validating high level components for automated driving: simulation framework for traffic scenarios | |
CN108508881B (zh) | 自动驾驶控制策略调整方法、装置、设备及存储介质 | |
CN107991898A (zh) | 一种无人驾驶车辆模拟测试装置及电子设备 | |
Li et al. | Advanced scenario generation for calibration and verification of autonomous vehicles | |
CN109461342B (zh) | 一种用于无人驾驶机动车的教学系统及其教学方法 | |
US11740620B2 (en) | Operational testing of autonomous vehicles | |
Cremer et al. | Driving simulation: challenges for VR technology | |
Naumann et al. | Coincar-sim: An open-source simulation framework for cooperatively interacting automobiles | |
Wang et al. | Towards next generation of pedestrian and connected vehicle in-the-loop research: A digital twin co-simulation framework | |
Xu et al. | Analyzing the inconsistency in driving patterns between manual and autonomous modes under complex driving scenarios with a VR-enabled simulation platform | |
WO2023103205A1 (zh) | 一种软件联合自动驾驶系统仿真方法 | |
CN110930811B (zh) | 一种适用于无人驾驶决策学习和训练的系统 | |
Hsu et al. | Application of the environmental sensation learning vehicle simulation platform in virtual reality | |
Garzón et al. | An hybrid simulation tool for autonomous cars in very high traffic scenarios | |
Fouladinejad et al. | Modeling virtual driving environment for a driving simulator | |
AbdelHamed et al. | Simulation framework for development and testing of autonomous vehicles | |
Peintner et al. | Mixed reality environment for complex scenario testing | |
Elgharbawy et al. | A testing framework for predictive driving features with an electronic Horizon | |
Mohammadi et al. | SUMO2Unity: An Open-Source Traffic Co-Simulation Tool to Improve Road Safety | |
WO2022106829A1 (en) | Method of developing or training software-implemented agents or systems | |
Harada et al. | Designing a Car-Driver's Cognitive Process Model for considering Degree of Distraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22902649 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |