WO2023103201A1 - 一种非热处理高韧性压铸铝硅合金及其制备方法 - Google Patents

一种非热处理高韧性压铸铝硅合金及其制备方法 Download PDF

Info

Publication number
WO2023103201A1
WO2023103201A1 PCT/CN2022/080807 CN2022080807W WO2023103201A1 WO 2023103201 A1 WO2023103201 A1 WO 2023103201A1 CN 2022080807 W CN2022080807 W CN 2022080807W WO 2023103201 A1 WO2023103201 A1 WO 2023103201A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
aluminum
casting
silicon alloy
alloy
Prior art date
Application number
PCT/CN2022/080807
Other languages
English (en)
French (fr)
Inventor
王鑫
Original Assignee
申源创(上海)新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 申源创(上海)新材料科技有限公司 filed Critical 申源创(上海)新材料科技有限公司
Publication of WO2023103201A1 publication Critical patent/WO2023103201A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys

Definitions

  • the invention relates to the technical field of metal materials, in particular to a non-heat-treated high-toughness die-casting aluminum-silicon alloy and a preparation method thereof.
  • 1 ton of recycled aluminum can reduce the emission of about 11.5 tons of carbon dioxide in total.
  • the economic benefits of recycled aluminum are significant.
  • the production of primary aluminum involves bauxite mining, long-distance transportation, etc.
  • the production of alumina and thermal electrolytic aluminum consumes a lot of energy. Compared with the production of primary aluminum, the production cost of secondary aluminum is lower.
  • scrap aluminum With the rapid growth of the social holdings of scrap aluminum in my country and the continuous improvement of the recycling system of waste resources, the price of scrap aluminum is expected to drop further, and the cost advantage of recycled aluminum production over thermal electrolysis of primary aluminum will become more prominent; or use clean energy to electrolyze primary aluminum Aluminum, ie no carbon dioxide emissions, this clean energy includes hydropower, wind power or photovoltaic energy.
  • the automobile industry proposes that the large-scale one-piece body structure requires the tensile strength of the aluminum alloy die-casting to be greater than 180MPa, the yield strength to be greater than 120MPa, and the elongation to be greater than 10%.
  • traditional Al-Si alloys have good strength and good casting properties, they have poor plasticity and low elongation, and the material cannot meet the requirements of large-scale integral molded die-casting parts for automobiles.
  • the development of high-toughness aluminum alloys has received more and more attention.
  • the Silafont-36 alloy (patent publication number: US 6364970B1) developed by Rheinland, Germany, which stretches at room temperature The rate is not higher than 6%. After a long time of T7 heat treatment, the tensile strength is about 210Mpa, the yield strength is 140Mpa, and the elongation is 15%, which can meet the requirements of automotive structural parts. This process has low production efficiency and complex heat treatment process. Good control, high cost of heat treatment.
  • the non-heat treatment strengthened high-strength and high-toughness die-casting Al-Mg-Si alloy (patent publication number: CN 108754256A) developed by Shanghai Jiaotong University.
  • the alloy has excellent mechanical properties, but the Al-Mg-Si alloy has poor casting performance and high
  • the magnesium content is easy to oxidize and burn, and the aluminum liquid has high viscosity and high shrinkage rate, which has great erosion on the die-casting mold and reduces the life of the mold. It is not suitable for large body structural parts.
  • the non-heat-treated self-strengthening aluminum-silicon alloy (patent publication number: CN 104831129A) developed by Fengyang Aiersi and Shanghai Jiaotong University has a high degree of control over impurity elements and cannot be produced with waste aluminum, which cannot meet the future carbon requirements.
  • the demand group under the background of peak and carbon neutrality, and the elongation rate of castings under precision die casting is about 7.5%, which cannot meet the high toughness requirements for large body structural parts at this stage.
  • a high-strength and tough die-casting aluminum alloy (patent publication number: CN109881056A) developed by Shanghai Yongmaotai Auto Parts and Shanghai Jiaotong University. Although the alloy has good casting performance, the elongation of the alloy in the die-casting non-heat treatment state is only 7%.
  • the invention provides a non-heat-treated high-toughness die-casting aluminum-silicon alloy and a preparation method thereof, which reduce the carbon emission generated in the production process, and the elongation can reach 11%-16% without heat treatment.
  • the embodiment of the present invention provides a non-heat-treated high-toughness die-casting aluminum-silicon alloy. Based on the total weight of the alloy, the weight percentage of each component in the die-casting aluminum-silicon alloy is:
  • rare earth includes one or more of La/Ce/Sc; Ni: 0.001-0.1%; Zn: 0.005-0.1%; Ga: 0.01-0.03%; the total amount of other impurities should be Less than or equal to 0.2%, the balance is Al.
  • the weight percent of each component in the die-casting aluminum-silicon alloy is:
  • rare earth includes one or more of La/Ce/Sc; Ni: 0.001-0.1%; Zn: 0.005-0.1%; Ga: 0.01-0.03%; the total amount of other impurities should be Less than or equal to 0.2%, the balance is Al.
  • the weight percent of each component in the die-casting aluminum-silicon alloy is:
  • the rare earth includes at least one of La/Ce/Sc; Ni: 0.001-0.1%; Zn: 0.005-0.1%; Ga: 0.01-0.03%; the total amount of other impurities It should be less than or equal to 0.2%, and the balance is Al.
  • the weight percent of each component in the die-casting aluminum-silicon alloy is:
  • rare earth includes one or more of La/Ce/Sc; Ni: 0.001-0.1%; Zn: 0.005-0.1%; Ga: 0.01-0.03%; the total amount of other impurities should be Less than or equal to 0.2%, the balance is Al.
  • the weight percent of each component in the die-casting aluminum-silicon alloy is:
  • rare earth includes one or more of La/Ce/Sc; Ni: 0.001-0.1%; Zn: 0.005-0.1%; Ga: 0.01-0.03%; the total amount of other impurities should be Less than or equal to 0.2%, the balance is Al.
  • the tensile strength of the die-casting aluminum-silicon alloy is greater than or equal to 270Mpa, the yield strength is greater than or equal to 130Mpa, and the elongation is greater than or equal to 11%.
  • an embodiment of the present invention provides a process method for preparing the die-casting aluminum-silicon alloy, the method comprising:
  • it also includes die-casting the die-casting aluminum-silicon alloy, the die-casting temperature of the die-casting aluminum-silicon alloy is 680-720°C, the die-casting speed is 2.5-5m/s, the holding time is 2-10s, and then Die castings in a non-heat treated state are obtained.
  • it also includes stirring the aluminum alloy liquid evenly after each raw material is completely melted, and performing sampling analysis after standing still, and adjusting the content of the required elements to within the required composition range.
  • the refining agent used does not contain Na ions.
  • the invention provides a non-heat-treated high-toughness die-casting aluminum-silicon alloy and a preparation method thereof.
  • the aluminum alloy prepared by the present invention breaks the traditional die-casting aluminum alloy which requires T7 heat treatment to meet the requirements of automobile body structural parts, and can be produced with waste aluminum, reducing carbon emissions in the production process, and does not require heat treatment to achieve elongation Reach 11-16%.
  • Figure 1 shows the metallographic diagram of the microstructure of the die-casting aluminum alloy obtained in Example 2 of the present invention, wherein Figure (a) is a metallographic diagram of the microstructure of 100X; Figure (b) is a metallographic diagram of the microstructure of 500X;
  • Fig. 2 shows the fluidity test mold of the die-casting aluminum alloy that embodiment 2 obtains
  • Fig. 3 shows the tensile stress-strain curves of the die-casting aluminum alloys obtained in Example 2, Comparative Example 1 and Comparative Example 2
  • the disclosure provides a non-heat-treated high-toughness die-casting aluminum-silicon alloy and a preparation method thereof. Embodiments of the present disclosure will be described below with reference to the accompanying drawings.
  • the percentage by weight of each component of a low-carbon emission renewable non-heat-treated high-toughness die-casting aluminum-silicon alloy in this embodiment is: Mg: 0.2%; Si: 6.5%; Fe: 0.15%; Cu: 0.1%; Mn: 0.5%; Ti: 0.03%; Sr: 0.025%; La, Ce total: 0.05%; Ni: 0.005%; Zn: 0.006%; Ga: 0.015%; .
  • Furnace preparation clean the bottom of the furnace and start to bake until the furnace wall turns red; paint all the operating tools with graphite powder and then dry and preheat;
  • Furnace melting first put the metal Al ingot into the furnace for melting, the melting temperature is controlled at 760-790°C, after the aluminum ingot is completely melted, the temperature is raised at 760-780°C, and then industrial silicon and metal Fe are added , Al-Mn master alloy or metal Mn, metal Cu or Al-Cu master alloy, metal Ni, metal Zn and metal Ga for smelting;
  • Refining and slag removal Control the temperature of the aluminum alloy melt at 740-760°C for uniform stirring and add a special refining agent for aluminum alloys to perform a powder spraying refining and a second powder spraying refining, and the interval between the two refining is controlled at 50 -60min, remove the slag after each refining to remove the flux and scum on the liquid surface;
  • Casting or die-casting After the component analysis in front of the furnace is qualified, it is cast at the casting temperature into a finished ingot, or high-pressure casting is performed under the die-casting process to obtain a non-heat-treated die-casting.
  • the percentage by weight of each component of a low-carbon emission renewable non-heat-treated high-toughness die-casting aluminum-silicon alloy in this embodiment is: Mg: 0.3%; Si: 6.9%; Fe: 0.2%; Cu: 0.2%; Mn: 0.6%; Ti: 0.07%; Sr: 0.02%; La: 0.1%; Ni: 0.003%; Zn: 0.07%;
  • Furnace preparation clean the bottom of the furnace and start to bake until the furnace wall turns red; paint all the operating tools with graphite powder and then dry and preheat.
  • Furnace melting first put metal Al ingots or waste aluminum into the furnace for melting, the melting temperature is controlled at 760-790°C, after the aluminum ingots or waste aluminum are completely melted, the temperature is raised, and the temperature is controlled at 760-780°C, then Add industrial silicon, metal Fe, Al-Mn master alloy or metal Mn, metal Cu or Al-Cu master alloy, metal Ni, metal Zn and metal Ga for smelting;
  • Refining and slag removal Control the temperature of the aluminum alloy melt at 740-760°C for uniform stirring and add a special refining agent for aluminum alloys to perform a powder spraying refining and a second powder spraying refining, and the interval between the two refining is controlled at 50 ⁇ 60min, slag removal after each refining to remove flux and scum on the liquid surface.
  • Casting or die-casting After the component analysis in front of the furnace is qualified, it is cast at the casting temperature into a finished ingot, or high-pressure casting is performed under the die-casting process to obtain a non-heat-treated die-casting.
  • the percentage by weight of each component of a low-carbon emission renewable non-heat-treated high-toughness die-casting aluminum-silicon alloy in this embodiment is: Mg: 0.35%; Si: 7.5%; Fe: 0.25%; Cu: 0.3%; Mn: 0.7%; Ti: 0.15%; Sr: 0.03%; Ce: 0.08%; Ni: 0.08%; Zn: 0.09%;
  • Furnace preparation clean the bottom of the furnace and start to bake until the furnace wall turns red; paint all the operating tools with graphite powder and then dry and preheat.
  • Furnace melting first put metal Al ingots or waste aluminum into the furnace for melting, the melting temperature is controlled at 760-790°C, after the aluminum ingots or waste aluminum are completely melted, the temperature is raised, and the temperature is controlled at 760-780°C, then Add industrial silicon, metal Fe, Al-Mn master alloy or metal Mn, metal Cu or Al-Cu master alloy, metal Ni, metal Zn and metal Ga for smelting;
  • Refining and slag removal Control the temperature of the aluminum alloy melt at 740-760°C for uniform stirring and add a special refining agent for aluminum alloys to perform a powder spraying refining and a second powder spraying refining, and the interval between the two refining is controlled at 50 ⁇ 60min, slag removal after each refining to remove flux and scum on the liquid surface.
  • Casting or die-casting After the component analysis in front of the furnace is qualified, it is cast at the casting temperature into a finished ingot, or high-pressure casting is performed under the die-casting process to obtain a non-heat-treated die-casting.
  • the weight percentage of each component of a low-carbon emission renewable non-heat-treated high-toughness die-casting aluminum-silicon alloy in this embodiment is: Mg: 0.25%; Si: 7.8%; Fe: 0.35%; Cu: 0.4%; Mn: 0.8%; Ti: 0.2%; Sr: 0.035%; Sc: 0.15%; Ni: 0.02%; Zn: 0.08%;
  • Furnace preparation clean the bottom of the furnace and start to bake until the furnace wall turns red; paint all the operating tools with graphite powder and then dry and preheat.
  • Furnace melting first put metal Al ingots or waste aluminum into the furnace for melting, the melting temperature is controlled at 760-790°C, after the aluminum ingots or waste aluminum are completely melted, the temperature is raised, and the temperature is controlled at 760-780°C, then Add industrial silicon, metal Fe, Al-Mn master alloy or metal Mn, metal Cu or Al-Cu master alloy, metal Ni, metal Zn and metal Ga for smelting;
  • Refining and slag removal Control the temperature of the aluminum alloy melt at 740-760°C for uniform stirring and add a special refining agent for aluminum alloys to perform a powder spraying refining and a second powder spraying refining, and the interval between the two refining is controlled at 50 ⁇ 60min, slag removal after each refining to remove flux and scum on the liquid surface.
  • Casting or die-casting After the component analysis in front of the furnace is qualified, it is cast at the casting temperature into a finished ingot, or high-pressure casting is performed under the die-casting process to obtain a non-heat-treated die-casting.
  • the weight percent of each component of a low-carbon emission renewable non-heat-treated high-toughness die-casting aluminum-silicon alloy in this embodiment is: Mg: 0.15%; Si: 8.3%; Fe: 0.45%; Cu: 0.5%; Mn: 0.65%; Ti: 0.15%; Sr: 0.03%; La and Sc total: 0.2%; Ni: 0.08%; Zn: 0.01%; Ga: 0.018%; .
  • Furnace preparation clean the bottom of the furnace and start to bake until the furnace wall turns red; paint all the operating tools with graphite powder and then dry and preheat.
  • Furnace melting first put metal Al ingots or waste aluminum into the furnace for melting, the melting temperature is controlled at 760-790°C, after the aluminum ingots or waste aluminum are completely melted, the temperature is raised, and the temperature is controlled at 760-780°C, then Add industrial silicon, metal Fe, Al-Mn master alloy or metal Mn, metal Cu or Al-Cu master alloy, metal Ni, metal Zn and metal Ga for smelting;
  • Refining and slag removal Control the temperature of the aluminum alloy melt at 740-760°C for uniform stirring and add a special refining agent for aluminum alloys to perform a powder spraying refining and a second powder spraying refining, and the interval between the two refining is controlled at 50 ⁇ 60min, slag removal after each refining to remove flux and scum on the liquid surface.
  • Casting or die-casting After the component analysis in front of the furnace is qualified, it is cast at the casting temperature into a finished ingot, or high-pressure casting is performed under the die-casting process to obtain a non-heat-treated die-casting.
  • a low-carbon emission renewable non-heat-treated high-toughness die-casting aluminum-silicon alloy of this embodiment is prepared by recycling waste aluminum, and its preparation method includes the following steps:
  • Furnace preparation clean the bottom of the furnace and start to bake until the furnace wall turns red; paint all the operating tools with graphite powder and then dry and preheat.
  • Furnace smelting Add 40% metal Al ingots and 60% scrap aluminum to the furnace for smelting. Proportional to add. Heating, the temperature is controlled at 760-780°C, and then industrial silicon, metal Fe, Al-Mn master alloy or metal Mn, metal Cu or Al-Cu master alloy, metal Ni, metal Zn and metal Ga are added for smelting;
  • Refining and slag removal Control the temperature of the aluminum alloy melt with qualified composition at 740-760°C for uniform stirring, add a special refining agent for aluminum alloys to carry out the first powder spraying refining and the second powder spraying refining, and the interval between two refining It is controlled at 50-60 minutes, and the slag is removed after each refining to remove the flux and scum on the liquid surface.
  • the final weight percentage is: Mg: 0.25%; Si: 7.0%; Fe: 0.35%; Cu: 0.25%; Mn: 0.6%; Ti: 0.12%; Sr: 0.028%; La, Ce And the total amount of Sc: 0.2%; Ni: 0.005%; Zn: 0.06%; Ga: 0.02%; the remaining impurities are less than or equal to 0.2%, and the balance is aluminum.
  • the ingot is cast at the casting temperature, or the high-pressure casting is carried out under the die-casting process to obtain the die-casting parts in the non-heat treatment state.
  • a low-carbon emission renewable non-heat-treated high-toughness die-casting aluminum-silicon alloy of this embodiment is prepared by recycling waste aluminum, and its preparation method includes the following steps:
  • Furnace preparation clean the bottom of the furnace and start to bake until the furnace wall turns red; paint all the operating tools with graphite powder and then dry and preheat.
  • Furnace smelting Add 100% waste aluminum into the furnace for smelting, the melting temperature is controlled at 760-790°C, and sampling and analysis are carried out after all melting, and then other elements are added according to their respective proportions. Heating, the temperature is controlled at 760-780°C, and then industrial silicon, metal Fe, Al-Mn master alloy or metal Mn, metal Cu or Al-Cu master alloy, metal Ni, metal Zn and metal Ga are added for smelting;
  • Refining and slag removal Control the temperature of the aluminum alloy melt with qualified composition at 740-760°C for uniform stirring, add a special refining agent for aluminum alloys to carry out the first powder spraying refining and the second powder spraying refining, and the interval between two refining It is controlled at 50-60 minutes, and the slag is removed after each refining to remove the flux and scum on the liquid surface.
  • the final weight percentage is: Mg: 0.3%; Si: 7.7%; Fe: 0.15%; Cu: 0.3%; Mn: 0.7%; Ti: 0.15%; Sr: 0.035%; Ce: 0.08 %; Ni: 0.1%; Zn: 0.1%; Ga: 0.03%; the remaining impurities are less than or equal to 0.2%, and the balance is aluminum.
  • the ingot is cast at the casting temperature, or the high-pressure casting is carried out under the die-casting process to obtain the die-casting parts in the non-heat treatment state.
  • This comparative example is adjusted on the basis of the composition of Example 2. Compared with Example 2, Sr element is added less, and La element is not added.
  • the weight percentage of each component is: Si: 6.9%; Fe: 0.2%; Cu: 0.2%; Mn: 0.6%; Mg: 0.3%; Ti: 0.07%; Sr: 0.008%; Ni: 0.003%; Zn: 0.07%; Ga: 0.02%; The amount is aluminum.
  • a kind of preparation method of die-casting aluminum alloy of this comparative example comprises the following steps:
  • Furnace preparation clean the bottom of the furnace and start to bake until the furnace wall turns red; paint all the operating tools with graphite powder and then dry and preheat.
  • Furnace melting first put the metal Al ingot into the furnace for smelting, the melting temperature is controlled at 670-690°C, after the aluminum ingot is completely melted, the temperature is raised at 760-780°C, and then industrial Si and metal Fe are added , metal Cu, Al-Mn master alloy or metal Mn for smelting.
  • Refining and slag removal Control the temperature of the aluminum alloy melt with qualified composition at 740-760°C for uniform stirring, add a special refining agent for aluminum alloys to carry out the first powder spraying refining and the second powder spraying refining, and the interval between two refining It is controlled at 50-60 minutes, and the slag is removed after each refining to remove the flux and scum on the liquid surface.
  • Casting or die-casting After the component analysis in front of the furnace is qualified, it is cast at the casting temperature into a finished ingot, or high-pressure casting is performed under the die-casting process to obtain a non-heat-treated die-casting.
  • This comparative example is adjusted on the basis of the composition of Example 2. Compared with Example 2, more Sr elements are added, and La elements are not added.
  • the weight percentages of each component are: Si: 6.9%; Fe: 0.2%; Cu Mn: 0.2%; Mn: 0.6%; Mg: 0.3%; Ti: 0.07%; Sr: 0.05%; Ni: 0.003%; Zn: 0.07%; Ga: 0.02%; for aluminum.
  • the preparation method of this comparative example is the same as that of comparative example 1.
  • This comparative example is an adjustment based on the composition of Example 6. Compared with Example 6, this example does not add La, Ce, Sc, Zn, Ni and Ga elements, and the weight percentage of each component is: Si: 7.0%; Fe: 0.35%; Cu: 0.25%; Mn: 0.6%; Mg: 0.25%; Ti: 0.12%;
  • the preparation method of this comparative example is the same as that of comparative example 1.
  • This comparative example is an adjustment based on the composition of Example 6.
  • this example does not add La, Ce, and Sc elements, and the weight percentages of each component are: Si: 7.0%; Fe Cu: 0.25%; Mn: 0.6%; Mg: 0.25%; Ti: 0.12%; Sr: 0.028%; Ni: 0.06%; Zn: 0.005%; Ga: 0.02%; 0.2%, the balance is aluminum.
  • the preparation method of this comparative example is the same as that of comparative example 1.
  • This comparative example is adjusted on the basis of the composition of Example 6.
  • this example has added high-content La, Ce, and Sc elements, and the weight percentage of each component is: Si: 7.0% ; Fe: 0.35%; Cu: 0.25%; Mn: 0.6%; Mg: 0.25%; Ti: 0.12%; Sr: 0.028%; La: 0.2; 0.005%; Ga: 0.02%; the remaining impurities are less than or equal to 0.2%, and the balance is aluminum.
  • the preparation method of this comparative example is the same as that of comparative example 1.
  • This comparative example is adjusted on the basis of the composition of Example 6.
  • this example adds a high content of La element, and the weight percentage of each component is: Si: 7.0%; Fe: 0.35% ; Cu: 0.25%; Mn: 0.6%; Mg: 0.25%; Ti: 0.12%; Sr: 0.028%; La: 1.0; Ni: 0.06%; Zn: 0.005%; Ga: 0.02%; Equal to 0.2%, the balance being aluminum.
  • the preparation method of this comparative example is the same as that of comparative example 1.
  • This comparative example is adjusted on the basis of the composition of Example 6.
  • this example adds a high content of Sc element, and the weight percentage of each component is: Si: 7.0%; Fe: 0.35% ; Cu: 0.25%; Mn: 0.6%; Mg: 0.25%; Ti: 0.12%; Sr: 0.028%; Sc: 0.5; Ni: 0.06%; Zn: 0.005%; Ga: 0.02%; Equal to 0.2%, the balance being aluminum.
  • the preparation method of this comparative example is the same as that of comparative example 1.
  • This comparative example is adjusted on the basis of the composition of Example 6.
  • this example adds a high content of Sc element, and the weight percentage of each component is: Si: 7.0%; Fe: 0.35% ;Cu:0.25%;Mn:0.6%;Mg:0.25%;Ti:0.12%;Sr:0.028%;La:0.01;Sc:0.01;Ni:0.06%;Zn:0.005%;Ga:0.02%;Other
  • the impurity balance is less than or equal to 0.2%, and the balance is aluminum.
  • the preparation method of this comparative example is the same as that of comparative example 1.
  • Table 1 is the aluminum alloy composition of Examples 1-7 and Comparative Examples 1-8.
  • Table 2 shows the room temperature tensile mechanical properties and flow properties of aluminum alloy casting body samples obtained in Examples 1-7 and Comparative Examples 1-8 in the F state and at 180° C. for 30 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种非热处理高韧性压铸铝硅合金及其制备方法,该合金通过控制一定的Mn/Fe比例,可有效的抑制Fe元素带来的不利影响;并通过引入一定比例的稀土元素,可有效的细化材料中的Si,并能与Al、Cu等元素形成高温相,提高材料应用于压铸一体式大型结构件中的抗变形能力。该合金可在大型铸件本体取样的压铸态条件下达到:抗拉强度290Mpa,屈服强度140Mpa,延伸率13%;同时具备优良的压铸成型性能;所用能源为清洁能源,达到低碳排放标准。

Description

一种非热处理高韧性压铸铝硅合金及其制备方法
相关申请的交叉引用
本申请要求于2021年12月10日提交的,申请号为202111507879.5、发明名称为“一种非热处理高韧性压铸铝硅合金及其制备方法”的中国专利申请的优先权,该申请的全文通过引用结合在本申请中。
技术领域
本发明涉及金属材料技术领域,具体涉及一种非热处理高韧性压铸铝硅合金及其制备方法。
背景技术
随着碳达峰和碳中和政策的深入推进,碳排放指标不断调低,再生铝体现了能源消耗低的明显优势,而且摆脱了铝业“价随电涨”的依赖,将再生铝业作为主导产业更有利于铝业健康稳定和长期发展。再生铝碳排放显著低于火力电解原铝排放,1吨火力电解原铝排放约12吨二氧化碳,而生产1吨再生铝仅排放约300Kg二氧化碳,生产1吨再生铝节约3.4吨标准煤,节水14立方米,减少固体废物排放20吨。按1吨标准煤排放3吨二氧化碳计算,加上其他辅料的碳排放,1吨再生铝总共可减少约11.5吨二氧化碳排放量。同时,再生铝经济效益显著。原铝的生产涉及铝土矿的开采、长途运输等,氧化铝和火力电解铝生产能耗巨大,与原铝生产相比,再生铝的生产成本较低。随着我国废铝的社会保有量快速增长和废旧资源回收体系的不断健全,废铝价格有望进一步下降,再生铝生产相对于火力电解原铝的成本优势将更加突出;或用清洁能源来电解原铝,即无二氧化碳排放,此清洁能源包括水电,风电或光伏能源。
近年来新能源汽车的不断出现及发展,电池驱动的新能源汽车受动力电池重量、动力电池续航里程的制约以及汽车节能减排政策的高 压,在车辆设计和材料选用上,比传统汽车更迫切需要车身减重。铝合金作为轻量化材料之一,无论是应用技术还是运行安全性及循环再生利用都具有比较优势,所以铝合金在汽车行业中逐步代替钢铁,并采用压铸成型工艺来生产汽车零部件产品得到了广泛应用。
汽车和航空航天行业对零部件的要求严苛,要求材料在变形时具备优良的冲击韧性和高的延伸率。对此汽车行业提出大型一体式车身结构件要求其铝合金压铸件的抗拉强度大于180MPa,屈服强度大于120MPa,延伸率大于10%。传统的Al-Si系合金虽然具有较好的强度和良好的铸造性能,但其塑性较差,延伸率低,材料不能满足供汽车使用的大型一体式成型压铸件的要求。近年来,为满足汽车行业市场的需求,高韧性铝合金的开发得到越来越多的关注,例如,德国莱茵公司开发的Silafont-36合金(专利公开号:US 6364970B1),该合金室温下延伸率不高于6%,经过长时间的T7热处理后抗拉强度约为210Mpa,屈服强度140Mpa,延伸率15%,才能符合汽车结构件要求,此流程生产效率低,热处理工艺复杂,热处理过程不好管控,热处理成本很高。又如上海交通大学开发的非热处理强化高强高韧压铸Al-Mg-Si系合金(专利公开号:CN 108754256A),该合金力学性能较优异,但Al-Mg-Si合金铸造性能较差,高镁含量易氧化烧损,铝液粘稠度高,收缩率高,对压铸模具有很大的冲蚀,降低模具寿命,对于大型车身结构件并不适用。另外,凤阳爱尔思及上海交通大学开发的非热处理自强化铝硅合金(专利公开号:CN 104831129A),该合金对杂质元素控制较高,无法用废铝进行生产,不能满足未来碳达峰及碳中和背景下的需求组,且精密压铸下铸件延伸率约为7.5%,无法达到现阶段针对大型车身结构件的高韧性要求。例如,上海永茂泰汽车零部件及上海交通大学开发的一种高强韧压铸铝合金(专利公开号:CN109881056A),该合金虽然铸造性能好,但压铸非热处理态下合金延伸率仅为7%,也无法满足汽车结构件高韧性要求;又如苏州慧驰轻合金开发的一种高韧性压铸铝合金(专利公开号:CN 106636787A),该合金具有很好的铸造性能及强度,但对杂质元素含量要求小于0.005%,对杂质含量要求极高,也无法用添加废铝进行生产,且压铸件非热处 理态的延伸率仅能达到9.7%,无法满足压铸大型一体式结构件的高韧性要求。
发明内容
提供该发明内容部分以便以简要的形式介绍构思,这些构思将在后面的具体实施方式部分被详细描述。该发明内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。
本发明提供了一种非热处理高韧性压铸铝硅合金及其制备方法,降低了生产过程中产生的碳排放,且无需热处理延伸率即可达到11%-16%。
第一方面,本发明实施例提供了一种用非热处理高韧性压铸铝硅合金,以合金的总重量为基准,所述压铸铝硅合金中各组分的重量百分比为:
Si:6.3-8.3%;Fe:0.07-0.45%;Cu:0.05-0.5%;Mn:0.5-0.8%;Mg:0.15-0.35%;Ti:0.01-0.2%;Sr:0.015-0.035%;稀土总量:0.04%-0.2%,稀土包括La/Ce/Sc中的一种或几种;Ni:0.001-0.1%;Zn:0.005-0.1%;Ga:0.01-0.03%;其他杂质总量应小于或等于0.2%,余量为Al。
可选地,所述压铸铝硅合金中各组分的重量百分比为:
Si:6.3-7.0%;Fe:0.2-0.4%;Cu:0.35-0.45%;Mn:0.5-0.8%;Mg:0.25-0.35%;Ti:0.1-0.2%;Sr:0.015-0.035%;稀土总量:0.04%-0.2%,稀土包括La/Ce/Sc中的一种或几种;Ni:0.001-0.1%;Zn:0.005-0.1%;Ga:0.01-0.03%;其他杂质总量应小于或等于0.2%,余量为Al。
可选地,所述压铸铝硅合金中各组分的重量百分比为:
Si:6.4-7.1%;Fe:0.10-0.25%;Cu:0.05-0.28%;Mn:0.5-0.8%;Mg:0.25-0.35%;Ti:0.03-0.16%;Sr:0.025-0.035%;稀土总量:0.04%-0.15%,所述稀土包括La/Ce/Sc中的的至少一种;Ni:0.001-0.1%;Zn:0.005-0.1%;Ga:0.01-0.03%;其他杂质总量应小于或等于0.2%,余量为Al。
可选地,所述压铸铝硅合金中各组分的重量百分比为:
Si:7.0-7.7%;Fe:0.15-0.3%;Cu:0.2-0.35%;Mn:0.6-0.8%;Mg:0.2-0.3%;Ti:0.05-0.2%;Sr:0.015-0.035%;稀土总量:0.04%-0.2%,稀土包括La/Ce/Sc中的一种或几种;Ni:0.001-0.1%;Zn:0.005-0.1%;Ga:0.01-0.03%;其他杂质总量应小于或等于0.2%,余量为Al。
可选地,所述压铸铝硅合金中各组分的重量百分比为:
Si:7.7-8.3%;Fe:0.07-0.2%;Cu:0.05-0.2%;Mn:0.6-0.8%;Mg:0.15-0.3%;Ti:0.01-0.15%;Sr:0.015-0.035%;稀土总量:0.04%-0.2%,稀土包括La/Ce/Sc中的一种或几种;Ni:0.001-0.1%;Zn:0.005-0.1%;Ga:0.01-0.03%;其他杂质总量应小于或等于0.2%,余量为Al。
可选地,所述压铸铝硅合金的抗拉强度大于或等于270Mpa,屈服强度大于或等于130Mpa,延伸率大于或等于11%。
第二方面,本发明实施例提供了一种制备所述的压铸铝硅合金工艺方法,该方法包括:
先将制备所述压铸铝硅合金的不易烧损的各原料加热熔化,得到铝合金液;然后将所述铝合金液进行除渣及精炼处理后在添加易烧损的各原料,成分达标后进行浇铸处理,得到所述压铸铝硅合金。
可选地,还包括将所述压铸铝硅合金进行压铸成型,所述压铸铝硅合金的压铸成型温度为680-720℃,压铸速度为2.5-5m/s,保温时间为2-10s,然后得到非热处理状态的压铸件。
可选地,还包括在各原料完全熔化后,对所述铝合金液搅拌均匀,静置后进行取样分析,对所需元素含量调整到成分要求范围内。
可选地,还包括所用精炼剂不含Na离子。
本发明提供了一种非热处理高韧性压铸铝硅合金及其制备方法。本发明制备的铝合金打破传统压铸铝合金需要T7热处理后才能满足汽车车身结构件要求的特点,而且可以用废铝进行生产,降低了生产过程中产生的碳排放,且无需热处理延伸率即可达到11-16%。
要理解的是,前面的一般描述和下面的详细描述两者都是示例性的,并且意图在于提供要求保护的发明创造的进一步说明。
附图说明
结合附图并参考以下具体实施方式,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,原件和元素不一定按照比例绘制。
图1示出了本发明实施例2获得的压铸铝合金微观组织金相图,其中图(a)为100X的微观组织金相图;图(b)为500X微观组织金相图;
图2示出了实施例2获得的压铸铝合金的流动性测试模具;
图3示出了实施例2、对比例1和对比例2获得的压铸铝合金的拉伸应力应变曲线
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
应当理解,本公开的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本公开的范围在此方面不受限制。
本公开提供了一种非热处理高韧性压铸铝硅合金及其制备方法。下面结合附图对本公开的实施例进行说明。
实施例1
本实施例的一种低碳排放可再生的非热处理高韧性压铸铝硅合金各组分的重量百分比为:Mg:0.2%;Si:6.5%;Fe:0.15%;Cu:0.1%;Mn:0.5%;Ti:0.03%;Sr:0.025%;La、Ce总量:0.05%;Ni:0.005%;Zn:0.006%;Ga:0.015%;其余杂质余量小于等于0.2%,余量为铝。
本实施例的一种低碳排放可再生的非热处理高韧性压铸铝硅合金的制备方法,包括以下步骤:
(1)炉前准备:将炉底清理干净后开始烘炉,直至炉墙呈红色;将操作工具全部涂刷石墨粉后进行烘干预热;
(2)配料:准备金属Al锭、金属Mg锭、工业Si、Al-Mn中间合金或金属Mn、金属Fe、Al-Ti中间合金、金属Cu或Al-Cu中间合 金、金属Ni、金属Zn及金属Ga、Al-Sr中间合金、铝稀土中间合金等作为铝合金中各元素的原料,适当考虑烧损后,按照上述合金组分比例添加;
(3)装炉熔化:先将金属Al锭投入炉内进行熔化,熔化温度控制在760-790℃,待铝锭全部熔化后升温,温度控制在760~780℃,随后添加工业硅、金属Fe、Al-Mn中间合金或金属Mn、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga进行熔炼;
(4)精炼扒渣:将铝合金熔体温度控制在740~760℃下进行均匀搅拌并加入铝合金专用精炼剂进行一次喷粉精炼和二次喷粉精炼,两次精炼间隔时间控制在50-60min,每次精炼完毕后扒渣,除去液面上的熔剂和浮渣;
(5)加入其它金属元素:熔液温度为740~760℃时,炉中加入Al-Ti中间合金、铝稀土中间合金、金属Mg、Al-Sr中间合金锭进行熔炼,进行细化和变质处理,获得铝合金熔体后进行取样分析;
(6)炉内除气。熔炼温度保持在740~760℃,用气体进行炉内除气,除气时间约为30~50min,随后静置15~30min;
(7)浇铸或压铸:炉前成分分析合格后,在浇铸温度进行浇铸成铸锭成品,或在压铸工艺下进行高压铸造,得到非热处理状态的压铸件。
实施例2
本实施例的一种低碳排放可再生的非热处理高韧性压铸铝硅合金各组分的重量百分比为:Mg:0.3%;Si:6.9%;Fe:0.2%;Cu:0.2%;Mn:0.6%;Ti:0.07%;Sr:0.02%;La:0.1%;Ni:0.003%;Zn:0.07%;Ga:0.02%;其余杂质余量小于等于0.2%,余量为铝。
本实施例的一种低碳排放可再生的非热处理高韧性压铸铝硅合金的制备方法,包括以下步骤:
(1)炉前准备:将炉底清理干净后开始烘炉,直至炉墙呈红色;将操作工具全部涂刷石墨粉后进行烘干预热。
(2)配料:准备金属Al锭或废铝、金属Mg锭、工业Si、Al-Mn中间合金或金属Mn、金属Fe、Al-Ti中间合金、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga、Al-Sr中间合金、铝稀土中间合金等作为铝合金中各元素的原料,适当考虑烧损后,按照上述合金组分比例添加;
(3)装炉熔化:先将金属Al锭或废铝投入炉内进行熔化,熔化温度控制在760-790℃,待铝锭或废铝全部熔化后升温,温度控制在760~780℃,随后添加工业硅、金属Fe、Al-Mn中间合金或金属Mn、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga进行熔炼;
(4)精炼扒渣:将铝合金熔体温度控制在740~760℃下进行均匀 搅拌并加入铝合金专用精炼剂进行一次喷粉精炼和二次喷粉精炼,两次精炼间隔时间控制在50~60min,每次精炼完毕后扒渣,除去液面上的熔剂和浮渣。
(5)加入其它金属元素:熔液温度为740~760℃时,炉中加入Al-Ti中间合金、铝稀土中间合金、金属Mg、Al-Sr中间合金锭进行熔炼,进行细化和变质处理,获得铝合金熔体后进行取样分析;
(6)炉内除气。熔炼温度保持在740~760℃,用氮气进行炉内除气,除气时间约为30~50min,随后静置15~30min。
(7)浇铸或压铸:炉前成分分析合格后,在浇铸温度进行浇铸成铸锭成品,或在压铸工艺下进行高压铸造,得到非热处理状态的压铸件。
实施例3
本实施例的一种低碳排放可再生的非热处理高韧性压铸铝硅合金各组分的重量百分比为:Mg:0.35%;Si:7.5%;Fe:0.25%;Cu:0.3%;Mn:0.7%;Ti:0.15%;Sr:0.03%;Ce:0.08%;Ni:0.08%;Zn:0.09%;Ga:0.025%;其余杂质余量小于等于0.2%,余量为铝。
本实施例的一种低碳排放可再生的非热处理高韧性压铸铝硅合金的制备方法,包括以下步骤:
(1)炉前准备:将炉底清理干净后开始烘炉,直至炉墙呈红色;将操作工具全部涂刷石墨粉后进行烘干预热。
(2)配料:准备金属Al锭或废铝、金属Mg锭、工业Si、Al-Mn中间合金或金属Mn、金属Fe、Al-Ti中间合金、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga、Al-Sr中间合金、铝稀土中间合金等作为铝合金中各元素的原料,适当考虑烧损后,按照上述合金组分比例添加;
(3)装炉熔化:先将金属Al锭或废铝投入炉内进行熔化,熔化温度控制在760-790℃,待铝锭或废铝全部熔化后升温,温度控制在760~780℃,随后添加工业硅、金属Fe、Al-Mn中间合金或金属Mn、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga进行熔炼;
(4)精炼扒渣:将铝合金熔体温度控制在740~760℃下进行均匀搅拌并加入铝合金专用精炼剂进行一次喷粉精炼和二次喷粉精炼,两次精炼间隔时间控制在50~60min,每次精炼完毕后扒渣,除去液面上的熔剂和浮渣。
(5)加入其它金属元素:熔液温度为740~760℃时,炉中加入Al-Ti中间合金、铝稀土中间合金、金属Mg、Al-Sr中间合金锭进行熔炼,进行细化和变质处理,获得铝合金熔体后进行取样分析;
(6)炉内除气。熔炼温度保持在740~760℃,用氮气进行炉内除气,除气时间约为30~50min,随后静置15~30min。
(7)浇铸或压铸:炉前成分分析合格后,在浇铸温度进行浇铸成铸锭成品,或在压铸工艺下进行高压铸造,得到非热处理状态的压铸件。
实施例4
本实施例的一种低碳排放可再生的非热处理高韧性压铸铝硅合金各组分的重量百分比为:Mg:0.25%;Si:7.8%;Fe:0.35%;Cu:0.4%;Mn:0.8%;Ti:0.2%;Sr:0.035%;Sc:0.15%;Ni:0.02%;Zn:0.08%;Ga:0.012%;其余杂质余量小于等于0.2%,余量为铝。
本实施例的一种低碳排放可再生的非热处理高韧性压铸铝硅合金的制备方法,包括以下步骤:
(1)炉前准备:将炉底清理干净后开始烘炉,直至炉墙呈红色;将操作工具全部涂刷石墨粉后进行烘干预热。
(2)配料:准备金属Al锭或废铝、金属Mg锭、工业Si、Al-Mn中间合金或金属Mn、金属Fe、Al-Ti中间合金、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga、Al-Sr中间合金、铝稀土中间合金等作为铝合金中各元素的原料,适当考虑烧损后,按照上述合金组分比例添加;
(3)装炉熔化:先将金属Al锭或废铝投入炉内进行熔化,熔化温度控制在760-790℃,待铝锭或废铝全部熔化后升温,温度控制在760~780℃,随后添加工业硅、金属Fe、Al-Mn中间合金或金属Mn、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga进行熔炼;
(4)精炼扒渣:将铝合金熔体温度控制在740~760℃下进行均匀搅拌并加入铝合金专用精炼剂进行一次喷粉精炼和二次喷粉精炼,两次精炼间隔时间控制在50~60min,每次精炼完毕后扒渣,除去液面上的熔剂和浮渣。
(5)加入其它金属元素:熔液温度为740~760℃时,炉中加入Al-Ti中间合金、铝稀土中间合金、金属Mg、Al-Sr中间合金锭进行熔炼,进行细化和变质处理,获得铝合金熔体后进行取样分析;
(6)炉内除气。熔炼温度保持在740~760℃,用氮气进行炉内除气,除气时间约为30~50min,随后静置15~30min。
(7)浇铸或压铸:炉前成分分析合格后,在浇铸温度进行浇铸成铸锭成品,或在压铸工艺下进行高压铸造,得到非热处理状态的压铸件。
实施例5
本实施例的一种低碳排放可再生的非热处理高韧性压铸铝硅合金各组分的重量百分比为:Mg:0.15%;Si:8.3%;Fe:0.45%;Cu:0.5%;Mn:0.65%;Ti:0.15%;Sr:0.03%;La和Sc总量:0.2%;Ni:0.08%;Zn:0.01%;Ga:0.018%;其余杂质余量小于等于0.2%, 余量为铝。
本实施例的一种低碳排放可再生的非热处理高韧性压铸铝硅合金的制备方法,包括以下步骤:
(1)炉前准备:将炉底清理干净后开始烘炉,直至炉墙呈红色;将操作工具全部涂刷石墨粉后进行烘干预热。
(2)配料:准备金属Al锭或废铝、金属Mg锭、工业Si、Al-Mn中间合金或金属Mn、金属Fe、Al-Ti中间合金、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga、Al-Sr中间合金、铝稀土中间合金等作为铝合金中各元素的原料,适当考虑烧损后,按照上述合金组分比例添加;
(3)装炉熔化:先将金属Al锭或废铝投入炉内进行熔化,熔化温度控制在760-790℃,待铝锭或废铝全部熔化后升温,温度控制在760~780℃,随后添加工业硅、金属Fe、Al-Mn中间合金或金属Mn、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga进行熔炼;
(4)精炼扒渣:将铝合金熔体温度控制在740~760℃下进行均匀搅拌并加入铝合金专用精炼剂进行一次喷粉精炼和二次喷粉精炼,两次精炼间隔时间控制在50~60min,每次精炼完毕后扒渣,除去液面上的熔剂和浮渣。
(5)加入其它金属元素:熔液温度为740~760℃时,炉中加入Al-Ti中间合金、铝稀土中间合金、金属Mg、Al-Sr中间合金锭进行熔炼,进行细化和变质处理,获得铝合金熔体后进行取样分析;
(6)炉内除气。熔炼温度保持在740~760℃,用氮气进行炉内除气,除气时间约为30~50min,随后静置15~30min。
(7)浇铸或压铸:炉前成分分析合格后,在浇铸温度进行浇铸成铸锭成品,或在压铸工艺下进行高压铸造,得到非热处理状态的压铸件。
实施例6
本实施例的一种低碳排放可再生的非热处理高韧性压铸铝硅合金采用回收废铝来制备,其制备方法包括以下步骤:
(1)炉前准备:将炉底清理干净后开始烘炉,直至炉墙呈红色;将操作工具全部涂刷石墨粉后进行烘干预热。
(2)配料:将回收的废铝进行分选、处理。然后按合金成分配比准备金属Al锭、金属Mg锭、工业Si、Al-Mn中间合金或金属Mn、金属Fe、Al-Ti中间合金、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga、Al-Sr中间合金、铝稀土中间合金等作为铝合金中各元素的原料,适当考虑烧损后,按照上述合金组分比例添加;
(3)装炉熔炼:在炉中依次加入40%的金属Al锭和60%的废铝进行熔炼,熔炼温度控制在760~790℃,待全部熔化后进行取样分析, 然后其它元素根据各自所占比例进行添加。升温,温度控制在760~780℃,随后添加工业硅、金属Fe、Al-Mn中间合金或金属Mn、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga进行熔炼;
(4)精炼扒渣:将成分合格的铝合金熔体温度控制在740~760℃下进行均匀搅拌并加入铝合金专用精炼剂进行一次喷粉精炼和二次喷粉精炼,两次精炼间隔时间控制在50~60min,每次精炼完毕后扒渣,除去液面上的熔剂和浮渣。
(5)加入其它金属元素:熔液温度为740~760℃时,炉中加入Al-Ti中间合金、铝稀土中间合金、金属Mg、Al-Sr中间合金锭进行熔炼,进行细化和变质处理,获得铝合金熔体后进行取样分析;
(6)炉内除气。熔炼温度保持在740~760℃,用氮气进行炉内除气,除气时间约为30~50min,随后静置15~30min。
(7)浇铸或压铸:最终重量百分比为:Mg:0.25%;Si:7.0%;Fe:0.35%;Cu:0.25%;Mn:0.6%;Ti:0.12%;Sr:0.028%;La、Ce及Sc总量:0.2%;Ni:0.005%;Zn:0.06%;Ga:0.02%;其余杂质余量小于等于0.2%,余量为铝。炉前成分分析合格后,在浇铸温度进行浇铸成铸锭成品,或在压铸工艺下进行高压铸造,得到非热处理状态的压铸件。
实施例7
本实施例的一种低碳排放可再生的非热处理高韧性压铸铝硅合金采用回收废铝来制备,其制备方法包括以下步骤:
(1)炉前准备:将炉底清理干净后开始烘炉,直至炉墙呈红色;将操作工具全部涂刷石墨粉后进行烘干预热。
(2)配料:回收的废铝进行分选。然后按合金成分配比准备金属Mg锭、工业Si、Al-Mn中间合金或金属Mn、金属Fe、Al-Ti中间合金、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga、Al-Sr中间合金、铝稀土中间合金作为铝合金中各元素的原料,适当考虑烧损后,按照所需合金组分比例添加。
(3)装炉熔炼:炉中加入100%的废铝进行熔炼,熔炼温度控制在760~790℃,全部熔化后进行取样分析,然后其它元素根据各自所占比例进行添加。升温,温度控制在760~780℃,随后添加工业硅、金属Fe、Al-Mn中间合金或金属Mn、金属Cu或Al-Cu中间合金、金属Ni、金属Zn及金属Ga进行熔炼;
(4)精炼扒渣:将成分合格的铝合金熔体温度控制在740~760℃下进行均匀搅拌并加入铝合金专用精炼剂进行一次喷粉精炼和二次喷粉精炼,两次精炼间隔时间控制在50~60min,每次精炼完毕后扒渣,除去液面上的熔剂和浮渣。
(5)加入其它金属元素:熔液温度为740~760℃时,炉中加入 Al-Ti中间合金、铝稀土中间合金、金属Mg、Al-Sr中间合金锭进行熔炼,进行细化和变质处理,获得铝合金熔体后进行取样分析;
(6)炉内除气。熔炼温度保持在740~760℃,用氮气进行炉内除气,除气时间约为30~50min,随后静置15~30min。
(7)浇铸或压铸:最终重量百分比为:Mg:0.3%;Si:7.7%;Fe:0.15%;Cu:0.3%;Mn:0.7%;Ti:0.15%;Sr:0.035%;Ce:0.08%;Ni:0.1%;Zn:0.1%;Ga:0.03%;其余杂质余量小于等于0.2%,余量为铝。炉前成分分析合格后,在浇铸温度进行浇铸成铸锭成品,或在压铸工艺下进行高压铸造,得到非热处理状态的压铸件。
对比例1
本对比例是针对实施例2的成分基础上进行的调整,比实施例2少添加了Sr元素,也没有添加La元素,各组分的重量百分比为:Si:6.9%;Fe:0.2%;Cu:0.2%;Mn:0.6%;Mg:0.3%;Ti:0.07%;Sr:0.008%;Ni:0.003%;Zn:0.07%;Ga:0.02%;其余杂质余量小于等于0.2%,余量为铝。
本对比例的一种压铸铝合金的制备方法,包括以下步骤:
(1)炉前准备:将炉底清理干净后开始烘炉,直至炉墙呈红色;将操作工具全部涂刷石墨粉后进行烘干预热。
(2)配料:准备金属Al锭、金属Mg锭、工业Si、金属Cu、Al-Mn中间合金或金属Mn、金属Fe、Al-Ti中间合金、Al-Sr中间合金等作为铝合金中各元素的原料,适当考虑烧损后,按照上述合金组分比例添加。
(3)装炉熔化:先将金属Al锭投入炉内进行熔炼,熔炼温度控制在670~690℃,待铝锭全部熔化后升温,温度控制在760~780℃,随后添加工业Si、金属Fe、金属Cu、Al-Mn中间合金或金属Mn进行熔炼。
(4)精炼扒渣:将成分合格的铝合金熔体温度控制在740~760℃下进行均匀搅拌并加入铝合金专用精炼剂进行一次喷粉精炼和二次喷粉精炼,两次精炼间隔时间控制在50~60min,每次精炼完毕后扒渣,除去液面上的熔剂和浮渣。
(5)加入其它金属元素:熔液温度为740~760℃时,炉中加入Al-Ti中间合金、金属Mg、Al-Sr中间合金锭进行熔炼,获得铝合金熔体后进行取样分析。
(6)炉内除气。熔炼温度保持在740~760℃,用氮气进行炉内除气,除气时间约为30~50min,随后静置15~30min。
(7)浇铸或压铸:炉前成分分析合格后,在浇铸温度进行浇铸成铸锭成品,或在压铸工艺下进行高压铸造,得到非热处理状态的压铸件。
对比例2
本对比例是针对实施例2的成分基础上进行的调整,比实施例2多添加了Sr元素,没有添加La元素,各组分的重量百分比为:Si:6.9%;Fe:0.2%;Cu:0.2%;Mn:0.6%;Mg:0.3%;Ti:0.07%;Sr:0.05%;Ni:0.003%;Zn:0.07%;Ga:0.02%;其余杂质余量小于等于0.2%,余量为铝。
本对比例的制备方法与对比例1相同。
对比例3
本对比例是针对实施例6的成分基础上进行的调整,与实施例6相比,本实施例并未添加La、Ce、Sc、Zn、Ni及Ga元素,各组分的重量百分比为:Si:7.0%;Fe:0.35%;Cu:0.25%;Mn:0.6%;Mg:0.25%;Ti:0.12%;Sr:0.028%;其余杂质余量小于等于0.2%,余量为铝。
本对比例的制备方法与对比例1相同。
对比例4
本对比例是针对实施例6的成分基础上进行的调整,与实施例6相比,本实施例并未添加La、Ce、Sc元素,各组分的重量百分比为:Si:7.0%;Fe:0.35%;Cu:0.25%;Mn:0.6%;Mg:0.25%;Ti:0.12%;Sr:0.028%;Ni:0.06%;Zn:0.005%;Ga:0.02%;其余杂质余量小于等于0.2%,余量为铝。
本对比例的制备方法与对比例1相同。
对比例5
本对比例是针对实施例6的成分基础上进行的调整,与实施例6相比,本实施例了添加了高含量La、Ce、Sc元素,各组分的重量百分比为:Si:7.0%;Fe:0.35%;Cu:0.25%;Mn:0.6%;Mg:0.25%;Ti:0.12%;Sr:0.028%;La:0.2;Ce:0.2;Sc:0.2;Ni:0.06%;Zn:0.005%;Ga:0.02%;其余杂质余量小于等于0.2%,余量为铝。
本对比例的制备方法与对比例1相同。
对比例6
本对比例是针对实施例6的成分基础上进行的调整,与实施例6相比,本实施例添加了高含量La元素,各组分的重量百分比为:Si:7.0%;Fe:0.35%;Cu:0.25%;Mn:0.6%;Mg:0.25%;Ti:0.12%;Sr:0.028%;La:1.0;Ni:0.06%;Zn:0.005%;Ga:0.02%;其余杂质余量小于等于0.2%,余量为铝。
本对比例的制备方法与对比例1相同。
对比例7
本对比例是针对实施例6的成分基础上进行的调整,与实施例6相比,本实施例添加了高含量Sc元素,各组分的重量百分比为:Si: 7.0%;Fe:0.35%;Cu:0.25%;Mn:0.6%;Mg:0.25%;Ti:0.12%;Sr:0.028%;Sc:0.5;Ni:0.06%;Zn:0.005%;Ga:0.02%;其余杂质余量小于等于0.2%,余量为铝。
本对比例的制备方法与对比例1相同。
对比例8
本对比例是针对实施例6的成分基础上进行的调整,与实施例6相比,本实施例添加了高含量Sc元素,各组分的重量百分比为:Si:7.0%;Fe:0.35%;Cu:0.25%;Mn:0.6%;Mg:0.25%;Ti:0.12%;Sr:0.028%;La:0.01;Sc:0.01;Ni:0.06%;Zn:0.005%;Ga:0.02%;其余杂质余量小于等于0.2%,余量为铝。
本对比例的制备方法与对比例1相同。
表1是实施例1~7和对比例1~8的铝合金成分。
Figure PCTCN2022080807-appb-000001
Figure PCTCN2022080807-appb-000002
表1合金成分
表2是实施例1~7和对比例1~8获得铝合金铸件本体取样F态及180℃保温30min的室温拉伸力学性能及流动性能。
Figure PCTCN2022080807-appb-000003
Figure PCTCN2022080807-appb-000004
表2力学性能
由表1和表2可知,与实施例2相比,对比例1的Sr元素含量远低于实施例2,同时未添加稀土时,屈服强度降低了26Mpa,延伸率降低了4.2%;与实施例2相比,对比例2的Sr元素含量远高于实施例2,同时未添加稀土时,屈服强度降低了17Mpa,延伸率降低了4.9%;与实施例6相比,对比例3未添加稀土、Zn、Ni及Ga元素时,屈服强度降低了25Mpa,延伸率降低了3.3%;与实施例6相比,对比例4未添加稀土元素时,屈服强度降低了23Mpa,延伸率降低了3.6%;与实施例6相比,对比例5添加稀土元素La、Ce及Sc总和为0.6%时,屈服强度降低了18Mpa,延伸率降低了4.8%;与实施例6相比,对比例6添加稀土元素La为1.0%时,屈服强度降低了16Mpa,延伸率降低了5.1%;与实施例6相比,对比例7添加稀土元素Sc为0.5%时,屈服强度降低了20Mpa,延伸率降低了4.1%;与实施例6相比,对比例8添加稀土元素La及Sc总和为0.02%时,屈服强度降低了16Mpa,延伸率降低了4.2%。综上,只有Sr及稀土元素La、Ce及Sc元素在本专利范围内时,力学性能才能表现优异,Sr及稀土元素La、Ce及Sc元素含量过低或过高时,综合力学性能均较差。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (10)

  1. 一种非热处理高韧性压铸铝硅合金,其特征在于,所述压铸铝硅合金中各组分的重量百分比为:
    Si:6.3-8.3%;Fe:0.07-0.45%;Cu:0.05-0.5%;Mn:0.5-0.8%;Mg:0.15-0.35%;Ti:0.01-0.2%;Sr:0.015-0.035%;稀土总量:0.04%-0.2%,所述稀土包括La/Ce/Sc中的至少一种;Ni:0.001-0.1%;Zn:0.005-0.1%;Ga:0.01-0.03%;其他杂质总量应小于或等于0.2%,余量为Al。
  2. 根据权利要求1所述的压铸铝硅合金,其特征在于,所述压铸铝硅合金中各组分的重量百分比为:
    Si:6.3-7.0%;Fe:0.2-0.4%;Cu:0.35-0.45%;Mn:0.5-0.8%;Mg:0.25-0.35%;Ti:0.1-0.2%;Sr:0.015-0.035%;稀土总量:0.04%-0.2%,所述稀土包括La/Ce/Sc中的至少一种;Ni:0.001-0.1%;Zn:0.005-0.1%;Ga:0.01-0.03%;其他杂质总量应小于或等于0.2%,余量为Al。
  3. 根据权利要求1所述的一种非热处理高韧性压铸铝硅合金,其特征在于,所述压铸铝硅合金中各组分的重量百分比为:
    Si:6.4-7.1%;Fe:0.10-0.25%;Cu:0.05-0.28%;Mn:0.5-0.8%;Mg:0.25-0.35%;Ti:0.03-0.16%;Sr:0.025-0.035%;稀土总量:0.04%-0.15%,所述稀土包括La/Ce/Sc中的的至少一种;Ni:0.001-0.1%;Zn:0.005-0.1%;Ga:0.01-0.03%;其他杂质总量应小于或等于0.2%,余量为Al。
  4. 根据权利要求1所述的压铸铝硅合金,其特征在于,所述压铸铝硅合金中各组分的重量百分比为:
    Si:7.0-7.7%;Fe:0.15-0.3%;Cu:0.2-0.35%;Mn:0.6-0.8%;Mg:0.2-0.3%;Ti:0.05-0.2%;Sr:0.015-0.035%;稀土总量:0.04%-0.2%,所述稀土包括La/Ce/Sc中的至少一种;Ni:0.001-0.1%;Zn:0.005-0.1%;Ga:0.01-0.03%;其他杂质总量应小于或等于0.2%,余量为Al。
  5. 根据权利要求1所述的压铸铝硅合金,其特征在于,所述压铸铝硅合金中各组分的重量百分比为:
    Si:7.7-8.3%;Fe:0.07-0.2%;Cu:0.05-0.2%;Mn:0.6-0.8%; Mg:0.15-0.3%;Ti:0.01-0.15%;Sr:0.015-0.035%;稀土总量:0.04%-0.2%,所述稀土包括La/Ce/Sc中的至少一种;Ni:0.001-0.1%;Zn:0.005-0.1%;Ga:0.01-0.03%;其他杂质总量应小于或等于0.2%,余量为Al。
  6. 根据权利要求1-5中任一项所述的压铸铝硅合金,其特征在于,所述压铸铝硅合金的抗拉强度大于或等于270Mpa,屈服强度大于或等于130Mpa,延伸率大于或等于11%。
  7. 一种制备权利要求1-6中任一项所述的压铸铝硅合金工艺方法,其特征在于,包括:
    先将制备所述压铸铝硅合金的不易烧损的各原料加热熔化,得到铝合金液;然后将所述铝合金液进行除渣及精炼处理后再添加易烧损的各原料,成分达标后进行浇铸处理,得到所述压铸铝硅合金。
  8. 根据权利要求7所述的方法,其特征在于,还包括将所述压铸铝硅合金进行压铸成型,所述压铸铝硅合金的压铸成型温度为680-720℃,压铸速度为2.5-5m/s,保温时间为2-10s,然后得到非热处理状态的压铸件。
  9. 根据权利要求7所述的方法,其特征在于,还包括在各原料完全熔化后,对所述铝合金液搅拌均匀,静置后进行取样分析,对所需元素含量调整到成分要求范围内。
  10. 根据权利要求7所述的方法,其特征在于,还包括所用精炼剂不含Na离子。
PCT/CN2022/080807 2021-12-10 2022-03-15 一种非热处理高韧性压铸铝硅合金及其制备方法 WO2023103201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111507879.5 2021-12-10
CN202111507879.5A CN114231799B (zh) 2021-12-10 2021-12-10 一种非热处理高韧性压铸铝硅合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2023103201A1 true WO2023103201A1 (zh) 2023-06-15

Family

ID=80754649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080807 WO2023103201A1 (zh) 2021-12-10 2022-03-15 一种非热处理高韧性压铸铝硅合金及其制备方法

Country Status (2)

Country Link
CN (1) CN114231799B (zh)
WO (1) WO2023103201A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117026026A (zh) * 2023-08-28 2023-11-10 南通众福新材料科技有限公司 一种基于再生铝的高延伸率铝合金材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115233046B (zh) * 2022-06-15 2023-04-28 浙江今飞凯达轮毂股份有限公司 一种基于再生铝的非热处理高铁含量的Al-Si-Mg-Fe铝合金及其制备方法
CN115305390B (zh) * 2022-06-30 2023-11-07 丹阳荣嘉精密机械有限公司 一种非热处理高强韧压铸铝合金及其制备方法和应用
CN115287507A (zh) * 2022-08-02 2022-11-04 乔治费歇尔金属成型科技(苏州)有限公司 一种免热处理的铝合金、其制备方法及结构件与应用
CN116287891B (zh) * 2023-05-25 2023-08-08 小米汽车科技有限公司 一种免热处理压铸铝合金及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364970B1 (en) 1994-06-16 2002-04-02 Aluminium Rheinfelden Gmbh Diecasting alloy
CN101629258A (zh) * 2008-07-15 2010-01-20 太仓沪北特种铝材有限公司 一种汽车零部件用含re的优良铸铝合金材料及制造方法
WO2016161908A1 (zh) * 2015-04-10 2016-10-13 上海交通大学 非热处理自强化铝硅合金及其制备工艺
CN106636787A (zh) 2016-11-14 2017-05-10 苏州慧驰轻合金精密成型科技有限公司 一种高韧性压铸铝合金及其制备方法
CN108754256A (zh) 2018-07-16 2018-11-06 上海交通大学 非热处理强化高强高韧压铸铝镁硅合金及其制备方法
CN109881056A (zh) 2019-03-25 2019-06-14 上海永茂泰汽车零部件有限公司 一种高强韧压铸铝合金及其制备方法
CN113755722A (zh) * 2021-09-22 2021-12-07 隆达铝业(顺平)有限公司 一种高强韧免热处理铝合金材料及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561691B (zh) * 2015-01-26 2017-02-01 上海交通大学 高塑性铸造铝合金及其压力铸造制备方法
CN108517446A (zh) * 2018-05-22 2018-09-11 华中科技大学 一种用于真空压铸的高韧性铝合金及其产品的制备方法
CN110983120A (zh) * 2019-11-25 2020-04-10 安徽科技学院 一种300MPa级高强塑非热处理自强化压铸铝合金及制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364970B1 (en) 1994-06-16 2002-04-02 Aluminium Rheinfelden Gmbh Diecasting alloy
CN101629258A (zh) * 2008-07-15 2010-01-20 太仓沪北特种铝材有限公司 一种汽车零部件用含re的优良铸铝合金材料及制造方法
WO2016161908A1 (zh) * 2015-04-10 2016-10-13 上海交通大学 非热处理自强化铝硅合金及其制备工艺
CN106636787A (zh) 2016-11-14 2017-05-10 苏州慧驰轻合金精密成型科技有限公司 一种高韧性压铸铝合金及其制备方法
CN108754256A (zh) 2018-07-16 2018-11-06 上海交通大学 非热处理强化高强高韧压铸铝镁硅合金及其制备方法
CN109881056A (zh) 2019-03-25 2019-06-14 上海永茂泰汽车零部件有限公司 一种高强韧压铸铝合金及其制备方法
CN113755722A (zh) * 2021-09-22 2021-12-07 隆达铝业(顺平)有限公司 一种高强韧免热处理铝合金材料及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117026026A (zh) * 2023-08-28 2023-11-10 南通众福新材料科技有限公司 一种基于再生铝的高延伸率铝合金材料及其制备方法
CN117026026B (zh) * 2023-08-28 2024-02-23 南通众福新材料科技有限公司 一种基于再生铝的高延伸率铝合金材料及其制备方法

Also Published As

Publication number Publication date
CN114231799A (zh) 2022-03-25
CN114231799B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2023103201A1 (zh) 一种非热处理高韧性压铸铝硅合金及其制备方法
CN104372263B (zh) 一种高纯净非调质曲轴用钢的电炉生产工艺
CN114150191B (zh) 一种非热处理高韧性压铸铝合金及其制备方法
CN110724861B (zh) 高性能铝合金发动机缸盖及其铸造方法
CN112176231A (zh) 一种汽车结构件用高强度、高韧性压铸铝合金及其制备方法以及应用
CN108977710B (zh) 一种挤压铸造镁合金材料及其制备方法
CN104894442A (zh) 一种车用铝合金板材及其制备方法
CN112921209B (zh) 一种超高导热高塑性中等强度铝合金及其制备方法
CN107858563B (zh) 新能源物流车厢骨架轻量化用铝合金及制备方法
CN106566935A (zh) 一种液态模锻铝合金及其制备方法
CN113444929A (zh) 一种微合金化非热处理高强韧压铸铝合金及其制备工艺
CN104831097A (zh) 一种可焊接性好的缸盖用铝合金材料及其制备方法
CN105088026A (zh) 一种可以铸造的缸盖用铝合金材料及其制备方法
CN103131924A (zh) 含Sm的Mg-Al-Zn系耐热变形镁合金
CN104862546A (zh) 一种利用废铝熔炼的发动机缸盖用铝合金材料及其制备方法
CN115161521B (zh) 一种免热处理压铸铝硅锌合金
CN102586638B (zh) 一种7系铝合金的制备方法
CN106282622A (zh) 一种铸造铝合金的废铝再生方法
CN112522555A (zh) 一种高强韧挤压铸造铝硅合金及其制备方法
CN113502421B (zh) 一种Al-Zn-Mg-Fe系铝合金材料及其制备方法与应用
CN105986136A (zh) 一种添加稀土元素的高性能铝合金及其制备方法
CN114182148A (zh) 多组元Mg-RE系镁合金及其制备方法
CN105525156A (zh) 一种新型铝硅铜镁合金材料及其制备方法
CN105018800A (zh) 一种耐高温性能好的缸盖用铝合金材料及其制备方法
CN104099503A (zh) 一种镁合金板材及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902645

Country of ref document: EP

Kind code of ref document: A1